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RESUMO

MANESCO, A. L. R. Correlações e topologia em dispositivos híbridos baseados
em grafeno. 2021. 146 p. Tese (Doutorado em Ciências) - Escola de Engenharia de Lorena,
Universidade de São Paulo, Lorena, 2021.

Grafeno é um alotropo do carbono bidimensional com uma estrutura cristalina favo-de-mel
em que as excitações eletrônicas se comportam como partículas de Dirac sem massa. A
ausência de uma massa efetiva faz do grafeno um material sem gap e resulta em propriedades
eletrônicas excepcionais. Trabalhos paradigmáticos, como os modelos de Haldane e de
Kane-Mele, mostram que certos termos de massa levam a fases topologicamente não-triviais
em materiais favo-de-mel. Contudo, tais massas são inexistentes ou desprezíveis em folhas
de grafeno isoladas. Nessa tese, nós seguimos outra abordagem: nós investigamos fases
topológicas em grafeno resultantes de correlações eletrônicas.

Na primeira parte, nós exploramos a emergência de modos de Majorana com energia
zero quando supercondutividade é induzida por efeito de proximidade nos estados de
borda com antiferromagnetismo não-colinear. Nós derivamos uma teoria de baixas energias
para os estados de Majorana combinando condições de contorno de reflexões normais
e de Andreev. A natureza de duas bandas desse sistema nos motivou a extender a
classificação de de supercondutores topológicos unidimensionais para sistemas multibandas.
Nós finalmente investigamos experimentos no estado-da-arte em grafeno no estado Hall
quântico em proximidade com um supercondutor e exploramos os possíveis mecanismospara
a propagação de estados de Andreev na interface normal/supercondutor. Nossos resultados
mostram que a interferência de estados de Andreev recentemente reportada ocorre por
disordem na interface. Além disso, nós apontamos melhoras necessárias para alcançar o
regime topológico.

A segunda parte dessa tese é dedicada ao estudo de correlações eletrônicas em superedes de
grafeno flambadas. A flambagem acontece por conta da relaxação da estrutura resultante
da aplicação de tensão no plano do material. Por uma perspectiva de baixas energias,
elétrons “sentem” a aplicação de um campo pseudo-magnético. Esse campo leva a formação
de níveis de pseudo-Landau, levando a uma diminuição da largura de banda e aumento da
densidade de estados no ponto de neutralidade de carga. Com isso, as interações elétron-
elétron aumentam, e fases correlacionadas aparecem. Nós provamos, usando o modelo
de Hubbard, a existência de ferrimagnetismo modulado numa superrede e mostramos o
controle elétrico das correlações eletrônicas. Ademais, nós desenvolvemos uma teoria de
baixas energias para esse sistema e exploramos os efeitos de interações de longo alcance,
mostrando uma fase charge density wave concorrente. Finalmente, nós mostramos que as



duas fases correlacionadas apresentam regimes de isolante Hall quântico de vale, propondo
superredes flambadas de grafeno como plataformas para topologia de vale resultante de
correlações eletrônicas.

Palavras-chave: grafeno. correlações eletrônicas. fases topológicas. supercondutividade.
reflexões de Andreev.



ABSTRACT

MANESCO, A. L. R. Correlations and topology in hybrid graphene-based de-
vices. 2020. 146 p. Thesis (Doctor of Science). Escola de Engenharia de Lorena, Universi-
dade de São Paulo, Lorena, 2021.

Graphene is a two-dimensional carbon allotrope with a honeycomb crystal structure
in which electronic excitations behave as massless Dirac particles. The absence of an
effective mass makes graphene a gapless material with outstanding electronic properties.
Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms
in honeycomb materials lead to topologically non-trivial phases. However this masses are
inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a different
approach: we investigate topological phases in graphene driven by electronic correations.

In the first part, we explore the emergence of Majorana zero modes when superconductivity
is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states. We
derive a low-energy theory for the Majorana end states combining bundary conditions for
normal and Andreev reflections. The two-band nature of this system motivated us to extend
the classification of one-dimensional topological superconductors to multiband systems. We
finally investigate the current status of state-of-art experiments on proximitized quantum
Hall graphene and explore possible mechanisms for the propagation of Andreev edge
states at the normal/superconductor interface. Or results show that the recently reported
interference of chiral Andreev edge states is due to disorder at the interface. Furthermore,
we point out necessary improvements to achieve the topological regime.

The second part of this thesis is devoted to study electronic correlations in buckled
graphene superlattices reported in a recent experiment. The buckling transition occurs
when the structure relaxes under in-plane strain. From the low-energy perspective, electrons
experience strain similarly to a pseudo-magnetic field. This field leads to the formation
of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density
of states at half-filling. Thus, the effects of electron-electron interactions are enhanced,
and correlated phases take place. We prove the existence of a modulated ferrimagnetic
superlattice from Hubbard calculations and show the possibility of electric tunability of
correlations. Moreover, we develop a low-energy theory for this system and explore the
effects of long-range interactions, showing the existance of a competing charge density wave
phase. Finally, we show that both correlated phases present quantum valley Hall insulator
regimes, proposing buckled graphene superlattices as a platform for correlation-driven
valley topology.



Keywords: graphene. electronic correlations. topological phases. superconductivity. An-
dreev reflections.
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nearest-neighbors interactions Ṽ . Solid lines indicate a topological phase
transition and dashed lines indicate m = M , which for mAF corresponds
to the non-interacting strained system. . . . . . . . . . . . . . . . . . . 105

Figure 26 – Illustration of (a) antiferromagnetic and (b) charge density wave ground-
states. (c) Phase diagram as a function of the coupling constants Ũ
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is sufficiently high. For Ũ higher than a critical value, an antiferro-
magnetic (AF) order develops. (d) System gap as a function of the
electron-electron couplings. It is visible that the gap closes outside the
region in which the broken symmetry changes. . . . . . . . . . . . . . 106



Figure 27 – Sublattice-projected bandstructure for selected Ũ and Ṽ showing all
four distinct phases: (a) charge density wave, (b) antiferromagnet, (c)
quantum valley Hall insulator, and (d) spin-polarized quantum valley
Hall insulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 28 – (a) Magnetization along the z-direction. A periodically modulated ferri-
magnetic order is formed. From a superlattice perspective, it corresponds
to a antiferromagnetic honeycomb structure. Results of full-lattice cal-
culations with modulated hoppings in Eq. 10.9 solved self-consistently
with an additional Hubbard constant U = 0.3t. Valley Chern number
in a (b) infinite system and (c) in a nanoribbon. (d) y-position pro-
jection of a nanoribbon bandstructure. We see that each edge has two
counter-propagating edge states with opposite valley-polarization. . . . 108
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1 Preface

When we get to the very, very small world – say circuits of seven atoms – we have
a lot of new things that would happen that represent completely new opportunities for
design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the
laws of quantum mechanics. So, as we go down and fiddle around with the atoms down
there, we are working with different laws, and we can expect to do different things. We can
manufacture in different ways. We can use, not just circuits, but some system involving
the quantized energy levels, or the interactions of quantized spins, etc.

Richard Philips Feynman

The development of Quantum Mechanics and, more specifically, Solid State Physics,
was key to the development of today’s technology. Substitution of thermionic tubes and
valves by transistors proposed less than 100 years ago1 made it possible to miniaturize
computers up to a point that we can now carry them in our pockets.

The intensively growing technology involved in the fabrication of electronic devices
resulted on the observation of an exponential growth of transistors density on computers,
known as the Moore’s law.2 The resulting comercial run to keep the law pushed the
innovations on miniaturization. Eventually, however, a change of paradigm will be necessary
to keep this process going.3

Since the first report on the fabrication of graphene devices,4 the growing field of
two-dimensional (2D) materials5,6 appeared as an alternative way to fabricate electronic
devices. Nowadays, the electronic industry rely on top-down techniques. However, the
manufacture of 2D devices requires a bottom-up approach, which will definitely impact
the miniaturization of electronic devices.

2D materials have since then attracted an extensive interest which cannot be solely
credited to advancing the miniaturization of electronic devices, but also to the emergence of
new physical phenomena and its possible implications on information processing. Graphene
and transition metal dichalcogenides (TMDs) have been shown to be platforms for both
valleytronics and spintronics.7–9 Twisted multilayer 2D materials lead to the field of Moiré
physics, showing realizations of electronic correlations and topological phases beyond
single-layer free-standing approximation.10–14 Finally, strain engineering has also been
proposed as a promising route for studying correlated and topological matter.15,16

There are, however, several limits to the miniaturization.17,18 A representative
example is the dificulty to fabricate smaller transistor channels. Shrinking the size of a
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transistor requires decreasing the distance between the source and the drain channels. Since
tunneling probability increases exponentially as the distance decreases, off-current becomes
increasingly larger, resulting on larger off-state power consumption and a reduction of
gate control. Also, heating due to Joule dissipation increases as the volume/surface ratio
decreases. Thermal heating also spoils the binary signal discrimination. It is also challenging
to develop gate structures capable of creating well-defined electrostatic barriers. These
are just a fraction of challenges regarding the miniaturization of electronic devices. The
difficulties to keep Moore’s law inspired a new computing paradigms, such as spintronics,
valleytronics, and quantum computation.

A fundamental problem to build universal quantum computers is decoherence.19

The amount of errors increase as qubits loose information to the environment. Despite the
recent claims on quantum advantage by Google,20 error correction is still a major challenge
and the next milestone in quantum computing.21

Another possible solution is to rely on approaches that are inherently free of
decoherence such as topological quantum computing.22 In these systems, discrete sym-
metries make it impossible to destroy the quantum states with small perturbations.23,22

Possible platforms for topological quantum computation are provided by systems that
host Majorana zero modes.24,25 These quasiparticles are zero energy excitations in topo-
logical superconductors.26,27 Moreover, the solid state realizations of these quasiparticles
are non-abelian anyons, allowing the implementation of logic gates with quasiparticle
exchange.22

A key problem, however, is that there are no conclusive evidences that Majorana
zero modes were already observed in experiments yet. Most experiments so far focus
on the observation of the zero bias conductance peak in semiconductor nanowires.28–35

However, there are multiple phenomena that also lead to a similar zero bias feature, such
as weak antilocalization, Kondo effect, and zero-energy Andreev states.36–39 Therefore,
there are no smoking gun evidences of an experimental realization of Majorana physics.
Even experiments showing large quantized zero-bias peaks are inconclusive, because it
shows a necessary but not sufficient condition to probe.40 The need to find sufficient
conditions motivates the next steps experimental efforts must focus on, e.g., peak-to-dip
transition, non-local gate effect, correlation in three-terminal devices, local density of
states in T-shape devices, Majorana-Fu teleportation, and topological Kondo effect.41

In this thesis, we investigate recent experiments with graphene-based devices.42,15

We review the emergence of Majorana quasiparticles in quantum Hall graphene com-
bined with a superconducting material.43,44 To establish a bridge between the theory
and experiments, we investigate the chiral Andreev edge states interference in a recent
experiment.42 Our theory suggests that disorder-induced intervalley scattering is the main
cause of interference in the experiments.45 The results also point to future directions on
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experiments with similar devices. Second, we study the electronic properties of tunable
strained graphene superlattices.15 The bandwidth quench caused by periodic strain fields
enhance Coulomb interactions, therefore leading to spontaneous symmetry breakings.15,16

We further show that correlations lead to valley topology and make predictions about the
system’s response to external electric and magnetic fields.



2 Thesis organization

“Ford!” he said, “there’s an infinite number of monkeys outside who want to talk to
us about this script for Hamlet they’ve worked out.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Our main goal in this thesis is to shed some light on recent experimental results on
graphene heterostructures. From Chapter 3 to 6 we set the theoretical minimum for the
coming chapters containing the main results. The Part I (chapters 7 to 9) is devoted to
studying induced superconductivity on quantum Hall edge states. In Part II (chapters 10
to 11), we investigate the electronic properties of buckled graphene superlattices.

