• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2007.tde-16032007-152130
Documento
Autor
Nome completo
Joseane Padilha da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2006
Orientador
Banca examinadora
Leandro, Roseli Aparecida (Presidente)
Garcia, Antonio Augusto Franco
Soler, Julia Maria Pavan
Título em português
Uma abordagem Bayesiana para o mapeamento de QTLs utilizando o método MCMC com saltos reversíveis
Palavras-chave em português
Genética estatística
Inferência bayesiana
Mapeamento genético
Marcador molecular
Métodos MCMC
Resumo em português
A utilização de metodologias Bayesianas tem se tornado freqüuente nas aplicações em Genética, em particular em mapeamento de QTLs usando marcadores moleculares. Mapear um QTL implica em identificar sua posição no genoma, bem como seus efeitos genéticos. A abordagem Bayesiana combina, através do Teorema de Bayes, a verossimilhança dos dados fenotípicos com distribuições a priori atribuídas a todos os parâmetros desconhecidos (número, localização e efeito do QTL) induzindo distribuições a posteriori a respeito dessas quantidades. Métodos de mapeamento Bayesiano podem tratar o número desconhecido de QTLs como uma variável aleatória, resultando em complicações na obtençãao da amostra aleatória da distribuição conjunta a posteriori, uma vez que a dimensão do espaço do modelo pode variar. O Método MCMC com Saltos Reversíveis (MCMC-SR), proposto por Green(1995), é excelente para explorar distribuições a posteriori nesse contexto. O método proposto foi avaliado usando dados simulados no WinQTLCart, onde o maior objetivo foi avaliar diferentes prioris atribuídas para o número de QTLs.
Título em inglês
A Bayesian approach to detect quantitative trait loci using reversible-jump MCMC
Palavras-chave em inglês
Bayesian approach
Genetics mapping
MCMC methods
Molecular markers
Stastical genetics
Resumo em inglês
The use of Bayesian methodology in genetical applications has grown increasingly popular, in particular in the analysis of quantitative trait loci (QTL) for studies using molecular markers. In such analyses the aim is mapping QTLs, estimating their locations in the genome and their genotypic effects. The Bayesian approach proceeds by setting up a likelihood function for the phenotype and assigning prior distributions to all unknowns in the problem (number of QTL, chromosome, locus, genetics effects). These induce a posterior distribution on the unknown quantities that contains all of the available information for inference of the genetic architecture of the trait. Bayesian mapping methods can treat the unknown number of QTL as a random variable, which has several advantages but results in the complication of varying the dimension of the model space. The reversible jump MCMC algorithm offers a powerful and general approach to exploring posterior distributions in this setting. The method was evaluated by analyzing simulated data, where the major goal was evaluate if different priors distributions on the QTL numbers.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
JoseaneSilva.pdf (464.53 Kbytes)
Data de Publicação
2007-03-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.