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Resumo

Este texto é uma sistematizacao critica da linha de pesquisa que foi iniciada
héa dez anos por sugestao do Prof. Dr. Marcelo Britto Passos Amato do Departa-
mento de Pneumologia da Faculdade de Medicina da USP. Estratégias protetivas
do pulméao de pacientes submetidos a ventilacdo artificial requeriam o ajuste da
pressido positiva no final da expiragdo (PEEP) em uma faixa estreita. Estas es-
tratégias deveriam recrutar o maior niimero possivel de alvéolos e, portanto, o
ventilador deveria impor uma pressao elevada, mas nao deveriam traumatizar os
alvéolos por excesso de pressdo, causando barotrauma. Requeria-se um equipa-
mento que permitisse detectar a presencga de tecido pulmonar colapsado, condigao
conhecida como atelectasia, e tecido pulmonar sobre-estendido. A Tomografia por
Impedancia Elétrica (TIE) gera um grafico da distribui¢do da impeditividade de
um dominio. Era uma técnica promissora na década de noventa, uma vez que
o tecido pulmonar colapsado e o tecido pulmonar sobre-estendido possuem im-
peditividade consideravelmente distinta. Deu-se inicio a um projeto de pesquisa
para tornar a TIE utilizavel na beira de leito, o que tornaria viavel a monitora-
¢ao de ventilacdo e possibilitaria estimar a perfusao no tecido pulmonar. Este
projeto caracterizou-se, desde o inicio, por uma competi¢cao de métodos de solu-
¢ao de problemas inversos. Implementaram-se inicialmente algoritmos classicos
de comunidades cientificas diversas, como, por exemplo, observadores de estado
e a retroprojecao. A incorporacao de idéias efetivas de cada algoritmo classico
permitiu desenvolver algoritmos com caracteristicas originais. Nestes dez anos a
tecnologia evoluiu do estigio em que imagens de variacOes de resistividade eram
de baixa resolugao e pouco valiosas em aplicacoes médicas para o estagio em que
as imagens de variagoes de resistividade sdo tuteis em aplicagoes de pneumolo-
gia, mesmo no ambiente de Unidades de Terapia Intensiva. O texto descreve
de forma sucinta a trajetoéria desta linha de pesquisa e serve de roteiro para o
detalhamento do desenvolvimento, que pode ser acompanhado através das publi-
cagoes nos anexos. Este trabalho faz parte dos requisitos do concurso de livre
docéncia na Escola Politécnica da Universidade de Sao Paulo, Departamento de
Engenharia Mecanica.
palavras-chave: Tomografia por Impedancia Elétrica, Pulmao, Problema In-
verso, Estimacao de parametros.



Abstract

The present text describes the research line entitled Algorithms for Electrical
Impedance Tomography (EIT) for lung monitoring, which begun ten years ago
following a suggestion placed by Prof. Dr. Marcelo Britto PPassos Amato from
the Pneumology Department of the School of Medicine of The University of Sao
Paulo. Protective maneuvers of the lungs of patients under artificial ventilation
required fine adjustments of the Positive End-Expiration Pressure (PEEP). Using
protective maneuvers a large number of alveoli should be kept open and the artifi-
cial ventilator should work with high pressures, but, on the other hand, it should
not cause trauma to the overinflated alveoli, sometimes called barotrauma. An
equipment able to detect collapsed lung tissue, a condition called atelectasis, was
requested. The Electrical Impedance Tomography generates a graph of impeditiv-
ity distribution of a domain. It was a promising technology at the 90’s, since the
collapsed lung tissue and the over-inflated lung tissue have considerably distinct
impeditivity. An investigation was initiated to make the EIT technology effective
as a lung monitoring tool at bedside, estimating ventilation and perfusion in the
lungs. The investigation was characterized since the beginning by a compefition
of methods for solving inverse problems. Classical methods from diverse scientific
communities were implemented, like state observers and the back-projection al-
gorithm. Blending effective features of the algorithms allowed the development of
novel algorithms. During the last ten years the technology evolved from low reso-
lution images with few medical applications to become effective tools in Intensive
Care Units. The text describes in broad lines the trajectory of the investigation
and the details may be followed through the publications in the appendices. This
work is part of the prerequisites for the public contest to become Livre-docente at
the Mechanical Engineering Department of The Escola Politécnica of The Uni-
versity of Sao-Paulo.-
keywords: Electrical Impedance Tomography, Lungs, Inverse Problems, Param-
eter Estimation.
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1 Introducao

A Tomografia por Impedancia Elétrica (TIE) gera imagens que sio graficos
de distribui¢io estimada de resistividade e/ou permitividade de um dominio fi-
sico. Utiliza correntes elétricas para excitar o sistema ¢ mede potenciais elétricos
no contorno do dominio. Counsidera-se conhecida a geometria do dominio e a
estrutura, de um modelo do dominio. Procura-se a distribuicao de resistividade

e/ou permitividade.

Neste trabalho utilizaremos a TIE para estimar apenas a distribuigao de re-
sistividade e o termo imagem sera utilizado como sinénimo de distribuicao de
resistividade estimada. O problema de estimar a imagem de TIE serd abordado
através de diferentes pontos de vista: ora serd encarado como a solugdao de um
problema de estimacdo de pardmetros, ora sera encarado como umn problema de
observacao de estados de um sistema dinamico e as vezes serd encarado como um
problema inverso. Desta forma podemos utilizar resultados da Teoria de Estima-

cao de Parametros, da Teoria de Controle e da solugao de Problemas Inversos.

A seguir, nesta introdugao, descreve-se o contexto em que esta linha de pes-
quisa foi originada, do ponto de vista da Pneumologia, do ponto de vista da
Eletronica e do ponto de vista dos algoritmos. Nos capitulos subsequentes se-
rao descritos os desafios e 0os avangos na 6tica de cada classe de algoritmo e na
otica de algumas aplicacoes médicas, por exemplo, a deteccao de pneumotoérax, a
deteccao de atelectasia e a estimagao de perfusao local no pulmao. O termo ate-
lectasia refere-se ao fechamento de alvéolos e tem importincia clinica em funcgio

de complicagbes associadas a esse fechamento.

Os algoritmos de TIE podem ser distinguidos pela sua capacidade de gerar
imagens de diferenca ou por gerar tmagens absolutas. Imagens de diferenga nada
mais sdo que a graficos de variacio de distribuigao de resistividade que tomam
um instante de tempo como referéncia; as imagens absolutas sao graficos de dis-

tribuicao de resistividade.

Se acaso for utilizada informacgao instantanea, caracterizada por medidas de



potencial elétrico simultineas, o algoritmo é dito estdtico. Se for utilizada infor-
macao de varios instantes, levando em consideragao algum modelo de variacao

temporal, o algoritmo ¢é dito dindmico.

Neste texto, quando uma referéncia estiver em anexo, havera uma mensagem
na lateral da pagina indicando sua localizacao nos apéndices. O leitor podera
encontrar nestas referéncias os detalhes dos trabalhos e argumentac¢ao mais com-

pleta.

1.1 Contexto na Pneumologia

Na pneumologia iniciava-se o uso de estratégias protetivas do pulmao. Em
casos de atelectasia massiva do tecido pulmonar, procurava-se recrutar (abrir) o
maior nimero possivel de alvéolos e manté-los abertos. Era necessario elevar a
pressdo no final da expiracdo (PEEP) para que os alvéolos ndo tornassem a se
fechar. Simultaneamente, para manter a mesma taxa de absorcao de oxigénio,
elevava-se a frequéncia do ciclo de ventilagdo artificial. Devido ao uso de pressoes
elevadas, corria-se o risco de causar algum trauma ao tecido pulmonar, inclusive
iniciar um pneumotoérax. Mesmo sem ter equipamento adequado para ajustar os
parametros do ventilador artificial, foi possivel mostrar que o indice de mortali-
dade era reduzido em 47% quando esta estratégia protetiva era utilizada (AMATO
et al., 1998).

A manobra de recrutar alvéolos requeria PEEP diferente para diferentes pa-
cientes e mesmo para um mesmo paciente em momentos distintos. O ideal seria
que houvesse um equipamento de beira de leito que permitisse identificar regides
do tecido pulmonar que estivessem fechadas ou sobre-estendidas, o que permitiria

um ajuste do ventilador artificial para cada paciente e para cada instante.

A tomografia por raio-X nao era adequada por utilizar radiagdes ionizantes
e por requerer salas especiais revestidas por chumbo, distantes dos leitos de Uni-
dades de Terapia Intensiva. O traslado de pacientes de uma UTI para a sala de
Tomografia por raio-X envolvia riscos e a retirada de alguns equipamentos de au-
xilio & vida. Asimagens de ultrassom nao permitiam distinguir o tecido pulmonar
sobre-estendido do tecido em condi¢des normais. Entretanto, a tomografia por
impedancia elétrica, apesar de sua baixa resolucido espacial, apresentava elevada
sensibilidade a variagdes do contetudo de ar no tecido pulmonar (RAPP et al., 1993,;
NOPP et al., 1997).



1.2 Contexto na Eletronica

O primeiro tomografo de TIE de pesquisa foi desenvolvido na Universidade de
Sheffield por Barber e Brown (BARBER; BROWN, 1984). O equipamento possuia
16 eletrodos, uma placa de aquisicao de dados, uma fonte de corrente alternada e
um microcomputador para a reconstru¢ao da imagem. As medidas de potenciais
elétricos eram realizadas de forma diferencial. Mais especificamente, o aparelho
media a diferenca de potencial entre eletrodos adjacentes, evitando assim proble-
mas decorrentes da variabilidade do potencial elétrico de referéncia, que flutua
em funcdo da atividade dos profissionais de satide e de interferéncia eletromag-
nética. A principal caracteristica deste aparelho era a tecnologia de blindagem
contra interferéncias eletromagnéticas, utilizavam-se duas malhas de blindagem.
A primeira malha era ativa e tratava de anular a capacitancia do cabo; a segunda
blindagem era mais externa e estava ligada ao potencial de referéncia. A relagao
sinal ruido era de 60 dB. Havia uma tinica fonte de corrente. A corrente devia
ser imposta a cada eletrodo através de um de-multiplexador (BARBER; BROWN,
1984).

Posteriormente, no Rensselaer Polytechnic Institute (RPI) foi desenvolvido
um aparelho com outra caracteristica: as medidas eram tomadas em relacao a
uma referéncia comum, eram medidas ditas single-ended. O tomodgrafo contava
com 32 eletrodos e 32 fontes de corrente. Os cabos ligados aos eletrodos eram
também duplamente blindados, a blindagem mais interna era ativa e a blindagem
externa era passiva, ligada ao potencial de referéncia. Para minimizar a capaci-
tancia das fontes de corrente utilizava-se um Negative Impedance Converter (NIC)
(dOOK et al., 1994). O procedimento de calibragio deste aparelho era demorado,

tornando-o invidvel como aparelho de beira de leito.

Ambos equipamentos dependiam de conversores de sinal analégico para di-
gital e da compensacao da capacitancia dos cabos elétricos que ligavam fontes
de corrente aos eletrodos e dos eletrodos aos conversores de sinal analégico para
digital. A precisao era caracterizada pela relagao sinal/ruido, que era de 60 dB.
A baixa acuracia das medidas era compensada através de normalizagoes das me-

didas (ADLER; GUARDO, 1996).

1.3 Contexto na Estimacao de Parametros

As aplicacoes da TIE na Medicina eram incipientes e restritas ao ambiente de

pesquisa. Inicialmente, o Ginico algoritmo empregado em pesquisas médicas era o



Back-projection (SANTOSA; VOGELIUS, 1990). Apesar de inimeras tentativas de
incluir informacao a prior no Backprojection, os algoritmos baseados no Método
dos Elementos Finitos eram uma plataforma mais favoravel a inclusao de infor-
macao a priori. A geometria do dominio é variavel de individuo para individuo, o
mapa que relaciona potencial elétrico com resistividade é nao linear e a variacao
de resistividade é elevada para ser estimada por um estimador linearizado, como
ocorre com o Backprojection. Por fim, nao foi desenvolvida uma generalizacao do
Back-projection para dominios em 3D (METHERALL, 1998). A utilizacdo de do-
minios 2D para representar um fendmeno 3D provocava significativas distorcoes

na localizagado dos objetos da imagem (BORSIC et al., 2001).

Duas técnicas de discretizagao da equagao de Laplace generalizada pareciam
promissoras pela facilidade de inclusao de informacao a priori: o Método dos
Elementos Finitos (MEF) e o Método das Diferengas Finitas. A informagio a
priori pode ser de origem geométrica, pode ser a respeito da faixa de variagao
de resistividade que ocorrem em organismos vivos e pode ser a respeito de varia-
¢Oes espaciais da resistividade que ocorrem em cada érgao (YORKEY; WEBSTER;
TOMPKINS, 1987; ADLER; GUARDO, 1996). Os trabalhos que utilizaram o Mé-
todo dos Elementos Finitos geravam artefatos, inclusive pelo uso de malhas de

elementos finitos inadequadas.

1.4 Dificuldades para tornar a TIE efetiva na mo-
nitoracao dos pulmoes

No inicio desta pesquisa haviam dificuldades que impediam a efetiva utilizagao

da TIE para monitorar os pulmoes:

e a resolucdo espacial era insuficiente, cerca de 1/8 do didmetro médio do

térax humano;
e a localizacao das estruturas anatdmicas nao era correta;
e pequenos movimentos dos eletrodos causavam artefatos na imagem;

e variagoes na impedéancia de contato entre eletrodo e pele provocavam arte-

fatos na imagem;
e nao era possivel obter imagens absolutas em aplicagoes de pneumologia;

e em geral, as regularizagoes eram globais, tinham o mesmo valor no dominio,

independente da regidao anatémica,
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e o potencial elétrico de referéncia variava com elevada amplitude e de forma
imprevisivel no ambiente de Unidades de Terapia Intensiva, introduzindo
nao-linearidades no procedimento de medida, seja pela saturacao de amplifi-
cadores operacionais, seja por nao-linearidades na rejeicdo de modo comum

nos amplificadores operacionais diferenciais.

Estas dificuldades foram sendo abordadas pela linha de pesquisa através de

uma competigao de métodos. Os objetivos da linha de pesquisa podem ser melhor
definidos.

1.5 Objetivo da Linha de Pesquisa

A linha de pesquisa Tecnologia de Tomografia por Impeddncia Elétrica para
Monitorar o Pulmdo tinha e ainda tem como objetivo desenvolver a tecnologia
de TIE para que ela possa ser utilizada em aplica¢bes médicas e, em particular,

na monitoragao da ventilacdo e perfusido pulmonar.

Este objetivo principal vem acompanhado de objetivos particulares, como:

e aumentar a resolucao espacial das imagens;

* aumentar a acurdcia das estimativas de resistividade e/ou permitividade;
o diminuir a relagdo sinal/ruido da resistividade estimada;

e cstimar a impedancia de contato eletrodo-pele;

e estimar a posigdo dos eletrodos para corrigir a posi¢io deles no modelo

numérico do dominio, este erro de posi¢do é causa alguns artefatos;

e otimizar a posi¢ao dos eletrodos e determinar as formas 6timas de excitagio
por corrente elétrica para maximizar a observabilidade da distribuicio de

resistividade;

e desenvolver a eletrénica de forma a obter medidas com elevada acuracia e

elevada relagao sinal/ruido.



2 Avancos durante a pesquisa

Apresentam-se neste capitulo os avancos tecnologicos que foram sendo al-
cancados ao longo da investigacao, fazendo referéncia aos artigos que contém os
detalhes e dao suporte a cada afirmacao. Assim como na Economia, a falta de
algum recurso pode restringir o crescimento econémico, o desenvolvimento desta
tecnologia depende de varios aspectos: algoritmos, eletrénica, informacao a prior:
anatdmica e corre¢ao de modelo numérico que representa o dominio. A descri¢ao

dos avancos serd apresentada do ponto de vista destes aspectos.

2.1 Desenvolvimento do hardware de TIE

O primeiro tomografo experimental foi construido na Escola Politécnica, logo
no inicio da investigacdo. Apresentava 16 canais single-ended, com blindagem
passiva, 10 kHz de frequéncia de excitacao, fonte de corrente monopolar de 1 mA
pico a pico, de-multiplexador de 16 canais para injetar a corrente e outro de-
multiplexador de 16 canais para definir qual eletrodo seria o terra analégico. As
medidas de potencial eram realizadas por intermédio de uma placa de aquisi¢io
de dados com 16 canais single-ended. Sobrepostos & sendide que se esperava
encontrar nas medidas, apareciam consideravel ruido, média nao nula e tendéncia.
Utilizava-se, um algoritmo de demodulacao para estimar a amplitude de uma
sendide num conjunto de medidas (cerca de 300 medidas), subtraindo a média

nao nula e a tendéncia.

O tomégrafo experimental seguinte foi construido por uma empresa alema,
Helzel Gmbh, especializada em eletrénica de alta frequéncia. A proposta era uti-
lizar fontes de corrente e amplificadores de sinal em cada um dos 32 eletrodos.
Embora cada eletrodo operasse bem em separado, o sistema tornava-se instavel
quando os 32 eletrodos eram ligados ao dominio, tanto num manequim com so-
lucao salina quanto num um voluntario. A partir desta experiéncia decidiu-se
utilizar uma tinica fonte de corrente bipolar e conecta-la aos eletrodos através

de de-multiplexadores e cabos com dupla blindagem. A tecnologia de blinda-



anexo A

gem ativa e cancelamento de capacitancia em cabos precisava ser desenvolvida

(BERTEMES-FILHO; LIMA; AMATO, 2004).

A especificagao do tomédgrato passou a ser mais realista. O tomografo deveria
ter pelo menos 32 eletrodos. uma fonte de corrente de 125 kHz e amplitude de
até 4 mA pico a pico. Através de resultados de simulacao numérica sabia-se que
a precisdo das medidas deveria ser de 1/100000. Optou-se por utilizar uma placa
de aquisi¢ao de dados com 32 canais diferenciais e com conversao de analédgico
para digital simultanea. A frequéncia de 125 kHz minimizava os efeitos causados
pela impedancia de contato eletrodo-pele. As medidas diferenciais simultaneas
cancelavam parte da interferéncia eletromagnética e eletrostatica captada nos ca-
bos de alta impedéancia. A placa de aquisicao utilizava conversores A/D de 14
bits de precisdao. A rotina de demodulagio processava 2500 amostras para esti-
mar a amplitude do sinal na precisao de 1/100000. A tecnologia de blindagem
ativa e cancelamento de capacitancia nos cabos e de-multiplexadores causou uma
deterioragdo da informacao de fase do sinal de potencial elétrico. Procurava-se
precisao na medida de amplitude. Ao utilizar injecdo de corrente bipolar e medi-
das diferenciais, as medidas eram pouco afetadas pelas consideraveis mudancas no
potencial de referéncia analdgico que ocorrem no ambiente de U.T.I. A seguir, a
demodulagao passou a ser feita em um circuito integrado fpga, field-programmable
gate array, e o tomografo passou a coletar dados em velocidade suficiente para
gerar 50 imagens por segundo. Este tomoégrafo permitiu avangos nos algoritmos
de obtengao de imagens ¢ nas aplicagoes médicas associadas a monitoragao do

pulmao.

Foram produzidos cerca de 15 destes tomografos pela Dixtal Biomédica Ltda.
Ao calibrar, testar e utilizar este tomoégrafo experimental ao longo de dois anos,
ficou claro que a acuracia das medidas e a fase das medidas também influenciam
a resolugdo espacial e a resolucdo em resistividade. Em particular, quando a
capacitancia nao cancelada dos cabos passa a ser maior que 5 pF, a resolucao
espacial se deteriora. Desta forma, os tomdbgrafos experimentais que estao sendo
projetados na Escola Politécnica utilizam diferentes conceitos de eletrodos ativos.
Outro fator que influencia de forma decisiva a resolucao espacial e em resistividade

do tomografo é o conhecimento da posigao dos eletrodos.
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2.2 O desenvolvimento dos algoritmos de imagens
de diferencas

As imagens de diferencas sao as mais faceis de serem geradas porque, ao
subtrair duas imagens, erros persistentes (de modelagem ou de medidas), que
se somam ao sinal, sdo cancelados ao subtrair dois sinais. Adicionalmente, estas
imagens utilizam medidas normalizadas, utilizam a diferenca entre duas medidas,
dividida por uma delas. Desta forma, erros persistentes ( de modelagem ou de
medidas), que se multiplicam ao sinal, acabam sendo cancelados. Sao imagens

mais robustas e decorrem de algoritmos nao iterativos, em geral.

2.2.1 O algoritmo Backprojection

Ao implementar e testar o algoritmo Back-projection (NAN; AYA; LIMA, 2007),
conforme descrito por Santosa e Vogelius, foi possivel verificar, por comparagao
com o algoritmo Matriz de Sensibilidade (YORKEY; WEBSTER; TOMPKINS, 1987),
que a normalizacao das medidas é um fator que aumenta a qualidade das imagens

e que estava faltando na formulacio original do algoritmo Matriz de Sensibilidade.

2.2.2 O algoritmo Matriz de Sensibilidade

A formulacdo do algoritmo Matriz de Sensibilidade (YORKEY; WEBSTER;

TOMPKINS, 1987) baseia-se na teoria de estimagao de pardmetros. A estrutura do

modelo é considerada conhecida, a excitacao do sistema é conhecida e imposta,

e a resposta do sistema € conhecida porque foi medida com certa precisdo. A
estrutura do modelo foi definida pela equagao parcial de Laplace generalizada,
caso particular das equacoes de Maxwell, e pelo Método dos Elementos Finitos.
Restava determinar os pariametros do modelo, um conjunto de resistividades,
uma resistividade para cada elemento finito. A determinagao da resistividade é
realizada de forma linear e algébrica utilizando uma série de Taylor truncada do
mapa de resistividade para potencial elétrico, que decorre do modelo de elementos

finitos.

Nos trabalhos de Roberto Guardo foi introduzida uma normalizag¢ao nos mol-
des da normalizacio utilizada no Backprojection (ADLER; GUARDO, 1996). A
normalizacao trouxe melhorias para a imagem; entretanto, as imagens subesti-
mavam variacoes de resistividade superiores a 10%, que sdo variagoes facilmente

encontradas no tecido pulmonar (que pode variar de 4 a 8 (0m (GABRIEL; LAU;
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GABRIEL, 1996)).

2.2.3 O algoritmo Caixa-Preta

Com base na experiéncia de ter implementado e testado o Backprojection
e o Matriz de Sensibilidade em manequins de meio salino, em animais e em
humanos, foi proposto um método que procurava identificar diretamente uma
matriz que relacionasse variacao de potencial elétrico nos eletrodos com variacio
de resistividade (AYA et al., 2007). Esta matriz foi treinada com variagbes de
resistividade ortogonais e suas correspondentes variacoes de potencial elétrico,
calculadas através de um modelo de elementos finitos. Como as colunas desta
matriz formam uma base do espacgo das variagoes de resistividade, para restringir
o espaco solucao em frequéncia espacial, bastava restringir as colunas da matriz.
A regularizacao do método é realizada, portanto, simultaneamente ao calculo das
colunas da matriz. Este algoritmo foi denominado Caixa-Preta por decorrer da
busca de uma matriz que relaciona entrada e saida de um sistemna multivariavel,

sem preocupacao com a estrutura interna do sistema.

O algoritmo Caixa-Preta gerou imagens com maior acuricia nas variagoes
de resistividade acima de 10%. Verificou-se, comparando as hipoteses do Back-
projection e do Matriz de Sensibilidade com as do Caixa-Preta, que a hipo6tese
que os distinguia era a expectativa de obter variacoes finitas ou infinitesimais de
resistividade. Esperar variacoes finitas permite obter maior acuracia nos valores

de resistividade.

2.3 O desenvolvimento dos algoritmos de imagens
absolutas

Embora as imagens de diferencas permitam detectar diversas emergéncias
clinicas no tecido pulmonar em algumas circunstancias ( como, por exemplo,
atelectasia massiva, trombo-embolismo, efusdo pleural e pneumotorax), isto é
possivel somente quando o paciente vem sendo monitorado desde antes do inicio
da emergéncia. Distinguir efusdo pleural de uma hemorragia sé pode ser realizavel
se houverem sido captados potenciais elétricos anteriores ao evento (LEITE et al.,
2008; COSTA et al., 2009).

O problema inverso associado & obtencdo de imagens absolutas gera um sis-
tema de equacdes algébricas pior condicionado que o sistema de equacgoes gerado

na obtencao de imagens relativas. Desta forma, na busca de melhores imagens ab-
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solitas acaba-se desenvolvendo tecnologia que melhora a qualidade das imagens

de diferencas.

2.3.1 Algoritmos baseados em Gauss-Newton

Os algoritmos absolutos baseados em Gauss-Newton (VAUHKONEN, 2004) sao
rapidos quando comparados aos métodos de busca probabilisticos como o Reco-
zimento Simulado, Simulated Annealing (SA) (HERRERA et al., 2007) e o Monte
Carlo Cadeias de Markov (MCMC) (KATPIO; SOMERSALO, 2004). Entretanto, nos
algoritmos tipo Gauss-Newton ha a necessidade de calculo de uma derivada do
modelo de elementos finitos com respeito a resistividade. Esta derivada introduz
significativos erros no sistema de equagbes algébrico. Estes erros acabam por se
manifestar deteriorando qualidade da imagem (MIRANDA, 2002; HERRERA et al.,
2007; LIMA et al., 2007, MELLO et al., 2007).

2.3.2 Algoritmos baseados em Programacgao Linear

Impor limites inferiores e superiores nos valores de resistividade constitui uma
regularizacao, que embora nao seja precisa, ndo costuma introduzir informacao a
priori falsa se os limites estiverem de acordo com a realidade. Esta regularizacio
é, por vezes, chamada de regularizagao tipo caiza. Trata-se, portanto, de uma
regularizagdo segura do ponto de vista clinico (HERRERA et al., 2007; VALLEJO et
al., 2007; VALLEJO, 2007; LIMA et al., 2007; MELLO et al., 2007).

Ao utilizar uma regularizacdo tipo caixa em conjunto com uma regularizagao
que restringe altas frequéncias espaciais na imagem, notas-se que.o parametro de
regularizagao pode ser significativamente diminuido e que a qualidade da imagem
melhora. Por melhoria na qualidade de imagem entende-se melhor uniformidade
de sensibilidade, melhor localizacao de objetos e contornos dos objetos mais fide-
dignos (HERRERA et al., 2007; VALLEJO et al., 2007; VALLEJO, 2007; LIMA et al.,
2007; MELLO et al., 2007).

Algoritmos de otimizagao (que neste trabalho sdo utilizados na busca de uma
imagem) baseados em Programagio Linear, permitem impor restri¢oes tipo caixa
sem modificar a fungdo objetivo que se deseja otimizar. Mesmo que a fungao
objetivo seja nio linear, ou que as restricoes sejam nao lineares, é possivel utilizar

a Programacado Linear Sequencial (LIMA et al., 2007; MELLO et al., 2007).

I possivel, ainda, através da defini¢io de modelos de materiais (técnica am-

plamente utilizada na Otimizacdo Topologica (BENSOE; SIGMUND, 2003)), intro-
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duzir informacao a priori sobre valores esperados de resistividade. Resultam ima-
gens com distribui¢ao de resistividade com elevada amplitude e boa localizacao

de objetos {(LIMA et al., 2007; MELLO et al., 2007).

2.3.3 Técnicas probabilisticas de solucao de problemas in-
Versos

A TIE tem que lidar, necessariamente, com uma série de incertezas, erros de
medida e erros de modelagem. A imagem deve ser procurada em um sentido pro-
babilistico. Informacao a prior: probabilistica regulariza o problema inverso mal
posto, que caracteriza a TIE, restringindo a funcio densidade de probabilidade

definida pela verossimilhanga (KAIPIO; SOMERSALO, 2004).

Trés algoritmos de solugao de problemas inversos probabilisticos se desta-
cam: o Recozimento Simulado, ou Simulated Annealing (SA), o Monte Carlo com
Cadeias de Markov (MCMC) e as variantes do Filtro de Kalman. O SA e o
MCMC sdo algoritmos lentos e mais apropriados para obtencéo de imagens esta-
ticas. O SA, quando comparado ao Gauss-Newton com informacgao semelhante,
gera imagens com maior resolugéo espacial e em resistividade (HERRERA, 2007),
provavelemente porque o SA utiliza a fungdo objetivo diretamente, nao requer
o calculo de sua derivada com respeito & resistividade e pela presenca de uma
regularizacao tipo caixa ao invés de apenas a regularizacao que restringe elevadas

frequéncias espaciais.

Os filtros de Kalman permitem resolver problemas inversos dinamicos e pro-
babilisticos, nos quais o estado do sistema varia com o tempo e segue um modelo,
mesmo que impreciso. Nos filtros de Kalman a estimativa do estado atual é feita
com base em estimativas passadas e medidas passadas, em um modelo de evolu-
¢ao e em um modelo de observacao. A monitoragao do tecido pulmonar pode ser
abordada como um problema de observagao probabilistica nao linear de estado

ou como um problema inverso dindmico e probabilistico (VAUHKONEN, 1997).

2.3.4 Algoritmos baseados em Filtros de Kalman

O primeiro trabalho que abordou o problema de TTE como um observador de
estados utilizou o Filtro de Kalman para sistemas lineares (VAUHKONEN, 1997).
Decorre deste trabalho que as variagoes de resistividade no pulméao tém ampli-
tude elevada para poder ser tratadas por um observador linear. Em seguida, foi

implementado uma variante do Filtro de Kalman para sistemas nao lineares, o



anexo [

anexo J

anexo K

12

Filtro Estendido de Kalman (FEK) (KIM et al,, 2001), mostrando que, de fato,
observadores nao-lineares eram mais adequados para monitorar o pulmao. Antes
desta publicacao ja se desenvolvia na Escola Politécnica uma implementagao do
FEK (TRIGO, 2001).

Além de estimar a distribuicao de resistividade, é preciso estimar a impe-
dancia do contato entre eletrodo e pele e a distincia entre eletrodos em uma
monitoragao de pulmao em condigdes de UTI. Quando a impedancia de contato
ou a distancia entre eletrodos é informada erroneamente ao modelo de elementos
finitos, ocorre um viés na estimativa da resistividade do torax. Ao implementar o
FEK definindo como estado o conjunto das resistividades dos elementos da malha
e as impedancias de contato entre eletrodos e pele, ocorreu uma dificuldade de
ajuste do FEK para que tivesse sensibilidade equilibrada entre estes dois conjun-
tos de parametros de significados fisicos distintos. Uma solucao foi implementar
dois filtros FEK interligados (TRIGO, 2001; TRIGO; LIMA; AMATO, 2004). Esta
solucao foi encorajadora e, posteriormente, foi implementado um algoritmo que
estimava em paralelo e interligados trés conjuntos de parametros: resistividades

do torax, impedancias de contato e distincias entre eletrodos (VALLEJO et al.,

2006).

Sabe-se pela Teoria de Controle que, para que um observador de estado possa
efetivamente acompanhar as variagoes de estado, ele deve ter uma velocidade de
seguimento igual ou superior as variagoes do estado da planta ( neste trabalho o
pulindo). O FEK apresentava baixa velocidade de seguimento. Duas modificacoes
foram implementadas, estimar o modelo de evolugdo de cada paciente em um
intervalo de tempo recente (MOURA et al., 2007, 2008, 2009, Em revisdo, IEEE
Transaction on Biomedical Engineering) e utilizar uma matriz covariancia do
ruido de processo adaptativa que dirigisse o residuo de estimacado a ter média
nula e distribui¢do proxima de Gaussiana (TRIGO; LIMA; FLEURY, 2009; TRIGO,
2005). As duas alternativas causaram um aumento significativo na velocidade de
seguimento do FEK. Verifica-se que a resistividade das imagens esta de acordo
com a resistividade dos tecidos do pulmao, da coluna vertebral e da caixa toracica
de seres humanos medidas ap6s a retirada do corpo humano (GABRIEL; LAU;
GABRIEL, 1996; MOURA et al., 2009). Este resultado indica que é possivel a
obtencao de imagens absolutas em ambiente de U.T.I. em um futuro préximo.
Resta melhorar a resolucao espacial destas imagens e testar a confiabilidade da

téenica.
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2.3.5 Sobre o posicionamento 6timo dos eletrodos

Ao definir como indice de observabilidade modal alguns autovalores da matriz
resultante do produto da transposta da matriz de sensibilidade por ela mesma, foi
investigada a posi¢ao 6tima dos eletrodos que maximizam a soma destes autovalo-
res. Ou seja, procura-se a localizacao dos eletrodos no dominio que maximizam a
obsservabilidade de algumas componentes principais das imagens. Os resultados
preliminares indicam que, quando a distribuicao de resistividade é nao uniforme
e ndo simétrica, a posigdo 6tima dos eletrodos nao é equi-espagada (MELLO et al.,
2008).

2.3.6 Técnica direta de reconstrugao de imagens

Em 1996 foi demonstrada a existéncia e a unicidade de solugao da equagio ge-
neralizada de Laplace (NACHMAN, 1995). A demonstragio ¢ construtiva e gerou
um caminho tebrico para obter imagens de forma direta, isto é, sem iteracoes.
Este método vem sendo desenvolvido ao longo dos anos com resultados enco-
rajadores e é o tinico método de TIE para imagens absolutas nao iterativo, no
momento (SILTANEN; MUELLER; ISAACSON, 2000). Baseia-se em uma transfor-
magao de varidveis que leva a equacao generalizada de Laplace na equacao de
Schrédinger. Na equagdo de Schrodinger, uma func¢ao nao linear da condutivi-
dade, porém conhecida e deterministica, € wina variavel que pode ser determinada
de forma direta e linear, sem iteragGes. Duas teses de doutorado da Escola Po-
litécnica dedicam-se ao desenvolvimento deste método com a co-orientacao da

Profa. Jennifer Mueller da Colorado State University.

2.4 O desenvolvimento de aplicagoes na Pneumo-
logia

2.4.1 Sobre a deteccao de pneumotérax

A detecgdo precoce de pneumotorax na beira de leito ja é uma realidade(?7).
O pueumotorax se carateriza por ter baixa ventilagdo, ventilacdo mais baixa que
o tecido sobre-estendido. Uma imagem de desvio padrao da variacdo da resisti-
vidade, obtida através de um algoritmo gerado nesta linha de pesquisa, permite
quantificar a ventilagao. Utilizando imagens de diferencas, somente é possivel
identificar um pneumotorax quando ele ocorre ou cresce durante o periodo de

monitoragdo do torax. Com imagens de resistividade, ditas absolutas, serd pos-
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sivel detectar a ocorréncia de um pneumotoérax que comegou antes do periodo de

monitoracao.

2.4.2 Determinacao da pressao no final da expiracao PEEP

Através do mapa de desvio padrao da variacao de resistividade, desenvolvido
nesta linha de pesquisa, é possivel identificar as regides em que estd ocorrendo
colapso do tecido pulmonar. E por consequéncia, é possivel estimar a pressiao po-
sitiva no fim da expiracao, o PEEDP, que evita novo colapso do tecido pulmonar,
atelectasia (BERALDO et al., 2006; COSTA et al., 2009). Manobras de recrutamento
alveolar recuperam regioes do tecido pulmonar que estavam colapsadas; entre-
tanto, se a pressao for reduzida abaixo de certo limite, o tecido volta a colapsar.
E necessario determinar esta pressio minima, chamada de pressdo positiva no
final da expiragdo (PEEP). A TIE tem sido considerada a técnica mais precisa
de terminacao do PEEP, entre aquelas que sdo possiveis de realizar na beira de

leito.

