• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2015.tde-02072015-142327
Documento
Autor
Nome completo
Josaphat Ricardo Ribeiro Gouveia Junior
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Alberto, Luís Fernando Costa (Presidente)
Carbinatto, Maria do Carmo
Geromel, José Cláudio
Leonel, Edson Denis
Macau, Elbert Einstein Nehrer
Título em português
Bifurcações da região de estabilidade induzidas por bifurcações locais do tipo Hopf
Palavras-chave em português
Bifurcação Hopf subcrítica
Bifurcação Hopf supercrítica
Conjuntos minimais
Fronteira da região de estabilidade
Pontos de equilíbrio Hopf
Região de atração
Região de estabilidade
Região de quase-estabilidade
Sistemas dinâmicos
Sistemas não lineares
Resumo em português
Pontos de equilíbrio assintoticamente estáveis de sistemas dinâmicos não lineares geralmente não são globalmente estáveis. Na maioria dos casos, há um subconjunto de condições iniciais, chamada região de estabilidade (ou área de atração), cujas trajetórias tendem ao ponto de equilíbrio quando o tempo tende ao infinito. Devido à importância das regiões de estabilidade em aplicações, e motivado principalmente pelo problema de analise de estabilidade transitória em sistemas elétricos de potência, uma caracterização completa da fronteira da região de estabilidade foi desenvolvida. Esta caracterização foi desenvolvida sob a suposição de que o sistema dinâmico é bem conhecido e que os parâmetros de seu modelo são constantes. Na prática, variações de parâmetros ocorrem e bifurcações desta podem ocorrer. Nesta tese, desenvolveremos uma caracterização completa da fronteira da região de estabilidade de sistemas dinâmicos autônomos não lineares admitindo a existência de pontos de equilíbrio não hiperbólicos do tipo Hopf na fronteira da região de estabilidade. Sob certas condições de transversalidade, apresentaremos uma caracterização completa da fronteira da região de estabilidade admitindo tanto a presença de pontos de equilíbrio não hiperbólicos do tipo Hopf como também a existência de órbitas periódicas na fronteira. Ofereceremos também uma caracterização da fronteira da região de estabilidade fraca do ponto de equilíbrio não hiperbólico Hopf supercrítico do tipo zero e uma caracterização topológica da sua região de atração. Além disso, exibiremos resultados relativos ao comportamento da região de estabilidade de um ponto de equilíbrio assintoticamente estável e da sua fronteira na vizinhança do valor crítico de bifurcação do tipo Hopf.
Título em inglês
Bifurcations of the stability region induced by type-Hopf local bifurcations
Palavras-chave em inglês
Boundary of the stability region
Dynamic systems
Hopf equilibrium points
Minimal sets
Nonlinear systems
Quasi-stability region
Region of attraction
Stability region
Subcritical Hopf bifurcation
Supercritical Hopf bifurcation
Resumo em inglês
Asymptotically stable equilibrium points of nonlinear dynamical systems are generally not globally stable. In most cases, there is a subset of initial conditions, called stability region (or attraction area), in which trajectories tend to the equilibrium point when time approaches innity. Due to the importance of stability regions in applications, and mainly motivated by the problem of transient stability analysis in electric power systems, a complete characterization of the boundary of the stability region was developed. This characterization was developed under the assumption that the dynamic system is well known and the parameters of its model are constant. In practice, parameter variations happen and bifurcations may occur. In this thesis, we will develop a complete characterization of the boundary of the stability region of autonomous nonlinear dynamical systems admitting the existence of non-hyperbolic equilibrium points of the type Hopf on the boundary of the stability region. Under certain transversality conditions, we present a complete characterization of the boundary of the stability region admitting the presence of both non-hyperbolic equilibrium points of the type Hopf and periodic orbits on the boundary. Also a complete characterization of the boundary of the region of weak stability of a supercritical Hopf non-hyperbolic equilibrium point of the type zero and a topological characterization of its region of attraction is developed. Furthermore, the behavior of the stability region of an asymptotically stable equilibrium point and its boundary in the neighborhood of a critical value of bifurcation of the type Hopf is studied.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Josaphat.pdf (3.17 Mbytes)
Data de Publicação
2015-07-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.