• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2009.tde-08092009-162813
Documento
Autor
Nome completo
Thiago Richter
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2009
Orientador
Banca examinadora
Silva, Ivan Nunes da (Presidente)
Ortega, Antônio Vanderlei
Pereira, Aledir Silveira
Título em português
Arquitetura de sistema inteligente para sensoriamento virtual de oxigênio em veículos bicombustíveis com injeção eletrônica
Palavras-chave em português
Injeção eletrônica de combustível
Redes neurais artificiais
Sensor de oxigênio virtual
Sensoriamento virtual
Veículos bicombustíveis
Resumo em português
A indústria automobilística é um dos mais importantes setores da economia no Brasil e no mundo. Nos últimos anos viu-se praticamente obrigada a melhorar o desempenho de seus veículos produzidos e reduzir seus custos. Um dos marcos desta transformação foi o desenvolvimento do sensor de oxigênio, sendo este um dos principais elementos dos sistemas gerenciadores de motor. Esta dissertação propõe o estudo de arquiteturas de sistemas inteligentes para sensoriamento virtual de oxigênio em veículos bicombustíveis, utilizando-se redes neurais artificiais supervisionadas, com arquitetura Perceptron multicamadas. As topologias implementadas atingiram resultados com erros relativos médios menores que 1% em centenas de topologias. Verificou-se também que para o sensoriamento virtual de oxigênio em veículos bicombustíveis, a abordagem de se realizar treinamentos com todos os tipos de combustíveis, segmentando conjuntos de todo o universo de dados, mostra-se a mais adequada.
Título em inglês
Intelligent system architecture for virtual sensing of oxygen in bi-fuel vehicle with electronic fuel injection
Palavras-chave em inglês
Artificial neural networks
Bi-fuel vehicles
Electronic fuel injection
Virtual oxygen sensor
Virtual sensing
Resumo em inglês
The automotive industry is one of the most important sectors in Brazilians economy and in the world. In recent years, this industry has been forced to improve the performance of their produced vehicles and to reduce their costs. One of the landmarks of this transformation was the development of the oxygen sensor, which is one of the main elements of the engine management systems. This dissertation proposes the use of intelligent systems architectures for virtual oxygen sensing of bi-fuel vehicles, using multilayer Perceptron artificial neural networks. The implemented topologies reach results with mean relative errors less than 1% in hundreds of topologies. It was also noted that the approach to train the neural network with all types of fuels, using subsets of data universe, it is the most appropriate to have a virtual sensing of oxygen in bi-fuel vehicles.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Thiago.pdf (3.67 Mbytes)
Data de Publicação
2009-09-15
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • RICHTER, Thiago. Implementação de Sensor Virtual de Oxigênio usando Redes Neurais Artificiais. In IX Simpósio Brasileiro de Automação Inteligente (SBAI), 9, Brasília, 2009.
  • RICHTER, Thiago. Intelligent System architecture for Virtual Sensing of Oxygen in Bi-fuel Vehicles. In XVIII Congresso Internacional de Tecnologia Automotiva - SAE (SAE Brasil), 18, São Paulo, 2009. MENÇÃO HONROSA - Artigos Destaques do XVIII Congresso Internacional de Tecnologia Automotiva.
  • RICHTER, Thiago. Using Artificial Neural Networks for Virtual Sensing of Oxygen in a Vehicle Moved By Alcohol. In XVII International Symposium on Automotive Engineering, 17, São Paulo, 2009.
  • RICHTER, Thiago. Virtual Oxygen Sensor Implementation Using Artificial Neural Networks. In Proceedings of the 2008 International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering, Bridgeport, 2008. Bridgeport : Springer, 2010. p. 219-224. EIAT/IETAISBN 978-90-481-3655-1http://dx.doi.org/10.1007/978-90-481-3656-8_41. ISBN 9789048136.
  • ISKANDER, Magued, KAPILA, Vikram, and KARIM, Mohammad A.. Technological Developments in Education and Automation [doi:10.1007/978-90-481-3656-8_41]. Editor. Dordrecht : Springer Netherlands, 2010. chap. 41, Virtual Oxygen Sensor Implementation Using Artificial Neural Networks, p. 219-224.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.