2.4.3 Sobre a perfusao no pulmao

Inicialmente pensava-se que, ao subtrair das imagens de diferengas imagens
de ventilagdo (separacdo realizada por média coerente sincronizada com sinal de
Eletrocardiograma (ECG)), resultavam imagens de perfusido. Verificou-se que a
separacao da imagem de ventilagdo da imagem completa resulta em uma ima-
gem que contém predominantemente a pulsatilidade dos grandes vasos. O estudo
utilizou comparacoes de imagens de perfusao através de Single Photon Emission
Comput;zd Tom.ography (SPECT) com a perfusdo obtida via TIE com contraste
de solugdo salina hipertonica (FRERICHS et al., 2002). A discrepancia entre esti-
mativas de perfusdo regional via SPECT e via TIE é de apenas 5% (SIPMANN et

al., 2008). Desta forma, a TIE permite avaliar a perfusdo regional no pulmio.
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Comentarios Finais e
Trabalhos Fututros

Bsta investigacao, que contou com a colaboracio estreita do Departamento

de Pneumologia da Faculdade de Medicina da USP, através do desenvolvimento

da tecnologia de TIE, tornou possivel a monitoracao do pulmao em ambiente de
U.T.IL

E possivel a detecciio precoce de pneumotoérax e atelectasia a beira de leito.

Pneumotoérax com volume de 20 ml podem ser detectados.

E possivel determinar o PEEP para ajustar ventiladores de pulmio em
ambiente de UTI.

Esta linha de pesquisa contribuiu para que a tecnologia de TIE obtivesse
um aumento de resoluc¢do espacial que agora é de 1/10 do diametro médio,
no centro do dominio, e de 1/20 do diametro médio, na periferia do torax,
através de modelagem mais precisa do torax, normalizacoes e regularizagbes

com malor sentido clinico.

O erro de localizagao das estruturas anatémicas diminuiu gracas ao uso de
modelos 3D de elementos finitos. A distancia entre eletrodos é estimada em

tempo real.

A impedancia do contato eletrodo-pele também pode ser estimada e seu
valor pode ser corrigido no modelo do térax, minimizando o artefato asso-

ciado.

Imagens absolutas dindmicas do térax humano foram obtidas, das quais
é possivel extrair imagens de diferenga com informacao sobre a ventilacao
local e sobre pulsatilidade local. Este resultado indica a viabilidade de

obtencao de imagens absolutas na beira de leito.

A perfusio pode ser estimada com discrepancia de 5% em relagao a es-

timativa por tomografia SPECT, pelo uso de solugiio salina hipertdnica
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como contraste. Injeta-se 5 ml de solucdo salina no sistema vascular e
acompanham-se os ions quando eles passam pelo pulmao, revelando assim
a perfusao de sangue local no pulméao. Foi demonstrado ainda que a pulsa-

tilidade nao revela a perfusao local.

O desenvolvimento desta tecnologia deve ainda continuar por varios anos: no
campo da eletrénica, no campo da solugao de sistemas lineares, no campo dos pro-
blemas inversos, na determinacido de atlas anatdémicos cada vez mais especificos

e precisos e nas aplicacoes, da medicina e na engenharia.

Na eletronica, espera-se um aumento de precisao pelo emprego de eletrodos
ativos. Cinco tomégrafos experimentais serdo construidos na Escola Politécnica
nos proximos meses para testar configuracoes de eletrodos ativos. Quanto as
regularizagoes, estd em andamento o desenvolvimento de uma atlas anatomico

humano, em cooperacao com a Universidade de Kuopio, Finlandia e a Faculdade
de Medicina da USP.

No campo dos algoritmos, ocorre o desenvolvimento da uma variante do filtro
de Kalman chamada Uscented Kalman Filter (UKF), também em cooperagio com
a Universidade de Kuopio. Planeja-se ainda a implementacao de algoritmos do
tipo Kaczmarz - Level Sets e estao em andamento duas teses de doutorado sobre o
D-Bar em colaboracao com a Profa. Jennifer Mueller, Colorado State University.
O UKF & um observador de estado probabilistico que tem demonstrado elevada
velocidade de seguimento; esta velocidade pode ser ainda aumentada se associada
a identificagdo do modelo de evolugdo. O segundo algoritmo, Kaczmarz Level Sets,
deve gerar imagens constantes por trechos de forma. rapida e eficiente, imagens
com elevada importancia clinica, pois ¢ uma maneira de delimitar os tecidos, e -
adequadas para a inicializa¢ao de métodos iterativos probabilisticos. Finalmente,
o desenvolvimento do Método D-Bar pode tornar rotineiro o uso de imagens

absolutas, ao invés de imagens de diferencgas nas aplicagoes médicas.

Outro desafio para o futuro proximo é a determinacao em tempo real da po-
sicao dos eletrodos e a geometria externa do dominio. A corre¢do da malha de

elementos finitos deve permitir um aumento de resolugao espacial e em resistivi-
dade.

Trata-se, portanto, de uma linha de pesquisa que tem o potencial de modificar
praticas na area da saidde, em particular, nas estratégias protetivas do pulmao, e
diminuir a taxa de mortalidade de pacientes em U.T.I. com deficiéncia respiratoria
aguda. Ispera-se que esta tecnologia, com algumas modificacoes, seja efetiva na

monitoragao da perfusio do cérebro e na estimativa do débito cardiaco, para citar
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ABSTRACT: Electrical impedance tomography is a promising technique for imaging the conductivity distribution
within the body. Yet no high quality anatomical image has been reported. This is partially related to the inaccuracies
of the instrumentation, particularly to the low performance of the current source. A brief overview in the literature
show that current source with capacitive compensation is a recent technique applied to increase its output
impedance, but still suffering with instability and process control. This paper shows a multiplexed bipolar current

source using negative impedance converter. The measured output impedance was greater than 20 MQ and stable o
a period of 15 hours. '

Keywords: current source, impedance converter, electrical impedance tomography

1. INTRODUCTION

Over 20 years the Electrical Impedance Tomography (EIT) has been under investigation as a promising
imaging technique. This technique consists on imaging the distribution of the impedance within the body
(anatomical imaging) or the variation in impedance during a physiological change (dynamic imaging).
Anatomical EIT is of great interest in the clinical environment to be used as an alternative to X-rays, CT
or MRI. Forming an image of this impedance is technically difficult. Some difficulties are related to the
inaccuracies of the instrumentation used in the data acquisition system [2].

Many EIT groups have used multifrequency recording as a possible solution for obtaining anatomical
image, where the set of voltage measurements at one frequency is used as a reference for measurements at
another. However, there is still the problem of deciding which of the images best represents the
underlying anatomy [2]. Images of the anatomy can be based only on the measurements of voltage at one
frequency. If the objective in single frequency EIT is to produce absolute images, highly accurate
measurements are needed. The maximisation of the output impedance, Z,,, of the current source and the
input impedance of the recording amplifier has been frequently attempted to overcome inaccuracy
problems.

In theory, the Z,, of the current source should be thousands times greater than the load (i.e. the
combination of the skin/electrode-interface impedance with the biological one). However, parasite
capacitance in the output of the current source decreases significantly. the Z,, -of the current source. One
possible solution is to use a Negative Impedance Converter (NIC) [1]. Tablel brings some important
characteristics of some EIT hardware with particular emphasis on the current source. Measured output
impedance as high as 37 MQ at 100 kHz can be achieved by using a Generalised Impedance Converter
(GIC) [3], but a sophisticated and a permanent trimming process is required. It has to be emphasised that a
clinical EIT system has to be robust and safe, capable of generating real time images and stable over time.

This paper compares the output impedance of a multiplexed bipolar current source, with and without a
negative impedance converter, intended to be used in a single frequency EIT system.

! pedro.bertemes@poli.usp.br; phone 55 11 3091-9643; fax 55 11 3813-1886;
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Tab.1. Comparative table of some EIT system found in the literature, where SE= single-ended
and DB= dual balanced.

Design CIIRRFNT SOIRCF

Authors Electrodes  Frequency Z,u (kQ) Lu(mA,,)  Configuration
Brown et al 1987 16 50 13 - SE
Shi et al 1990, 16 11.5-92 5,000 at 50 kHz - SE
Rigaud et al 1990
Cook et al 1994 32 30 25,000-50,000 | multiple SE*
Jossinet et al 1994 16 32-2048 1,000 at 128 kHz 2 multiple SE
Wang et al 1992 L6 75-153.6 5,500 at 76.8 kHz - -
Bragos et al 1994 - 10-500 1,000 0.3 -
Goovaerts et al 1998 - 4-1024 1,013 at 64 kHz 0.85 isolated DB
Wilson et al 2001 8 2-1600 >1,000 at 100 kHz 0.85 multiple DB
Ross et al 2003 - 0.1-1000 37,000 at 100 kHz - SE**
Bertemes-Filho et al 2003 32 125 20,000 2 DB*

*using NIC circuit, **using GIC circuit

2. METHODOLOGY

A Bipolar-Hownald-Current-Source (BHCS) and two negative impedance converters, one for each side of
the current source, attached to a 32 channel multiplexer were built. The complete system is shown in
figure 2.

The output impedance of the BHCS circuit was measured by varying the load from 0.2 to 1.2 kQ, which
was done by two relays (S; and S, in figure 2). The measurements were made by using an acquisition
board (DAQ-2010, ADLink Technology Inc.) at 2 MS/s. The load voltages were demodulated using 2.000
samples and then the output impedance were calculated by using a virtual bench developed in LabVIEW
61 (National Instruments Inc.). Measurements were made with and without the NIC circuit. The stability
of the BHCS circuit was investigated by calculating the Z,, over 15 hours of acquisition.

3. RESULTS

Figure 3 shows the output impedance of the multiplexed bipolar current source with and without a NIC
circuit. Data are averaged every 24 seconds of acquisition up to about 5.5 minutes. It can be seen that the
Zw decreases from approximatly 23 to 2 MQ when the 32-channel multiplexer is connected to the circuit.
The drop in Z,, was certainly caused by capacitances of the multiplexer. However, when connecting and
adjusting the NIC circuit, the magnitude of the Z,, is on average 20 MQ.

Figure 4 shows the stabilily of the measurements when the equipament was running over a period of 15
hours. It can be seen that the magnitude of Z,, is over 20 MQ.

It must be mentioned that the input voltage signal to the current source was generated by an integrated circuit
(MAXO038 from Maxim), which contributed to some inaccuracies to the load current. In order to measure higher

output impedance than 20 M, accurate input signal and data acquisition board of at least 14 bits resolution should
be considered.
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Fig.3. The magnitude of the output impedance switching Fig.4. Output impedance, showing the raw data over
on and off both multiplexer and the NIC circuit. 15 hors of acquisition and the respective mean values.

4. CONCLUSIONS

The output impedance of 32-channel multiplexed BHCS with capacitive compensation was measured an
its output current stability over time was also investigated. It was shown that the current source is quite
stable over a long period of time when driving a resistive load through a 32-channel multiplexer. The
measured output impedance was on average greater than 20 MQ within the first 15 hours of acquisition

time, using a load variation of 1 kQ. It can be concluded that the accuracy of the load current is about 86
dB at 125 kHz.
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Abstract. Electrical Impedance Tomography (EIT) is a technique to estimate the impedance distribution of a domain of
interest, for instance, a section of the human body. It uses the boundary electrical potential measurements of the section
to estimate the image. One of the early image reconstruction algoriths is called back-projection, duo to Barber and
Brown, but there is a lack of articles about it. Santosa and Vogelius proposed an implementation of the Barber-Brown
algorithm with interpolation of the boundary data and low-pass filter the image.

The present work shows an implementation of this improvement with a particular choice of interpolation of the boundary
data and an interpretation of the resulting image in terms of resistivity instead of conductivity.

Keywords: back-projection, Electrical Impedance Tomography

1. Introduction

The back-projection algorithm, developed by Barber and Brown in 1983, is an efficient algorithm with relative low
computer cost [1, 2], and this is the reason for being one of the most well known image reconstruction algorithms for
Electrical Impedance Tomography. However, there are few articles describing how is this algorithm. One of these arti-
cles was written by Santosa and Vogelius [3]. The vast literature on Backprojection reports its performance or clinical
applications.

Backprojection is a two dimensional reconstruction algorithm and, initially, the domain was restricted to be circular.
Extensions for non-circular domains were proposed. A three dimensional direct extension of the Barber and Brown
Backprojection was not accomplished [4], although some conceptually closely related 3D algorithms were developed [5].

An posterior development, called filtered backprojection [4, 6], improved the spatial resolution and the conductivity
resolution pre-processing the electric potential data before the use of the backprojection algorithm. The pre-processing,
or filtering procedure, used the first derivative of a finite elements model of the domain under analysis.

The objective of the present work is to describe an implementation the back-projection algorithm according to Santosa
and Vogelius, with a particular choice of interpolation of the boundary data and an interpretation of the resulting image in
terms of resistivity instead of conductivity using concepts from the calculus of variations.

2. Sheffield’s back-projection algorithm

The mathematical representation of the problem is supposed to be [4]

V. (cVU)=0inQ (O
cra—U =Jon oQd (2)
an

where ¢ is the conductivity profile, U is the electric potential, J is the boundary current density and 2 is the domain
of interest.

Taking the first variation of eq. 1 and eq. 2, denoting the first variation of the conductivity by do and the first variation
of the electric potential by 6U, results,
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With the following hypotheses

1. § is the unit two dimensional ball;
2. the conductivity is unitary o = 1,
3. §o = 0 near the dipole

the linearized problem reduces to

V23U = —V (60) VU in

Mz{)onaﬁ
an

The linearized inverse problem associated with equations 5 and 6 becomes

3)

C)

&)

(6)

Given a variation of electric potential along the boundary, 5U |yq, for various choices of dipole positions along the

boundary, determine a consistent increment §o.

To solve this problem, Barber and Brown used a change of variables that mapped the circular domain into a rectangular

domain,

X6

X4

w

@)

(]

®)

Figure 1. (a) coordinates (-x5,x6) (b) coordinates (x3,x4)

Using the reference frame shown on Fig. 1(a), with w representing the position of current injecting dipole, which is
located between two electrodes, the equation for the voltage equipotential lines is

Is
=73 2
Ty +xg

and the equation for the current equipotential lines is

Ts
=2 2
g+ xg

)

(8

With a translation on the reference frame, see Fig. 1(b), equations 7 and 8 become

z3
a3 + (z4 +1)°

_ _(11:4-!— 1)
3+ (za +1)°

&)

(10)
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With the equations 9 and 10, the domain {2 can be mapped to the upper half plane P defined by the rectangular region
where V' > 1/2. The problem represented by equations 5 and 6 simplifies, using the new coordinates (U, V), to

a(do) .

2 — ’

ViU = 50 in P (11)
a(8U) _ 1

T —00n0P-{V>§} (12)

Barber and Brown suggest that the average

m

1
S = — Z;I/V(s,wj) L=t (si0y) 2V (,w5) — 1) (13)
=

as the discrete solution for o, where m is the number of the electrodes, W is the voltage measurement on the
boundary, w represent the position of the electrode and V is the current intensity function. Santosa and Vogelius have
shown that eq. 13 is a simplification of the one consistent with the Radon Transform [?].

Since the voltage measurement is affected by the resistivity/conductivity of the whole of the body, Barber and Brown
suggest the use of a normalized voltage measurement to obtain a normalized conductivity.

The Sheffield back-projection algorithm assumes that the region between two adjacent potential lines has the same
voltage measurement. Rotating the position of the current injection dipole, it obtains m sets of vollage measurements.
These sets of electric potential measurements, , previously normalized, adjusted by the corresponding weight, which is
2V — 1, is the desired normalized conductivity.

X4 x4

(@ (b}
Figure 2. Different positions of current injection electrode

3. Improvement of back-projection by Santosa and Vogelius

Santosa and Vogelius suggested that instead of using the region between two equipotential lines, the algorithm should
find the corresponding electric potential measurement for a certain point inside the domain, according to the equipo-
tential lines. Since there is a limited number of electric potential measurements on the boundary, they suggest a linear
interpolation to find these measurements.

From the orientation and position of the electrode shown on Fig. 1(b), it is possible to find the point on the boundary
of the domain with the same electric potential measurement of the point desired by equations 14 and 15
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Figure 3. The electric potential measurement of certain
point x

Using the equations 14 and 15, and linear interpolation between electrodes el and e2, we obtain the electric potential
measurements, which are differential measurements, of all the pixels inside the domain. Rotating the current injection
pattern, other sets of measurements can be obtained. And the normalized conductivity distribution is

(So’i 1 i (SU]'
== =2 @V,;-1) (16)
mj=1 U

J; j

where i represent the pixels, j represent a pair of electrodes, do; is the perturbed conductivity, o; is the conductivity
of reference, m is the total number of pair of electrodes, §U; is the perturbed electric potential, U; is the electric potential
of reference, and V; ; is the equipotential line corresponding to the current passing through the desired point.

The equations 14 and 15 are for dipole at position 1, or —u/2. With the rotation of the current injecting electrodes, it
is necessary to change coordinates according to

T3 = Iy * cosf + xo * sind 17

T4 = —x1 * sinf + 9 * cosd (18)

\

Figure 4. Relation between (x3,x4) and (x1,x2)

4. Conductivity X Resistivity

The two methods described before give images of distribution of conductivity. For medical interpretation, images

given in term of distribution of resistivity are better. Using concepts of calculus of variations, the relation of both images
is straightforward

bs _° (%) 7 _ b
P i e (19)
g » » P

Therefore, equation 19 is rewritten as
§p 1 <=4U
— == —(2V -1 20
; —> gl ) (20)
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5. Results

Five images resulting from experimental data are presented. All of them were obtained through the back-projection
algorithm as described by Santosa and Vogelius (1990), with the interpretation in terms of resistivity. These images were
obtained using a cylindrical acrylic object placed at the center of an experimental cylindrical container, then 30 mm apart
from the center, then 60 mm apart from the center, then 90 mm apart from the center and, finally, 120 mm apart from the
center of the container, as shown on Fig. 5.

(a) at the center (b) 30 mm apart from the (c) 60 mm apart from the (d) 90 mm apart from the (e) 120 mm apart from the
center center center center

Figure 5. An acrylic object placed inside an cylindrical container with 300mm of diameter

The cylindrical object has 30 mm of diameter, the experimental cylindrical container has 300 mm of diameter and the
container was filled with 20 mm of 0.9% saline solution. On the border of the container there are 30 electrodes placed at
equal distances. The electrodes were used to measure the electric potential variation due to a disturbance caused by the
presence of the acrylic object and the injection of cuitent through an adjacent of these electrodes. These electric potential
measurements have accuracy of 2.5 mV and the results are shown in Fig. 6.

(a) at the center (b) 30 mm apart from the (c) 60 mm apart from the (d) 90 mm apart from the (e) 120 mm apart from the
center center center center

Figure 6. Images estimated

The results show clearly the non-uniform sensitivity of the algorithm. The increasing blurring of the object when the
object is closer to the center of the domain is one of the performance problems of this method. The filtered Backprojection
has better performance in terms of resolution and sensitivity matrix based algorithms have, to some extent, more uniform
sensitivity and spatial resolution [7, 8, 9].

6. Final Comments

The back-projection algorithm was implemented and described. The algorithm was tested and some of its performance
characteristics were confirmed. The algorithm has non-uniform sensitivity, as can be seen on the resulting images. At the
center of the container, the acrylic object is seen blurred, while at the boundary the image is better defined. The mapping
from conductivity distribution into resistivity distribution is simply a multiplication by minus one, when the images are
characterized by small deviations from a uniformly distributed value of conductivity or resistivity.
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Abstract.

One of the objectives of Electrical Impedance Tomography (EIT) is to estimate the resistivity distribution based on mea-
surements of electrical potential on the boundaries of a domain of interest. In this work we propose an algorithm that
identifies directly the back-projection matrix given known perturbations of the resistivity distribution and their associated
boundary electrical potential perturbations, called Black Box Algorithm, hwo new regularizations for the Black Box Algo-
rithm, one of the new regularizations have his performance compared to two classical regularization methods, truncation
of singular values and Tikhonov regularization.

Keywords: black-box, back-projection, Electrical Impedance Tomography, forward problem

1. Introduction

The Electrical Impedance Tomography (EIT) is a method for estimating the impedance distribution in a domain. The
domain can be modeled through the Finite Elements Method. The variable of interest is the impedance distribution or
variations in time of the impedance distribution. The problem of estimating the impedance distribution knowing the
injected current, measuring electrical potentials on the boundary and knowing the structure of the model characterizes an
inverse problem.

The value of the electric of the impedance of the different biological tissues is governed fundamentally by the con-
centration of different fluids (blood, water, air, etc. ..), this is the reason why EIT has being applied to monitor gastric
functions, the oesophagus, lung ventilation, pulmonary edemas and brain clots, for instance. It is possible possible to say
that the lung is a privileged tissue for being monitored by EIT, because is a function of the air content and blood content,
which suffer changes during the respiratory and cardiac cycles.

Initial work by Brown (Barber and Brown, 1984) used an isopotential approach for solving the inverse problem.
The backprojection method is based on linearization and delivers difference images. This algorithm can be described as
follows. Two different sets of measurements are required. The first set voltage is Vj, is a reference set of measurements.
The second set of measurements V; is related to the modified impedance distribution. An estimate of the normalized
resistivity can be computed from the formula

Ap=BAV (1)
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where
Ap = 1 — pPo
Po
Vi-W
AV =212
Vo

and B is so-called backprojection matrix, the construction of which can be found in (Santosa and Vogelius, 1990).

The objective of this work is to obtain an algorithm to identify directly the backprojection matrix, using a set of
independent, known difference images, and a set of accurately computed boundary data through a Finite Elements model
FEM. Four procedures can be used to directly identify the back-projection matrix B, to follow:

1. truncation of singular values decomposition
2. Tikhonov regularization

and one new regularization
3. Heuristic

4. Filtered columns of B

2. Theory

Consider a domain with unknown electromagnetic properties. The objective of the EIT is to estimate the distribution
of impedance of the domain, given the excitation current imposed of the boundary, and known the electric potentials
measured in regions of the contour of domain. In order to estimate the impedance distribution, a set of electrodes they are
attached to the boundary of the domain and electric currents are applied in some electrodes. A particular choice of current
intensities applied to the electrodes will be called of a "current pattern”. For each current pattern, the electrical potential
between pairs of electrodes are measured. After gathering the potential data it is possible resistivity distribution of the
domain.

It is common to define two problems in EIT. In the Forward Problem are known the resistivity distribution, the current
patterns, the structure of the model and the electrode potentials are desired. In the Inverse Problem, are known the
electrode potentials, the patterns of excitation, and it is desired to know the resistivity distribution of the domain.

2.1 Forward Problem

The forward problem in the EIT calculates the potentials in the electrodes, known the resistivity distribution and the
current patterns. The electric model, using the Finite Elements Method, of a domain is the matrical equation (Logan,
1986) and (Sadiku, 1992)

Y(p) V=0, @)
where Y (p) is the condutivity matrix, V = [v1, ..., v, is a matrix of potentials, each column of this matrix is composed
by nodal potentials, C = [c1, . . ., ¢g] is a matrix of current patterns each column represents a current pattern. Both ¢; and

v; are vectors with ne elements, where ne is the number of nodes of the mesh.
In order to solve eq.2 it is necessary to remove the singularity of the matrix Y{p). This is done imposing the potential
of a node, for example, with null value (Yorkei et. al, 1987).

2.2 Inverse Problem

The inverse problem consists on estimate the resistivity distribution of of the domain, from a set of current patterns,
measures of voltages in the electrodes and the structure of the model.

In the equation: Eq. (2) the condutivity matrix Y (p) has known structure, however the parameters of resistivity are
not known. Denoting the vector of electric resistivity p € 1™, where m it is the number of elements of the mesh, the
equation Eq. (2) can be rewritten in the next form:

Vip)=[Y(p)™ -C. (3)

It is possible to define a nonlinear map f: p — V; where V; is a vector of electrodes potentials related to the j-th
current pattern. Therefore, the vectors of electrodes potentials are nonlinear functions of the distribution of resistivity.
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3. Black-Box

The main idea of the black-box back-projection method is that if good images, relative variations of resistivity, and
good measurements, relative variations of electrode potentials, are available, then a matrix that relate measurements and
images may be estimated. The method forms a set of difference images and computes, using a finite element model, the
respective variations on electrode potentials. From this two sets of information it estimates the back-projection matrix.

The black-box back-projection algorithm estimates directly the B matrix of back-projection given the variation of
potential on the boundary of the domain when the resistivity of each finite element of domain varies. The method assumes
linearity between variation of potentials at the electrodes and variation of electrical resistivity.

First, it is assumed an initial resistivity distribution which will be used as reference. With this reference, the electrical
potentials are calculated, using a Finite Element model, for each current injection pattern. A perturbation is imposed
on each finite element, one at a time. The potentials at the electrodes are calculated and normalized with respect to the
potential corresponding to the reference value. The perturbed potentials are arranged as vectors. A matrix of perturbed
potentials is formed such that each column of this matrix is a perturbed potential vector. Through the perturbed potential
matrix and a matrix of resistivity perturbation, the matrix B can be determined.

The procedure to determine B is:

1. assume a known electrical resistivity at each one of n elements of domain, arrange as vector p°. The linearization
of the model is performed around p°.

2. each current injection pattern is denoted by {c;}ex1 forj =1,2,... ¢;

3. the potentials at the electrodes, v;-), are determined from the direct problem,
Y|po'n§-’:(:j , 1=12,... e G

4. a known perturbation on the resistivity element of the i-th element of p0, is denoted by dp; and i = 1,2, ... n;
5. vectors {8p*}nx1 are formed such that all elements are null but the i-th element that contains &, i. €., §p*; = 6p;;

6. for each current pattern c;, the potentials at electrodes, {vj-} related to a resistivity perturbation & are determined
by the direct problem,

Y |(0450)Vs = € , i=1,2...,e , i=1,2,...,n. 5)
7. let {19} ¢2; be an augmented vector formed of {v)}ex1 forj =1,2,... e, such that,
o}
0
’UO — ’U2 (6)
v .
8. let {v'}¢24 ) be an augmented vector formed of {v;}exl forj =1,2,...,e,such that
'u}:
’Ui — ’U2 (7)
i
9. form a normalized vector {1*},x1 such that each element, for j = 1,2,... n, is
) 6pi .
(W'} = — ®)
Pj
10. form a normalized vector {#*} .2, such that each element, for j = 1,2,...,¢, is
’Ui — 'Uoj

{01}e2x1 = 'Ta )
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11. define a matrix ¥, +,, such that
\I’nxn:[lljl /L 1/)"], (10)
observe that this matrix is diagonal;
12. define a matrix © .2, such that
Oeoyy = [ 01 ... 08 ... 0" | (D
13. since each column of ¥ is an image and can be related to a column of © by a back-projection matrix, one can say,
Poxn = Bnxe2@e2xn (12)

14. finally, determine the matrix B that minimizes an error index, eq. 24.

Once the matrix B is obtained, estimation of a difference image is performed multiplying 3 and a normalized vector
of variation of electrode potentials related to each current injection pattern, according to eq. 13

Ap=BAV (13)

p—p°;
Puj

where {Ap}nx1 is such that the j-th element is forj =1,2,...,n, and {AV }¢24, is such that the j-th element is

Vineasured— Vo casured j . 2
s measvreSd forj =1,2,...,e°.

measuredj

4. Determination of B

This paper describes four procedures to obtain the black-box back-projection matrix B. This matrix is not square and
the problem is ill-conditioned.
Methods for developed for estimation of B:

1. the first method consist on using pseudo-inverse calculation. This calculation is done using singular value decom-
position (SVD), the calculation is controlled by the number or singular values.

2. the second method uses a Tikhonov regularization. which is determination of a smoother approximated solution
compatible with the datas observed for a certain level of noise, inputting a priori information, that changes the
matrix to well-posed.

3. the third method will be denominated Heuristic regularization
4. the four method will be called Filtered B reguarization

4.1 Truncating the Singular Values

Any matrix can be decomposed into three matrices U, ¥ and V' (Watkins 1991),

e=Uusv” (14)
where
= U € R¢"*™ js an ortonormal matrix
= S € R™*™ i5 a diagonal matrix containing singular values of @
= V € R™>*™ is an ortonormal matrix
with the matrix decomposed, its pseudo-inverse is computed as

et =vs- U, (15)
where S~ is computed as
o ifS(3i,1) > €

-1z - — S(l,l)
59 { 0 ifSGi)<¢

(16)

and £ is the parameter to determine which singular values will be used.
Now, the matrix B is determined as

B=v0" (17)
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4.2 Tikhonov Regularization

To solve an ill-posed problem is necessary adicional information. Tikhonov and Arsenin (1977) started a general
formulation for ill-posed problems, called regularization or method of regularization. The inverse problem is formulated
as an optimization problem with restrictions.

The error can be defined as

E=9¢"-0"B" (18)
and the error index is defined as

IE =ETE + ABB7, (19)

the error index is minimized in respect to B when
-1
B - 9707007 + Al (20)

where I € R¢° % is the identity matrix and A is a scalar parameter.

4.3 Heuristic Regularization

The matrix @7 © is ill-conditioned. The inversion of @7 © for B determination introduce great numerical errors.
Therefore, to determine B, a regularization is necessary.
An error index is defined as,

IE = tr {E"E + «B"F"FB + fB"M"MB}, @n

where F is a high pass spalial filter considering each column of B like an image, M is a matrix for improving the
uniformity of the sensitivity, «« and J are regularization parameters, and matrix E is defined as

E =06(¥ - BO). (22)
The matrix M is a diagonal matrix such that each element of the diagonal is
My =7(3)?, (23)
where 7(z) is the distance of the geometrical center of the i-zA finite element to Lhe center of the domain, divided by the
radius of the domain. And p is an experimentally adjusted real parameter, to attenuate localization error and non-uniform
sensitivity. _
The minimum of the error index with respect to B is achieved when,
B = (076 + oFTF + pMTM) 1w O7. (24)
4.4 Filtered columns of B
The error index is defined at the equation Eq. (21), the matrix E is redefined as
E= (¥ -BO). (25)
The minimum of the error index with respect to B is achieved when,
BOOT + (oFTF + sMTM)B = voT. (26)
Note that the equation above is like the Sylvester equation
AXBT +CXDT =E, 27

where A and C has the sizes . X m, Band Daren x n,and F is m X n.

The Sylvester problem is resolved by Bartels (et.al) (1972) and Gardiner (et.al) (1992). To determine B, A = oFTF+
AMT™™,B=1I1,C=I1,D=00TeE =967,
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5. Parameters and methodology

The mesh used to create the matrix B has 300.0 mm of diameter, n = 2034 pentahedrical elements (prisms of trian-
gular base), divided equally in three layers, 30.0 mm of total height and e = 30 electrodes. The Figure 1 shows the top
view of the mesh.

7
A
2V
s
s

N
=57

i
R

i

Figure 1. Finite Element Mesh. * = AT AR
Figure 2. Experimental Container.

The initial distribution of electrical resistivity pp was homogeneous and equal to 3.0 Qm. The electrodes parameters
were all equal to 0.02 Q2m?. The imposed perturbation dp; was +30% of initial value.

The electrical potential data set was collected from an experimental cylindrical container shown on Fig. 2 filled with
0.5% saline solution. An acrylic cylinder with 32 mm of diameter was used to simulate a region with different electrical
resistivity. The object will be analyzed on two positions. Position 1 has the object placed at the center of the container.
Position 2 has the object placed 120 mm apart from the center of the container.

6. Results

Eight images resulling from experimental data are presented. The (irst two images were obtained through the back-
projection algorithm as described by Santosa and Vogelius (1990).

(a) Objecl in position 1 (b) Object in position 2

Figure 3. Images using Santosa and Vogelius algorithm.

6.1 Truncation of Singular Values

The following images were obtained from experimental data using truncation of singular values. The image at Fig.
4(a) represent the object placed at position 1 with £ = 0.01 which represent the use of only 8% of all the singular values
and the image at Fig. 4(b) represent the object placed at position 2 with £ = 0.0006 witch represent the use od only 15%
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of all singular values.

(a) Object in position 1 (b) Object in position 2
Figure 4. Images using truncation of singular values.

6.2 Tikhonov Regularization

The following images were obtained from experimeﬁtal data using Tikhonov regularization. The image at Fig. 5(a)
represent the object when placed at position 1 with A = 1.0e-5 and the image at Fig. 5(b) represent the object when
placed at position 2 with A = 1.0e-4.

(a) Object in position 1 (b) Object in position 2

K

Figure 5. Images using Tikhonov Regularization

6.3 Heuristic Regularization

The following images were obtained from experimental data using heuristic regularization. For this regularization,
a = 1.0e-4 and § = 4.0e-3 were chosen. The image at Fig. 6(a) represent the object when placed at position 1 and the
image at Fig. 6(b) represent the object when placed at position 2.

fs
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(a) Object in position | (b) Object in position 2

Figure 6. Images using Heuristic Regularization

7. Conclusion

It can be seen that the images obtained by these algorithms are compatible with the correct positions of the objects,
and the best resolution is obtained using the Heuristic regularization. The numerical solution of the Filtered column of B
regularization is under development. '

The regularization for improving the uniformity of the sensitivity proved to be efficient. The maximum values of pixels
for images when the object is at the boundary or at the center using heuristic algorithm, are similar due to parameter g,
which reduces the non-uniform sensitivity. The non-uniform is present at the other algorithms
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Real-time detection of pneumothorax using electrical impedance

tomography*
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Stephan H. Bohm, MD, PhD; Carlos R. R. Carvalho, MD, PhD; Harki Tanaka, Eng, MD;
Raul G. Lima, Eng, PhD; Marcelo B. P. Amato, MD, PhD

Objectives: Pneumothorax is a frequent complication during
mechanical ventilation. Electrical impedance tomography (EIT) is
a noninvasive tool that allows real-time imaging of regional
ventilation. The purpose of this study was to 1) identify charac-
teristic changes in the EIT signals associated with pneumothora-
ces; 2) develop and fine-tune an algorithm for their automatic
detection; and 3) prospectively evaluate this algorithm for its
sensitivity and specificity in detecting pneumothoraces in real
time.

Design: Prospective controlled laboratory animal investigation.

Setting: Experimental Pulmonology Laboratory of the Univer-
sity of Sao Paulo.

Subjects: Thirty-nine anesthetized mechanically ventilated su-
pine pigs (31.0 = 3.2 kg, mean * sp).

Interventions: In a first group of 18 animals monitored by EIT,
we either injected progressive amounts of air (from 20 to 500 mL)
through chest tubes or applied large positive end-expiratory pres-
sure (PEEP) increments to simulate extreme lung overdistension.
This first data set was used to calibrate an EIT-based pneumo-
thorax detection algorithm. Subsequently, we evaluated the real-

time performance of the detection algorithm in 21 additional
animals (with normal or preinjured lungs), submitted to multiple
ventilatory interventions or traumatic punctures of the lung.

Measurements and Main Results: Primary EIT relative images
were acquired online (50 images/sec) and processed according to
a few imaging-analysis routines running automatically and in
parallel. Pneumothoraces as small as 20 mL could be detected
with a sensitivity of 100% and specificity 95% and couid be easily
distinguished from parenchymal overdistension induced by PEEP
or recruiting maneuvers. Their location was correctly identified in
all cases, with a total delay of only three respiratory cycles.