Part I is motivated by recent experiments reporting the effort to induce super-
conducting correlations on quantum Hall edge states.46,42,47 One of the main motivations
is the possibility of creating Majorana zero modes.43 A key ingredient for topological
superconductivity in this system is the canted-antiferromagnetism in the edge states of
the lowest Landau level.48–52 In Chapter 7, we review the theory of Majorana zero modes
in graphene and develop an effective model for the boundaries of quantum Hall graphene
with a superconductor. We then proceed to review the topological classification of this
one-dimensional system in Chapter 8. We end Part I investigating the origin of chiral
Andreev edge states interference in a recent experiment42 and discuss the implications on
the topological phase on Chapter 9.

A route to fabricate high-quality graphene-superconductor interfaces is to stack
graphene with other van der Waals materials. Recently, it was shown that ridges created
with the tip of a scanning tunneling microscope create strong in-plane strain that leads to
the formation of buckled graphene superlattices,15 that we investigate in Part II. The large
superlattice period (≈ 14 nm) results on nearly flat bands, favoring electronic interactions
and leading to the formation of an electrically tunable magnetic superlattice,16 as we show
in Chapter 10. In Chapter 11, we show that long-range interactions leat to a charge density
wave phase competing with the magnetic ordering. We further reveal quantum valley Hall
phases for both groundstates.
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3 Graphene physics

The concept of graphene came along in 1947, but nobody paid much attention to it.
I was fascinated because it had a linear E versus k while everything else that people were
working on at that time had a quadratic dispersion relationship. I wondered why this was
and what was so special about it. That was my fascination.

Mildred Dresselhaus

3.1 Electronic structure and massless Dirac carriers

Graphene is a single-atom-thick carbon allotrope. The atoms are organized on a
honeycomb crystal structure, allowed by the sp2 hybridization of electronic orbitals.53,54

This structure is not a Bravais lattice, but a superposition of two triangular lattices,55 that
we will from now on call sublattices A and B. The lattice is spanned by the translational
vectors:54

a1 =
a
√

3

2

(√
3, 1

)
, a2 =

a
√

3

2

(√
3, −1

)
, (3.1)

where a is the lattice constant. The graphene lattice is depicted in Fig. 1 (a). The reciprocal
lattice is spanned by the vectors:

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1, −

√
3
)
. (3.2)

However, it is more convenient to describe the hexagonal Brillouin zone, see Fig. 1 (b), in
terms of its nonequivalent vertices at

K =
2π

3a

(
1,

1√
3

)
, K

′
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2π

3a

(
1, − 1√

3

)
, (3.3)

which will play an essential role in the electronic properties of graphene.

Noting that a system that is made of two identical sublattices is inversion symmetric,
and that each carbon atom has three nearest neighbors in the opposite sublattice, the
simplest Hamiltonian we can write to describe electrons in graphene is of the following
form:26

H =
∑

k

(
c†Ak c

†
Bk

)( 0 h(k)

h(k)† 0

)(
cAk

cBk

)
, h(k) = −

3∑

i=1

tie
ik·δi . (3.4)

Here, cAk and cBk denote the annihilation operators of electrons with crystal momentum k

in the sublattice A and B, respectively. The nearest neighbors vectors, see Fig. 1 (a), are:

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 = a (−1, 0) . (3.5)
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Figure 1 – (a) Scheme of graphene’s honeycomb crystal structure. The structure consists of a
triangular lattice with two sublattices distinguished by the colors red (A) and blue (B).
The crystal structure is spanned by the vectors a1 an a2. The zigzag and armchair
terminations are indicated by arrows. (b) Graphene’s first Brillouin zone. We indicate
the high-symmetry points Γ, K, K ′, and M and, in red, the path in the Brillouin zone
often used on bandstructure calculations along the text.
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The constants ti, i = 1, 2, 3, are the nearest-neighbors hopping energies. In a perfect
graphene lattice, crystal symmetry ensures they are all equal, ti = t. It is worth emphasizing
that this approximation holds at the vincinity of the Fermi level, but away from it second-
nearest neighbor hoopings break the particle-hole symmetry.

The spectrum of Eq. 3.4 is shown in Fig. 2 (a). We see that h(k) vanishes exactly
at the points K and K ′, with an approximate linear dispersion in the vincinity of these
points, as shown inf Fig. 2 (b). Thus, we obtain a low-energy theory by expanding the
Hamiltonian up to the first-order on p = k−K(′):54,26

H = ψ†k (ρ0v ⊗ p · σ)ψk, (3.6)

in the valley-symmetric representation ψ = (cAk+, cBk+, cBk−, cAk−)T .56 The subindices
+ and − indicate the valleys K and K ′, respectively. We introduced two sets of Pauli
matrices ρ and σ that act on valley and sublattice spaces, respectively.a The Hamiltonian
in Eq. 3.6 corresponds to the massless two-dimensional version of the Dirac equation in two
a The Pauli matrices are assumed to be in the usual representation and the index 0 corresponds to the

two-dimensional identity matrix.
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Figure 2 – (a) Spectrum of graphene’s tight-binding Hamiltonian in Eq. 3.4. The valence (blue)
and conduction (orange) bands touch exactly at the points K and K ′. (b) Zoom at one
of the points where the valence and conduction bands touch, showing a linear dispersion
corresponding to the spectrum of the Hamiltonian in Eq. 3.6. Bandstructure of a
nanoribbon terminated along the (c) zigzag (c) and (d) armchair direction. The Landau
levels in graphene when subjected to an out-of-plane magnetic field. (f) Quantum
Hall edge states of a nanoribbon along the zigzag direction. The valley polarization V
shows that opposite edges have opposite valley polarization.
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dimensions. Since the points K and K ′ are mapped into each other by both inversion and
time-reversal symmetry, there are two-fold degenerate symmetry-protected Dirac cones at
both valleys.

So far, however, we have only considered infinite graphene systems. In finite-size
devices, edge states play a significant role. In Fig. 1 (a) we show two most important types
of termination: zigzag and armchair. The corresponding bandstructures of nanoribbons
with each termination can be seen in Fig. 2 (c, d). Interestingly, it turns out that the
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wavefunctions of any terminated graphene lattice are limited to zigzag or armchair boundary
conditions.57,58 While armchair boundary conditions hold for boundaries oriented within
angles . 0.1, zigzag boundary conditions hold for all other orientations.58 The reason is
that, along zigzag terminations, valleys have a large separation in momentum space. Thus,
valley number is approximately conserved if disorder is smooth, since elastic scattering
between the two valleys require scattering centers with sizes close to the lattice constant.

3.2 Quantum Hall effect

Two-dimensionality, high-electron mobility and low density of states in the vincinity
of the Fermi level make graphene a great platform for mesoscopic physics.4,54 For example,
it was shown in graphene early days that quantum Hall effect is accessible even at room
temperature.59

Conventional two-dimensional electron gases with quadratic low-energy band dis-
persion, when submitted to an out-of-plane magnetic field B, experience the formation of
Landau levels, enumerated by n, with an spectrum of the form:60–62

En = ~ωc
(
n+

1

2

)
, n ∈ N (3.7)

where ωc = eB/m∗ is the cyclotron frequency and m∗ is the effective mass. In graphene,
however, the massless Dirac Hamiltonian leads to a spectrum63,64,59,48

En = sgn (n)v
√

2e~B|n| , n ∈ Z (3.8)

meaning that the lowest Landau level lies at the Fermi energy (E0 = 0). The spectra for
zigzag and armchair nanoribbons under the quantum Hall regime is shown in Fig. 2 (e, f).

Under a confining potential, the Landau levels disperse, forming a series of edge
states. The breaking of time-reversal symmetry by the out-of-plane magnetic field ensures
that opposite edges have edge states with opposite chirality. Thus, as long as the edges are
well-separated, these chiral modes cannot backscatter. Following the Landauer-Buttiker
formalism, the total Hall conductance is then expected to be a multiple of the conductance
quantum:65

G = n
e2

h
, n ∈ Z, (3.9)

where n denotes the number of edge states. We discuss in chapter 5 the topological origin
of n, providing an alternative explanation for the robustness of edge states propagation.

Electrons confined in graphene systems experience a sublattice- and valley-dependent
potential. As we discussed, at general (zigzag) boundary conditions, valley is a good quan-
tum number.57,58 Thus, taking into account the sublattice-valley locking of graphene’s
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lowest Landau level,48 as shown by Eq. 3.8, we conclude that the quantum Hall edge states
are both sublattice and valley polarized,56 as shown in Fig. 2 (g).

The presence of a Landau level at the Fermi energy leads to a high density of states
at charge neutrality, promoting spontaneous symmetry breaking phases, such as charge
density wave and canted-antiferromagnetism.48–52 The latter will be particularly relevant
for this thesis, since it is a key phenomena to generate Majorana zero modes in graphene,
as we discuss in chapter 7.43,44

3.3 Strained graphene

By straining a graphene crystal, lattice symmetries are broken. Thus, the nearest-
neighbor hoppings are no longer equal, but become modulated by the strain field. Up to
the first order, we have:66

ti ≈ t

(
1 +

β

a2
δi · ui

)
, (3.10)

where ui is the displacement field, and β = −∂ ln t/∂ ln a ≈ 2 is the Grüneisen parameter.
The resulting low-energy Hamiltonian corresponds to Eq. 3.6 with an extra term that can
be interpreted as a valley-dependent gauge field A:

H = ψ†k [v (ρ0 ⊗ p− ρz ⊗A) · σ]ψk. (3.11)

Hence, pseudo-Landau levels can also be observed in strained graphene without the need
of applying an out-of-plane magnetic field.b66

The valley-dependency, however, leads to different eigenstates: instead of sublattice-
valley locking, both valley states at the lowest pseudo-Landau have the same sublattice
polarization. Combining it with the zigzag boundary conditions, we conclude that both
pseudo-Landau level states propagate along the same edge. They are, thus, unprotected
from backscattering. One can understand it as a consequence of preserving time-reversal
symmetry in the presence of pseudo-magnetic fields.

It turns out that strained graphene also shows spontaneous symmetry breakings.67,16

However, the sublattice polarization caused by pseudo-magnetic fields lead to a ferrimag-
netic groundstate, instead of the antiferromagnetic groundstate that emerges in usual
quantum Hall graphene. We will explore this in more detail in chapter 10.

b We use pseudo here to distinguish between gauge fields originated from real magnetic fields and pseudo
magnetic fields caused by strain.



4 Basics of superconductivity

Richard Feynman has related that at a meeting of the American Physical Society,
likely sometime in 1956, he was chatting with Onsager when a wild-eyed young man came
up to them and said that he had solved the problem of superconductivity. ... As Feyman
relates, he could not understand what the young man was saying and concluded that the
fellow was probably crazy. ... Feynman believed that the young man was me. I am not sure
whether or not this meeting actually occurred, but it might have.

Leon Cooper, Remembrance of Superconductivity Past by Leon N. Cooper

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes while measuring
the resistance of mercurium at low temperatures. The first sucessful microscopic theory,
however, was published only in 1957 by Bardeen, Cooper, and Schrieffer (known today
as the BCS theory).68,17,69 However, it explains only a limited class of materials, and a
complete theory is still a major challenge for the Condensed Matter community.

