• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.97.2021.tde-14062022-140520
Document
Author
Full name
Leonardo Shoji Aota
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Lorena, 2021
Supervisor
Committee
Sandim, Hugo Ricardo Zschommler (President)
Gargarella, Piter
Nunes, Carlos Angelo
Pinto, Haroldo Cavalcanti
Title in English
Microstructure of AISI 316L austenitic stainless steel processed by laser powderbed fusion with different scanning strategies and its evolution upon annealing and thermomechanical processing
Keywords in English
Additive manufacturing
AISI 316L austenitic stainless steel
Microstructural evolution
Plastic deformation
Recrystallization
Abstract in English
Metallic materials processed by laser powder-bed fusion (LPBF) have unique microstructures inherited from out-of-equilibrium solidification and complex termal history. This work reports the possibility of changing the microstructure during LPBF and post-processing of 316L stainless steel. By controlling the process parameters, namely the scanning strategy, we demonstrate the possibility of creating patterned microstructures in this steel. Changing the scanning strategy also affects the residual stresses as well as the defect substructure caused by the high cooling rates. We explore the microstructure/residual stresses relationship to find alternatives to reduce the residual stresses by controlling the microstructure. Upon post-processing annealing, recrystallization nucleation occurs in a non-uniform manner throughout the patterned microstructure, allowing for a linear grain impingement in its early stages, as revealed by applying the microstructural path method (MPM). The active recrystallization mechanisms are revealed and their influence on the non-homogeneous nucleation and recrystallization kinetics is discussed, as well as the possibility of creating engineered microstructures by LPBF processing. Recrystallization nuclei number density is the main factor responsible for the difference in the recrystallization kinetics between different scanning strategies, while particle pinning is responsible for a sluggish kinetics in both cases. The unique microstructures produced by LPBF were cold rolled down to ε = 1, resulting in intense twinning and shear banding. The latter is unusual for such strain in wrought-processed austenitic stainless steels. Upon annealing, the cold-rolled samples show abnormal grain growth, while this phenomenon is absent when annealing is applied directly after LPBF. Abnormal grain growth is triggered by an initial size advantage for <110> || ND grains along particle-depleted regions. These findings allow us for gaining insight on the control of LPBF-processed microstructures through LPBF-processing and post-processing.
Title in Portuguese
Microestrutura do aço inoxidável austenítico 316L processado via fusão a laser em leito de pó com diferentes estratégias de escaneamento e a sua evolução após recozimento e processamento termomecânico
Keywords in Portuguese
Aço inoxidável austenítico AISI 316L
Deformação plástica
Evolução microestrutural
Manufatura aditiva
Recristalização
Abstract in Portuguese
Materiais metálicos processados por fusão a laser em leito de pó (LPBF) possuem microestruturas únicas obtidas pela rápida solidificação e história térmica complexa. Este trabalho reporta a possibilidade de mudar a microestrutura durante LPBF e pós-processamento de um aço inoxidável 316L. Controlando a estratégia de escaneamento, demonstramos a possibilidade de criar microestruturas padronizadas neste aço. A estratégia de escaneamento altera as tensões residuais e a subestrutura de defeitos causadas pelas altas taxas de resfriamento. Nós exploramos a relação entre microestrutura e tensões residuais a fim de encontrar alternativas de reduzir as tensões residuais por meio do controle microestrutural na condição como processado. Após recozimento, a nucleação da recristalização ocorre de maneira não uniforme ao longo da microestrutura padronizada, obtendo-se um clusters lineares de grão recristalizados durante os primeiros momentos, como demonstrado pelo método do caminho microestrutural (MPM). Os mecanismos de recristalização são revelados e a sua influência na nucleação não uniforme e na cinética de recristalização são discutidos, assim como a possibilidade de criar microestruturas engenheiradas por LPBF. A densidade superficial de grãos recristalizados é o principal fator responsável pela diferença na cinética de recristalização entre diferentes estratégias de escaneamento, enquanto o travamento de contornos por partículas é responsável pela cinética lenta de recristalização em ambos os casos. A microestrutura única produzida por LPBF foi submetida a laminação a frio (ε = 1), resultando em intensa formação de maclas de deformação e bandas de cisalhamento. Durante o recozimento, as amostras laminadas a frio mostram crescimento anormal de grãos, provocado por uma vantagem inicial de tamanho de grãos <110> || ND em regiões pobres em partículas. Estes achados permitem o desenvolvimento no controle de microestruturas processadas por LPBF.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
EMD21006_CN.pdf (10.56 Mbytes)
EMD21006_RCN.pdf (100.13 Kbytes)
Publishing Date
2022-06-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.