• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2008.tde-15102008-140110
Documento
Autor
Nome completo
Gustavo Freitas de Lima
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Cliquet Junior, Alberto (Presidente)
Etchebehere, Mauricio
Silva, Ivan Nunes da
Título em português
Desenvolvimento de um sistema para monitoramento de variáveis da marcha e controle de EENM na marcha
Palavras-chave em português
Análise de marcha
Articulação do joelho
Estimulação elétrica neuro muscular
Forças de reação do solo
Lesão medular
Marcha suspensa
Redes neurais artificiais
Resumo em português
A lesão medular pode prejudicar a marcha de um indivíduo. Para estes casos, uma técnica de reabilitação que tem se tornado mais popular é a Estimulação Elétrica Neuro Muscular (EENM). Na marcha assistida por EENM tradicional, o controle da estimulação é realizado utilizando-se acionamento manual, um fato que ajuda a torná-la distante da marcha saudável. Este trabalho propõe um sistema que monitora variáveis da marcha - ângulos da articulação do joelho, e forças de reação do solo (retropé e antepé) - e as utiliza como entradas para uma rede neural artificial (RNA), a fim de poder controlar automaticamente a EENM na marcha. Os transdutores utilizados para medir ângulos foram eletrogoniômetros, montados nos membros inferiores do indivíduo utilizando tiras de velcro. Para medição das forças, os transdutores utilizados foram células de carga construídas com strain gages, montadas em sandálias instrumentadas. Os métodos para construção do hardware de aquisição de dados (transdutores e interface) e do software estão descritos, bem como os métodos de calibração dos transdutores. Todos os transdutores apresentaram comportamento linear. Testes iniciais foram realizados, utilizando primeiramente um indivíduo saudável, e depois dois pacientes que normalmente realizam treinamento de marcha com suspensão de peso (assistida por EENM ou não). Os resultados mostraram que o módulo de monitoramento permite gravar os dados coletados, e realizar comparações entre padrões de marcha de diferentes indivíduos, bem como diferentes estágios de reabilitação para um mesmo indivíduo. O treinamento da RNA para o indivíduo saudável apresentou uma taxa de acerto próxima de 90%, e para os pacientes lesados medulares a taxa foi de cerca de 80%. O módulo de controle apresentou resultados promissores nos testes práticos realizados, com respostas rápidas e corretas para o indivíduo saudável. Sugestões para trabalhos futuros foram dadas, para que testes práticos de controle possam ser realizados utilizando pacientes lesados medulares.
Título em inglês
Development of a system for monitoring gait variables and controlling FES on gait
Palavras-chave em inglês
Artificial neural networks
Functional electrical stimulation
Gait analysis
Ground reaction forces
Knee joint
Spinal cord injury
Suspended gait
Resumo em inglês
Spinal cord injury (SCI) may impair an individual's gait. For these cases, a rehabilitation technique that has become more popular is functional electrical stimulation (FES). On traditional FES-assisted gait, the stimulation control is performed with manual triggering, a fact that helps make it distant from healthy gait. This work proposes a system that monitors gait variables - knee joint angles, and ground reaction forces (rearfoot and forefoot) - and uses them as inputs for an Artificial Neural Network (ANN), in order to be able to automatically control gait FES. The transducers used for angle measurement were electrogoniometers, mounted on the individuals lower limbs using Velcro straps. For force measurement, the transducers used were load cells built with strain gages, mounted on instrumented sandals. The methods for building the data acquisition hardware (transducers and interface) and software are described, along with the transducer calibration methods. All transducers presented linear behavior. Initial tests were performed, using first a healthy individual, and then a couple of patients that normally undergo suspended gait raining (FES-assisted or not). The results showed that the monitoring module allows recording the data collected, and making comparison between different individuals' gait patterns, as well as different rehabilitation stages for the same individual. The ANN training for the healthy individual presented an accuracy rate close to 90%, and for the SCI patients the rate was about 80%. The control module showed promising results on practical tests performed, with quick and accurate responses for the healthy individual. Suggestions for future works were given, so that practical control tests can be performed using SCI patients.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Gustavo.pdf (5.62 Mbytes)
Data de Publicação
2008-10-16
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.