In large scales, superconducting materials are know to, below a critical temperature
Tc: (i) carry current without dissipation; (ii) expel the magnetic field from the bulk
(Meissner effect). Superconducting materials are classified according to their response to
external magnetic fields. A type-I material exponentially suppresses an external field from
the boundary to the bulk of the system. However, if the external field is above a critical
value Hc, superconductivity is destroyed. For type-II materials, on the other hand, there
are two critical fields: below Hc1 the material behaves just as a type-I superconductor;
between Hc1 and Hc2 the magnetic field penetrates in the bulk as vortex lines. Above Hc2,
the vortex density is too high and superconductivity is destroyed.68,70

4.1 Cooper pairing and BSC theory

The main asumption of BCS theory is the existence of an attractive interaction that
pairs electrons.69 These are known as Cooper pairs, and, in conventional superconductors,
they are mediated by electron-phonon iteractions.71 The existence of an electron-electron
pairing mechanism means that the pair amplitude

Fss′(ri, rj) = 〈ciscjs′〉 (4.1)
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becomes finite. We use s to denote the spin projection along the z-axis. In conventional
superconductors, the pairing is singlet and the pair amplitude is local: F↑↓(r) = F↓↑(r).

If we integrate out the phonon field, the electronic Hamiltonian is given by

H = H0 +
∑

i,j,k,l

∑

s,s′,s1,s2

λss
′s1s2

ijkl c†isc
†
js′cks1cls2 , (4.2)

where λss
′s1s2

ijkl are the electron-electron coupling constants; and H0 is the single-particle
Hamiltonian, e.g., the graphene Hamiltonian in Eq. 3.4. In the weak electron-electron
coupling limit, the fluctuations in c(†)

is c
(†)
js′−F

(∗)
ss′ (ri, rj) are negligible. Thus, we approximate

the Hamiltonian to its mean-field version:

H ≈ H0 +
∑

i,j

∑

s,s′

[
∆ij,ss′c

†
isc
†
js′ + h.c.

]
, (4.3)

where we defined the superconducting order parameter

∆ij,ss′ :=
∑

s1,s2

∑

k,l

λss
′s1s2

ijkl 〈cks1cls2〉. (4.4)

In this thesis, we often consider the so-called s-wave pairing, which consists in local
singlet pairing. Hence, the order parameter is:

∆s
i,ss̄ =

∑

j

∆ij,ss′δij(isy)ss′ (4.5)

where s̄ is the opposite of s, and δαβ is the Kronecker delta. We also consider p-wave
superconductivity, which is a non-local triplet pairing with the form

∆p
ij,ss′ = (dij · s isy)ss′ (4.6)

with i 6= j and d = (d1, d2, d3)ij.72 The Pauli matrices si act on spin space.

4.2 Bogoliubov-de Gennes Hamiltonian

We now introduce the Nambu spinors ψi = (ci↑, ci↓,−c†i↓, c†i↑)T , which allow us to
write Eq. 4.3 in the compact form:

H =
∑

ij

ψ†j

(
(H0)ij ∆ij,ss′T
T ∆†ij,ss′ −T (H0)ijT

)
ψi (4.7)

where the diagonal term

H0 =:
∑

ij

ψ†j

(
(H0)ij 0

0 −T (H0)ijT

)
ψi (4.8)
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is the non-superconducting Hamiltonian, T = isyK is the time-reversal symmetry operator,
and K is the complex conjugation operator. We will often use the Pauli matrices τi, acting
on electron-hole degrees of freedom, to write the matrix in Eq. 4.7 in a compact form. The
matrix in Eq. 4.7 is known as Bogoliubov-de Gennes Hamiltonian.68,70

The Hamiltonian in Eq. 4.3 is diagonalizible under a Bogoliubov transformation:

ψi 7→ Γi = Uiψi , (HBdG)ij 7→ Uj(HBdG)ijU
†
j (4.9)

where Γi = (γi↑, γi↓,−γ†i↓, γ†i↑)T . We will come back to this quasi-particle representation
when we discuss topological superconductivity in Chapter 5.1.

As an example, let us consider a simple Hamiltonian in momentum representation:

H0(k) =
~k2

2m∗
s0 , and ∆ss′(k) = ∆(isy)ss′ . (4.10)

which is the Hamiltonian of a s-wave superconductor with parabolic dispersion. Thus, the
matrix in Eq. 4.7 takes the form:

HBdG(k) = τz ⊗
~k2

2m∗
s0 + τ1 ⊗∆s0. (4.11)

Its spectrum

E(k) = ±
√(

~k2

2m∗

)2

+ ∆2 (4.12)

is shown in Fig. 3 (a). The system, thus, has a gap |∆|, meaning that there cannot be
quasiparticle excitations for energies E < |∆|. In other words, electrons can only enter the
system as Cooper pairs.

4.3 Andreev reflection

Consider now a system consisting of a junction between a normal and a supercon-
ducting material, as illustrated in Fig. 3 (b). If we inject an electron from the normal region
to the superconducting region, it cannot enter the superconductor as a single particle
state. Thus, there are two possible situations: (i) the electron is reflected back (normal
reflection); (ii) as the electron enters the superconductor, it pairs with another electron.
To ensure global charge conservation in (ii), the the second electron state leaves a hole.
Effectively, we see the incident electron reflect as a hole. This process is called Andreev
reflection. To be more precise and general, an incoming quasiparticle is reflected back as
its time-reversal partner.70,73

Suppose the superconducting region is grounded. The conductance measured
between the normal lead and the grounded superconductor is provided by the BTK
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Figure 3 – (a) Energy dispersion of the Bogoliubov-de Gennes Hamiltonian in Eq. 4.12. In the
superconducting state |∆| > 0, there is an energy gap. (b) Representation of an Andreev
reflection. An incident electron couples with another electron in the superconducting
region and a hole is ejected in the normal region for charge conservation. In experiments,
there is usually a barrier separating the normal and the superconducting regions. This
barrier can be naturally generated by the fabrication process or created with an
electrostatic potential (gate voltage). (c) Andreev conductance of a system similar
to the scheme in (b). In the normal state (|∆| = 0), there are two electron channels,
resulting in a conductance 2e2/h. In the superconducting state, there are two different
regimes: the open regime, in which all electrons are Andreev reflected, and the
conductance twice as large as the conductance in the normal state; and the tunneling
regime, in which Andreev reflection is supressed by a large barrier potential between
the normal and the superconducting regions. The tunneling regime is often used to
probe the gap size.
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formula:74

GNS =
e2

h
(N −Ree +Rhe) (4.13)

where GNS is the Andreev conductance, N is the number of electron channels in the
normal region, and

0 < Ree, Rhe < N , Ree +Rhe = N, (4.14)

are the normal reflection and Andreev reflection coefficients.

The reflection coefficients Ree and Rhe depend on the normal-superconductor (NS)
interface. The device’s fabrication produces defects at the interface, creating a barrier,
illustrated in Fig. 3 (b). Hence, electrons must propagate through the defect to be Andreev-
reflected. Even if there are no defects at the inteface, the competition between normal
and Andreev reflections can be controlled by a gate voltage. If electrons feel no scattering
potential until they hit the superconductor, Rhe = N , meaning that, within the gap,
GNS = 2Ne2/h. This is called the open regime. On the other hand, if electrons feel a
strong scattering potential before hitting the superconductor, they must tunnel through
this scattering region, and Andreev reflection is supressed. This is the tunneling regime,
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for which, in the limiting case where Andreev reflection is completely supressed, results in
Ree = N and GNS = 0. In Fig. 3 (c) we show both the open and the tunneling regimes.
It is worth mentioning that, if there is no gate potential at the interface, the Andreev
conductance measures the quality of the interface: if the conductance is close to the open
regime value, the scattering potential is small. Also, experimentalists often use the peak
resonances in the tunneling regime, shown in Fig. 3 (c), to probe the gap size.
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5 Symmetry protected topological phases

At this point the power of exact (but not fully understood) mathematical results to
sow confusion enters the story!

Duncan M. Haldane, Nobel Lecture 2016

Here we briefly introduce the concept of topology in condensed matter physics.
However, we restrict ourselves to a strict class of systems. Namely, only consider periodic
gapped systems in a mean-field level. Thus, for the sake of simplicity, we ignore many-body
non-trivial topological orders, as well as gapless and disordered/amorphous systems.

Perhaps the best way to start our discussion is with the canonical joke about
topologists: they cannot distinguish between a donut and a mug.75 To explain the joke,
though, lets us start with a simple object, the sphere. One can smoothly deform a sphere
into a cube, for example. However, since the donut has a handle, it is impossible to
continuously deform an sphere into a donut without punctarating it. It is possible, however,
to smoothly deform a donut into a mug, since they both have one and only one handle.
Objects that are smoothly connected are called topologically equivalent, and it is often
possible to classify them with a number, called topological invariant. In this example, the
invariant is the number of handles the object has, a.k.a. the genus.76,22 As a matter of fact,
all closed surfaces are topologically equivalent to spheres with some number of handles or
crosscaps.77 Finally, the sphere is usually said to be topologically trivial.76,22

First of all, it is important to make it perfectly clear that all periodic gapped systems
in a mean-field level have a topological structure. What we then call a topological system
is actually a topologically non-trivial system. Then, we must define what a topologically
trivial system is. Since we are talking about gapped materials, we define as topologically
trivial the atomic insulator,22,26 i.e., the system in which each electron is bounded to a
single atom. In even simpler words, it is just a collection of isolated atoms, as depicted in
Fig. 4 (a).

Now that we have a definition of what topologically trivial means, we can define
what is topologically non-equivalent to it. First, we must fix the system’s dimensionality
and the set of discrete symmetries obeyed. Then, we say a system is topological (or
topologically non-trivial) if there is no smooth map that connects its Hamiltonian with
the Hamiltonian of the atomic insulator without closing the system’s bulk gap.22,26 If two
non-equivalent regions are connected in space, the gap must close at the boundary. For
example, the boundary between a topological system and vacuum has zero-energy edge



44 CHAPTER 5. SYMMETRY PROTECTED TOPOLOGICAL PHASES

Figure 4 – (a) Electron trajectories in an atomic insulator. (b) Electron trajectories in the quantum
Hall effect. Differently to an atomic insulator, cyclotron orbits are interrupted and
chiral states develop at the system’s edges. (c) Helical trajectories in a quantum spin
Hall insulator.

(a) Atomic insulator (b) Quantum Hall

|↑〉
|↓〉

|↑〉
|↓〉

(c) Quantum Spin Hall

Source: author. Adapted from Nijholt (78).

states, as shown in Fig. 4 (b, c).

Of course, an exhaustive search for all maps that connect two different Hamiltonians
is not practical at all. Instead, we check the group structures in the fiber bundle composed
by the Brilluin zone (base space), and the Hilbert space (fiber). The presence or absence
of time-reversal (T ), particle-hole (C), and chiral (S) symmetries for a given dimension
restrict the group structures to ten Cartan spaces. This classification is known as the ten-
fold way.79,27,22,27 Once the symmetry class is identified, we then compute the topological
invariant and conclude whether or not the system is topologically non-trivial.

5.1 Topological superconductivity

The Kitaev chain is the most prominent example of a topological system.25 We
consider a chain of spinless electrons with N sites and denote the creation and annihilation
operators acting on the site n, 1 ≤ n ≤ N by c†n and cn, respectively.

c†n =
1

2
(γn + iγ̃n) , c†n =

1

2
(γn − iγ̃n), (5.1)

where γn and γ̃n are known as Majorana operators, since γn = γ†n and γ̃n = γ̃†n. For this
reason, Majorana particles (and quasi-particles) are known to be their own antiparticles.

