MOACYR MARTUCCI JUNIOR

ESTUDOS DE ESTRUTURAS DE SISTEMAS DE AUTOMAÇÃO

Trabalho apresentado à Escola Politécnica da Universidade de São Paulo para a obtenção do título de Professor Livre Docente junto ao Departamento de Computação e Sistemas Digitais.
Aos meus filhos, minha esposa e meus pais, que com compreensão e carinho colaboraram, cada um do seu jeito, para a realização deste trabalho.
AGRADECIMENTOS

Aos Professores Selma Shin Shimizu Melnikoff e José Sidnei Colombo Martini pela colaboração direta na realização do trabalho.
Aos Professores Antonio Marcos de Aguirra Massola, Francisco José de Oliveira Dias e Antonio Helio Guerra Vieira pelo incentivo constante.
A Sra. Marcia Kimie T. de Carvalho pelo apoio.
A Srta. Luiza de Souza Coelho e ao Sr. José Eduardo de Oliveira pela colaboração do dia a dia.
As empresas Ferrovia Paulista S.A. - FEPASA, Companhia do Metropolitano de São Paulo - METRÔ, Companhia de Trens Metropolitanos de Porto Alegre - Trensurb e Rede Ferroviária Federal, que com seus contratos através da FDTE proporcionaram grande parte da experiência necessária para o desenvolvimento do trabalho.
A Coordenadoria para Projetos Especiais do Ministério da Marinha - COPESP pelo apoio.
Aos amigos da Escola Politécnica, da FDTE e da COPESP, que direta ou indiretamente contribuíram na execução deste trabalho.
RESUMO

Apresenta-se a experiência do autor em desenvolvimento de sistemas digitais aplicados à automação e a estrutura de um sistema aberto de automação, projetada a partir da experiência adquirida.

Como experiência apresenta-se alguns sistemas desenvolvidos para controle do processo ferroviário, enfatizando-se os de controle de tráfego ferroviário, e para controle de processos contínuos implementados com arquitetura distribuída.

O sistema aberto apresentado foi projetado para ser utilizado na maioria das aplicações da automação, seja de processos contínuos, de manufatura, comercial, predial, ou de escritório. Para isso possue estrutura hierarquizada e modular.

A aplicação do sistema aberto é feita através do trabalho de configuração de módulos pertencentes a sua estrutura em conjunto com módulos ou equipamentos de terceiros que possuam comunicação padronizada. A configuração particulariza a estrutura do sistema para a aplicação desejada.

O trabalho apresenta também considerações sobre metodologia de desenvolvimento, mostrando de forma evolutiva com o desenvolvimento dos sistemas apresentados, uma metodologia que tende a atender aos anseios dos usuários de sistemas de automação.
SUMÁRIO

Lista de Figuras
Resumo
"Abstract"

1 Introdução 1

2 Sistemas Aplicados em Controle Ferroviário 4

2.1 Características do Controle Ferroviário 5

2.1.1 Controle e Supervisão de Tráfego 9

2.1.2 Proteção contra Colisões 14

2.1.3 Controle e Supervisão de Energia Elétrica 16

2.1.4 Controle e Supervisão de Passageiros 16

2.1.5 Controle e Supervisão de Carga e Vagões 16

2.2 Sistema Centralizado de Supervisão e Controle do Trem Metropolitano de São Paulo 18

2.2.1 Especificação Funcional do SCSC 20

2.2.2 Estrutura do Hardware do SCSC 25

2.2.2.1 Núcleo de Processamento Distribuído - NPD 27

2.2.2.2 Sistema de Transmissão de Dados - STD 31

2.2.2.3 Interfaces de Campo - ITCS 33

2.2.3 Estrutura do Software do SCSC 36

2.2.4 Considerações sobre o Desenvolvimento do SCSC 40

2.3 Sistema Centralizado de Controle de Tráfego do Trem da Região Metropolitana de Porto Alegre - CTC 46

2.3.1 Estrutura do CTC 47
2.3.2 Considerações sobre o Desenvolvimento do CTC

2.4 Sistema de Automação e Controle para o Complexo de Trens Urbanos de São Paulo

2.4.1 Supervisão e Controle de Tráfego

2.4.1.1 Estrutura de Hardware do CTC

2.4.1.2 Estrutura de Software do CTC

2.4.2 Sistema de Sinalização

2.4.2.1 Subsistema de Intertravamento-ITR

2.4.2.2. Subsistema de Controle Automático de Trens - ATC

2.4.3 Sistema de Supervisão e Controle de Energia

2.4.4 Sistema de Bilhetagem

2.4.5 Considerações sobre o desenvolvimento do Sistema de Automação e Controle para o Complexo de Trens Urbanos de São Paulo.

2.5 Sistema de Controle do Páteo de Itaquera.

2.5.1 Descrição do Equipamento de Detecção.

2.5.2 Considerações sobre o Desenvolvimento do Equipamento de Detecção.

2.6 Considerações sobre o Problema da Automação Ferroviária.

3 Sistemas Aplicados em controle de Processos Contínuos

3.1 Sistema Distribuído para Controle de Processos

3.1.1 Considerações sobre o Desenvolvimento do Sistema Distribuído para Controle de Processos.
3.2 Sistema Distribuído de Controle para Aplicação Geral.

3.2.1 Unidade Central de Processamento

3.2.2 Unidade Remota de Controle

3.2.1 Considerações sobre o Desenvolvimento do Sistema de Controle Distribuído de Aplicação Geral - SCG.

4. Sistema Aberto de Automação

4.1 Arquitetura do Sistema Aberto de Automação

4.1.1 Nível de Coordenação

4.1.2 Nível de Controle

4.1.3 Nível de Instrumentação

4.1.4 Requisitos da Arquitetura do Sistema Aberto de Automação.

4.2 Aplicações do Sistema Aberto de Automação

4.2.1. Sistema de Automação de Projetos

4.2.2 Sistema de Automação de Manufatura

4.2.3 Sistema de Controle de Processos Contínuos

4.3 Considerações sobre o Desenvolvimento do Sistema Aberto de Automação.

5 Considerações Finais

5.1 Metodologia de Desenvolvimento de Sistemas de Automação

5.2 Estrutura de Sistemas de Automação

5.3 Considerações sobre a Satisfação do Usuário

5.4 Contribuição do Trabalho

Referências Bibliográficas
LISTA DE FIGURAS

Figura 2.1 - Modo Entrada e Saída de Controle de Rotas 7
Figura 2.2 - Perfil de Velocidade Máxima Permitida 10
Figura 2.3 - Representação Esquemática da Região de Abrangência do SCSC 19
Figura 2.4 - Estrutura do Hardware do SCSC 26
Figura 2.5 - Estrutura do NPD 29
Figura 2.6 - Estrutura da ITCS 35
Figura 2.7 - Fluxo de Informações entre Processos do SCSC 38
Figura 2.8 - Configuração de Hardware do NPD do CTC 48
Figura 2.9 - Fluxo de Informações entre Processos do CTC 52
Figura 2.10 - Conexão entre o CTC e Sistema de Sinalização 56
Figura 2.11 - Configuração do Hardware da CTC 64
Figura 2.12 - Diagrama do Sistema de Sinalização 68
Figura 2.13 - Bloco de Intertravamento não Vital 73
Figura 2.14 - Diagrama do Intertravamento Vital 75
Figura 2.15 - Diagrama de Blocos do STE 82
Figura 2.16 - Estrutura do Hardware do Sistema de Controle do Pátio de Itaquera 90
Figura 2.17 - Módulo MCX do Detector 97
Figura 3.1 - Níveis Hierárquicos do Sistema de Controle Distribuídos 107
Figura 3.2 - Estrutura de Hardware do Sistema Distribuído para Controle de Processos 110
Figura 3.3 - Estrutura do Sistema Distribuído de Controle de Processos 113
Figura 3.4 - Estrutura do IVC 115
Figura 3.5 - Esquema do Controlador de Processos 118
Figura 3.6 - Estrutura do SCG 126
Figura 3.7 - Estrutura da Unidade Remota de Controle 128
Figura 4.1 - Estrutura do Sistema Aberto de Automação 143
ABSTRACT

The experience in development of digital systems applied in automation is presented; the structure of an open system applied to automation area, designed from the acquired experience, is also presented.

As acquired experience is presented some systems developed for railroad process control, doing emphasis on the traffic control systems, and for continuous process control, implemented with distributed architecture.

The open system presented was designed to be used in a greater number of automation applications, be it continuous process, industrial, commercial, predial, or office. For this the open system has a hierarchical and modular structure.

The application of the open system is made by configuration of its modules together with other modules and equipments, made by some one, that have standardized communication protocol. The configuration particularize the system structure to the wanted application.

The work also presents some considerations of the development methodology, showing, in a evolutive form coupled with the development of the automation systems presented in this work. The conclusion is that methodology must consider, in first, the needs of the end uses.
1. INTRODUÇÃO
1 INTRODUÇÃO

O trabalho tem, como objetivo, apresentar a experiência do autor em desenvolvimento de sistemas digitais aplicados à automação e, a partir dessa experiência, propor uma estrutura aberta, que possa ser utilizada pela maioria das aplicações em automação. Subentende-se que as aplicações englobam a automação de processos contínuos, a automação da manufatura e a automação de serviços.

A elaboração deste trabalho foi motivada pela necessidade premente de se obter sistemas de automação adequados aos anseios dos usuários a custos cada vez menores. Para tanto, é importante utilizar a experiência passada, no sentido de conhecer e minimizar os custos de desenvolvimento, de operação e de manutenção, no sentido de antever os avanços da tecnologia e as reais necessidades dos usuários.

A redação do trabalho foi organizada por classe de sistemas, apresentando-se dentro de cada classe, os sistemas desenvolvidos para cada tipo de processo em particular e, para cada sistema, uma descrição funcional sucinta, uma descrição dos grandes blocos da sua arquitetura e, finalmente, comentários sobre o seu desenvolvimento, mostrando os pontos positivos e os negativos das decisões tecnológicas e da metodologia adotadas.

São abordados, no trabalho, as classes de sistemas aplicados em controle ferroviário e de sistemas aplicados em controle de processos contínuos. Em seguida é mostrada a
estrutura de um sistema com arquitetura aberta, aplicado a
automação em geral, concebido a partir da experiência
adquirida pelo autor, através da sua participação em
desenvolvimento de sistemas de automação. Os principais
sistemas estão apresentados neste trabalho no aspecto que
tange à metodologia de desenvolvimento, aos principais
anseios dos usuários e, consequentemente, ao custo final do
sistema.

No capítulo 2, dedicado aos sistemas aplicados em
controle ferroviário, são abordados o Sistema Centralizado
de Supervisão e Controle do Trem Metropolitano de São
Paulo, o Sistema Centralizado de Controle de Tráfego para a
Região Metropolitana de Porto Alegre, o Sistema de
Automação e Controle para os Trens de Subúrbio de São Paulo
e o Sistema de Controle do Páteo de Itaquera do Metrô de
São Paulo.

No capítulo 3, dedicado aos sistemas aplicados em
processos contínuos, são abordados o Sistema Distribuído
para Controle de Processos e o Sistema Distribuído de
Controle para Aplicação Geral. Este último, apesar de poder
ser aplicado também em automação de manufatura, foi
inicialmente concebido para aplicações em processos
contínuos, sendo, posteriormente, adaptado para o uso
geral.

O capítulo 4 é dedicado à apresentação da proposta de
estrutura do Sistema Aberto de Automação, aplicável para
automação de processos contínuos, de processos
manufatureiros e de serviços.
Finalmente, no capítulo 5, concluindo o trabalho, são apresentadas as considerações finais, abordando aspectos sobre metodologia de desenvolvimento de sistema de automação, sobre estruturas de sistemas de automação e sobre a satisfação do usuário de sistemas de automação.
2. SISTEMAS APLICADOS EM CONTROLE FERROVIÁRIO
2 SISTEMAS APLICADOS EM CONTROLE FERROVIÁRIO

Neste capítulo são abordados os sistemas de controle de tráfego ferroviário; eles se baseiam em arquitetura distribuída e são implementados utilizando microprocessadores. São apresentados os seguintes sistemas, cujas descrições se baseiam nas referências bibliográficas citadas, seguindo as respectivas denominações:

- Sistema Centralizado de Supervisão e Controle do Trem Metropolitano de São Paulo. MARTUCCI, RUGGIERO, MOSCATO (1981); MARTUCCI, MOSCATO (1981); MARTUCCI, SHIMIZU, MOSCATO (1981); RUGGIERO, MELNIKOFF, SHIMIZU (1981); MARTUCCI, MOSCATO (1982); MARTUCCI (1984); MATSUYAMA, MARTUCCI (1988); MATSUYAMA (1989);

- Sistema Centralizado de Controle de Tráfego do Trem da Região Metropolitana de Porto Alegre. MARTUCCI (1983);

- Sistema de Automação e Controle para o Complexo-de-Trens Urbanos de São Paulo. MARTUCCI (1986); e

Desses sistemas, o primeiro e o segundo foram desenvolvidos completamente até a fase de operação comercial, o quatro foi desenvolvido até a fase de testes operacionais em campo, enquanto que o terceiro foi desenvolvido apenas até o seu projeto de concepção.

A seguir serão apresentadas, sucintamente, as características gerais do controle ferroviário para, em seguida, caracterizar a abrangência de cada um dos quatro
sistemas citados, dentro do processo ferroviário, através de uma especificação funcional resumida, descrever a arquitetura projetada para atender a essa especificação e apresentar os pontos positivos e negativos das decisões tecnológicas e de metodologia adotadas para o projeto em questão.

2.1 Características do Controle Ferroviário

O processo ferroviário tem por objetivo a movimentação segura dos trens e o atendimento adequado ao transporte de carga e de passageiros. Para cumprir seus objetivos, é necessário executar o controle e a supervisão do tráfego, a proteção dos trens contra colisões, o controle e a supervisão da energia elétrica de tração e de serviço, o controle e a supervisão de passageiros e o controle e a supervisão de carga e de vagões, conforme descrito a seguir. MELNIKOFF, MARTUCCI, MOSCATO (1986); MATSUYAMA, SOUZA, MARTUCCI (1986).

2.1.1 Controle e Supervisão de Tráfego

O controle de tráfego consiste, basicamente, em estabelecer caminhos para a progressão dos trens, objetivando fazê-los chegar a pontos determinados da ferrovia em horários também determinados ou mantendo o intervalo de tempo entre os trens (head way) dentro de limites pré-estabelecidos.

O estabelecimento dos caminhos a percorrer e o consequente licenciamento para que o trem o percorra é
feito através do alinhamento de aparelhos de mudança de via (máquinas de chave) e da abertura de sinais, o que pode ser realizado dos dois seguintes modos:
- Modo chave/sinal: é o modo de controle mais antigo, onde os sinais e máquinas chaves são comandados diretamente a partir de uma mesa de controle. A cada máquina de chave e a cada sinal é associado um manipulador ou botoeira; no caso da máquina de chave, para cada uma existem duas posições possíveis no respectivo manipulador correspondentes às posições direta e reversa; no caso do sinal, existem três posições correspondentes às posições aberto, fechado e automático. Após o posicionamento das botoeiras correspondentes a todas as chaves e a todos os sinais, as informações são transmitidas para os equipamentos de campo pelo acionamento de um comando de efetivação; e
- Modo Entrada/Saída ou NX (entrance/exit): é o mais moderno modo de controle, onde são utilizados os conceitos de rota e bloco, sendo uma rota constituída de um conjunto coerente de chaves e sinais, e um bloco de um conjunto de rotas possíveis de uma região. A figura 2.1 ilustra esses conceitos.

Neste caso, o caminho a percorrer é dado pela rota que é selecionada pelo acionamento de um botão de entrada e um de saída; após a seleção da rota os comandos de movimentação de chaves e de acionamento de sinais são enviados aos equipamentos de campo para que seja estabelecida a rota selecionada.
FIGURA 2.1 - MODO ENTRADA E SAÍDA DE CONTROLE DE ROTAS
A supervisão do tráfego consiste, basically, em acompanhar a progressão das composições pelos caminhos estabelecidos na operação de controle e verificar a atuação dos comandos de posicionamento de chaves e sinais, através da indicação do estado destes equipamentos nos consoles de operação. A progressão das composições é indicada nos consoles através do estado dos circuitos de via, que são basicamente trechos independentes de via, onde a presença da composição é sentida por meio de circuitos eletromecânicos ou eletrônicos.

Para implementar as funções de supervisão e controle de tráfego são utilizados equipamentos de interface homem-máquina, tais como: consoles com chaves e lâmpadas (ou LEDs), painéis mímicos, associados a botoeiras, e terminais de vídeo em cores, localizados em salas de controle de tráfego centrais, cujos equipamentos cobrem toda uma linha ou um conjunto de linhas ferroviárias, ou em salas de controle locais, cujos equipamentos cobrem apenas uma região de uma linha ferroviária.

A importância das salas de controle centrais é patente, uma vez que para o controle eficiente do tráfego, ou seja, para manter as composições dentro dos horários ou obedecendo os intervalos de tempo pré-estabelecidos é necessário que se tenha conhecimento do estado de toda a ferrovia, pois um evento que ocorre a quilômetros de distância, depois de algum tempo, se não convenientemente tratado, pode acarretar problemas, dado o efeito propagador que, dependendo das condições de velocidade e carga da
ferrovia, pode ser muito rápido. Pode-se citar como exemplo o caso dos metrôs, onde qualquer problema que atrase a partida de um trem em uma estação perturba o intervalo entre trens, o que pode causar congestionamentos nas estações ao longo de uma boa parte da linha.

2.1.2 Proteção contra Colisões

A proteção contra colisões é realizada por intertravamentos que não permitem o estabelecimento de rotas que sejam conflitantes, ou seja, de rotas onde exista risco de colisão. Isto é realizado mantendo os sinais no campo em condição restritiva (sinal vermelho) e não executando os camandos expedidos pelo controle de tráfego que levem ao alinhamento de rotas conflitantes.

Além do intertravamento de rotas conflitantes, existe ainda outro nível de proteção realizado ao nível do próprio trem, que é a proteção automática do trem, que tem por função básica parar o trem, por frenagem de emergência, caso o mesmo não obedeça os limites de velocidade impostos pela via.

Os limites de velocidade impostos pela via às composições são devidos às restrições da própria via e à presença de outras composições nas proximidades. A presença de uma composição em um circuito de via cria uma sombra de restrições de velocidade, nos circuitos de via imediatamente anteriores, de forma a restringir gradativamente a velocidade de uma outra composição que venha se aproximando; a figura 2.2 ilustra esse processo.
CV : CIRCUITO DE VIA
C : COMPOSIÇÃO
VM : VELOCIDADE MÁXIMA NO TRECHO
VR1 : VELOCIDADE COM RESTRIÇÃO BAIXA
VR2 : VELOCIDADE COM RESTRIÇÃO MÉDIA
VR3 : VELOCIDADE COM RESTRIÇÃO MÁXIMA.

FIGURA 2.2 - PERFIL DE VELOCIDADES
MÁXIMAS PERMITIDAS
Convém observar que, nesse caso, a composição deve possuir equipamentos que captem a velocidade máxima permitida em cada circuito de via e a compare com a sua velocidade real, para que seja possível a ação de proteção, se for o caso. Para isto devem também existir equipamentos à margem da via para cada circuito de via que, a partir das restrições de velocidade dos circuitos de via adjacentes e do seu próprio estado, calcule o nível de restrição de velocidade a ser imposto e o transmita para os trilhos; para que a composição o capte através de suas antenas.

Devido a sua função de evitar acidentes, os equipamentos que implementam os intertravamentos e a proteção automática do trem têm características de falha segura (fail safe), o que implica em tecnologia de projeto, fabricação e montagem específica. Considerando que o desenvolvimento tecnológico na área foi lento e a resistência a mudanças de tecnologia por parte dos usuários, o uso dos equipamentos eletrônicos de intertravamento é bastante recente nas ferrovias, e o uso de microprocessadores na implementação de equipamentos de proteção automática e de intertravamento é mais recente ainda e é objeto de intensos estudos, quanto ao seu comportamento com relação aos índices de falhas inseguras, uma vez que há o envolvimento do software.

É conveniente desviarse do tema de processo ferroviário para tecer alguns comentários sobre a implementação de sistemas que atendam às características do processo ferroviário, quanto a segurança, para que se tenha idéia da complexidade envolvida.
Como a construção de hardware que evite a ocorrência de falhas é inviável, a solução adotada em aplicações implementadas com microprocessadores, que exigam segurança, é a utilização de redundâncias associadas a esquemas de detecção de falhas. Dentro desse princípio, podem ser utilizados basicamente três esquemas para concepção da arquitetura de sistemas de intertravamento que são a estrutura de dados redundante, a redundância comparada e a redundância modular.

No sistema implementado com estrutura de dados redundantes é utilizado um único computador que executa dois programas independentes. Esses programas residem em regiões de memória separadas, e são executados seqüencialmente. As vias de dados e de comandos são duplicadas, sendo os dados e endereços utilizados pelos dois programas, mutuamente invertidos. A comparação e a conseqüente detecção de falha é executada por uma lógica de relés, que em caso de falha impõe, aos sinais comprometidos, os valores correspondentes ao estado seguro.

No sistema implementado com redundância comparada, ou com auto diagnose, como também é conhecido, a característica de falha segura é obtida através da duplicação do hardware e da comparação direta dos resultados obtidos pelos módulos de processamento. Caso os resultados sejam diferentes, o comparador provê aos equipamentos comandos que os levem à condição segura.

Para viabilizar a comparação dos resultados dos módulos duplicados, há a necessidade de se prover ao sistema um
mecanismo de sincronização das tarefas executadas e, dada a
duplicidade do hardware, há também a necessidade da
duplicação de informação de entrada. Com relação à
tsincronização, existem os intertravamentos com
sincronização estrita, isto é, a execução das tarefas é
estritamente sincronizada, e os intertravamentos com
sincronização em blocos, isto é, uma sincronização de tempo
na entrada de dados, que é usada mais tarde no processo de
votação da saída dos módulos duplicados. Do ponto de vista
do software os sistemas são idênticos.

No sistema implementado com redundância modular, o
princípio básico utilizado é a tolerância a falhas. Nesse
sistema três ou mais módulos processadores operam em
paralelo utilizando o mesmo software e todas as entradas e
saídas são votadas normalmente, segundo o critério da
maioria. Este esquema é interessante, pois além de permitir
a detecção de falha, comporta ainda a operação com uma
falha simples, aumentando com isso a disponibilidade do
sistema.

A dificuldade maior na implementação de sistemas com
redundância modular reside na sincronização das tarefas
executadas pelos módulos processadores redundantes para
permitir a implementação de circuitos votadores confiáveis.

Quanto ao problema do software, há basicamente duas
alternativas que se aplicam: a implementação de software
correto por construção ou a utilização de software diverso
implementado independentemente, em cada módulo processador.
Mais recentemente, para software para sistemas de
responsabilidade vital, a tendência é aplicar a garantia de qualidade sobre o processo de desenvolvimento através de utilização de metodologias de desenvolvimento, verificação e validação e do uso intensivo de ferramentas automatizadas do tipo CASE - "Computer Aided Software Engineering".

2.1.3 Controle e Supervisão de Energia Elétrica

As necessidades de energia elétrica na ferrovia são direcionadas para a tração dos trens, para a alimentação dos sistemas de sinalização, compostos dos sistemas de controle e supervisão de tráfego, de intertravamento e de proteção, e para a alimentação dos demais sistemas de serviço, tais como: sistemas de controle de passageiros, sistemas de segurança de pessoas e de patrimônio, sistemas de automação predial, sistemas de iluminação e utilidades do tipo ar condicionado, bombas e escadas rolantes.

Cabe ressaltar que o grau de disponibilidade exigido para o fornecimento de energia para a tração e para os sistemas de sinalização é muito elevado, dado as suas responsabilidades; isso faz com que se monitore e controle variáveis que permitam que se obtenha o grau de disponibilidade necessário. Para os demais consumidores de energia, os painéis de controle e supervisão utilizados nas aplicações industriais são suficientes para atender as necessidades das ferrovias.

As operações de supervisão da eletrificação são realizadas centralizadamente através do painel mímico, que contém o diagrama unifilar dos circuitos de tração, onde
são indicados o estado dos disjuntos, o estado das chaves seccionadoras, o estado de energização das secções de eletrificação e o estado de eletrificação dos setores, além de sinais de alarme correspondentes a ultrapassagem dos limites de tensão e corrente máximos e mínimos permitidos.

As operações de controle da eletrificação são realizadas, também, centralizadamente, através do painel mímico, pelo acionamento de chaves que posicionam remotamente as chaves seccionadoras, proporcionando as manobras necessárias para a energização ou desenergização de setores ou secções, bem como a conexão ou desconexão de subestações retificadoras à catenária.

As operações de controle das subestações retificadoras e auxiliares são realizadas localmente através de painéis de energia localizados nas salas de equipamentos das subestações, que possuem para a operação, basicamente, um painel mímico que contém o diagrama unifilar sobre o qual são representados os alimentadores de entrada, os transformadores, os retificadores, os disjuntos e os seccionadores. As manobras são realizadas diretamente sobre o painel mímico.

As operações de supervisão do estado das subestações podem ser realizadas localmente ou centralizadamente; localmente são feitas através do painel de energia da subestação e centralizadamente, através do painel mímico de eletrificação localizado na sala de controle, onde existem diagramas unifilares simplificados das subestações com indicadores de estado de carga da subestação, dos
disjuntores e das chaves seccionadoras, além dos indicadores de alarmes.

2.1.4 Controle e Supervisão de Passageiros

O controle de passageiros é realizado através do acionamento das linhas de bloqueios existentes nas estações e a supervisão através de estatística de tipos de bilhetes utilizados e de quantidade de passageiros por locais de embarque e desembarque e por intervalos de tempo.

As operações de controle e supervisão são realizadas localmente nas próprias estações, sendo as estatísticas calculadas globalmente para cada linha, portanto, realizadas em equipamentos localizados no centro de controle.

Os equipamentos que implementam o controle e a supervisão de passageiros, com exceção dos bloqueios, são equipamentos convencionais de aquisição de dados, ou seja, microcomputadores, estações remotas, equipamentos concentradores e equipamentos de transmissão de dados.

