• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Ana Julia Righetto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2017
Orientador
Banca examinadora
Ribeiro Junior, Paulo Justiniano (Presidente)
Tomazella, Vera Lucia Damasceno
Leandro, Roseli Aparecida
Vieira, Afrânio Márcio Corrêa
Título em inglês
The impact of choosing different meshes under INLA/SPDE framework for geostatistical modelling
Palavras-chave em inglês
Geostatistics
INLA
Meshes
SPDE
Resumo em inglês
Spatial statistics methods are widely used since several areas of knowledge such as environmental sciences, geology, agronomy, among others, involve the understanding of the spatial distribution of processes from spatially referenced data. With the advancement of Geographic Information Systems and the Global Positioning Systems this use has been extended. Many methods used in spatial statistics are computationally demanding, and therefore, the development of more computationally efficient methods has received a lot of attention in recent years. One such important development is the introduction of the integrated nested Laplace approximation method which is able to carry out Bayesian analysis in a more efficient way. The use of this method for geostatistical data is commonly done considering the stochastic partial differential equation approach that requires the creation of a mesh overlying the study area. This is the first and an important step since all results will depend on the choice of this mesh. As there is no formal and close way to specify the mesh, we investigate possible guidelines on how a suitable mesh is chosen for a specific problem. Through simulations studies, we tried to create guidelines for the construction of the mesh for random, regular and cluster data set and we aplly this guidelines in real data set.
Título em português
O impacto na escolha de diferentes malhas em modelagem geoestatística sob a abordagem INLA/SPDE
Palavras-chave em português
Geoestatística
INLA
Malhas
SPDE
Resumo em português
Métodos de estatística espacial são amplamente utilizados, uma vez que várias áreas do conhecimento, como ciências ambientais, geologia, agronomia, entre outros, envolvem a compreensão da distribuição espacial de processos a partir de dados referenciados espacialmente. Com o avanço dos Sistemas de Informação Geográfica e dos Sistemas de Posicionamento Global, esse uso foi ampliado. Muitos métodos utilizados na estatística espacial são computacionalmente exigentes e, portanto, o desenvolvimento de métodos mais eficientes recebeu muita atenção nos últimos anos. Um desenvolvimento importante foi a introdução do método de aproximação de Laplace aninhado integrado, capaz de realizar análises Bayesianas de forma mais eficiente. O uso deste método para dados geoestatísticos é comumente feito considerando a abordagem de equações diferenciais parciais estocásticas que requer a criação de uma malha que cobre a área de estudo. Este é o primeiro e um importante passo, pois todos os resultados dependerão da escolha desta malha. Como não existe uma maneira formal e direta de especificar a malha, investigamos possíveis diretrizes sobre como uma malha adequada é escolhida para um problema específico. Através de estudos de simulações, tentamos criar diretrizes para a construção da malha para conjunto de dados aleatórios, regulares e de cluster e aplicamos essas diretrizes em conjunto de dados reais.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-04-03
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.