We now consider two different Hamiltonians to describe a chain of atoms for which
the quasiparticle excitations can be described by Majorana operators. We could, for
example, allow onsite interactions both between γn and γ̃n, leading to

H1 =
iµ

2

N∑

n=1

γnγ̃n. (5.2)
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Using Eq. 5.1, we find out that we are then describing electrons that cannot move to the
neighbor atom. Therefore, it is an atomic insulator [see Fig. 5 (b)]:

H1 = −µ
N∑

n=1

c†ncn. (5.3)

We could similarly allow hoppings between Majorana operators in neighbouring positions,

H2 = it
N∑

n=1

γnγ̃n+1. (5.4)

It is visible that this Hamiltonian has two zero energy modes at both ends of the chain.
We notice that both Hamiltonians from Eqs. 5.4 and 5.2 are special cases of a p-wave
superconductor:

H =
N∑

n=1

(
−µc†ncn − tc†n+1cn + ∆c†n+1c

†
n + h.c

)
, (5.5)

where t is the hopping constant, ∆ is the superconducting pairing potential, µ is the
chemical potential, and h.c. denotes the hermitian conjugate of all previous terms. Eq. 5.4
is recovered when µ = 0 and ∆ = t, while the Eq. 5.2 corresponds to ∆ = t. Thus, it is
possible to create zero energy Majorana states at the ends of an 1D p-wave superconductor.

Figure 5 – (a) Illustration of a chain with N = 5. (b) Atomic insulator limit of the Kitaev chain
with t = ∆ = 0. (c) Topological regime of the Kitaev chain with µ = 0 and ∆ = t.
(d) Lowest energy wavefunctions of the Kitaev chain with µ = 0 and ∆ = t (blue),
µ = 1.93t and ∆ = t (orange), and µ = 1.98t, ∆ = 0.2t (green).
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We can further consider whether we really need the conditions µ = 0 and ∆ = t to
be exactly satisfied. As a matter of fact, there are well-separated Majorana zero modes
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at both ends of the wire, as shown in Fig. 5 (d), for several values of µ, ∆, and t. Hence,
the existence of Majorana zero modes is much more robust than the aforementioned
conditions may have led us to believe. We can verify that Majorana zero modes exist
in the regime |µ| < 2|t|. When we close and open it again, we have a system that is
topologically equivalent to the atomic insulator described by the Eq. 5.2. The existence
of states at the ends of a one-dimensional topological system is often refered to as the
bulk-edge correspondence.22,27 The presence or absence of discrete symmetries pin the end
states at zero energy, and therefore they are robust to disorder, as long as the bulk gap
does not close.

Finally, we do not really need to look at bulk gap or check the presence of zero
energy states. Instead, we could simply compute the topological invariant given by:

Q = sgn [Pf (iH(0)) Pf (iH(π))] (5.6)

where Pf denotes the Pfaffian, and H(k) is the Hamiltonian of Eq. 5.5 in the Bloch
representation. Whenever Q = 1 the system is topologically equivalent to an atomic
insulator. When Q = −1, we call it a topological superconductor.

5.2 Quantum Hall effect revisited

As previously discussed, the quantum Hall conductance arises due to the prop-
agation of one-dimensional edge states along the boundaries of the system. Breaking a
discrete symmetry, such as the time-reversal symmetry, allows the existence of chiral edge
states.65,22,27 Therefore, backscattering is prohibited, and the conductance of quantum Hall
systems can be measured with a impressive precision, even in the presence of strong disor-
der at the boundaries of the system.62,60 Indeed, this is a manifestation of the bulk-edge
correspondence.

In fact, we can compute a topological invariant, called Chern number, given by

C =
∑

En<EF

∫

BZ

d2k

2π
·Ωn(k), (5.7)

where the integration is over the Brillouin Zone, Ωn(k) = ∇×A(k) is the so-called Berry
curvature, and

A(k) = i 〈ψn| ∂k |ψn〉 (5.8)

is the Berry connection.80 Intuitively, one could interpret the Berry connection as the
generator of infinitesimal transformation in the wavefunctions’ phase. Therefore, nontrivial
topological structures in this fiber bundle results on finite Chern number.
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Finally, there is a direct relation between the Chern number and the Hall conductivity,81

σH =
e2

h
C. (5.9)

Hence, measuring the Hall conductance is a direct way to measure the Chern number
in quantum Hall systems. The correspondence between the Chern number and the Hall
conductance explains the strong robustness to disorder: since smooth deformations in the
Hamiltonian cannot change the Chern number, a change in conductance cannot happen
without a topological phase transition. Thus, small perturbations have no effect in the
Hall conductance.

5.3 Quantum spin Hall insulators

Next, we consider whether it is possible to have topologically protected Hall
conductance without an external magnetic field. As we have already discussed, time-
reversal symmetry breaking is a necessary condition for having chiral edge states. However,
we can combine two copies of a quantum Hall system, related by time-reversal symmetry.
In other words, it would consist of a clockwise and a counter-clockwise moving edge states
states with opposite spin orientation (helical edge states), as depicted in Fig. 4 (c). This
phenomenon is called quantum spin Hall effect.82,23

Naturally, if spin-up and spin-down states propagate on opposite directions, the
net edge current is zero. However, the spin current

Jedge
s = Jedge

↑ − Jedge
↓ (5.10)

is nonzero. Similarly, the Chern number is also zero, but the spin Chern number

Cs = C↑ − C↓ (5.11)

is finite.83

In fact, the first model of a quantum spin Hall insulating phase was proposed
to occur in graphene-like (honeycomb) materials and is known today as the Kane-Mele
model.82 The only possible ways to open a gap in graphene without breaking time-reversal
symmetry is with the addition of terms proportional to σz (sublattice imbalance) and
ρz⊗σz⊗sz (spin-orbit coupling) to Eq. 3.6. Sublattice imbalance is add at the tight-binding
level as an staggered sublattice potential

Hstagg = m
∑

i

∑

s,τ

(σz)iic
†
isτcisτ (5.12)

while the spin-orbit coupling term is a consequence of second-nearest-neighbors hoppings

HSOC = iλ
∑

s

∑

〈〈i,j〉〉

(sz)ssηijc
†
iscjs
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where c†is are creation and cis annihilation operators operators at the site i, sublattice σ,
spin s, and ηij = ±1 for a clockwise/anticlockwise hopping. A topological gap opens if
|m| < |3

√
3λ| and is a trivial insulator otherwise.
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6 Hybrid systems with graphene

One love, one heart
Let’s get together and feel all right

Bob Marley, One Love

The fabrication of high-quality graphene/superconductor interfaces are reported
since graphene’s early days.84,85 Nearly transparent normal-superconductor (NS) inter-
faces were obtained combining graphene with other van der Waals materials86. In fact,
This motivated several studies involving a variety of techniques such as: as tunneling
spectroscopy,87,88 Josephson effect,85,89–91 multiple92 and specular Andreev reflections,93,94

imaging Andreev scattering,95 quantum phase transitions,96,97 reflectionless tunneling,30

microwave circuits,98 and bolometer devices.99 Furthermore, the ease of producing these
systems also paved the route to use the material as an ideal platform to combine super-
conductivity with other quantum phenomena, such as integer and fractional quantum Hall
physics.100,42,47

The interface of an antiferromagnet and a superconductor supports solitonic zero-
energy modes and becomes a topological superconductor with non-collinear spin order
right at the edge.101–104 Thus, the NS interface with the aforementioned (Sec. 3.2) canted-
antiferromagnetic quantum Hall phase in graphene is expected to be an one-dimensional
topological superconductor.43 This theoretical ideia motivated several experiments, in
particular, an experiment showing the interference of chiral Andreev states in quantum
Hall graphene,42 in which disorder plays a major role,45 as we explore in more detail in
part I of this thesis.

Combining van der Waals materials has also been a very active research field in
materials science in the last few years. For example, a small twist angle between two
graphene sheets results in a system with flat bands for which superconducting11 and
correlated insulator12 phases appear, depending on the doping level. This is a result of
the long range Moiré pattern due to the periodic coupling between the two layers. There
are other ways to create superlattices in graphene, for example, by artificially generating
strain fields that lead to buckling transitions, when placed on top of hexagonal diboride
(hBN) and niobium diselenide (NbSe2).15 The buckling-induced periodic pseudo-magnetic
field leads to the formation of nearly flat bands and correlated states,16 as we explore in
more detail on part II.





Part I

Majorana modes and Andreev chiral states in

quantum Hall graphene



7 Effective model for Majorana modes in

graphene

All in all, it was all just bricks in the wall.

Pink Floyd, Another brick in the wall

It was recently proposed that the interface between a graphene nanoribbon in the
canted antiferromagnetic quantum Hall state and a s-wave superconductor may present
topological superconductivity, resulting in the appearance of Majorana zero modes.43

However, a description of the low-energy physics in terms of experimentally controllable
parameters was still missing. Starting from a mean-field continuum model for graphene in
proximity to a superconductor, we derive the low-energy effective Hamiltonian describing
the interface of this heterojunction from first principles. A comparison between tight-
binding simulations and analytical calculations with effective masses suggests that normal
reflections at the interface must be considered in order to fully describe the low-energy
physics.

7.1 Introduction

Zero-energy excitations in symmetry-protected topological superconducting systems
are predicted to behave as zero energy Majorana quasi-particles.105–107,72,108 Despite the
recent experimental efforts to capture signatures of such excitations, there is still no general
consensus regarding the existence of these ellusive zero-energy modes.109–112 This problem
stimulated a plethora of new theoretical proposals for systems supporting Majorana modes
in a variety of nanosystems, from nanowires to two-dimensional heterostructures.25,113–116,72

In this chapter, we consider the proposal of one-dimensional topological superconductivity
at the interface of graphene/superconductor junctions,43 experimentally motivated by
ballistic junctions in quantum Hall regime and tunability of magnetic ordering.117,49,90,118

The possible appearance of Majorana modes in graphene relies on the interplay
between three different phenomena (scheme in Fig. 6(b)).43 First, each of the two degen-
erate zero energy eigenstates in the zeroth Landau level of quantum Hall graphene is
restricted to a distinct combination of valley and sublattice indices. Hence, there is an

The content of this is chapter has been previously published as Antonio L. R. Manesco, G. Weber, and
D. Rodrigues Jr., Effective model for Majorana modes in graphene, Phys. Rev. B 100, 125411 (2019).

https://doi.org/10.1103/PhysRevB.100.125411
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Figure 6 – (a) Scheme of the magnetization in the A and B sublattices; θ denotes the canting
angle between both magnetizations. (b) Schematic representation of the graphene-
superconductor setup considered in this chapter. For the derivation of the effective
model, we considered an infinite ribbon along the x-axis (so that kx is a good quantum
number). For negative values of y (blue region), we added an orbital magnetic field,
B, to induce Landau levels. The emergent magnetic ordering, with magnitude m,
was treated as a mean field term. For y > 0 (orange region), we included an induced
s-wave superconducting order parameter, ∆, and chemical potential, µ, as a result of
a s-wave superconductor deposited over this region. The continuum Hamiltonian for
this system is written in (7.2).
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p−−−−→

↑ y

· · · · · ·
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Source: author.

intrinsic identification of sublattice and valley degrees of freedom.119–121 Second, electronic
interactions lead to the emergence of a canted antiferromagnetic ordering that can be tuned
by an applied Zeeman field, as shown in Fig. 6(a).117,122,49,51 Thus, the aforementioned
identification is enlarged to include spin degrees of freedom as well. As consequence,
counter-propagating edge states with different helicities emerge, just as in a quantum spin
Hall insulator [Fig. 4 (c)].82,43 Finally, by inducing a superconducting order parameter
the system becomes gapped and Majorana zero modes may emerge.113 We also note that
a similar phenomenon was predicted to occur at the interface between superconductors
and antiferromagnetic insulators,102 suggesting that the role of the quantum Hall state in
graphene is just to induce high correlations in the flat-band zeroth Landau level.51

Mean-field simulations of such graphene/superconductor junctions corroborated
this proposal for hosting Majorana zero modes, and an ad hoc phenomenological model
for the edge states was proposed from numerical band diagram calculations. The model is
described by the following effective low-energy Hamitonian:43

Heff =




µ1 + v1p bθ w 0

bθ µ2 − v2p 0 w

w 0 −µ2 − v2p bθ

0 w bθ −µ1 + v1p



, (7.1)

where µi and vi, i = 1, 2, are on-site energies and propagation velocities of the chiral
modes, respectivelly. The topological gap is denoted by bθ ∝ cos θ, where θ is the canting



54 CHAPTER 7. EFFECTIVE MODEL FOR MAJORANA MODES IN GRAPHENE

angle between the magnetic moment of each sublattice, see Fig 6a. The ferromagnetic
state corresponds to θ = 0, while the antiferromagnetic state to θ = π. The parameter
w represents the intervalley coupling and p is the quasi-momentum along the interface
direction. The Hamiltonian (7.1) is in the same representation of (7.6).