Conclusions: We created an EiT-based algorithm capable of
detecting early signs of pneumothoraces in high-risk situations,
which also identifies its location. It requires that the pneumotho-
rax occurs or enlarges at least minimally during the monitoring
period. Such detection was operator-free and in quasi real-time,
opening opportunities for improving patient safety during me-
chanical ventilation. (Crit Care Med 2008; 36:1230-1238)

Kev Worps: pneumothorax; electric impedance; diagnostic im-
aging; artificial respiration; catheterization
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neumothorax is a common
complication of routine inter-
ventions on intensive care units.
For example, it complicates me-
chanical ventilation in 10% to 42% of pa-

*See also p. 1380.
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tients (1-3) and appears following the
placement of a central venous catheter in
2% (4, 5). In the scenario of positive pres-
sure ventilation, pneumothorax tends to
progressively increase and lead to cardio-
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vascular depression if not promptly recog-
nized (6, 7).

There is no available method, how-
ever, for continuous pneumothorax sur-
veillance in high-risk situations. Late di-
agnoses can thus be common even when
sensitive methods are employed (e.g.,
computed tomography [CT] or lung ul-
trasound) (8, 9) because clinical suspi-
cion at the bedside is required to decide
the timing of these exams.

Electrical impedance tomography
(EIT) is a noninvasive monitoring tool
that allows real-time imaging of venti-
lation (10, 11). It reconstructs a cross-
sectional image of the lung’s regional
conductivity using electrodes placed
circumferentially around the thorax. It
has been shown that EIT images corre-
late well with regional ventilation
within the thorax (11, 12). Its noninva-
siveness, low cost, and high sensitivity

Crit Care Med 2008 Vol, 36, No. 4
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to changes in thoracic air content make
EIT a promising real-time screening
method for pneumothoraces in high-
risk situations.

The purpose of this study was to 1)
identify characteristic changes in EIT sig-
nals associated with pneumothoraces; 2)
develop and fine-tune an algorithm for
their automatic detection; and 3) pro-
spectively evaluate the algorithm for its
sensitivity and specificity in detecting
pneumothoraces in real time.

MATERIALS AND METHODS

Experimental Setup

Experiments were performed on 39 anes-
thetized supine Landrace pigs (31.0 = 3.2 kg,
mean body weight *+ sp) following the guide-
lines of animal experimentation after approval
by the local animal care committee (details in
Appendix).

Electric Impedance Tomography

EIT data were acquired using the imped-
ance tomography platform called enlight,
which was developed by our group (Experi-
mental Pulmonology Laboratory, Polytechnic
Institute of the University of Sdo Paulo and
Dixtal Biomedica Ltd, Sao Paulo, Brazil) capa-
ble of producing 50 online images per second.
After measuring the thoracic perimeter, 32
self-adhesive electrodes were placed equidis-
tantly around the circumference of the thorax
just below the level of the axilla. Small
amounts of electrical currents (5-8 mA; 125
kHz) were injected in a rotating sequence
through pairs of electrodes, with one nonin-
jecting electrode interposed between the in-
jecting electrodes. During an injection pat-
tern, the noninjecting electrodes were used to
measure 29 differential voltages between elec-
trode pairs. One complete acquisition cycle of
- 32 current patterns produced 928 voltage
measurements comprising one “raw voltage
frame” used as an input for a relative EIT
image. These images were generated by a re-
construction algorithm for a cross section of
the thorax, which is based on a sensitivity
matrix derived from a three-dimensional finite
element model (14) (Appendix). A “primary
relative image” is created by comparing the
most recent raw voltage frame with a refer-
ence or baseline frame chosen by the investi-
gator. Qutput pixel values represent percent-
age changes in local tissue impedance, from
reference to present time.

As shown previously, the average (or sim-
ple sum) of all pixel values within each output
image can be plotted against the timeline,
producing a global EIT plethysmographic sig-
nal. Such signal is linearly related to changes

Crit Care Med 2008 Vol. 36, No. 4

CT scan

Baseline

100 mi.

Ventilation Map

Aeration change map

Figure 1. Computed tomography (CT), ventilation map, and aeration change map obtained at baseline
{top) and after injecting 100 mL of air into the pleural space of the left upper quadrant (botfom). The
arrow points to the induced pneumothorax (left, bottom).

in parenchymal air content (11, 15). This con-
cept can be applied regionally, within regions
of interest, producing regional EIT plethysmo-
graphic signals. Details about the resolution/
precision and noise of our EIT device can be
found in the Appendix.

Concept of Pneumothorax
Detection by EIT

Ventilation Maps. Victorino et al. (11)
showed that tidal oscillations in pixel values
are proportional to tidal oscillations in tissue
aeration. By calculating the amplitude of these
oscillations (tidal AZ = delta impedance)
along a sequence of primary relative images
for a fixed pixel, one can estimate the local rate
of ventilation and represent it by a color code.
Such a procedure generates yet another de-
rived image henceforth called a ventilation
map, which is similar to the concept of func-
tional images introduced by Frerichs (16)
(Fig. 1).

During this study, ventilation maps were
repeatedly refreshed every 9 secs, correspond-
ing to the accumulation of 450 new primary
relative images in an accrual image buffer,
Perturbations caused by perfusion artifacts
were attenuated in such maps by frequency-
dependent filtering (Appendix).

Aeration Change Maps. Similarly to the
image buffers described previously, the most
recent raw voltages frames were also sent to
an accrual voltage buffer containing 9 secs
of data. Aeration change maps can be con-
sidered as secondary relative images derived
from the comparison between one current
raw voltage buffer, still in the random access
memory, and a reference buffer previously
stored. Voltages within both buffers were
averaged along the time, producing two sin-
gle averaged-voltage frames representing

current and baseline conditions, respec-
tively, which then served as inputs for a
relative-image reconstruction. The current
buffer was constantly refreshed, while the
reference was maintained to represent the
moment just before any intervention or
pneumothorax induction. The relative im-
age produced by such inputs represented
sustained changes in thoracic impedance
and easily identified regional changes in
functional residual capacity. The averaging
process filtered oul transient changes in im-
pedance produced by tidal breathing.

Interpreting the Maps and Detecting
Pneumothoraces. Our algorithm for detecting
pneumothoraces is based on the online anal-
ysis of ventilation maps and aeration change
maps repeatedly refreshed after the accumu-
lation of new image/voltage buffers (typically
encompassing the last two to three complete
respiratory cycles). In preliminary experi-
ments, we observed that pneumothoraces
caused characteristic perturbations in both
maps: a localized bright spot in the aeration
change map—close to the site of air injec-
tion—with a corresponding defect in the ven-
tilation map (Figs. 1 and 2; see also supple-
mental online video). We reasoned that the
former perturbation reflected a localized fixed
increment in impedance caused by air pockets
forming in the pleural space, whereas the lat-
ter represented the diminution of tidal venti-
lation and local compliance in this area due to
the extrapulmonary air.

After computing the magnitude of such
perturbations in each quadrant of the maps
(see Experimental Protocol Section, part 1),
we created a quasi online algorithm for de-
termining the presence/absence of a pneu-
mothorax as well as its location (Appendix).
After some brief data collection during sta-
ble baseline conditions, the algorithm was
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Ventilation
map

Aeration
change map

Baseline

Figure 2. Ventilation maps (fop) and aeration change maps (bottom) of one representative animal.
From left to right, the baseline images are shown as well as those after injecting 20, 100, and 500 mL
of air through the chest tube into the left upper quadrant. The color scale on the right shows in lighter
tones either increased ventilation (fop) or increases in aeration (botforn).

ready to run in real time and the animals
were submitted to multiple interventions.
Every two breaths, after processing the re-
cently buffered information, the algorithm
had to display a refreshed message and, in
case of positive detection, to indicate the
quadrant in which the pneumothorax was
developing.

Experimental Protocol

Throughout the protocol, ventilation was
delivered in pressure control mode, inspiratory-
to-expiratory ratio of 1:2, Fio, of 1.0, respira-
tory rate of 20-30 cycles/min, and driving
pressure of 15 cm H,0.

Part 1: Designing the Detection Algorithm.
Ten animals were used to design the detection
algorithm (Fig. 3). A chest tube was inserted
into the right (two animals) or left (eight
animals) hemithorax to allow controlled in-
duction of the pneumothorax (as well as its
drainage afterward). Preliminary experiments
were performed in the CT room to acquire the
skills of positioning the tube along the most
anterior part of the chest wall. After baseline
data collection (EIT, mechanics, blood gas,
and hemodynamics) at 5 cm H,0 positive end-
expiratory pressure (PEEP), we injected

20-mL aliquots of air up to a total volume of.

500 mL into the pleural space via the chest
tube, waiting 1 min at each step. After reach-
ing the maximal volume, we connected the
chest tube to a water seal to allow the spon-
taneous drainage of the pneumothorax. In one
animal, we simultaneously collected CT im-
ages during the entire protocol (Fig. 1). In five
animals, the whole procedure was repeated
after induction of diffuse lung injury (lavage
with 25 mL/kg warm saline repeated as many
times as needed to obtain a Po, <100 mm Hg,
for =10 mins, at PEEP of 5 ¢cm H,0 and a Fio,
of 1.0).

Part 2: Optimizing Sensitivity and Speci-
ficity of Algorithm. It had to be ruled out that
our algorithm inadvertently took the imped-
ance perturbations caused by marked eleva-
tions in PEEP (simulating lung overdisten-
sion) (17) for a pneumothorax. Typically, high
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PEEP caused a sustained increment in imped-
ance in the nondependent lung with corre-
sponding defects in regional ventilation due to
parenchymal overdistension and decreased re-
gional compliance (>25% decrease in nonde-
pendent lung compliance, compared with a
PEEP of 5 cm H,0).

With the aim of determining specificity
of our algorithm, eight additional animals
were submitted to large step changes in
PEEP after lung injury. Keeping a constant
driving pressure of 15 cm H,0, PEEP was
either increased gradually in steps of 2 cm
H,0 (from 5 to 25 cm H,0) or abruptly from
5 to 25 cm H,0. In total, 88 acute PEEP
changes, including small and large steps,
were tested in eight animals.

After analyzing the data, a highly sensitive
and specific algorithm was calibrated to detect
pneumothorax volumes of =20 mL in all EIT
raw-voltage data files played back, simulating
real-time acquisitions.

Part 3: Prospective Validation of Algo-
rithm. Once the algorithm was calibrated (100%
sensitivity and 100% specificity), we tested its
accuracy in a prospective series of 21 additional
pigs. During the monitoring of these animals,
the algorithm was applied quasi real-time, dis-
playing a refreshed diagnosis every 9 secs or
once every two respiratory cycles (Fig. 3).

Statistical Analysis

Data are presented as mean % seM or median
and interquartile range where appropriate. For
comparing variables at different amounts of in-
jected air, we used either repeated-measure-
ments analysis of variance or the Friedman test
of SPSS 10.0 (SPSS, Chicago, IL). We considered
p < .05 as statistically significant.

RESULTS

Part 1. Detection Algorithm:
Stepwise Increments of
Intrapleural Air

FElectrical Impedance Tomography
Findings. There was a significant in-
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crease in the global EIT plethysmo-
graphic signal after the injection of 20
mL of air into the pleural space (p <
.001) followed by further increases in
mean impedance with every aliquot of
air injected. The increase was confined
to the thoracic quadrant where the air
was injected (Figs. 1 and 2), producing
visible changes in the aeration change
maps. In contrast, there was a progres-
sive decrease in regional ventilation
(pixel impedance oscillations, or tidal
AZ, observed in ventilation maps)
within the quadrant containing the
pneumothorax, which reached statisti-
cal significance when pneumothoraces
were =100 mL (p = .035) (Fig. 4). The
anatomical correspondence between
EIT and CT slices can be observed in
Figure 1.

Respiratory System Mechanics. De-
spite increasing amounts of air in the
pleural space, up to 100 mL of injected
air, the average behavior of the entire
lung was that of enhanced ventilation due
to better compliance (p = .04) (Fig. 5).
Beyond 100 mL, the compliance behavior
was heterogeneous: in eight of ten ani-
mals, compliance showed an initial in-
crease, reaching a peak at different pneu-
mothorax volumes in each of the animals
(median, 200 mL; interquartile range,
80—-400 mL) and decreasing thereafter.
In two animals, compliance improved
progressively until the maximum amount
of air was injected (500 mL).

Arterial Blood Gases and Hemody-
namics. Paco, showed a nonsignificant
decrease (p = .17) until a volume of 300
mL was injected. After that, there was a
tendency to return to baseline levels (p =
.34). Pao, presented a slight deterioration
(p = .34) from baseline to 100 mL and a
significant decrease from 100 mL to 500
mL (p = .036). The initial Pao, was 306.8 +
171.4 mm Hg and the final 221.7 *+ 207.6
mm Hg.

Mean arterial pressure started to de-
crease only after injection of =200 mL of
air (p = .01). Heart rate showed no sig-
nificant changes.

Part 2: Specificity of Algorithm:
Animals Submitted to PEEP
Steps Without Concurrent
Pneumothorax

As opposed to the induction of pneu-
mothoraces, which showed a sharp con-
centration of impedance perturbations in
one of the thoracic quadrants, the EIT
behavior in this control situation (PEEP

Crit Care Med 2008 Vol. 36, No. 4
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pneumothorax. **A unilateral pneumothorax was detected immediately after the recruiting maneuver, without any other associated intervention. PEEP,
positive end-expiratory pressure. Prx, pneumothorax.

step) was characterized by a striking
right-left symmetry (Fig. 6, right). This
could be observed by analyzing the re-
gional EIT plethysmographic signals or
by visual inspection of aeration change
and ventilation maps.

Part 3: Prospective Validation of
Algorithm

Recruitment Maneuvers. Eight normal
animals and 13 lung-injured animals were
submitted to a recruitment maneuver, and
there was one accidental barotraumna (in a
bilaterally lavaged animal). In that animal,
we were able to recognize the pneumotho-
rax by EIT within seconds, much before any
other variable was significantly affected.
The algorithm had a specificity of 21 of 22
with one single false-positive result. In that
case, a pneumothorax was detected in the
lower left quadrant where an outlier and
asymmetric increment in aeration was ob-
served, in conjunction with a decrease in
regional compliance.
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Prneumothorax Generation Through
the Chest Tube. In all animals, a pneumo-
thorax was detected after the first injection
of 20 mL, and always in the correct posi-
tion. The automatic detector also con-
firmed the presence of pneumothoraces
with all the other volumes of air injected.
There was no false-negative result in any of
the 40 different situations (each of the eight
animals had pneumothoraces of five differ-
ent volumes from 20 to 100 mL induced)
resulting in a sensitivity of 100% for detect-
ing volumes =20 mL.

Traumatic Pneurmothoraces. By punc-
turing the thorax during a recruitment
maneuver or during constant PEEP, we
induced a total of 15 pneumothoraces in
normal animals and six in injured ani-
mals. The detector identified correctly all
of the pneumothoraces (sensitivity =
100%) with a mean delay of 3.1 + 0.6
ventilatory cycles. The unplanned pneu-
mothorax associated with a recruiting
maneuver was also properly detected.

A S A RUCH T

Ulpiantheost

DISCUSSION

In this study, we found that EIT had a
sensitivity of 100% to detect pneumotho-
races as small as 20 mL in volume, with a
diagnostic delay of ~3 respiratory cycles,
which is not likely to be clinically rele-
vant.' The correct quadrant of the pneu-
mothorax—potentially helpful informa-
tion during emergency conditions—could
be identified under all circumstances. All
pneurnothoraces induced by needle punc-
tures were immediately diagnosed as was
the unplanned one, which occurred during
a recruitment maneuver.

Such early diagnosis could be accom-
plished due to the surprisingly large
changes in the aeration change maps
caused by even small volumes of air in
the pleural space (Fig. 4B). The perturba-
tions were localized enough to allow the
development of a detection algorithm,
which indicated also the location (quad-
rant) where the pneumothorax was tak-
ing place. We further optimized the
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Figure 4. Typical changes in the regional electrical impedance tomography (E/7) plethysmographic
signals for each of the four quadrants during pneumothorax induction. A, whereas the aeration change
maps represent local changes in mean impedance, the ventilation maps represent local tidal AZ. B,
variations in the sum of pixel values for each quadrant are displayed over time. As in the previous
figures, free air was injected into the upper left quadrant. Note the progressive increment in pixel
values in this quadrant containing the pneumothorax, as opposed to the remaining quadrants. Note
also the decrease in the magnitude of impedance oscillations (tidal AZ).

performance of the algorithm by intro-
ducing two additional criteria that in-
creased specificity, differentiating pneu-
mothoraces from the large perturbations
caused by PEEP increments or recruiting
maneuvers (Appendix). The first criterion
was an associated decrease in regional
ventilation (Fig. 6, boftom), since we fre-
quently observed that recruiting maneu-
vers resulted in an increase in mean im-
pedance plus an increase in regional
ventilation, especially in the dependent
lung regions. The second associated cri-
terion was an associated asymmetry,
since we consistently observed that ex-
treme lung overdistension—even when
predominant in one side of the thorax—
could never produce the asymmetric per-
turbations seen during pneumothoraces,
even the smallest ones (Fig. 6).

After such adjustments during algo-
rithm calibration, we observed no more
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false-positive results in our retrospective
series and only one case (specificity of 21
of 22) in the prospective evaluation. Such
results indicate that the algorithm can
differentiate the large impedance pertur-
bations caused by pneumothorax from
other large perturbations in parenchymal
impedance, as those occurring during ex-
treme overdistension (i.e., recruiting ma-
neuvers).

During pressure-controlled ventila-
tion with a fixed driving pressure, sus-
tained changes in pixel tidal AZ (which
reflect the tidal ventilation per pixel) nec-
essarily reflect sustained changes in re-
gional lung compliance. Accordingly,
when we tracked the behavior of the non-
dependent pixels in the normal animals,
we observed a decrease in regional com-
pliance of >70% during extreme PEEP
conditions (data not shown). In contrast,
the lung-injured animals presented a
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Figure 5. Behavior of compliance, Pao,, Paco,,
and mean arterial pressure during the induction
of pneumothorax for the ten animals used in part
1 of the study. *Statistical significance either
from baseline to 100 mL or from 100 mL to 500
mL.

nondependent decrease in regional com-
pliance of only ~40%. This observation
suggests that the nondependent overdis-
tension (18) was much more pronounced
in the animals with normal lungs, a situa-
tion that might potentially mimic a pneu-
mothorax condition in terms of impedance
perturbations. Our results demonstrated,
however, that the proposed algorithm was
specific enough for pneumnothorax detec-
tion in normal or previously injured ani-
mals and in diffusely as well as focally in-
jured animals.

All other traditional variables moni-
tored, including global respiratory com-
pliance, arterial blood gases, arterial pres-
sure, and heart rate, were not as sensitive
as EIT. Our data are in accordance with
other authors who have shown that lung
mechanics, oxygenation, and hemody-
namics are not sensitive enough to
screen for pneumothoraces (19, 20, 21).

Crit Care Med 2008 Vol. 36, No. 4
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Figure 6. Mean impedance changes (upper graphs), extracted from aeration change maps, and tidal AZ changes (lower graphs), created by subtracting two
ventilation maps taken at two different moments (at baseline vs. after 20 mL, or at baseline vs. after 100 mL). The changes determined in each quadrant
were normalized to the mean change in all four quadrants. The graphs on the left (part 1 of the experiment) represent the impedance changes following
the induction of pneumothoraces of 20 and 100 mL, and those on the right {part 2 of the experiment) show the impedance changes after an increase in
positive end-expiratory pressure (PEEP) from 5 to 25 cm H,0. Pixel A7 values were calculated after filtering out the high-frequency component of

perfusion.

There are some limitations of our
study: One is that we did not use any
imaging method to control our results.
Nevertheless, we used a model with con-
trolled induction of pneumothorax in
which the precise amount of air injected
during each step of the protocol was
known, obviating the need for a compar-
ison with other imaging techniques. In
the prospective phase, we always con-
firmed the presence of the traumatic
pneumothoraces by their later drainage.
Another potential limitation is the un-
blinded fashion of the pneumothorax de-
tection. During the time period of detec-
tion, however, we could not interact with
the pneumothorax detector since it is
fully automated. The detector was kept
running throughout the protocol while
the various interventions were being
performed (pneumothorax, recruitment
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maneuver, drainage). We therefore
think that blinding the investigators
would not have influenced the results
obtained.

Perhaps the most important limita-
tion of our study is that we used baseline
data (without pneumothorax) for com-
parison with the situations of interest.
Our online algorithm was using these
baseline data as reference repeatedly,
necessarily requiring previous data acqui-
sition. One previous investigation sug-
gested that the use of an absolute image
generation algorithm, which is able to
perceive the presence of air in the pleural
space without the need for a baseline
image (22), might be more appropriate.
The advantage of our procedure, how-
ever, is its robustness, since the use of
relative images makes it possible to elim-
inate artifacts caused by patient manipu-

TR L

lation or electrode misplacement. In the
intensive care unit, this is an important
advantage. By using the approach we pre-
sented, the EIT cannot be used for diag-
nosing pneumothoraces of constant vol-
ume that are already present at the
moment they are suspected. However,
EIT may work well in the scenario of a
preexisting pneumothorax that is in-
creasing in volume, which is, in fact, the
most dangerous situation.

These limitations also do not preclude
the application of such an algorithm to
high-risk situations, when physicians
choose to attentively monitor the appear-
ance of a pneumothorax. Thus, our re-
sults seem applicable to two of the most
common and important clinical scenarios
involving the risk of barotrauma: central
venous catheter placement and mechan-
ical ventilation. In these situations, phy-
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sicians could easily start the EIT moni-
toring before proceeding with their
interventions, automatically collecting
the baseline data.

The placement of central venous
catheters carries an important risk of
developing a pneumothorax (4, 23).
This is especially important when the
patient is under positive-pressure ven-
tilation or when he or she has a low
respiratory reserve. In these situations,
the progression of a pneumothorax can
be lethal if not promptly treated. We are
starting a clinical trial testing whether
such an EIT-based algorithm might al-
low early detection of pneumothorax in
high-risk selected patients, obviating
the need for routine radiographic imag-
ing.

Recruitment maneuvers are widely
used to reverse hypoxemia, especially in
the context of acute lung injury and
acute respiratory distress syndrome
(24-26). The lung is submitted to high
pressures in an attempt to reopen col-
lapsed alveoli, carrying the risk for
barotrauma. EIT monitoring could,
therefore, be very useful to increase the
safety of such maneuvers, making it
possible to abort the maneuver once a
pneumothorax has been detected. This
study intentionally tested such specific
situation, demonstrating the good sen-
sitivity of the algorithm to detect pneu-
mothoraces during recruiting maneu-
vers.

CONCLUSION

We created an algorithm based on
electrical impedance tomography that
was operator-free and capable of detect-
ing early signs of pneumothoraces in
high-risk situations, such as central ve-
nous catheterization or mechanical
ventilation. We could also indicate the
quadrant of occurrence, which might
be particularly helpful in emergency
conditions requiring prompt drainage.
Pneumothoraces could be clearly dis-
tinguished from lung overdistension
and PEEP-induced changes in intratho-
racic air.
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APPENDIX

Experimental Setup

Animals were initially sedated (aceproma-
zin 0.1 mg/kg, midazolam 0.5 mg/kg,
and ketamine 5.0 mg/kg) while receiving
oxygen via facial mask, subsequently tra-
cheostomized, and maintained with con-
tinuous intravenous anesthesia (ket-
amine 2.0 mg/kg/hr, pancuronium 0.35
mg/kg/hr, midazolam 0.45 mg/kg/hr, and
thiopental 2.0 mg/kg/hr). Controlled me-
chanical ventilation was initiated with
pressure-controlled mode (Servo 300 A,
Siemens-Elema, Sweden). All animals
were monitored with a continuous arte-
rial blood gas sensor inserted through the
carotid artery {Paratrend MPM7000, Dia-
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e



metrics Medical, Roseville, MN). Invasive
systemic arterial and central venous pres-
sures were monitored (Portal DX 2020
Monitor, Dixtal, Manaus, Brazil). Proxi-
mal airway pressures were measured with
a differential pressure transducer open to
atmosphere (Validyne MP45; +100 cm
H,0; Validyne, Northridge, CA). Airway
flow was measured by a differential pres-
sure pneumotachograph (Hans Rudolph;
0-160 L/min; Kansas City, MO; con-
nected to a Validyne MP30; =2 cm H,0
transducer) placed between the ventilator
circuit and the tracheal tube. A custom-
ized software calculated respiratory sys-
tem mechanics breath by breath (13).

EIT Image Reconstruction
Algorithm

Images were generated by a recon-
struction algorithm for a cross section of
the thorax, which is based on a sensitivity
matrix derived from a three-dimensional
finite element model of the thorax with
approximately 8,000 elements (Fig. Al),
including electrodes and contact imped-
ance models. The model assumes that the
major part of the electrical current passes
through a thoracic slice 5 cm thick. The
thoracic slice contour was extracted from
an average CT image of the pig thorax.
Images were originally reconstructed in a
raw matrix of 32 by 32 pixels and subse-
quently interpolated.

Noise

Noisy voltages during the experiments
were discarded using statistical criteria.
The rejection rate, however, was never al-
lowed to exceed 5% of the total number of
measurements. The resulting random
noise in sequential pixel values was deter-
mined after killing the animal, thereby
eliminating the periodic oscillations due to
lung perfusion and ventilation. It was
<0.001 across the lung regions (i.e.,
1:1000th of the raw pixel value during max-
imum lung inflation).

Preconditioning of Raw Voltage
Files

During in vivo experiments, perturba-
tions caused by pulsatile perfusion of
lung capillaries can affect local imped-
ance, although usually contributing to
<10% of cyclic impedance changes related
to ventilation. During low tidal volume
ventilation, however, such perfusion-
related perturbations can be relatively
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larger, introducing some errors in the
analysis. Thus, to correctly calculate the
pixel-by-pixel amplitude of a ventilation
map, we always preconditioned the volt-
age data according to a low-pass temporal
filter (cutoff frequency around 0.8 Hz),
attenuating the energy of impedance per-
turbations at frequencies close to the
heart rate. This way it was usually possi-
ble to eliminate 90% to 95% of perfusion-
related perturbations, without losing the
original amplitude of respiratory oscilla-
tions.

Image Resolution

Preliminary tests of our EIT device in
a phantom of 30 cm diameter revealed a
maximum image resolution (analyzed as
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area at half maximum height of a pertur-
bation) of 1:10th the phantom diameter
at the center and 1:20th at peripheral
locations.

During typical incremental inflation of
healthy pig lungs from functional residual
to total lung capacity using a super-syringe,
pixels representing lung tissue showed a
stepwise linear increment in resistivity
(R > 99) from 0 to ~1.1, indicating that
the lung’s air content had increased by
~110% (when functional residual capacity
was the reference condition).

Developing the Pneumothorax
Detection Algorithm

To optimize the use of data obtained
from living experimental animals, raw
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Figure Al. The three-dimensional finite element mesh used for reconstructing electrical impedance
tomography images, simulating the pig's thorax.




-

3

[Nopa

[Hopick— no

| NoPix +=— NO

| No Pix =— YES

Normalized Aeration
- change

1.3-25

Absolute
increase in mean
impedance >
0.8%?

YES

Tidal-AZ < mean
of 4 quadrants

Right-lefi
symmetry?

Figure A2. The final pneumothorax (Ptx) detection algorithm.

1238

Coprigin i Saoicty of O

iy [

I sy FoR gty N ro3 ot i
ol O Rlochiome e Lot ot

>25

vo [ pi |

Pix

EIT data were continuously recorded
during the first phase of the study (18
animals) and later used for designing
and bench testing different versions of
the algorithm. Files of acquired data
were repeatedly used to simulate real-
time conditions: Instead of receiving
voltage inputs from an acquisition sys-
tem, the EIT microprocessor received
voltage inputs from the hard disk at the
same frame rate as during acquisition.
This way, modifications of the algo-
rithm could be tested reproducibly
without having to use more animals
than necessary.

Through repeated analysis of the
data gathered in the first two parts of
the experimental protocol, we were able
to iteratively define thresholds for aer-
ation changes and for tidal AZ changes
that could best differentiate a pneumo-
thorax from the control situations
(lung distension/overdistension). To
improve the specificity of the algorithm,
we later included an additional symmetry
criterion (Fig. A2).
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Abstract.  Electrical impedance tomography (EIT) is a noninvasive monitoring technigue to produce images that
represent the cross-sectional distribution of the electrical resistivity within an object (for instance the human thorax) from
measurements on its boundary. Mathematically, the absolut resistivity distribution estimation is a nonlinear ill-posed
inverse problem. This paper presents a probabilistic reconstruction algorithm based on Simulated annealing method
for the solution of the absolut EIT inverse problem. The advantage of this algorithm is that no evaluation of function
derivatives is needed and the possibility to escape from local minimus. This work contributes to the development of
image estimation algorithms applied to monitor mechanical ventilation of lungs. Using simulated data, the localization of
object, the size of object and the resistivity of the object are well inside the accuracy of EIT obtained by classical methods,
but using experimental data the spatial resolution of the object is not good, because of only restrictions of the solution
space are imposed and a regularization technique is necessary to obtain more stable solutions. In both, simulated and
experimental tests, the computational effort is large. This results verify the advantages and feasibility of the proposed
algorithm.

Keywords: Electrical Impedance Tomography, simulated annealing, inverse problems, finite elements method

1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a noninvasive technique used to produce images that represent the cross-sec-
tional electrical resistivity distribution (or conductivity) within a domain (for instance the human thorax) from electrical
measurements made through electrodes distributed on its boundary. A low amplitude alternated electrical current is
applied by two or more electrodes with a constant intensity and the difference of electrical potential generated (voltage)
is measured in all the rest of the electrodes equally spaced between each other. The way of injecting currents and reading
voltages are called of current pattern and voltage pattern, respectively. The pair of electrodes used in the current injection
is changed successively until a enough number of observations allows the estimation of an image. The image is the most
likely resistivity distribution on the domain in study.

EIT is an innovative monitoring tool for applications on fields like medicine, geophysical, environmental science
and non-destructive materials tests. Currently, the research focus and more common use of the TIE is for monitoring and
medical diagnosis where it is used to image an internal section of human body based on the nonuniformity of the electrical
properties of different living tissues as lung, blood, muscle, bone, etc. [1]. Some examples of medical applications of
the EIT are the detection of pulmonary embolism [2, 3, 4], monitoring of apnea [5], monitoring of brain function [6],
monitoring of heart function and blood flow [7] and the detection of breast cancer [8].

As well as being a noninvasive technique without collateral effect, its cost electronic hardware requirements are
relatively cheap, any radiation type is used and its equipment is portable, if compared with the others techniques as
Computer Tomography, Magnetic Resonance or ultrasound [9]. Unfortunately, the biggest limitation of this technique is
its low spatial resolution that is related with the number of used electrodes.

The Resistivity distribution search can be made with the aid of models that depend or not on the time generating static
or dynamic methods. The static are used when the changes of electrical properties of the domain do not vary significantly
in the time interval where the necessary data for the image estimation are collected. Instead in the situations where faster
changes of the electrical properties of the domain at the moment of the data collecting, the effects of the dynamic of the
system must be taken in account and a dynamic method must be used. Depending on the type of estimated image static
methods can further be divided in two categories: difference imaging and absolute imaging. In difference imaging two
voltages data sets are measured corresponding to two different target resistivity distributions. Based on the difference
between these measurements the difference of the resistivity distributions can be estimated. In absolute imaging the
estimation is based on a single data set of voltage measurements only, and the aim is to estimate the absolute resistivity
distribution.

On the other hand, the problem of EIT is seriously complicated by the nonlinearity of the governing equation.
Moreover, the measurement electrodes are far from the internal objects, and only boundary measurements are available
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which makes the problem mathematically inherently ill-posed. This inverse problem is also ill-conditioned, because the
boundary measurements are very sensitive to resistivity changes in the periphery and relatively insensitive to changes at
the center. Therefore to get stable solutions of the problem is necessary to use some regularization technigue. Generically,
these techniques allow the inclusion of a priori information that is all known information about the resistivity distribution
in the domain.

1.1 Features of EIT

In general, EIT system consists of the hardware part to apply currents and then measure resulted voltages and the
software part contains the image reconstruction algorithm to estimate resistivity images. The mathematical approximation
to solve the whole estimation problem is divided in two parts [11, 12]. The first part, the forward problem of EIT consists
of modeling the boundary voltages as an explicil function of the resistivity (or conduclivity) in the domain. The second
part, the inverse problem of EIT consists of inverting the relation of forward problem to calculate the internal resistivity
distribution.

Approaches to solve the inverse problem for reconstruction of EIT fall into several categories like: the noniterative
methods that frequently are used to obtain difference images of EIT, are generally fast and of low computational cost,
however, these ignore the effect of the nonlinearity of the problem leading with inexact results and limiting its application
to solve qualitative problems like the organs functioning [1, 13, 14]; the iterative methods consider the nonlinear relation
that exists between the electrical potentials and electrical resistivity and are promising for obtaining more accurate results,
but the computational cost are very higher than in the noniterative methods. The iterative solutions generally follow
similar strategies [23, 16, 17].

The present work evaluates the performance of a probabilistic algorithm based on Simulated Annealing method (SA) to
obtain absolute resistivity distributions in a 2-D domain. SA differs from the traditional search methods, no evaluation of
objective function derivatives is needed and the possibility to escape from a local minimum through the use of Metropolis
criterion for acceptance of new points in the search space. The developed algorithm solves the inverse problem of EIT
while resolving iteratively a direct problem by using random resistivity distributions. The random search is accomplished
by the metropolis algorithm [18]. It is assumed that the random image that minimizes the difference between the measured
voltage on the boundary and calculated voltage is the closest to the distribution of real resistivity, thus, the algorithm
supplies a final solution near to the optimal solution. This makes the method especially attractive when the functions to
be optimized present multiple local minimums [19]. SA allows to include that reduce the solution space and works as a
type a priori information.

The next sections of the paper are organized as follow. Section 2.shows the mathematical governing equations of EIT.
In section 3.is briefly explained how the domain and the electrodes are discretized using FEM. Section 4.describes in more
details the Simulated Annealing method and its formulation for the application in EIT. The methodology of performed
tests and its results are shown in section 5and 6.respectively. Finally, section ?? draws the conclusions.

2. Mathematical model of the domain and electrodes

The study domain is considered a bidimensional region closed €2 and limited by a contour surface 2. The resultant
clectrostatic fleld is governed by the Maxvell’s equations. To reduce the complexity of the EIT problem some simplification
hypotheses must be adopted. If the domain is related to a body section, then low {requencies and small field strengths the
electromagnetic properties of living tissue allow these to be simplified to the Poisson’s equation that governs the electrical
potential ¢(z,y) inside of 2.

V- (oVe¢)=0 (1

To limit (he infinite number of solutions ol ¢(z,y) that has the Eq. (1) are applied boundary conditions that specify the
value of certain parameters in 9€2. In EIT the voltages measurements and currents injection are made thought ! electrodes
fixed on certain points of €2, thus, can be established the following boundary conditions

80)_[dy =2

T on 0, in the other points of 9§2 )

where# is an outward normal vector to 2. The Eq. (1) is a complicated nonlinear differential, such that it is impossible to
get a general analytic solution for an arbitrary resistivity distribution and irregular boundary shape. Therefore, numerical
techniques are indicated.. The Finite Elements Method (FEM) is a well accepted and powerfid humerical method to solve
de EIT problem.

