• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2004.tde-30092008-185242
Documento
Autor
Nome completo
Peter Batista Cheung
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2004
Orientador
Banca examinadora
Reis, Luisa Fernanda Ribeiro (Presidente)
Chaudhry, Fazal Hussain
Gomes, Heber Pimentel
Porto, Rodrigo de Melo
Souza, Robert Schiaveto de
Título em português
Análise de reabilitação de redes de distribuição de água para abastecimento via algoritmos genéticos multiobjetivo
Palavras-chave em português
Algoritmos genéticos
Análise de reabilitação
Otimização multiobjetivo
Redes de distribuição de água
Resumo em português
Reconhecendo-se a importância da água como recurso natural limitado e considerando-se a perspectiva de crescimento do contingente populacional urbano, faz-se necessária uma investigação dos sistemas de distribuição de água para abastecimento, por tratarem-se de infra-estruturas básicas comuns aos núcleos populacionais do mundo todo. O planejamento da reabilitação das redes de distribuição de água torna-se de fundamental importância considerando os recursos financeiros limitados e o comportamento operacional desses sistemas que são alterados ao longo do tempo devido ao processo de deterioração de seus componentes. O presente trabalho representa um esforço no sentido de considerar objetivos mais promissores na análise de reabilitação de redes. Dessa maneira, foram considerados: custo, benefício, vazamentos e confiabilidade. Este trabalho apresenta contribuições às análises multiobjetivo via algoritmos genéticos, propriciando um aprimoramento do algoritmo Multiobjective Genetic Algorithm (MOGA) e realizando investigação dos operadores (recombinação e mutação) e dos métodos Non-dominated Sorting Genetic Algorithm (NSGA), Strength Pareto Evolutionary Algorithm (SPEA) e Elitist Non-Dominated Sorting Genetic Algorithm (NSGA II). Do ponto de vista hidráulico, este trabalho introduz tanto perdas por vazamentos como demanda variável com a pressão, proporcionando uma análise mais realística do problema. Os estudos desenvolvidos para redes hipotéticas e para um sistema real, possibilitaram que soluções satisfatórias fossem obtidas, chegando-se inclusive a uma proposição do conceito de programação dinâmica para o caso multiobjetivo.
Título em inglês
Rehabilitation analysis of the water distribution networks by multiobjective genetic algorithms
Palavras-chave em inglês
Genetic algorithms
Multiobjective optimization
Rehabilitation analysis
Water distribution networks
Resumo em inglês
Recognizing the importance of water as a limited natural resource and considering the prospect of continued population growth, it is important to investigate water distribution systems which are common to all urban infrastructures. Planning of the water distribution network rehabilitation becomes additionally important given economic constraints and operational behavior these systems which modifies in time due to deterioration of water networks. The present work is an effort to consider the multiple objectives in the water network rehabilitation analyses. Four objectives were considered: cost minimization, benefit maximization, leakage minimization and reliability maximization. In addition, it presents some contributions to multiobjective optimization methodology by genetic algorithms, offering an improvement of Multiobjective Genetic Algorithm (MOGA). A detailed investigation is conducted on genetic operators (recombination and mutation) comparing some existing multiobjective optimization methods (Multiobjective Genetic Algorithm - MOGA, Non-dominated Sorting Genetic Algorithm - NSGA, Strength Pareto Evolutionary Algorithm - SPEA and Elitist Non-Dominated Sorting Genetic Algorithm - NSGA II). As regards the hydraulic analysis, this work introduces both leakages and pressure dependent demands in the simulations, providing a more realistic representation of actual field situations. The present study employs hypothetical networks and a real network obtaining satisfactory solutions. Further, dynamic programming concept is also incorporated into the multiobjective optimization framework.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
CheungPdf.pdf (2.64 Mbytes)
Data de Publicação
2008-10-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.