• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.98.2011.tde-31102011-120827
Document
Author
Full name
Manoel Gadêlha de Freitas Junior
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2011
Supervisor
Committee
Nicolosi, Denys Emilio Campion (President)
Campo, Alexandre Brincalepe
Mateos, José Carlos Pachon
Moreira, Dalmo Antonio Ribeiro
Lucchi, Julio Cesar
 
Title in Portuguese
Sistema computacional de auxílio ao diagnóstico em síndromes coronarianas agudas
Keywords in Portuguese
Eletrocardiógrafo interpretativo
Inteligência artificial
Lógica "fuzzy"
Síndrome coronariana aguda
Abstract in Portuguese
As síndromes coronarianas agudas são responsáveis por uma elevada taxa de mortalidade no Brasil e no Mundo. As falhas diagnósticas, principalmente quando o paciente é atendido em serviços de pronto socorro, por clínicos gerais, certamente contribuem para esse quadro, embora amenizadas pelos sistemas cardiológicos de tele-medicina. Entretanto, muitos serviços de emergência não têm acesso a esses sistemas e, além disso, possuem uma limitada capacidade diagnóstica em casos de coronariopatia aguda. Neste trabalho foi desenvolvido um sistema de inteligência artificial baseado na lógica "fuzzy", capaz de auxiliar um médico generalista no diagnóstico desses casos, sem fazer uso de tele-medicina, nem de exames laboratoriais. O sistema utiliza um eletrocardiógrafo interpretativo para suprir as deficiências do médico na análise do eletrocardiograma. Usando a história clínica, o exame físico e o laudo eletrocardiográfico automático, dados são inseridos em uma planilha Excel que fornece uma sugestão de diagnóstico e de respectiva conduta terapêutica. O sistema demonstrou um bom desempenho, sendo, assim, uma solução viável e de baixo custo para o diagnóstico precoce de síndromes coronarianas agudas em unidades primárias de pronto socorro.
 
Title in English
Computer system to aid in diagnosing acute coronary syndromes.
Keywords in English
"Fuzzy" logic
Acute coronary syndromes
Artificial intelligence
Interpretive electorcardiograph
Abstract in English
Acute coronary syndromes are responsible for a high mortality rate in Brazil and worldwide. Diagnostic failures, especially when the patient is treated in emergency services by general practitioners, certainly contribute to this condition, although tele-medicine cardiology systems are possibly responsible for the reduction of that mortality rate. However, many services do not have access to these systems and also have a limited diagnostic capacity for diagnosing cases of acute coronary disease. We have developed an artificial intelligence system using elements of "fuzzy" logic, capable of assisting a general practitioner in the diagnostic of these cases, without making use of tele-medicine or laboratory tests. The system uses an interpretive electrocardiograph that can overcome the general practitioners' deficiencies in the analysis of the electrocardiogram. The physician, starting from the important elements of the clinical history, the physical examination and the electrocardiogram automatic report, enters data into an Excel program that will provide a suggestion of diagnostic and therapeutic management. The system is low cost and has shown great performance, so it is a viable solution to the problem of early diagnostic of acute coronary syndromes in primary emergency units.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
TeseManoelGadelha.pdf (3.22 Mbytes)
Publishing Date
2012-01-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.