To model the whole domain € it is necessary modeling the interaction of the electrodes in 92 too. The complete
electrode model takes into account both the shunting effect of the electrode and the contact impedance between the



Procedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright (© 2007 by ABCM November 5-9, 2007, Brasilia, DF

electrodes and the domain. Besides of the Eq. (1) the rest of the equations of this mode! are

fmag—zzlj, §j=1,2,---,1 (3)
a¢

L 4

om0 @)

¢+zj055=vj, j=1,2,---,1 (5)

where I; in Eq. (3) represents the electrical current that crosses the jth electrode. In Eq. (5) z; is the effective contact

impedance between the j*' electrode and medium and V is the electrical potential in the electrodes.

3. Use of FEM in EIT

An inverse problem can be solved iteratively using the solution of its corresponding forward problem. In the particular
case of EIT a model that predicts the internal voltage distribution given the electrical current stimulates and the internal
resistivity distribution of the domain, must be adopted as forward problem. We use the FEM to discretize the domain and
the electrodes and solve both problems, forward and inverse, numerically.

The finite elements meshes used to divide €2 have m nodes and n triangular plain finite elements with constant
resistivity p;, ¢ = 1,2,--- ,n and linear interpolation functions [11]. The domain is discretized in such a way that
regions expenimenling high modification in the resistivity have smaller elements, it results in a more accurale model.
These great changes in the resistivity occur mainly in 9€2 due to intensity of the current injected. The domain is divided
in FE by using the mesh generation software

The matrix f’i(pi_l) € R3*3 is denominated local resistivity matrix of the i*" element. Considering e the element
height, A; the element area and the resistivity being homogeneous and isotropic the components of the local resistivity
matrix are given by

-1

~ _ ep.

[Yi(p; kmy = ZT (brm + T i) (k,m =1,2,3) (6)
with

&= —y3), 1= (z3—x2)
L=Ws—wn), == (x1—z3) N
&= —1y) , 3= (z2—21)

The electrodes are discretized in 2-D finite elements following the work proposed by [20], in which are solved the
Eq. (3) and Eq. (4) and Eq. (5) with the aid of FEM. Electrode model take into account the high metal resistivity and
the contact impedance between metal and medium. The interface between the electrode and medium is discretized using
two quadrangular finite elements with 6 nodes-in total. To determine the local resistivity matrix of the electrode it is
followed the same procedure used to find the local resistiviy matrix of the elements of §2 then

0 —a

a
2

1 0 3

e bpj— a 0 —a
Yi=— lsim & e ®

2a

where a is element width, 7 is the thickness of contact interface and b is the interface thickness (perpendicular to a and f).
It is defined

z; = ’% )

as the effective contact impedance em [(2n?] 1. The matrix }_’; represents the local resistivity matrix of the electrode
writed in terms of global coordinates of the finite elements mesh which was discretized £2. Then, the summation of ali
the local matrices of the elements and the electrodes is equivalent to the application of the variational principle in the
discretized domain [22] and the global resistivity matrix Y (p~!) € R™*™ is determined

Y(p ) =3 [Fuo )] +

i=1 1

(Y (=] (10)

n !
=1
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After assembling the global element matrix (Eq. (10)) we have m nodes, ! electrodes and n elements in which p currents
are injected. Thus, the matrix containing unknown nodal voltages v(p™') = [v1 - - v; - --vp], v; € R™ corresponding

to each applied current pattern is solved through the linear system equations given by
Yv=c=C an

where p,, € R™*! is any particular resistivity distribution for which it is calculated y,and ¢ = [c1---¢; - ¢p), €5 €
R™ is the matrix of linearly independent bipolar current patterns. On numerical simulations and experimental tests ¢ is

[-I 0 +1]
0 -1 0
+I 0 0
c=|0 0 0 (12)
0 0 -
[0 0 0|

To solve the Eq. (11) that governs the forward problem it is necessary to eliminate the singularity of matrix Y, this can
be made by choosing an arbitrary node with null value (ground). The imposition of this boundary condition it is made by
equaling to zero the row and column of the matrix Y corresponding to selected node and attributing to the intersection
element the unitary value [?].

4. Simulated Annealing

In 1953, the Simulated Annealing (SA) method was first proposed by [18] and it is known as Metropolis Algorithm
(MA). It is an algorithm for the efficient simulation of the evolution of a solid to thermal equilibrium. In short, the
SA algorithm is based on the analogy between the simulation of the annealing of solids and the problem of solving
large combinatorial optimization processes [?, ?]. The annealing denotes a thermal cooling process that starts with the
liquidification of a crystal at high temperature followed for the slow and gradual reduction of the temperature until the
solidification point is reached when the system achieves a state of "minimal energy”. Minimal siates of energy are
characterized for a structural perfection of the material undergone to annealing that would not be obtained if the cooling
was not gradual. In conditions less careful of cooling the material would be crystallized by an "locally minimal energy"”,
in other words, the atomic structure of the material would be irregular and weak, with imperfections.

The physical analogy between the annealing of solids and an optimization problem would be the next:

¢ The system energy € < objective function F' of the optimization problem,
¢ system state <> solution of optimization problem,

e current system state <> candidate solution,

¢ minimal energy configuration < optimal solution,

o the system temperature 7 <> control parameter

The central point of the algorithm is focused on the process of probabilistic acceptation of a nearby solution although
presents an increase in F' (higher cost). Summarizing, the algorithm is basically characterized by two operations: the
first one is the reduction of the value of the control parameter T successively along the iterations based on a determined
annealing function ; the second one is the realization of the cycle of generation and acceptation of solutions and equivalent
to the MA, in such a way that the solutions corresponding to the thermal equilibrium be found to each temperature. The
algorithm ends when a determined stopping criterion is satisfied.

The heuristical parameters should be well syntonized to improve the performancc (i.e, efficiency, convergence, speed)
as also the efficacy (i.e, quality of the found solutions) of the algorithm. Amongst these parameters are:

o The initial value for the temperature, Tp, must be a value high enough such that all the candidate solutions in the
neighborhood (both: the ones which improve and the ones that get worse the objective function) have a probability
next to 1 of being chosen.

¢ Itisrequired to determine a (cooling schedule) that defines the evolution of T during an limited number of iterations.
In this work the geometric cooling is used, whose general formula is given by

Tey1 = o} (13)
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The factor « is a constant nexl lo the unitary value and is the temperature decay rate. The value of the cooling
factor o is determinative in the convergence of the SA. If « is sufficiently high, the probability to converge to an
optimal point it is increases but the computational time increases unnecessarily. The values more commonly used
are between 0.9 and 0.99 [25].

¢ the number of iterations to reach the equilibrium at certain temperature, V.. The simplest criterion is to make a
fixed number of iterations before the temperature is changed.

o the simplesl stopping criterion is the pre-definition of the total number of iterations NV to execute by the algorithm.
However, this criterion needs to be chosen carefully together with the other parameters so that the algorithm reaches
sufficiently low temperatures that guarantee the convergence.

4.1 SA and the EIT inverse problem

It is assumed that for the minimization of the difference between the measured voltages v,,, and calculated voltages v,
in the computational model, the estimate image will converge to the requested original image. In that way, the quadratic
error between these voltages was chosen as objective function and the problem is described with the next nonlinear
optimization model

min, F(p)
1
F(p) = 5||Ven = V(o) (4

In EIT it is possible to include additional information in the reconstruction problem. In this work the fact of being able
to include restrictions in the space solution in SA to introduce this additional information is taken advantage. The search
covers the entire domain of the impedance distribution restricting the space solution between a limited superior vector and
limited inferior vector whose values are defined according to information that is had about the problem.

The restrictions are imposed to obtain the new candidate point (candidate configuration). New candidate point is
generated around the current point applying random moves along each coordinate direction, in turn and satisfying the
imposed limits [26]. Let F(p) be the function to minimize and let a; < p; < by, a2 < pz < ba,..., an < pn < b, be
its variables, each ranging in a finite, continuous interval. Therefore, starting from the point p;, generate a random point
p’ along the direction A

p = p; + By (15)

where 7 is a random number generated in the range [—1, 1] by a pseudorandom number generator; By, is the vector of the
ht* coordinate direction; and <y, is the component of the step vector +y along the same direction.

If the Ahth coordinate of p’ lies outside the definition domain of F(p), that is, if p, < ap or p}, > by, then a new
random point in this direction must to be generated. With this, it is guaranteed the probability of accepting a new point
that is out of the imposed limits is null and that whole defined domain is covered. .

For each direction u, u = 1,2, - - ,n, the new step vector component vy, is
T (1 4 (Mo /M =06 ’(ﬁ“‘)"*) it M,, > 0.6M,
’ Yu .
Yu= T 0A—M,. /M, if Ma,, < 0.4M;, (16)
1+ (2N /M,
Yu otherwise

where ( is a constant parameter that controls the step variation along each " direction. The aim of these variations in
step length is to maintain the average percentage of accepted moves M, at about one-half of the total number of moves
M, both for a same value of T'. [26, 27, 28] give a more detailed discussion about it.

The values of the objective function for p’ and p; configurations denoted as F'(p;) and F(p') are calculated through
Eq. (14). In the minimization problem, if

AF = F(p') - F(p;) <0 (i, p is better) (17)

then, the new movement is accepted, otherwise, it is accepted with a probability P(z)

P (-5F) e

i

where T; is the control parameter (temperature) in the i*" iteration.
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Figure 1. Adopted method for injecting currents and reading voltages

The EIT forward problem is used to calculate V(p) that through of Eq. (14) is part of Eq. (17). This means that for
cach transition in the spacc of solutions Eq. (11) is solved first to get ve(p), then, it is calculated F'(p) based on Eq. (14).
After this, the metropolis criterion is used Lo accept or rejecting a new configuration as it was mentioned above.

After (N xn) iterations, it is changed the value of T" according to the chosen annealing function and the cooling factor
a as defined in Eq. (13), and a new step vector -y is calculated by the Eq. (16).

5. Methodology and tests
5.1 numerical phantom

A numerical phantom was used to simulate the data set acquisition made by the EIT system and thus to test the image
reconstruction algorithm. This method consists of a discretized arbitrary domain in finite elements, whose distribution of
resistivity p* is chosen. It allows to get the voltages measured V,,, em 952 through the [ electrodes for each one of the p
injected current patterns. That is, to find the voltages measured in the electrodes the forward problem for each p injected
current patterns is solved by Eq. (11) and the vector v,,, contains only the electrodes voltages. Then, these voltages
are used for the image estimation through the implemented algorithm which is compared with the image of resistivity
distribution p* chosen for the numerical phantom. The noises coming from the hardware and external agents as electrical
fields can or not be simulated in the phantom,

The algorithm for solving the inverse problem in both, numerical and experimental tests, is implemented using C
language and the FE meshes are made in the software Gmsh with system Linux. In order to simulate a situation similar to
the real one the mesh used to discretized the phantom domain must have more elements than the mesh used to solve the
inverse problem.

5.2 Numerical data tests

To simulate the measured voltages is used the numerical phantom. The aim of these numerical data tests is to identify
an stable algorithm to be used in experimental evaluations. All tests are made with a circular domain with 300 mm of
diameter and the interior perturbed region is also circular with 60mm of diameter. The injected current is 2mA, bipolar
and the method shown in Fig. 1 (this figure corresponds to one current load case) is adopted for injecting currents and
reading voltages.

5.2.1 Test 1

For solving the forward problem with the numerical phantom the domain is discretized by 222 nodes, 362 2-D
triangular elements and 16 electrodes and the resistivity value of the background is 172m. The resistivity value of
the perturbed region (target) is 1000Q2m. The finite elements mesh used to solve the inverse problem has 122 nodes, 170
elements and 16 electrodes. Figure 2(a) shows the image that will be reconstructed, the background (blue) and target
(red) regions, and Fig. 2(b) presents the finite elements mesh of the inverse problem. The initial temperature Ty is 0.05,
the cooling factor « is 0.8, stopping criterion is 40 iterations, the number of iterations at each temperature IV, is 15, the
parameter ¢ that controls the step variation is 1, the resistivity limits are between 17§tm and 1000 Q2m and the initial value
for resistivity distribution of whole domain pg is 2002m and 0.02Qm? for the electrodes..

5.2.2 Test2

The aim of this test is to get that the algorithm identifies the target region when it is changed to other position of the
domain. The resistivity value of the background is 1002m and for the target region is S00Qm. For solving the forward
problem with the numerical phantom the domain is discretized by 547 nodes, 980 elements and 16 electrodes. The finite
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Figure 2. (a) requested original image and (b) FE mesh of inverse problem to test 1.
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Figure 3. (a) requested original image and (b) FE mesh of inverse problem to test 2

clements mesh used to solve the inverse problem has 229 nodes, 344 elements and 16 electrodes. Figure 3(a) shows the
image that will be reconstructed, the background (blue) and 1arget (red) regions, and Fig. 3(b) presents the finite elements
mesh of the inverse problem. Tj is 100, e is 0.9, stopping criterion is 20 iterations, /V; is 30, ¢ is 2, the resistivity limits
are between 10Q2m and 600 2m and py, is 12€2m and 0.020m? for the electrodes.

5.3 Experimental data tests

Followed procedure for the experimental data tests is similar to the used one for the numerical data, except for
collecting the measured voltages data V,;, where is used a current font that injects current on the electrodes positioned at
the boundary of a cylindrical container with 300mm of inner diameter containing a 0.3 g/L saline solution (NaCl) inside.
Its resistivity is approximately 17Q2m. The currents are injected and voltages are read on computer through an acquisition
data system and adopting the method shown in Fig. 1. The aim of these tests is to identify a circular glass object with
32mm of diameter and resistivity equal to 108Qm approximately, which is immersed into the container. The data are
obtained through 30 bar electrodes with 35mm high and 10mm wide and the injected current is 2mA.

To obtain the voltages in the electrodes, a pair of them is electrically excited following the current pattern seen in Fig.
1. The pair of excited electrodes is successively changed until a satisfactory number of observations (or until enough
information as voltage values) under different angles is obtained, thus providing the necessary data for a high quality
image. 30 current load cases are applied following this pattern.

5.3.1 Test3

The used configuration of the domain with the object positioned at the center of container as showed in Fig. 4(b). The
FE mesh used for the inverse problem has 409 nodes, 636 elements and 30 electrodes (see Fig. 4(a)). Ty is 3, a is 0.99,
stopping criterion is 50 iterations, N, is 30, { is 1, the resistivity limits are between 102m and 200 Qm and p; is 250m
and 0.02Qm? for the electrodes.
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Figure 4. (a) FE mesh for the inverse problem and (b) used configuration for test 3

6. Results

Figures 5(a), 5(b), 6(a) and 6(b) show image and converge curve obtained by SA algorithm for the test 1 and 2. In tests
1 and 2 the position and size of the virtual object were recovered properly and the amplitude reached the expected value
(both basal and perturbed region). However due to the not very discretized meshes and to the difficulty to tune the SA
parameters some elements did not reach the upper limit. For test | the elapsed time was 468 minutes and final objective
function was 0.48, and for test 2 was 605 minutes and 0.0015. The objective function of test 2 converges faster than the
one of test 1.

o —~—

(a) (b)

(a) (b)
Figure 6. (a) FE mesh for the inverse problem and (b) used configuration for test 3

Figures 7(a) and Fig. 7(b) show image and converge curve obtained by SA algorithm for the test 3. The position
of the object was recovered properly but its diameter and resulted bigger than expected, it is probably related to the not
very discretized mesh and to the absence of a priori information. The rcgion of higher resistivity was identified but some
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elements around this region (that would not have) acquired a resistivity value upper than expected one. However due to
the discretization and to the difficulty to tune the SA parameters not all of elements reached the upper limit. The elapsed
time was 503 minutes and final objective function was 6.35.

(a) (b)
Figure 7. (a) FE mesh for the inverse problem and (b) used configuration for test 3

7. Conclusions

An EIT algorithm based on SA method was proposed and implemented for image estimation. With numerical tests
excellent results were obtained, so the stability of the algorithm was demonstrated. The evaluation of the experimental data
was good because the algorithm identificd the higger resistivity region even having a poor discretization. The SA algorithm
studied in this work allows to include restrictions limiting the solution space and introducing additional information with
no need to use regularizacién techniques. In general, the results obtained here are comparable to the gotten ones with
other absolute algorithms like Gauss-Newton, UKF or MCMC in similar conditions, however the processing time are
very bigger. In order to improve the performance of the algorithm it should be worked specifically with the choice of a
priori information, the optimization of its velocity, to use FE meshes more discretized and some tests must be made to
find the way to reduce the effort of tunning the SA parameters.
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Abstract. Electrical Impedance Tomography allows to monitor the lungs under forced ventilation and it is a non invasive
procedure. It uses electrical potentials of electrodes attached to the thorax, when electrical current is imposed on some
electrodes. The measurements allow estimating the electrical resistivity distribution inside the thorax, which, in turn, can
be related to the lungs state. The present work evaluates the use of Linear Programming (LP) as a method to search
images in Electric Impedance Tomography. Linear Programming is used to solve an ill-conditioned linear system in the
Sensitivity Matrix algorithm, imposing restrictions in the solution space. These restrictions reduce the solution space
to a closed region, with clinical and physical meaning. The tests were performed using numerically simulated data
and experimental data. The images using Linear Programming are compared to images obtained using Lower Upper
Triangular Decomposition (LU Decomposition). The use of LP and restrictions of the solution space generated images
with better spacial solution, better resistivity resolution and more uniform sensitivity in the center of the domain compared
to the use of the LU Decomposition and a small regularizing term

Keywords: Electrical Impedance Tomography, Linear Programming, Linear System

1. INTRODUCTION

The necessity Lo visualize the interior of a domain whose access with devices like micro-cameras is difficull, im-
practicable, or impossible, led to the development of methods of estimation of images based in the variations of electric
properties of the domain. Such methods are currently used in a variety of applications that involve from the control of
industrial processes to the aid in medical diagnostics. Electrical Impedance Tomography (EIT) is well known among the
different methods.

EIT can monitor the lungs in a continuous and non invasive way during the forced ventilation. In this technique the
domain is discretized using a finite element mesh, electrodes are placed in the border of the domain, known currents
are injected and electric potentials are measured through these electrodes. The electric potentials measurement makes
possible to estimate the distribution of resistivity or conductivity in the interior of the domain. In medical diagnosis, EIT
are being applied in different areas, such as the monitoring of cerebral blood flow and blood volume changes [9], study of
cerebral haemodynamics in the newborn for many years [7] and detection and monitoring of apnea and edema {12].

Some industrial applications of the EIT are the monitoring of the solid distribution inside hidrociclone
[11], images of industrial flows, volumetric flow’s alterations in oil and gas [3], measures of material’s distribution in two
phases flows [4], images of volcanic magma [8] and detection of antitank mines {2].

In EIT, it is common to speak about the Forward Problem and Inverse Problem. In the forward problem the electric
properties of the domain are defined, the currents injected and the structure of the model is known beforehand. The
objective is to calculate the electric potentials in the electrodes. To calculate the electric potential in the electrodes is
necessary to solve "Eq (1)"

YV} ={C} (1

where [Y(,)] € R™*™ is the matrix of global rigidity in function of resistivity {p} € R™ and {V,)} € R™ is a matrix
of corresponding voltages to each current pattern injected. The term current pattern is defined as the way how the current
is injected, equally the term voltage pattern is defined as the way how the voltage is measured. In the literature, various
works present different forms to inject current and to measure potentials, in the present work the patterns method jurmp an
electrode was adopted.

To solve a "Eq (1)" is necessary to eliminate the singularity of the rigidity matrix, the article Comparing reconstruction
algorithms for electrical impedance tomography [13] describes the procedure to eliminate the singularity of the rigidity
matrix.

In the inverse problem the potentials in the electrodes are known as well as the currents, the structure of the model
and it aims to know the electric properties distribution. For the solution of the inverse problem, exists in the literature the
absolute methods and the methods that generate images of variation of the electrical properties.

For the absolute methods, the images are in absolute values of resistivily, as example it is cited topological Optimiza-
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tion Method [6], The Newton Raphson Method [1] and variants of the Filter of Kalman [10]. In the methods that generate
images of variation of the electric properties, the images are the difference belween two values of absolule resistivities,
or either, the equivalent to an absolute value in a reference system whose zero has been translated to any chosen point as
zero, as an example is cited Sensitivity Matrix method which is implemented in the present work.

Variations of the resistivity distribution are the result of the solution of a linear system of the type [A}{z} = {b}. The
objective of the present work is to evaluate the performance of the Linear Programming (LP) in the solution of the linear
system, from the point of view of numerical errors propagation and the easiness to restrict the solution to the region of
interest.

This paper is organized as follows, in section II the mathematical formulation of the domain is presented, also the
modeling of the domain and the electrodes by means of the Finite Elements Method (FEM). In section III Sensitivity
Matrix is described which is implemented to solve the inverse problem. The use of the Linear Programming in EIT and
the implementation of this technique in the Sensitivity Matrix is shown in section IV. In section V it is explained the data
utilized for testing LP. The results with the different generated data are shown in section VI and finishing in section VII
the results are discussed.

2. Finite Eiement Model

Having a domain with unknown electric properties, EIT allows estimate his distribution of resistivity, given the excita-
tion of the system consisting in current imposed in the contour of the domain and the electrical potentials are measured in
regions of the contour of the domain. It is known that different tissues of the human body have different electrical prop-
erties, the relations that govern the iterations between the electricity and the magnetism are summarized in the Maxwell’s
equations.

The Maxwell’s equations can be simplified in the following elliptic partial differential equation:

V-(%VV)zO in Q (2)

where p is the electrical resistivity, V is the electrical potential and €2 is the domain in study. The "Eq (2)" is also known
as forward problem, the solution of this equation determines the electrical potentials that are used in the implementation of
the algorithms. The solution of the forward problem can be determined with the knowledge of the conditions of Newmann
and Dirichlet on the surface of the domain 2. To be able to apply the conditions of Newmann and Dirichlet the domain
) was discretized using the finite elements method (FEM).

The domain of interest §2 is discretized in a mesh of m nodes and » triangular elements (triangular elements of three
nodes), the electrical potential in each element is approximated by a function of linear interpolation that depends on the
electric potential values on nodes of the element. The electric potential is described by a finite dimensional space and
the problem of finding the nodal electric potentials, {V'}, turns into an algebraic problem or the following linear system
of equations: where {V'} is the vector of nodal electric potentials, {1} is the vector of nodal electric currents and | K] is
the matrix of global rigidity in function of electrical resistivity. With the electrodes placed in the surface of the domain,
the effect of the contact impedances electrode-skin must be taken into account. In this work, we considered the complete
electrode model [5] to represent these effects. The considered model generates a matrix [Y7] and a vector Te correspondent
to each electrode placed in the surface of the domain 92, the new matrix and the new vector are added in [K] and {I},
respectively. The matrix [Y7] is

1

DI 1=

ab
Y] = 3o |si
p sStm

s 0O D

3 &)
2

It is assumed that the potential in the metallic part of the electrode is equal, the thickness of the interface of the
electrode ¢t is smaller that the width of the electrode a (t <« a).

Adding the matrix of the electrode model in the matrix of global rigidity, we obtain the following system: (1)", we
obtain the following system:

(Kr|{Vr} = {I} 6]

Once the electric potential of a reference node is chosen, the system can be solved for the vector {Vr}, a non-linear
function of the resistivity distribution.
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3. Sensitivity Matrix

A domain §2 thal represents a distribution resistivity not-uniform p(z, y) is discretized using FEM. Under these hy-
potheses, it can define the transformation /i; : (p,I) — {v;} for vector {v;} (vector of nodal electrical potentials for
which current pattern), j = 1, ..., p (p number of current patterns)

{vi(p)} = h;(p) = [Y (p)) "' {15} (5

where {I;} € R™ is the current pattern injected.

From the "Eq. (5)", can be concluded that the vectors of nodal voltages are nonlinear functions of the distribution of
resistivity in the domain. Applying series of Taylor and truncating the series from the linear term and around a distribution
po. we obtain:

(o) = (150000} + P o) — (1,00} — (s} = PLe) ©
P " P &\r—’

{avy T e

3

Calculating the partial derivative of the transformation %; with respect the resistivity of each element for

ty(po) = 2 — )2 2y )
o) = |- )y - vy |- @

where [H;] € RP*" is called Sensitivity Matrix,
To find the resistivity from the equation "Eq (7)" it is necessary to define the following performance index

1 T
17 = 5 (1100} — 8V} ) (1Hla 80} ~ (Ve )+l o FIF 1P} ©)

where [F] € R" is a regularization matrix and « is a regularization parameter. It is necessary to determine the
resistivity variation that minimizes the difference between the measured voltage and the calculated voltage, for such
objective is necessary derived the performance index with respect {Ap} and to equal to zero

e = 0= 1YL ([ 00} — (AVa}) +alFITIF}AR) =0 (10

Grouping terms in the "Eq (10)" we obtain the expression of interest

([ T (E)] + a[F]T[F]>{Ap} — (HT.(AVn) an

4. Using Linear Programming to Electrical Impedance Tomography

Linear Programming (LP) is used in TIE in the solution of linear systems of the type [4] {#} = {} taking advantage
of the fact that it is possible to impose restrictions in the variables {Z}.

The problem of identifying the resistivity distributions inside of the thorax has natural restrictions, resistivity cannot be
negative and cannot exceed a characteristic maximum value of a biological tissue. These restrictions become the convex
space solution, simplifying the solution of the inverse problem.

To solve the linear system is necessary to rewrite the classic LP problem. An arbitrary vector is chosen {Z} € R"
and then is proceeded to determine the vector {€} € R" as {€} = [A|{Zo} — {b}.

The original system of restrictions in the form [A]{Z} = {b} is rewritten as presented in the following equation

[A{z} - {b} +6{é} =0 (12)
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The original problem is reformulated of the following form form

Minimize )
Subject to
[A{z} — {b} + 6{e} =0 (13)
{Zmin} < {2} < {Zmax}
0<d<e

when § = 0, the solution vector {Z} satisfies [A]{Z} = {b}.

Examining the "Eq (11)", it represents a linear system in the form [A}{z} = {b}, then by comparison we can identify
our matrix [A] and vectors {z} and {b}

[Al{z} = {b} = [ (H% [H]|,, + e FI'T)F] ) {Ap} = { [H]|L {AV.) (14)
~——
4] S = (b)

Applying the previously mentioned procedure for the Sensitivity Matrix, we obtain

Minimizar )

Sujeito a

([an;[ﬂnp.. + o FITF)){Ap) - ([Hnﬁ,mvm}) T o{E =0 as)

Apmin < AP < Apmaz
0<d<e
Where

(61 = (105 10 + PN (B0} ) = (111 (8V.) )

The imposition of limits in the "Eq (14)" is having in account a prior information, the value of resistivity found for the
algorithm has that to be positive for the case of tank and the object, then the value zero is fixed for the inferior limit and
the value (or the superior limit can be fixed for the maximum value ol resistivity that can be found, {for ours study case
this value is the resistivity of the object. For medical applications, the resistivities inside the thorax [14], they are posilive
values that vary since 4Qm, for the heart (muscle) even 1 x 10%Qm for the present air in the lungs. Leaving of this known
information as a prior, is possible to impose the limits in the variable to get medical images.

5. Simulated and Experimental data

The numerical phantom used to generate the simulated data consists of a circular domain with a 2D mesh. The
resistivity distribution is known as a prior. Two sets of data are generated, one set will be called basal and the other
set will be called with-object. To generate the basal set of simulated electrical potentials, the resistivity distribution is
uniform. To generate the set with-object of simulated electrical potentials, the resistivity distribution of the domain is
uniform except for a cylindrical region, called object, that has a higher resistivity.

The experimental data was obtained from a cylindrical container with 30 electrodes attached to its boundary with 35
mm high and 10mm wide (the thickness of each electrode is not necessary for the algorithm). The electrodes are equally
spaced along the container’s boundary, which was filled up to 35 mm with a 0.3g/ L saline solution (NaCl). Its resistivity
is approximately 17C¢m. The inner diameter of the container is 300mm. The object, a glass cillinder, has 32mm of
diameter and resistivity close to 108Qm.

To obtain the electrical potentials in the electrodes, a pair of them was electrically excited following the current pattern
seen in the section 1. Then, the relative potentials were measured, except for those which share current carrying electrodes,
due to hardware limitations. The pair of electrodes used for current injection was successively changed until a satisfactory

number of observations was obtained, providing the necessary data for the estimation of an image. Thirty current patterns
were applied.

6. Results

To obtain the simulated data it was used a phantom with uniform resistivity in a cylindrical domain and a cylindrical
inclusion placed in two different positions. The first position of the object is 0.11m off the center "Fig.1(a) " and the
second position of the object is at the center of domain "Fig.1(b) ". The resistivity of the object was 100€2m. The other
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elements of the domain had 10Q2m of resistivity. The initial estimate of resistivity was 10Qm for the elements and the
initial electrode parameters were 0,02Qm?. The injected current was 2mA. The meshes 10 solve the inverse problems

are shown in

"Fig.3(b) ". The meshes to solve the direct problems are shown in "Fig.2(a)" and "Fig.3(a) ".

"Fig.2(b) and

Figure 1. Object located at (a) the boundary (b) the center

Figure 2. Finite elements meshes to solve the (a) forward and (b} inverse problem, inclusion close to the boundary

Figure 3. Finite elements meshes to solve the (a) forward and (b) inverse problem, inclusion close to the center

To obtain experimental data, the object was located in two positions, near the border and in the center of the cillindrical
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vessel. The adopted electrode parameters were 0.02Qm? and the initial resistivity of the saline solution was 20.0m. The
injected current was 2m A peak in amplitude and 125k H z in frequency. The finite elements mesh used to solve the inverse
problem is shown in the "Fig.4 "

DA
A
DAL

Figure 4. Finite elements mesh to solve the inverse problem with experimental data

The images obtained using simulated data are in figure 6and figure 6. The regularization parameter was a = 1.0e2
when the object is 0.11m off the center and o = 1.0e~2 when the object is at the center.

(a) (b)

Figure 5. Variation of resistivity when the object is 0.11/m off the center of the domain, units in Ap[Qdm], and o = 1.0e 2
(a) with LP and (b) LU Decomposition
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(@ ()

Figure 6. Variation of resistivity when the object is at the center of the domain, units in Ap[Q2m], and a = 1.0e™2 (a)
with LP and (b) LU Decomposition

The images obtained using experimental data are shown in figure 6and 6. The regularization parameter was a = 1.0e™ 3
when the object is 0.11m off the center and a = 1.0e~2 when the object is at the center.

(a) (b)

Figure 7. Variation of resistivity when the object is 0.11m off the center of the domain Ap[€2m] and o = 1.0e~2 (a) with
LP and (b) LU Decomposition

(a) (b)
Figure 8. Variation of resistivity in the center of the tank Ap[€2m] and a = 1.0e~3 (a) with LP and (b) LU Decomposition

The resistivity of the saline is expected to be near 20Q0m for the tests with experimental data. The resistivity of the
object was estimated 20% lower than the expected resistivity when the object is close to the boundary.
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7. Final Comments

The image obtained using Linear Programming to solve the linear system presented higher resistivity distribution,
higher resolution in space, with a satisfactory diameter and good position of the object. The image obtained using LU De-
composition and Tikhonov regularization to solve the linear system presented smaller resistivity distribution and smaller
spatial resolution than using Linear Programming.

The improvement of the images using LP is partially due to the imposition of restrictions in the variables that reduce
the solution space, whithout using a laplacian regularizing term, which penalizes high frequency spatial content. Another
reason for improvement of the images using LP is the smaller numerical error propagation during the computation of the
solution of linear systems.
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Abstract. Electrical Impedance Tomography (EIT) is an imaging technique which tries to find conductivity distribution
inside a section of body. The EIT deals with an inverse problem in which given the measured voltages on electrodes it
estimates the conductivity distribution by using an image reconstruction algorithm. EIT can be used in several
applications and, recently, it has been applied for obtaining images in medical applications. Several types of
reconstruction algorithms have been reported and used. In this work, images of lungs are obtained by applying
Topology Optimization Method as reconstruction algorithm in EIT. Solution of this optimization problem is oblained
combining the Finite Element Method and a sequential Linear Programming algorithm (SLP). Since it is an ill-posed
problem, regularization schemes based on spatial filters and included constraints are used. The SLP allows to include
easily regularization schemes and 1o work well even though under high noisy measurements. Reconstruction of some
2D and 3D examples using numerical and experimental data are shown.

Keywords: Topology Optimization, Electrical Impedance Tomography, Finite Element Method
1. Introduction

Since the beginning of 90°s years, a technique called Electric Impedance Tomography (EIT) has been studied as an
interesting alternative for obtaining images on clinical applications. In fact, EIT has been applied to geophysical
sciences (Parker, 1984; Ramirez ef al., 1993) and in non-destructive testing (Santosa, Kaup and Vogelius, 1996; Santosa
and Vogelius, 1991), however in medical procedures its application is recent (Cheney, Isaacson and Newell, 1999;
Borcea, 2002). EIT is based on an inverse problem where, given the voltages measured on electrodes positioned on the
boundary of body, it tries to find the conductivity distribution inside of body, and as a consequence its image. A
sequence of low intensity electrical currents is applied to the body section, through electrodes positioned around the
patient’s body and aligned in a plane corresponding to a transverse section of the body (Cheney, Isaacson and Newell,
1999), as illustrated in Figure 1.

electrodes

\ V@V /
~ -

~ -

section of
human body

Figure 1 — Electrodes positioned around the body.

Technology of EIT is safer and cheaper than other tomography techniques and although it has poor resolution it has
potential for clinical applications such as monitoring mechanical ventilation of lungs (Amato ef al., 1998) and
monitoring heart function and blood flow (Holder, 1993). Moreover an EIT device is portable which allows its
installation for continuous monitoring of bedridden patients, which avoids dangerous patient transportation from ICU
(Intensive Care Unit) to the exam room. In this technique the patient does not have exposition to any type of radiation,
just to the low electrical current levels that do not cause any harm to the patient (Cheney, Isaacson and Newell, 1999).

This work presents results obtained from application of Topology Optimization Method (TOM) to EIT image
reconstruction. TOM tries to find systematically a material distribution inside of a design domain, to extremize an
objective function requirement, satisfying some specified constraints (Bendsge and Sigmund, 2003). The topology
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optimization problem applied to EIT consists on finding a material distribution (or conductivity distribution) of a body
that minimizes the difference between electrical potentials obtained from electrode measurements at the boundary of the
body and electrical potentials simulated numerically from a computational model of this body. This optimization
problem is solved by a computational algorithm that combines Finite Element Method (FEM) with an optimizer called
Sequential Linear Programming (SLP) (Haftka, Giirdal and Kamat, 1996), which allows us to include easily several
constraints in optimization problem than other algorithms applied to obtain image in EIT. It is interesting because it
constrains the solution space avoiding images without clinical meaning on tomography examination. Moreover, it is
known that SLP provides little numerical error propagation.

