• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2001.tde-05052003-104044
Documento
Autor
Nome completo
Liselene de Abreu Borges
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2001
Orientador
Banca examinadora
Ramirez, Miguel Arjona (Presidente)
Fagundes, Rubem Dutra Ribeiro
Sanches, Ivandro
Título em português
Sistemas de adaptação ao locutor utilizando autovozes.
Palavras-chave em português
adaptação ao locutor
autovozes
reconhecimento de voz
Resumo em português
O presente trabalho descreve duas técnicas de adaptação ao locutor para sistemas de reconhecimento de voz utilizando um volume de dados de adaptação reduzido. Regressão Linear de Máxima Verossimilhança (MLLR) e Autovozes são as técnicas trabalhadas. Ambas atualizam as médias das Gaussianas dos modelos ocultos de Markov (HMM). A técnica MLLR estima um grupo de transformações lineares para os parâmetros das medias das Gaussianas do sistema. A técnica de Autovozes baseia-se no conhecimento prévio das variações entre locutores. Para obtermos o conhecimento prévio, que está contido nas autovozes, utiliza-se a análise em componentes principais (PCA). Fizemos os testes de adaptação das médias em um sistema de reconhecimento de voz de palavras isoladas e de vocabulário restrito. Contando com um volume grande de dados de adaptação (mais de 70% das palavras do vocabulário) a técnica de autovozes não apresentou resultados expressivos com relação aos que a técnica MLLR apresentou. Agora, quando o volume de dados reduzido (menos de 15% das palavras do vocabulário) a técnica de Autovozes apresentou-se superior à MLLR.
Título em inglês
Speaker adaptation system using eigenvoices.
Palavras-chave em inglês
eigenvoices
speaker adaptation
speech recognition
Resumo em inglês
This present work describe two speaker adaptation technique, using a small amount of adaptation data, for a speech recognition system. These techniques are Maximum Likelihood Linear Regression (MLLR) and Eigenvoices. Both re-estimates the mean of a continuous density Hidden Markov Model system. MLLR technique estimates a set of linear transformations for mean parameters of a Gaussian system. The eigenvoice technique is based on a previous knowledge about speaker variation. For obtaining this previous knowledge, that are retained in eigenvoices, it necessary to apply principal component analysis (PCA). We make adaptation tests over an isolated word recognition system, restrict vocabulary. If a large amount of adaptation data is available (up to 70% of all vocabulary) Eigenvoices technique does not appear to be a good implementation if compared with the MLLR technique. Now, when just a small amount of adaptation data is available (less than 15 % of all vocabulary), Eigenvoices technique get better results than MLLR technique.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Dmestrado.pdf (569.51 Kbytes)
Data de Publicação
2003-05-09
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • BORGES, L. A., ARJONA RAMÍREZ, M., and FAGUNDES, R. D. R. Speaker Adaptation Using Eigenvoices Technique. In ITS2002 SBrT/IEEE International Telecommunications Symposium, Natal, 2002. Proceedings of ITS2002 SBrT/IEEE International Telecommunications Symposium., 2002. Available from: http://www.lps.usp.br/%7Emiguel/publica/ITS2002.zip.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.