• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.3.2018.tde-10042018-080717
Documento
Autor
Nombre completo
Franz Sebastian Bedoya Llano
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Rehder, Gustavo Pamplona (Presidente)
Carvalho, Daniel Orquiza de
Ponchet, André da Fontoura
Título en portugués
Desenvolvimento de defasadores baseados em MEMS e linhas de transmissão de ondas lentas para aplicações em 60 GHz.
Palabras clave en portugués
Defasadores
MEMS
Microeletrônica
Resumen en portugués
Este trabalho, desenvolvido junto ao Grupo de Novos Materiais e Dispositivos (GNMD) pertencente ao Laboratório de Microeletrônica (LME) da Universidade de São Paulo, apresenta a modelagem de um defasador passivo miniaturizado com baixas perdas para aplicações em ondas milimétricas (mmW-milimeter waves). Este defasador é baseado em um conceito inovador utilizando sistemas micro-eletromecânicos (MEMS) distribuídos e linhas de transmissão coplanares de ondas lentas. Este conceito é proposto no projeto Jovem Pesquisador FAPESP (Processo no. 2011/18167-3), ao qual este projeto está vinculado. A defasagem neste tipo de dispositivo é conseguida pela liberação das fitas da camada de blindagem de uma linha de transmissão tipo S-CPW (Shielded-Coplanar Waveguide). As fitas liberadas podem ser movimentadas eletrostaticamente, o que praticamente não consome energia. Este projeto pretende projetar um defasador para fabricação com a tecnologia do Laboratório de Microeletrônica da Escola Politécnica da Universidade de São Paulo. Adicionalmente, este trabalho apresenta resultados experimentais de um processo de fabricação IN-HOUSE baseado na metodologia de integração por flip-chip. A tecnologia de integração implementada é baseada na soldagem de um chip sobre um substrato, no qual são construídos uma nova geração de pilares de cobre finos, cujo espaçamento entre pilares é menor que 100 ?m. Essa redução nas dimensões pode ser usada com a nova geração de dispositivos de comunicações na faixa das mmW. Em termos de fabricação, foram obtidos pilares de cobre altamente miniaturizados com uma altura significativa e uniforme que permite a integração com o chip. Além do mais, os resultados obtidos representam avanços significativos no processo de fabricação que será usado como tecnologia de integração híbrida em um interposer baseado em substrato de alumina nanoporosa (MnM-Metallic Nanowire Membrane). Esse interposer desempenha um papel indispensável no GNMD, já que atualmente estão sendo estudadas suas propriedades elétricas e já foram construídos dispositivos sobre o substrato com resultados promissores.
Título en inglés
Development of phase shifters based on shielded CPW and MEMS for 60 GHz.
Palabras clave en inglés
Flip-chip
Hybrid integration
Interposer
MEMS
Millimeter waves
Phase-shifter
Slow wave transmission lines
Resumen en inglés
This work, performed at the New Materials and Devices Group (GNMD) of the Microelectronics Laboratory of the Polytechnic School of the University of São Paulo, presents the modeling of a miniaturized passive phase shifter with low losses for applications in millimeter waves. It is based on an innovated concept, which uses distributed MEMS phase shifters and slow-wave coplanar wave guides. Such concept is proposed under the FAPESP Youth Researcher project (Process number 2011/18167-3). The phase shifter on this kind of device is achieved by releasing the shielding layer of the Shielded-Coplanar Waveguide. The released ribbons are electrostatically displaced, which does not consume energy. The aim of this project is to design a phase shifter for fabrication with the technology available at the Microelectronics Laboratory. Additionally, this work presents experimental results of a flip-chip fabrication process. This technology is based on next generation of fine pitch copper pillar bumping, with pillar pitch of less than 100 ?m that support next generation of communication devices at the millimeter wave frequency range. From the fabrication point-of-view, highly miniaturized copper pillars with appropriate thicknesses were obtained. Furthermore, the results obtained represent a significant advance in the fabrication process that will be used as a hybrid integration technology on an interposer based on a nanoporous alumina substrate (MnM-Metallic Nanowire Membrane).
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-04-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.