2.1.5 Controle e Supervisão de Carga e Vagões

O controle e a supervisão de carga e vagões tem por finalidade manter registros atualizados da posição física dos vagões de carga e proporcionar elementos para que as composições sejam montadas, de forma que a carga chegue ao destino pela melhor rota e que as manobras de engate e desengate de vagões na composição nas estações intermediárias sejam minimizadas.
A operação consiste em manter atualizado um banco de dados de vagões que possue registros para indicar o destino final do vagão, o prefixo da composição que o vagão está engatado, a localização atual do vagão e a carga que o vagão transporta. Para a atualização de dados, em cada estação em que a composição para, os vagões são identificados, automaticamente ou manualmente, e os dados são transmitidos para o centro de controle, onde o banco de dados é atualizado quanto a localização dos vagões em questão.

Os sistemas que implementam o controle e a supervisão de carga e vagões são constituídos por computadores com terminais localizados em cada um dos pontos de coleta de dados, não havendo necessidade de equipamentos especiais, exceto os de leitura automática do código dos vagões, quando for utilizada a leitura automática.
2.2 Sistema Centralizado de Supervisão e Controle do Trem Metropolitano de São Paulo

O Sistema Centralizado de Supervisão e Controle do Trem Metropolitano de São Paulo - SCSC foi desenvolvido para centralizar as funções de supervisão e controle de tráfego das duas linhas do Trem Metropolitano operadas pela FEPASA - Ferrovia Paulista S.A.

O sistema do Trem Metropolitano da FEPASA abrange a região sul-oeste da região metropolitana de São Paulo, sendo constituído de um tronco principal e um ramal secundário, que interligam Luz a Amador Bueno e Presidente Altino a Jurubatuba, respectivamente, com extensão total de aproximadamente 70 Km, conforme apresentado na figura 2.3. Distribuídas nesta região existem 25 estações, cada uma delas contendo com plataformas de embarque e pátio de manobras.

Cada conjunto de até três estações, ou pátios de manobra, possue um equipamento que executa o controle de tráfego local, na abrangência de circulação dos pátios envolvidos e o respectivo intertravamento. Através desse equipamento, denominado "Traffic Control System"-TCS, o SCSC coleta as informações de estado dos equipamentos de via (máquinas de chave e sinais) e envia os camandos de posicionamento a esses mesmos equipamentos nas operações de supervisão e controle de tráfego, respectivamente.

Cabe observar que o TCS não permite a visualização de toda a extensão da ferrovia, o que não permite a operação
FIGURA 2.3 - REPRESENTAÇÃO ESQUEMÁTICA DA REGIÃO DE ABRANGÊNCIA DO SCSC
eficiente da mesma sem a utilização do SCSC, que centraliza as informações no centro de controle da ferrovia.

Além do TCS, que implementa o intertravamento que impede o estabelecimento de rotas conflitantes, a proteção contra colisões conta ainda com o "Automatic Train Control"-ATC, que realiza a proteção automática do trem, através do controle de velocidade máxima já mencionado. O ATC é completamente independente do SCSC, não havendo nenhuma interface entre eles.

Pelo exposto, pode-se depreender que a abrangência do SCSC dentro do processo ferroviário está no âmbito da supervisão e controle do tráfego ferroviário e, dentro dele, sua função básica é a centralização da operação, interfaceando com os sistemas locais de controle de tráfego representados pelos TCSs.

2.2.1 Especificação Funcional do SCSC

Neste item é apresentada suscintamente a especificação funcional do SCSC, cuja função básica, como já mencionado, é a centralização da supervisão e controle de tráfego dos trens metropolitanos da FEPASA na Grande São Paulo.

A função de supervisão de tráfego compreende a aquisição de informações de estado na via férrea, a realização de testes de consistência sobre os dados coletados e a formatação desses dados, de acordo com os procedimentos operacionais da ferrovia, para o fornecimento das informações necessárias à realização do controle de
tráfego, manualmente pelos despachadores ou automaticamente pelo sistema.

A função de controle compreende o cálculo das variáveis de controle, através de algoritmos especiais aplicados sobre as variáveis de estado da via, o envio dos comandos de controle resultantes do cálculo das variáveis de controle aos equipamentos de campo, após a verificação prévia de conflitos que implique na geração de rotas conflitantes, e a verificação da execução dos comandos pelos equipamentos de via, através da realimentação da informação pela função de supervisão. Quando o controle é realizado manualmente pelos despachadores, o cálculo das variáveis de controle não é executado e elas são geradas pelos próprios despachadores nos equipamentos de interface homem-máquina.

Além das funções de supervisão e de controle, são realizadas algumas funções de auxílio com a finalidade de orientar as novas programações de trens, e que compreendem a emissão de relatórios e estatísticas sobre atrasos e movimento de trens em estações.

O SCSC realiza as suas funções a partir das informações coletadas na via férrea e da programação de trens presentes no sistema, inserida pelos despachadores diariamente. As seguintes informações binárias referentes à via férrea são coletadas na via através do TCS para serem utilizadas no sistema:
- Presenças de Trens: apresentam as posições físicas das composições, através da informação de ocupação de circuitos de via ou conjunto deles;
- Estados de Chaves: apresentam as posições das máquinas de chaves que determinam as trajetórias das composições em circulação;
- Estados dos Sinais: apresentam o estado dos sinais existentes nos páteos, que regem a movimentação das composições; e
- Seleções de Rotas: apresentam as rotas que foram estabelecidas.

Na função de supervisão, a apresentação do estado das duas linhas de trens metropolitanos é feita através de seis terminais de vídeo em cores de 19 polegadas, onde são apresentadas vistas esquemáticas do traçado da via e uma série de tabelas contendo informações sobre os trens, as estações e a própria via. As vistas esquemáticas contêm informações referentes à via em tempo real e podem ser apresentadas nos seguintes três níveis de detalhe, conforme a escolha do despachador:
- Vista Geral Simplificada: fornece a visão global da via em uma única tela de vídeo, podendo-se observar a posição relativa e o sentido de movimento dos trens;
- Vista Geral Detalhada: fornece os detalhes topológicos e o estado de toda a via, contendo informações suficientes para a tomada de decisões pelo despachador. Ocupa cinco telas de vídeo para apresentar toda a extensão das duas linhas da ferrovia, contendo informações sobre posição
relativa dos trens, dada por seus respectivos prefixos, sobre as posições das chaves, sobre as rotas selecionadas ou estabelecidas e sobre os trechos em manutenção; e

- Vista Parcial Detalhada: fornece todas as informações necessárias aos despachadores para executarem manualmente o controle do tráfego. Devido ao nível de detalhe, estas vistas são organizadas por estações, e em uma tela de vídeo são apresentadas de uma a três estações, em função da complexidade do plano de vias sinalizadas de cada uma. Estas vistas contêm informações de posição efetiva dos trens (ocupação de circuitos de via) dada pelo respectivo prefixo, de posição das chaves, de estado dos sinais, de rotas selecionadas ou estabelecidas, de trechos em manutenção e de atrasos das composições com relação à programação horária. Além disso, estas vistas fornecem indicação dos pontos de entrada e saída de rotas para a realização das operações de controle manual de tráfego, que são realizadas pelos despachadores através da técnica de entrada e saída (NX).

As funções de controle de tráfego são exercidas normalmente de forma automática pelo SCSC, através da execução dos algoritmos que realizam o estabelecimento das rotas a partir das informações de estado da via, obtidas nas atividades de supervisão, e da programação horária dos trens, que contêm os horários em que as composições devem chegar e partir de cada estação, bem como as plataformas das estações que o trem deve parar.
Entretanto, se for desejável, o controle automático pode ser inibido e as funções de controle serem exercidas manualmente pelos despachadores; nesse caso o controle é realizado através da vista parcial detalhada, apresentada em um dos terminais de vídeo e por um teclado existente na mesa de operação. Além disso, caso alguma falha isole o centro de controle impedindo as operações de supervisão ou de controle centralizadas, elas poderão ser realizadas localmente através dos painéis dos TCSs.

Além das vistas da via, a função de supervisão é auxiliada por tabelas, que são utilizadas pelos despachadores para obter informações detalhadas que não são apresentadas nas vistas. As seguintes tabelas podem ser requisitadas, ao sistema, pelo despachador para serem apresentadas em qualquer um dos seis terminais de vídeo:
- Tabela de Descrição e Histórico de Trens: contém as informações relativas à descrição dos trens, tais como: origem, destino, nome do maquinista, etc. e o seu histórico horário atualizado, contendo as estações em que pararam com os respectivos horários de chegada e de partida e com os atrasos em relação aos horários programados;
- Tabela de Histórico de Estações: é organizada por estação e contém as informações horárias, relativas à chegada, a partida e aos atrasos com relação aos horários programados para os trens que passaram pela estação em questão, identificados pelos seus prefixos;
- Tabela de Programação de Entrada: contém a programação horária de entrada de trens na região sob controle do SCSC
e os horários de chegada e partida de cada estação para cada trem, que é identificado por seu prefixo;
- Tabela de Trens Internos: apresenta quais trens, identificados por seus prefixos, estão presentes na área supervisionada pelo SCSC; e
- Tabela de Alarmes Ativos: apresenta a relação dos eventos anormais ocorridos na via ou no sistema de controle até o momento da ativação da tabela, indicando quais os alarmes que foram reconhecidos e solucionados, com os horários de ocorrência, reconhecimento e descrição do tipo do alarme ocorrido.

Além das tabelas, para registrar as ocorrências, existem os seguintes dois tipos de relatórios que são impressos nas impressoras do sistema:
- Relatório de Operação: impresso periódica e automaticamente e registra todos os eventos ocorridos na via e na operação do SCSC, assim como a ocorrência de alarmes e seu reconhecimento; e
- Relatório de Acompanhamento dos Trens: impresso mediante requisição do despachador e contém o histórico resumido da circulação de trens do dia.

2.2.2 Estrutura do Hardware do SCSC

O hardware do SCSC é composto de um centro de supervisão e controle, de um sistema de transmissão de dados e de um conjunto de interfaces de campo, conforme mostrado na figura 2.4. O centro de supervisão e controle é composto do Núcleo de Processamento Distribuído - NPD e de periféricos
FIGURA 2.4 - ESTRUTURA DO HARDWARE DO SCSC
de entrada e saída que implementam a interface homem-
máquina e que possibilitam o armazenamento de dados em meio
magnético.

As Interfaces de Campo são responsáveis pela aquisição
de dados no TCS, pela verificação de consistência e
depacotamento dos dados relativos à vía em classes, pelo
processamento dos comandos de controle recebidos do NPD e
pelo envio de sinais de controle, resultantes desse
processamento, aos equipamentos de campo via TCS.

O Sistema de Transmissão de Dados é responsável pela
transmissão eficiente dos comandos gerados pelo NPD,
destinados às interfaces de campo, e dos dados de estado da
via coletados por essas interfaces ao NPD. Convém observar
que as interfaces estão distribuídas ao longo dos
aproximadamente 70 Km da ferrovia.

Núcleo de Processamento Distribuído – NPD é responsável
pelo processamento do software de aplicação, pelo
gerenciamento da varredura das interfaces de campo, pelo
gerenciamento dos dispositivos de entrada e saída, que
realizam o interfaceamento homem-máquina, e pelo
gerenciamento da base de dados do sistema, que contêm o
estado da ferrovia e do próprio sistema.

2.2.2.1 Núcleo de Processamento Distribuído – NPD

O NPD é uma máquina de processamento distribuído com
arquitetura fracamente acoplada, ou seja, com princípio de
funcionamento à base de troca de mensagens entre os
diversos processos concorrentes residentes nos
processadores que implementam o núcleo de processamento. As mensagens geradas pelos processos são transferidas para um par de anéis locais de comunicação, com tráfego unidirecional, que é o meio físico de transferência das mensagens entre os processadores.

Todo o trabalho relativo à troca de mensagens é realizado pelo Sistema Operacional do Núcleo, que se encarrega do protocolo, do roteamento e da consistência das mensagens, tanto no seu destino como na sua origem; esse sistema operacional é distribuído e residente em todos os processadores do NPD, possuindo autonomia e prioridade igual em qualquer caso.

O hardware do NPD, como mostrado na figura 2.5, é constituído por dois anéis unidirecionais, cada um transferindo assincronamente dados e sinais de controle em paralelo a uma taxa de 100K palavras por segundo, e por um conjunto de nós conectados a esses anéis. Cada nó é composto de um processador, duas interfaces com os anéis e um hardware adicional que individualiza o nó.

Os nós podem ser classificados como de uso geral quando são utilizados para o processamento do software aplicativo, e de uso dedicado quando são utilizados para interfaceamento com os periféricos de entrada e saída. No primeiro caso, o hardware adicional é constituído de um banco de memória RAM de 112 Kbytes e, no segundo, da interface correspondente ao dispositivo periférico ao qual está conectado. No caso do SCSC existem interfaces para discos rígidos de 20 Mbytes, impressoras, consoles,
FIGURA 2.5 - ESTRUTURA DO NPD
 terminais de vídeo em cores, discos flexíveis e para os MODEMs do STD, conforme mostrado na figura 2.5.

Cada processador, igual para todos os nós, foi implementado em uma única placa de circuito impresso denominada Módulo Básico de Processamento – MB, onde existem um microprocessador de oito bits tipo 8085 fabricado pela INTEL, recursos de tratamento de interrupções, que podem ser geradas pelo hardware adicional e pelos esquemas de detecção de falhas e reconfiguração, recursos de acesso direto à memória, utilizados nas transferências de dados para os anéis, e 12 Kbytes de ROM e RAM, utilizados pelo sistema operacional.

A interface com o anel, devido à complexidade de suas funções, foi implementada através de um pequeno processador microprogramado, projetado com circuitos integrados MSI da família TTL, e também, a exemplo dos processadores, foi empacotada em uma única placa de circuito impresso. Um detalhe importante para a integridade dos anéis de comunicações é a existência de um mecanismo de detecção de falhas na interface com o anel, o qual provoque a interrupção do fluxo de dados no mesmo. Esse mecanismo faz com que as interfaces vizinhas a que está em falha acionem automaticamente circuitos chaveadores – CH, que curto-circuitam a interface em falha, garantindo desse modo a continuidade do anel.

Uma característica importante em um sistema de controle de tráfego ferroviário é a disponibilidade; no caso do NPD o alto índice de disponibilidade necessário é obtido
através de mecanismos que se utilizam das técnicas de detecção automática de falhas e reconfiguração, aliadas à facilidade de manutenção do hardware do sistema, dada sua modularidade.

De um modo geral as falhas são detectadas durante as trocas de mensagens, pois todos os nós possuem mecanismos para verificar se cada um dos nós com os quais ele está se comunicando está operando normalmente, ou seja, sempre que existir no NPD comunicação entre duas partes, elas estarão se testando mutuamente.

Caso uma falha seja detectada, um processo residente no disco, chamado reconfigurador, é carregado em um nó de uso geral disponível, isto é, onde não existe nenhum processo alocado e, através de algoritmos e dados históricos, decide qual é o nó e/ou sua parte que está em falha; se for o caso de uma falha que comprometa todo o nó, este será substituído, transferindo-se o processo a ele alocado para um outro nó disponível. Devido a esse mecanismo, todos os nós dedicados devem ser duplicados e pelo menos dois nós de uso geral devem estar sempre disponíveis.

2.2.2.2 Sistema de Transmissão de Dados – STD

Nas operações de supervisão, o STD implementa a política de varredura das interfaces de campo, determinada pelo software aplicativo do SCSC e, nas operações de controle, implementa o acesso direto às mesmas interfaces. A conexão do STD com o NPD é feita através dos nós dedicados de interfaceamento com o STD, ISTD, onde toda a política de
intercâmbio com as interfaces de campo está armazenada e pode ser dinamicamente alterada pelo software responsável pelo gerenciamento da comunicação, residente em algum nó de uso geral do NPD.

Por motivos de confiabilidade e disponibilidade, o STD é constituído de dois canais iguais e independentes, que operam dividindo a carga de comunicação, mas podendo cada um deles assumir toda a tarefa no caso de pane completa do outro.

Cada canal do STD é composto de dois concentradores, uma quadra de fios no cabo de transmissão de dados da ferrovia e um conjunto de MODEMS conectados em configuração multiponto. Cada concentrador é constituído de um processador, implementado com o microprocessador de oito bits 8085 fabricado pela INTEL, 16 Kbytes de memória ROM e RAM, onde reside o seu software de controle, e interfaces serials para comunicação com os MODEMs.

A escolha do número de concentradores foi baseada nas características de topologia da via férrea, na localização física do centro de controle e nos tempos gastos para a realização das tarefas de varredura e acesso direto às interfaces de campo.

Para a troca de mensagens entre os concentradores e as interfaces e entre os concentradores e o NPD é utilizado um protocolo bastante simples, que basicamente, contém campos de endereços, tipo de informação e informação, organizados em sequências de 16 bits. Existe ainda um campo de código de redundância cíclica, capaz de detectar até quatro bits
errados; o polinômio de cálculo foi dimensionado de acordo com as condições de ruídos apresentados pelo cabo de transmissão de dados, que corre paralelamente à via.

A comunicação MODEM a MODEM é feita em modo "full duplex" a quatro fios, à taxa de 1200 bps com modulação em FSK (Frequency Shift Keying). Os MODEMs foram projetados e implementados para operarem em condições adversas do meio de comunicação, e de forma a nunca falharem bloqueando completamente os canais do STD.

2.2.2.3 Interfaces de Campo - ITCS

As ITCSs são os blocos de SCSC que realizam o interfaceamento com o processo a ser monitorado e controlado; são conectadas aos equipamentos de via, através do "Traffic Control System", de onde coletam os sinais correspondentes ao estado da ferrovia e onde injetam os sinais de controle para alterar o estado dos equipamentos de via. Basicamente, são monitorados os estados dos sinais, das chaves, das rotas e das ocupações de circuitos de via e controladas apenas as chaves e rotas, correspondendo a um total de aproximadamente 7000 variáveis monitoradas e 1000 controladas.

As ITCSs são compostas de dois blocos completamente independentes, sendo um responsável pelas operações de supervisão e outro pelas de controle; essa separação foi motivada por considerações de confiabilidade das operações de controle, onde alguns circuitos devem possuir
característica de falha segura, aliadas a considerações de velocidade, economia e disponibilidade do sistema.

Cada um dos blocos da ITCS é composto de um módulo processador duplicado, chamado IT, implementado com o microprocessador de oito bits tipo 8085 fabricado pela INTEL. Cada módulo IT se comunica com um dos canais do STD, de forma que cada ITCS possue dois caminhos de acesso ao centro de controle.

Conectados a ambas as ITs estão o aquisitor no bloco de supervisão, responsável pelo sensoramento dos sinais, e o atuador no bloco de controle, responsável pela atuação nos equipamentos de via. A figura 2.6 mostra o diagrama de blocos das ITCSs.

Sempre as duas ITs de cada módulo estão em operação normal; no caso das operações de supervisão, ambas coletam os dados, via aquisitor, os processam e os deixam à disposição do STD, estando, portanto, uma delas em "hot standby"; no caso das operações de controle, ambas recebem os comandos provenientes do centro de controle, os decodificam e processam e enviam os sinais correspondentes aos comandos desejados ao atuador.

O hardware e o software residentes nas ITs possuem meios de verificar a integridade dos MODEMs e elas conectados e dos circuitos do aquisitor e atuador e, em caso de detecção de alguma falha, esta é informada ao centro de controle, através dos blocos de supervisão, que tomará as medidas necessárias para que a falha seja contornada.
IT SUP : IT DE SUPERVISÃO
IT CNT : IT DE CONTROLE
CAQ : CIRCUITO AQUISITOS
CAT : CIRCUITO ATUADOR
TCS : "TRAFFIC CONTROL SYSTEM"
IT : PLACA PROCESSADORA DA ITCS
ITCS : INTERFACE COM O TCS

FIGURA 2.6 - ESTRUTURA DA ITCS
As ITCSs estão distribuídas ao longo da via férrea, sendo necessárias 15 interfaces para cobrir os 70 Km de via; entretanto, levando em conta que o sistema de trens metropolitanos poderá expandir-se nos próximos anos, foi previsto um espaço de endereçamento para até 64 interfaces, o que significa que se pode facilmente agregar regiões não controladas ao sistema, bem como expandir consideravelmente a área de abrangência do meio de transporte, através da implantação de novas linhas.

2.2.3 Estrutura do Software do SCSC

Neste item será apresentada apenas a estrutura do software aplicativo que é processado no NPD, uma vez que os programas que controlam os concentradores e as interfaces de campo são de pequeno porte e convencionais, não apresentando, portanto, maior interesse.

O software do NPD para a aplicação ferroviária tem, como objetivo básico, coletar as informações provenientes das interfaces de campo, adequá-las à sistemática operacional de ferrovia e apresentá-las aos despachadores, através dos terminais de vídeo em cores, e gerar os comandos de controle para as interfaces de campo, a fim de determinar as rotas mais eficientes para movimentação dos trens.

O software do NPD é distribuído e composto de cinco grandes processos que são executados nos nós de uso geral e são responsáveis pelo gerenciamento do estado da via, da base de dados do sistema, dos periféricos de entrada e saída, da interface com o operador, e pelas operações de
controle. Além desses grandes processos, outros seis processos menores são responsáveis pelo interfaceamento com os periféricos e são executados nos nós dedicados.

O fluxo de informações entre os processos é mostrado esquematicamente na figura 2.7. Convém observar que todos os processos operam à base de troca de mensagens, suportados pelo sistema operacional especialmente desenvolvido para esta finalidade, o qual possue a capacidade de multiprogramação e multiprocessamento. A comunicação entre o processo é feita através das primitivas do tipo ENVIA MENSAGEM, ESPERA MENSAGEM, etc.

O processo Gerenciador de Estado - GE é responsável pela atualização e manutenção da tabela de variáveis de estado da via, pela atribuição do prefixo dos trens às ocupações dos circuitos de via e pelo teste de consistência dos comandos de controle. Ele recebe e envia dados relativos à via através do processo ISTD, residente no módulo ISTD, e atualiza a tabela de estados residente nos discos magnéticos, através do processo Gerenciador de Base de Dados - GD.

O processo Gerenciador do STD - ISTD reside no nó dedicado ISTD e é responsável pela comunicação com os concentradores e com as interfaces de campo. O ISTD executa, ainda, o primeiro teste de consistência nos dados recebidos do campo, desempacota tais dados e os envia ao Gerenciador de Estados - GE.

O processo Gerenciador da Base de Dados - GD é responsável pela atualização, manutenção e consistência da
FIGURA 2.7 - FLUXO DE INFORMAÇÕES ENTRE PROCESSOS DO SCSC
base de dados do sistema residente nos discos; toda e qualquer operação com os discos é realizada via GD que, após determinar quais os arquivos envolvidos envia comandos de alto nível aos processos de interface com o Disco - ID, residentes nos nós dedicados ID, que os decodifica e realiza as operações com os disco.

O processo Gerenciador da Interface com Operador - IO é responsável pela busca, formatação e apresentação das tabelas e demais informações aos despachadores, através dos terminais de vídeo, além da atualização destas informações em tempo real. A busca e a atualização das informações são feitas através da comunicação entre o GD e o GE, respectivamente. A interação entre o IO e os despachadores é feita através dos processos Gerenciadores de Vídeo e de Teclado, TV e TC, respectivamente, residentes nos nós dedicados CTV.

O processo Gerenciador dos Periféricos de Entrada e Saída - GES é responsável pelo gerenciamento das duas consoles do sistema, das duas impressoras e da unidade de discos flexíveis, gerando, através do processo Gerenciador de Terminais - CT, residente no nó dedicado CT, os relatórios de operação e de documentação. O GES também recebe do CT os comandos teclados nas consoles de sistema e os processa, gerando as informações necessárias para o sistema executar os comandos recebidos.

O GES também gerencia as unidades de discos flexíveis através dos processos Gerenciadores de Entrada de Dados - CED, recebendo dele os dados de programação de trens, que
são utilizados pelos algoritmos de controle, e enviando à ele os relatórios de operação, quando solicitado pelos operadores.

Finalmente, o processo Controle - CO é responsável pela execução dos algoritmos de controle da ferrovia que procuram manter a programação horária dos trens, baseando-se em informações dos processos GE, GD e IO. Toda a marcha dos trens é comandada automaticamente pelo CO, que gera os comandos para o estabelecimento das rotas e os transfere às interfaces de campo via os processos GE e ISTD.

2.2.4 Considerações sobre o Desenvolvimento do SCSC

O projeto do SCSC realizado com o financiamento da FEPASA - Ferrovia Paulista S.A. e executado na Escola Politécnica da Universidade de São Paulo, através da Fundação para o Desenvolvimento Tecnológico da Engenharia, com início em 1970, representou um marco importante para o desenvolvimento de equipamentos de controle implementados com arquitetura distribuída e com utilização intensiva de microprocessadores.

A utilização de um conjunto computacional do tipo do NPD e seus periféricos, para o controle de parte do processo ferroviário, é um dos pontos mais relevantes do projeto, pois permitiu dar ao centro de controle características muito desejadas na área ferroviária a custo baixo, quando comparadas com a implementação baseada em computadores convencionais. Essas características são as seguintes:
- elevado índice de disponibilidade do conjunto computacional do centro de controle, conseguido pela aplicação de esquemas de detecção de falhas e reconfiguração do NPD, trocando os nós em falha por nós integros de forma transparente ao operador;

- facilidade de manutenção do equipamento pois, dada a modularidade intrínseca do sistema e os esquemas de detecção de falhas implementados, a manutenção de primeira linha é rápida, uma vez que é baseada na troca de módulos e não exige treinamento dispendioso das equipes de manutenção;

- interface homem-máquina eficiente, conseguida pelo uso de terminais de vídeo em cores e semigráficos e pela possibilidade do operador obter na mesma tela vários tipos de informações diferentes, com o grau de detalhe adequado para cada tipo de operação; e

- elevado grau de flexibilidade com relação a modificações no plano de vias (track plan), dado que todo o plano de vias é mapeado em tabelas e sua modificação implica apenas na alteração das tabelas, não exigindo nenhuma alteração no hardware ou no software do sistema.