Starting from a mean-field continuum model for graphene, we derive the effec-
tive Hamiltonian (7.1) from a more constructive approach. Besides providing a better
understanding of the physics described by (7.1), our approach allows us to express the phe-
nomenological parameters in terms of real, experimentally controllable ones. In particular,
we uncover the important role played by normal reflections at the graphene/superconductor
interface, which have to be properly considered in order to fully describe the low-energy
Hamiltonian.

This chapter is organized as follows. In Sec. 7.2, we propose a continuum Hamil-
tonian to describe a strip of graphene in the quantum Hall canted-antiferromagnetic
(QHCAF) phase in proximity to an s-wave superconductor (SC). We then obtain an
effective Hamiltonian to describe the interface physics by projecting the continuum Hamil-
tonian onto the zero energy modes at the QHCAF/SC interface. In Sec 7.3, we argue
that some terms present in the Hamiltonian (7.1) can only be derived by considering
termination-sensitive normal reflections at the QHCAF/SC interface. To account for these
phenomena we consider effective masses that describe the boundary conditions at the
interface. In section 7.4, we briefly discuss the appearance of Majorana modes and the
resulting topological classification. Finally, in Sec. 7.5, we summarize our results and
discuss some points that must be considered in future works.

7.2 The model

We start with a low-energy continuum Hamiltonian for the QHCAF/SC junction
(illustrated in Fig. 6(b)). For y < 0, we consider graphene in the presence of a perpendicular
orbital magnetic field (B), leading to the quantum Hall state. We also include a mean-field
staggered magnetization energy (m), proposed as the explanation for the gap opening at
graphene’s zeroth Landau level.117,122,49,51 For y > 0, we also consider graphene, but in
proximity to an s-wave superconductor, leading to an induced order parameter (∆) and
shifting the chemical potential to µ, defined with respect to the Dirac cone. The presence
of superconductivity repels the orbital magnetic field and, therefore, no magnetization
is expected. In the valley-symmetric representation,58 the Dirac-Bogoliubov-de Gennes
(DBdG) Hamiltonian reads (using ~ = v = e = 1)

H = ΠxΓ1 + ΠyΓ2 +m

(
Γ3 sin

θ

2
+ Γ4 cos

θ

2

)
Θ(−y) + (∆Γ5 − µΓ0) Θ(y), (7.2)
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Figure 7 – Local density of states and Majorana polarization for QHCAF/SC junctions. In the
upper half of the panels, we have graphene with an induced s-wave superconducting
coupling, whereas for the lower half we have graphene in: (a) ferromagnetic (θ = 0);
(b) antiferromagnetic (θ = π); (c) canted-antiferromagnetic (θ = π/2) states. (d)
Majorana polarization123,124 corresponding to (c). We used B = 0.05 ~

ea2 , m = 0.5t,
µ = 0.3t and ∆ = 0.25t, where t is the hopping energy in order to reproduce the
phenomenology with lower computational cost. The length unit is the lattice constant.

(a) (b)

(c) (d)

Source: author.

where Πi = pi + Ai is the canonical momentum in the presence of a magnetic field B, v is
the Fermi velocity and θ is the magnetization canting angle between graphene sublattices.
The Heaviside step function is denoted by Θ(y). In order to preserve translational symmetry
along the x-axis, we consider the Landau gauge A = (By, 0, 0) for y < 0. Moreover, we set
A = (0, 0, 0) for y > 0 to ensure the continuity of the gauge field and properly account for
the Meissner effect. We relegate the explicit expressions for the spinors and Γ-matrices to
Appendix A.1.

To properly integrate out the extra degrees of freedom and derive a model that
describes only the interface states, we first examine numerical results from a tight-binding
implementation of (7.2) using the Kwant code.125 Figure 7 shows the local density of
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states and Majorana polarization123,124 at zero energy under three situations: ferromagnetic
(θ = 0), antiferromagnetic (θ = π) and canted-antiferromagnetic (θ = π/2) orderings.
Since only the antiferromagnetic state exhibits zero energy modes that extend all over the
interface, we impose θ = π in (7.2). Setting, without any loss in generality, px = 0, we
solve H0ψ = 0 to find the zero energy states of

H0 =− iΓ2∂y + (ByΓ1 +mΓ3) Θ(−y) + (∆Γ5 − µΓ0) Θ(y). (7.3)

Diagonalizing (7.3), we obtain the following eigenstates

ψα(y) =
1

N eλα(y)ψ(0)
α (y), (7.4)

where λα(y) and ψ(0)
α (y) are, respectively, the eigenvalues and eigenspinors of

Λ(y) = −i
∫ y

0

dξ Γ−1
2 [Θ(−ξ)(BξΓ1 +mΓ4) + Θ(ξ) (∆Γ5 − µΓ0)] ,

and N is a normalization constant. Next, we impose two physical constraints on the
eigenfunctions: (i) regularity at spatial infinity, i.e., we discard all solutions ψα(y) that
diverge as y → ±∞; (ii) continuity at the interface. We relegate the lengthy expressions
for the resulting eigenbasis {ψ̃α} to Appendix A.2.

We can finally derive an effective Hamiltonian for general interface states by
calculating

Hαβ
eff = 〈ψ̃α|H −H0|ψ̃β〉. (7.5)

In terms of the spinor basis Ψ = i(−ψ+−, ψ++,−ψ−−, ψ−+)T , it reads

Heff =




ṽp bθ 0 0

bθ −ṽp 0 0

0 0 −ṽp bθ

0 0 bθ ṽp



. (7.6)

Thus, the effective degrees of freedom correspond to four chiral modes with the same
propagation velocity ṽ. There is also an intravalley coupling between the two different
helicities, bθ = ∆̃ cos θ, that vanishes for antiferromagnetic ordering (θ = π). The explicit
expressions for ṽ and ∆̃ can be found in (7.16).

The resulting effective Hamiltonian (7.6) coincides with the phenomenological
model (7.1) only in the case of vanishing on site energies, µ1 = µ2 = 0, absence of
intervalley coupling, w = 0 and coinciding propagation velocities v1 = v2 = ṽ. The first
two deficiencies of our effective model are related to not taking into account the effect
of terminations and normal reflections on the physics of the edge states. On the other
hand, the indistinguishability of the propagation velocities is a limitation of the first order
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expansion performed near the Fermi level to obtain the continuum model for graphene.
These issues will be dealt with in details in the next section. We note, nonetheless, that
the topological gap, bθ, is the same in both models. Thus, one may expect the appearance
of bound states whenever the gap changes sign, as explained in the Section 7.4.

7.3 Effect of terminations and normal reflections

It is well known that the effect of atomic structure in graphene-vacuum boundaries
is crucial to fully describe the low-energy spectrum of finite systems.58 However, to the
best of our knowledge, so far no systematic study was performed to account for similar
effects in graphene/superconductor junctions. In Sec. 7.2, the only boundary condition
imposed at the interface was the continuity of the eigenspinors to enforce the effects of
Andreev reflections.93,91 Thus, termination physics associated with normal reflections were
not considered. In the following, we provide numerical evidence that termination dependent
boundary conditions corresponding to normal reflections are needed to fully describe the
low-energy dynamics.

7.3.1 Numerical analysis

Tight-binding numerical simulations of graphene nanoribbons corresponding to the
system described by the Hamiltonian (7.2) were conducted for both armchair and zigzag
prinstine interfaces using the Kwant code.125 We have used a set of unrealistic parameters
that emphasize the actual phenomenology and keep a lower computational cost. The
same qualitative results were obtained with realistic parameters.43,117,122,49,51 The complete
electronic band structure and low-energy spectrum for θ = π are shown in Fig. 8. Clearly,
different phenomenologies are expected for armchair and zigzag interfaces. For zigzag
boundaries, Fig. 8(d) and 8(e), there is an energy offset for the Dirac cones in relation to
the Fermi level, corresponding to the different µ1 and µ2 in the phenomenological model
(7.1). On the other hand, for armchair boundaries, Fig. 8(a), 8(b) and 8(c), there is a gap,
captured by the energy w in (7.1), due to intervalley scattering. This gap can be softened
by substituting the step function variation of parameters in Eq. (7.2) by smooth functions,
such as tanh(y).

Next, we consider the effect of varying the chemical potential at the superconducting
regions. For higher values, see Fig. 8(b) for armchair interfaces and 8(d) for zigzag
boundaries, there is an obvious difference in the propagation velocities of the chiral modes,
captured by the different v1 and v2 in (7.1). This is probably because, at the high-doping
regime, we are sufficiently far away from the Fermi level. In this case, the linear expansion
used to derive the continuum model for graphene, on which the Hamiltonian (7.2) is
based, does not reproduce all relevant phenomena.126 In other words, higher-order terms
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Figure 8 – Band diagrams for pristine armchair (a), (b) and (c) and zigzag (d) and (e) graphene
nanoribbons. All calculations were performed for 60a width ribbons divided in half: the
superconducting-induced region for y > 0 and quantum Hall regime for y < 0. Also,
B = 0.05 ~

ea2 ,m = 0.5t and ∆ = 0.1t, where t is the hopping constant. These parameters
do not correspond to realistic conditions, but they preserve the phenomenology and
have lower computational costs. For the armchair ribbons, (b) and (c), a smooth
variation of the parameters was used, proportional to tanh y, which results in a
significant reduction of the gap, when compared with the variation proportional to
the Heaviside step function (a). In (a), (b) and (d), µ = 0.5t, while, for (c) and (e),
µ = 0.05t. We stress that for higher values of µ, there is a considerable asymmetry
between the propagation velocities, whereas lower values of µ result in a negligible
asymmetry. Finally, we note that an energy offset of the Dirac cones with respect to
the Fermi level is only present for zigzag ribbons.

(a) (b) (c)

(d) (e)

Source: author.

in momentum must be taken into account. Thus, for simplicity, we restrict our analysis to
the commonly used low-doping regime,91,126 in which v1 ≈ v2, see Fig. 8(c) and 8(e).

Therefore, we expect that termination physics may account for the remaining terms
in the Hamiltonian. That is what we derive next.

7.3.2 Analytical treatment

The effect of termination physics may be addressed by including in the Hamiltonian
effective potentials that enforce the desired boundary conditions. Since we have already
accounted for Andreev reflections by imposing the continuity of the wave functions at the
interface, we need only consider effective potentials describing normal reflections.

Consider a general energy independent boundary condition for the Dirac equation



CHAPTER 7. EFFECTIVE MODEL FOR MAJORANA MODES IN GRAPHENE 59

corresponding to the following linear restriction on the wave function

ψ(rB) = Mψ(rB), (7.7)

where M is an arbitrary Hermitian and unitary matrix. It can be expressed in the form of
an additional confinement potential at the boundary rB as:127

Vterm(rB) = vtermδ(rB)M̃, (7.8)

where vterm is a constant that represents the strength of the potential. The relation between
the matrices M and M̃ can be easily obtained by integrating the Dirac equation including
the confinement potential (7.8) across an infinitesimal width of the boundary, leading to

M̃ = − i
v
JM, (7.9)

where J is the current operator.

