• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2014.tde-24092014-150115
Documento
Autor
Nome completo
Paulo Cezar Vitorio Junior
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2014
Orientador
Banca examinadora
Leonel, Edson Denner (Presidente)
Oliveira Neto, Luttgardes de
Paiva, João Batista de
Título em português
Análise Level Set da otimização topológica de estruturas planas utilizando o Método dos Elementos de Contorno
Palavras-chave em português
Método dos Elementos de Contorno
Método Level Set
Otimização topológica
Resumo em português
A otimização topológica de estruturas está relacionada à concepção de projetos que executem suas funções com nível de segurança adequado empregando a quantidade mínima de material. Neste trabalho, determina-se a geometria ótima de estruturas planas por meio do acoplamento do Método dos Elementos de Contorno (MEC) ao Método Level Set (MLS). O algoritmo é composto por 3 etapas: problema mecânico, otimização topológica e reconstrução da estrutura. O problema mecânico é resolvido pelas equações algébricas do MEC. A otimização topológica é determinada pelo MLS, este representa a geometria do corpo e suas evoluções por meio da função Level Set (LS) avaliada em seu nível zero. Na reconstrução realiza-se o remalhamento, pois a cada iteração a estrutura é modificada. O acoplamento proposto resulta na geometria ótima da estrutura sem a necessidade da aplicação de filtros. Os exemplos analisados mostram que algoritmo desenvolvido capta adequadamente a geometria ótima das estruturas. Com esse trabalho, avança-se no campo das aplicações do acoplamento MEC-MLS e no desenvolvimento de soluções inovadoras para problemas complexos de engenharia.
Título em inglês
A Level Set analysis of topological optimization in 2D structures using the Boundary Element Method
Palavras-chave em inglês
Boundary Element Method
Level Set method
Topology optimization
Resumo em inglês
In general, the topological optimization of structures is related to design projects that perform their functions with appropriate security levels using the minimum amount of material. This research determines the optimal geometry of 2D structures by coupling the Boundary Blement Method (BEM) to Level Set Method (LSM). The algorithm consists of 3 steps: mechanical model, topology optimization and structure reconstruction. The mechanical model is solved by BEM algebraic equations. The topology optimization is determined using the MLS, the geometry of the body is determined by the Level Set (LS) function evaluated at the zero level. The reconstruction achieves the remeshing, because for each iteration of the structure is modified. The proposed coupling results in the optimal geometry of the structure without the filters application. The examples show that the algorithm developed captures adequately the optimal geometry of the structures. With this dissertation, it is possible advance in the field of applications of the BEM - LSM and develop innovative solutions to complex engineering problems.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-10-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.