Com relação à decisão do uso de uma máquina de arquitetura distribuída, como o NPD, na implementação do conjunto computacional do sistema de supervisão e controle de tráfego ferroviário, ela foi acertada, bem como foi acertada a decisão de se implementar as interfaces de campo com microprocessadores e redundâncias simples. Cabe observar que ambas as decisões eram inéditas na época.
Com relação ao desenvolvimento propriamente dito do hardware e do software podem ser feitas as seguintes observações:

a) Sobre o desenvolvimento do hardware

A metodologia de construção de protótipo funcional em tecnologia "wire-wrap" para, após sua comprovação funcional, partir para a implementação definitiva se mostrou muito lenta e cara; teria sido provavelmente mais rápido e, portanto, mais barato partir-se diretamente para a implementação definitiva. Este fato foi praticamente comprovado na implementação da segunda versão das ITCSs.

Um fato positivo foi a exigência de se manter a documentação das placas de circuito impresso sempre atualizada, mantendo um controle rígido sobre as alterações de projeto e versões de placas de circuito impresso que iam sendo produzidas.

b) Sobre o desenvolvimento de software básico

O desenvolvimento de software básico se mostrou bastante moroso e difícil, tendo sua depuração e validação passado por um processo extremamente árduo; por outro lado não havia como escapar de seu desenvolvimento completo, pois não havia outra alternativa, uma vez que na época não havia nenhum sistema operacional que se pudesse aproveitar. Nos dias atuais, certamente se deve optar pelo uso de um sistema operacional disponível no mercado, como por exemplo, UNIX ou OS/2, em vez de desenvolvê-lo, projetando o hardware para ser compatível com o sistema operacional escolhido.
c) Sobre o desenvolvimento do software aplicativo

O desenvolvimento do software aplicativo foi realizado utilizando uma metodologia rudimentar, se comparada aos métodos disseminados atualmente. Foi dado um enfoque "top-down", sem no entanto adotar um método específico, pois as características do software eram não convencionais na época.

Devido ao fator de ineditismo, o desenvolvimento se deparou com muitos problemas, dos quais são citados os três principais.

O primeiro foi, sem dúvida, causado pelo fato do software ser de grande porte, e pelas características de concorrência e paralelismo, sendo que não existia, na época, tecnologia consolidada, principalmente em termos de programação paralela. A equipe de software desenvolveu e adaptou uma série de técnicas e ferramentas para as diversas atividades de projeto tais como, representação do software, depurador, mecanismos para testes, etc.

O segundo diz respeito às ferramentas de desenvolvimento de software; apesar de se utilizar a ferramenta adequada para a época, havia apenas um sistema de desenvolvimento para toda a equipe de desenvolvimento de software, o que ocasionou atritos entre os elementos da equipe e atrasos no desenvolvimento do software. Certamente teria custado mais barato adquirir pelo menos mais um sistema de desenvolvimento. Sistemas de apoio ao desenvolvimento de software do tipo CASE não eram ferramentas de fácil acesso no início do desenvolvimento de software.
O terceiro problema foi a geração e o controle da documentação de desenvolvimento de software e o controle das versões de programas; esse problema não foi solucionado satisfatoriamente durante o projeto, apesar de se ter criado setores no projeto com a responsabilidade explícita de cuidar desse aspecto porque não foram desenvolvidas ferramentas adequadas durante o projeto e ainda não existiam as ferramentas de CASE, que auxiliam na resolução desse tipo de problema, e que hoje podem ser adquiridas no mercado.

d) Sobre os testes de integração

As atividades de testes mostraram que o uso de simuladores não validam totalmente o sistema, devido à características de aleatoriedade de eventos e de tempos, que são difíceis de prever e de implementar nos simuladores. Cabe salientar, entretanto, que o uso de simuladores foi indispensável e bastante útil durante o desenvolvimento do SCSC, mostrando ser um investimento com um retorno muito bom ao projeto.

Outro ponto importante que se aprendeu durante os testes de integração do sistema foi a importância do planejamento antecipado dos testes e da elaboração de rotinas específicas para cada teste para serem seguidas durante o mesmo, como forma de evitar os desvios de objetivos, que são comuns e são bastante prejudiciais ao desempenho global da atividade de teste.

Além disso, aprendeu-se também que o relatório dos testes elaborados durante a execução dos mesmos e sua
análise posterior indicam quase sempre os melhores caminhos para os diagnósticos e para a eliminação das causas das falhas do projeto ou do sistema, sendo, portanto, imprescindível.

e) Sobre a especificação funcional

Não houve no início do projeto do SCSC uma preocupação muito grande em se consolidar e aprovar a especificação funcional do sistema; esse fato trouxe muitos problemas ao desenvolvimento do sistema, principalmente, devido às solicitações de alterações por parte dos usuários.

Esse tipo de problema, bastante comum em projetos que não seguem à risca uma sistemática de metodologia estruturadas de desenvolvimento, causa sérios atrasos no desenvolvimento, pela necessidade de reprojetos e retrabalhos para adequação do projeto às novas idéias ou às novas interpretações de velhas idéias, que não existiam ou estavam dúvidas no documento da especificação funcional não consolidado.

Concluindo, o desenvolvimento do SCSC foi bem sucedido do ponto de vista do projeto em si e do ponto de vista do aprendizado sobre desenvolvimento de projetos de grande porte e sobre desenvolvimento de tecnologia de ponta, que mostrou a exigência e a importância da execução de um planejamento adequado, da aplicação de equipes com a maturidade e experiência adequada, em cada uma das fases do projeto, e do estabelecimento e controle de metas intermediárias bem definidas e que reflitam os pontos
importantes do estágio de desenvolvimento do projeto, durante todo o tempo de desenvolvimento.

2.3 Sistema Centralizado de Controle de Tráfego do Trem da Região Metropolitana de Porto Alegre - CTC

O CTC fornece aos despachadores localizados no centro de controle, todas as informações e os meios necessários para o perfeito controle centralizado da circulação de trens na região sinalizada da ferrovia, obedecendo aos requisitos operacionais da Trensurb.

Para executar as funções de supervisão e controle centralizado o CTC recebe, de forma codificada e através de um conjunto de MODEMs localizados no centro de controle, dados referentes ao estado dos equipamentos da via férrea, ou seja, ocupação dos circuitos de via, estados dos sinais e posição das máquinas de chave, e envia dados relativos aos comandos de movimentação de máquinas de chave e posicionamento de sinais, através do mesmo conjunto de MODEMs.

O conjunto de MODEMs mencionado faz parte da infraestrutura de comunicação do Sistema de Controle de Tráfego Setorial - CTS, que é responsável pela supervisão e
controle de tráfego local da ferrovia, que por sua vez se interfaceia com os circuitos de intertravamento da mesma.

Dessa forma, pode-se concluir que a abrangência do CTC, dentro do processo ferroviário, está no âmbito da supervisão e controle de tráfego ferroviário e, dentro dele, sua função é a centralização da operação, interfaceando com a ferrovia através dos MODEMs do CTS instalados no próprio centro de controle.

2.3.1 Estrutura do CTC

Foi adotada para o CTC a mesma estrutura que implementa o centro de controle do SCSC, uma vez que a tecnologia estava praticamente dominada na época da contratação do projeto do CTC, em 1983. O Sistema de Transmissão de Dados e as Interfaces de Campo, utilizadas no SCSC, não se aplicam no caso do CTC, pois as funções exercidas por esses sistemas são realizadas pelo Sistema de Controle de Tráfego Setorial - CTS.

As diferenças básicas entre o SCSC e o CTC, no que diz respeito ao centro de controle, residem na utilização pelo CTC de um painel mímico de circulação de trens, de um painel de alarmes e de uma mesa de comando, que não existiam no SCSC. Convém observar, que depois de instalado o painel mímico no CTC, foi sugerido e acrescentado um desses painéis no SCSC.

A configuração de hardware no NPD utilizado no CTC ficou como mostrado na figura 2.8, onde pode ser notada a existência dos controladores do painel mímico de circulação
FIGURA 2.8 - CONFIGURAÇÃO DE HARDWARE DO NPD DO CTC
de trens - CPC, responsáveis pelo interfaceamento do NPD como painel mímico, do controlador do painel de alarme - CPA, responsável pelo interfaceamento do NPD com o painel de alarmes, e dos controladores das mesas de comando - CMC, responsáveis pelo interfaceamento dessas consoles com o NPD.

O painel mímico de circulação é utilizado na função de supervisão em conjunto com os terminais de vídeo em cores e apresenta, de forma esquemática, toda a extensão da via férrea, incluindo os páteos de estacionamento, as entradas do páteo das oficinas e a localização e identificação das plataformas das estações, e as zonas de abrangência dos sistemas CTS.

São indicadas também no painel mímico de circulação, através de lâmpadas coloridas, a ocupação dos circuitos de via, o estado das máquinas de chave, o estado dos sinais, a situação das rotas, o sentido de tráfego, o modo de controle em que se encontra a região e o prefixo dos trens que estão parados nas estações e nos estacionamentos.

O painel de alarmes é utilizado para a indicação dos equipamentos em falha e tem como abrangência todas as instalações da ferrovia vinculadas à circulação dos trens. O painel de alarmes é composto de um conjunto de lâmpadas dispostas sobre os diagramas esquemáticos das instalações, que se acenderão quando o painel, via NPD, receber uma indicação de falha.

Com relação as operações de controle, que se resumem na seleção e alinhamento das rotas, elas podem ser realizadas
de três modos diferentes pelo CTC, excetuando-se as operações setoriais nos sistemas CTS e locais no próprio intertravamento. As três opções são as seguintes:

- Controle Automático: onde as rotas são selecionadas e alinhadas pelo próprio CTC, compondo uma operação de frota; este modo de controle, apesar de automático, é muito mais simples que o controle automático do SCSC, pois neste caso não há necessidade de cumprimento de horário e sim de espaçamento entre os trens, dispensando, portanto, os algoritmos de controle que minimizam os atrasos;

- Controle Manual pelo Terminal de Vídeo: onde os pontos de entrada e saída de rotas são fornecidos pelo despachador, através de comandos executados diretamente no terminal de vídeo, sobre a vista parcial detalhada. Esta operação é idêntica à realizada no SCSC para controle central manual; e

- Controle Manual pela Mesa de Comando: onde os pontos de entrada e saída de rotas são fornecidos pelo despachador, através do painel de alinhamento de rotas da mesa de comando, após selecionar, na própria mesa de comando, a locação onde deseja alinhar a rota.

Convém observar que as mesas de comando do CTC são constituídas dos equipamentos que compunham o teclado do SCSC, ou seja, um teclado alfanumérico padrão, um teclado de funções especiais e um posicionador XY (tracking ball), e de mais um teclado para seleção de locação a controlar pela mesa de comando e de um painel de alinhamento de rotas.
O painel de alinhamento de rotas é constituído de um conjunto de lâmpadas e botões, que possibilita representar todas as combinações possíveis de rotas dentro de qualquer pátéo da ferrovia, sendo as lâmpadas utilizadas para informar a configuração do pátéo selecionado, as opções de rotas possíveis e o alinhamento das rotas, e os botões para o comando dos pontos de entrada e saída das rotas a serem alinhadas.

A estrutura do software do CTC é praticamente a mesma do SCSC como pode ser observado na figura 2.9; as alterações dizem respeito à simplificação do processo controle - CO, com relação aos algoritmos de controle, e dos demais processos que tratavam da grade horária de trens, que deixou de existir pois é utilizada a técnica do espaçamento de trens (head way).

Além disso, foram criados os processos gerenciadores do painel mímico de circulação - PC, residente no nó dedicado CPC, e do painel de alarmes PA, residente no nó dedicado CPA. Finalmente, o processo gerenciador de teclados - TC foi substituído pelo gerenciador de mesa de comando, que além dos teclados gerencia, também, o painel de alinhamento de rotas.

2.3.2 Considerações sobre o Desenvolvimento do CTC

Como o projeto do CTC utilizou os conhecimentos e tecnologias desenvolvidas para o SCSC, pode-se corrigir algumas falhas cometidas no primeiro desenvolvimento. Entre elas pode-se citar as seguintes:
FIGURA 2.9 - FLUXO DE INFORMAÇÕES ENTRE PROCESSOS DO CTC
- Elaboração e consolidação da especificação funcional do sistema, que foi elaborada e exaustivamente discutida com os operadores do sistema, e com a equipe de projeto, como primeira atividade do desenvolvimento de projeto;

- Utilização de equipe senior e experiente para a execução das atividades de elaboração da especificação funcional e do projeto de concepção, e equipes mais jovens para a execução das fases de projeto básico e detalhado do sistema, voltando a alocar equipe experiente na fase de integração e testes do sistema;

- Utilização de equipes externas de empresas de engenharia para executar serviços rotineiros de projeto detalhado e de fabricação, para os quais não havia estrutura adequada disponível na Escola Politécnica da Universidade de São Paulo e, também, não haviam equipes especializadas para a execução de tais serviços, tornando-os extremamente caros e demorados; e

- Elaboração de metodologia de testes de integração, contemplando a execução de planejamentos prévios, rotinas de testes e relatórios de testes.

Entretanto, para o desenvolvimento do projeto de software ainda não foram utilizadas ferramentas adequadas do tipo CASE. Uma das foi que o projeto original não havia sido baseado em CASE e uma outra foi a imaturidade do mercado em relação a tal tipo de recursos. Isto sem dúvida comprometeu a produtividade da equipe de software e, não fornecendo uma plataforma mais adequada à metodologia de
desenvolvimento de software que vinha sendo consolidada no projeto.

Outro ponto importante a ser comentado é a não utilização de ferramentas computacionais de planejamento e controle de projetos, já disponíveis na época, para o gerenciamento do projeto, fazendo com que a produtividade do desenvolvimento diminuisse, pelo não direcionamento dos recursos disponíveis para as atividades das linhas críticas de forma adequada.

2.4 Sistema de Automação e Controle para o Complexo de Trens Urbanos de São Paulo

O Sistema de Automação e Controle para o Complexo de Trens Urbanos de São Paulo teve sua concepção desenvolvida no sentido de atender as funções de Supervisão e Controle de Tráfego, de Proteção Contra Colisões, de Supervisão e Controle de Energia e de Supervisão e Controle de Passageiros para as linhas Leste-Oeste, ligando a Estação Roosevelt, em São Paulo, à Cidade de Mogi das Cruzes, incluindo o ramal existente entre as estações de Engº Gualberto e Calmon Vianna, e Nordeste-Sudoeste, ligando as cidades de Paranapiacaba e Jundiaí, operadas pela Companhia Brasileira de Trens Urbanos - CBTU.

Convém observar que a concepção do sistema foi realizada em 1986.

2.4.1 Supervisão e Controle de Tráfego
Considerando a existência de duas linhas na malha ferroviária em questão, a Linha Nordeste-Sudoeste e a Linha Leste-Oeste, e considerando que, por motivos operacionais, é conveniente manter a independência operacional das mesmas, são necessários dois sistemas independentes de supervisão e controle de tráfego, aqui denominados CTC, a serem instalados no Centro de Controle Operacional - CCO da ferrovia.

Cada CTC realiza suas funções coletando dados e enviando comandos ao sistema de sinalização, através de um Sistema de Transmissão de Dados - STD de uso exclusivo e de alto índice de disponibilidade. A figura 2.10 mostra a conexão do CTC ao sistema de sinalização, através do STD, e caracteriza o nível hierárquico do mesmo como o mais elevado entre os sistemas.

Pode-se considerar que o CTC posse três funções básicas: supervisão centralizada, controle centralizado e regulação.

A função de supervisão centralizada do estado da via férrea consiste, basicamente, do fornecimento de informações, em tempo real, sobre os eventos que ocorrem na via férrea aos operadores do CTC localizados no CCO, e é realizada através de um painel mímico, denominado Painel de Indicações de Tráfego - PIT, de dois terminais de vídeo semigráficos em cores, denominados Terminais de Vídeo de Tráfego - TVT e de um painel de lâmpadas, denominado Painel de Supervisão de Alarmes do CTC - PSA.
FIGURA 2.10 - CONEXÃO ENTRE O CTC E O SISTEMA DE SINALIZAÇÃO
Cada PIT apresenta o plano de vias sinalizadas da respectiva linha, e contém as indicações de ocupação de circuitos de via, de rotas alinhadas, de rotas requisitadas, de opções possíveis de rotas, de estado dos sinais, de sentido de tráfego, de modo de controle e de prefixo das composições paradas nas estações, mostradas através de LEDs coloridos.

Dada as características dos painéis mímicos em geral, o PIT tem, como sua principal função, fornecer aos operadores uma visão global do estado da ferrovia, ficando os detalhes e os elementos básicos de controle a cargo das vistas dos terminais de vídeo de tráfego - TVT.

Os operadores de cada CTC têm à sua disposição dois terminais de vídeo em cores de alta resolução para que, em conjunto com o respectivo painel de indicações (PIT), sejam obtidas todas as informações necessárias para a realização de uma supervisão completa e eficiente do estado das vias.

Os terminais de vídeo são operados através de mesas de comando e apresentam vistas esquemáticas do traçado das vias e/ou tabelas contendo informações relevantes sobre as composições, os horários cumpridos, a programação a cumprir e os alarmes.

As vistas nos TVTs, contendo o traçado esquemático da via, são atualizadas em tempo real e são apresentadas, de acordo com a requisição feita pelo operador, em três níveis de detalhe com as mesmas características dos dois sistemas apresentados anteriormente.
A utilização dos terminais de vídeo em cores, em conjunto com os painéis mímicos, elevam a eficiência da interface homem-máquina, principalmente, pela flexibilidade que os terminais de vídeo oferecem aos operadores, no sentido da escolha da informação e do nível do detalhe necessário para a operação particular, que estejam fazendo naquele instante, e pela visão geral da ferrovia proporcionada pelo painel mímico.

Além das vistos, os operadores podem selecionar, para que seja apresentado no TVT, tabelas que contém informações relevantes sobre os trens, sobre os horários e sobre os eventos anormais ocorridos na via (alarmes); essas tabelas são a Tabela de Descrição e Histórico de Trens, a Tabela de Histórico de Estações, a Tabela de Programação de Entrada, a Tabela de Trens Internos e a Tabela de Alarmes Ativos.

O Painel de Supervisão de Alarmes do CTC tem como função básica a apresentação das indicações sobre falhas e situações anormais detectados no CTC ou nos sistemas de sinalização a eles conectados e o registro do reconhecimento do alarme correspondente às falhas. As falhas serão indicadas através de indicação sonora e luminosa sobre um diagrama esquemático das instalações, implementado sobre um painel de mosaicos com a mesma tecnologia usada para os PITs.

São sinalizadas as falhas de hardware do CTC, do sistema de transmissão de dados - STD, do sistema de sinalização e dos equipamentos de margem de via; além de condições anormais, tais como: falta de fonte principal de energia,
carga baixa nas baterias dos sistemas "NO BREAK" e abertura de portas de salas de equipamentos e bastidores de equipamentos.

Para completar a função de supervisão do CTC existem os Traçadores Gráficos do CTC - TCR, que tem como função a geração automática dos gráficos horários dos trens em operação na região de abrangência do CTC, em questão. São utilizados dois traçadores para cada CTC.

Nos traçadores serão elaborados, em tempo real, o gráfico teórico do dia e, em cores diferentes, os gráficos reais dos trens urbanos, dos de serviço, dos de carga e demais veículos. Os dois traçadores gráficos de cada CTC trabalharão com partes distintas da ferrovia, de forma a comportar o espaçamento mínimo entre trens de três minutos.

A função de controle centralizado pode ser resumida, basicamente, nas operações de alinhamento das rotas, que poderão ser efetuadas, por opção dos operadores, de um dos três seguintes modos, idênticos aos apresentados no caso anterior para o CTC de Porto Alegre:
- Automático: as rotas são automaticamente requisitadas e alinhadas pelo CTC;
- Manual pelo Terminal de Vídeo: as rotas são fornecidas ao CTC pelos operadores, através dos TVTs e respectivas mesas de comando;
- Manual pela Mesa de Comando: as rotas são fornecidas ao CTC pelos operadores, através do painel de alinhamento de rotas unitárias da Mesa de Comando.
A diferença existente entre as duas últimas opções é que, na última, somente é possível alinhar rotas onde sua origem e seu destino pertençam ao mesmo páteo (rotas unitárias), enquanto que na penúltima a única restrição entre os pontos de origem e de destino da rota, a ser alinhada, é que eles estejam na mesma tela do TVT em operação (rotas compostas).

As operações de controle, quando em modo manual, são realizadas, então, através dos TVTs e das mesas de controle, que constituem os postos de comando. Convém ressaltar que cada CTC possuirá dois postos de comando com capacidade de cada um comandar todo o trecho da ferrovia, sob jurisdição do respectivo CTC, sendo a abrangência de controle de cada posto programável de acordo com os procedimentos operacionais e com a carga de tráfego da ferrovia.

Observa-se que as opções de rota fornecidas pelos operadores ao CTC, quando nos modos de operação manual, são verificadas quanto a coerência e segurança, por um intertravamento implementado no software dos computadores do CTC, que espelha o intertravamento da via, dispensando a transmissão de dados não coerentes ao intertravamento, permitindo uma utilização mais racional do STD.

O intertravamento do sistema de sinalização, entretanto, continua sendo o responsável pela execução de todas as funções de segurança (vitais), devendo impedir a execução de quaisquer comandos que levem a circulação a situações de
potencial perigo, mesmo quando da ocorrência de falhas em seus componentes.

Finalmente, com relação a função de controle cabe comentar que o modo de controle manual pela mesa de controle é o mais degradado do CTC, onde a operação de controle é executada sem qualquer auxílio dos computadores, sendo, portanto, imprescindível nos casos de falha simultânea dos computadores do CTC.

Apesar da probabilidade de ocorrência da falha simultânea ser muito baixa, não é conveniente deixar de dotar o CTC de recursos operacionais que permitam a execução de rotas independentemente dos seus computadores, pois a passagem para comando local ou comando via intertravamento em modo automático é sempre traumática para a operação da ferrovia.

A função de regulação, ou seja, de manter o espaçamento constante entre trens, de acordo com o programado, será implementada através da execução dos algoritmos do controle central automático, que enviarão, para as cabeceiras das plataformas das estações, informações de partida e de velocidade média no próximo trecho e o tempo de atraso ou adiantamento da composição. Essas informações serão passadas aos maquinistas através de sinais e displays numéricos (implementados com lâmpadas), instalados nas cabeceiras das plataformas.

Observa-se, entretanto, que a regulação final do sistema ferroviário estará sempre a cargo dos maquinistas, que deverão obedecer às instruções de partida e velocidade
média impostas pelo sistema, uma vez que não haverá equipamentos instalados na via e no material rodante, que permitam a transferência de informações e o controle automático da velocidade dos trens.

Independentemente das operações de controle, supervisão e regulação, o CTC fornece, aos operadores relatórios, de operação que indicam, em ordem cronológica, todos os eventos que ocorrem na ferrovia e todas as operações realizadas por eles mesmos ou automaticamente pelo próprio CTC.

São, então, impressos no relatório de operações, os alarmes, os comandos de alinhamento de rotas e de posicionamento de chaves, os eventos de chegada de trens nas estações e nos destinos, as alterações de prefixo das composições e a entrada e saída de trens na região controlada pelo CTC.

Os relatórios de operação serão impressos por duas impressoras matriciais conectadas aos computadores do CTC, que operam independentemente e de forma redundante. Nos casos normais uma das impressoras é dedicada à impressão do relatório de operações e a outra à impressão de tabelas.

2.4.1.1 Estrutura de Hardware do CTC

O hardware do CTC tem, como requisitos operacionais básicos, a elevada disponibilidade e a grande capacidade de processamento. A premissa de elevada disponibilidade praticamente obriga a utilização de configurações
redundantes, tanto no que diz respeito à unidade de processamento, como nos periféricos essenciais à operação.

O Hardware do CTC será projetado e implementado, de forma que nenhuma falha simples ocasione a perda de qualquer função operacional essencial aos operadores. A figura 2.11 mostra em grandes blocos a configuração proposta para o hardware do CTC.

O sistema central de computadores é responsável, basicamente, pelo processamento do software aplicativo realizando, de uma forma geral, o gerenciamento da coleta de dados no sistema de sinalização, a atualização em tempo real dos dispositivos de interface homem-máquina, o armazenamento e a atualização, também em tempo real, da base de dados do CTC, a geração de relatórios e do gráfico horário e a implementação dos comandos efetuados pelos operadores nos postos de comando, exceto os efetuados através dos painéis de rotas unitárias.

Convém observar que se entende como implementação dos comandos a verificação de sua consistência, a geração dos comandos específicos para o sistema de sinalização, o envio dos mesmos ao sistema de sinalização e a verificação da sua execução, através da realimentação dos sinais de estado dos equipamentos.

Os discos magnéticos, que operam em "hot stand by", são responsáveis pelo armazenamento não volátil das bases de dados do CTC; além disso, armazenam também os programas aplicativos do CTC, para que sejam carregados na memória principal dos computadores nos casos de necessidade de
FIGURA 2.11 - CONFIURAÇÃO DO HARDWARE DO CTC
iniciação do sistema. Convém observar que todo o software aplicativo estará sempre residente na memória principal dos computadores.

Os discos flexíveis são utilizados para a carga no CTC das programações horárias (gráfico horário teórico) e para a carga de novos programas ou versões do software aplicativo.

As consoles do sistema tem por função a operação dos computadores e são utilizados pelos supervisores, não sendo acessíveis aos operadores dos postos de comando. Entre seus comandos encontram-se o de configuração da região de abrangência de cada posto de comando.

As interfaces com o STD são responsáveis pelo acoplamento dos computadores e do painel de rotas unitárias com o sistema de transmissão de dados. A comunicação entre o painel de rotas unitárias e o STD é necessária, pois esse painel trabalha de forma autônoma, não dependendo dos computadores para enviar os comandos de rotas ao sistema de sinalização; sua ligação ao computador estará presente apenas para fins de supervisão das operações que estão sendo realizadas, se os computadores estiverem operando.

O STD realiza o transporte das informações entre os computadores e sistema de sinalização e entre este último e os painéis de rotas unitárias e de indicações de tráfego - PIT.

A ligação do STD diretamente ao PIT torna-se importante nos casos de falha dos computadores, pois com essa ligação a supervisão da ferrovia não será totalmente perdida. Dessa...
forma, é possível a operação da ferrovia sem que os computadores estejam operando, com a utilização do PIT para supervisão e do painel de rotas unitárias para controle.