For normal reflections,58 there are three contributions to M̃ ,

M̃ac = τ3 ⊗ ρ1 ⊗ s3 ⊗ σ0, (7.10)

M̃im = τ3 ⊗ ρ3 ⊗ s3 ⊗ σ0, (7.11)

M̃zz = τ3 ⊗ ρ3 ⊗ s1 ⊗ σ0, (7.12)

corresponding to armchair (ac), infinite mass (im, sublattice imbalance) and zigzag (zz )
potentials. So that the effective potential enforcing normal reflections has the following
form:

Vterm(y) = V zz
term(y) + V im

term(y) + V ac
term(y). (7.13)

We include the effect of the termination potential (7.13) in the Hamiltonian as

Hαβ
eff 7→ Hαβ

eff = Hαβ
eff + 〈ψα|Vterm(y)|ψβ〉. (7.14)

Noting also that the y-dependence of the Vterm can be neglected, since the form of the
wave functions ψα(y) guarantees that such terms have support only at the interface, the
resulting Hamiltonian, in the same representation of Eq. 7.6, reads

Heff =




µ1 + ṽp bθ w 0

bθ µ2 − ṽp 0 w

w 0 −µ2 − ṽp bθ

0 w bθ −µ1 + ṽp



. (7.15)

The different chemical potentials µ1 and µ2 derive from the infinite mass and zigzag
potentials, and the intervalley mixing energy w, from the armchair potential. The explicit
expressions for the parameters are:

ṽ =
1

N 2

(
2

∫ 0

−∞
dy χ(y)− 2∆

∆2 + µ2

)
, (7.16a)
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∆̃ =
B

N 2

∫ 0

∞
dy χ(y), (7.16b)

χ(y) =
4mey

√
B2y2+4m2

√
B2y2 + 4m2

, (7.16c)

µ̃ =
Bvim
N 2

∫ 0

−∞
dy

yχ(y)

m
, (7.16d)

δµ̃ =
2

N 2

(
vzz

∫ 0

−∞
dy χ(y) +

∆vzz + µvim
∆2 + µ2

)
, (7.16e)

w =
2vac
N 2

(
∆

∆2 + µ2
+ 2

∫ 0

−∞
dy ey

√
B2y2+4m2

)
, (7.16f)

µ1 = µ̃+ δµ̃, (7.16g)

µ2 = µ̃− δµ̃. (7.16h)

Thus, the effective Hamiltonian (7.15) completely describes the expected phe-
nomenology of graphene terminations. The chemical potentials µ1 and µ2 shift the Dirac
cones for zigzag interfaces. On the other hand, the armchair potential does not shift the
cones, but couple different valleys, leading to a gap opening energy w. We can finally
check the existence of Majorana zero modes for finite systems and explore the topological
classification.

7.4 Majorana modes and the topological classification

7.4.1 Majorana modes

For the sake of clarity, we will use in this section the following spinor representation
ψ = (ψ++, ψ+−, ψ−+, ψ−−)T . In this representation, the Hamiltonian (7.6) takes the simpler
form

H̃eff = vpκ3 ⊗ η3 + bθκ0 ⊗ η1, (7.17)

where {κα}3
α=0 and {ηα}3

α=0 are sets with the identity and Pauli matrices in the usual
representation. The indices of the spinor components, ψκη, represent the eigenvalues of κ3

e η3, respectively.

We can now show that gap closings in (7.17) result in zero energy states that are,
indeed, Majorana modes. Making the x-dependence of the intravalley coupling explicit,
i.e., bθ = bθ(x), and assuming that it changes sign at x = 0, we can expand (7.17) around
x = 0 to obtain:

H̃2
eff = ṽ2p2κ0 ⊗ η0 + x2B2

θκ0 ⊗ η0 − Bθṽκ3 ⊗ η2, (7.18)
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with Bθ = ∂xbθ|x=0. The energy spectrum is then easily obtained:

Eκ,η
n = ±

√
2Bθṽ

(
n+

1

2

)
− κηBθṽ (7.19)

with κ, η = ±. Also, note that the ground state is doubly degenerate:

γ±(x) = 〈x|n = 0, κ = ±, η = ±〉. (7.20)

The appearance of these bound states should not be surprising, since it corresponds
to a change of the topological invariant on the phenomenological model (7.1),43 for
µ1 = µ2 = w = 0 and v1 = v2 = ṽ as we will discuss in Chapter 8.

7.5 Summary

In this chapter, we presented a formal derivation of the phenomenological Hamilto-
nian proposed to describe graphene/superconductor junctions at low-doping. Our approach
allows the understanding of such systems in terms of experimentally controllable pa-
rameters, although the correspondence between the phenomenological and experimental
parameters is highly nontrivial. It was found that, in order to completely describe the
low energy spectrum of such junctions, effects related to normal reflection must be taken
into account. Generalizing our results to describe graphene/superconductor junctions also
at high-doping requires considering higher order corrections in the continuum model for
graphene.



8 A mathematical detour: Hidden chiral sym-

metries in BDI multichannel Kitaev chains

Sometimes I’ll start a sentence and I don’t even know where it’s going. I just hope
I find it along the way.

Michael Scott, The Office

Realistic implementations of the Kitaev chain require, in general, the introduction
of extra internal degrees of freedom. In chapter 7, for example, we noted that extra degrees
of freedom in graphene, compared to the Kitaev chain, doubles the dimension of the
corresponding Hilbert space. To address this situation, we discuss the presence of hidden
BDI symmetries for free Hamiltonians describing systems with an arbitrary number of
internal degrees of freedom. We generalize the results of a spinfull Kitaev chain to obtain a
Hamiltonian with n internal degrees of freedom and derive the corresponding hidden chiral
symmetry. As an explicit application of this generalized result, we exploit by analytical
and numerical calculations the case of a spinful 2-band Kitaev chain, which can host up
to 4 Majorana bound states. We also observe the appearence of minigap states, when
chiral symmetry is broken. Finally, we use the developed tools to classify 1D topological
superconductivity in quantum Hall graphene/superconductor devices.

8.1 Introduction

In 1937, Ettore Majorana proposed that a suitable choice for the γ-matrix represen-
tation would lead to real solutions of the Dirac equation, thus implying that the fermions
described by these field solutions corresponded to their own antiparticles.128 In the past
few years, this concept became extremely relevant in the context of Condensed Matter
Physics, as Majorana quasiparticle excitations were predicted to emerge in topological
superconductors, displaying non-abelian anyonic statistics. This very exotic exchange prop-
erty has been considered, since then, a very promising route for solving the decoherence
problem related to quantum information processing.25,24,72,129

The content of this is chapter has been previously published as Antonio L. R. Manesco, G. Weber, and
D. Rodrigues Jr., Hidden chiral symmetries in BDI multichannel Kitaev chains, J. Phys.: Condens.
Matter 30 175401 (2018) and Antonio L. R. Manesco, G. Weber, and D. Rodrigues Jr., Effective model
for Majorana modes in graphene, Phys. Rev. B 100, 125411 (2019).

https://doi.org/10.1088/1361-648X/aab722
https://doi.org/10.1088/1361-648X/aab722
https://doi.org/10.1103/PhysRevB.100.125411
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Alexei Kitaev, in a seminal paper, introduced a simple toy model, corresponding to
a one-dimensional spinless p-wave superconductor, capable of hosting Majorana zero energy
excitations at both ends.25 A considerably large number of realistic systems exhibiting such
phenomenon were then proposed. The most prominent example consists of a semiconductor
nanowire with high spin-orbit coupling in the presence of a magnetic field and in proximity
to a s-wave superconductor.130–132 Besides the theoretical predictions, there has also
been a substantial experimental effort devoted to detecting Majorana bound states in
such nanowire heterostructures.133,28,134,31,35,32,135,136 In addition, materials with triplet
p-wave superconductivity, such as organic superconductors and the quasi-one-dimensional
Li0.9Mo6O17,137 as well as other heterostructures such as ferromagnetic nanowires,116 were
predicted to host Majorana bound states.

More realistic realizations of the Physics underlying this Kitaev chain may only be
obtained with the introduction of internal degrees of freedom, even though it eventually
changes the topological classification of the system. For example, for systems such as
organic superconductors, quasi-one-dimensional triplet superconductors (like Li0.9Mo6O17)
and ferromagnetic nanowires, the relevant internal spin degrees of freedom lead to two
different topological classifications: BDI and DIII. In a few words, in such two classes, all
relevant discrete symmetries: time-reversal (T ), particle-hole (C) and chiral (S = iCT )
symmetries are preserved.a The only difference being that in the former the time-reversal
operator squares to +1 while in the latter, to −1.138,139 The BDI class is characterized
by a Z invariant winding number,137,140,116 while DIII presents a Z2 invariant.141 In
semiconductor nanowire heterostructures, a common feature is the appearance of subbands
due to size quantization. This requires the introduction of band mixing terms in the
Hamiltonian, which break the usual time reversal (with T 2 = −1, thus DIII) and the chiral
symmetry.142–145 However, as we have previously shown, hidden BDI chiral symmetries
can also be introduced in some limits.142 Also, multiple Majorana modes counted by a
winding number were predicted to appear in long-range hopping systems.146,147

As a matter of fact, correctly accounting for discrete symmetries, such as the
chiral symmetry discussed above, is of extreme experimental significance. Particularly,
this breaking of chiral symmetry may lead to the appearance of minigap states, which
interfere in the observation of a clear zero-bias peak used as a signature for the presence
of Majorana bound states in the system.133,148 Moreover, theoretical studies of coupled
Kitaev chains (Kitaev ladders)149–151 and multiband systems,151–153 as well as the recently
reported experimental evidence of topological phenomena in a multiband superconductor,154

corroborate the importance of considering the influence of pairings between internal degrees
of freedom on the topological classification of superconductors.

In the context of the following discussion, a non-trivial topological phase of matter is

a For both BDI and DIII classes C2 = 1.
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a gapped ground state that cannot be adiabatically connected to the vacuum without closing
the gap nor breaking any discrete symmetry (namely, time-reversal, charge-conjugation and
chirality). From a mathematical point of view, we are interested in fiber bundles where the
base space is the Brillouin zone and the fiber is the subspace of the Hilbert space formed
by the ground state vectors. If there is no homeomorphism (modulo trivial core bands)
between the total space manifold of a given phase and the vacuum, the system is said to
be topologically non-trivial. The presence of discrete symmetries imposes constraints on
the Hilbert space and, therefore, also constrains the fiber’s group. There are ten possible
combination of the three discrete symmetries, and the corresponding group structures are
the ten Cartan symmetric spaces.

The number of topologically distinct phases hosted by system with fixed discrete
symmetries and number of spatial dimensions corresponds to the number of homotopically
innequivalent fiber bundles (modulo trivial bundles) that can be constructed over a given
Brillouin zone. Using homotopy arguments in the context of K-theory, it is possible to
exploit the Bott periodicity to construct a periodic table of symmetry protected topological
states.79,138,27 It is worth noting that there are alternative ways to characterize the ten
Cartan symmetric spaces: in terms of the time evolution operator, or in terms of the target
spaces of nonlinear sigma models. Regardless of how one obtains the symmetry classes,
after fixing the spatial dimensions and the discrete symmetries, topological invariants can
be computed by holonomy arguments. A more detailed mathematical discussion regarding
the topological classification can be found elsewhere.139,155,27,156

Since in superconductors charge conjugation (C) is manifestly present, the other
two discrete symmetries (T and S), which should occur simultaneously or not at all, are
the ones that have to be carefully analyzed when adding internal degrees of freedom, i.e.,
increasing the dimension of the fiber’s group structure. For one-dimensional topological
superconductors, several works have suggested the introduction of pseudo-time-reversal
operators,157,137,116 resulting, for example, in the uncovering of hidden chiral symmetries
in spinful systems.140 In this chapter, we propose some conditions to construct Kitaev
Hamiltonians with an arbitrary number of internal degrees of freedom and argue that it is
also possible to define a hidden BDI chiral symmetry for a given superconducting order
parameter. These results are applied for a spinful two-band Kitaev chain.

