• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2011.tde-07032011-115432
Documento
Autor
Nome completo
Ronaldo Aparecido de Abreu
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2011
Orientador
Banca examinadora
Silva, Magno Teófilo Madeira da (Presidente)
Arjona Ramírez, Miguel
Eisencraft, Marcio
Título em português
Técnicas de equalização de canais de comunicação aplicadas a imagens.
Palavras-chave em português
Algoritmos para imagens
Filtros elétricos adaptativos
Processamento de imagens
Resumo em português
O objetivo da desconvolução autodidata de imagens é reconstruir a imagem original a partir de uma imagem degradada sem usar informação da imagem real ou da função de degradação. O processo de reconstrução é crítico em aplicações em que a imagem original ou suas características estatísticas não são conhecidas. Fazendo um mapeamento da imagem digital antes de sua transmissão, ela pode ser interpretada como um sinal de comunicação com modulação do tipo PAM (Pulse Amplitude Modulation). Utilizando essa interpretação, técnicas clássicas de equalização de canais de comunicação podem ser usadas para restauração de imagens. Além disso, é usual considerar os pixels de uma imagem como um sinal não-estacionário, o que justifica o uso de algoritmos adaptativos. Neste trabalho, técnicas adaptativas usadas em equalização de canais de comunicação são aplicadas para restauração de imagens. Inicialmente, é proposta uma nova técnica de varredura a fim de minimizar alterações bruscas no sinal de entrada do filtro adaptativo. Utilizando o algoritmo Least Mean Squares, obtém-se uma equivalência entre funções de degradação de imagens e canais de comunicação variantes no tempo. Isso possibilitou comparar algumas funções de degradação com relação à distorção causada em imagens. Em seguida, usando um rearranjo dos elementos da matriz de entrada em um vetor, o algoritmo multimódulo regional (RMMA - Region-based Multimodulus Algorithm) foi estendido para restauração de imagens. Esse algoritmo é então usado para adaptação dos coeficientes do equalizador linear transversal e também do equalizador de decisão realimentada. Cabe observar que o RMMA trata um sinal de módulo não-constante como se fosse de módulo constante, o que proporciona um desempenho melhor quando comparado ao algoritmo do módulo constante (CMA - Constant Modulus Algorithm) convencional, usado em equalização autodidata de canais de comunicação. Esse comportamento também foi observado na reconstrução de imagens, através das simulações apresentadas nesta dissertação. Este estudo abre novas perspectivas de extensão de técnicas usadas em equalização de canais de comunicação para restauração imagens. Uma delas é a possibilidade de restauração de imagens coloridas usando diversidade espacial.
Título em inglês
Equalization techniques for communications channels applied to images.
Palavras-chave em inglês
Adaptive electric filters
Image algorithms
Image processing
Resumo em inglês
The aim of blind image deconvolution is to reconstruct the original scene from a degraded observation without using information about the true image and the point spread function. The restoration process is critical in applications, where the true image or its statistical characteristics are unknown. Mapping the pixels of the original image before its transmission, the mapped image can be interpreted as a pulse amplitude modulation (PAM) signal, used in communications systems. With this interpretation, classic equalization techniques of communication channels can be used to image restoration. Furthermore, the pixels of a true image constitute a nonstationary signal, which justifies the use of adaptive filters. In this dissertation, adaptive techniques used for equalization of communication channels are applied to image restoration. Firstly, we propose a new update path through the blurred image that consists in a combination of horizontal and vertical alternate paths. This update path minimizes the problem of abrupt changes in the adaptation of the filter and provides better conditions to the image recovery. Using the least mean squares (LMS) algorithm, we obtain an equivalence between a point spread function and a time-variant communication channel. This equivalence was used to compare some point spread functions in relation to the distortion caused in images. Secondly, reshaping the input matrix into a column vector, we extend the regional-based multimodulus algorithm (RMMA) to blind image deconvolution. This algorithm is used to update the coefficients of the linear transversal equalizer and also of the decision feedback equalizer. RMMA treats nonconstant modulus signals as constant modulus ones, which provides a better performance when compared to the conventional constant modulus algorithm (CMA), used in blind equalization of communication channels. This behavior was also observed in image restoration, through the simulations presented in this dissertation. This study pushes back the frontiers of image processing, since different techniques used in equalization can be extended to image restoration. One of the new possibilities is the color image restoration using the spatial diversity.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2011-08-01
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • ABREU, Ronaldo A., and SILVA, Magno Teófilo Madeira da. A multimodulus algorithm for blind image deconvolution. In International Workshop on Telecommunications, Rio de Janeiro, 2011. Proceedings - International Workshop on Telecommunicatios., 2011.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.