2.4.1.2 Estrutura do Software do CTC

O software do CTC para a aplicação aqui proposta tem, como objetivo básico, coletar as informações provenientes do sistema de sinalização, adequá-las à sistemática operacional adotada e mostrá-las aos operadores através dos dispositivos de interface homem-máquina mencionados (PIT, TVT, Traçador gráfico, impressoras), além de gerar os comandos para o sistema de sinalização, a fim de determinar as rotas mais eficientes para movimentação dos trens.

O software é composto de um conjunto de cinco grandes módulos e vários módulos menores com as mesmas funções e denominações do software do CTC desenvolvido para a região metropolitana de Porto Alegre, cujo fluxo de informações é apresentado na figura 2.9, não sendo necessário, portanto, repetir a descrição de suas funções. Cabe ressaltar, entretanto, que neste caso o software será desenvolvido utilizando metodologia estruturada, implementado com linguagem de alto nível e utilização intensiva de metodologias CASE.

2.4.2 Sistema de Sinalização

O sistema de sinalização, responsável pela proteção dos trens contra colisões, é implementado com tecnologia digital, porém compatível com os equipamentos eletromecânicos de sinalização existentes na ferrovia e
ainda dentro da sua vida útil, para que possam continuar sendo utilizados em conjunto ou complementando o novo sistema.

Para realizar sua função, o sistema de sinalização é subdividido em subsistema de intertravamento (vital e não vital), subsistema de controle automático de trens-ATC, e equipamentos de sinalização de campo, interconectados conforme mostrado na figura 2.12. Os subsistemas do sistema de sinalização são descritos a seguir.

2.4.2.1 Subsistema de Intertravamento-ITR

O subsistema de intertravamento-ITR atua sobre os equipamentos de sinalização de campo, posicionando máquinas de chave e abrindo e fechando sinais, de forma a criar em conjunto com o subsistema ATC, condições para que os trens se movimentem com segurança.

Essas atuações sobre os equipamentos de sinalização de campo estão condicionadas aos seus estados correntes e às indicações de ocupações de circuitos de via por composições. O subsistema ITR somente atuará quando receber comandos de alinhamento de rotas ou movimentação de chaves provenientes do CTC. Ressalta-se que não é possível a operação direta sobre os sinais, pois para operá-los é necessário alinhar uma rota com ponto de origem no sinal em questão.

As funções básicas do subsistema ITR são a implementação segura das requisições de rotas e movimentações de chaves enviadas pelo CTC, a realimentação das operações efetuadas
FIGURA 2.12 - DIAGRAMA DO SISTEMA DE SINALIZAÇÃO
para o CTC, através do envio das indicações de posições de chaves e estado dos sinais, e o envio das indicações de ocupação dos trens para o subsistema ATC e, também, para o CTC. As indicações de posição de chave e estado dos sinais também são enviadas para o subsistema ATC para a geração do código apropriado de velocidade.

Para executar suas funções, o subsistema ITR deve realizar as seguintes tarefas:

- Recepção das requisições de rotas e movimentação individual de chaves provenientes do CTC, através das interfaces como o sistema de transmissão de dados ISTD;

- Geração das indicações de posição de chaves, estado dos sinais e ocupações de circuitos de via, coletadas nos equipamentos de sinalização de campo, e envio das mesmas ao CTC, também através das ISTDs;

- Comunicação com os equipamentos de sinalização de campo (chaves, sinais e circuitos de via) e com o subsistema ATC, enviando-lhes comandos e deles colhendo as respectivas indicações de seus estados operacionais;

- Intertravamento lógico dos estados operacionais dos equipamentos de sinalização de campo (chaves, sinais e circuitos de via) no sentido de avaliar as condições de segurança relacionadas com os comandos recebidos do CTC, ou do painel de controle local, de forma a enviar ou não os comandos específicos para os equipamentos de sinalização de campo (sinais e chaves). Esta função é realizada de forma "fail-safe"; e
- Detecção e diagnóstico de falhas ocorridas nos circuitos do subsistema ITR e envio da indicação correspondente ao CTC.

Considerando a distribuição geográfica, a necessidade de se obter altíssimo índice de disponibilidade, a obrigatoriedade de atender os requisitos bastante rígidos de segurança, exigidos para a aplicação ferroviária, e as tendências modernas de projeto de arquitetura para sistemas de controle, adotou-se a filosofia de arquitetura distribuída para a implementação do subsistema ITR. Aliás, como em parte já ilustrado na figura 2.12.

Com o conceito de distribuição, o subsistema ITR, de cada uma das linhas, será constituído de vários blocos idênticos, distribuídos ao longo das vias férreas, cada um tendo sob sua responsabilidade a sua região de abrangência. As delimitações das regiões dependem única e exclusivamente da complexibilidade do plano de vias sinalizadas, que está intimamente relacionada com o número de sinais (eletrônicos) a serem tratados e das distâncias físicas envolvidas.

Cada um dos blocos do subsistema ITR são subdivididos em dois outros blocos denominados Intertravamento Não Vital e Intertravamento Vital, que são descritos a seguir.

a) Intertravamento Não Vital

O intertravamento não vital é responsável pelo tratamento dos comandos recebidos do CTC, pela formatação e envio das indicações ao CTC e pelo interfaceamento e
tratamento de jogos gerados nos painéis de controle local e de manutenção.

Este bloco recebe, do CTC ou do seu Painel de Controle Local - PCL, requisições de rotas compostas, decomponem essas rotas em rotas unitárias e envia os comandos apropriados ao bloco de intertravamento vital. Convém observar que o CTC, quando envia um comando de rota composta ao sistema de sinalização, já o envia devidamente particionado, de forma que, de cada bloco do subsistema de intertravamento, recebe apenas a parte da rota correspondente à sua região de abrangência.

O PCL conectado, opcionalmente, a este bloco permite a operação da ferrovia a partir dos postos locais, independentemente do CTC; a comutação entre a operação pelo CTC e pelo PCL é realizada manualmente através de um protocolo verbal.

O PCL apresenta de forma esquemática a região da via de sua abrangência, onde são indicadas através de LEDs, em regime piscante ou fixo (dependendo do caso), as seguintes informações:
- ocupação dos circuitos de via;
- estado das máquinas de chave;
- estado dos sinais;
- situação das rotas; e
- tipo de controle (central ou local).

As operações de controle, basicamente, de alinhamento de rotas unitárias, são realizadas através de botões localizados no próprio PCL, que indicarão o ponto de origem
e de destino da rota a ser alinhada. O PCL possue, ainda, botões para o acionamento individual de cada uma das máquinas de chave, não permitindo, entretanto o acionamento individual de sinais.

No mesmo conector do PCL pode ser ligado um painel com a função de auxílio à equipe de manutenção, denominado Painel de Manutenção - PM, que permite o acesso direto e a verificação dos sinais internos do sistema de intertravamento, através da execução de rotinas de teste e diagnóstico. Quando o PM está em operação, a circulação na via deve permanecer restrita, uma vez que o intertravamento estará em manutenção.

O bloco de intertravamento não vital é implementado com microprocessadores em configuração redundante, de forma que, quando um processador entra em falha, o outro assume automaticamente as funções, conforme esquematizado na figura 2.13.

Como o bloco de intertravamento não vital é implementado com microprocessadores, todas as suas funções são realizadas por software, que deve ser implementado de forma modular e utilizar linguagem de alto nível e ferramentas de CASE.

Cada processador, conforme pode ser visto na figura 2.13, recebe do intertravamento vital dois sinais independentes, contendo a mesma informação, para que possa ser testada a integridade da mesma e comunicada a falha ao CTC se elas estiverem discordantes.
FIGURA 2.13 - BLOCO DE INTERTRAVAMENTO NÃO VITAL
b) Intertravamento Vital

O intertravamento vital é responsável pela realização da lógica de intertravamento de segurança, relacionada com os comandos de rotas unitárias fornecidas pelo bloco de intertravamento não vital, pelo fornecimento dos comandos vitais de acionamento dos equipamentos da via (chaves e sinais) e pela recepção, também vital, das indicações dos equipamentos da via (chaves, sinais e Circuitos de via).

Além disso, é responsável por fornecer as informações para a operação segura do ATC, que são traduzidas pelas indicações de ocupação dos circuitos de via, de estado dos sinais e de alinhamento de máquinas de chave.

Os circuitos que implementam o intertravamento vital, responsável pela geração de comandos seguros para as máquinas de chave e sinais, utilizam microprocessadores em configuração redundante e circuitos votadores que garantirão, com grande probabilidade de acerto, que os comandos enviados serão realmente seguros. A figura 2.14 mostra um circuito típico de intertravamento.

Com o objetivo de diminuir a probabilidade de ocorrência de uma falha insegura, ocasionada por agentes externos, utiliza-se, em cada unidade de processamento, um ciclo de três fases composto por P-Processamento, E-Espera e V-Verificação.

Na fase de processamento, um determinado processador está executando o seu software aplicativo, enquanto os outros dois encontram-se na fase de espera, onde não estão executando nenhum software aplicativo, mas apenas um
FIGURA 2.14 - DIAGRAMA DO INTERTRAVAMENTO VITAL
software de verificação de falhas e diagnósticos. Após a conclusão da fase de processamento, com o armazenamento dos resultados, o processador em questão entra na fase de espera, acionando o processador seguinte que entra na fase de execução.

Quando o terceiro processador encerrar a fase de processamento é, então, iniciada a fase de verificação, onde os resultados apurados pelos três processadores serão passados, sob a forma de sinais dinâmicos, para os circuitos votadores, que decidirão por maioria (até 2 de 3) sobre a geração ou não do comando de atuação.

O comando de atuação, gerado pelos votadores, será enviado aos equipamentos de campo através de circuitos de potência eletrônicos e "fail-safe", denominados Interfaces com Equipamentos - IEQ.

O software executado nos microprocessadores do bloco de intertravamento vital é responsável pelo processamento da lógica de segurança da via, a partir de informações de estado da própria via, dos comandos recebidos do seu bloco de intertravamento não vital e dos blocos de intertravamento vital vizinhos.

Esse software deve ser projetado utilizando as técnicas de construção de software correto e submetido a análise de segurança e testes rigorosamente planejados, com situações anormais simuladas.

Apesar da distribuição do hardware, o software é único para todos os blocos de intertravamento vital, sendo
particularizado para cada região, através de tabelas de descrição da via.

Devido às funções de segurança que os blocos de intertravamento vital desempenham, eles devem obedecer aos seguintes requisitos gerais de segurança, que serão formalmente verificados pela equipe especializada em análise de segurança:
- os processadores devem ser independentes entre si e independentes dos circuitos votadores e do IEQ;
- os equipamentos que compõem o bloco intertravamento vital devem ser devidamente protegidos de agentes ambientais, que possam provocar falhas comuns em seus elementos. Essa proteção, será realizada através de projetos elétricos e de empacotamento adequados e ainda por diversidade de implementação dos elementos duplicados; e
- o MTBUF (Mean Time Between Unsafe Failure) do bloco intertravamento vital deverá ser condizente com a aplicação (ferroviária com alta densidade de tráfego) e nunca sendo menor que 50.000 anos.

Finalmente, convém observar que, em caso de detecção de falha de comunicação entre o bloco de intertravamento vital e não vital, ou através de comando específico, o bloco de intertravamento vital poderá assumir o controle da ferrovia e automaticamente comandar a operação em modo de intertravamento automático. Esse modo consiste em movimentar todas as chaves para a posição normal (assim que o intertravamento permitir) e comandar os sinais para movimento em frota.
A implementação do modo de intertravamento automático fornece, ao sistema como um todo, um último nível de degradação operacional, quando o CTC e os PCLs ficam indisponíveis. Diante disso, a disponibilidade do intertravamento vital deve ser muito elevada.

2.4.2.2. Subsistema de Controle Automático de Trens - ATC

A função básica do subsistema ATC é executar a proteção contra a sobrevelocidade dos trens. Essa proteção é exercida através da comparação da velocidade efetiva dos trens com a velocidade máxima permitida na região (circuito de via) em que o trem está trafegando e, caso a velocidade da composição permaneça maior que a especificada para o trecho, durante um espaço de tempo maior que o especificado em projeto, os freios de emergência da composição serão acionados, ocasionando a parada da composição.

A velocidade máxima permitida sobre cada circuito de via é calculada dinamicamente e depende de parâmetros fixos e variáveis; como parâmetros fixos encontram-se as restrições da via permanente e como variáveis, as ocupações dos circuitos de via, o estado dos sinais e o estado das chaves.

O subsistema ATC possui dois grandes blocos, sendo que o primeiro, que se encontra instalado à margem da via, é responsável pelo cálculo das velocidades e pela imposição das mesmas aos circuitos de via, e o segundo, que se encontra instalado à bordo do material rodante, é
responsável pela comparação das velocidades e pela imposição, com característica "fail-safe", da condição de frenagem, se for o caso.

Os circuitos do ATC contemplam cinco níveis de velocidade máxima, sendo a mais restritiva a ordem de parada total. Os diversos níveis de velocidade permitem compor um perfil de velocidade adequado ao traçado e as irregularidades das vias, bem como ao material rodante, de forma a maximizar o ganho operacional.

Os blocos do ATC possuem as mesmas características e a mesma arquitetura do bloco de intertravamento vital, descrito no item anterior. Sendo que, neste caso, os processadores dos blocos de margem de via calculam a velocidade a partir dos dados de ocupação, de estado de sinais e de posição de chaves, recebidos do bloco de intertravamento vital (de modo a armazena as sombras das ocupações), e, através do circuito votador e do IEQ, injetam o sinal de velocidade máxima nos circuitos de via, de forma "fail-safe".

Os processadores do bloco instalado no material rodante, por sua vez, recebem a informação de velocidade máxima, coletada da via através de antenas, localizadas na parte dianteira da composição, comparam com a velocidade real do trem, obtida através de velocímetros, e se essa última for maior é emitido um aviso sonoro e luminoso ao condutor do trem, que terá um tempo fixo e determinado para adequar a velocidade da composição à restrição imposta pela via.
Se, decorrido o tempo pré-fixado, a velocidade da composição continuar maior que a imposta pela via, os processadores geram o comando de acionamento dos freios de emergência da composição, que são efetivados através dos circuitos votadores e IEQ, de forma "fail-safe".

2.4.3 Sistema de Supervisão e Controle de Energia

O Sistema de Supervisão e Controle de Energia, denominado aqui como Sistema de Telecomando de Energia - STE tem, como função básica, a supervisão e o controle centralizado da energização da catenária ao longo das linhas. A exemplo do sistema CTC, existe um sistema de telecomando totalmente autônomo para cada linha, de forma a garantir independência operacional entre as duas linhas.

A função de supervisão é executada pelo STE através da coleta de informações de estado dos tramos da catenária e dos equipamentos de manobra, através de estações remotas com capacidade de processamento, e da apresentação das informações no painel mímico de energia - PSE e em terminais de vídeos de operação de energia, do mesmo tipo dos utilizados no CTC.

A função de controle é executada pelo STE através da geração de comandos pelas estações remotas para os elementos de manobra do conjunto de eletrificação, a partir de ações de controle realizadas pelos operadores nos teclados de operação ou diretamente no PSE.

Os PSEs são implementados com a mesma tecnologia utilizada para os PITs do CTC e apresentam informações de
trechos energizados, estado dos disjuntores e estado dos seccionadores, que estão dispostas sobre o esquema unifilar das linhas e subestações, com os equipamentos identificados pelos seus códigos operacionais. As telas dos terminais de vídeo apresentam a mesma informação apresentada pelos PSEs, subdivididas em trechos condizentes com a prática operacional e com a capacidade da tela.

Cada linha possui um posto de comando constituído por um PSE, dois terminais de vídeo em cores, um teclado de operação e uma impressora. O teclado de operação é utilizado para operações de controle, em conjunto com os terminais de vídeo, onde é usado no posicionamento do cursor sobre o elemento a ser operado na tela do terminal de vídeo, em operação de controle semelhante a do CTC, quando operado pelo terminal de vídeo, e é utilizado, também, para efetivação do comando, para entrada de dados para o sistema e para o reconhecimento de alarmes.

A impressora é utilizada para a impressão do relatório de operações do STE, onde são registrados todos os eventos de operação ou de alarme em ordem cronológica.

A estrutura do hardware do STE é convencional, constituída por um processador central, um sistema de transmissão de dados e um conjunto de estações remotas, conforme mostra o diagrama da figura 2.15.

O processador central é responsável pelo processamento do software aplicativo do STE que executa, como função de supervisão de tráfego, a formatação das informações recebidas das estações remotas para gerar as telas e
FIGURA 2.15 - DIAGRAMA DE BLOCOS DO STE
relatórios necessários à interface homem-máquina, a manutenção do banco de dados do sistema e o testes de consistência das informações recebidas para fins de detecção de falhas. Além disso, como função de controle de tráfego, executa a lógica de intertravamento para verificação da consistência dos comandos gerados no teclado de operações.

Convém observar que, quando os comandos são gerados diretamente no PSE, eles não passam pelo processador e, portanto, não são realizados testes de consistência, ficando o intertravamento apenas sob responsabilidade dos equipamentos de campo. Além disso, quando o processador falha ou quando houver um comando específico do operador, as informações de atualização do PSE, são enviadas diretamente do STD ao PSE sem interferência do processador, através de uma interface apropriada que decodifica os sinais e aciona os indicadores do painel.

No STE não existe a possibilidade de operação automática pelo computador, pois as operações a serem realizadas são, via de regra, simples e esporádicas, não compensando o investimento necessário para a implementação de algoritmos de controle automático. Também não é prevista a instalação de painéis locais de controle nas estações remotas, pois as subestações já possuem painéis de controle locais, dispensando, portanto, sua instalação no STE.
2.4.4 Sistema de Bilhetagem

O controle de passageiros é realizado pelo Sistema de Bilhetagem, que é implementado por um microcomputador central configurado com vídeo monocromático, impressora, unidade de disco rígido e unidade de disco flexível de 5,25 polegadas, o qual se comunica com microcomputadores de configuração semelhante localizados nas estações, através de uma rede de dados.

Os microcomputadores, remotos localizados nas estações, coletam os dados dos bloqueios eletrônicos, realizam testes de consistência, compactam os dados e os enviam ao microcomputador central. O microcomputador central, por sua vez, recebe os dados de todas as estações e monta as estatísticas para análise do fluxo de passageiros pelos operadores, que, através do vídeo ou de listagens geradas pela impressora do microcomputador central, terão a visão do fluxo de passageiros em cada estação.

Existem duas categorias de dados, os dados estatísticos e os dados de sistema. Na categoria dos dados estatísticos, o sistema fornece as seguintes informações por estações, ou por linha, ou para a ferrovia como um todo:

- Número de passageiros dentro de um intervalo de tempo programável pelo operador, que contém a quantidade de passageiros que passaram pelos bloqueios (entraram ou saíram) das estações;

- Número de passageiros por dia, que contém a quantidade de passageiros que passaram pelos bloqueios das estações durante o dia;
- Número de passageiros por mês, que contém a quantidade de passageiros que passaram pelos bloqueios das estações durante o mês;

- Tipos de bilhetes dentro de um intervalo de tempo programável pelo operador, que contém a quantidade de cada tipo de bilhete utilizado em cada estação; o intervalo de tempo definido pelo operador é o mesmo utilizado para o número de passageiros;

- Tipos de bilhete por dia, que contém a quantidade de cada tipo de bilhete utilizado em cada estação durante o dia; e

- Tipos de bilhete por mês, que contém a quantidade de cada tipo de bilhete utilizado em cada estação durante o mês.

Os dados estatísticos são impressos pelo sistema automaticamente no fim do último dia do mês para a estatística mensal, às vinte e quatro horas para a diária e no intervalo programado pelo operador para os parciais. Apesar das impressões das estatísticas serem automáticas, o operador pode a qualquer momento requisitar as estatísticas para apresentação na tela ou na impressora, independentemente da programação existente.

Na categoria de dados do sistema são fornecidas as seguintes informações:

- Tipos e distribuição dos bloqueios nas estações, onde o operador pode verificar quais os tipos de bloqueios compõem a linha de passagem das estações. Estas informações
são fornecidas ao operador através de mapas desenhados no vídeo do microcomputador; e

- Alarmes técnicos correspondentes a informações sobre o mau funcionamento dos bloqueios, que são apresentados no vídeo dos microcomputadores central e local, na estação em questão, e são impressos no microcomputador central em forma de tabela. Estes alarmes são gerados pelo próprio bloqueio ou pelo software aplicativo residente nos microcomputadores locais do sistema de bilhetagem.

Além das funções de estatística e supervisão, o sistema de bilhetagem implementa os seguintes serviços:

- Lista Negra: esta lista conterá os bilhetes de serviço que estão proibidos de serem utilizados, ou seja, se um determinado bilhete de serviço for proibido, o operador deverá inserir a identificação do mesmo na "lista negra" e, a partir desse instante, o sistema, através dos bloqueios detectará, inutilizará magneticamente e recolherá o bilhete, bem como imprimirá um aviso nas impressoras dos microcomputadores central e local da estação em questão;

- Atualização de Parâmetros nos Bloqueios: todos os bloqueios possuem parâmetros de controle, tais como: dia, hora, semana do ano e ano, que podem ser constantemente atualizados pela Estação Central, unificando-se desta forma, todos os parâmetros de todos os bloqueios simultaneamente; e

- Atualização de Programa dos Bloqueios: sempre que um novo tipo de bilhete é criado o programa residente nos bloqueios deve ser modificado para aceitar o novo bilhete;
este serviço atualiza o programa dos bloqueios eletrônicos automaticamente, eliminando o trabalho de ir de bloqueio em bloqueio fazendo a atualização.

2.4.5 Considerações sobre o desenvolvimento do Sistema de Automação e Controle para o Complexo de Trans Urbanos de São Paulo.

O trabalho realizado para este sistema restringiu-se ao projeto de conceção do mesmo, não sendo possível, portanto, testar-se na prática o aprendizado relativo ao desenvolvimento do sistema do CTC para Porto Alegre, no que se refere as demais fases do projeto. Entretanto, alguns cuidados foram tomados já na concepção para evitar os pontos negativos dos desenvolvimentos anteriores, entre eles pode-se citar os seguintes:

- Utilização de computadores comerciais para implementar os sistemas computacionais dos centros de controle, em vez de uma máquina especial como o caso do NPD, para que fosse possível a utilização dos recursos de software e de ferramentas adequadas e mais poderosas para o desenvolvimento do software aplicativo. Esta decisão foi possível graças à disponibilidade no mercado de computadores confiáveis, de porte compatível com as necessidades e preço adequado; e

- Utilização de ferramentas computacionais de planejamento e controle de projetos, visando o controle adequado das atividades do projeto para que os recursos
financeiros e humanos fossem aplicados corretamente nas linhas críticas do projeto.

Do ponto de vista da metodologia de desenvolvimento de projeto, a determinação das redundâncias no projeto de concepção não seguiu o método correto, podendo causar retrabalhos nas demais fases do projeto. Isso porque a determinação das redundâncias não foi realizada com base na estimativa dos índices globais e parciais de confiabilidade, disponibilidade e segurança e na verificação da adequabilidade do projeto aos índices estabelecidos.

Apesar do projeto não ter prosseguido, tudo leva a acreditar que o resultado seria melhor que os anteriores, obtendo-se uma produtividade melhor no desenvolvimento e desempenho adequado às necessidades do cliente.

2.5 Sistema de Controle do Páteo de Itaquera.

O Sistema de Controle do Páteo de Itaquera foi concebido para centralizar as operações de supervisão e controle de tráfego e realizar as funções de proteção contra colisões para o páteo de manobras de Itaquera da linha leste-oeste da Companhia do Metropolitano de São Paulo - METRÔ.

O páteo é composto de um conjunto de vias de rolamento destinadas a diversas finalidades e um conjunto de instalações, tais como: as oficinas de manutenção, os almoxarifados, a torre de supervisão e controle e as instalações de lavagem e limpeza dos trens. As vias de rolamento por sua vez são agrupadas segundo as funções que se destinam e são as seguintes:
- Vias de despacho e recolhimento de trens;
- Vias de estacionamento de trens;
- Vias de treinamento de operadores;
- Vias de testes de trens;
- Vias de manutenção de trens;
- Vias de lavagem e limpeza dos trens;
- Vias de circulação;
- Vias de entrada e saída de emergência;
- Vias de manutenção e estacionamento de veículos auxiliares; e
- Vias de carga e descarga.

O sistema de controle engloba todos os grupos de vias e é composto pelo Subsistema de Movimentação de Trens, que é responsável pela execução das funções de detecção de trens e segurança de trânsito, e pelo Subsistema de Supervisão e Controle Centralizado, que é responsável pelas funções de supervisão e controle centralizado do tráfego de trens e veículos auxiliares e do sistema de eletrificação do páteo. As funções a serem executadas pelo sistema são semelhantes às executadas pelos sistemas já comentados neste trabalho, dispensando, portanto, a descrição das mesmas.

A estrutura de hardware do Sistema de Controle do Páteo de Itaquera está mostrada na figura 2.16, onde se pode notar os dois subsistemas mencionados.

O computador central é responsável pelo processamento do software aplicativo, correspondente às tarefas dos módulos de supervisão e controle, pelo gerenciamento da comunicação com os equipamentos do Centro de Controle Operacional - CCO
FIGURA 2.16 - ESTRUTURA DO HARDWARE DO SISTEMA DE CONTROLE
DO PÁTEO DE ITAQUERA
e da Estação Itaquera e pelo gerenciamento dos dispositivos de entrada e saída, que realizam o interfaceamento homem-máquina (painéis mímicos, mesas de comando e impressoras) e que realizam o armazenamento não volátil dos bancos de dados do sistema; além disso, também gerencia os dispositivos de entrada e saída responsáveis pelo controle do sistema (consoles e unidades de disco flexível).

Os Controladores para Movimentação de Trens são responsáveis pela execução da lógica de intertravamento, pela coleta das informações de estado das vias (ocupações de circuitos de via, estado dos sinais e posição das chaves) e pela geração de comandos para a atuação segura sobre os equipamentos de via (sinais e chaves). Objetivando a divisão do pátio em regiões distintas, o número de controladores foi dimensionado de forma que exista um controlador para cada conjunto de equipamentos de sinalização operacionalmente dependentes.