The FEM mesh of domain is not changed during the optimization process. The FEM formulation is generated from
constitutive equation of the conductive medium, which is given by Poisson’s equation (Muray and Kagawa, 1985).
Thus, electrical potential distribution in the discretized domain is obtained by the following equilibrium FEM system of
equations (Bathe, 1996):

Kd=1 (1)

where K is the global electric conductivity matrix of FEM model, @ is a nodal electric potential vector and I is a nodal
electric current vector. In this work, the FEM model of the discretized domain uses quadrilateral elements (2D model)
or tetrahedral elements (3D model) and, in addition, a FEM electrode model, proposed by Hua, ef al. (1993), has been
applied to represent the electrical behavior of the electrode-electrolyte interface layer. Figure 2 shows the electrode
element that is considered in that model.
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Figure 2 — Electrode model.

For this electrode model, the electric potential on the surface of the metal electrode (nodes 4, 5 and 6 in 2-D model,
for example) is assumed to be uniform. The electrical conductivity matrix (kel) of the electrode element depends on
width of an electrode, thickness of the contact interface (electrode-electrolyte) and of resistivity value of the contact
interface, as demonstrated by Hua, e al. (1993). The product between resistivity and thickness of the contact interface
is known as contact impedance (or electrode parameter) of electrode elements. Each electrode element matrix kel is
inserted in the global matrix K in according to its connectivity.

In TOM, the material in each point of domain (or in each element) can vary from a material “A” to another one “B”
according to a material model, which allows design variables of optimization problem to go from one material to
another in a continuous way. For instance, material “A” could be air and material “B” could be the tissue of lungs. In
this work, the material model applied is known as Density Method (Bendsee and Sigmund, 1999) that defines the
conductivity properties (¢;) of each element of domain in the following way:

o =p e, +H{1-p")cs with  0<p <l;k=1.N )

where ¢, and ¢g are the conductivity properties of base materials of the domain, p is a penalization coefficient of
intermediates materials, and N is number of finite elements. The value of each design variable p is defined between 0
(presence of “B” only) and 1 (presence of “A” only).

In the next section, the formulation of topology optimization applied to EIT and its numerical implementation are
presented. In section 3, image reconstruction results using numerical and experimental data are shown. Finally, in
section 4, some conclusions are given.

2. Optimization Problem Formulation and Its Numerical Implementation
The image reconstruction by EIT using TOM can be interpreted as a problem of finding the material distribution

inside the domain that reproduces the measured electric potential values at electrodes. Thus, the optimization problem
could be:
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and additional constraints

where F is the objective function in which ¢, and #; are the measured and simulated electrical potential values,
respectively. The values ¢; are obtained by computational model of the domain. The ne and np values are the number of
applied current load cases and the number of measurement points (electrodes), respectively. The optimization problem
above is an ill-posed problem, which finds different distributions of conductivities in the domain that yield the same
voltage values on electrodes. However, TOM allows us to include easily some constraints in the optimization problem,
restricting the solution space and regularizing the problem. Thus, additional constraints could be included for
improvements in problem solution.

The solution of topology optimization problem shown in Eq. (3) is obtained numerically by iterative optimization
algorithm sketched in Fig. 3. The FEM model of the design domain is supplied to the algorithm as initial data. By
analysis of the FEM model, the electric potentials (¢;) are calculated, allowing us to obtain the objective function and
constraints values. In the next step, the optimization is done by using the gradients of the objective function and
constraints, relative to design variables (sensitivity analysis). The optimization is done by using the gradients of the
objective function and constraints relative to design variables, which are calculated analytically through an adjoint
method (Cook and Young, 1985; Byun ef al., 1999). The optimization algorithm is started with an uniform distribution
of material for the whole design domain and it supplies a new material distribution (design variables), which is updated

in the FEM analysis.
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Figure 3 — Flowchart of the TOM algorithm.
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The optimization algorithm above, implemented using C language, is known as Sequential Linear Programming
(SLP), which has been successfully applied to topology optimization. The SLP allows us to work with a large number
of design variables and complex objective functions, and solves a non-linear optimization problem considering it as a
sequence of linear sub-problems, which can be solved with Linear Programming (LP) (Haftka, Giirdal and Kamat,
1996). The non-linear problem of Eq. (3) can be linearized by writing a Taylor series expansion of the objective
function and keeping only the terms with first order derivatives. For that approach to be valid it is necessary to limit the
variation of design variable value in each linear sub-problem by using moving limits (Haftka, Giirdal and Kamat, 1996).
In each iteration of topology optimization process, the SLP finds the optimum value for the design variables, that it will
be used in the subsequent iteration as initial value. Thus, this process continues successively, until the convergence for
the objective function value is achieved.

3. Results

In this section, some 2D and 3D examples will be presented to illustrate image reconstruction using this software
with numerical and experimental data. For all examples presented here, electric current load is considered equal to 1
milliampere, which is applied following an adjacent pattern of electrical excitation, as illustrated in Fig. 4. Morcover, in
these examples, the topology optimization algorithm uses penalization coefficient value (p) equal to 2.
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electric current
Figure 4 — Adjacent pattern of electrical excitation in EIT.

In this work, to obtain a good quality image for clinical applications in EIT, thirty two 10-mm-wide electrodes are
uniformly positioned along the boundary of the design domain (Tang et a/., 2002). To find the electrical potentials in
these electrodes a pair of them is excited electrically, following the adjacent pattern (see Fig. 4), where the potential in
one of them is made to be null (“ground”) and the other receives the low intensity electrical current. The pair of
electrodes is successively changed until an enough number of observations under different angles is obtained and a high
quality image is generated.

3.1. 2-D examples

In this section, the performance of the implemented algorithm is evaluated through 2-D examples and by using
numerical and experimental phantoms. First, image of two objects in the domain is obtained by using numerical data
and artificial noise. After, the algorithm is applied to obtain an image in a circular domain through using experimental
data, in which noise measurements are considerable.

3.1.1, Using numerical data to obtain image of two objects in the domain

The desired image is shown in Fig. 5a, where clear and dark regions simulate a material with 1/17 (Qm)™" (clear
region) and 107 (Qm)™' (dark regions). In practice, this situation would be equivalent to keep some regions with air in a
saline domain, for instance. A numerical phantom, whose domain is uniformly discretized in 3072 four node
quadrilateral elements (with thickness equal to 35 millimeters) is considered to simulate accurately the measured
electrical potentials (#;0). On the other hand, a less refined mesh (1120 elements, see Fig. 5b) is applied for image
reconstruction. This reduces the computational time to calculate the value of design variables (related to the number of
mesh elements) and avoids the inverse crime. The images are obtained from an elliptical domain whose larger axis is
400 millimeters.

Figure 5 — a) Image to be reconstructed; b) Mesh to obtain image (1120 elements).

In this case, the electrode parameters (see section 1) must also be estimated separately from optimization process.
Thus, a numerical phantom (3072 elements) containing only one material (without dark regions) and an electrode
parameter value equal to 100 (Q.m?)” for all electrode elements are adopted to obtain the measured voltages (o) of a
saline medium. Based on these voltages values and the less refined mesh (1120 elements), and considering the electrode
parameters as design variables, the topology optimization algorithm obtains the optimum electrode parameter values for
any initial guess. Since two different domain discretizations are used, numerical errors due this are absorbed by
optimized electrode parameters. Therefore, it is noted that most of optimized electrode parameters were not obtained
necessarily close to the adopted value of the numerical phantom. In this case, most of them fell in an average error
about 10% for adjacent pattern, however some of them were obtained close to 50% of the adopted value.

As mentioned before, the implemented algorithm allows us to include easily some constraint in optimization
problem. Thus, in this example, a kind of image tuning could be included to improve the estimated conductivity values.
This constraint is given by the following equation:

N
SV v 4
k=1

where ¥, is the volume of each element and V* is the material constraint inside of the domain. It is previously known
that dark regions in Fig. 5a represents 18% (V*) of total volume of elliptical domain.
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Then, by using this tuning control and the optimized electrode parameters, we obtain the following images and
corresponding absolute conductivity values of dark region elements.
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a) obtained image b) convergence curve
Figure 6 — Obtained result with tuning.

From the graph of convergence of the objective function, we observe that it drops quickly to a minimum value,
however it continues iteration after iteration with a very small oscillation until the best image is found. Absolute
conductivity values of elements of low conductivity (dark regions) are closer to the expected absolute value adopted in
this work (107® (©2m)™). In this case, the conductivity values of dark regions have an average of about 82.4% of
expected value.

Now, to verify the robustness of the algorithm to work with noise, we have introduced a random variation with
standard deviation of about 15% (positive and negative) of the measured electrical potential (g;,) of each electrode
obtained through numerical phantom. Images in Fig. 7 show that the method can absorb this noise level (artificial) in
adjacent pattern of electrical excitation.

a) without noise b) with noise
Figure 7 — Results considering noise from adjacent pattern.

3.1.2. Using experimental data

Here, the software was evaluated by using data obtained from an experimental phantom. The desired image is
shown in Figure 8a. In this case, the experimental phantom is a cylindrical container whose diameter is equal to 230
millimeters and it was filled up to 35 millimeters with a saline solution of concentration 0.3 gram/liter of NaCl, which

conductivity value is equal to 1/17 (Qm)'. The dashed line in the phantom (see Fig. 8a) represents presence of a
immersed glass object, which conductivity value is equal to 107 (Qm)™".
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Figure 8 — a) Image to be reconstructed; b) Mesh to obtain image (576 elements).

In this example, a “coarse” mesh with 576 four node quadrilateral elements (see Fig. 8b) is applied to image
reconstruction. A two-phase method, proposed by Trigo, Lima and Amato (2004), is adopted as strategy to estimate
electrode parameters and the conductivity distribution for this case. This strategy considers the problem of estimating
electrode contact impedances separated from the problem of image estimation. Thus, in an alternation way of the
successive runs of iterative process, first the implemented algorithm estimates the electrode parameters, considering
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them as design variables in optimization process, and after that estimates conductivity distribution of the domain with
the glass object.

For this example some regularization schemes, based on included constraints, are applied in optimization problem.
One of them is a spatial filtering scheme based on smooth distribution of the design variables in whole domain (Swan,
Kosaka and Reuss, 1997; Cardoso and Fonseca, 1999), which makes better the control of variation of the design
variable values. This filter changes the move limits in the following way (Cardoso and Fonseca, 1999):

pY 4wy pV, o= T, R,..—R
=-—Z’_I ,J with wziz":' L wy=—o 3

VewdY, R

i

&)

where Vi is the volume of element i, nv is the number of adjacent elements j adopted around of the element i, Rif is the
distance between centers of element i and j and Rmax is a radius that accomplishes all adjacent elements j. Here, the
image is obtained considering a Rmax value that accomplishes at least a number of eight elements j around of a central
element i.

The other regularization scheme is a constraint based on weighted distance interpolation, which is given by
following equation:

N ] N

1 -
Zd—ipk ZZEPR (6)

k=1 k=1

where p is average conductivity of the domain and dy is the distance measured from center of each element up to
center of the domain. This constraint makes the balance of conductivity values of each element in the domain. The

average conductivity is a parameter of optimization process that can be obtained by considering the domain as a
resistor, whose resistance value can be calculated through Ohm’s law.

Thus, next figures show the obtained image and its corresponding convergence curve obtained by using the
adjacent pattern of electrical excitation.
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a) obtained image b) convergence curve
Figure 9 — Obtained result with spatial filter and weighted distance interpolation scheme.

According to the obtained image (see Fig. 9a) we note that implemented algorithm is able to detect the glass object
inside of phantom. Following the convergence of objective function (see graph of Fig. 9b), we observe that it fells
quickly to a minimum value in 20 iterations approximately. However, absolute conductivity values of most elements in
dark region (that represents the glass object) have an average of about 70% of expected value.

3.2. 3-D examples

In the 3-D example only numerical data is used to evaluate the implemented algorithm to obtain image. As an
alternative to the material model previously presented (and applied in 2-D reconstruction), the algorithm is implemented
based on the CAMD (Continuous Approximation of Material Distribution) approach where fictitious densities are
interpolated in each finite element, providing a continuum material distribution in the domain (Matsui and Terada,
2004). In CAMD, nodal design variables are introduced, and the material model becomes:

nd P i nd P
ckZ(z_lePm] c,+ 1—[Z;Hmpm] ¢,  with  0<p <1 N

where p,, is the m™ nodal design variable, H,, is a FEM shape function (Bathe, 1996) and nd is the number of nodes per
element.
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The central section of desired image is shown in numerical phantom of Fig. 10b, where clear and dark regions
simulate a material with high conductivity (1/17 (Qm)™") and low conductivity (107 (Qm)™), respectively. In this case,
images are obtained from a cylindrical domain of radius 220 millimeters and 35 millimeters high, and the conductivity
distribution is uniform along the axis of the domain.

A numerical phantom whose domain is discretized into 34359 four node tetrahedral elements (see Fig. 10a) is
analyzed through FEM and each electrical potential ¢;, is obtained. The image reconstruction is then carried out in a
less refined mesh with 5548 tetrahedral elements (see Fig. 10c).

a) numerical phantom b) central section of the phantom ¢) mesh to obtain image

Figure 10 — a) Numerical phantom (34359 elements) to obtain potentials ¢;o; b) The central section of phantom and
image to be reconstructed; c) A less refined mesh (5548 elements) applied to obtain the image.

Here, electrode parameters (see section 2) must also be obtained based on numerical data in an analogous way
made for 2-D example (see section 3.1.1). Using these optimized electrode parameters, applying the spatial filter and a
constraint similar to the constraint based on weighted distance interpolation (shown in section 3.1.2), and considering
the same level of artificial noise described in section 3.1.1, the following image is obtained (see Fig. 1la). For

simplicity, only the central section is presented (like the phantom, the result is piece-wise uniform along the axis of the
domain).
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a) obtained image b) convergence curve

Figure 11 — 3-D obtained results with CAMD.

According to the results, the algorithm reduces spatial variation of obtained conductivity distribution. It is mainly
attributed to the fact that there is a significant difference between the number of design variables and the amount of
information (electrical potentials) available. Following the convergence of objective function (see Fig. 11b), we observe
that it fells quickly to a minimum value (1.77). Besides, absolute conductivity values in dark region of the domain have
an average of about 45% of expected value.

4. Conclusion

A computational algorithm of Topology Optimization Method (TOM) applied to obtain image in Electrical
Impedance Tomography (EIT) was proposed. This algorithm was implemented in software written in C language.
According to our results, it is noted that by using numerical and experimental data the software is able to obtain, in few
iterations and with a certain level of precision, the contact impedance values of interface electrodes-skin and the values
of absolute conductivity of two materials inside of the domain and consequently the image desired, even if noise is
introduced. As a future work, other regularization schemes based on included constraints in topology optimization will
be tested to improve the precision in obtaining absolute conductivity values.
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The implemented algorithm of TOM could be seized for obtaining images of lungs through an EIT device. The
TOM allows us to include easily some constraints in the problem of image reconstruction limiting the solution space
during tomography examination and avoiding images without clinical meaning. Moreover, it becomes easier to limit the
design domain where presence of air in the lung can occur and, therefore, allows us to work with known areas inside of
the domain (bone, heart, etc).
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Three-Dimensional Electrical Impedance
Tomography: A Topology Optimization Approach

Luis Augusto Motta Mello*, Cicero Ribeiro de Lima, Marcelo Britto Passos Amato, Raul Gonzalez Lima, and
Emilio Carlos Nelli Silva

Abstract—Electrical impedance tomography is a technique to es-
timate the impedance distribution within a domain, based on mea-
surements on its boundary. In other words, given the mathemat-
ical model of the domain, its geometry and boundary conditions, a
nonlinear inverse problem of estimating the electricimpedance dis-
tribution can be solved. Several impedance estimation algorithms
have been proposed to solve this problem. In this paper, we present
a three-dimensional algorithm, based on the topology optimization
method, as an alternative. A sequence of linear programming prob-
lems, allowing for constraints, is solved utilizing this method. In
each iteration, the finite element method provides the electric po-
tential field within the model of the domain. An electrode model
is also proposed (thus, increasing the accuracy of the finite ele-
ment results). The algorithm is tested using numerically simulated
data and also experimental data, and absolute resistivity values are
obtained. These results, corresponding to phantoms with two dif-
ferent conductive materials, exhibit relatively well-defined bound-
aries between them, and show that this is a practical and potentially
useful technique to be applied to monitor lung aeration, including
the possibility of imaging a pneumothorax.

Index Terms—Electrode model, finite element method, medical
imaging, three-dimensional electrical impedance tomography,
topology optimization.

1. INTRODUCTION

LECTRICAL impedance tomography (EIT) is a technique
Eto obtain internal images of a domain. Electrodes are at-
tached to the boundary of the domain and low intensity electric
alternated currents are applied. Once a reference electrode is
chosen, the resulting electric potentials are measured and the
unknown electric impedance (conductivity and permittivity)
distribution within the domain is obtained by an estimation al-
gorithm (alternatively, electric potentials can be prescribed and
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electric currents measured [1]). This impedance distribution
is represented by an image and constitutes the solution of a
nonlinear and ill-posed problem [2]-[4]. Considering invariant
the electrode positions, several combinations of current-car-
rying electrodes and reference electrodes can be chosen and,
therefore, many electric potential values may be available for
image estimation.

EIT may be used in applications such as medical, geophys-
ical, and industrial, for instance, process tomography [5]. In
medical applications, EIT is applied, among several, to detect
acute cerebral stroke [6] and breast cancer [7] and to monitor
lung aeration imposed by mechanical ventilation [4], [8] (the
main interest of our group). The present paper is specially con-
cerned with absolute impedance estimation through iterative al-
gorithms. Some of the works related to this area are reported.

In the double constraint method [9], two finite element
method (FEM) solutions for the potentials are obtained in each
iteration, given the electric currents and a reference potential
on the boundary, and the material distribution within the do-
main. However, in the second solution, the electric potentials
measured are also used as boundary conditions, driving the
search for the conductivity distribution. Then, based on a
quadratic error index expressing the difference between current
densities computed in the two solutions, the conductivities of
the elements are updated and an iterative process is established.
A large number of iterations were reported.

Hyaric and Pidcock [3] developed a mixed numerical and an-
alytical method: the electric potentials within the domain are
obtained analytically and the inverse problem is solved numer-
ically. The current density on the surface of an electrode is as-
sumed to be constant, and equal to the applied electric current
divided by its area, and null otherwise, which is the gap model.
The inverse problem is solved by the Newton—Raphson scheme
[11]—with only one step—and the Levenberg—Marquardt ap-
proximation regularizes the problem. A geometric limitation is
imposed because only a cylindrical domain is considered. Fur-
thermore, only numerical data was analyzed in the estimation
process. Absolute resistivity values were obtained.

Blue, Isaacson, and Newell [12] also addressed a mixed
numerical and analytical method, the gap model and the
Levenberg—Marquardt method. However, instead of a Newton—
Raphson scheme and numerical data, a spectral decomposition
solution was obtained and absolute conductivities were esti-
mated based on measurements on an experimental setup.

Vauhkonen er al. [13] adopted the “complete electrode
model”, taking into account the electrode—electrolyte contact
impedances. The FEM was employed to mode! the domain
and the Gauss—Newton method (one step) solved the inverse

0018-9294/$25.00 © 2008 IEEE



532 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 2, FEBRUARY 2008

problem (later, the iterative Gauss—Newton method, the steepest
descent method and the conjugate gradient method [14], and the
Markov chain Monte Carlo method [15] were implemented).
Regularization schemes were applied to improve the condition
of the problem and experimental measurements were consid-
ered in the image estimation. Their cylindrical agar targets
were satisfactorily estimated, both in the case of absolute and
relative resistivity values.

Molinari et al. [16] implemented the complete electrode
model, the FEM and an iterative Newton—-Raphson method,
as well as important tools such as an auto-adaptive mesh
refinement scheme and parallel computing techniques. Only
numerical data were used and the resulting absolute conductiv-
ities showed poor resolution, which was mainly attributed to
the electrodes size.

Finally, Vilhunen et al. [17] and Heikkinen et al. [18] de-
veloped an iterative Gauss—Newton method, based on an FEM
framework. The contact impedances were taken into account,
obtained together with the remaining properties. In the first
work, the relative permittivity and conductivity in a test cell
(both assumed constants), and the complex contact impedances
corresponding to two electrodes (held equal) were obtained
experimentally. Then, simulating a more realistic case, 16
electrodes were placed on the surface of a numerical model
of a cylinder and those same parameters and the resistivity
distribution within the model were obtained, assuming a homo-
geneous resistivity distribution and equal contact impedances.
In the second work, the authors used real valued properties and
experimental results were obtained. Contact impedances and
the homogeneous conductivity of tap water within a cylindrical
tank were estimated and, based on contact impedance values,
the conductivities of the tap water and a plastic object within
it were obtained. Accurate results are shown. However, the
estimation of the contact impedances together with the conduc-
tivity of the tap water and the plastic object was reported only
with the knowledge of electric potential measurements of the
uniform medium.

An algorithm based on the topology optimization method
(TOM) [19] is proposed as a novel approach to the EIT inverse
problem. It obtains real valued contact parameters—resistivi-
ties of the electrode—electrolyte contact interfaces, multiplied by
their thicknesses—and electric conductivities in a three-dimen-
sional model of a domain. Piece-wise constant absolute conduc-
tivity distributions are estimated based on numerical and exper-
imental electric potentials, and some different approaches are
addressed. In TOM, besides the constraints, which may be con-
sidered as regularizations, an objective function is defined. It
expresses the difference between electric potentials measured
on the electrodes attached to the domain, and the corresponding
numerically computed potentials obtained through the solution
of a forward problem [8]. The computations are carried out in an
FEM framework. The inclusion of constraints is particularly im-
portant in EIT since it is an ill-posed problem, which requires
prior information. An initial distribution is given to the algo-
rithm, which minimizes the objective function, searching for
an optimized absolute distribution within the reduced solution
space. Absolute values can be very important in practice since
they allow distinguishing some lung pathologies, for instance,

a pneumothorax (i.e., the abnormal presence of air inside the
pleural cavity, displacing the lung parenchyma) and a proximal
blockage of lung ventilation (e.g., bronchial obstruction).

The software implemented allows us to obtain the resistivi-
ties of a two-phase piece-wise constant target distribution with
high differences between maximum and minimum values (order
of 10% Ym) within the domain, which is the main focus of this
work. In that sense, the resistivity distribution obtained is almost
discrete—that is, with sharp spatial gradient—as demonstrated
in the results. Such results are generated by combining the ef-
fects of box constraints (constraints for conductivity values) and
a material model function that represents the material property
at each point of the domain and whose behavior is given by
an exponential coefficient (the material model is discussed in
Section IV). Therefore, it implies that intermediate values of
properties are not likely to happen. However, if required (for in-
stance, when there is no prior concerning the highest resistivity),
the intermediate properties can be obtained using a smoothing
constraint and a linear material model, which is shown in a nu-
merical example in Section V1. Alternatively, it can be achieved
by changing the material model function or by utilizing a seg-
mentation procedure, as it is discussed in Section VI, which
contains the conclusions.

The topology optimization method still has the advantage of
allowing for parallel computing of FEM solutions and for the
easy inclusion of constraints to the conductivity distribution,
and the advantage of being relatively robust. Finally, in this
work, the method needs only the first derivatives of the objective
function and constraints, which are relatively simple to com-
pute. On the other hand, methods based on second order deriva-
tives consume more memory and computing time, and are prone
to generate larger numerical errors. Some features of the algo-
rithm are described and its performance is evaluated. The code
was implemented in C language.

This paper is organized as follows: in Section II and I, the
mathematical model is presented and the corresponding solver
is described. In Section IV, TOM is introduced and the formula-
tion applied to the EIT problem is discussed. In Section V, some
implementation details are informed. In Section VI, the results
are presented and in Section VII some conclusions are offered.

II. CONSTITUTIVE EQUATION

In EIT, Maxwell’s equations are used to describe the current
density flow within the domain. A sinusoidal excitation is im-
posed and the product ew (where € and w are the permittivity
of the domain and the angular velocity, respectively) can be ne-
glected if w is low enough. Thus, the medium is considered to
be only conductive [10] and Maxwell’s equations can be sim-
plified. Then, considering the Ohms’s law, the equation which
describes the electrical phenomena within the domain €2 is

VA{o(z)VV(z)) =0, = in §, m

an elliptic partial differential equation, where ¢ and V are the
electric conductivity and electric potential, respectively, and x
is the position vector.

The algorithm implemented depends on the solution of (1) for
the electric potentials, or the solution of the forward problem.
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This solution can be uniquely determined with the knowledge of
Newmann's and Dirichlet’s boundary conditions on 052; how-
ever, it cannot be obtained analytically for arbitrary geometry,
conductivity distributions or boundary data. Thus, a numerical
method is employed.

11I. FINITE ELEMENT MODELING

The finite element numerical method is employed, through a
variational approach or, alternatively, with the aid of the prin-
ciple of virtual potentials [11]. It yields the following equation,
based on (1) and considering the boundary conditions:

/ VU - (6VV)dQ = / UsJndS @)
Q 12147

where U is the test potential and Ug is the test potential on
0y, which is the portion of 32 where the normal component
of the current density J,, (or Newmann's boundary condition)
is applied.

Then, the domain is conveniently divided into finite elements
and the electric potentials (I and V') are approximated in each
of them. A continuous function is used in this task. It depends
on the nodal values of the element, new unknowns, as follows:

Vin = NV ©))

where subscript m indicates a finite element (FE), V,;, is the
continuous function, V is the vector of nodal electric potentials
of the entire mesh and N, is the FE interpolation matrix [11],
which is a function of local coordinates.

Equation (2) is computed at each element, the results are
added and the problem of finding V is turned into an algebraic
problem [11}

Kv=1 @

where 1 is the vector of nodal electric currents and K is the con-
ductivity matrix of the system. In this work, the model is rep-
resented by four node tetrahedral elements and N ,,, expresses a
linear dependence of V;,, on the nodes of the mth finite element
and on local coordinates.

A. Electrode Model

The electrode model developed is a three-dimensional ver-
sion of the model seen in [4]. The latter is a two-dimensional
FEM model of the electrode—electrolyte contact interface, and
includes the electrode and the periphery of the epidermis (the
epidermis is the outermost layer of the skin).

The same assumptions seen in [4] are adopted here, except for
neglecting the tangential resistors considered in their work. In
other words, the authors keep the effects of the small tangential
current flow within the model, and keep the following assump-
tions, namely, the thickness of the model is small compared to
the other dimensions, the electric potential on the metallic sur-
face of the electrode is constant, the whole surface of the elec-
trode is in contact with the skin, and the conductivity of the
model is constant.

16
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Fig. 1. Elements of an electrode model. Nodes 1-9 are attached to the mesh of
domain and nodes 1018 concern the electrode.

As can be seen in Fig. 1, eight node brick elements are used
to match the work of Hua et al. [4] (they used four nodes quadri-
lateral elements). Considering only one electrode and four brick
elements (see Fig. 1(b)) and applying the assumptions, the fol-
lowing can be computed:
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where K . is the elth matrix of the electrode model, o is the
corresponding conductivity, and I.; is the elth vector of nodal
electric currents of the electrode model. The last term in the
array corresponds to the electrode node [4] and I; is the electric
current value applied to it. If no current is applied to an elec-
trode, J,, is nult and I.; = 0. The derivation of (5) and (6) is
described in detail in the Appendix. In (5), t.1/oe is the contact
parameter. In practice, this is a value to be estimated.

Finally, assembling the matrices and vectors of the electrode
models on (4), we obtain an augmented linear system of equa-
tions for the entire problem

KrVp=1Ir. )

In this work, this system is solved using a preconditioned con-
jugate gradient algorithm (see [20] for a similar algorithm).

In the experimental study the potentials are measured from
a cylindrical container filled with a saline solution, as will be
described in detail in Section VI, and a different kind of elec-
trode, a bar electrode, which covers the height of the conductive
domain (see Fig. 2), is considered. In this experimental study,
the effect of the electrode models is neglected, as discussed in
Section V1. Therefore, (5) and (6) are not utilized. Instead, some
boundary nodes of the standard mesh—or the mesh without the
electrode models—are selected to represent the electrodes and
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i
R

Fig. 2. Bar electrode attached to the conductive domain.

075 1

Fig.3. Curves o X p. 0, and 0 g are equal to 0.06 and 0.000001, respectively.

equality of electric potentials on all nodes representing an elec-
trode is imposed. In other words, the gap model is employed.
Finally, a system of equations as (7) is also constructed.

1V. TOPOLOGY OPTIMIZATION METHOD

Essentially, TOM determines a material distribution inside a
fixed domain with the purpose of maximizing a performance
index of the corresponding system [19], e.g., it solves an op-
timization problem subjected to some constraints representing
limitations to that distribution. The performance index is math-
ematically represented by an objective function, and the con-
straints by equality and/or inequality equations, which depend
on the material distribution.

This work considers that the properties at each point vary con-
tinuously, from the properties of a pure material A to a pure ma-
terial B. This material model is based on SIMP (Simple Isotropic
Material with Penalization) [19], which is an usual material
model applied in topology optimization. Its mathematical rep-
resentation is

o(z) =p(x)fos+ (1 — p(z)F)op, = in Q 3)

where o 4 and og are the limiting electric conductivities of the
materials that compose the domain, and p is the normalized de-
sign variable, ranging from O to 1. Additionally, penalization is
introduced in the model when p, a positive integer, is larger than
1. Therefore, lower values of ¢ are favored in the final result.
The effect of p can be seen in Fig. 3.

An alternative to the TOM and (8) with p larger than I,
is a binary design (0-1), for which there are several solu-
tion methods [19]. However, it is an ill-posed problem with
several local minima, which brings numerical instabilities in
the solution process, and the algorithms employed to solve
it are relatively slow. Thus, the relaxation of the problem
by defining a material model, yielding a continuous material
design problem, is justified.

In this work, it is assumed that the design variable p varies
continuously within each finite element and depends on nodal

values in the same way as the electric potentials [21]. Thus, the
conductivity in the mth element is

Om =phoa+ (1 —pBlog, in Qnp 9)
and p,,, is given by

pm = Nmp. (10)

In (9), p is the vector of nodal design variables within the
domain. The FE interpolation matrix N,,, [11] must be selected
to provide values of p,,, between 0 and 1. In this work, this
matrix is meant to represent a linear dependence of p,,, on the
nodes of the mth element and on local coordinates.

For g.i/t.;, 2 similar normalization

10 Ael iI\TBel .
- elt +(1_p£l)t ; M QCI
Ael Bel

Tel

el

(1)

is applied, where 0 a¢1/t .1 and 0 ge1 [t per are convenient limits
for oeifter, and pe; is a normalized design variable. The limit
O ael/tael is chosen so that above it the changes of electric po-
tentials on electrodes due to changes of contact parameter values
are relatively small. The inferior limit o ge;/tBer is zero.

The objective function adopted in this work is the usual
square error function for electric potential values [3], [13], [14],
[16]

1 ne
F=3 > (ApV1; = Vo)) (Ap;Vrs = Vij)

i=1

(12)

where ne is the number of current load cases (they will be
defined in the results section) applied to the system, Vp; =
V1;(p, pet) is the vector of nodal electric potentials computed
through FE analysis using the conjugate gradient solver, V; is
the corresponding vector of nodal electric potentials obtained in
the jth load case, whose components are zero unless they rep-
resent a measurememnt electrode node, and p.; is the vector of
interface design variables related to o/t (see (11)). Ap;isa
diagonal and square matrix whose diagonal values are equal to
one, indicating potentials on measurement electrodes, or zero,
in the position of current-carrying and reference electrodes, and
of the remaining nodes (therefore, Aﬁj isequal to Ap; and A%:j
is equal to Ap;; these results are applied to the computation of
sensitivities in the next section). This means that only the nodal
values of measurement electrodes in V'r; are taken into account
in the objective function. It is relevant that, considering only the
nonzero components, equal positions in the vectors Ap;Vr;
and V; indicate corresponding locations in the model and the
domain (it implies that Ap;V; is equal to V;; this result is
also used in the computation of sensitivities in the next section).

Finally, the problem solved for the conductivity distribution is

minimize F = F(6)
w.r.t. 8
subject to  Kr;Vr; =Ir;

0<6<1 (13)

where Vip; = Vr;(0) and 8 is the vector of design variables.
It can be either p or pgy, since the problem is solved separately
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for these two vectors. When p is constrained between 0 and 1,
PP, is constrained between 0 and 1; then, o, is constrained be-
tween opg and o4. In fact, p,, is the equation of a hyperplane
containing the nodal values of p pertaining to the mth element,
which means that the maximum and minimum values of p,,, are
on nodes. Therefore, since all nodal values are constrained be-
tween 0 and 1, p,, is constrained too. Thus, p? is also con-
strained between O and 1.

If the conductivity values are constrained between ¢4 and
og, given as prior information, the spatial gradients and dif-
ferences between maximum and minimum values obtained by
TOM can be high if compared to the results found in the EIT
literature. However, the algorithm tends to reduce the highest
resistivity values found and thus, the results are underestimated.
Therefore, in the optimization problem, the constraints are made
to work with the penalization scheme. When the exponential co-
efficient p in (9) is larger than 1, lower values of p?, (close to ()
within the element m are favored (since p,, is constrained be-
tween O and 1). It implies that the resistivity peaks are increased.

On the other hand, when o g is unknown and, thus, there is no
prior concerning the resistivity contrast, a smoothing constraint
and a linear material model (p = 1) may be used. This scenario
is also addressed through a numerical example in Section V1.

The proposed nonlinear problem (13) is solved by a sequen-
tial linear programming (SLP) algorithm [20], which solves a
sequence of linear problems through linear programming (LP)
[201, [22]. In each LP problem (iteration), (13) is linearized
and the design variables are constrained between additional ad-
justable box constraints, or moving limits. These limits validate
the linearization and are also responsible for the convergence.
The computation of sensitivities, used in the linearization, is de-
scribed below.

A. Computation of Sensitivities

The derivatives of F' with respect to the design variables are

oF & Ve \T
_ZBVTJ

Pi~ 50,
_ Z aVTJ

Ap;(Ap;Vr; — Vo;)

(APjVTj - Voj)- (14)
By differentiating (7), the following can be obtained
OVr; " r OKT1j
-V . 15
9 Ti g, KT 4

Substituting this equation into the previous equation, the fol-
lowing is computed:

ZVT 8KT_,

Ti 56, K7 (ApiV1j —

Vo;)- (16)

Bﬂk

The procedure described above is called adjoint method [22].
The vector K}Jl- (ApjV1; — Vo;) is computed by a precondi-
tioned conjugate gradient algorithm and the derivatives of K7
with respect to 8y, are obtained analytically [23].

V. IMPLEMENTATION

Convergence problems can arise in the iterative optimization
process due to large differences between the magnitude of ob-
jective function derivatives in relation to interface design vari-
ables (p¢;) and to nodal design variables (p), if a distinguishing
scheme for the moving limits is not employed. Since adjusting
these limits distinctly is not an easy task and the best way to
achieve a reasonable updating rule is yet an open question, the
optimization procedure is alternatively divided into two nested
iterative processes embodied by a global iterative process. In the
first stage, the nodal resistivity values obtained from the pre-
vious step are kept constant, and only the values of g.;/t.; [see
(11)] are optimized. Then, at a second stage, a new set of nodal
resistivity values is obtained, keeping the contact parameters
fixed. These two optimizations form one global step. The algo-
rithm starts from an initial distribution of resistivities and con-
tact parameters, and continugs until the convergence is reached.
This is called the two-phase approach [8] and it is used in the
numerical investigations in the present work.

V1. RESULTS AND DISCUSSION

In this section, some images generated using the implemented
software will be presented, examining both a numerical [17]
and an experimental phantom. In all examples, a low intensity
sinusoidal current is applied and all computations are carried
out on a PC. The current signal amplitude is 1 mA pk-pk.

