• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Sergio Ozorio de Carvalho
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Conceição, Katiane Silva (Presidente)
Motta, Mariana Rodrigues
Viola, Márcio Luis Lanfredi
Título em português
Distribuições k-modificadas da família série de potência uniparamétrica
Palavras-chave em português
Dados de Contagem
Dados k-Deflacionados
Dados k-Inflacionados
Distribuições série de potência
Distribuições série de potência k-Modificadas.
Resumo em português
Neste trabalho é proposta a família de distribuições Série de Potência k-Modificadas para modelar conjuntos de dados de contagem que apresentam ou não alguma discrepância na frequência da observação k em relação à distribuição Série de Potência associada. É importante ressaltar que o emprego do termo Modificada(s) não possui o mesmo contexto ao empregado por Gupta (1974), o qual introduziu a classe de distribuições Série de Potência Modificadas representada pela sigla MPSD. Neste trabalho, entende-se por modificação, a inclusão de um parâmetro na função massa de probabilidade da distribuição Série de Potência tornando essa nova família de distribuições capaz de modelar adequadamente conjunto de dados para os casos em que há excesso (inflação), falta (deflação), ausência ou até mesmo quando a frequência da observação k estiver de acordo para a suposição de uma distribuição pertencente à família Série de Potência. Para esta nova família de distribuições são apresentadas propriedades como Função de distribuição, Função característica, Função geradora de momentos, Estatísticas de Ordem dentre outras, além de contextualizá-la como modelo de mistura. As distribuições consideradas para a construção dessa nova família serão as distribuições uniparamétricas pertencentes à família Série de Potência, cuja função massa de probabilidade pode ser escrita em função de sua média.
Título em inglês
k-Modified distributions of the uniparametric power series family
Palavras-chave em inglês
Count data
k-deflated data
k-inflated data
k-modified power series distribution
Power series distribution
Resumo em inglês
In this work, it is proposed the family of k-modified power series distributions to model count data sets that may or may not present some discrepancy in the frequency of the observation k in relation to the power series distribution associated. It is important to highlight that employing the term "modified" does not imply the same context to the one employed by Gupta (1974), which introduced the class of power series modified distributions represented by the acronym MPSD. In this work, modification can be understood as the inclusion of a parameter in the probability mass function of the power series distribution, allowing this family of distributions to properly model a data set for cases where there is an excess (inflation), deficiency (deflation), lack or even when the frequency of observations k are in agreement with the supposition of a distribution belonging to the power series family. It is presented, for this new family of distributions, properties like distribution function, characteristic function, moment generating function, order statistics, among others. Moreover the family is also contextualized as a mixture model. The distributions considered to construct this new family are uniparametric and belong to the power series family, for which the probability mass can be written as function of its mean.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-09-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.