O Controlador de Eletrificação é responsável pela coleta de informações de estado da eletrificação do pátio e pela geração de comandos para a atuação sobre os equipamentos de manobra do sistema de eletrificação (seccionadoras, disjuntores e contadores).

O Equipamento de Detecção é responsável pela detecção segura das ocupações dos circuitos de via e pela transferência dessas informações para os controladores para movimentação de trens.

Apesar da concepção elaborada abranger o sistema completo, apenas foi dado continuidade ao desenvolvimento
do equipamento de detecção, cuja descrição é apresentada a seguir.

2.5.1 Descrição do Equipamento de Detecção.

O Equipamento de Detecção - DET implementa o primeiro nível de aquisição vital de dados do sistema de proteção contra colisões, o qual garante a movimentação com segurança dos trens no pátio. Esse primeiro nível de aquisição consiste, basicamente, na coleta da informação de presença de veículos nos blocos de sinalização, ou circuitos de via.

A partir das informações de presença de veículos, ou ocupações de circuitos de via, o Controlador para Movimentação de Trens executa o intertravamento de segurança de forma a garantir a não ocorrência de acidentes.

O DET opera com o método de contagem de eixos, cujo princípio de operação se baseia na contagem do número de eixos que entram e saem de uma região, delimitada por sensores de rodas; neste caso os eixos que entram no bloco são adicionados e os que saem são subtraídos e o bloco está ocupado enquanto o valor acumulado é diferente de zero e livre quando for igual a zero. Cabe observar que a região delimitada por dois sensores é o equivalente a um circuito de via.

O DET é composto por um conjunto de sensores de rodas e por um equipamento de contagem do número de eixos por bloco. Os sensores são implementados com tecnologia óptica de luz infra-vermelha, projetado com filosofia de falha.
segura (fail-safe), e o contador de eixos é implementado por um conjunto triplicado de processadores interligados em rede. O projeto "fail-safe" do sensor e a redundância comparada do contador conferem ao sistema índices de confiabilidade e de disponibilidade adequados à aplicação.

Cada contador de eixos gerencia no máximo 64 pontos de contagem, número esse escolhido em função da topologia do pântano, no sentido de minimizar a fiação necessária, e em função da facilidade de implementação do contador.

O contador de eixos tem por função o processamento dos sinais gerados pelos sensores de roda com a finalidade de caracterizar a passagem de uma roda, determinar o sentido de sua movimentação, contabilizar os eixos presentes em um bloco e concluir sobre o estado de ocupação ou desocupação do bloco.

As especificações quanto à segurança são alcançadas no contador de eixos com a utilização da filosofia de redundância comparada, ou seja, dois ou mais elementos realizam um tratamento independente para uma mesma informação e os resultados são comparados e votados; adotase como verdadeiro o resultado que obtiver maioria ou, em caso de dúvida, o resultado que leve à condição mais restritiva. A redundância comparada é uma solução adequada quando se utiliza arquiteturas implementadas com microprocessadores, que não são componentes intrinsecamente seguros.

O contador de eixos é constituído de três módulos de contadores independentes, de forma a implementar os três
canais independentes necessários para comunicação com o Controlador para Movimentação de Trens, que também é triplicado. Cada um desses módulos, denominado Módulo Contador de Eixos - MCX é implementado por um conjunto de placas processadoras.

As placas processadoras do MCX comunicam-se através de um canal serial interno, multiponto e bidirecional, responsável pela implementação da infra-estrutura necessária para a troca de mensagens entre os processadores.

As placas processadoras foram projetadas e implementadas levando em consideração, principalmente, os índices de confiabilidade a serem atingidos, segundo as características da função que deveriam executar.

Dessa forma, foram implementadas as Placas Processadoras de Interfaceamento Paralelo, designadas PP, que têm por função a coleta de dados nos sensores ópticos e as Placas de Processamento Multiprotocolo Serial, designadas PM, que realizam a comunicação serial com o Controlador para Movimentação de Trens - CMT e com os demais módulos MCX do detector.

Além das placas processadoras, foram desenvolvidas placas de interface entre o MCX e o CMT e entre os sensores ópticos e o MCX, placas de isolação e fontes de alimentação. Todas as placas foram desenvolvidas utilizando técnicas de controle de índices de confiabilidade durante as fases de projeto.
A placa PP é implementada com um microcontrolador e possui 16 entradas digitais que são utilizadas para a leitura dos sinais dos sensores ópticos. Os sinais dos sensores são enviados através das placas IRS, que realizam a isolação galvânica e condicionam os sinais para a leitura pelas placas PP.

Cada placa PP monitora oito pontos de contagem, uma vez que cada ponto de contagem possui dois sensores, e sua função é detectar a passagem da roda e determinar o seu sentido de movimentação, o que é realizado pela conjunção dos sinais recebidos dos dois sensores, e realizar a contagem independente das rodas para cada sentido de movimento.

A placa PM também é implementada com um microcontrolador e possui um controlador de múltiplos protocolos seriais, que é utilizado para a comunicação com as placas PP e com o CMT. Essa comunicação é realizada através de módulos PS2 e PS1, respectivamente, implementados com as placas PM, porém com softwares diversos.

O módulo PS2 tem por função monitorar todas as plaçás PP de um MCX e coletar delas o número de rodas que passaram pelos respectivos pontos de contagem; a partir dessas informações contabiliza o número de rodas dentro de cada bloco e determina o estado de ocupado ou livre dos blocos, montando uma imagem da via em sua memória.

Quando a imagem da via está completamente atualizada no módulo PS2 do MCX em questão, ela é enviada para os outros dois módulos MCX do contador, através de dois canais
seriais, enquanto esse módulo PS2 aguarda a mesma informação dos outros dois MCX. Após receber a informação correspondente ao mapa da via, ou seja, quando cada MCX possuir as três imagens da via gravadas na memória, o módulo PS2 de cada um realiza então a votação e determina os estados de ocupado ou desocupado dos blocos. Os estados de ocupação, após determinados são enviados ao módulo PS1 do MCX correspondente, para que posteriormente sejam enviados aos CMTs.

O módulo PS1 tem por função prover a comunicação do MCX com o CMT, com o terminal de vídeo local e com o sistema de alimentação ininterrupta. Além disso, o PS1 concentra todas as informações de detecção e diagnóstico de falhas e sobre o estado do MCX para que sejam transmitidas ao CMT. A figura 2.17 mostra esquematicamente o conjunto de três módulos MCX do detector.

2.5.2 Considerações sobre o Desenvolvimento do Equipamento de Detecção.

A metodologia utilizada para o desenvolvimento pode ser considerada eficiente, pois os resultados alcançados com o desenvolvimento e a produtividade das equipes foram bons. A metodologia baseou-se no controle dos índices de confiabilidade e de segurança do sistema durante todo o desenvolvimento do projeto, procurando-se não avançar enquanto os cálculos (ainda que aproximados) dos índices não estivessem condizentes com os requisitos e, portanto, sinalizassem que provavelmente o projeto estava correto.
FIGURA 2.17 - NÓDULOS NCX DO DETECTOR

IRS : INTERFACE DE ISOLAMENTO ENTRE OS SENSORES E O CONTADOR
TVL : TERMINAL DE VÍDEO LOCAL
SAI : SISTEMA DE ALIMENTAÇÃO EMERGÊNCIA
ISO : INTERFACE COM O CONTADOR E O CRT
Com a utilização desse método, a determinação das redundâncias e da própria arquitetura do sistema e das placas que a compunham foi realizada tendo como premissa cálculos preliminares de índices de confiabilidade e análises preliminares de segurança, realizadas pela própria equipe de projeto. Esses cálculos e análises preliminares nortearam as decisões de projeto desde a concepção até a fase de detalhamento.

O método se mostrou perfeitamente adequado para um sistema de pequeno porte, mas tudo leva a acreditar que se for aplicado a sistemas de grande porte deve também contribuir para o aumento da produtividade do desenvolvimento.

2.6 Considerações sobre o Problema da Automação Ferroviária.

Como pode ser observado, o desenvolvimento de vários sistemas de controle ferroviário levaram ao aprimoramento da metodologia de condução dos projetos, levando ao aumento da produtividade das equipes envolvidas no desenvolvimento.

O desenvolvimento de sistemas de controle ferroviário, levado a cabo no Brasil graças, principalmente à existência da reserva de mercado de informática, propiciou um avanço espetacular à engenharia brasileira, pois tratou de desenvolvimento de sistemas multidisciplinares e com índices rígidos de segurança e confiabilidade.

Além disso, o desenvolvimento desses sistemas trouxe tecnologia para a solução dos problemas de integração de
sistemas grandes e complexos e desenvolveu, na área ferroviária, a confiança necessária entre os usuários e os centros e empresas que desenvolvem tecnologia própria.
3. SISTEMAS APLICADOS EM CONTROLE DE PROCESSOS CONTÍNUOS
3 SISTEMAS APLICADOS EM CONTROLE DE PROCESSOS CONTÍNUOS.

Neste capítulo serão abordados dois sistemas de automação proprietários aplicados a processos contínuos, o Sistema Distribuído para Controle de Processos, implementado utilizando intensivamente microprocessadores, e o Sistema de Controle Distribuído de Aplicação Geral, que utiliza hardware compatível com os microcomputadores de uso pessoal. SHIMIZU, MARTUCCI (1981); MARTUCCI (1982); ZERBINI, MARTUCCI (1983); MARTUCCI (1986 a); MARTUCCI (1986 b).

Os sistema abordados neste capítulo aplicam-se a supervisão e controle de processos contínuos, onde a maioria das variáveis supervisionadas e controladas são analógicas e, portanto, as variáveis de controle são obtidas predominantemente a partir de cálculos numéricos ao invés de intertravamentos (equações booleanas).

Os dois sistemas apresentados possuem a característica comum de terem seus processadores do nível hierárquico de controle de processos desenvolvidos especificamente para esse fim. Convém observar, também, que os dois sistemas foram desenvolvidos até o nível de projeto de concepção e início de projeto básico, não tendo sido, portanto, implementados.

Os sistemas de automação, dentre os quais se enquadram os que são objetos deste capítulo, possuem arquitetura distribuída e hierarquizada, o que deve permitir flexibilidade, modularidade, expansibilidade e facilidade
de manutenção. Nestes sistemas a interface homem-máquina é realizada através de terminais de vídeo em cores, o que melhora consideravelmente a taxa de transferência de informações entre homem e máquina e, portanto, entre o operador e o processo que está sob seu comando.

São normalmente utilizados os três níveis hierárquicos mais baixos do sistema de automação, correspondentes ao nível de instrumentação, ao de controle de processo e ao de coordenação.

1. O nível de instrumentação é responsável pela transdução da variável físico-química do processo para sinal elétrico a ser utilizado pelo sistema de automação e vice-versa.

2. O nível de controle de processo é responsável pelo controle propriamente dito do processo, executado através de operações de aquisição de dados e geração de sinais de controle. Os sinais de controle são gerados aplicando os algoritmos de controle adequados, que objetivam manter o processo dentro de limites aceitáveis, definidos pelos pontos de operação fornecidos pelos operadores ou pelos níveis hierárquicos superiores do sistema de automação.

3. O nível de coordenação é responsável pela interface homem-máquina a nível central, pelo gerenciamento e alocação de recursos para os controladores de processo, que implementam o nível hierárquico inferior, pela monitoração das variáveis do processo e pelo estabelecimento de pontos de operação para todas as malhas de controle do processo controlado pelo sistema.
Do ponto de vista da operação e, portanto, da interface homem-máquina, painéis de controle locais estão disponíveis para a operação no nível de controle de processos, que permitem o estabelecimento de pontos de operação e a monitoração de variáveis que estejam no âmbito do controlador em particular.

Em sistemas de grande porte os painéis locais são utilizados para operação degradada, quando ocorrer falhas no sistema que impossibilitam a comunicação do controlador com o nível hierárquico superior ou que impeçam a operação desse nível.

No caso do nível de coordenação a operação é realizada nas Salas Centrais de Operação, de onde os operadores supervisionam o andamento do processo, através de terminais de vídeo ou painéis mímicos, e fornecem valores de pontos de operação ou comandos para o sistema através de teclados de operação e de engenharia.

A figura 3.1 mostra os níveis hierárquicos de instrumentação, controle de processos e coordenação e suas interrelações; mostra também a conexão com os equipamentos a nível de coordenação para a implementação dos níveis mais elevados de otimização e gerenciamento integrado.

As funções básicas a serem executadas pelo nível de controle de processos, como já comentado, são as de supervisão e controle propriamente dito do processo. Essas funções podem ser desdobradas em um conjunto mais específico de funções, que ao serem configuradas nos equipamentos controladores deste nível, os particularizam.
FIGURA 3.1 - NÍVEIS HIERÁRQUICOS DE SISTEMAS DE CONTROLE DISTRIBUÍDOS
para um determinado processo. Esse conjunto específico é composto normalmente das seguintes funções:

- Controle Digital Multivariáveis em Malha Fechada: realizado através da implementação de algoritmos de controle proporcional, integral e derivativo (PID);

- Controle Digital em Malha Aberta: realizado através da implementação de módulos de entrada e saída de sinais analógicos e digitais e conexão com painéis de controle locais, com capacidade de monitoração de variáveis analógicas e digitais e de entrada de valores para variáveis de controle analógicas e digitais;

- Aquisição de Dados Analógicos e Digitais do Processo: realizado através da conexão com os equipamentos do nível de instrumentação;

- Sequencialização e Intertravamento: realizado através da execução de programas de sequencialização, de intertravamento e de funções auxiliares comumente utilizadas, tais como: somatória raiz quadrada, produtória e porcentagem, pré-programadas no equipamento;

- Geração de Testes: realizados e programados para detecção de variáveis fora dos limites especificados e para detecção de mudanças bruscas de variáveis, não compatíveis com o comportamento previsto do processo;

- Interfaceamento Local entre o Operador e o Processo: realizado através de painéis locais, de forma a permitir que as operações de controle e parametrizações sejam executadas pelos operadores locais; além disso, o painel local deve permitir a configuração do controlador, através
de mecanismos de entrada de dados para carregamento de novos softwares ou tabelas;

- Armazenamento Local de Dados: realizados através de dispositivos de impressão e armazenamento para registro ou cálculos estísticos;

- Comunicação com Equipamentos de Mesmo Nível Hierárquico: realizado através de canais de comunicação e utilizado para troca de informações, quando controladores diferentes controlam partes de um mesmo processo ou processos interdependentes;

- Comunicação com o Nível Hierárquico Superior: realizado através de canais de comunicação e utilizado para enviar as informações de estado do processo e receber informações de configuração, de parametrização e de pontos de operação do nível hierárquico de coordenação; e

- Realização de Auto Teste: através da execução de programas previamente armazenados e execução de algoritmos de chaveamento para controladores ou módulos de controladores redundantes em configuração "hot stand by" quando houver detecção de falhas.

Para o nível de coordenação pode-se desdobrar suas funções principais, que são o gerenciamento dos equipamentos do nível de controle de processo e a supervisão centralizada do processo, no seguinte conjunto de funções específicas:

- Interfaceamento do operador central com o processo, através das salas de controle centrais, permitindo a monitoração em tempo real das variáveis do processo,
determinando seu desvio em relação aos valores dos pontos de operação e gerando alarmes quando for o caso. Permite também a inserção de curvas ou valores de pontos de operação, de parâmetros para algoritmos de controle e dos algoritmos, propriamente ditos, para que sejam enviados para os equipamentos do nível de controle de processo;

- Armazenamento de dados e, conseqüentemente, gerenciamento de bancos de dados, de forma a permitir o registro dos valores das variáveis de processo e da operação do sistema. A forma de registro pode ser feita em meio magnético, através de dispositivos de discos magnéticos rígidos ou flexíveis, de fitas cassette, ou em papel, e através de impressoras ou traçadores gráficos. O banco de dados conterá em tempo real o estado atual do processo, o estado atual do sistema de controle e os valores históricos das variáveis do processo;

- Gerenciamento dos equipamentos e dispositivos do nível hierárquico de controle de processo, de forma a possibilitar a desconexão ou substituição de equipamentos em processos de reconfiguração nos casos de detecção de falhas, e a configuração, através da carga de novos algoritmos ou procedimentos de controle;

- Gerenciamento dos equipamentos e dispositivos do próprio centro de controle, provendo auto-testes e reconfigurações nos casos de deteção de falhas;

- Comunicação com a rede cooperativa para a conexão com os computadores dos níveis hierárquicos superiores ou com equipamentos do nível de coordenação de outros sistemas de
Controle para troca de informações, quando houver dependência entre os processos sob controle, e
- Provimento das proteções necessárias contra comandos emitidos pelos operadores ou pelo próprio sistema, que possam causar danos aos equipamentos ou instalações, bem como, prover a verificação da integridade dos dados recebidos de forma que variações anormais sejam detectadas e sinalizadas.

Para o projeto da arquitetura dos sistemas de controle deve ser considerado, além das funções a serem executadas, que a capacidade de processamento e de armazenamento de dados deve crescer conforme o nível hierárquico, e que os índices de confiabilidade tem comportamento inverso, ou seja, as exigências diminuem do nível de instrumentação para o nível de coordenação. Além disso, devem ser consideradas os seguintes requisitos:
- Independência dos níveis hierárquicos, ou seja, os níveis inferiores devem operar independentemente dos superiores e, na ausência do nível superior, os operadores locais fornecerão as informações necessárias para a operação do sistema. A implicação mais importante deste requisito é que os controladores de processos devem ter capacidade de controlar automaticamente ou com o auxílio do operador local a parte do processo sob sua jurisdição, sem a interferência do nível de coordenação;
- Desempenho, medido através de tempos de resposta, que deve ser considerado independentemente para cada nível hierárquico; neste caso o tempo de resposta mais crítico é
o do nível de controle de processo, cujos controladores devem obedecer às necessidades de controle do processo;

- Confiabilidade e Disponibilidade, deve ser considerado que, na grande maioria dos casos, o controle propriamente dito não deve ser interrompido, ou seja, a disponibilidade do sistema deve ser praticamente igual a um. Isso implica na implementação de equipamentos confiáveis (a nível de) instrumentação e controle de processos e a adoção de esquemas de redundância e de reconfiguração, aliados à capacidade de detecção e diagnósticos de falhas que minimizem os tempos de manutenção. Além disso, deve ser prevista a operação degradada do sistema, nos casos de falhas que desativem os níveis hierárquicos superiores, ou partes do sistema;

- Modularidade, flexibilidade e crescimento harmonioso, que reflete em arquitetura modular para os equipamentos de cada nível hierárquico e que o sistema deve ser configurável em módulos, de acordo com as necessidades momentâneas dos usuários, atendendo, portanto, as expansões que se fizerem necessárias, através de crescimento harmonioso, tanto no que se refere à configuração física e quanto ao custo;

- Dispersão física, dado que os controladores devem ficar próximos aos instrumentos, que estão instalados nos componentes do processo e, portanto, dispersos pela planta; isso exige que os controladores de processo não sofram restrições quanto à dispersão geográfica e ao ambiente onde
serão instalados, podendo estar a poucos metros ou a quilômetros de distância do centro de controle;

- Fatores de forma, entendidos como volume, peso e potência consumida que, apesar de não serem fatores considerados importantes na maioria das aplicações, devem ser levados em consideração procurando-se o menor volume, peso e potência consumida; e

- Custo que deve ser o menor possível ao longo de toda a vida do sistema, considerando-se, portanto, os custos de desenvolvimento propriamente dito do sistema, os custos de aquisição, instalação e configuração do sistema e os custos de manutenção e de operação do sistema ao longo de sua vida útil.

São apresentados a seguir os sistemas projetados de acordo com as funções e características comentadas, aplicados ao controle de processos contínuos.

3.1 Sistema Distribuído para Controle de Processos

A estrutura do Sistema Distribuído para Controle de Processos, projetada com base nas funções e requisitos apresentados no início deste capítulo e após a determinação das macrofunções de cada nível hierárquico, é mostrada na figura 3.2. A estrutura é composta de um conjunto de controladores de processos e de centros de supervisão, de um centro de computação e de um sistema de transmissão de dados.

Os Controladores de Processos - CP são compostos, basicamente, de processadores e de um painel de controle e
Figura 3.2 - Estrutura de hardware do sistema distribuído para controle de processos
abrigam o software que executa a supervisão e o controle de processos e o gerenciamento dos recursos necessários para a execução dessas tarefas. No caso geral, são responsáveis pela aquisição das variáveis do processo e pelo cálculo das variáveis de controle, baseados nos valores dos pontos de operação e parâmetros pertinentes. Cada CP pode ser responsável por um processo completo ou por apenas parte dele.

Os Centros de Supervisão - CSUP são compostos, basicamente, de processadores e de equipamentos que implementam o interfaceamento homem-máquina na sala de controle central. Nos processadores é executado o software responsável pela manutenção do banco de dados do sistema, pela interpretação e execução dos comandos recebidos dos operadores centrais ou dos níveis hierárquicos superiores, relativos à configuração e parametrização dos CPs, pela execução das funções correspondentes à monitoração pelos operadores das variáveis do processo sob jurisdição do CSUP, em questão, e pelo gerenciamento dos CPs.

O Sistema de Transmissão de Dados é composto pela Via de Comunicação Interprocessos - VCP, por blocos localizados nos CPs e CSUPs e pela conexão entre o CSUP e o centro de computação. Os blocos localizados nos CPs e CSUPs executam o software responsável pelo gerenciamento do fluxo de informações entre esses módulos e pela troca de mensagens entre os dois níveis hierárquicos, que é realizada automaticamente e de forma transparente para o software dos CPs e do CSUP, provendo uma característica distribuída ao
sistema de transmissão de dados. A VCP implementa o meio físico de transmissão.

Finalmente, o Centro de Computação - CCOMP composto, basicamente, de computadores do centro de processamento de dados da empresa, abriga o software responsável pela implementação do nível hierárquico de gerenciamento e pela execução dos algoritmos de otimização. Os algoritmos de otimização operam a partir de dados de estado do processo e de definições de políticas, fornecidas pelo software do nível de gerenciamento e que tem por objetivo a definição de índices de desempenho traduzidos pela imposição de valores de pontos de operação e de alterações nas funções de sequenciamento.

A estrutura do STD relativa ao intercâmbio de informações entre os CPs, entre os CPs e os CSUPs e entre os CSUPs possui configuração em anel, com redundância, determinada de acordo com a aplicação. Cada elemento CP ou CSUP conectado ao anel corresponde a um único nó na estrutura, ao qual estão associadas interfaces de comunicação, denominadas Interfaces com a Via dos Controladores - IVC. A estrutura do STD é mostrada na figura 3.3.

O meio físico definido para a comunicação entre as IVCs é fibra óptica, onde é utilizada taxa de 2M bps para a transmissão.

Cada IVC é composta, basicamente, por blocos de Interface com o Anel-IA, de controle e de interface com o equipamento conectado ao IVC, conforme mostrado na figura
FIGURA 3.3 - ESTRUTURA DO SISTEMA DISTRIBUÍDO DE CONTROLE DE PROCESSOS
3.4. As IAs são responsáveis pela recepção e transmissão, propriamente dita, das mensagens para o meio físico de transmissão, ou seja, para as fibras ópticas. O bloco controle é responsável pela geração das mensagens a serem transmitidas, pelo tratamento das mensagens recebidas e pelo controle geral das funções da IVC. A interface com o equipamento é responsável pela troca de informações com os nós, através do uso de uma memória compartilhada.

A IA é implementada com tecnologia "bit slice" para compor sua arquitetura composta das três filas responsáveis pelo armazenamento temporário das mensagens em recepção, em transmissão e em linha. Por mensagens em recepção entende-se aquelas que são destinadas ao nó em questão, por mensagens em transmissão, aquelas que são geradas no nó em questão e por mensagens em linha aquelas que não se destinam ao nó em questão ou que o nó em questão é apenas um dos seus múltiplos destinos.

A principal função da IA é gerenciar as filas dirigindo para a fila de recepção as mensagens em recepção, para a fila de linha as mensagens em linha, para posterior despacho para a IVC seguinte, e alocando espaço no anel e despachando as mensagens geradas pelo bloco controle e que foram armazenadas por ele na fila de transmissão.

O bloco Controle da IVC tem, por função básica, o tratamento das mensagens, que consiste da geração e roteamento das mensagens a serem transmitidas, do gerenciamento das mensagens transmitidas e da decodificação de mensagens recebidas e execução das tarefas decorrentes.
FIGURA 3.4 - ESTRUTURA DA IVC
Para executar essas funções, o bloco controle é implementado com tecnologia "bit slice" como a IA.

O gerenciamento das mensagens transmitidas é realizado através de estruturas de dados que descrevem a mensagem criada pela IVC de origem, e de esquemas de envio de mensagens de reconhecimento pelas IVCs destinatárias. O roteamento consiste na escolha do anel que será utilizado para a transmissão da mensagem, que é realizada de forma cíclica, escolhendo-se o primeiro anel que não estiver com a fila de transmissão ocupada ou com sinalização de falha.

O bloco Interface com o Equipamento é responsável pela troca de informações com o nó conectado ao IVC em questão, gerenciando os acessos aos meios de comunicação compartilhados, que são a memória, os registradores de estado e o relógio de tempo real. Os circuitos que implementam este bloco são basicamente os de acesso direto à memória.

Os Controladores de Processos - CP foram projetados de forma a viabilizar a aplicação do sistema nos mais variados tipos de processos, através da configuração dos mesmos, onde cada controlador pode ser composto por um conjunto de módulos padrão.