The mesh used to represent the numerical phantom for
estimation purpose—the estimation mesh—is coarser than the
mesh of the phantom, to avoid the inverse crime. Thirty-two
square electrodes (10 mm wide) are uniformly placed along the
boundary of the estimation mesh and of the numerical phantom.
Also, 32 bar electrodes are uniformly attached to the experi-
mental phantom and to its model. Since only 32 electrodes are
used to perform measurements, one can not assure uniqueness
of the solution [24].

To perform measurements, a pair of adjacent electrodes is
electrically excited. The electric potential in one of them is taken
as ground. This procedure, which defines a current load case, is
repeated, changing the pair of adjacent electrodes. Thirty-two
current load cases are applied. Different load patterns could be
applied [10].

A. Numerical Phantom

In this section, the electrical potentials V; are obtained
through a FE analysis of the numerical phantom shown in
Fig. 4(a). Thus, only numerical data is considered.

The phantom is a 220 mm diameter and 35 mm thick cylin-
drical domain, divided into 34 359 four node tetrahedral ele-
ments (see Fig. 4(b)). The resistivity distribution is approxi-
mately uniform along its axis. Fig. 4(a) shows the central section
of the mesh. The contact parameters are all equal to 0.01 Qm?
and the electrodes are placed on the central layer of the cylin-
drical boundary of the three-dimensional mesh.

In the first investigations referring to high contrast results,
most of the phantom (basal region) has 17 m of resistivity
(whose inverse is equal to o 4 in (9)), and the object has 10% Om
of resistivity (whose inverse is equal to og in (9)). In a clinical
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Fig. 4. (a) Central section of numerical phantom (image to be estimated).
(b) Numerical phantom model mesh (34 359 elements). (c) Estimation model
mesh for the high contrast results (5548 elements). (d) Estimation model mesh
for the low contrast results (13 130 elements).

perspective, this condition may represent a pneumothorax. Al-
though air has a much larger resistivity, 106 m is large enough
to inform clinicians the occurrence of a pneumothorax. Of note,
a similar order of magnitude, 2 X105 2m, was simulated in a
previous work and adopted to represent air inside the thorax in
the forward problem [25].

As already shown, the maximum resistivity of the lung
parenchyma rarely exceeds 20 {2m, a value achieved only when
breathing close to the total lung capacity. Then, to simulate
a situation in which overdistension, massive atelectasis, or
pneumonia are the clinical concerns, which are diagnostic
hypotheses when the resistivity contrast between the normal
versus abnormal parenchymal regions is much lower (2 to 5
times, at a maximum) and the level of contrast is unknown, the
resistivities of the numerical phantom are changed to 4 Qm for
the basal region (whose inverse is equal to o 4 in (9)) and 8 0m
for the inclusion, and the superior constraint to the resistivity
is disabled.

The image estimation is carried out using a 5548 elements
model (see Fig. 4(c)) for the first scenario and a 13 130 (see
Fig. 4(d)) elements model for the last scenario. The number
of elements was increased since it is difficult to achieve a sat-
isfactory spatial resolution with the first mesh when the prior
comprising inferior conductivity limit is not considered. The
following computations are performed using the two-phase ap-
proach [8].

1) High Contrast Results: The results obtained are shown in
Fig. 5, while the result in Fig. 5(b) includes numerical noise.
I'The middle image corresponds to the central section of the do-
main and the others to the external sections. In the beginning of
the optimization process, the values of pi (see (11)) and p (see
(9)) are equal to 1; however, the value of p is changed to 2 after

'A zero-mean uniformly distributed noise (random noise) is considered,
meaning that to each potential value of the vector Vg ;, up to 15% of the value
of the respective electric potential is randomly added or subtracted.

(b)

HHNM 838891
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111126

Fig.5. Resistivity values obtained (units: 2m; numerical phantom of Fig. 4(a)).
(a) Without noise. (b) Considering noise.

the convergence of the global iterative process is reached. The
algorithm starts from a uniform resistivity distribution equal to
17 Qm, the minimum value allowed (the maximum is 108 m).
The initial contact parameters are 0.0011 m?.

According to the results, the right position of the object and
correct absolute resistivity values have been obtained, although
the geometry is different. In addition, some peripheral artifacts
are generated when numerical noise is added to Vg;. The
final values of contact parameters corresponding to Fig. 5(a)
(without noise) range from 0.0192 to 0.0233 2m?. The range
increases when noise is introduced (Fig. 5(b)), from 0.0184 to
0.0234 dm?. The authors believe that the discrepancies between
the results and the phantom are mainly due to the differences
between the phantom and estimation meshes. Moreover, noise
aggravates such condition.

In the two-phase approach, the optimal nodal resistivities
and the final contact parameters are highly dependent on initial
guesses. For instance, when the algorithm starts from 34 Qm
for nodal resistivities, and from 0.0011 Qm? for the contact
parameters, the minimum and maximum final values are,
approximately, 0.0005 and 0.0017 Qm?, respectively. Unlike
the other results, the minimum is very close to the imposed
limit (¢ 4et/t et in (11)). This result is shown in Fig. 6, without
noise. It suggests that, even if the potentials at current-carrying
and reference electrodes are not considered, the algorithm can
produce peripheral artifacts and a wrong object diameter if the
contact paramelers are incorrect.

One way to increase the optimal contact parameters and im-
prove the image quality is to choose an annular domain in the
neighborhood of the electrodes and to keep the resistivity fixed
at 17 ©2m, the value used in phantom. Another way is to prevent
the convergence of the two nested iterative processes, allowing
for just one step for each of them. Following these protocols,
contact parameters ranging from 0.0074 to 0.0119 m? and be-
tween 0.0007 and 0.0095 Qm? are obtained, respectively. The
corresponding images (Fig. 7(a) and (b)) are more accurate than
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Fig. 6. Resistivity distribution obtained (units: m). Maximum and minimum
final values of the contact parameters are 0.0017 and 0.0005 (m>. Range of
resistivity values shown: (a) from 17 m to 10° Qm; (b) from 17 Qm 10 125 Qm
(gray color corresponds to resistivities above 125 Qm).
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Fig. 7. Resistivity distributions obtained (units: £2m). (a) The resistivities of
the nodes on the lateral surface of the estimation mesh are set to 17 Qm. (b) It
is allowed one step for each of the two nested iterative processes.

the results of Fig. 6. Differences also become apparent when the
plotted range of resistivity values is reduced; see Fig. 8.

Keeping in mind that relatively small errors in the images
(comparing with the range of estimated values) occur even when
the obtained contact parameters are close to 0.001 2m? or lower,
a new approach can be proposed to be applied in experimental
tests. This is discussed in the corresponding section.

2) Low Contrast Results: The results obtained are shown in
Fig. 9. The values of pl (see (11)) and p (see (9)) are equal
to 1 during the iterative process. The algorithm starts from a
uniform resistivity distribution equal to 4 Q2m, the prior used
as the minimal value allowed. The maximal value allowed is
high enough to prevent that the constraint is active during the

©
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Fig. 8. Resistivity distributions obtained (units: 2m). (a) The initial guess is
17 Qm (Fig. 5(a)). (b) The resistivity of an annular domain in the neighborhood
of the electrodes is set to 17 £2m (Fig. 7(a)). (c) It is allowed one step for each
of the two nested iterative processes (Fig. 7(b)). Gray color comesponds to re-
sistivities above 125 Qm.
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Fig. 9. Low contrast results obtained (units: £2m; numerical phantom of
Fig. 4(a)).

optimization, which is equivalent to consider an unknown prior
for the highest resistivity value. The initial contact parameters
are 0.0011 Qm?.

An explicit spatial gradient control scheme [26] is used. In
this approach, a linear transformation is applied to the nodal de-
sign variables in such a way that each variable, corresponding to
one node, is equal to a weighted summation of new nodal vari-
ables divided by the sum of the weights. The weights are piece-
wise constant functions, equal to one within a prescribed radius
or zero, otherwise. Therefore, a smooth solution is enforced.

The right position of the object and a reasonable geometry
are achieved. Absolute resistivity values within 15% of error
have been obtained, which is informative from a clinical point of
view. Additionally, there are no artifacts for the range of values
plotted and the final values of contact parameters range from
0.0120t00.0131 Qm?2, closer to thevalues used in the phantom.
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(a) (b

Fig. 10. (a) Sketch of the experimental phantom. (b) Image to be estimated.
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Fig. 11. Resistivity distribution obtained (units: Qm) (related to experimental

phantom of Fig. 10(b)). The effect of the electrode models is neglected. Range
of resistivity values shown: (a) from 17 £2m to 10% 2m; (b) from 17 Qm to
125 §2m (gray color corresponds to resistivities above 125 Qm).

B. Experimental Phantom

In this section an experimental phantom, which provides
measured electric potential values, is used. This phantom is a
cylindrical container with 32 35-mm by 10-mm bar electrodes
(see the sketch in Fig. 10(a)). The container is filled up to
35 mm with a 0.3 g/L saline solution (NaCl). Its resistivity is
approximately 17 {dm and its diameter is 220 mm, which is
equal to the inner diameter of the container. The small circle
shown in Fig. 10(b) represents a glass object (10° Qm [27]).
This large resistivity contrast example is meant to represent a
pneumothorax during lung imaging. The conductivities of the
saline solution and glass are used as extreme values (04 and
o g, respectively) in (9). The values of pl and p are equal to 1
at the beginning of the optimization process and the value of
p is changed to 2 when the convergence of the global iterative
process is reached. A new estimation model with 11623 tetra-
hedral elements is generated.

According to the numerical results in the previous section,
relatively good images were attained even when low contact pa-
rameters were estimated. Therefore, assuming relatively small
contact parameters, the electrode gap model was used in the ex-
perimental evaluation and the two-phase approach was not em-
ployed. The results are shown in Fig. 11.

The algorithm implemented is able to detect the glass object
inside the experimental phantom. The correct position of the
object and correct absolute resistivity values have been found,
and few peripheral artifacts remained, which suggests that the
gap mode] is a plausible choice. However, the high resistivity
region is smaller than the real one.

VII. CONCLUSION

In this work, some features of an alternative method to solve
the ill-posed nonlinear three-dimensional EIT problem are pro-
posed and studied. According to the numerical results, the cor-
responding algorithm is able to obtain a resistivity distribution
within a domain composed of two materials, even with the ad-
dition of numerical noise or when the level of contrast is un-
known. Considering also the experimental results, the images
suggest that the algorithm is potentially capable of monitoring
lung aeration imposed by mechanical ventilation including the
possibility of detecting a pneumothorax.

A two-phase approach [8] was implemented for obtaining
the images. It is shown that the results are dependent on ini-
tial values of design variables. However, when some features of
the phantom are known, such as the resistivity values of periph-
eral areas, the images are consequently better. The experimental
results show that the effect of low contact parameters in these
cases is smaller. It is believed that this is due to relatively small
values of contact resistivities in the experimental setup.

The problems that persist when the estimation is accom-
plished can likely be overcome by imposing some additional
constraints to the nodal resistivity distribution in the optimiza-
tion problem. Although the best way to define such constraints
is still an open question, they should take into account the dis-
tance from the center of the domain, since in an EIT system, the
sensitivity to resistivity changes in peripheral regions is higher
than in central regions [28], [29]. The definition of additional
constraints will be the subject of future investigation.

Adaptive mesh refinement and continuously-graded materials
[30] could improve the applicability of the algorithm to mon-
itor lung aeration. Furthermore, the sensitivity calculation using
the adjoint method formulation allows for parallelization, which
can save computation time. These themes will also be matter of
future investigation.

Finally, a new strategy, which is explained as follows, can
be proposed as an alternative to the use of continuously-graded
materials [30]. The implemented algorithm can estimate a
large range of resistivities. The idea is to segment the region of
highest resistivity and extract it from a subsequent estimation
procedure. This reduction on the number of variables is ac-
complished together with a reduction on the largest resistivity
allowed. Then, the subsequent estimation procedure is carried
out and a new region, corresponding to this new resistivity
limit, can be segmented and extracted from the next parameter
estimation procedure. Repeating this steps will result on a
better graded image in terms of resistivity and, consequently,
on a distribution with better resistivity resolution.

APPENDIX
DERIVATION OF K. AND I

Starting from (2), one can obtain (5) and (6).
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Equation (2) can be computed in each finite element and the
results added, which is a common practice in FE theory. Fol-
lowing this procedure, (3) is substituted in each term of the sum-
mation referent to each finite element in (2), which yields

Ury . / VNI YN ,,0mdQnVr
m O

:ng

m YOm

NyTn,SJnvndSm (Al)

where U is the vector of nodal test potentials and the subscript
m indicates a finite element. The augmented linear system of (7)
is obtained through this last equation. The next step concerning
the FE theory is to integrate each term of the summation and
add the results.

However, only the nonzero terms of each integral are com-
puted in practice, yielding the element matrices and vectors,
which are then assembled using the corresponding element con-
nectivity. The assemblage is out of the scope of this work. For
a detailed discussion, please refer to [11].

Focusing on the integral referent to one brick element of the
electrode model, as can be seen in Fig. 1(b), and considering
its dimensions and a local numbering concerning the nodes of
the element, the computation gives rise to (A.2), shown at the
bottom of the page, and to

IT={0 0 0 0 fis fic for foa}

where

(A3)

fog = [ NbgS JnbdSp (A.4)
Jany,

and where K is the matrix of the bth brick element, I} is the

vector of nodal electric currents of the same brick element and

npes is the shape function referring to the node whose num-

bering is given by the gth connectivity of the bth brick element.
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using the assumption that the electric potential is constant on
the metallic surface of the electrode, one obtains

* 8
Ig;z{o 00000UO0TDO0O EZqu}(A.s)
b g=5
where

8
Z Z foq =Z/ (ness + nves + ners + nwss) JnpdSe
b g=5 b VO
Z/ JnpdSy = Lo
p YO

and I is the electric current applied to the elth electrode. There-
fore, (6) is finally obtained and this completes the derivation.

(A.6)
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Electrical Impedance Tomography
Using the Extended Kalman Filter

Fldvio Celso Trigo*, Raul Gonzalez-Lima, and Marcelo Brito Passos Amato

Abstract—In this paper, we propose an algorithm that, using the
extended Kalman filter, solves the inverse problem of estimating
the conductivity/resistivity distribution in electrical impedance to-
mography (EIT). The algorithm estimates conductivity/resistivity
in a wide range. The purpose of this investigation is to provide in-
formation for setting and controlling air volume and pressure de-
livered to patients under artificial ventilation. We show that, when
the standard deviation of the measurement noise level raises up to
5% of the maximal measured voltage, the conductivity estimates
converge to the expected vector within 7% accuracy of the max-
imal conduectivity value, under numerical simulations, with spatial
a priori information. A two-phase identification procedure is pro-
posed. A cylindrical phantom with saline solution is used for ex-
perimental evaluation. An abrupt modification on the resistivity
distribution of this solution is caused by the immersion of a glass
object. Estimates of electrode contact impedances and images of
the glass object are presented.

Index Terms—Dynamical imaging, electrical impedance tomog-
raphy, Kalman filter, parameter estimation.

1. INTRODUCTION

LECTRICAL impedance tomography (EIT) attempts to
E reconstruct the admittivity (or impedittivity) field within
the body when a low amplitude current pattern is applied to a
body surface and the potential at determined points of that sur-
face is measured through electrodes or, alternatively, when a po-
tential is applied and the current flowing through the surface is
measured. Since the measured voltages or currents are functions
of the admittivity distribution as well as of the overall geometric
characteristics of the body under analysis, the problem of es-
timating the admittivity field, which is governed by Poisson’s
partial differential equation, 4s inverse and nonlinear. Addition-
ally, the problem is ill posed [1]-[3]. :

Although the image resolution of EIT is poor when com-
pared to other imaging techniques such as magnetic resonance,
computerized tomography or ultrasonic imaging, EIT presents
some advantages such as being harmless to the patient, low cost
and portable. EIT also has faster time-response characteristics,
which enables it to monitor cyclic changes in the Jiving tissues
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better than conventional imaging modalities. Many researchers
have been making continuous efforts in the pursuit of algorithms
that are, at the same time, fast and capable of providing images
of good spatial resolution. In order to achieve these high stan-
dards, regularization techniques, choice of optimal current pat-
terns, fine and/or three—dimensional (3-D) mesh discretization
of the body section and of the electrodes have been tried.

One of these attempts was the so called ‘dynamical’ method,
proposed by Vauhkonen et al. [3]. The EIT inverse problem
was formulated as a state-estimation problem and the linearized
Kalman filter was used to estimate the resistivity distribution
(neglecting the permittivity distribution) 31 times faster than
with the conventional approach. This result is due to the fact
that the Kalman filter provides an estimate for the resistivity
distribution immediately after each current pattern is applied to
the medium. The application of a complete set of current pat-
terns to obtain one image is nol necessary. However, the model
linearization required by the linearized Kalman filter imposes
a limitation on the estimation range around the linearization
state, the resistivity distribution, used for linearization. As acon-
sequence, resistivity estimates can achieve 14% error [3] even
using a known linearization state vector.

In order to improve the accuracy of the estimates obtained
with the linearized Kalman filter, Kim er al. {4], [5] used the
state-space approach proposed by [3] and implemented the ex-
tended Kalman filter incorporating a Tikhonov regularization
and spatial prior information on the cost functional to obtain
dynamical images from simulated data and from a phantom
with known background resistivity. Their results show that the
Tikhonov regularization helps to cope with the ill-posed nature
of.the problem and, at the same time, has a smoothing effect on
the reconstructed images.

In this paper, we are primarily concerned about clinical ap-
plications in which the physician is interested in the overall
behavior of physiological processes whose dynamics of fluids
inside the body affect the conductivity field, such as mechan-
ical ventilation applied in critically ill patients. Patients with
severe lung damage are prone to develop marked changes in
lung aeration, resulting in either atelectasis or over-stretch, ul-
timately leading to a superimposed inflammation of the fragile
parenchyma. Under this circumstance, early detection and ef-
forts to simultaneously avoid alveolar collapse and overdisten-
tion are the comnerstones of a “protective lung strategy,” re-
sulting in an improved lung function and survival [6], {7]. The
above-mentioned compromise is a challenge inside the intensive
care unit (ICU), where the physicians have to manually adjust
the mechanical ventilator parameters. Lung condition changes
dramatically during the day and a few respiratory cycles under
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an inappropriate airway pressure profile are enough to cause se-
vere inflammation or lung rupture, eventually with pneumoth-
orax. The diagnostic requires several images during the cardiac
cycle, which is shorter than the respiratory cycle. Therefore,
speed is necessary for lung monitoring applications. Unfortu-
nately, conventional X-ray films and bedside clinical methods
lack an appropriate sensitivity to detect such critical lung ab-
normalities. Presently, X-ray computerized tomography (CT) is
still the gold standard procedure to detect those phenomena,
despite its drawbacks. The transport of the patient away from
his/her bed or from the ICU life support equipment is very risky
and the static nature of the CT images is uninformative under
such dynamic conditions. Sometimes, when the physician de-
cides that a thorough analysis is required, it is already too late
to reverse lung damage. Considering this whole scenario, EIT
may be an attractive tool, provided that the method can give us
dynamic, online and bedside results.

In order to sel and control the positive ventilation parame-
ters, namely, air flow and pressure, the EIT algorithm must pro-
vide both fast and reliable estimation of the conductivity field
inside the lungs. The algorithm should also track large physio-
logical variations (from total lung collapse to pneumothorax).
Real-time images are required to sort out different pathologies.
The linearized Kalman filter cannot track accurately the whole
range of conductivity changes during cardiac and respiratory cy-
cles. The extended Kalman filter potentially gives speed and ac-
curate conductivity estimates.

This paper proposes an algorithm that uses the extended
Kalman filter to estimate time-varying absolute conductivities
in a plane domain representing a section of a human thorax
at middle-lung level. The domain is discretized through the
finite-element method (FEM), see Section 1I. Algorithm per-
formance is evaluated under numerical simulations and using
experimental data from a phantom with unknown resistivity
distribution, as described in Sections IV and V. In addition,
a procedure to estimate electrode contact impedances is
developed.

Tikhonov regularization is not used since, for lung ventila-
tion, accurate mean conductivities of specific regions of interest
(ROls) are required and the smoothness caused by the regular-
ization term on the cost functional may bias the conductivity
estimates.

II. FORWARD AND INVERSE PROBLEM FORMULATION

Consider the cross section of an object as a closed domain I"
with stationary charge and conductivity distribution o{z, y), and
purely conductive medium through which steady current flows
[8]. Under those circumstances, the inner electrical potential ¥
is given by Laplace equation

V.(eV¥) =0 (1

At the boundary, currents are injected through electrodes;
thus

U%ﬁ.ﬂ) = J¢, on the ¢th electrode
0, elsewhere at the boundary

2

where J; denotes the current density through the surface of the
£th electrode.
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In EIT, it is possible, through the electrodes at the boundary,
to impose currents c¢¢ and read voltages v, or vice-versa. The
problem is defined as inverse when one wishes to detcrmine
what conductivity distribution provided those readings. An
inverse problem can be solved iteratively using the solution
of its corresponding forward problem. When the internal con-
ductivity distribution of the domain is adopted and boundary
currents are known, the solution of the forward problem gives
an internal voltage distribution. For an irregular domain and
isotropic media, analytical solulions to the Laplace (1) with
boundary conditions (2) are unknown; thus, we use the FEM
to discretize the domain and solve both problems, forward and
inverse, numerically.

The FE meshes used in this paper have triangular elements
with constant conductivity o and linear interpolation functions
[2], [9]. On numerical simulations, currents are applied directly
at a boundary node. The effect of large electrodes of the
phantom must be modeled. Additional elements with four
nodes are placed at the boundary of the discretized domain
to incorporate the simplified complete electrode model [1].
Electrode models take into account the high metal conductivity
and the contact impedance between metal and medium.

After assembling the local element matrices into the global
admittance matrix [9] we have s nodes, m elements and £ elec-
trodes in which p currents are applied; then, the following rela-
tion holds:

Yv=cC 1€)

where Y (o) € R®*® is the admittance matrix calculated at any
particular distribution 6, V(g) = [v1...2;...9p],v; € R®
is a matrix containing nodal voltages corresponding to each ap-
plied current pattern, and C = [e1...¢;...6,). ¢; € R° isa
matrix of linearly independent bipolar current patterns. On nu-
merical simulations C is

I -1 ... —I
+I 0 ... 0
0 +I ... 0
C=10 o

4 @

6 0 0 0l,,
whereas, with experimental data, C' matrix contains diametrical
current patterns.

Solving the forward problem for V, we obtain the simulated
voltage distribution in the discretized domain. A detailed de-
scription of this process is found in [9]. Those voltages are used
as input data in the solution of the inverse problem.

The inverse problem can be stated as follows: A domain T’
with nonuniform unknown conductivity distribution o(z,y) is
discretized by the FEM into an m-dimensional space. For each
v;(e),j=1,...,p,itis possible to write amap h; : ¢ — v;

vi(0) = hj(o) = [Y ()] " &; (5)
that is, the nodal voltages vectors are nonlinear functions of the
conductivity distribution in the domain I'. Using a Taylor series

to expand v;(o) around any distribution g9 and keeping terms
up to the first-order gives

dh;
v;(0) =~ v;(00) + 'a—afl(uo)(ﬂ — o). (6)
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The derivatives of h; with respect to the m conductivities are
calculated using the standard method [9], in which 8Y/do,, is
obtained directly from the FE model and results in

oh; Yy
(o0)= —2| =-Y '—Y ¢ j=1,..., . (7
Hj(oa) = - o 5o Y e p- (D)
Thus, (6) can be explicitly written as
v1(0) v1(00) Hy(o0) |
vi(0) | = |v;(o0) | + | Hi(60) | (6 —ap). (8)
vp(0). vp(00) Hy(o0)
The product -Y~Y8Y/dom)Y~le; = Hj{oo),
j = 1,...,p, is called the sensitivity matrix of the map-

ping. It must be pointed out that, on each vector v; € R*® of
nodal voltages, only the voltages at the £ electrodes can be
measured. Equation (8) states the classical frame of the inverse
EIT problem, in which it is assumed that there are no signif-
icant changes in the conductivity distribution of the domain I"
during the time it takes to apply all current patterns, make the
respective voltage measurements and process those data before
an image is reconstructed. In this sense, the formulation can be
named “static.” In order to increase reconstruction speed and
track fast conductivity changes, the EIT inverse problem was
dynamically stated [3]-[5], as discussed in Section 1I1.

1II. EXTENDED KALMAN FILTER FOR EIT

Vauhkonen et al. [3] proposed a dynamical formulation of
the EIT as a state-estimation problem in which the impedances
of the FE model were considered the state to be estimated, and
implemented the linearized Kalman filter to observe the state.

In this paper, we take advantage of the state-space formula-
tion to implement the extended instead of the linearized version
of the Kalman filter. The rationale follows: In the linearized ver-
sion, although each image is obtained after a new current pattern
is applied, the linearization shown in (6) is always done at the
same state vector g, which brings some limitations in the range
of variation of the parameters to be estimated. On the other hand,
in the extended Kalman filter, the mapping is linearized at every
new estimate. This way, it is possible to estimate conductivity
distribution in a wide range [4], [5]. The successive estimates
will likely be close to each other, thus decreasing linearization
erTors.

A detailed discussion on stochastic estimation or on Kalman
filtering theory is out of our scope; however, we briefly state the
main hypotheses and assumptions necessary for applying the
filter equations. An extensive study can be found, for instance,
in [10] and [11].

The first requirement for the usage of the filter is that both the
observation model and the system model must be in state-space
form. We return to (6) to start describing the observation model.
When any of the p current pattemns c; at time ¢t = kAl is applied,
a vector v, € R of measurable nodal voltages at the electrodes
is obtained. Since in our FE mesh the first £ nodes correspond
to electrodes, taking the first £ lines of (6) results

vi(or) = ve(0k_1) + Hr(ok—1)[ok — 04_1]

9)

foreach k. [n addition, every measurement process is inherently
corrupted by noise. Thus, from (9), the observation model at
time £ is

ve(0k) = Ve(Ok—1) + Hr(os-1)lox —ok1] +vr (10)

where o € R™ is the conductivity distribution at time ¢ and
vy € Rf is a zero-mean Gaussian white measurement noise
vector whose covariance is the symmetrical positive definite
matrix Ry € R¢*E,

The discrete-time system model is given by

O = ®)_10,1 +wyi

an

known as the state equation, in which ®;_; € R™*™ js the
discrete-time transition matrix and w), € R™ is a zero-mean
Gaussian white state noise vector whose covariance is the
symmetrical positive semi-definite matrix @ € R™*™. The
hypothesis of zero-mean Gaussian white noise with associated
covariance matrices is central in optimal estimation theory.
Other important although not necessary assumptions used in
this paper are that the process noise and the measurement
noise are not correlated, i.e. E[wku{] = 0 for all k, and that
both process and measurement noise covariance malrices are
diagonal with equal and constant elements, or Q0 = pz,Im
and Ry, = p2l,, with p? and p? representing, respectively,
process and measurement noise covariances. The validity of
these hypotheses depends on several factors including the
completeness of model structure. For instance, the elements
of Q@ are affected by system model fidelity in describing the
physical phenomena. On the other hand, assuming a diagonal
R, implies negligible crosstalk.

Variations of the system do not come from its dynamics, but
from exogenous reasons. The transition matrix is the identity
matrix [3], characterizing the random walk model. With (10) and
(11), the state-space representation of the system is complete,
and the extended Kalman filter can be readily implemented.

There are several forms to present the filter equations; the one
below is based in [10], as follows:

60 =160, C12)
PO =@, P 0T |+ Qis (13)
&Ef) 255:) + Gy [‘Dk —hg (&i_))jl (14)
P = [1-caf (507)] PO (i5)

G =P{7HT (87)
x [H (687) POHT (67) + Rk]_l . (16)

Equations (12) and (13) constitute, respectively, the state es-
timate propagation and the estimation error covariance matrix
propagation, whereas (14)-(16) represent the state estimate up-
date, the estimation error covariance matrix update, and the
Kalman gain matrix, respectively. With information about the
initial conditions (t) at t = 0 and its associated error covari-
ance Py, (12) provides the best estimate for the state based on
previous information embedded in &it)l until the next set of
measurements is available; this prediction is then corrected by
(14) after processing new data.

Authorized licensed use fimited lo: UNIVERSIDADE DE SAO PAULO. Downloaded on July 13, 2009 at 00:41 from |EEE Xplore. Resirictions apply.



TRIGO ¢t al.: EIT USING THE EXTENDED KALMAN FILTER

1V. NUMERICAL SIMULATIONS

A. FEM Meshes

In the dynamical approach via extended Kalman filter, con-
ductivity distribution estimation is a recursive procedure. This
paper does not intend to drastically improve image resolution
but rather estimate absolute conductivity in a wide range in some
major regions and use it for the purpose of setling and control-
ling air volume and pressure delivered to patients under artificial
ventilation. Under such circumstances, estimates of absolute
conductivities in five regions in a 2-D image provide sufficient
information to allow a reliable evaluation.

From the clinical point of view, the major regions this paper is
concerned with, named ROIs, would approximately correspond,
in a real situation, to the areas occupied by left and right lungs,
heart and other tissues such as backbone and fat around thorax.

From the engineering point of view, any reduction in the di-
mension of the estimation problem as a consequence of associ-
ating elements in ROls helps improving the speed of the compu-
tational process. Also, solution stability tends to improve [3]. In
practice, element-association consists in using an average con-
ductivity for all the elements that pertain to the same region of
interesL.

For numerical simulations, two different meshes were used.
A coarse mesh discretization, as in [12], containing m = 32
triangular elements and s = 25 nodes (from which £ = 16 cor-
respond to the electrodes at the boundary) as shown in Fig. 1(a),
and a finer mesh, similar to that presented by [13], withm =
269 triangular elements, s = 157 nodes and £ = 16 electrodes,
see Fig. 1(b).

In order to evaluate the performance of the proposed algo-
rithm, the 32 elements of the coarse FE mesh were associated
in 16 ROIs, each region with two neighbor elements. With a
finer mesh, it is possible to associate elements in regions whose
contours resemble real structures inside the thorax. The 269 el-
ements of the finer mesh were associated in eight ROIs that
roughly resemble anatomic structures.

B. Simulation Methods and Parameters

After the discretization of the domain in a FE mesh, the sim-
ulation methodology is the following: 1) Adopt a conductivity
distribution ¢ € R™ that represents typical pulmonary condi-
tions, according to data stated by [8], [14]; 2) Apply p linearly
independent current patterns, as in (4), to the 16 nodes repre-
senting electrodes and solve the forward problem through (3) to
obtain nodal voltages; 3) Add zero-mean Gaussian white noise,
with standard deviation 7.5% (coarse mesh) or 5% (fine mesh)
of the maximal calculated voltage for each simulation. Com-
puted voltages in 2) plus noise represent “measured” voltages.
Zero-mean Gaussian white noise is generated through a rou-
tine from [15]; 4) Assuming a clinically acceptable uniform ini-
tial distribution g, use “measured” voltages calculated in 3)
for each current pattern as observation data for the extended
Kalman filter, (12)—(16), and estimate the conductivity distribu-
tion o. The above-described procedure characterizes a dynam-
ical situation in the sense that a step function change on the ab-
solute conductivity distribution has to be tracked.

s

Fig. 1. (a) Coarse FEM mesh with m: = 32 elements and s = 25 nodes used
on numerical simulations. Numbers in bold face indicate each ROI formed by
two adjacent elements; (b) fine FEM mesh with 2 = 269 elements and s =
157 nodes used on numerical simulations (Note: This representation is mirrored
according to clinical tomography patterns). The eight ROIs are: ULL—upper left
lung; LLL—lower left lung; URL—upper right lung; MRL—middle right lung;
LRL—lower right lung; heart; backbone; and other tissue.

The parameters used on numerical simulations are given on
Table I. An initial uniform conductivity o¢ = 1.0 (2m)~! is as-
sumed for the 16 ROIs of the 32-element mesh. For the 269-¢l-
ement mesh with eight ROIs, the vector of expected conductiv-
ities was chosen in order to reproduce the normal pulmonary
condition and two levels of severity of an anomaly known as
atelectasis on the lower right lung. The initial uniform conduc-
tivity &¢ = 0.2 (Q2m)~! is close to the average value for human
tissues inside the thorax. Acronyms B, H, ULL, LLL, URL,MRL,
LRL, and OT stand, respectively, for backbone, heart, upper left
lung, lower left lung, upper right lung, middle right lung, lower
right lung, and other tissues.

All simulations were carried on an 800-MHz personal com-
puter with 132 Mbytes of RAM.

C. Results From Numerical Simulations

Time-response behavior on simulations 1 and 2 for the 32-el-
ement mesh with 16 ROIs are shown in Figs. 2(a) and 3(a). On
simulation 1 the estimation error is 4.3% of the maximal con-
ductivity value, and the convergence is achieved in about 6 s, or
180 iterations.
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TABLE |
PARAMETERS FOR NUMERICAL SIMULATIONS
Simulation. 1| 2 3 [ 4 | 5
MESH/ROIs 32-element/16 ROIs 269-element 8/R0Is
B=010 | - 0.10 | [ 0.10 7
H=0.58 0.58 0.58
0.20 ULL = 0.080 0.080 4.080
. 1 0.80 LLL = 0.087 0.087 0.087
Expec. cond. &y (Im) 1.40 URL = 0.077 0.077 0.077
0.60% MRL = 0.083 0.083 0.083
LRL = 0.091 0.14 0.50
| OoT=o02 | | 020 | | 0.20
Meas. noise (%) } 7.5 5
Po(xIro1,) 25 0.2
Q(x1ro1s) 55e " 3e°
R(x ) 1e”” 5e”
Init. conduc. og * 1.0 0.2

t adopted conductivity for 13 ROIs

plus additive noise
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o

(a) Simulation Nr. I: absolute conductivity in 16 ROIs with
measured” voltages standard deviation 7.5% of the maximal voltage
calculated through the FEM. The initial conductivity o is set to 1.00 +additive
noise for all regions, and the objective vector is &5 = [0.10 0.80 1.40 0.60
(13 regions = background)]” . The estimation error is < 5% of the maximal
conductivity value; (b) normalized residual for simulation Nr. 1.

On numerical simulations, the expected conductivity distri-
butions are known. Then, it is possible to verify if the succes-
sive estimates converge to the desired vector. However, in real
situations, convergence for some vector does not imply that this
vector is the right one. For instance, estimates could “converge”
for a solution without clinical meaning.

One way to check if the convergence is actually occurring is
analyzing the observation normalized residual. The normalized
residual is the difference between effectively observed values

! std. dev. of zero mean Gaussian white noise in % of max. voltage calculated through MEF

reg.2/elements 3,4 e

T reg.9/elements 17,18 --

£ other 13 regions —_
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Z 08 ,
(53
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g H o
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(b)

Fig. 3. (a) Simulation Nr. 2: same conditions as in Fig. 2(a), except for a
decrease in the variances of the initial error covariance matrix to show its

influence on the output. The convergence to the expected vector is slower;
(b) normalized residual for simulation Nr. 2.