This chapter is organized as follows. In Sec. 8.2, we review the general ideas
regarding the classification of one-dimensional topological superconductors, discussing
the appropriate topological invariants for a given set of discrete symmetries. In Sec.
8.3.1, we briefly review the chiral symmetry leading to the BDI class140 and the following
geometrical interpretation of the constraints it imposes on the Hamiltonian for the existence
of non-trivial topological invariants. In Sec. 8.3.2, we consider, in general, the problem of
constructing a Kitaev chain with n degrees of freedom and show how to implement the
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Nambu representation to find hidden chiral symmetries. In Sec. 8.3.3, we particularize
the previous construction to consider in details the case of a spinful Kitaev chain with
two bands. We use the formalism to review the topological classification of quantum Hall
graphene/superconductor devices (Sec. 8.3.4). Finally in Sec. 8.4, we summarize our results
and point out some interesting directions and open problems.

8.2 Classification of chiral topological superconductors

As previously discussed, non-trivial topological phases in condensed matter emerge
as a consequence of the dimensionality of the system and the discrete symmetries it
preserves.79,138,27 For superconductors, the mean-field Bogoliubov-de Gennes theory mani-
festly preserves charge conjugation (C) by construction. Thus, a chiral symmetric system
with non-trivial topology necessarily requires time-reversal symmetry, or even a pseudo-
time-reversal symmetry, to coexist.72,140 By pseudo-time-reversal invariance, we mean a
symmetry defined by an antiunitary operator that commutes with the Hamiltonian, but
does not have the usual physical meaning of a time-reversal. Finally, in a one-dimensional
superconductor, given a (pseudo-)time-reversal operator T , the set of possible values for
the topological invariant depends on the sign of T 2.27 In the following, we discuss in more
detail these two cases.

For the BDI class, there is a (pseudo-)time-reversal operator satisfying T 2
BDI = 1.

Hence, a chiral symmetry operator related to this (pseudo-)time-reversal can be defined
as:

SBDI = iCTBDI . (8.1)

The most general massive N -dimensional Dirac Hamiltonian in the Bloch representation
can be written in terms of Γ matrices as:

Hk = h0
kΓ0 +

N∑

a=1

hakΓa , {Γa,Γb} = 2δab, (8.2)

where N = 2n is the number of internal degrees of freedom (the factor 2 comes from
particle-hole space), Γ0 is the corresponding identity matrix and the subscript k indicates
a momentum dependency. Noting that mass terms, such as any term proportional to the
identity matrix, explicitly break chiral invariance, we restrict our analysis to the massless
case, h0

k = 0. Hence, we can introduce a generalization of the Anderson pseudospin vector
ĥk = hk/‖hk‖, with hk = (h1

k, . . . , h
N
k ).157,72,27

Following the ideas of Tewari and Sau,157 we can now study the manifold determined
by ĥk. For a linear chain in first-neighbors approximation, it is possible to write:

ĥk = Λ0 + Λ1 sin k + Λ2 cos k, (8.3)
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where {Λi}2
i=0 are constant N -vectors. Thus, ĥk parametrizes a manifold T ∼= S1, so that

the number of times the vector ĥk winds around the origin while the momentum k goes
through the Brillouin zone (BZ) defines distinct topological phases, characterized by a
different number of Majorana excitations. In other words, the number of Majorana bound-
states can be counted by a topological invariant called the winding number, w ∈ π1(T) = Z,
defined as:158,157

w =

∣∣∣∣
∮

BZ

dk

4πi
tr
[
SBDIH−1

k ∂kHk

]∣∣∣∣ , (8.4)

where SBDI is the chiral symmetry operator related to the (pseudo-)time-reversal by (8.1).

On the other hand, systems with a (pseudo-)time-reversal operator that obeys
T 2
DIII = −1 are in the DIII class. Although we will not make any further comments on how

to obtain topological invariants for this class,b it is important to remark the main difference
between systems in the classes BDI and DIII: the presence of a (pseudo-)time-reversal
operator that squares to −1 implies the presence of Kramer’s degeneracy between Majorana
excitations.160 Hence, for one pair of Majoranas to be annihilated, such degeneracy must
be broken, requiring that (pseudo-)time-reversal and chiral symmetry be also broken. As a
consequence, a DIII system with multiple pairs of Majorana zero modes can have only two
distinct topological phases: one with and another without Majoranas (effectivelly, we can
interpret the linear combination of these multiples zero modes as as just one mode). As a
result, one must expect a Z2 invariant instead of Z, which means that the map ĥk can
wind around the origin n times or cannot wind at all, i.e., no intermediary value between
0 and n is possible.

In the following, we focus only on the BDI class, studying how additional internal
degrees of freedom may change the behavior of the winding number. To do so, we search
for a hidden chiral symmetry, namely an operator:72,158

S = iCT with {Hk,S} = 0, (8.5)

defined by the physics of the triplet superconducting order parameter. We start from the
idea of hidden chiral symmetry introduced by Dumitrescu et. al.140 for spinful systems.

8.3 The models

8.3.1 A quick review on the spinfull Kitaev chain

We propose a generalized Hamiltonian for a spinfull p-wave superconductor consid-
ering all possible pairings between the spin channels that are physically compatible with

b For a more detailed discussion about the topological classes D, BDI and DIII, we refer the interested
reader to the works of Budich and Ardonne141 and Sedlmayr et. al.159.
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the triplet superconducting state. On Wannier representation, it reads

H = H0 +HR +HSC , (8.6)

H0 = −
∑

n,σ,σ′

µσσ′c
†
nσ′cnσ + tσσ′c

†
n+1σ′cnσ + h.c., (8.7)

HR =
∑

n,σ,σ′

iλσσ′c
†
n+1σ′cnσ + h.c., (8.8)

HSC =
∑

n,σ,σ′

(iσ2d · σ)σ,σ′c
†
nσc
†
n+1σ′ + h.c., (8.9)

where µσσ′ and tσσ′ are the spin dependent chemical potential and the hopping energy,
respectively; iλσσ′ is a purely complex hopping which gives rise to the Rashba spin-orbit
coupling161 and d = (∆1,∆2,∆3) is the triplet superconducting order parameter. The
fermion field operators cnσ and c†nσ obey

{cnσ, c†mσ′} = δnmδσσ′ , (8.10)

where the indices n, m label lattice positions while σ, σ′ label the spin projection along the
z-axis. The set {σν}4

ν=0 consists of the 2× 2 identity matrix and the usual Pauli matrices
for the spin space.

For convenience, we rewrite the Hamiltonian (8.6) in Bloch representation as

H =

∫

BZ

dk

2π
ψ†k Hk ψk, (8.11)

where BZ indicates integration over all momenta within the Brillouin zone. Using the
Nambu representation162 ψk = (ck, T ck)T , ck = (ck↑, ck↓)

T , T = iσ2K, with K denoting
the complex conjugation operator, we obtainc

Hk = τ3 ⊗ (ε0kσ0 + λk · σ) + τ0 ⊗ (λ0
kσ0 + εk · σ) + τφ ⊗ dk · σ, (8.12)

where {τν}4
ν=0 is the set with the 2× 2 identity and the Pauli matrices for particle-hole

space; τφ = τ1 sinφ+ τ2 cosφ, φ is the superconducting phase and

[ενkσν ]σσ′ = −µσσ′ − 2tσσ′ cos k, (8.13)

[λνkσν ]σσ′ = 2λσσ′ sin k, (8.14)

dk = d sin k. (8.15)

We note that
−µσσ′ = −µσ0 + B · σ, (8.16)

where µ is the chemical potential and B is a Zeeman field. Also,

tσσ′ = tσ0 + C · σ, (8.17)
c From now on, we use Einstein summation convention for repeated indices; greek letters are used for

sums starting from 0, while latin letters are reserved for sums starting from 1.
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where t is the spin independent hopping energy, C is the spin dependent hopping energy.

The Hamiltonian with no spin-dependent hopping was proposed as a realistic model
for organic superconductors, such as the quasi-one-dimensional triplet superconductor
Li0.9Mo6O17, and ferromagnetic nanowires with zero s-wave order parameter.137,140,116

Moreover, it was also pointed out that the parameter choice leads to two possible chiral
operators, i.e., unitary operators that anticommute with the Hamiltonian. One is the
chiral symmetry related to the DIII classification, SDIII = τφ+π/2 ⊗ σ0, a consequence of
the invariance under the physical time-reversal operator defined by TDIII = τ0 ⊗ iσ2K,
given C = τφ+π/2 ⊗ σ2K. The other is the hidden chiral symmetry associated with the BDI
classification, SBDI = τφ+π/2⊗ d̂ ·σ, d̂ = d/‖d‖, with a corresponding pseudo-time-reversal
operator given by TBDI = τ0 ⊗

[
d̂ · ê2 + i

(
d̂ ∧ ê2

)
· σ
]
K.

The conditions for preserving chiral symmetry in a BDI system have an interesting
geometric interpretation which we explore next. Imposing chiral symmetry leads to

{Hk,SBDI} = 0 ⇒
{

[λk · σ, d̂ · σ] = 0

{εk · σ, d̂ · σ} = 0
. (8.18)

Since
[
ε0kσ0, d̂ · σ

]
= 0, the condition (8.18) trivially reduces to:
[
λk · σ, d̂ · σ

]
= 2iσ · (λk ∧ d̂) = 0 ⇒ λk ‖ d̂, (8.19)

{
εk · σ, d̂ · σ

}
= 2σ0εk · d̂ = 0 ⇒ εk ⊥ d̂. (8.20)

These conditions restrict the spin-dependent terms in order to maintain chirality. Finally,
it is worth noting that chiral symmetry is only globally realized if εk ⊥ d̂, ∀k, since the
k-dependency can result in sweet spots for specific values of k due to competition between
B and C.

To conclude this section, we remark that, although this construction has been
explicitly carried out on the example of spinful systems, a system with any two internal
degrees of freedom is described by the same mathematical model, thus, presenting the same
“topology”, i.e., two fibers with the same group structure. Therefore, a spinless system with
two bands described in terms of Pauli matrices admits a similar Hamiltonian formulation
and invariance under the same hidden symmetry operators, as we demonstrated in a
previous work.142

In the following, we generalize this approach to obtain a BDI chiral symmetry for
the case in which the system has n internal degrees of freedom. We start by considering
the general Hamiltonian as a sum of two terms:

Hk = H
(0)
k +HSC

k , (8.21)

where HSC
k = τφ⊗∆k is term containing the superconducting order parameter ∆k and H

(0)
k

is the sum of all other terms. Next, in order to satisfy (8.5), we enforce that {S, HSC
k } = 0
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by making S ∝ τφ+π/2 ⊗∆k and then imposing the necessary constraints on H(0)
k so that

{H(0)
k ,S} = 0. Finally, we discuss the application of these ideas to a spinfull 2-band Kitaev

chain.

8.3.2 General construction of a Kitaev chain with n internal degrees of freedom

The conditions derived in Sec. 8.3.1 for the chiral operator originally introduced
by Dumitrescu et al.140 raises the question of whether it is possible to find similar hidden
symmetries for systems with a richer spinorial structure. The idea is to consider a Hamilto-
nian which is an element of SU(2)× SU(n) (particle hole + other degrees of freedom). It
is also necessary to introduce a generalized Nambu representation ψk = (ck, T ck)T , where
ck is an element of the spinor representation of SU(n). Although the construction of T
is highly dependent on the physical meaning attributed to SU(n) and its representation,
some general ideas can be discussed without choosing a specific representation of T . In the
next section we will discuss in more details this representation choice for a specific algebra.