O módulo básico em torno do qual o CP é configurado é o Módulo Processador, que é o responsável pelo gerenciamento dos demais módulos e pelo processamento dos algoritmos de supervisão e controle, que são carregados no CP pelo próprio usuário durante a fase de configuração do sistema.
O hardware do Controlador de Processos éestruturado sobre as vias de dados, endereços e controle fornecidas pelo módulo processador, onde são conectados os diversos módulos opcionais, a fim de compor o controlador desejado. Para que fosse coberto o maior número possível de aplicações, foram previstos os seguintes módulos, que são mostrados ilustrativamente na figura 3.5, compondo um CP completo:

- Controlador Autônomo de Uma Malha para Processos Analógicos: módulo projetado para perfazer controle digital direto sobre uma malha de controle e, que para tanto, possue um processador com memória para armazenamento dos algoritmos de controle, uma entrada e uma saída analógica, correspondentes à variável monitorada e de controle do processo, respectivamente, entradas e saídas analógicas e digitais auxiliares, utilizadas para monitoração e acionamento de dispositivos, e um painel local com capacidade de indicação de variáveis de processo, de pontos de operação e de erro relativo à diferença entre o valor do ponto de operação e da variável. Cabe observar que, com o uso de vários controladores de uma malha, gerenciados pelo módulo básico de processamento, pode-se implementar um sistema de controle eficiente e de baixo custo para processos de pequeno porte;

- Entradas e Saídas Analógicas: são módulos implementados por blocos de conversores análogo/digitais e digitais/ analógicos e são utilizados para controle e supervisão de processos, quando os algoritmos de controle
FIGURA 3.5 - ESQUEMA DO CONTROLADOR DE PROCESSOS
são executados no módulo básico de processamento; podem ser
utilizados também como entradas e saídas analógicas
auxiliares para os controladores de malha única;

- Entradas e Saídas Digitais: são módulos empregados
para coleta de sinais digitais, utilizados para realização
de intertravamentos ou informações de situações de alarme,
e para o controle do tipo liga/desliga de componentes do
nível de instrumentação de processo;

- Dispositivos de Registro e Armazenamento de Dados: são
constituídos pelos equipamentos de armazenamento ou
impressão de dados e suas interfaces com o módulo básico de
processamento, que são utilizados para obtenção de
registros permanentes de dados (data logging). São
disponíveis interfaces para gravadores de fita cassette,
unidades de disco flexível, impressoras seriais e
traçadores gráficos. Convém observar que a unidade de disco
flexível pode também ser utilizada para a configuração e
posta em marcha do CP;

- Painel de Controle Local: implementa a interface
homem-máquina no nível hierárquico de controle de processo,
sendo, no caso geral, constituído de indicadores de valores
de variáveis de processos, de pontos de operação, de erros
e de estados de variáveis digitais, além de botões e
teclados para a inserção de valores de variáveis de
controle, de pontos de operação de parâmetros de algoritmos
e de sinais digitais de controle;

- Relógio de Tempo Real: contém o relógio que é
utilizado pelo IVC para leituras dos valores de relógio de
tempo real, necessários para composição correta das mensagens; também pode ser utilizado para a geração da base de tempos para o controlador de processo; e

- Bancos de Memória: composto pela memória compartilhada utilizada para comunicação com o IVC, memória não volátil de dados, utilizada para o armazenamento de dados de processo, de forma a manter o estado e o histórico do processo, e memória não volátil de programas, utilizada para o armazenamento de algoritmos de controle e outros programas que não serão alterados com freqüência.

Finalmente, o Centro de Supervisão - CSUP é implementado com o Núcleo de Processamento Distribuído - NPD já apresentado no capítulo anterior, aplicado nos sistemas de controle ferroviário. Para o caso do Sistema Distribuído para Controle de Processos, são utilizados os seguintes nós na configuração do NPD:

- Processador de Uso Geral - MP: utilizado para a execução do software aplicativo de supervisão e controle de processos;

- Interface com Terminais de Vídeo - CTV: utilizado para gerenciar os terminais de vídeo em cores da sala de controle central e possíveis terminais de vídeo de supervisão instalados em posições remotas;

- Concentrador de Terminais - CT: utilizado para o gerenciamento das consoles de operação e impressoras localizadas na sala de controle central;
- Concentrador de Traçadores Gráficos - CTG: utilizado para o gerenciamento de dispositivos gráficos localizados na sala de controle central;
- Concentrador de Equipamentos de Alarme - CEA: utilizado para interfacear equipamentos anuncadores de alarmes localizados na sala de controle central ou remotamente a ela;
- Interface com Disco - ID: utilizada para controlar discos magnéticos de grande capacidade para armazenamento das bases de dados e do software aplicativo do sistema;
- Concentrador de Discos Flexíveis - CDF: utilizado para controlar as unidades de discos flexíveis utilizadas para armazenamento de dados (data logging), configuração do sistema e posta em marcha do sistema;
- Interface com a IVC - IIVC: utilizada para implementar a comunicação com os CPs através da Interface com a Via dos Controladores-IVC do Sistema de Transmissão de Dados; e
- Interface com Computadores - ICOMP: utilizada para a conexão do CSUP aos computadores da empresa ou às redes corporativas.

3.1.1 Considerações sobre o Desenvolvimento do Sistema Distribuído para Controle de Processos.

O desenvolvimento do sistema, realizado em 1982, englobou as fases de concepção e projeto básico, não tendo sido feito o detalhamento e implementação do sistema. Para a realização da especificação funcional do sistema foi realizada uma pesquisa exaustiva sobre as necessidades dos
usuários e sobre as especificações funcionais dos sistemas existentes no mercado ou em projeto, levando a especificar-se um sistema realmente adequado funcionalmente às necessidades dos usuários para controle e supervisão de suas plantas industriais.

Entretanto, a concepção e o projeto básico levaram a um sistema proprietário e de custo de desenvolvimento muito alto, tanto de hardware quanto de software, uma vez que todo o hardware precisaria ser desenvolvido, e, em alguns casos, com custo de desenvolvimento sabidamente elevado, como é o caso das IVCs, onde se especificou a utilização de tecnologia "bit slice". Com a estrutura proposta não seria possível utilizar nenhum módulo de hardware comercialmente disponível para compor o sistema.

O mesmo caso se aplica ao software, que apesar do software básico já existir para o NPD, aplicável ao controle ferroviário, dever-se-ia desenvolver todo o software aplicativo de controle de processos contínuos para o NPD e para os controladores de processos, não havendo nenhuma compatibilidade com os sistemas operacionais existentes, uma vez que o software básico do NPD é proprietário e específico para a máquina.

O custo de fabricação também seria muito elevado pois, apesar do desempenho do sistema atender os requisitos levantados, a quantidade de hardware é muito grande, e composta muitas vezes por componentes caros como os da família "bit slice", além da complexibilidade dos circuitos que levam a procedimentos de testes de fábrica demorados e,
portanto, caros. Esse custo, mesmo não se considerando os
custos de desenvolvimento, atualmente inviabilizaria a
commercialização do sistema.

Como conclusão, tem-se que, apesar da metodologia de
desenvolvimento ter contemplado a elaboração de uma
especificação funcional, de acordo com os anseios e
necessidade dos usuários, apesar do projeto de arquitetura
do sistema ter sido realizado a partir das funções e
requisitos apresentados na especificação funcional e apesar
das preocupações com relação ao índice de disponibilidade
do sistema durante o projeto da arquitetura, o
desenvolvimento tornou-se apenas um exercício acadêmico,
pois os custos envolvidos não foram preocupação constante
do projetista.

O problema do custo, entretanto, poderia ter sido
evitado se na metodologia de desenvolvimento utilizada
tivessem sido inseridas atividades de análise e de revisões
de projeto (design review) por profissionais ou equipes de
especialistas independentes das equipes de projeto. O que
poderia ter sido útil ao indicar a utilização da tecnologia
emergente na época em utilização de módulos de hardware e
pacotes de software, de certa forma padronizados.

Finalmente, com relação a estrutura do sistema ela se
revelou extremamente proprietária, uma vez que seus
sistemas de comunicação não seguem nenhum padrão, o mesmo
acontecendo com o software, no que tange ao sistema
operacional, comprometendo dessa forma a premissa de
adequação à evolução tecnológica. Não pela inviabilidade
técnica de se substituir os módulos que possuam componentes obsoletos por novos módulos, reprojetados com novos componentes, mas pelo custo envolvido no novo projeto, necessário por não existir um padrão e, portanto, não ser possível adquirir módulos atualizados no mercado por preços certamente mais baixos do que se obteria com o desenvolvimento.

3.2 Sistema Distribuído de Controle para Aplicação Geral.

O Sistema Distribuído de Controle para Aplicação Geral - SCG foi concebido para aplicações de controle e automação de baixo custo, com possibilidade de crescer harmoniosamente, a partir de uma configuração simples e de custo baixo.

O desenvolvimento do SCG baseou-se na mesma especificação funcional do Sistema Distribuído para Controle de Processos, descrito no item anterior, e é composto na configuração mais completa de Unidades Centrais de Processamento e de Unidades Remotas de Controle, interligadas através de uma rede de comunicações de dados padronizada. As unidades centrais de processamento implementam o nível hierárquico de coordenação e as unidades remotas de controle o nível de controle de processos.

A rede de comunicações de dados padronizada podem ser conectados, Controladores Lógicos Programáveis - CLP, ou Controladores Numéricos e Robôs para que, em conjunto com
as unidades remotas de controle, formem um sistema capaz de controlar processos contínuos ou iniciar pequenas células de automação industrial. A estrutura básica do SCG é mostrada na figura 3.6

3.2.1 Unidade Central de Processamento

As Unidades Centrais de Processamento - UCPs são responsáveis pela implementação da interface homem-máquina e pela manutenção da base de dados do sistema, que contém o estado atual do processo e os dados históricos relevantes do mesmo.

As UCPs são implementadas através de microcomputadores pessoais do tipo IBM/PC-XT ou AT (ou compatíveis), configurados com 640 Kbytes de memória, coprocessador aritmético, unidade de disco flexível, unidade de disco rígido Winchester de 40 Mbytes, impressora, monitor de vídeo em cores de alta resolução e teclado.

A unidade de disco rígido é utilizada para o armazenamento das bases de dados do sistema, do software aplicativo e básico e da configuração do sistema. A unidade de disco flexível é utilizada para entrada de dados de parametrização e configuração do sistema e para registro de dados de processo (data logging) para processamento "off line". A impressora é utilizada para impressão de relatórios de operação e de alarmes e para registro de dados do processo. Finalmente, o monitor de vídeo e o teclado são utilizados pelos operadores para as operações de supervisão e controle.
FIGURA 3.6 - ESTRUTURA DO SCG

VCP : UNIDADE CENTRAL DE PROCESSAMENTO
CLP : CONTROLADOR LÓGICO PROGRAMÁVEL
CN : CONTROLE NÚMERO
Além disso, deve ser acrescentado aos microcomputadores um hardware para realizar a interface com a rede de comunicação padronizada, implementada através de protocolo MAP (Manufacture Automation Protocol), e também para realizar a comunicação e o chaveamento para outros microcomputadores redundantes do mesmo nível hierárquico, em casos de falha. Convém observar que, se for necessário, um canal extra de comunicação de dados pode ser incorporado ao microcomputador para implementar a comunicação com outros sistemas ou computadores do mesmo nível hierárquico ou de níveis superiores.

O principal módulo de software residente nas UCPs é o de interface homem-máquina para processos contínuos, que são disponíveis comercialmente no mercado internacional. Esse software tem por função a atualização em tempo real das variáveis do processo apresentadas nas telas de operação e nas bases de dados do sistema e a interpretação dos comandos fornecidos pelo operador e a geração das tarefas necessárias para sua execução.

Além disso, esse software gerencia e implementa as atividades de configuração do sistema, adequando-o à instalação a ser supervisionada e controlada, através da geração das telas de supervisão e controle a serem apresentadas no monitor de vídeo, da parametrização dos algoritmos de controle e da definição e configuração dos elementos de entrada e saída para a supervisão e controle do processo.
Outro módulo de software residente no microcomputador é o software de comunicação de dados que tem, sob sua responsabilidade principal, o gerenciamento da comunicação com os equipamentos do nível hierárquico de controle de processo, implementando o protocolo MINI-MAP utilizado no sistema e colocando, à disposição do módulo de software de interface homem-máquina, os dados relativos às variáveis do processo. Além disso, o software de comunicações deve também implementar a comunicação com os outros computadores, quando houver necessidade.

3.2.2 Unidade Remota de Controle

As Unidades Remotas de Controle - URCs são responsáveis pela execução dos algoritmos de controle e pelo interfaceamento do SCG com o processo a ser controlado, através do nível hierárquico de instrumentação. Cada URC pode ser configurada com módulos de controladores de malha simples, módulos de entradas e saídas analógicas ou digitais e módulo controlador de painel local, além do módulo de controle e interfaceamento com a rede de comunicação de dados implementada com protocolo MINI-MAP. A estrutura da URC é mostrada na figura 3.7 e os seus componentes apresentados a seguir.

a) Módulo de Controle e Interfaceamento

O Módulo de Controle e Interfaceamento é responsável pela execução do software de gerenciamento da URC e de comunicação de dados, implementando o protocolo MINI-MAP. Este módulo confere à URC a autonomia necessária para que
FIGURA 3.7 - ESTRUTURA DA UNIDADE REMOTA DE CONTROLE
opere sem a interferência direta das UCPs nas atividades de controle de processo e aquisição de dados, mesmo com a ocorrência de falhas no sistema que desativem as UCPs ou o sistema de comunicação de dados. Além disso, permite que a URC seja utilizada para controle e supervisão de pequenos processos que não necessitam de estações centrais de supervisão e controle.

O módulo de controle e interfaceamento é implementado com o microprocessador tipo 80286 fabricado pela Intel, com configuração de hardware que torna o módulo compatível com o microcomputador IBM-PC/AT, contendo no mínimo 128K bytes de memória disponível para a execução de software aplicativo.

Este módulo possue recursos para conexão com outros módulos com capacidade própria de processamento, como é o caso dos controladores de malha simples, e sem capacidade própria de processamento, como é o caso dos módulos de entrada e saída serial utilizados para a comunicação com o sistema de comunicação de dados, e de entrada e saída paralela utilizados para a comunicação com o nível de instrumentação de processo. Observa-se que se for necessário, pode-se instalar neste módulo um coprocessador aritmético.

O software aplicativo residente no módulo de controle e interfaceamento é configurável, de acordo com as funções especificadas durante a atividade de configuração do sistema, que retrata as necessidade do processo.
Esse software pode conter algoritmos de controle, em substituição aos módulos de malha simples, lógicas de intertravamento, curvas de compensação de entradas analógicas, tratamento de comandos locais gerados no painel de controle local, controle do painel local e registro de dados.

Convém observar que o sistema operacional instalado no módulo é compatível com o utilizado nos microcomputadores da linha IBM/PC, garantindo, portanto, a portabilidade dos módulos de software que venham a ser desenvolvidos e a utilização de softwares que já tenham sido desenvolvidos.

b) Módulo Controlador de Malha Simples

O Módulo Controlador de Malha Simples é conectado ao barramento controlado pelo módulo de controle e interfaceamento e tem por função controlar uma malha do processo, através da execução de algoritmos de controle pré-programados em sua memória. Este módulo também é implementado com o microprocessador tipo 80286 fabricado pela Intel, equipado com coprocessador aritmético, e contém na sua parte frontal um pequeno painel para indicação, em tempo real, através de gráficos de barras, dos valores da variável do processo, do ponto de operação e do erro. Além disso, o painel é utilizado também para controle direto e entrada de dados de parametrização, através de botões e teclado numérico.

As funções executadas pelo módulo controlador de malhas simples, através da execução de seu software aplicativo e de acordo com a sua configuração, são as seguintes:
- Algoritmos de controle proporcional, integral e derivativo - PID;
- Funções aritméticas de somatória, produto, inversão e módulo;
- Funções lógicas de seleção de entradas em função de condições lógicas e funções booleanas de produto, soma e ou exclusivo;
- Funções de comparação, de maior que, de menor que, de maior ou igual que, de menor ou igual que, de igual e de diferente;
- Funções de contadores de eventos;
- Funções de cálculo e seleção de valor máximo, de valor mínimo, de valor médio e valores limitadores;
- Funções de linearização e compensação de temperatura, de pressão, de conversão de unidades de engenharia, de raiz quadrada e de integração;
- Funções de tratamento de entradas e saídas analógicas;
- Funções de tratamento de alarmes superior, inferior e de desvio.

O módulo controlador de malha simples possue uma saída e uma entrada de sinal analógico, que implementa a malha de controle e entradas e saídas digitais auxiliares, para a realização de intertravamento ou acionamentos do tipo liga e desliga.

c) Módulo de Entradas e Saídas Analógicas

Os Módulos de Entradas e Saídas Analógicas não possuem capacidade de processamento e são controlados diretamente,
pelo módulo de controle e interfaceamento. Estes módulos são responsáveis pelo envio de sinais de controle analógicos aos componentes do nível hierárquico de instrumentação de processo e pela leitura de sinais analógicos, correspondentes às variáveis do processo.

Os módulos de entradas e saídas analógicas são implementados por conversores digital/analógico e analógico/digital de 12 bits e interfaceiam com as vias do módulo de controle e interfaceamento em dados de 16 bits.

Para facilidade de configuração são implementados módulos de entradas e saídas analógicas com 16 entradas analógicas independentes, ou com 16 saídas analógicas independentes, ou, então, com oito entradas e oito saídas analógicas independentes. Cada URC comporta até oito destes módulos em sua configuração máxima.

d) Módulo de Entradas e Saídas Digitais

Os Módulos de Entradas e Saídas Digitais, também, não possuem capacidade de processamento e são controlados diretamente pelo módulo de controle e interfaceamento. Estes módulos são responsáveis pelo envio de sinais de comando digitais (liga e desliga) aos componentes do nível hierárquico de instrumentação de processo e pelo recebimento de sinais de indicação digitais também desses componentes do processo.

Os módulos de entradas e saídas digitais recebem sinais de comando do módulo de controle e interfaceamento em palavras de 16 bits e geram os respectivos sinais de controle e sincronismo; por outro lado, os sinais de
indicação são coletados por varredura cíclica das entradas e montados em palavras de 16 bits que são, por sua vez, enviados ao módulo de controle e interfaceamento, de acordo com os procedimentos existentes no seu software aplicativo.

Para facilitade de configuração da URC são implementados módulos de entrada e saídas digitais com 32 pontos digitais independentes de entrada, com 32 pontos digitais independentes de saída e com 16 pontos de entrada e 16 pontos de saída digitais independentes. Cada URC comporta até oito módulos de entrada e saídas digitais.

e) Módulo Controlador do Painel Local

O Módulo Controlador do Painel Local é controlado diretamente pelo módulo de controle e interfaceamento, não possue capacidade de processamento e tem por função o acionamento dos gráficos de barras, "displays" e LEDs do painel de comando local da URC.

Este acionamento é feito a partir de dados recebidos do módulo de controle e interfaceamento decodificados pelo seu software, a partir de dados do processo coletados nos componentes do nível hierárquico de instrumentação de processo pelos módulos de controle de malha simples, ou de entradas analógicas ou digitais.

Além disso, este módulo tem por função, também, a recepção e decodificação dos comandos recebidos do painel local e sua transferência para o módulo de controle e interfaceamento, para que os comandos gerados pelos operadores locais sejam processados e executados.
Através do painel local, os operadores poderão selecionar até oito malhas de controle por vez, para monitorá-las através dos gráficos de barras, que indicarão os valores da variável do processo, do ponto de operação e do erro, e poderão também selecionar até 16 pontos digitais por sua vez para monitorar seus estados através de LEDs.

As operações de controle e parametrização pelo painel local são realizadas através de teclados numéricos, que são utilizados para seleção da variável do processo ou do parâmetro desejado e para imposição de valores às variáveis ou parâmetros selecionados, e de botões para incremento e decremento de valores analógicos ou para atuação direta em variáveis digitais.

Opcionalmente, pode-se conectar, no barramento do módulo de controle e interfaceamento, unidades de disco flexível para configuração do sistema e registro de dados, e impressoras miniaturas para registro de dados em papel. Aliás, é conveniente observar que a unidade de controle e interfaceamento possui uma entrada independente para uma unidade de configuração e diagnóstico, para que sua configuração, posta em marcha e manutenção possa ser realizada independente da UCPs.

Finalmente, se for desejável a utilização de controladores lógicos programáveis - CLPs para interfaceamento com o processo ao invés das URCs, isto é viável conectando-se diretamente o CLP no sistema de transmissão de dados do SCG, se ele possuir interface com o protocolo MINI-MAP; caso ele não possua, deve ser
providenciada uma interface que realize a conversão de protocolos, permitindo assim o uso do CLP no sistema.

A existência do sistema de comunicações do SCG implementado com o protocolo MINI-MAP permite a conexão ao sistema de outros equipamentos de automação industrial além do PLC, tais como, controladores numéricos para máquinas ferramentas e robôs, permitindo que o SCG seja utilizado também para compor núcleos de automação industrial ou controladores de células flexíveis.

3.2.1 Considerações sobre o Desenvolvimento do Sistema de Controle Distribuído de Aplicação Geral - SCG.

O desenvolvimento do SCG foi realizado para propiciar a criação de um sistema que não possuísse a desvantagem do Sistema Distribuído para Controle de Processos, no que se referia aos custos de desenvolvimento e de fabricação. Com essa premissa chegou-se a um sistema de porte médio, que pode ter crescimento harmonioso, a partir de um embrião de porte bastante pequeno, atingindo-se o objetivo.

Outro ponto a se considerar refere-se à busca de uma arquitetura com características mais abertas, no que diz respeito à possibilidade de se utilizar equipamentos e software disponíveis comercialmente para implementar o sistema, possibilando com isso o barateamento do mesmo e a independência do usuário com relação a um fornecedor específico. Esse ponto foi alcançado com a utilização do protocolo MINI-MAP para o sistema de transmissão de dados, dos microcomputadores IBM-PC, ou equivalentes, para a
implementação das UCPs e da arquitetura compatível com os microcomputadores IBM-PC-AT no módulo de controle e interfaceamento das URCS.

Entretanto, a arquitetura apresenta alguns problemas relacionados com essa solução que compromete, em alguns casos, o desempenho do sistema.

O primeiro deles está relacionado com o índice de disponibilidade do nível de coordenação, que está apoiado sobre microcomputadores em configuração redundante em "hot stand by", cuja detecção de falhas é bastante precária, pois os microcomputadores não possuem mecanismos eficientes de detecção de falhas, comprometendo dessa forma o chaveamento para o equipamento redundante.

Outro ponto fraco da arquitetura, quando utilizada para aplicações em controle de processos contínuos, é o baixo desempenho do sistema de comunicação de dados baseado no protocolo MINI-MAP, que se mostra lento se comparado com os protocolos proprietários dos sistemas distribuídos de controle digital. Esse baixo desempenho foi contornado dando autonomia completa às URCS, no que se refere à dependência de comunicação com as UCPs, o mesmo conceito aplicado aos sistemas de controle baseados em microcomputadores e CLPs, já bastante difundidos para aplicações simples.

Com relação à metodologia de projeto, também neste caso não foram realizados análises ou reuniões de revisão de projeto por especialistas independentes (design review),
mas a componente custo foi considerada como fator relevante durante todo o projeto da arquitetura do sistema.

Convém, finalmente, observar que, durante o desenvolvimento, foi alterada a especificação funcional original do sistema, acrescentando-se os módulos de comunicação com os equipamentos de automação da manufatura, o que aumentou bastante a gama de aplicações do sistema e praticamente não encareceu o projeto.
4. SISTEMA ABERTO DE AUTOMAÇÃO
4. SISTEMA ABERTO DE AUTOMAÇÃO

O sistema apresentado neste capítulo foi concebido e está sendo projetado com arquitetura aberta, definida como a arquitetura que suporta um conjunto consistente e completo de padrões internacionais de tecnologia de informação e perfis funcionais padrão, que especificam interfaces, serviços e formatos, de forma a garantir interoperacionalidade e portabilidade de aplicações, dados e pessoal. BETTONI (1986); MARTUCCI (1991); TOCAS, MARTUCCI (1991); PIOVESAN, MARTUCCI (1991); BECERRA, MARTUCCI (1992); TOCAS (1992).

A implementação do sistema visa a obtenção de um laboratório para estudos de soluções de engenharia aplicadas aos problemas de automação nas diversas áreas da atividade econômica, bem como, para a verificação de desempenho de novas metodologias de implementação de sistemas digitais para tempo real, com requisitos rígidos de confiabilidade e disponibilidade, tanto no que se refere à arquitetura quanto ao projeto, a implementação e aos testes do hardware e do software do sistema. Além disso, o sistema proposto servirá como plataforma para a verificação de desempenho de metodologias modernas de projeto integrado e produção integrada por computadores.

Outra área de aplicação importante do desenvolvimento do sistema aberto de automação é no campo didático, onde o sistema se constituirá em excelente laboratório para ensino das técnicas e das aplicações dos sistemas digitais em
todos os campos da automação, tanto a nível de graduação quanto a nível de pós-graduação.

A concepção do sistema foi realizada considerando a experiência adquirida nos desenvolvimentos dos sistemas realizados anteriormente, particularmente no Sistema Distribuído de Controle para Aplicação Geral, apresentados nos capítulos anteriores. A seguir neste capítulo apresentar-se-á a arquitetura geral do sistema, as características do hardware e do software e algumas aplicações típicas do sistema.

4.1 Arquitetura do Sistema Aberto de Automação

O Sistema Aberto de Automação - SAA pode ser denominado aberto, pois sua arquitetura permite configurações diversas a partir de módulos funcionais padrão que, além de prover a capacidade de processamento e, portanto, de serviços, adequada às diversas aplicações em automação, também implementa diversos protocolos de comunicação, padronizados internacionalmente, que permitem a conexão de equipamentos ou sistemas de qualquer procedência ao SAA.

Nesse sentido a arquitetura proposta deverá ser flexível e modular para admitir configurações com capacidade de processamento e armazenamento de dados variáveis, de acordo com a aplicação, com protocolos de comunicação e conexão com equipamentos, instrumentação e sistemas que atendam aos padrões internacionais, e com capacidade de interfaceamento homem-máquina com os equipamentos adequados a cada aplicação ou conjunto de aplicações.
Para garantir, principalmente, a flexibilidade, a arquitetura proposta é hierarquizada e distribuída, onde cada um de seus módulos é constituído de um processador com desempenho adequado à função a ser executada por ele. A arquitetura implementa três níveis hierárquicos, que são os níveis de instrumentação, de controle e de coordenação.

O nível de instrumentação tem por função a transformação das grandezas físico-químicas do processo em sinais elétricos e vice-versa, o cálculo das variáveis de controle a partir das variáveis de processo, através da execução de algoritmos adequados, a realização de consistências e envio de dados e estados aos níveis hierárquicos de controle e coordenação e a implementação da interface homem-máquina local, a nível de processo. Observa-se que os equipamentos deste nível, obviamente, são geograficamente distribuídos pela planta.