(measured voltages), and the values calculated for the same ob-
servation using the state estimated by the filter [16].
The normalized residual for the kth iteration is given by

1t -
{7 21 lv(or) — vk(ak)]j}
ry =
Pv
where £ is the number of electrodes and p,, is measurement noise
level standard deviation. Convergence is considered satisfactory

when E[r,] = 0 during all the estimation period, and —3p,, <
7, < 3p,. The convergence based on the adopted criterion is

, k=1,2,... (A7)
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Fig.4. Simulations 1 and 2—Kalman gain matrix spectral norm.
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Fig.5. Simulation 5—absolute conductivity for dense arelectasis on the lower
right lung. The estimation error is < 7% of the maximal conductivity value.

achieved for simulations 1 and 2 according to Figs. 2(b) and
3(b).

The initial estimation error covariance matrix Fy is chosen
to indicate the confidence interval of the initial state aq. The
measurement noise covariance matrix I? is defined by the mea-
surement noise. The state covariance matrix ! prevents matrix
Py, from getting too small, keeping the filter sensitive to new
information [18].

For the 269-mesh with eight ROIs, voltages calculated
through the FEM were corrupted by zero-mean Gaussian
white noise whose standard deviation was 5% of the maximal
voltage. Further simulation parameters are given on Table I.
Time-response behavior on simulation 5 is given in Fig. 5;
convergence to the expected vector &y, is achieved in about 120
iterations, at a rate of four iterations/s. A surface plot for the
300th iteration state vector of simulation 5 is shown in Fig. 6.
The anomaly, dense atelectasis, was properly identified within
7% accuracy.

YThe subscript k of ¢}, and R; is dropped since the matrices are admitted
constant.
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Fig.6. Absolute conductivity distribution—eight ROls—lower right lung with
dense atelectasis.

D. Discussion

The error covariance matrix Py is affected by the statistical
parameters of the system disturbances as reflected in the com-
ponents of the covariance matrices () and R, as shown by (13),
(15), and (16). Higher values in components of () indicate that
either the system is driven by stronger state noise or that the
adopted model fails to represent system dynamics [10], {11].

The effect of R on the error covariance matrix Py can be
evaluated through

P = PO 1T (60) R (50)] a9)

obtained from the application of the matrix inversion lemma
f11] and proper manipulation of (15). Larger measurement
noise, indicated by higher variances, causes the error covariance
matrix P, and the Kalman gain matrix Gy, (16), to decrease.

The influence of the initial error covariance matrix I’y on the
behavior of the algorithm is not crucial. When no a priori infor-
mation on the parameters to be estimated is available, and P, is
arbitrarily chosen, its influence is relevant only during the first
iterations. After those few iterations, the filter properly adjusts
matrix Pj. For instance, on simulations 1 and 2, the initial es-
timation error covariance matrices, Py, were selected with vari-
ances (elements of the main diagonal) 25.0 and 2.0, respectively,
without altering matrices Q and R. Figs. 2(a) and 3(a) show that,
for the same simulated time, convergence is slower on simula-
tion 2. On simulation 2, matrix 2 prevails over (7, and, at each
iteration, filter correction provides a smaller decrease of the es-
timation error.

When F, is higher, estimate corrections during the first itera-
tions are increased. However, the effect of the arbitrarily chosen
P, is gradually suppressed. Fig. 4 presents the spectral norm of
Kalman gain matrix Gy, for simulations 1 and 2. The spectral
norm is defined as the largest singular value of a matrix. This
can be used as a “measure” of the corrections on the state on
each iteration. Observe that, after 8 s, the norms are practically
identical, regardless of P;.

On the smaller mesh, the purpose of associating elements in
ROIs is to improve the stability of the filter. On the larger mesh,
the association of elements has two purposes: To improve the
stability of the filter and to compute accurate average conduc-
tivity of specific regions of the lung. These average conductiv-
ities can be used to adjust ventilators on ICUs. The choice of
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Fig. 7. FE mesh with m = 182 elements (32 electrodes) and s = 156 nodes
used with experimental data: (a) ROIs used to identify the electrodes; (b) ROIs
used to identify the glass object.

an initial conductivity distribution, &, is not totally arbitrary.
Without a clinically reasonable choice, the convergence will
take longer and the local minimum of the error function may
not correspond to an acceptable conductivity distribution.

The method can be extended to account for cyclic changes of
the shape of the torax and the lung areas during ventilation. On
each iteration a different FE-mesh can be used. This research is
currently being carried on.

V. EVALUATION WITH EXPERIMENTAL DATA
A. FEM Mesh

The performance of the proposed algorithm to estimate resis-
tivity distribution and electrodes contact impedances with ex-
perimental data was evaluated using a FE-mesh containing m =
150 triangular elements, £ = 32 elements with four nodes, and
s = 156 nodes, as shown in Fig. 7(a) and (b). The 32 elements
with four nodes represent electrodes, modeled using the simpli-
fied complete model [1].

B. Experimental Methods and Parameters

The phantom is a 235-mm-diameter cylindrical container
with 32 rectangular 12-mm-wide brass electrodes with equal

Fig. 8. Schematic representation of the test rig containing 32-brass electrodes
and a 62-mm glass object.

gap between them. The container was filled up to 26.5 mm
with a saline solution of concentration 0.23 g/l of NaCl. A
current generator, as described in [17], was used to inject
bipolar current patterns with frequency 25 kHz and amplitude
2 mAp,,. Voltages were measured through a multimeter HP
34401 A. Measured data were processed on an 800-MHz
personal computer with 132 Mbytes of RAM.

Current information and measured voltages were used by the
proposed algorithm to estimate electrode contact impedances,
and to identify the position of a 62-mm-diameter glass object,
which was immersed in the medium, see Fig. 8, in two phases.

First, the Kalman filter is used to estimate the average un-
known resistivity of the saline solution and electrode contact
impedances. The 182 elements of the mesh were associated in
34 ROIs. The contact impedance of each electrode was consid-
ered a parameter 10 be estimated, whereas the remaining 150
elements were associated in two ROIs with homogeneous resis-
tivity distribution, as shown in Fig. 7(a). Adjacent current pat-
terns were injected to the phantom without the glass object, and
voltages were measured. Resistivities of the 34 ROIs were de-
termined through successive runs of the extended Kalman filter
until each component of the state-vector presented less than 1%
discrepancy when compared to the previous run. The covariance
matrices Py, @, and I? were set, respectively, t0 3.5 x 1071 I34,
7.8 x 1079134, and 2.5 x 107513,.

Keeping estimated electrode contact impedances constant,
Kalman filter is used 1o estimate resistivity distribution of the
medium. A cylindrical glass object is immersed in the phantom,
without changing the height of the saline medium. This repre-
sents a step function change on the resistivity distribution of the
medium. The 150 internal elements of the mesh were associ-
ated in 16 ROIs as shown in Fig. 7(b). No a priori knowledge
about the location of the glass object inside the phantom was
used to build the ROIs. Diametrical current patterns were in-
jected and voltages measured. The covariance matrices Py, (2,
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TABLE 11
ELECTRODE CONTACT IMPEDANCES {§2m?)

Electrode 1 2 3 4 5 6 7 8

Impedance 0.0167 | 0.0260 | 0.0132 | 0.0155 | 0.0211 | 0.0271 | 0.0146 | 0.0195

Electrode 9 10 11 12 13 14 15 16

Impedance 0.0255 | 0.0100 | 0.0131 | 0.0098 | 0.0088 | 0.0179 | 0.0091 | 0.0143

Electrode 17 18 19 20 21 22 23 24

Impedance 0.0157 | 0.0164 | 0.0185 | 0.0097 | 0.0190 | 0.0180 | 0.0125 | 0.0030

Electrode 25 26 27 28 29 30 31 32

Impedance 0.0073 | 00152 | 0.0181 | 0.0249 | 0.0272 | 0.0237 | 0.0282 | 0.0201
and R were set, respectively, to 3.5 x 107515, 7.8 x 10' 114, 1200 z ' T f ; T
and 2.5 x 1073 75,; all the components of the initial resistivity C i
vector op were set to 1.0 (£m). Kalman filter is used to track 000 2
the change on the resistivity distribution of the medium. . : - - _

The two-phase identification procedure is justified since, & 800y : : '/ e : , P
when matrices (Q and I are kept constant, the filter can be 3 wol T T |
interpreted as a deterministic least-squares recursive minimiza- % : /, - LT :
tion method [18]. Each Kalman filter iteration is a contraction 2 a0l ST ) ]
mapping, X, which contracts the trace of I’ matrix - o

& = K(éx-1) (19) 200y T
and & € S, where & is a metric space. The Contraction Map- 0 '“‘m'“" 7400
ping Theorem states that the filtering process will converge to
a fixed-point, 6* [19]. Estimating resistivity distribution while
keeping contact impedances constant is also a contraction map- 08 ‘ i ‘ i i i
ping, K;, on a subspace of S, &;. Estimating contact imped- : : :
ances while keeping the resistivity distribution constant is a con- 07y ; T
traction mapping, K2, on another subspace of S, S;. Notice that 0.6 _—
Sis 8y |J Sz and 81 () Sz is a null space. The sequence of these o5l |
two estimation procedures, K1 and then Ko, is necessarily a con- _
traction mapping, K2(K1(+)) % 04— 1
(73

Or = K2 (K1(01-1)) 0 e |
on the original metric space S. The contraction mapping the- P O Y (R |
orem states that the filtering process will converge to the same ' ! i ;
fixed-point, &*, which is also a minimum of the original error 0 H‘W‘W &W&W‘
functional. Therefore, phase one should be followed by phase 01l i
two. 0 200 400  BOD 800 1000 - 1200 1400

In the present experimental procedure, the estimation method time (s)

K with 34 ROIs was initially applied. This is appropriate since (b)

the saline solution has uniform resistivity distribution and it can
be represented by two ROIs.

With the knowledge of electrode contact impedances, the es-
timation method X1 is used with 16 ROIs. According to the two
phase identification procedure, one should iterate to solve for
contact impedances, K. Provided that placing the glass object
in the saline solution without changing the liquid level, electrode
contact impedances present no significant changes. Under these
conditions, K2 was skipped.

C. Experimental Results

The estimated electrode contact impedances are given on
Table II. The mean value is 0.0171 2m?, and the standard
deviation is 0.006 Qm?. These values were obtained after
30 successive runs of the algorithm, or 960 iterations (each
“run” corresponds to 32 patterns of excitation), at a rate of

Fig. 9. (a) State-vector evolution for phantom with glass object.
(b) Normalized residual—phantom with glass object.

4 iterations/s. Convergence was achieved according to the
criterion stated in Section IV-C.

State-vector evolution curves for the phantom with the glass
object are shown in Fig. 9(a). At about 100 iterations, or 25 s,
it is already possible to identify, on two regions represented by
the curves with steeper gradients, resistivity values twice higher
than on the other regions. Those two regions, 5 and 9, enclose
the glass object. Region 9 presents higher resistivity than re-
gion 5 because most of the glass object area belongs to region
9. Fig. 9(b) shows that the residuals fulfill the requisites estab-
lished on the convergence criterion stated in Section 1V-C. A
3-D plot of the state-vector on the 1280th iteration is given in
Fig. 10.
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Fig. 10. Phantom with glass object—absolute resistivity distribution—
contour plot for the 1280th iteration state vector.

D. Discussion

Initially, electrode contact impedances were estimated
together with the average uniform resistivity of the medium.
The estimation procedure used was X.

A glass object was immersed in the medium. The estimation
of resistivity distribution of the saline solution was performed
keeping the contact impedances constant. Although full conver-
gence takes a long time, because the step function modification
on resistivity is large, after a few iterations the position and di-
mension of the glass object are noticeable.

The alternation of the estimation procedures through K, and
Ko, as described in Section V-B, was relaxed in our experi-
mental methodology. What allows us to repeat Ky several times,
skipping Kg, is the fact that variations on contact impedances
are much slower than variations on the resisitivity of the medium
when the glass object is immersed, provided that the concen-
tration of the solution and liquid level are kept constant. If the
contact impedances changed faster, then alternating X3 and K,
would be necessary.

The association of elements in ROls is used for the sole reason
of filter stability. The sensitivity matrix is better conditioned
with a small number of ROIs.

VI. CONCLUSION

This paper has investigated an alternative approach to solve
the dynamical resistivity estimation inverse problem in EIT
through the extended Kalman filter. The algorithm was able to
track a step-function change on the absolute conductivity distri-
bution both with simulated and experimental data. Conductivity
estimates obtained with simulated data presented less than
7% discrepancy from the expected values and corroborate the
conclusions in [4] and [5], which state the improved accuracy
of the extended compared to the linearized Kalman filter.
In order to obtain wide-range accurate estimates to be used
as control parameters for ICU lung ventilators and keep the
algorithm numerically stable, we associated elements in ROls
and adopted a clinically acceptable initial uniform conductivity

distribution. This way, we avoided the smoothing effect that a
Tikhonov regularization has on the estimated images.

Experimental data from a phantom were used to evaluate
the performance of the algorithm. A two-phase method of
estimating electrode contact impedances and the resistivity dis-
tribution of a medium was proposed. Considering the problem
of estimating electrode contact impedances separated from the
problem of image estimation has numerical advantages and
the final result is necessarily the same as estimating both sets
of parameters together. This is shown using the Contraction
Mapping Theorem. The proposed two-phase method is par-
ticularly suitable for applications in which electrode contact
impedances present large variations as, for instance, on lung
condition monitoring.

The image rate of 4/s is not satisfactory for real-time con-
trol of an ICU lung ventilator. However, the image rate can
be improved through hardware and software modifications, for
instance, using a faster processor or parallel computing. Fur-
thermore, the limitation on the number ol ROIs to keep algo-
rithm stability diminishes the spatial resolution of the estimated
images.
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Dynamic Imaging in Electrical Impedance
Tomography of the Human Chest with Online
Transition Matrix Identification

Femando Silva de Moura*, Julio Cesar Ceballos Aya, Agenor de Toledo Fleury, Marcelo Britto Passos Amato,
Raul Gonzalez Lima

Abstract—One of the electrical impedance tomography ob-
jectives is to estimate the electrical resistivity distribution in a
domain based only on electrical potential measurements at its
boundary generated by an imposed electrical current distribution
into the boundary. One of the methods used in dynamic estima-
tion is the Kalman filter. In biomedical applications, the random
walk model is frequently used as evolution model and, under
this conditions, poor tracking ability of the Extended Kalman
Filter is achieved. An analytically developed evolution model
is not feasible at this moment. The present work investigates
the identification of the evolution model in parallel to the EKF
and updating the evolution model with certain periodicity. The
evolution model transition matrix is identified using the history
of the estimated resistivity distribution obtained by a sensitivity
matrix based algorithm and a Newton-Raphson algerithm. To
numerically identify the linear evolution model, the Ibrahim Time
Domain Method is used. The investigation was performed by
numerical simulations of a domain with time varying resistivity
and by experimental data collected from the boundary of a
human chest during normal breathing. The obtained dynamic
resistivity values lie within the expected values for the tissues of
a human chest. The EKF results suggest that the tracking ability
is significantly improved with this approach.

Index Terms—Electrical impedance tomography, Kalman filter,
parameter estimation, evolution model, Ibrahim Time Domain
Method

[. INTRODUCTION

LECTRICAL Impedance Tomography (EIT) is an imag-
ing method of the resistivity distribution within a domain.
The images are estimated from a set of electrical potential
measurements at the boundary of a domain, which are caused
by applying current through electrodes fixed at its boundary.
Electrical Impedance Tomography have a wide range of
applications [1]. It may be used to detect intemal hemorrhage
and breast cancer, for instance. Examples of non-clinical
applications are the visualization of multiphase flow, detection
of minerals in the soil, soil pollution monitoring, and crack
detection on mechanical components.
The application in mind in the present work is lung mon-
itoring. Lung condition may change dramatically within few
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respiratory cycles in patients under mechanical ventilation in
Intensive Care Units (ICU), as in pneumothorax occurrences
[2], [3]. Furthermore, inadequate lung ventilation in ICUs may
cause barothrauma or hypoxia.

One of the promises of EIT is the continuous monitoring
of lung hyperdistension and/or collapse during daily changes
in the parameters of mechanical ventilator [4]. In order to
do so, EIT has to accurately track fast changes of lung
impedance that occur within the breath. Another promising
application of EIT is the detection of complications associated
with risky procedures at the bedside, like the occurrence of
pneumothorax during recruiting maneuvers'. Since conven-
tional clinical parameters are insensitive to detect the initial
formation of pneumothoraces, EIT could be of great help
by tracking the sudden and localized changes in thoracic
impedance happening under this circumstance.

Also, as already pointed out by [3] and [5], the information
provided by absolute images could be of great help for any
EIT algorithm of pneumothorax detection. In fact, the combi-
nation of absolute images, showing the localized increment in
impedance, with fast tracking difference images, showing the
regional decrease in alveolar ventilation, seems to be necessary
for an ideal pneumothorax detector.

The EIT problem can be seen as a state observation problem
within the control theory framework. Among several absolute
EIT algorithms, the Extended Kalman Filters (EKF) have been
investigated due to its ability to track the state of time varying
non-linear systems. The EKF is a Bayesian estimation algo-
rithm in the sense that it minimizes the conditional variance
of the estimation error.

The first work that solves the EIT problem using the Kalman
Filter to track temporal variations of resistivity is Vauhkonen’s
Ph.D. thesis [6]. In this work, the author implemented the
linearized Kalman Filter to estimate the state, the resistivity
distribution of a circular domain. Static algorithms, which do
not take into account system dynamics, do not use information
from past measurements. Kalman filters use past information
through the time evolution equation and through covariance
matrices.

In [7], the smoothing extension of the Kalman filter is imple-
mented for estimating time-varying impedance distributions.
They also discuss how to introduce prior spatial information

'Recruiting maneuvers are temporary use of high pressures during 1-2
minutes, applied through the mechanical ventilator, and intended to recruit
a large population of previously collapse alveoli.



in the state space formulation. The authors argue that without
the need of online estimations. the filter can use past and future
measurements.

The resistivity spatial resolution decreases if the choice
of the reference state for the linearization, in the linearized
Kalman Filter, is far from the real state. To minimize this
problem, in [8] the EKF was implemented. The advantage
of EKF is that the linearization is performed at every step,
using the last state estimation as reference. One disadvantage
of the EKF is the increase of computational time due to the
Jacobian matrix computation at every time step. The Tikhonov
regularization was used in this work and they show that EKF
has better spatial resolution and smaller position errors of
objects than the linearized version. In [9], prior information
about subregions with known resistivity is included. The
results show that the prior information improved tracking
ability of EKF,

In [2] and [10], the electrode contact resistivities and the
domain resistivity distribution were estimated using the EKF in
two phases. In the first phase skin/electrode contact impedance
is estimated while the domain resistivity is not updated. In
the second phase the domain resistivity is estimated while
the skin/electrode contact impedances are not updated. The
tracking ability was improved since each EKF was adjusted
independently.

The EKF requires a state evolution model. All of the above
cited works adopted the Random Walk as state evolution
model. However, poor tracking ability of the Kalman filters
resulted for lung monitoring applications. In [11], a procedure
called Interacting Multiple Model, which uses three EKFs
running in parallel, was implemented. Each EKF was running
with different evolution models, namely, Random Walk, First
Order and Second Order. The three resulting images were
weighted at the end of the iteration according to a probabilistic
criterion.

The present work investigates whether the tracking ability of
EKF is improved if the evolution model is frequently estimated
using images obtained by a sensitivity matrix algorithm. Once
a set of images obtained from the sensitivity matrix algorithm
is available, the  transition matrix of the evolution model is
estimated by the Ibrahim Time Domain Method (ITD) [12],
[13]. A preliminary version of this work has been reported
[14].

II. THEORETICAL BACKGROUND

A. The Problem Formulation

Considering the domain a closed region I', with a stationary
charge distribution, pure isotropic resistivity media p(z, y) and
excited by a steady current flow, one can describe the electrical
potential W(z,y) in T by the generalized Laplace’s equation

v‘(%v\y) =0, (1)

with the following Neumann boundary condition at 91" and
complete electrode model [15]

19V
/ ——dA = J;, on the i-th electrode 2)
Jor., P on
19v
~—— =0, elsewhere in I 3)
pon
1 0¥
\I}+zi__h:Ui7 (4)
pon
where JI',, is the part of the boundary under the i-th elec-
trode?, :+ = 1....,¢,  is the OI’s external normal versor,

J; is the injected current, z; is the skin-electrode interface
impedance and v; is the measured potential.

The direct problem solution is obtained when one knows
p(z,y) and J; and finds ¥(z,y). The inverse problem solu-
tion is obtained when one finds p(z,y) that caused known
(measured) v; with known J;. In practice only a finite number
of electrical potential measurements is made through the
electrodes, so the Dirichlet boundary condition is incomplete.

In EIT, we are interested in the inverse problem. A common
way to solve the inverse problem is by using algorithms
that solve a sequence of associated direct problems, since an
analytical solution for the inverse problem, when shape of the
boundary is arbitrary, is unknown. Unfortunately, the operator
associated to the problem is ill-posed.

In this paper, the partial differential equations were approx-
imated by the Finite Elements Method (FEM) and the domain
was discretized with triangular linear elements® with constant
resistivity. The direct problem solution is found by

vor = [Y ()} ey, ©)
where c; is the j-th current pattern injected ( = 1,...,p),
Y (p) is the global conductivity matrix, p is a vector con-
taining the finite elements resistivities and v}, € R® is the
nodal electrical potentials on the nodes which represent the
electrodes*, for more information see [16], [17], [10].
In this paper, the j-th current pattern is composed by
a injecting electrical current through a pair of electrodes,
following the rule

_ [ +C
s-{ e

where C is a scalar value.

i=j
i=mod(j+3,32)+1 * O

B. The Extended Kalman Filter

The Kalman Filters are state space stochastic observers. The
state in the present work is a vector composed by the the
resistivity of each finite element of the domain. Therefore, the
following equations describe the linearized observation model
and the discrete time evolution model of the system

vi(px) = Vi(prp—1) + Hilpr — prpp—1l +vie (D
Prji—1 = Pr—16Pp1 + Wi, 8

2The electrodes are numbered in clockwise order along the boundary of
the domain cross section.

3Triangular elements represent pentahedrical volumes in the present work.

41n fact, the solution is obtained for all nodes and only the nodes of interest
are assembled in this last vector.



where ®;_;; is the evolution model’s transition matrix,
v € R®P is a vector composed by the measurements at
each electrode for all current patterns, H . is the observation
matrix> linearized aboul the last propagated state Prik—1
ov)
1 ar
Vor dp

a
Vi = y Hk=

)

p
ngc

p
v
ar op

P=Py k-1

wy, and vy are uncorrelated zero-mean Gaussian white noises

with covariance matrices Q. and I?;, respectively. The random

variables in these equations take into account model uncertain-

ties, including domain shape variations and modeling errors.
1t is convenient to define a nominal measurement

meas. &

meas.
zy X

Vi

(10)

where v™¢%5- is the recent measurement vector at each elec-
trode for all current patterns, so the observation model can be
written in standard form

— Vk(Prpp—1) + Hiprje-1:

(an

and the discrete time EKF for t = kT, k = 1,2,... can be
described by the well known set of equations

zk(py) = Hipy + v,

(12)

Pijk-1 = Pho1,kPi1

Pyt =¥k 1k P ®p_;  +Qp (13)
Gi =Py H{ [H Py Hy + Ry ™! (14)

Tk =z — Hypyy—y = v — Uk(Pk|k—1)
(15)
Pr = Prjr—1 + GrTk (16)

a7

where (12) and (13) represent the time propagation phase and
(14) to (17) represent the update phase [11]. The vector p is
the state vector, P is the estimation error’s covariance matrix,
r is called observation residue and G is the Kalman gain
matrix.

P =[I - GeHi]Pyji—1

C. Observation Model for Experimental Data

Even with the complete electrode equations and with a fine
mesh, the finite element forward problem solution, given by
(5), will be slightly different from the real data collected
by an experimental tomograph with the same geometry and
resistivity distribution due to simplified modeled phenomena
and hardware nonlinearities. This difference is more evident at
electrodes that inject current and measure electrical potentials
at the same time. Therefore, the observation model is further
modified for this case. The intention here is to obtain a close
to zero mean random noise.

Let v2%° be a set of measurcments collected from an
experimental tomograph, and assume the resistivity distri-
bution p,.; is known for a while. Also, let v, 7" be a

ref.
set of electrical potentials obtained by solving the forward

5The observation matrix is obtained by adjoining the Jacobian matrix of
the nonlinear equation (5), for each current pattemn c;. For details, see [16],

[11].

problem (5), using the same reference resistivity distribution,
which must be properly converted to the discrete mesh. It is
convenient to define the model-experiment discrepancy by

meas.

E(pref) = vre].

o (19)
which can be understood as a persistent bias between the real
measurements and the observation model. This discrepancy
can be considered as the mean of the observation noise vy,
provided p,., remains stable during a complete observation
interval. Using this hypothesis, one can define a new random
variable ¢, = vy — €(p,.s), which is near zero-mean noise.
Substituting into (11), the observation model becomes

zi(pr) = Hipy + (e + €(Pres)- (19)

This equation now is in closer agreement with the hypothesis
of zero-mean noise used to develop the set of equations (12)
to (17). With this model, the observation residue becomes

Tk zzzeas. - (Hkpklk——l + E(pref))

= ,Uzleas. - E(pref) - Uk(pklk—l)'

(20)

D. The Evolution Model

The EKF requires a transition matrix ®_, i, which is part
of the state evolution model. The usual model used in EIT is
the random walk, which is given by ®,_, , = I, the identity
matrix. Using this model, (8) becomes

(2N

implying in a purely random behavior along the time. This
model tends to slow the Kalman filter convergence.

In this paper, the dynamics of ventilation and perfusion
inside the thorax will be represented by a second order
homogeneous set of ordinary differential equations (ODEs).

Mj(t) + Cp(t) + Kp(t) =0

Pr = Pr—1 T Wi,

(22)

The evolution model required in Kalman filters is a set of
first order ODEs. Therefore, the size of the state must be
duplicated, which means that the state vector for the remaining
of this work have dimension 2n, where n is the number of
finite elements representing the domain, and will be denoted
by 5.8

i Ap(t) (23)
0 I . (t)
A=| .Mk —Mmic } » Pl = { o) ]
(24)

The transition matrix is estimated in this paper through the
Ibrahim Time Domain Method (ITD). A detailed description
is out of our scope, however it can be found in [18], [12],
[13].

The transition matrix can be computed using

D = XH(XTY, (25)

It is worth to point that the Kalman filter equations will also have its
matrices and vectors augmented to take into account the state augmentation.



where X consists of a time increasing sequence of stale
vectors, from discrete time k; to discrete time k; +m — 1 and
X1 consists of a time increasing sequence of state vectors,
from discrete time &; + 1 to discrete time k; + m.

X=[h Pun Pryym-1 | (26)
Xt =1{ Prs1 Priso Pram | @D
s [ Pk, ) 28
Pk lpk1+l} (28)

In practice, it is recommended to use m > 2n augmented
state vectors to form a least square solution. For this solution,
a pseudo-inverse of X is required and a Tikhonov regulariza-
tion is also necessary [18], [19]. The transition matrix & is
estimated according to the regularized least square solution

&= (XTXTYXXT +al) !, (29)
where o is the Tikhonov regularization parameter and I is
the identity matrix.

For the sequence of absolute images p;, a sensitivity matrix
algorithm was used [20] and the absolute images were approx-
imated through the addition of the resistivity distribution used
for the Taylor series expansion. The sensitivity matrix images
are underestimated (see [21] sec. 1.13), but the method is
robust, gives good localization of the objects with time varying
resistivity and, therefore, are used to estimate the transition
matrix. A Gaussian high pass filter was used as regularization.
The images resulting from EKF could also be used to compute
the transition matrix, but they take a longer time to become
informative.

With a certain periodicity, a new transition matrix can be
estimated in parallel with the EKF estimation. The periodicity
is problem dependent. In the present work, the transition
matrix is estimated only once.

I11. METHODS
A. Numerical Simulation

A finite element numerical phantom comprising a 300mm
diameter cylindrical domain, n = 6082 linear triangular
elements, ¢ = 32 electrodes, p = 32 current patterns and a
40mm diameter cylindrical object was developed. The object,
which has time varying resistivity, was placed in two positions:
at the center of the domain and 126mm distant from the center
of the domain.

Two different functions were used to represent the time
varying resistivity of the object. The first function, a ramp,
was used to generate the sequence of voltages vy, in discrete
time £ =0, ..., 1500, that will result in a sequence of images
obtained by the sensitivity matrix algorithm [20], which will
comprise the input data for ITD.

35.0 k<0
Pobject (k) = § 10 N Q.m 30)
Fect (k) { 10F+350 , k>0
Pelsewhere = 35.0Q0.m. (31)

The second function, a step function, at k = 0 was used
to generate the sequence of voltages that EKF will use as

measurements.
35.0 k<0
Pobject (k) = { 100.0 k>0 Qm (32)
flelsewhere — 35.000.m. (33)

With these two different functions, the EKF has to estimate
a step function using a transition matrix of a ramp function.
The ramp function was chosen due to its smooth behavior.
Gaussian noise was added to the electrical potential measure-
ments.

Another finite element mesh comprising a 300mm diameter
cylindrical domain, n = 514 linear triangular elements and 32
electrodes was used in the sensitivity matrix algorithm and in
the EKF. This mesh is substantially less refined than the one
used in the forward problem solution. These two meshes were
used to avoid inverse crime [22] and to reduce the size of the
state vector in the inverse problem.

Kalman filters require initial data about resistivity and
measurement errors. Examples of the initialization of Kalman
Filters in EIT are found in [6], {2], [10]. The procedure to
adjust the EKF parameters was done adjusting one parameter
at a time. The initial uniform resistivity pg = 60m was
chosen on purpose to overestimate the real resistivity. The
initial estimation error covariance matrix was chosen such that
Py = 10'1.

The Kalman gain matrix G is influenced by errors in H due
to wrong linearization states. Therefore, a relaxation factor -y,
was used in (14) according to

Gr = (P HY [H Py 1 HE + R, (34)
where -y is a relaxation factor defined by
01 , k<5
Y= 05 , k<8 , (35)
1.0 , k£>8

to avoid large oscillations of the initial state updates. The
authors are aware that y < 1.0 will result in a suboptimal
update on the first seven iterations but it is worth to use since
in the first iterations the H matrix will be computed using a
resistivity far form the real resistivity distribution and these
first updates can generate strong oscillations in the estimate
state.

In this work, R is a time invariant matrix, given by
R = (I, where § must be adjusted. By using a diagonal
structure, we are admitting uncorrelated measurements. The
parameter was adjusted taking into consideration the normal-
ized observation residue statistics as an index of performance.
This index is based on [2] and [10]. In this paper, it is given
by

e-p
o=y (36)

i=1
where 7;;. is the i-th element of the observation residue vector,
given by (15) and &; is the total standard deviation of the
observation uncertainty used as normalizing factor. In [2] and
[10] the normalizing factor used was the standard deviation of
the measurement noise. However, this uncertainty is not only



caused by the measurement noise but also by the observation
model errors. Modeling errors in the observation equation
effectively increases R [6]. For the simulations, ¢; = VR,
which takes also into account the observation model errors. It
is considered a satisfactory statistical convergence if E(7;) =
0, at least within a moving average window, and | 71 |< 3
within the same moving average.
Matrix Q. was updated following the rule
AP 0<k<3

Qk:{Qkfl » k>3 ,

to keep the filter open to new information {23]. The A parame-
ter was adjusted taking in account the estimated state evolution
and the quantity of artifacts on the images. A reduction of Q,
causes reduction of the tracking ability of EKF and increases
the spatial resolution.

(37)

B. Experimental Data

In order to test the proposed method, data collected from
a volunteer were used. EIT data were acquired using the
impedance tomograph Enlight (Dixtal, Sao Paulo, Brazil),
using 32 electrodes. The current pattern is the same of (6)
and the equipment has a signal noise ratio of 80dB. The data
was collected from a normal male volunteer, without records
of previous lung disease or smoking habits, and presenting
a normal radiograph. The volunteer was upright during data
collection, quietly breathing, with the electrodes placed at the
level of the thoracic plane crossing the Sth intercostal space.
For each current pattern (p = 32 and C = 5mA peak-
to-peak at 125kH z), differential potentials were measured.
Considering all current patterns, 1024 measurements were
obtained, composing the measurement vector v7****. Each
vector took 0.02 seconds to be measured in the hardware’.
The sampling interval of the experiment is Ts = 0.02s. A 2D
finite element mesh with 469 linear triangular elements was
built, with shape and size similar to the cross section of the
volunteer’s thorax.

Using the sensitivity matrix algorithm, 1700 measurement
vectors were used to generate the transition matrix. The initial
resistivity guess used in the sensitivity matrix algorithm was
a uniform resistivity p® = 4.00.m. With these images, the
transition matrix was estimated with (29), using o = 0.001.
Due to the damping effect of Tikhonov regularization, the
transition matrix computed was further adjusted by removing
the damping factor, without changing the frequency. This
can be done by converting its eigenvalues z to continuous
time by s = In(z)/Ts, removing the damping by s’ =
sign(imag(s)) | s | ¢ (z is the imaginary unit) and converting
back to discrete time by 2’ = exp(s'T,). Not all eigenvalues
were modified, but just those with | z |> 0.98. For these data,
14 eigenvalues were modified.

The reference resistivity p,..; must be known to estimate &
using (18). Since the resistivity distribution inside the thorax

TSince the hardware generates 50 sets of measurements per second, odd
frames can be used for running the Kaiman filter, while even frames are
being used to estimale a new transition matrix. The periodicity of updating
the transition matrix is limited only by the ITD method.

is unknown, the reference resistivity was considered to be the
resistivity that minimizes the cost function

IP =™ — v*"* (p)|I5 + 9l L(p)II3 (38)
1 200

= 200 AR (39)
k=1

where L is a high pass Gaussian filter and 7 is a regularization
parameter and ©™¢** is the mean measurement vector of the
first 200 measurements. This number was chosen because this
was the period of one ventilation cycle in the experiment. The
Gauss-Newton algorithm was used in this minimization [16],
with n = 6.0 x 1075,

The Kalman filter was adjusted following the same guide-
lines. The chosen parameters are: py = p,.r, Po = 10731,
XA = 1074, 44 is the same of (35) and R is a diagonal
matrix, with each element being ten percent of the total signal
variance.

I'V. RESULTS AND DISCUSSION
A. Results from the Numerical Simulation

The results will be presented in three parts. The first part
shows the estimation of the evolution model, the second part
shows the state estimation using the EKF and the third part
shows a comparison with the random model.

There are four sets of measurement data wvi, kb =
1,...,1500. Two measurement data use the ramp function,
one with the object at the center and one with the object off
the center. The other two data use the step function, one with
the object at the center and one with the object off the center.

1) Part I: Estimation of the Evolution Model: The sen-
sitivity matrix algorithm was used to generate resistivity
distribution images using the measurement data of the object at
the center and off the center, both with the ramp function. The
initial resistivity guess used in the algorithm was a uniform
resistivity p° = 35.0Q2.m. The chosen regularization parameter
for the high pass Gaussian filter in sensitivity matrix algorithm
was o, = 0.01, following the criterion described in [20]. With
these images, the transition matrices were estimated with (29).

Fig. t(a) shows the time history of two finite elements taken
from the medium region and from the object region, using
the estimated transition matrices. They were chosen because
they lie inside the object and medium areas respectively. The
objects resistivities became smaller than the true resistivities
after k = 708.

