• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.100.2014.tde-04112014-214145
Documento
Autor
Nome completo
Thiago Castro Ferreira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2014
Orientador
Banca examinadora
Paraboni, Ivandré (Presidente)
Pardo, Thiago Alexandre Salgueiro
Peres, Sarajane Marques
Título em português
A variação humana na geração de expressões de referência
Palavras-chave em português
Geração de expressões de referência
Geração de língua natural
Variação humana
Resumo em português
Este documento apresenta um estudo em nível de mestrado na área de Geração de Língua Natural (GLN), enfocando a questão da variação humana na tarefa de Geração de Expressões de Referência (GER). O trabalho apresenta um levantamento bibliográfico sobre o tema, a criação de dois algoritmos de GER e a construção de um novo córpus de expressões de referência. Modelos computacionais de GER baseados nos algoritmos criados foram implementados em versões que incorporam e não incorporam a variação humana e empregados em uma série de experimentos de GER em sete córpus de expressões de referência. Resultados comprovam a hipótese inicial de que algoritmos de GER que levam em conta a variação humana podem gerar expressões de referência mais próximas a descrições de seres humanos do que algoritmos que não levam esta questão em conta. Além disso, confirmou-se que algoritmos de GER baseados em técnicas de aprendizado de máquina mostram-se superiores a algoritmos de GER consagrados e amplamente utilizados na literatura, como o algoritmo Incremental.
Título em inglês
The human variation in the referring expression generation task
Palavras-chave em inglês
Human variation
Natural language generation
Referring expression generation
Resumo em inglês
This work concerns a MSc Project in the field of Natural Language Generation (NLG), focusing on the issue of human variation in the Referring Expression Generation task (REG). The study presents a literature review on the topic, the proposal of two REG algorithms and the construction of a new corpus of referring expressions. Based on these algorithms, two REG models are implemented: with and without taking human variation. These models are employed in a series of REG experiments using seven referring expression corpora. Results confirm the initial hypothesis that REG algorithms that take speaker variation into account outperform existing algorithms that generate speaker-independent descriptions. Moreover, the present study confirms that algorithms based on machine learning techniques overperform existing algorithms, as the Dale and Reiter's Incremental algorithm.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Documento_Final.pdf (2.02 Mbytes)
Data de Publicação
2014-12-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.