O nível de controle tem por função a realização do processamento necessário para o gerenciamento dos equipamentos do nível de instrumentação e para a execução dos algoritmos de controle, que não possam ser executados no nível de instrumentação, dada sua complexidade ou sua necessidade de armazenamento de dados ou de comunicação. Além disso, este nível implementa a interface homem-máquina a nível setorial e transfere, ao nível de coordenação, os dados do processo e estados após uma verificação de consistência. Observa-se que os equipamentos que implementam o nível de controle são geograficamente distribuídos pela planta.
O nível de coordenação tem por função a realização do processamento necessário para o gerenciamento dos equipamentos do nível hierárquico de controle e ou de instrumentação, conforme a configuração exigida, o gerenciamento das bases de dados do sistema, a implementação da interface homem-máquina a nível central, a comunicação com outros equipamentos e computadores para transferência de informações a nível de coordenação (estratégias, dados globais do processo e estados) e o gerenciamento da configuração do próprio sistema. Além disso, o nível de coordenação deve permitir a execução de softwares aplicativos para execução de funções diversas, tais como: simulações, "computer aided design", algoritmos de controle, etc.

A figura 4.1 ilustra a arquitetura proposta composto, a título de exemplo, um sistema híbrido para controle e automação de processos contínuos e de manufatura. Contém um controlador de célula flexível de um lado e uma estação remota comunicando-se com instrumentação de campo de outro lado, com comunicação entre os níveis hierárquicos e instrumentos ou equipamentos, implementada através de protocolos padrionizados ou proprietários, como o caso de sistema distribuído de controle digital exemplificado.

Na figura cada bloco representa um processador que tem funções específicas de processamento de software aplicativo, de comunicação de dados, de interface homem-máquina ou de gerenciamento de base de dados, sendo o sistema desejado implementado pela configuração adequada
FIGURA 4.1 ESTRUTURA DO SISTEMA ABERTO DE AUTOMAÇÃO
desses módulos. A seguir, apresenta-se em linhas gerais as características dos equipamentos que implementam cada um dos níveis hierárquicos do sistema.

4.1.1 Nível de Coordenação

A capacidade de processamento e de armazenamento de dados do nível de coordenação deve ser grande, para que a execução das suas funções seja possível sem que seja necessário se recorrer a computadores de grande ou médio porte convencionais. Para que isso seja possível, deve-se, alocar a cada módulo processador, um conjunto de funções que sejam independentes, ou seja, cuja necessidade de comunicação para troca de informações com outras funções seja a menor possível.

Os módulos processadores do nível de coordenação são compostos de processador, memória, disco rígido e capacidade de interconexão com os demais módulos do mesmo nível, além de interfaces adequadas para equipamentos de interface homem-máquina, de armazenamento de dados e de comunicações. Estas interfaces são para o caso de módulo especializado nas atividades de interface homem-máquina, gerenciamento de base de dados ou comunicações, respectivamente.

Cada módulo processador é compatível, do ponto de vista de software, com os microcomputadores de 32 bits, possuindo, portanto, compatibilidade com os sistemas operacionais e softwares aplicativos disponíveis para essas máquinas.
Para uma aplicação específica, o equipamento do nível de coordenação devem possuir, além dos módulos processadores de uso geral, os módulos descritos a seguir.

a) Módulo Gerenciador de Base de Dados

O Módulo Gerenciador de Base de Dados é responsável pelo gerenciamento da base de dados do sistema e da aplicação, que pode ser constituída por uma base de dados tecnológicos, no caso de aplicações em automação da manufatura e automação de projetos, ou por uma base de dados de estado do processo, no caso de aplicações em controle de processos contínuos ou automação predial, ou ainda de uma base de dados de informações variadas, no caso de automação de escritório ou automação comercial. Neste módulo são disponíveis softwares gerenciadores de base de dados que utilizam linguagens do tipo SQL, como por exemplo o sistema "Oracle", e podem ser instalados em discos magnéticos com capacidade de armazenamento adequada à aplicação.

b) Módulo de Interface Homem-Máquina

O Módulo de Interface Homem-Máquina é responsável pelo gerenciamento da interface homem-máquina a nível central, tanto nas fases de configuração e de posta em marcha, quanto na operação propriamente dita do sistema. Possue softwares de interface homem-máquina e de configuração de processos em telas de monitores de vídeo em cores e em painéis m ínicos.

O módulo de interface homem-máquina utiliza as informações coletadas no módulo configurador, para
possibilitar a configuração da interface homem-máquina; além disso possue também softwares geradores de relatórios em impressoras e gráficos em traçadores gráficos (plotters).

O módulo de interface homem-máquina possue, ainda, interfaces com unidades de disco flexível, que podem ser empregadas em conjunto com o módulo configurador, para ser utilizado nas operações de configuração, posta em marcha, registro de dados para processamento "off line" ou entrada de dados no sistema.

c) Módulo de Comunicação de Dados

O Módulo de Comunicação de Dados é responsável pela comunicação de dados entre o próprio sistema e os outros sistemas ou computadores a ele conectados, e entre o nível hierárquico de coordenação e o controle ou o de instrumentação, quando o de controle não existir.

Para realizar as suas funções, este módulo contém hardware e software que implementam os protocolos com a estrutura ISO/OSI de sete camadas, mais comumente utilizados na área de automação, ou seja, os seguintes protocolos são considerados:

- MAP - "Manufacture Automation Protocol": na sua versão completa ou na versão MINI-MAP e, consequentemente, na versão EPA-MAP, para serem utilizados, preferencialmente, nas aplicações de automação de manufatura na comunicação com o nível de controle e diretamente com os equipamentos de chão de fábrica, quando não existir o nível de controle;
- "Field Bus", ou Protocolo de Campo: para ser utilizado, preferencialmente, nas aplicações de controle de processos contínuos, na comunicação com o nível de instrumentação, quando não for implementado o nível de controle; e

- Protocolo de Rede de Computadores (X25): para comunicação com outros sistemas ou computadores nas implementações de sistemas de informação, de produção integrada por computador ou de projeto integrado.

Além desses protocolos, podem ser implementados protocolos proprietários de alto desempenho para aplicações específicas de controle de processos, onde há restrições de tempos de resposta, e protocolos para conexão de microcomputadores, para as aplicações onde o nível de controle ou de instrumentação é implementado por redes de microcomputadores, como pode ser o caso de sistemas de automação comercial ou de escritório.

c) Módulo de Simulação

O Módulo de Simulação é responsável pela execução dos softwares de simulação em tempo real, que são utilizados no desenvolvimento ou aprimoramento de processos ou produtos; este módulo possui sua própria interface homem-máquina, constituída de terminais de vídeo em cores de alta resolução, e seu próprio gerenciador de base de dados, uma vez que, durante os processos de simulação, não é conveniente o uso da base de dados do sistema por motivos de segurança e de velocidade.
Os discos rígidos utilizados para o armazenamento dos bancos de dados próprios deste módulo fazem parte do seu hardware e são utilizados discos tipo "winchester" de grande capacidade de armazenamento.

d) Módulo de "Computer Aided Design"

O Módulo de "Computer Aided Design" - CAD é responsável pela execução dos softwares de CAD e CAE - (Computer Aided Engineering) e, como no caso anterior, possue sua própria interface homem-máquina, constituída de terminais de vídeo em cores de alta resolução, mesas digitalizadoras, traçadores gráficos (plotters) e impressoras, e seu próprio gerenciador de base de dados, necessário pelos mesmos motivos apresentados para o módulo de simulação.

Na prática, este módulo e o de simulação podem utilizar a mesma plataforma de hardware, uma vez que os periféricos envolvidos são praticamente os mesmos e, quando se desejarem serviços, obviamente não simultaneamente, pode-se carregar software e dados da base de dados do sistema, configurar o módulo para a aplicação desejada de simulação, de CAD ou de CAE e executá-la.

Convém ainda observar que existe a possibilidade de transferência de dados da base de dados deste módulo para a base de dados do sistema para a utilização pelo sistema dos dados do projeto desenvolvido neste módulo.

e) Módulo Configurador

O Módulo Configurador é o responsável pelo gerenciamento do processo de configuração do sistema, que o torna compatível com a aplicação. Este módulo executa o software
de auxílio à configuração do sistema, montando e mantendo a base de dados de configuração do sistema em um banco de memória não volátil. Tem a ele acoplado, além de um terminal de vídeo convencional, uma memória com fonte ininterrupta de energia, onde fica armazenada a configuração corrente do sistema; nos casos de preparação "off line" da configuração, os dados podem ser inseridos no módulo de configuração, através de uma unidade de disco flexível.

Quando o sistema encontra-se em atividade normal, este módulo gerencia as operações do nível de coordenação, assumindo o encargo de sediar as consoles de operação do sistema de informática, que constitui o equipamento do nível de coordenação, e a geração dos relatórios de operação e de alarmes do sistema, inclusive gerenciando as políticas de tratamento de falhas e diagnose e implementando as reconfigurações, quando for o caso.

Na implementação do nível de coordenação, os módulos processadores são conectados em rede, de forma que se comporte como uma rede de microcomputadores, com conexão serial de alta velocidade. Além disso, a comunicação do nível de coordenação com os níveis de controle e instrumentação é realizada através dos protocolos implementados nos módulos de comunicação configurados no equipamento.
4.1.2 Nível de Controle

Dadas as funções a serem executadas por este nível hierárquico, sua capacidade de processamento e de armazenamento de dados não precisa ser tão grande quanto ao nível de coordenação; entretanto, a arquitetura dos equipamentos deste nível é semelhante à do nível de coordenação, ou seja, um conjunto de módulos processadores, compatíveis com os sistemas operacionais utilizados em microcomputadores (DOS, UNIX, WINDOWS), conectados em rede, através de um protocolo paralelo padronizado.

De forma idêntica aos módulos processadores do nível de coordenação, os módulos deste nível possuem processador, memória e capacidade de interconexão com os demais módulos do equipamento, não possuindo individualmente, entretanto, capacidade de armazenamento em meio magnético e capacidade de interface homem-máquina. Em caso de necessidade de armazenamento de dados deverá ser utilizado o disco magnético existente no módulo de configuração do equipamento em questão e, também em casos de necessidade, os equipamentos do módulo de interface homem-máquina.

Os tipos de módulos processadores que podem ser utilizados para configurar um equipamento controlador do nível hierárquico de controle, além dos módulos de uso geral responsáveis única e exclusivamente por processamento de dados, são apresentados a seguir. Cabe ressaltar que os controladores do nível hierárquico de controle podem ter configurações diversas, dependendo de sua localização
física na planta, da planta em questão e da aplicação geral do sistema.

a) Módulo de Comunicações

O Módulo de Comunicações é responsável pela comunicação de dados entre o equipamento do nível de controle com os dos níveis de coordenação e de instrumentação, através da implementação dos protocolos normalizados ISO/OSI. Este módulo é idêntico ao utilizado no nível de coordenação, com exceção da comunicação com outros sistemas, através do protocolo X25, que não é necessária neste caso e, portanto, não implementada.

b) Módulo de Entradas e Saídas

O Módulo de Entradas e Saídas é responsável pelo interfaceamento do equipamento do nível de controle com o nível de instrumentação quando são utilizados instrumentos convencionais, ou seja, instrumentos sem capacidade de processamento.

Este módulo é composto de hardware e software para tratamento de diversos padrões de sinais digitais e analógicos e é dotado das proteções necessárias para garantir a integridade do sinal e do hardware do módulo.

Além disso, este módulo possue capacidade de processamento e armazenamento de dados, em memória principal, tal que seja possível a execução de algoritmos de controle e intertravamentos simples no próprio módulo, sem que seja necessário recorrer aos módulos de processamento de uso geral quando da configuração do controlador.
c) Módulo de Intertravamento

O Módulo de Intertravamento é responsável pela implementação dos intertravamentos de segurança, necessários em sistemas de proteção de aplicações críticas, tais como: controle ferroviário, controle de usinas nucleares, automação de plataformas de petróleo. Este módulo é projetado e implementado utilizando técnicas que permitem a obtenção de equipamentos digitais com índices elevados de segurança e confiabilidade, tanto no hardware quanto no software.

Para garantir a flexibilidade necessária, as equações de intertravamento de segurança são inseridas neste módulo na forma de tabelas, proporcionando a utilização do software já homologado para diversas aplicações, necessitando apenas a homologação das tabelas, que é um processo menos dispensioso.

O hardware do módulo de intertravamento fornece elementos de entrada e saída digitais implementados com características de falha segura, através de sinais com características dinâmicas.

d) Módulo de Controle de Malhas

O Módulo de Controle de Malhas é responsável pela implementação das malhas de controle que não foram implementadas no nível de instrumentação.

Este módulo executa, portanto, algoritmos de controle para malhas simples e multimalhas, e seu hardware implementa os elementos de entrada e saída digital e analógica necessários, com as mesmas características
presentes nos módulos de entradas e saídas; implementa também comunicação no protocolo "Field Bus" para conexão com o nível de instrumentação, utilizada para a coleta e envio de dados para os instrumentos com capacidade de processamento.

Os algoritmos de controle, necessários para a aplicação específica para a qual está sendo configurado o controlador, são escolhidos pelos usuários e configurados no módulo durante a fase de configuração do sistema, sendo, entretanto, também possível a troca dos algoritmos durante a operação normal do sistema, através da intervenção do módulo configurador.

e) Módulo de Comunicação com Equipamentos de Campo

O Módulo de Comunicação com Equipamentos de Campo é responsável pelo interfaceamento de equipamentos de campo, tais como: Controladores Lógico Programáveis - CLP, Máquinas Ferramentas a Controle Numérico, Robôs, Equipamentos de Testes e Instrumentação de Processo com capacidade de processamento, que não possuem os protocolos de comunicação padronizados (MAP e Field Bus) implementados.

O hardware e o software deste módulo implementam os protocolos proprietários para comunicação em ponto a ponto ou multiponto com esses equipamentos do nível de instrumentação. Convém observar que apenas os protocolos dos fabricantes mais tradicionais de cada equipamento estarão disponíveis para configuração, os demais precisarão
ser desenvolvidos pelo usuário, quando forem ser utilizados.

f) Módulo de Conexão com Equipamentos de Informação

O Módulo de Conexão com Equipamentos de Informação é responsável pelo interfaceamento com os equipamentos utilizados para automação de escritório e comercial, tais como: máquinas de telex, terminais de "fac-símile", terminais de pontos de venda, microcomputadores, leitores de código de barras e centrais telefônicas.

Este módulo contém, portanto, o hardware e o software de controle da comunicação e de transferência da informação para o módulo adequado do controlador para posterior processamento ou armazenamento.

Além disso, nos casos de aplicação de equipamentos de multimídia no processo de automação, este módulo tem sob sua responsabilidade apenas o controle dos equipamentos de imagem e som, ficando para um módulo especial o tratamento, a transmissão dos sinais ou dados correspondentes ao som e a imagem.

g) Módulo Configurador

O Módulo Configurador é responsável pelo gerenciamento do processo de configuração do equipamento do nível de controle, tornando-o compatível com a aplicação. Este módulo executa o software de configuração, a partir de dados recebidos do módulo configurador do nível de coordenação, ou do console, ou da unidade de disco flexível do próprio módulo, quando não existir o nível de coordenação; após a conclusão do processo de configuração,
os dados de configuração ficam armazenados em uma memória com fonte ininterrupta de energia, como no caso do módulo configurador do nível de coordenação.

Quando o sistema está em operação normal, este módulo gerencia as operações do equipamento no que se refere às políticas de tratamento e diagnóstico de falhas, providenciando as reconfigurações, quando for necessário, e informando o estado do equipamento sob sua responsabilidade ao nível de coordenação, através do módulo de comunicações.

Além disso, o módulo configurador do nível de controle tem, sob sua responsabilidade, o gerenciamento dos arquivos mantidos no disco magnético do equipamento e o controle do próprio periférico. Dessa forma, qualquer armazenamento ou leitura de dados especificada para qualquer módulo do equipamento do nível de controle deve ser realizada através de requisições de serviço ao módulo configurador.

Convém observar finalmente que, caso os dados de configuração do equipamento do nível de controle sejam preparados "off line", pode ser instalado no módulo configurador uma unidade de disco flexível para entrada desses dados; essa unidade de disco deve ser utilizada, também, para a posta em marcha do equipamento, quando o nível de coordenação não for disponível.

h) Módulo de Interface Homem-Máquina

O Módulo de Interface Homem-máquina é responsável pelo gerenciamento da interface homem-máquina a nível setorial, e, para executar essa função, possue softwares de interface homem-máquina e configuração de processos em telas de
monitores de vídeo em cores de alta resolução, além dos softwares de geração de registro de dados em impressoras matriciais miniatura, em traçadores gráficos e em unidades de disco flexível.

Convém observar que, em casos onde for necessário, pode-se acoplar nestes módulos pequenos painéis mímicos ou anunciadores de alarmes, com o objetivo de simplificar a interface homem-máquina, e que a configuração das telas é realizada a partir de informações fornecidas pelo módulo de configuração do controlador em questão.

É importante ressaltar que o nível de controle é constituído de um conjunto de equipamentos geograficamente distribuídos pela planta, compostos de redes de módulos processadores de uso geral e de uso específico, conforme os citados, os quais implementam as estações remotas dos sistemas distribuídos de controle de processos contínuos (SDCD) e dos sistemas de automação predial, os concentradores dos sistemas de automação comercial e de escritório, e os controladores de células flexíveis dos sistemas de automação da manufatura.

Outro ponto importante é que as redes do nível de controle devem ser flexíveis e configuráveis, a ponto de permitirem a utilização de redundâncias, para que seja possível atender aos níveis especificados de disponibilidade e, portanto, de tolerância a falhas particulares para cada aplicação do sistema, com garantia de independência entre os módulos redundantes.
4.1.3 Nível de Instrumentação

Dadas as funções a serem executadas por este nível hierárquico, a capacidade de processamento e de armazenamento de dados de seus componentes é bastante variável, mas via de regra pequena, se comparada com os níveis anteriores. Outra peculiaridade é que este nível é constituido pelos equipamentos próprios de cada classe de aplicação, que se comunicam com o nível de controle através de protocolos do tipo "Field Bus", MINI-MAP ou diretamente, através de sinais analógicos ou digitais simples.

* Para as aplicações em processos contínuos, este nível é composto por componentes, tais como: instrumentação inteligente, isto é, instrumentação com capacidade de processamento, instrumentação de processo convencional (transmissores de pressão, medidores de nível, termopares, medidores de vazão, bombas, válvulas), controladores de malha, controladores lógico programáveis, interligados a instrumentação convencional, e instrumentos e uso específico.

* Para as aplicações em automação da manufatura, os componentes deste nível são os equipamentos de chão de fábrica, isto é, as máquinas ferramentas a controle numérico computadorizado, os robôs manipuladores, os robôs de processo. (por exemplo, os robôs de solda e de pintura), os equipamentos de testes e de controle de qualidade, os controladores lógicos programáveis, utilizados para controle de máquinas e dos transportadores das linhas de
montagem, os transportadores automáticos auto guiados (AGV) e os controladores de demanda de energia elétrica.

Para as aplicações de automação comercial os componentes do nível de instrumentação são, basicamente, terminais de ponto de venda, leitores de código de barras, controladores de equipamentos de segurança anti-furto e microcomputadores em geral.

Para as aplicações em automação predial os componentes deste nível são os controladores de elevadores, os controladores das máquinas de ar condicionado, os equipamentos de controle de acesso de pessoas e veículos, os equipamentos de distribuição e iluminação elétrica de serviço e de emergência, as bombas e medidores de níveis das caixas de água, os equipamentos de combate a incêndio, os equipamentos de telefonia, vídeo e som e os equipamentos de segurança anti-furto.

Para as demais aplicações os componentes do nível de instrumentação são os específicos para a área de aplicação, que, em muitos casos, são desenvolvidos especificamente para atender a cada aplicação em particular.

4.1.4 Requisitos da Arquitetura do Sistema Aberto de Automação.

Os requisitos gerais estabelecidos para a arquitetura do Sistema Aberto de Automação podem ser depreendidos das descrições de cada nível hierárquico apresentadas nos itens anteriores e são, basicamente, os apresentados a seguir.
a) Flexibilidade e Expansibilidade

A flexibilidade e expansibilidade são necessárias para que a arquitetura permita configurações que implementem qualquer sistema de automação com seus elementos, com qualquer grau de complexidade, desde, por exemplo, um controlador simples de malha até um SDCD completo com os três níveis hierárquicos em uma aplicação em processos contínuos, e desde um controlador simples de célula flexível até uma estrutura completa de manufatura integrada por computador - CIM em uma aplicação em automação de manufatura.

Além disso, a arquitetura deve permitir a configuração de sistemas que não utilizem todos os níveis hierárquicos de forma a possibilitar a implementação de sistemas simples e que tenham a possibilidade de crescimento à medida da necessidade do processo que automatizam e da disponibilidade de capital para investimento em automação.

b) Modularidade

A Modularidade é praticamente decorrente dos requisitos de flexibilidade e expansibilidade, e é especificada para permitir a implementação de sistemas a partir de módulos padrão de hardware e software, por procedimentos de configuração de sistema. Este requisito visa baratear o desenvolvimento do sistema e os procedimentos de manutenção.
c) Conectividade

A Conectividade é um item importante, uma vez que o sistema é aberto e, portanto, a arquitetura deve permitir que equipamentos de outras procedências venham a ser incorporados no sistema para compor módulos e equipamentos complementares em todos os níveis hierárquicos. Isso deve ser feito através da utilização de protocolos de comunicação com normalização internacional ISO/OSI para comunicação entre os módulos, quando for o caso, e entre os níveis hierárquicos.

Atendendo a este requisito, os equipamentos implementados com os módulos do sistema aqui proposto também poderão ser utilizados em outros sistemas abertos de automação.

d) Confiabilidade e Segurança

A confiabilidade e a segurança devem ser elevadas e quantificadas em forma de índices. O projeto e a implementação dos módulos que compõem o sistema devem ser realizados com metodologia adequada, que permitam o controle dos índices de confiabilidade e segurança durante as fases de projeto, tanto de software quanto de hardware, para que se obtenha índices adequados às aplicações a custos também adequados.

e) Disponibilidade

Dados os índices de confiabilidade dos módulos ou partes dele, o índice de disponibilidade do sistema deve ser controlado através da aplicação de redundâncias. A arquitetura do sistema deve permitir, então, o uso de
redundâncias múltiplas de módulos e garantir a independência entre eles. Deve-se observar que os esquemas de detecção de falhas do hardware dos módulos deve prover os sinais necessários para acionar os mecanismos de chaveamento para os itens redundantes.

f) Portabilidade

A arquitetura deve permitir que pacotes de software desenvolvidos sobre os sistemas operacionais utilizados em microcomputadores, isto é, DOS, WINDOWS e UNIX, sejam portáteis para o sistema aberto de automação aqui proposto, e que os próprios sistemas operacionais sejam executados no hardware dos módulos de processamento do sistema, permitindo com isso baratear o desenvolvimento do sistema e a manutenção de software. Dessa forma, será possível a utilização de softwares disponíveis no mercado, e o desenvolvimento de novos softwares poderá contar com os sistemas de desenvolvimento e de automação disponíveis para o desenvolvimento de aplicativos, que são executados sobre esses sistemas operacionais "padronizados".

g) Metodologia de Desenvolvimento

Além desses requisitos, deve-se considerar que a metodologia de desenvolvimento do sistema deve ser baseada em um planejamento adequado, com revisões de projeto (design review) realizadas periodicamente, uma vez que o sistema completo possue um porte muito grande e deve ser desenvolvido por uma equipe grande e heterogênea.
4.2 Aplicações do Sistema Aberto de Automação

O Sistema Aberto de Automação - SAA pode ser configurado para implementar qualquer sistema de automação. Este item, apresenta, a seguir, exemplos de configurações para a aplicação do SAA na implementação um sistema de automação de projeto (considerando os conceitos de desenvolvimento integrado de projetos), de um sistema de automação de manufatura e de um sistema de controle de processos contínuos.

4.2.1. Sistema de Automação de Projetos

O desenvolvimento de empreendimentos de grande porte, que possuem um grande número de processos, que se subdividem em sistemas, que por sua vez se subdividem em componentes e tubulações, que devem ser dispostos em compartimentos onde já existem componentes e tubulações de outros sistemas ou empreendimentos, pode ser uma tarefa sem fim, se não forem controladas as revisões de projeto e os arranjos físicos, podendo levar a inconsistências nas interfaces entre os sistemas e a interferências indesejáveis nos arranjos, respectivamente.

O controle do empreendimento, do ponto de vista tecnológico, pode ser feito através da aplicação de uma metodologia específica de projeto, que integra todas as equipes de projeto em torno de um única base de dados tecnológicos do empreendimento, que espelha sempre o estado atual do desenvolvimento.
A base de dados tecnológicos contém as descrições das interfaces entre os sistemas, dadas pelas grandezas físico-químicas envolvidas, tais como: pressão, temperatura e vazão, pelas grandezas de geometria, tais como: diâmetro do flange e tipo de conexão, e pelo tipo de fluído que um sistema fornece ao outro.

Além disso, a base de dados tecnológicos possue o mapeamento geométrico em três dimensões da configuração física já projetada, dada pelo arranjo físico dos componentes e tubulações de todos os sistemas nos compartimentos que comporão o empreendimento. Finalmente, a base de dados tecnológicos contém também as informações de consumo e características de alimentação elétrica e características de controle de cada componente e sistema do empreendimento.

Com esse método de projeto os registros da base de dados tecnológicos vão crescendo em nível de detalhamento, à medida que as fases de projeto vão sendo realizadas e as informações mais detalhadas dos processos, sistemas, e componentes inseridas na base de dados. Dessa forma, as informações disponíveis na fase de concepção são pobres em detalhes; por exemplo, a nível de arranjo cada sistema do processo pode ser representado por um bloco tridimensional que delimita as fronteiras de ocupação do sistema. Já no projeto básico, com o crescimento do conhecimento do sistema em particular, o bloco tridimensional dará lugar a tubulações e blocos menores que representarão os componentes do sistema até que, com o projeto de
detalhamento concluído, os componentes são representados na forma que realmente são.