There is also an asymptotic behavior toward a limit resis-
tivity in the estimation. It is caused by the finite precision
measurements and the nonlinearity between electrical potential
changes and resistivity changes in the object, when there is
a large resistivity contrast between object and medium. This
behavior is caused by the sensitivity matrix algorithm and not
by the ITD method.?

8This saturation is due to the fact that if the object has high resistivity
compared 10 the medium resistivity, the electrical current density inside the
object is small and further increases of resistivity inside the object will not
change the electrical current distribution sufficiently to be measured at the
electrodes with finite precision. This asymptotic limit depends on the position
of the object relative to the electrodes and the difference between the medium
and the object resistivities. See [21] section 1.2
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Fig. 1. (a) Time history of the evolution model compared with the time
history of the true state; (b) Mean difference between the state evolulion
using the input data for the 1TD and the state evolution using the transition
matrix computed with the ITD method. The graph shows the mean difference
in thick lines and the mean plus or minus one standard deviation in thin lines.
Continuous lines represent the object off the center and dashed lines represent
object at the center. (c) Estimated state at k = 1500 with object at the center;
(d) Estimated state at k = 1500 with object off the center. Values in Q.m.

Since a regularization was used to estimate the transition
matrix, the input data to the ITD and the state history
computed by the transition matrix were compared to avoid
excessive regularization. They have small differences, as can
be seen in Fig. 1(b) which shows the mean difference between
the state history given as input data for the ITD method and the
state history computed by the transition matrix. This difference
index is given by

ek = P~ Pr (40)
where k is the discrete time, p* is the input image for the
ITD and p is the image obtained from the transition matrix

calculated by ITD.? The mean difference and its standard
deviation are given by the usual equations

1 n
er=—) e (41)
i=1
1 T ~
Oor =\| 7 > (e — &) (42)

i=1

where n is the size of ey.

Fig. 1(c) and Fig. 1{d) show the state at £ = 1500 using the
estimated transition matrix. The circle marks the correct object
location and size. The transition matrix was computed using
the regularization parameter o« = 1.0 to avoid instabilities in
the state evolution. Smaller values of o generated unstable
transition matrices in our tests.

The model used in this work is a discrete time second order
system with n degrees of freedom, so each pair eigenvalue-
eigenvector represents one mode of the evolution. Each mode
has a damping factor that depends on the magnitude of its
eigenvalue. If the magnitude is smaller than one, the mode is
stable, if the magnitude is one, the mode is critically stable, if
the magnitude is greater than one the mode is unstable. Con-
sidering magnitudes smaller than one, the smaller magnitude,
the faster the associated mode disappears as time passes.

Fig. 2(a) shows the magnitude plot of the transition matrix’s
eigenvalues for two different values of Tikhonov regularization
parameter «, with the object off the center. All eigenval-
ues have magnitudes smaller or equal one, configuring a
stable system. Increasing «, most of the eigenvalues have
their magnitudes reduced, which increases the damping. The
eigenvalues with magnitudes close to the unit are not heavily
influenced by a.

The dominant modes, those with larger eigenvalues in z
plane, have eigenvalues close to the real axis at 1.0 in the
complex plane and their associated eigenvectors represent the
position of the object, according to Fig. 2(b) to Fig. 2(e).
The correlation between the eigenvectors and the most recent
image was computed using the Modal Assurance Criterion
(MAC) [18] revealing that only the first three eigenvectors
have high correlation, M AC > 0.5, with the most correct
image. These three modes are the same modes that are asso-
ciated with the most insensitive eigenvalues to the Tikhonov
regularization parameter a changes. This result indicates that
the Tikhonov regularization helps to remove only the unim-
portant modes. Very similar results were observed when the
object is located at the center of the domain.

2) Part 2: State Estimation: The second part shows the
EKF state estimation using computed electrical potentials
measurements in agreement with the step change of resistivity
and the estimated transition matrix.

The chosen value for g with the object off the center was
B8 =104, since bigger values slowed down the convergence
and smaller values increased the estimation noise. However,
with the object at the center, the tracking ability could be

INote that these images are not augmented images B, so they belong to
R™.
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Fig. 2. (a) Eigenvalue magnitude plot of matrix & with object off the center
for two different Tikhonov regularization parameter. The smaller plot is a
detail of the first 300 eigenvalues; (b) eigenvector with eigenvalue magnitude
1.0; (c) eigenvector with eigenvalue magnitude 0.998; (d) eigenvector with
eigenvalue magnitude 0.993; (e) eigenvector with eigenvalue magnitude 0.772.

improved. The chosen value for the estimation with the object
at the center was 3 = 1075,

The chosen value for A with the object off the center
was A = 1073, since this allowed a good trade-off between
tracking ability and spatial resolution. Fig. 3 shows the esti-
mated state history and the normalized observation residue
for the data with the object off the center, Fig. 4 shows
the same graphs for the data with the object at the center
and Fig. 5 shows the estimated state at k = 300 using the
chosen parameters for each object position. One can note the
faster convergence when the object is at the center due to the
reduction of Ry.
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3) Part 3: Comparison with the Random Walk Evolution
Model: In this subsection the performance of EKF using
the Random Walk Model is presented. Fig. 6 shows the
state history, the observation residue and the state at iteration
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Fig. 5. Estimated state at k = 300. Values in Q.m. (a) Object oft the
center; (b) Object at the center. The circles mark the correct object locations
and sizes

k = 800 for the two different object positions with the Random
Walk model. The object was not visible at the center although
the observation residue lies within three standard deviation
range. It can be observed that there are many artifacts in both
images.

The convergence of EKF with the ITD estimated evolution
model when the object was at the center of the domain
happened after 25 iterations and when the object was off the
center happened after 200 iterations. The convergence of EKF
with the Random Walk evolution model when the object was
at the center of the domain occurred after 800 iterations and
when the object was off the center did not happened within
800 iterations. The tracking ability was accelerated 32 times
by the use of the ITD estimated evolution model when the
object was at the center of the domain and more than 4 times
when the object was off the center of the domain.

B. Results from the Experimental Data

In order to make resistivity changes more visible in
the results, a mean resistivity distribution was computed
by p = E{pi}, ¥ = 0,...,1700 and was subtracted
from each estimated state. The mean image is shown in
Fig. 7(a), which clearly shows the ribcage and the vertebral
column. The estimated resistivity values are in accordance
with [24] at 125kH z, namely, deflated lung 3.6300.m, in-
flated lung 9.17(2.m, bone (cortical) 47.93Q2.m, bone {can-
cellous) 11.89§2.m, heart 4.50€2.m, fat 40.87¢2.m and muscle
2.7200.m.

Fig. 7(b) and Fig. 7(c) show the time history of the estimated
resistivity variation around the mean image using the EKF with
the transition matrix and the noise model proposed in this work
in the lung region and outside the lung region. The oscillation
phase and period match with the volunteer breathing. The
maximum estimated resistivity variation in the lung region is
about 1.1€2./m, that is smaller than the results of [24], which
is about 5.5Q.m. A smaller variation was indeed expected
since the volunteer was upright during the data acquisition
and, at this position, the weight of upper part of the lungs
tends to compress the lower part, increasing the resistance of
the lower part to inflate. The 5th intercostal space, which is
the electrodes location in the experiment, is located near the
lower part, therefore inflation of this region is smaller than the
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Fig. 6. Results using the Random Walk model in EKF. Values in 1.m.
(a) Siate history, object at the center; (b) State history, object off the center;
(c) Estimated state at k& = 800, object at the center; (d) Estimated state at
k = 800, object off the center.

upper part and the resistivity variation is smaller. Fig. 7(d) and
Fig. 7(e¢) show the estimated resistivity distribution changes
at different moments of one ventilation cycle. The resistivity
changes in these images match with the lungs positions.

V. CONCLUSION AND FINAL COMMENTS

The results show that the ITD method can be used to
estimate the evolution model based on a sequence of images
obtained by a sensitivity matrix and a Newton-Raphson algo-
rithms. Although the resistivity distribution obtained by the
sensitivity matrix algorithm is underestimated, the tracking
ability of the EKF was improved when compared to the use of
the Random Walk model as the evolution model. The Kalman
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Filter is a state observer in Control Theory and should have
tracking speed higher than the phenomenon being observed.
The computational effort to implement the direct identifi-
cation of the transition matrix seems to be justified since the
tracking ability improved approximately thirty two times when
the object was at the center and more than four times when
the object was near the boundary of a cylindrical phantom.
The finite element method used in the observation model
can cause persistent bias in the computed measurements
due to discretization and skin-electrode contact problems. By

subtracting from v the model-experiment discrepancy, which
is the difference of time averaged measurements and computed
potentials, the image qualitatively improved considerably.

This is an evidence that the usual hypothesis of zero mean
noise on the observation model is not adequate. It was also
observed that observation residue to is indeed zero mean,
although it is periodic. This behavior indicates that the model
could be further improved.

The absolute resistivity values obtained for the tissues of
the human thorax lie inside the range of the expected values.
Even the peak-to-peak variation of the lungs resistivities is
within the expected range for a volunteer quietly breathing
and standing up. As already demonstrated during difference
EIT imaging analysis, fast and subtle changes in the dynamic
behavior pixels may be of great clinical interest. Pathological
conditions like lung collapse, lung hyperdistension or cyclic
recruitment have been identified by EIT or CT analysis, using
algorithms that compare the dynamic behavior of pixels along
the time axis or along the airway pressure axis, see [4] and
[25]. Thus, by improving the tracking ability of Kalman filters
with human data, absolute images are getting closer to be
useful in JCU conditions.
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1. Introduction

Several approaches describe the EIT inverse problem in dynamical form using a state-
space approach [1-3]. The numerical model is obtained by the Finite Element Method
(FEM). Associated to each element of the mesh is an unknown resistivity; the whole
set of parameters is the state-vector to be estimated through Kalman filters. In this
work, we propose to solve the problem through the iterated extended Kalman filter
(IEKF) with the inclusion of adaptive state noise covariance (AIEKF). The rationale
behind this idea is that Kalman filter performance can range from fast convergence to
instability depending on a proper tunning of the process noise covariance matrix {3,4],
so far empirically done. The proposed AIEKF scheme uses estimates from the Kalman
filter to sclf-adjust the state noisc covariance matrices in real-time and in a stochastic
least-squares sense.

2. Methods

The state-space model for EIT of this work comprises a random walk discrete-time
state equation and an observation equation obtained through a 2-D FEM model [3],

or=1Ior_1 +wi, wi~N(0,Qr) and (1)

2 ZHk(O'k_l)O'k-i-Uk, v ~ N(0, Rg). (2)

Matrix H, is directly obtained from the linearization of the FEM model around the
last estimate [3].

In order to characterize Kalman filter divergence, the statistics of the observation

residuals must be evaluated. The predicted observation residual (or innovation) is

defined as the difference between the real measured value v and the value calculated
by the filter using the last available state cstimate:

ir = vi(ox) — Hi(6 ). (3)
When the residuals and their expected two first statistical inoments, 2 = E[ix] = 0
and C; = Elixif] = lHIk(&;C—))P,g_)H;{(&i_)) + R (C;, £ innovation covariance
matrix) are consistent, there is statistical convergence. Defining a random variable

true innovation as the innovation that would be obtained from an ideal sensor, i.e.,

iy 2 ik — vk : (4)

and considering equation 2, one has

Y = vr(ok) — zk(607)), (5)
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whose statistics are E[iy] = 0 and IE[iX(i}.’)T] = C). The method, described in
detail by [5] for real-time satellite orbit tracking, attempts to attain diagonal matrices
Qa, ,, with diagonal g, > 0, so as to maximize the probability of realization of
true innovation and, therefore, ensure consistency between observed and expected
statistics of the residuals. The core idea is to describe the problem of obtaining Qq, |
as a state-space problem, using g, as the state-vector and a random-walk model for
its dynamics, besides an auxiliary Kalman filter to predict the state. This auxiliary
filter runs “iuside” the main one, responsible for estimating the state oy,
Experimental validation of the model was done using a 235 mm-diameter
cylindrical tank with saline and 32 electrodes equally spaced around the container’s
border. This domain is discretized by the FEM in 240 triangular elements (medium)
and 32 four-noded ones (electrodes); the total number of nodes is 201. Bipolar 25 kH z
2 mA,, diametrical current patterns were injected. The AIEKF is used to estimate
electrode contact impedances, and to identify the position of a 62 mm-diameter
cylindrical glass object according to a two-phase identification procedure {3].

3. Results and Conclusion
We performed 8 identification sequences (phase one - clectrode; phase two - medium

impedances) with the AIEKF/IEKF and 15 with the EKF. The adaptive noise
estimates generated innovations whose statistics were consistent with their expected

values. When both methods are compared, as shown in figure 1 by their resulting

images after the last estimation sequence, one realizes that object localization and
size are better estimated with the proposed method, due to its improved convergence
and accuracy.

resistivity (Qm) T resistivity (m)

1200
1000
800
600
400
200
Q
-200

Figure 1. Absolute resistivity distribution: EKF (left); AIEKF/IEKF (right)
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1. Abstract

Electrical Impedance Tomography (EIT) images internal objects within a body. Electrodes are attached
to the boundary of the body, low intensity alternated currents are applied and the resulting electric
potentials are measured. Then, an estimation algorithm obtains the internal admittivity distribution,
which corresponds to the image. There are several problems inherent to the admittivity estimation, for
instance, high sensitivity to noise and poor conditioning of the sensitivity matrix (which relates changes
of conductivity to changes of electric potentials and is utilized in algorithms based on Newton-type tech-
niques). Some authors reported the reduction of the effects of such problems for some configurations of
electrodes. In this work, we propose a systematic way to reduce the sensitivity to noise and the poor
conditioning by obtaining the optimal position of electrodes and also their shapes based on the Topology
optimization Method (TOM). The 2D results showing the obtained electrodes suggest that this method
can be applied to design electrodes, considering the optimization of the condition number of the sensi-
tivity matrix as well as the summation of the singular values of that matrix as objective function.

2. Keywords: Electrodes, design, electrical impedance tomography, topology optimization.

3. Introduction

EIT finds the admittivity distribution in a given model of a body which reproduces the boundary
measurements of currents and potentials on electrodes attached to that body [1]. The admittivity
distribution represents the solution of a non-linear and ill-posed inverse problem. Several combinations
of current-carrying electrodes can be chosen and, therefore, many induced electric potential values may
be available for the admittivity estimation, which is meant to reduce the solution space.

EIT applications range from medical to industrial (for instance, process tomography [2]). In medical
applications, it is applied to detect breast cancer and to monitor lung aeration [1], for instance. In the
last case, the main interest of our group, the reconstruction of absolute admittivity values has shown its
relevance, since these values allow distinguishing some lung pathologies [1].

The Finite Element Method (FEM) is frequently employed to model the body. It means that electric
potentials are obtained through FEM, given the material properties and electric currents. Based on this
model, the error function, that is, the square of a vector containing the differences between measured
electric potentials and the corresponding computed values is minimized to estimate the admittivities.

Several algorithms have been proposed to solve this non-linear inverse problem for the absolute
admittivity values. They are usually based on iterative methods such as Newton-type [3] or gradient-
based methods [1], but relatively small perturbations can be recovered utilizing a linear approximation
method [4]. Essentially, Newton-type techniques minimize the error function by setting its derivatives
with respect to the admittivity distribution equal to zero, and by solving the obtained non-linear system
utilizing the Newton-Raphson approach. These techniques give rise to the sensitivity matrix [3], or
Jacobian matrix {5}, which relates a vector of admittivity changes in pixels and the vector containing
the corresponding changes in computed potentials. On the other hand, the linearized error function is
iteratively minimized through gradient-based methods.

The sensitivity matrix is rank-deficient in most cases [4]. It can also be ill-conditioned, giving rise to
an unstable problem and therefore, a highly biased solution [3]. Generally, regularization methods are
employed [3-5], which enforce a stable solution. The Tikhonov method and the truncated generalized
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singular value decomposition (TGSVD) [4] are examples of regularization methods, and the first is likely
to be the most utilized technique.

In the case of Tikhonov regularization, a regularization term is added to the error function, which
comprises a positive regularization parameter multiplied by a smoothing functional. A regularization
parameter for both the TGSVD and Tikhonov method controls the trade-off between the ill-conditioning
of the regularized matrix and the smoothness of the estimated admittivity distribution. The distribution
can be smooth since the smallest singular values of the Jacobian matrix, which generate the high-
frequency components of the distribution and therefore, its detailed features, are filtered out by the
regularization procedure.

Graham and Adler [6] have reported the dependence of the ill-conditioning of the sensitivity matrix
with electrode positions. However, the best placement and geometry of the electrodes is not addressed.
Therefore, we utilize a TOM [7] algorithm to optimize the position and shape of the electrodes, in order
to reduce the ill-conditioning of the sensitivity matrix. The ill-conditioning is reduced by minimizing
the squared difference between the maximum and minimum singular values of the sensitivity matrix.
We show that, in the absence of noise, the ill-conditioning is drastically decreased when it is compared
to the ill-conditioning of a simulated EIT system with a practical configuration of electrodes.

However, some singular values of the sensitivity matrix can be vulnerable to noise (mainly the
smallest ones) [4]. We show that the optimized ill-conditioning can give rise to singular values sensible
to particular noise levels. In this case, it is desirable to keep the singular values above a certain level,
which depends on the noise variance [4]. Polydorides and McCann [4] obtained an improved resolution
and immunity to noise with less electrodes utilizing the segmentation approach. Following this technique,
sets of more than one electrode apply electric currents to the body and the potentials are measured as
usual (utilizing one electrode). In addition, Dehghani et al. [5] have shown that some types of electric
current excitation are more robust to noise. However, the optimization of the shape and position of
electrodes has not been addressed so far.

Therefore, we also propose to utilize TOM to find the optimum position and shape of the electrodes
by maximizing the summation of singular values of the sensitivity matrix maintaining a reasonable
value of the regularization parameter, in order to reduce the reconstruction of noise signal in the ad-
mittivity distribution. The maximum value of the regularization parameter is verified at the end of the
optimization process to avoid ill-conditioning due to the acquisition of high singular values.

We test our results with a numerical phantom, utilizing a Newton-Raphson approach to estimate its
properties distribution (a numerical phantom emulates a body, providing “measured” electric potentials).
Therefore, the optimized electrodes are employed in the image estimation.

This paper is organized as follows: in Sections 4 and 5, the mathematical model of the body is
presented and the method utilized to obtain an EIT image in this work is described. In Section 6, TOM
is introduced and the formulation applied to the present problem (the design of electrodes) is discussed.

. In Section 7, the results are presented and in Section 8 some conclusions are offered.

4. Finite Element Model

Maxwell’s equations can describe the electromagnetic fields in the body [2]. Based on these equations
and considering the quasi-static approximation for a linear and isotropic medium and a sufficiently small
excitation frequency, a conductive medium is assumed (see [2]) and we can obtain using matrix notation:

K(o)V (o) =1I; (1)

which, together with Newmann’s and Dirichlet’s boundary conditions, corresponds to the FEM model
of a typical EIT setup (for simplicity, we consider a 2D model). Three nodes triangular finite elements
comprise the FEM mesh, o € R"¢*! is the vector of nodal conductivities (we assume that the conduc-
tivity of each finite element depends on nodal values, varying linearly within the element in the same
way as the electric potentials [8]) and nd is the number of nodes. The reason why triangular elements
are considered is that they allow us to obtain an analytical expression for the gradient of the objective
function (defined in Section 6). K (o) € ®"4*"4 is the conductivity matrix and I;, € ®"*! and V(o)
€ Rndx1 gre the vectors of nodal electric currents and electric potentials, respectively. The index j
indicates different current-carrying electrodes.



5. Estimation of the Conductivities of the Body
As it was mentioned, the EIT inverse problem is often based on the minimization of a square error
function for potential values

F= (V@) - Vo) (V(e) - Vo) (2)

where V(o) € R(emP)*! contains computed electric potentials on electrodes, ne is the number of
different configurations of current-carrying electrodes (that is, the number of current patterns), np is the
number of measurements for each current pattern and Vg € R(renp)X1 contains measurement values.

In this work, the function given by F plus the regularization term [3] is minimized by enforcing its
gradient equal to zero and solving the obtained nonlinear system using a Newton-type technique [8]. The
usual Levenberg-Marquardt method [3] was chosen (it is similar to the standard Tikhonov solution [4])
which iteratively solves the following linear problem [5]

o1 = o + (I (@) T () + AT T (0:)(V(ow) — Vo), (3)

where the subscript it represent an iteration and )\ is the positive regularization parameter, which
controls the trade-off between the ill-conditioning of the regularized matrix (J¥J + AI) € gndxnd
and the smoothness of the conductivity distribution. The matrix J € R(renP)xnd g the sensitivity or
Jacobian matrix, which can be given by

TBVI T(:)V, Tavl
5, av2 av%
T
801 302 Tt 3¢Tnd
J = . ) (4)
av,.e 3.\/,., BV,.
TS ne R T——aa2 .. T—-—";aam}l

where the matrix T' € R{nene)xnd oiven in the next section, selects computed potentials of V'; compared
to measurements.

It is relevant to mention that gradient-based algorithms such as Seqiietial Linear Programming (SLP)
[1] obtain the conductivity distribution that minimizes the linearized F within a constrained solution
space (in order to assure that the linearized function is a good approximation to F), following a iterative
process. On the other hand, it can be shown that the the gradient of F is a linear combination of the lines
of J (see [1]). Therefore, changing the singular values of J in order the improve the performance of the
EIT system does have a positive impact on the gradient and thus, on the performance of gradient-based
methods applied to EIT.

The singular value decomposition (SVD) [4] of J yields the equation:

J=USvT X - (5)

where U € R(nenax(nency and V ¢ ®"4%7d are orthonormal matrices containing the singular vectors
of J and § € R(nenaxnd 4 diagonal matrix, contains the singular values of J. Since U and V are
orthonormal matrices, the following can be computed based on Eq.(5) and Eq.(3):

(vSTUTUSVT + AD)(oit41 — o) = VSTUT(V — V) =
= VI(VSTSVT + AD(oiy1 — o) = VIVSTUT(V - Vo) = (6)
= oys1 —0n = V(STS + A 1STUT(V — V).

In addition, the last equation of Eq.(6) can be given by

ne.nc ne.nc 2 T
vi U (V-V
Oip1 — O = Y En= > VQ:/\ ( ” O)Vm (7)
n=1 7 n

where E,, € ®"9*%1 i5 a component of the solution, V,, € ®7°¢*! is the n-th column of V, v, is a singular
value of J and U,, € Rnen)%1 g the p-th column of U.

This last equation is an alternative way to express the standard Tikhonov solution based on the SVD
of J. It shows how each component of the solution (E,) at each iteration can be filtered out when the



regularization parameter is relatively high. In addition, it illustrates why the smallest singular values
can be more subjected to noise. Therefore, it motivates our studies.

6. Topology Optimization Method
As it is mentioned in Section 1, we consider TOM [7] to obtain the position and shape of the electrodes:
(a) to reduce the ill-conditioning of the sensitivity matrix and (b) to maximize the summation of singular
values of the sensitivity matrix. The reason why TOM is utilized is that it can be based on the SLP,
which solves a non-linear problem through a sequence of solutions of linearized problems, subjected to
constraints. Therefore, some constraints that are necessary to reduce the solution space can be enforced,
allowing only possible solutions. In addition, TOM can favor a 0-1 result (void and the material of the
electrode, for instance), as it is explained in the current section.

In order to obtain a simple expression for the gradient of the objective function, avoiding to differ-
entiate the SVD problem, we work with the eigenvalues vy, of JTJ e Rndxnd jnstead of the singular
values of J, which are related by (for n<(ne.nc)):

Tn = V?r (8)

Therefore, the following function is minimized to reduce the ill-conditioning:

Fmin(a: P) = (’Ymaz - ’Ymin)z (9)

where p € R™°*! is the vector of parameters which determine the electrode shapes and positions and
Ymazw and Vi are the maximum and minimum values of the eigenvalues of JTy , respectively. The
minimum value utilized is higher than zero.

On the other hand, we optimize the following function to maximize the summation of singular values:

ne.nc

Frnac(9:0) = ) Tn- (10)

In order to obtain the optimum shapes and positions, we consider conductive domains connected to
the image domain, in which the electrodes can exist. The domains are depicted in Fig.(1). In this case,
the problem becomes to find the discontinuous conductivity functions at each domain (the optimization
domain), which represents electrodes and void.

interface betwceen two
optimization domains

electrode \\\\\\“
& L .
> optimization domain

interface between two
optimization domains

optimization domain

Figure 1: Image and optimization domains. Electrodes are also depicted.

Then, the TOM theory is applied to make this problem tractable (see {7]). Therefore, each domain is
divided into finite elements and a material model is defined. In this work, the continuous approximation
of material distribution [9] is chosen as the material model, which means that the conductivity of the
m-th finite element is given by

Oem = Pom0a = H(1 - ph)op (11)



and pe,, depends on nodal values, varying linearly within the element in the same way as the electric
potentials, that is:

pe"l = N"lp (12)

where N,, is the FEM interpolation matrix [8], which is a linear function of local coordinates. It can
be seen that p contains the nodal values on which p,,, depends. It implies that p is composed of nodal
optimization variables.

In Eq.(11), 04 and op are the electric conductivities of the materials that compose the domains,
that is, the conductivity of an electrode and the conductivity of the void (assumed to be slightly higher
than zero in order to avoid numerical instabilities), which implies that p.,, is constrained between zero
and one. Additionally, the exponent p introduces penalization into the model when it is higher than
one. In this case, lower values of conductivities are favored. It is worth noting that if p is constrained
between 0 and 1, pe,, will also be constrained between zero and one.

At this point, we need to assure that the correct amount of electric current is applied to the electrodes.
Therefore, we consider a technique to prescribe their boundary conditions. The following nodal electric
current is imposed to each superficial node of a current-carrying electrode

_ 1pes
nr

I, ) (13)
where I is the nominal current applied to the electrode, np is the number of nodes which correspond to
that electrode and p., is the optimization variable of a superficial node. This means that the current
imposed to each superficial node is equal to zero when p.s is equal to zero (void) or equal to 'nIT when
delta is equal to one. In addition, we consider the following constraint to the minimization problem,
applied to each current-carrying electrode:

- = Ipesk
SIg =) ==, (14)
k=1 k=1 T

where k represents a superficial node of a current-carrying electrode and np is the number of superficial
nodes of an optimization domain.

Finally, in order to obtain the electric potentials to compare with the measured values in the image
estimation, we consider that the potential on an electrode is given by

np Vp
kPesk
c = — 1
V. kZ:l e (15)

where V}, is a nodal potential in a superficial node of a measurement electrode and it is also an element
of V.;, the extended version of V' ; which contains the nodes of the optimization domains. The matrix T
in Eq.(4) is given by the coefficients of this last equation, positioned to obtain each value of V, compared
to the measured electric potentials.

Based on all equations proposed in this section, the following optimization problem is defined

optimize Fy = Fy{o,p)
w.or.t. p
(16)
subject to S PP I =1
0<p<1
where Fy is equal to Fipip, as well as Fy,q., depending on the problem considered and the first constraint

(Eq.(14)) is applied to each current-carrying electrode, considering each current pattern.

6.1. Sensitivity Analysis
The gradient of Fj is given by

T
OF, OF, & OF, o
grad(F) = | B3 B o Fan | e a7)



where

T ne.
Y= [ M 72 - Y(nenc) ] € ?R( i nC)Xl~ (18)

The matrix %—? € RIX(mena) js given by

2('7muz - ’Ymin) lf Tn = Ymax
_2(711101' - '7111.1‘11) if Tn = Ymin (19)
0 otherwise

if Fy is equal to Fj,i, and by 1 € RIx(nene) otherwise.
In order to obtain g—; € Rinena)xl we set D = JTJ € R*>*74 apd differentiate the following

eigenproblem:
(D —~, )G, =0, (20)

where G, € R4*! is the gth eigenvector of D.
Therefore, by choosing a particular value of G4, G}y, which satisfies

T
GLGpa =1, (21)
the following can be obtained:
Mg T 0D '
—ap( =G, _3?1- Gq- (22)
The derivative of D is given by
T T3
301 - (9/11) J+J 391 (23)
where
w 8V, 4+ T 2V T 2V, 4+ 2T 3V, v, + 9T 2v,
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aJ — Taalapl + dp Doy Tao’gap, + 8m Ooa te aa,.dap, + Bpt Do (24)
p : .
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Based on the derivative of Eq.(1), one can obtain

aVJ -1 aK
do dog Vi (25)
and
9%V L,0K 0K 10K 0K
=K K~ Vi+ K K V. 26
o s0p; dos £ ap[ do, (26)
v The derivative % can be obtained by differentiating Eq.(15). The derivative of the equality con-

straint in Eq.(14) for each design variable is equal to % if the corresponding node is a superficial node,
and zero otherwise. Finally, %ﬁﬁl can be found in [1] and g—f’f can be obtained in a similar manner.

7. Results and Discussion

In this section we compare the results obtained by the proposed TOM algorithm with a conventional
placement of electrodes (see Fig.(2(b))). A particular set up with wide electrodes is chose since this type
of electrode is known to reduce the sensitivity of the EIT system to the contact resistivity {10]. The
two sets of electrodes are compared qualitatively (through estimated images), as well as quantitatively
based on the normalized error:
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Figure 2: (a) The FEM mesh considered, showing the optimization domains in different colors; (b)
conventional placement of electrodes; (c) image to be estimated. (units: (2m)~!)

As it can be seen in Fig.(2(a)), only six optimization domains are considered, corresponding to six
electrodes. Additionally, one of the six possible measurements for each current pattern are discarded
(therefore, np=>5) in order to emulate a real case, and the adjacent current pattern is considered (in
a real case, all measurements on current-carrying electrodes are usually discarded [10]). Following the
adjacent pattern [1], neighbor electrodes are excited with electric currents of the same magnitude and
opposite values (ne=6).

The mesh (with 266 elements and 152 nodes) is utilized to obtain the positions and shapes of the
electrodes by TOM given the conductivity distribution of the image. It is also employed to generate the
measured potentials (numerical phantom) given the optimized electrodes and the image, and to estimate
the image based on the measurements and the electrodes. Since the mesh of the numerical phantom is the
same mesh utilized to estimate the images, which means that an exact model for the image estimation is
considered, the so-called inverse crime is committed in this preliminary study [2]. However, the authors
believe that the main features of the results will be kept by more realistic cases, since the optimization
of Fipin and Fy;, will always have a positive impact on the performance of the system (specially in the
case of the high changes obtained in the singular values with the proposed methodology).

Fig.(2(a)) also depicts boundary nodes between optimization domains (nodes: 1, 9, 2, 8, 16, 24, 17,
23, 31, 37, 44, 50), which are not included into the optimization to avoid the connection of two electrodes.



The image utilized to obtain the measurements and to optimize the positioning and geometry of the
electrodes is the same and it is depicted in Fig.(2(c))} (in practice, the image employed to optimize the
electrodes can be a mean image over the time).

The electric currents and the exponent p (in Eq.(11)) are equal to 0.001mA and 1, respectively. The
values of 64 and op are equal to 100(Q2m)~! and 1078(2m) !, respectively. The value of o4 is utilized
for illustrative purposes and can be even higher in practice for copper electrodes, for instance. In all
cases, the electric potential in the same node (which models a point electrode) is taken as ground. The
convergence criterion for the image estimation is that the modulus of the change of || V(&) — Vi ||2 (see
Eq.(2)) is less than 10~!!. Finally, the initial image utilized in the estimation corresponds to a uniform
distribution of 0.25(fun)~1.

First, the problem given by the objective function F,;, is solved and the corresponding results are
discussed. Then, the images obtained with the optimized electrodes and the conventional electrodes are
shown. In the sequence, a similar procedure regarding F,,,, is considered.

7.1. Minimization of F,,;,

The optimized electrodes are shown in Fig.(3). In the same figure, the singular values of the conventional
set up and the singular values of the optimized electrodes are depicted, showing that the magnitude of
the optimized singular values are closer. The optimal conductivities suggest that the value of p could be
increased to favor 0-1 solutions, which is not addressed in this work.
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Figure 3: Minimization of Fiuin (Ymin in Eq.(9) is the 15th value). (a) Optimized electrodes (units:
(©2m)~1); (b) singular values of .J.

If the conventional set up is utilized to obtain the images, a stable iterative process can be achieved
for A = 10721, and a useful solution for A = 10712, at most. Considering the optimized electrodes on the
other hand, a stable solution can be achieved for A = 1024, and a useful solution for A = 10~13, For
useful solutions, the values of the normalized error e for the conventional and optimized electrodes are
equal to 1.029 and 0.744, respectively. The images are shown in Fig.(4). However, for a Gaussian white
noise of zero mean and 1079 standard deviation superimposed on the measurements, a useful image
could not be obtained (the images are blurred for higher values of A or absolute conductivity values
higher than 100(2m)~! are obtained for smaller values of the regularization parameter).

7.2. Maximization of Fiq
The optimized electrodes and the singular values of both the conventional set up and the optimized elec-
trodes are shown in Fig.(5). In this figure, it can be seen that optimized singular values are significantly
different from the values of the conventional set up. It is also seen that a 0-1 solution is obtained.

The images obtained with the conventional set up and the optimized electrodes for A = 10719 are
shown in Fig.(6). The noise is similar to the one described in the last subsection. The mean value of



the normalized error e and the standard deviation for the conventional electrodes are equal to 3.908
and 0.502, respectively, considering four estimated images (it is important to mention that the images
depicted are the best images obtained within the set of four images). On the other hand, the mean
value of e and the corresponding standard deviation for the optimized electrodes are equal to 1.093 and
0.187, respectively. The smaller standard deviation shows that the optimized set up is more robust to
noise. In addition, the results suggest that the increase in the singular values was sufficient to reduce
the occurrence of image artifacts caused by the noise signals. It is worth noting that the conditioning of
the regularized matrix is not an issue for the singular values obtained and the A considered.
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Figure 4: Conductivity images obtained with the conventional electrodes ({a)) and with the optimized
electrodes (considering F,,;;,) ((b)). (units: (2m)~1)
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Figure 5: Maximization of Fmaz. (a) Optimized electrodes (units: (2m)~!); (b) singular values of .J.

Finally, considering six uniformly-placed electrodes of approximately the same size of the optimized
electrodes, the mean value of the normalized error e and the standard deviation are equal to 2.394 and
0.497, respectively. This result shows that the size and also the positioning of the electrodes are issues
and therefore, need to be optimized.

8. Conclusions

In this work, we propose a methodology for the design of electrodes applied to EIT. An extremely
ill-conditioned problem, as well as a high noise level [4] are addressed by considering the methodol-
ogy, showing that the optimized electrodes achieved a superior performance. It is also shown that the
geometry and position of the electrodes can have significant impact on the image estimation.
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Figure 6: Conductivity images obtained with the conventional electrodes ((a)) and with the optimized
electrodes (considering Fyaz) ((b)). (units: (m)~1)

We intend to extend the implemented algorithm in order to minimize the sensitivity of the EIT
system to electrode placement errors [6]. We also intend to utilize more finite elements, 3D elements and
a model for the contact interface between the electrodes and the body [1] in order to refine the FEM
model. We can propose a linear combination between F,,;, and F,,,, as an objective function, in order
to reduce the ill-conditioning of the EIT problem and, at the same time, to obtain a configuration of
electrodes immune to noise. Finally, we intend to avoid the inverse crime in future tests. These will be
matter for future works.
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