Com esse método de projeto, os projetistas utilizam softwares aplicativos para cálculos e automação de partes do projeto, sejam sistemas, componentes ou tubulações, os quais consultam a base de dados tecnológicos durante sua execução, realizando o trabalho ou revisões de projeto. Entretanto, as modificações de dados da base de dados tecnológicos do empreendimento se dará apenas após a verificação de consistência e da abrangência das alterações em outros sistemas e componentes e no arranjo físico dos compartimentos, de forma a que se possa calcular a relação custo benefício das alterações propostas e implementá-las apenas se for conveniente.

A imposição de não alterar o conteúdo do banco de dados tecnológicos antes da conclusão do processo de verificação de impactos, obriga que se tenha um banco de dados auxiliar, atrelado ao software aplicativo que gerou os novos valores de dados de processo ou arranjo, para que seja utilizado pelos verificadores, até que o mesmo seja aprovado e a base de dados tecnológicos atualizada.

Quando da atualização da base de dados tecnológicos, todos os projetistas envolvidos devem ser notificados pelo sistema de automação e todos os sistemas, componentes e tubulações, que necessitam de revisões, devem ser identificados e marcados com o estado de "em revisão", para que todos os projetistas fiquem cientes da situação e não
dêem andamento a possíveis projetos que tenham que ser posteriormente revistos.

A configuração do Sistema Aberto de Automação para a aplicação em automação de projeto de empreendimentos de grande porte que possuam fase de construção, possuiria apenas o nível de coordenação do sistema, isso se não se considerar a produção automática ou semi-automática dos modelos em escala reduzida. O nível de coordenação do SAA configurado para automação de projeto seria, então, composto dos seguinte módulos e equipamentos:

- Módulo Gerenciador de Base de Dados: responsável pelo gerenciamento da base de dados tecnológicos e das bases de dados auxiliares, quando elas não ficarem sob responsabilidade dos módulos processadores ou equipamentos que executam os softwares aplicativos específicos. Convém observar que o controle de acesso aos dados das bases de dados residentes neste módulo faz parte do software de gerenciamento residente no módulo;

- Módulos de Processamento de Uso Geral: responsáveis pela execução dos softwares aplicativos necessários à execução dos cálculos diversos necessários ao desenvolvimento dos projetos. Estes módulos devem possuir terminais de operação remotos para facilitar o acesso aos projetistas;

- Módulos de Simulação: responsáveis pela execução dos softwares de simulação para validação dos projetos ou alterações de projeto. Estes módulos devem possuir terminais de operação remotos para facilitar o acesso aos projetistas;
- Módulos ou Equipamentos de "Computer Aided Design" - CAD: responsáveis pela automação de projeto de arranjo físico, de componentes mecânicos e de engenharia civil e arquitetura. No caso do uso de equipamentos de CAD disponíveis no mercado para compor o sistema, a interconexão entre os dois se dará pelo módulo de comunicação do nível de coordenação, através de um dos protocolos padronizados;

- Módulo de Configuração: responsável pelo gerenciamento do sistema e pelo seqüenciamento das operações de avaliação das alterações de projeto executados, de forma a habilitá-las a alterar a base de dados tecnológicas. Convém observar que o projetista nomeado gerente da configuração do empreendimento tem acesso a este módulo e, a partir dele, pode autorizar a modificação ou atualização de dados na base de dados tecnológicos; e

- Módulo de Comunicações: responsável pelo gerenciamento da comunicação com os equipamentos de CAD, com os computadores, que porventura forem utilizados para a realização de cálculos e outros processamentos necessários ao projeto, e com os terminais remotos dos módulos de simulação e de processamento de uso geral, se for o caso.

Convém observar que, se for necessária a geração automática ou semi-automática de modelos em escala reduzida, pode-se adicionar, na configuração do sistema, um controlador de célula flexível de manufatura no nível hierárquico de controle e máquinas ferramentas a controle
numérico em configuração de célula flexível no nível de instrumentação.

4.2.2 Sistema de Automação de Manufatura

O processo de manufatura, considerado para o exemplo de configuração do sistema aberto de automação, inicia-se com o projeto das peças e termina com a expedição do produto final, que é composto de uma série de peças que são produzidas e montadas em células flexíveis de manufatura.

O processo de produção será aqui considerado como sendo totalmente automatizado, ou seja, deve possuir projeto utilizando CAD e CAE, produção automatizada com "Computer Aided Process Planning" - CAPP (Planejamento da Produção Auxiliada por Computador) e com controle de qualidade assistido por computador.

Neste caso, o sistema de automação possuirá o nível de coordenação, onde será executado o projeto das peças e do equipamento a ser produzido e o planejamento da produção, o nível de controle, onde serão configurados os controladores de células flexíveis, e o nível de instrumentação, onde estarão as máquinas de produção e de teste.

Os módulos a serem utilizados na configuração exemplo do sistema aberto de automação, na implementação do equipamento do nível de coordenação do sistema de automação da manufatura são os seguintes:

- Módulos ou Equipamentos de CAD: responsáveis pelo auxílio ao projeto das peças do produto e de sua sequência de
montagem; as peças projetadas são arquivadas nas bases de dados do módulo de gerenciamento de base de dados;
- Módulo de Gerenciamento de Base de Dados: responsável pelo gerenciamento das bases de dados que contêm os dados geométricos e tecnológicos das peças a serem usinadas, bem como, os programas na linguagem dos comandos numéricos das máquinas ferramentas, que serão utilizadas para a confecção da peça. As bases de dados também contêm as seqüências de usinagem das peças e de montagem e testes do produto final, que correspondem aos dados para a seqüencialização das operações nas células flexíveis;
- Módulos de Processamento de Uso Geral: responsáveis pelo processamento dos softwares aplicativos de CAPP, de gerência de materiais e dos demais softwares de apoio ao processo de produção;
- Módulo de Comunicações: responsável pela implementação dos protocolos de comunicação com os equipamento de CAD e CAE, se não forem utilizados os módulos próprios do sistema, e com o controlador de célula flexível, através do protocolo MINIMAP; e
- Módulo de Configuração: responsável pelo gerenciamento do sistema e pelo interfaceamento com o operador do sistema durante as fases de configuração, posta em marcha e operação. Este módulo é responsável, também, pela seqüencialização das macro operações realizadas pelo sistema, tais como, programação das máquinas do nível de instrumentação e programação do controlador das células flexíveis.
Os módulos a serem utilizados na configuração dos equipamentos do nível de controle são aqueles que comporão o controlador de células flexíveis e são os seguintes:
- Módulo de Comunicações: responsável pela implementação dos protocolos de comunicação com o nível de coordenação e com os equipamentos do nível de instrumentação, considerado como sendo o MINIMAP para todos os casos;
- Módulo Configurador: responsável pelo gerenciamento do controlador de célula flexível e pelo interfacemento com o operador; este módulo, também, contém as regras de controle das células flexíveis que implementam as políticas de produção recebidas do nível de coordenação; e
- Módulo de Processamento de Uso Geral: responsável pelo processamento de dados de controle de qualidade recebidos dos equipamentos de teste e pela realização das estatísticas e dos mapas de produção.

Finalmente, no nível de instrumentação são utilizadas máquinas ferramentas comandadas por controles numéricos; robôs manipuladores e de processamento, equipamentos automáticos de teste e equipamentos de embalagem, dispostos de forma a constituirem células flexíveis de manufatura, que se comunicam com o controlador de células do nível de controle através de protocolo MINIMAP.

4.2.3 Sistema de Controle de Processos Contínuos

O sistema aqui considerado será um SDCD convencional, destinado a controlar um processo com instrumentação
convencional, isto é, o nível de instrumentação do sistema de controle não possue capacidade de processamento.

Neste caso a configuração do sistema aberto para automação contará com o nível hierárquico de coordenação, que implementará a estação central, com o nível de controle para a implementação das estações remotas do SDCD, e com o nível de instrumentação, que "a priori" está definido que será implementado por instrumentação de processo convencional.

Os módulos a serem utilizados para a configuração exemplo do sistema aberto de automação que implementarão a estação central do SDCD em questão podem ser os seguintes:
- Módulo de Interface Homem-Máquina: responsável pelo gerenciamento dos dispositivos de interface homem-máquina. Durante a fase de configuração do sistema, auxilia o projetista a definir as telas de operação. Durante a fase de posta em marcha auxilia o projetista na verificação da completeza e da correção da configuração executada. Durante a operação normal do sistema é responsável pela atualização das telas de supervisão, com os valores recebidos do campo, e pela interpretação dos comandos realizados pelo operador no teclado de operações;
- Módulo Gerenciador da Base de Dados: responsável pelo gerenciamento da base de dados do sistema, que a mantém atualizada em tempo real;
- Módulos de Comunicação de Dados: responsáveis pela implementação do protocolo de comunicação entre a estação central e as remotas e entre a estação central e os
computadores da corporação, que implementam os níveis
hierárquicos de otimização e gerenciamento. O protocolo de
comunicação entre a estação central e remotas é
proprietário pois, devido às restrições de tempo de resposta
do sistema, o protocolo deve ser o mais eficiente possível;
- Módulo Configurador: responsável pelo gerenciamento do
sistema, quando em operação normal, e pela configuração do
mesmo na fase de configuração;
- Módulo de Simulação: responsável pela execução de
simulações do processo em andamento, com o objetivo de
fornecer dados antecipados sobre a evolução do processo e,
con isso, auxiliar as atividades de tomada de decisão, a
serem realizadas pelos operadores; e
- Módulos de Processamento de Uso Geral: responsáveis pela
execução de softwares aplicativos de auxílio à operação,
que executam tarefas especiais não disponíveis nos módulos
de interface homem-máquina, de configuração e gerenciador
de base de dados.

Para a configuração das estações remotas do SDCD, aqui
citada a título de exemplo, os seguintes módulos do nível
hierárquico de controle do sistema aberto de automação
podem ser utilizados:
- Módulos de Entradas e Saídas: responsáveis pelo
interfaceamento das estações remotas com a instrumentação
de processo convencional especificada. Os módulos a serem
utilizados devem ser em número suficiente para cobrir o
número total de entradas e saídas analógicas e digitais
estabelecidas pelo nível de instrumentação, que por sua vez foi estabelecido pelo processo;
- Módulo de Interface Homem-Máquina: responsável pela implementação da interface homem-máquina a nível setorial, fornecendo em telas de vídeo, previamente configuradas com o auxílio do próprio módulo, informações aos operadores locais sobre o estado da parte do processo sob responsabilidade da estação remota em questão;
- Módulo de Comunicação: responsável pela implementação do protocolo de comunicação com a estação central, que, neste exemplo, é proprietário;
- Módulo Configurador: responsável pelo gerenciamento da estação remota durante a operação normal do sistema e pela configuração da mesma durante a fase de configuração do sistema; a configuração da estação remota é realizada a partir dos dados de configuração recebidos da estação central; e
- Módulos de Processamento de Uso Geral: responsáveis pela execução dos algoritmos de controle e demais softwares aplicativos necessários ao controle do processo que, por algum motivo, não podem ser executados nos módulos de entradas e saídas, de interface homem-máquina e configurador.

Cabe observar que não se optou pelo uso dos módulos de controle de malhas, no exemplo, apenas pela decisão do projetista, e que o processo não exigiu a utilização de módulos de intertravamento, pois, por hipótese, não havia requisitos de segurança que obrigassem o uso de
intertravamentos de segurança, como os implementados pelo módulo de intertravamento. Além disso, se tivesse sido especificado que o nível de instrumentação fosse implementado utilizando-se instrumentação inteligente, e com as malhas de controle sendo fechadas no próprio nível de instrumentação, a estação remota deveria ser configurada com mais um módulo de comunicação para implementar o protocolo "Field Bus".

4.3 Considerações sobre o Desenvolvimento do Sistema Aberto de Automação.

Como já foi mencionado, a especificação deste sistema é fruto da experiência acumulada em desenvolvimentos anteriores de sistemas aplicados à automação, procurando-se neste caso estabelecer uma estrutura que não possuísse vinculações, o que levou a decisão de especificar que o sistema seria aberto.

Considerando que o sistema possuiria uma estrutura aberta, o passo seguinte foi estabelecer que a estrutura básica do sistema deveria atender a qualquer tipo de sistema de automação, ou seja, permitir que fossem configurados sistemas de automação para qualquer área que necessite de automação, derrubando a idéia de que os sistemas de automação de processos contínuos são completamente distintos dos de automação de manufatura, que também são completamente distintos dos de automação comercial. Com a estrutura proposta, pode-se configurar com seus módulos qualquer um desses sistemas.
Outro ponto a se considerar é que, com a estrutura proposta, não há necessidade de se ter todos os módulos do sistema desenvolvidos para que possa começar a utilizá-lo, pois, caso não se tenha o módulo disponível, pode-se utilizar equipamentos de mercado para a implementação desejada.

Do ponto de vista do desenvolvimento, a estrutura proposta permite que o sistema seja desenvolvido em partes, por equipes independentes e autônomas, isso porque cada módulo é independente e nada impede que se tenha mais de uma implantação para os módulos básicos do sistema, se for necessário. O importante nesse caso, é a definição dos protocolos de comunicação, das funções básicas de cada módulo e dos sistemas operacionais a serem utilizados; como as funções básicas, os protocolos e os sistemas operacionais estão definidos a autonomia de cada projetista está garantida.

Praticamente, o desenvolvimento do sistema vem ocorrendo com um conjunto de alunos de pós-graduação que possuem partes fechadas do sistema como trabalhos de tese ou de dissertação. Pode-se citar como exemplo, o projeto e a implementação de um controlador de célula flexível de manufatura modular e configurável, de acordo com as funções especificadas, e o projeto e implementação de uma malha de controle a nível de instrumentação, utilizando protocolo "Field Bus" e instrumentação inteligente, para determinação dos impactos sobre a estrutura das estações remotas dos SDCDs e sobre a relação custo-desempenho dos mesmos.
Finalmente, espera-se com este desenvolvimento obter um sistema adequado para estudar-se, a nível prático, metodologias de projeto altamente automatizados, metodologias de implantação e configuração de sistemas de automação, técnicas de interface homem-máquina e análise de desempenho de protocolos de comunicação, que deverá contribuir para que se aumente o desempenho dos sistemas de automação e, consequentemente, a produtividade dos processos envolvidos.
5. CONSIDERAÇÕES FINAIS
5 CONSIDERAÇÕES FINAIS

Neste último capítulo do trabalho serão apresentadas considerações gerais, sobre o desenvolvimento de sistemas de automação, uma vez que as específicas para cada sistema já se encontram nos capítulos anteriores. Serão apresentadas distintamente as considerações a respeito da metodologia de desenvolvimento, a respeito das estruturas dos sistemas e a respeito da satisfação do usuário de sistemas de automação.

5.1 Metodologia de Desenvolvimento de Sistemas de Automação

A metodologia de desenvolvimento de sistemas de automação deve ser estruturada em fases e apresentar a filosofia "Top Down", além disso cada fase de projeto somente será considerada concluída quando toda a documentação especificada para a respectiva fase estiver concluída e aprovada pelo cliente. Após a conclusão de cada fase deve-se ainda proceder a verificação de projeto usando, por exemplo, as técnicas de "Design Review".

Convém observar que a aplicação de uma metodologia de desenvolvimento de projetos visa minimizar o tempo de depuração do sistema, através da detecção dos erros de projeto durante as fases de projeto, evitando, dessa forma, que se implemente o sistema com uma grande quantidade de erros. O ideal é que o tempo de depuração seja igual a zero, significando que todos os erros de projeto ou de
implementação foram descobertos e resolvidos, antes da fase de testes. Caso isso ocorra, provavelmente, o custo do desenvolvimento terá sido o menor possível, pois o custo da correção do erro de projeto é tão maior quanto mais tarde ele for descoberto.

Entretanto, além dos erros de projeto e de implementação, tem-se, ainda, os erros ou interpretações dúvidas da especificação funcional do sistema, que é o documento que serve de base para todo o desenvolvimento do sistema de automação, e que deve refletir todas as necessidades do cliente e anseios do usuário final. Deve-se evitar que esses erros ou falhas de interpretação sejam descobertos apenas nas fases de aceitação do sistema ou operação assistida, pois o custo da correção é via de regra elevado, inviabilizando em alguns casos a correção, não satisfazendo, portanto, plenamente o cliente ou o usuário final.

Para que isso não ocorra, é necessário que o documento de especificação funcional, gerado na fase de projeto de concepção do sistema, seja intensamente discutido com o cliente e, no âmbito do cliente, com o usuário final, e, ainda, se possível elaborado em conjunto para que exista um entendimento único sobre as funções, características e requisitos que o sistema deverá atender.

Do ponto de vista da metodologia, deve-se cumprir as fases de Projeto de Concepção, Projeto Básico, Projeto de Detalhamento, Implementação, Testes Individuais, Testes de Integração, Testes de Aceitação, Operação Assistida e
Operação Comercial. Deve ser observado que, como é necessária a participação do cliente no projeto de concepção, também seria necessária a sua presença nas revisões de projeto (Design Review) e, para tanto, ele deve ser treinado para o acompanhamento do projeto, para ter participação ativa na eliminação dos erros e falhas de interpretação da especificação funcional. O risco, entretanto, que se corre com esse tipo de participação é a alteração da especificação funcional durante o desenvolvimento do projeto, o que deve ser coibido de todas as formas, inclusive com demonstrações financeiras.

O treinamento do cliente é, então, importante não só com relação à operação e à manutenção do sistema, mas também para o acompanhamento produtivo do desenvolvimento, evitando-se os freqüentes atritos entre as equipes técnicas do fornecedor e do cliente. Convém observar que, para esse tipo de trabalho e relacionamento entre cliente e fornecedor, a equipe do fornecedor também deve estar preparada e treinada.

Outro fator importante a ser considerado é que, com a utilização da metodologia de desenvolvimento, que obriga ao estabelecimento de procedimentos de projeto e de padronização de documentação, através de um sistema de garantia da qualidade, é possível a aplicação de sistemas de automação de projetos que permitem o desenvolvimento integrado do projeto, como o exemplificado no subitem 4.2.1, melhorando-se com isso o desempenho das equipes de
projeto e, portanto, a produtividade no desenvolvimento, barateando o custo do produto final.

Finalmente, para se tentar atingir o objetivo de se obter tempos de depuração iguais a zero, a metodologia de projeto deve prever práticas de projeto de sistema, de hardware e de software que proporcionem o controle dos requisitos de projeto, tais como, índices de confiabilidade, disponibilidade e segurança, compatibilidade eletromagnética e testabilidade, durante todas as fases de projeto, realizando análises e, se for o caso, ensaios preliminares para determinar se, até a fase em questão, com o nível de conhecimento do projeto existente e com o nível de detalhe disponível, os requisitos especificados nos documentos do projeto de concepção estão sendo atendidos.

Convém observar, ainda, que a confiança no fornecedor é o principal item que o comprador leva em consideração na aquisição de um sistema de automação, e essa confiança, via de regra, é conquistada através das metodologias de desenvolvimento utilizadas que, se adequadas e bem empregadas, levam a sistemas de boa qualidade, o que é em suma o que interessa ao comprador.

5.2 Estrutura de Sistemas de Automação

A estrutura dos sistemas de automação deve ser, sem dúvida, aberta, permitindo que o usuário decrete sua independência com relação aos fornecedores, escolhendo para as ampliações ou atualizações o fornecedor que lhe ofereça
maiores vantagens, independentemente do fornecedor original do sistema.

A tecnologia de sistemas abertos, entretanto, depende fundamentalmente das normalizações de protocolos de comunicações dentro dos padrões ISO/OSI, e que essas normalizações sejam obedecidas e interpretadas de forma unívoca por todos os fabricantes de sistemas, equipamentos e partes e peças de sistemas de automação, permitindo realmente a conexão e a inter-operacionalidade de sistema e equipamentos de fabricantes diversos.

Além disso, é necessário que as padronizações sejam duradouras, evitando-se o que aconteceu com o protocolo MAP que sofreu diversas revisões em poucos anos, e realmente internacionais, procurando-se evitar o que vem acontecendo com o "Field Bus" que tende a possuir uma padronização européia e outra norte americana.

Outro ponto importante que contribui para a evolução das estruturas abertas é a existência em número cada vez maior de opções de compra, no mercado internacional, de módulos processadores e de entrada e saída, incluindo-se interfaces com unidade de disco e demais periféricos de entrada e saída de computadores, que se comunicam através de vias padronizadas, e que servem como plataforma para sistemas operacionais bastante difundidos, como o UNIX e o DOS.

No desenvolvimento que vem sendo realizado com o objetivo de implementar um controlador de células flexíveis para o sistema aberto de automação, apresentado no capítulo 4, estão sendo utilizados módulos desse tipo.
É interessante também notar que a difusão de sistemas operacionais para microcomputadores, como o DOS e UNIX, e a existência de hardware que implementa os sistemas de automação compatíveis com esses sistemas operacionais, simplifica o desenvolvimento de software para esses sistemas e contribui para a expansão da aplicação dos conceitos de sistemas abertos, uma vez que softwares desenvolvidos sobre esses sistemas operacionais, podem ser aplicados em qualquer sistema de automação, que utilize os sistemas operacionais em questão.

Os dois pontos citados, relativos à existência de módulos de hardware e a utilização dos sistemas operacionais de microcomputadores, deve baratear sobremaneira o desenvolvimento e a aplicação dos sistemas de automação, principalmente, os de pequeno porte, pois no caso do hardware evita-se o desenvolvimento de placas, que é demorado e caro, e no caso do software o desenvolvimento do software básico, que é extremamente dispendioso. Além disso, o desenvolvimento de software aplicativo é barateado, pois as plataformas de desenvolvimento são os microcomputadores, cuja estrutura é bastante difundida, dispensando o treinamento, e, talvez o mais importante, é que partes ou softwares inteiros já desenvolvidos podem ser aproveitados para a nova aplicação.

5.3 Considerações sobre a Satisfação do Usuário

O usuário de sistemas de automação deve encarar o sistema como uma ferramenta, que objetiva o aumento da
produtividade da operação produtiva envolvida ou a uniformidade da qualidade do produto final. Esses objetivos devem sempre ser claramente especificados por índices globais ou parciais de melhoria, por ocasião da análise de custo-benefício para desenvolvimento ou aquisição de um sistema de automação, para que os resultados de aplicação dos sistemas possam ser avaliados quanto ao seu desempenho, face às expectativas iniciais.

A inexistência de índices e, portanto, da quantificação das metas a atingir com a aplicação dos sistemas de automação, pode levar o usuário a ter o sentimento que os resultados conseguidos com a instalação dos sistemas de automação não estão proporcionado o retorno desejado, causando dessa forma, uma reversão de expectativa que será traumática e poderá prejudicar a continuidade dos programas de automação.

Considera-se que a participação do cliente na elaboração da especificação funcional e no acompanhamento do desenvolvimento e da instalação do sistema de automação não é suficiente para garantir a sua satisfação; deve-se também mostrar ao cliente que um plano diretor de automação da empresa como um todo é fundamental, independentemente do porte da mesma, para que nele estejam definidas as diretrizes, as metas, a metodologia de implantação e os índices de produtividade a serem alcançados e, em particular, deve-se ter uma separata indicando para o sistema de automação, em particular, onde ele se insere
dentro do plano global e quais índices parciais de desempenho lhe cabem.

Uma vez adotados o plano diretor de automação, os índices de melhoria de produtividade e a participação do cliente na elaboração da especificação funcional do sistema, o cliente verá sem dúvida seus anseios serem plenamente atendidos, que podem ser resumidos como o retorno do investimento no prazo desejado.

5.4 Contribuição do Trabalho

O trabalho mostrou a experiência evolutiva do autor no desenvolvimento de sistemas de automação, com o objetivo de proporcionar, através da experiência aqui descrita, o desenvolvimento de sistemas de automação a custos mais baixos e mais adequados à realidade dos clientes.

Sem dúvida, a conclusão apresentada que os sistemas de automação devem ter estrutura aberta e, principalmente, que os usuários devem participar ativamente do desenvolvimento do sistema, levará a sistemas mais baratos e que atendam os anseios dos usuários.

Entretanto, a contribuição mais efetiva do trabalho deve ser o fortalecimento da metodologia de desenvolvimento que vem sendo empregada no desenvolvimento do sistema aberto de automação, apresentado no capítulo 4 que, além de servir como treinamento e validação dos métodos, suas partes e módulos devem compor um laboratório didático para o ensino e a pesquisa de técnicas e de projetos de sistemas de automação.
Além disso, as preocupações com as metodologias e com o aumento da produtividade em desenvolvimentos de sistemas de automação levaram à extrapolação para desenvolvimento de empreendimentos de grande porte e, consequentemente, a tentativa de exportar os estudos e a experiência obtida no desenvolvimento de sistemas de automação, para a especificação de sistemas de automação de projeto integrado para esses empreendimentos.

Essa especificação passa pela definição, em conjunto com os projetistas dos empreendimentos, dos serviços que o sistema deve fornecer, de forma a melhorar a produtividade do projeto, para em seguida elaborar a especificação funcional e, depois disso, adquirir ou desenvolver os sistemas.

Cabe ressaltar que, para o estudo de metodologias de desenvolvimento de grandes empreendimentos, a utilização do sistema aberto de automação apresentado no capítulo 4 é bastante aplicável, dada sua flexibilidade e capacidade de processamento e conexão com outros sistemas.

Finalmente, a preocupação com metodologias de desenvolvimento de empreendimentos de grande porte que elevem a produtividade dos trabalhos deve ser uma constante, para que se aplique com rigor os recursos humanos e financeiros, normalmente muito escassos. Este trabalho apresentou estudos sobre o estabelecimento de metodologias de desenvolvimento, o seu questionamento e análise, para em seguida corrigir os pontos fracos ou falhos, obtendo-se uma metodologia de melhor rendimento,
processo esse que deve ser contínuo nas instituições que desenvolvem projetos com tecnologia avançada.
REFERÊNCIAS BIBLIOGRÁFICAS
REFERÊNCIAS BIBLIOGRÁFICAS

MARTUCCI JR., M. Proposta de projeto do sistema de controle de tráfego do trem da região metropolitana de Porto Alegre - Fundação para o Desenvolvimento Tecnológico da Engenharia. São Paulo, 1982b.

MARTUCCI JR., M. Proposta de projeto do sistema de automação e controle para o complexo de trens urbanos de São Paulo - Fundação para o Desenvolvimento Tecnológico da Engenharia. São Paulo, 1986.

(Mestrado) - Escola Politécnica da Universidade de São Paulo.