Since the Hamiltonian is an element of SU(2)× SU(n), the action of any (pseudo-
)time-reversal operator T = UTK (UT is unitary and K denotes the complex conjugation)
on the generators of SU(n) divides it in one symplectic subgroup163

T tSaT −1 = −tSa , (8.22)

and one antisymplectic
T tAa T −1 = tAa . (8.23)

Another important point to consider for correctly implementing the Nambu representation
is the effect of T on the k-dependency of the Hamiltonian. Thus, we divide the possible
terms in symmetric

T εakT −1 = εak (8.24)

and antisymmetric
T λakT −1 = −λak (8.25)

under T . Taking into account these two effects of the action of T , we propose a general
Nambu Hamiltonian

Hk = τ3 ⊗ (εakt
A
a + λakt

S
a ) + τ0 ⊗ (εakt

S
a + λakt

A
a ) + τφ ⊗ dak t̃a sin k, (8.26)

where t̃a are the generators of SU(n) such that UT t̃a are symmetric matrices.d

Now we can introduce a hidden chiral symmetry operator similar to the one
introduced by Dumitrecu et al.140 for spinfull systems:

SBDI = τφ+π/2 ⊗ d̂at̃a (8.27)
d For example, in the SU(2) case, UT = iσ2, as explicitly written in (8.9). We note, nonetheless, that

changing the spinor representation from the usual to the Nambu removes UT .
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where d̂a is the normalized da vector such that S2
BDI = 1. Finally, the condition for the

existence of chiral symmetry, i.e., {Hk,SBDI} = 0, implies

[εakt
A
a + λakt

S
a , d̂

bt̃b] = 0, (8.28)

{εaktSa + λakt
A
a , d̂

bt̃b} = 0. (8.29)

These conditions result in a series of constraints on the Hamiltonian, which are analogous
to the locking conditions on the spin space obtained in Sec. 8.3.1. The chiral operator
prohibits some of the coefficients εak and λak multiplying the generators of SU(n), i.e.,
the isospin-dependent terms are locked. However, the geometric interpretation is not
completely analogous. The reason lies in the algebraic structure of SU(n) for an arbitrary
n ≥ 3:

[ta, tb] = if cabtc, (8.30)

{ta, tb} =
1

2n
δabt0 + gcabtc, (8.31)

where some of the structure constants f cab are zero and some gcab are non-zero. Thus, the
parallel and perpendicular conditions derived in Sec. 8.3.1 do not hold in general anymore.

Even though we obtained some general conditions for constructing the Hamiltonian
and finding hidden chiral symmetries, it is not clear how to apply these results without a
specific choice of representation. Thus, we now provide a concrete discussion considering a
spinful 2-band system.

8.3.3 The spinful 2-band Kitaev chain and its chiral symmetries

Following the construction of a Kitaev chain with an arbitrary number of degrees
of freedom presented in Sec. 8.3.2, we propose a general Hamiltonian for a spinfull
Kitaev chain with two bands. The Hamiltonian is now an element of SU(2)× SU(4) ∼=
SU(2)× SU(2)× SU(2). Denoting the spin (band) subspace by the matrices σν (ρν), and
taking T = iσ2 ⊗ iρ2K, it is straightforward to obtain

Hk = τ3⊗(ε00
k σ0 ⊗ ρ0 + εijk σi ⊗ ρj + λi0k σi ⊗ ρ0 + λ0i

k σ0 ⊗ ρi)
+τ0⊗(λ00

k σ0 ⊗ ρ0 + λijk σi ⊗ ρj + εi0k σi ⊗ ρ0 + ε0ik σ0 ⊗ ρi)
+τφ⊗dijσi ⊗ ρj sin k. (8.32)

Next, we consider the necessary conditions to have the hidden chiral symmetry:

SBDI = τφ+π/2 ⊗ d̂ijσi ⊗ ρj, (8.33)

where d̂ij is normalized so that S2
BDI = 1. It is evident that ε00

k cannot break chirality,
whereas λ00

k must be always zero for SBDI to be preserved, i.e., {Hk,SBDI} = 0. After
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collecting the terms with the same matrix structure of the superconducting order parameter,
i.e., all terms proportional to σi ⊗ ρj, the conditions (8.28) and (8.29) lead to

εijk d̂
abεniaε

m
jb = 0, (8.34)

λijk d̂
ij = 0. (8.35)

Here, εnia denotes the totally antisymmetric Levi-Civita tensor in three dimensions. For
these terms, the analogy with Sec. 8.3.1 is direct, because in this case f cab are always
non-zero and gcab are always zero.

To corroborate the results (8.34) and (8.35) regarding the locking conditions
imposed by the superconducting order parameter d̂ab, we have performed independent
numerical simulations with the Kwant package.125 For simplicity, we implemented the
following representative Hamiltonian:

Hk = τ3 ⊗ (εkσ0 ⊗ ρ0 +mσθ ⊗ ργ) + τφ ⊗∆σ1 ⊗ ρ2 sin k, (8.36)

where εk = −µ − 2t cos k, σθ = σ1 sin θ + σ3 cos θ and ργ = ρ1 sin γ + ρ2 cos γ. Chiral
symmetry SBDI = τφ+π/2 ⊗ σ1 ⊗ ρ2 should be preserved if, and only if, σθ = ±σ1 and
ργ = ±ρ2. Therefore, varying the angles θ and γ may lead to the appearance of minigap
states when chiral symmetry is broken and of Majorana zero modes when the chirality
condition holds. This behavior is explicitly confirmed by Fig. 9. For γ = 0 and σθ = ±σ1,
the minigap closes. However, for γ 6= 0, chiral symmetry is broken for any value of θ and
the minigap only closes when accidental degeneracy emerges. Nonetheless, there is no
topological protection in the latter case.

Figure 9 – Eigenvalues (in units of t) for a system described by the Hamiltonian (8.36) with 100
lattice positions as a function of θ: (a) µ = 0, ∆ = 0.75t, m = 0.5t, γ = 0; (b) µ = 0,
∆ = 0.75t, m = 0.5t, γ = π

16 . Non-zero values of γ open minigap states for all values
of θ, except when breaking chiral symmetry leads to hotspots of zero energy minigap
states which are not topologically protected.

(a) (b)

Source: author.
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For the Hamiltonian (8.36), it is also possible to count the number of Majorana zero
modes by calculating the winding number. In Fig. 10(a), we show the effect of varying µ
and m on the number of Majorana pairs. As expected, four Majorana pairs are possible. If
we increase the absolute values of µ or m, the overlap between these zero modes eventually
leads to their annihilation, resulting in lower winding numbers. Finally, we remark that
only even winding numbers appear in the phase diagram of Fig. 10(a), which is a feature
of a symmetry between spin and band subspaces. This condition will be broken next.

Figure 10 – Winding number for a 2-band spinful Kitaev chain. (a) Diagram obtained from
Hamiltonian (8.36) as a function of µ and m in units of t with ∆ = 0.75t, θ = π/2
and γ = 0. The highlighted points (in red colour) indicate the origin of the diagrams
(b) and (c). (b) Diagram obtained from Hamiltonian (8.41) with ∆ = 0.75t, θ = π/2,
γ = 0 and µ = 0.5, m= 0.5. (c) Diagram obtained from Hamiltonian (8.41) with
∆ = 0.75t, θ = π/2, γ = 0 and µ = 2.5, m= 2.5. It is evident that breaking spin-band
degeneracy leads to phases with an odd number of Majorana pairs.

(a) (b) (c)

Source: author.

We now consider in more details the influence of the terms proportional to σi ⊗ ρ0

and σ0 ⊗ ρi. One can check that chiral symmetry requires:

λi0k d̂
abεnia = 0, (8.37)

λ0i
k d̂

abεmib = 0, (8.38)

εi0k d̂
ib = 0, (8.39)

ε0ik d̂
ai = 0. (8.40)

It is interesting to note that the previous conditions (8.19) and (8.20) to maintain chiral
symmetry on spinfull systems still hold. Namely, (8.37) implies that d̂ib should be parallel
to λi0k and (8.39) means that d̂ib needs to be perpendicular to εi0k . Also, analogous results
(8.38) and (8.40) hold for band degrees of freedom. Numerical simulations breaking these
conditions on the band subspace also resulted on the appearance of minigap states, similar
to the ones seen in Fig. 9.
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To evaluate the effect of breaking spin-band degeneracy on the topological phase
diagram, we added some of these four terms to the Hamiltonian (8.36) according to:

Hk → Hk + τ0 ⊗ (Bσ3 ⊗ ρ0 + V σ0 ⊗ ρ1). (8.41)

Here, B denotes a Zeeman field along the z-axis and V , an analogous contribution to
the band subspace, but along the x-direction. As expected, odd winding numbers also
appear as indicated in Figs. 10(b) and 10(c). Hence, the system can indeed host any integer
number of Majorana bound states from 0 to 4. Figure 10(c) deserves some special care
regarding the value of the winding number at the origin. As a matter of fact, in spite
of what the diagram may suggest, exactly at the origin, i.e., for B = V = 0, w = 2, as
consistency with Fig 10(a) requires.

Finally, there remains to take into account the effects of k-dependent terms, such
as Rashba spin-orbit couplings, on the phase diagram. Interestingly, adding such terms
to the hamiltonian (8.41) do not change the topological phase diagrams in Fig. 10. Thus,
indicating that the Majorana modes are insensitive to them. Nevertheless, for finite systems,
the presence of k-dependent terms leads to the appearance of minigap states due to the
hybridization of Majorana end states, which became clearer as we shortened the chain.

8.3.4 Topological classification of quantum Hall graphene/superconductor de-

vices

We now consider how the extra terms of the effective Hamiltonian (7.15) affect
the emergence of Majorana modes. Using the same representation of (7.17), the effective
Hamiltonian (7.15) reads:

Heff = µ̃ κ3 ⊗ η0 + δµ̃ κ0 ⊗ η1 + w τ1 ⊗ η0 + ṽpx τ3 ⊗ η1 − bθκ0 ⊗ η3. (8.42)

Interestingly, if we compare (8.42) to the Hamiltonian of a topological superconducting
ferromagnetic nanowire:116

Hferr = [tp2
x − (µ+ 2t)]σ0 ⊗ τ3 + [∆s σ0 + pxd · σ]⊗ τ1 + V · σ ⊗ τ0, (8.43)

where t is the hopping constant, µ is the chemical potential, ∆s(d) is an s(p)-wave
superconducting order parameter, V is the Zeeman term and the matrices τα and σα

designate particle-hole and spin spaces, respectively, we find the following correspondence:

t = d1 = d2 = V2 = 0, (8.44)

µ↔ bθ, (8.45)

∆s ↔ δµ̃, (8.46)

d3 ↔ ṽ, (8.47)

V1 ↔ w, (8.48)

V3 ↔ µ̃. (8.49)
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Thus, we can conclude that the system described by the effective Hamiltonian
(8.42) has a charge-conjugation-like symmetry, described by an anti-unitary operator that
anticommutes with the Hamiltonian.43 On the other hand, w and µ̃ explicitly break any
pseudo-time-reversal symmetry, described by anti-unitary operators that commute with
the Hamiltonian and square to −1.140,116 Finally, there is a pseudo-time-reversal symmetry,
described by some anti-unitary operator that commutes with the Hamiltonian and squares
to +1, that is explicitly broken for non-zero µ̃.140,116,164 Therefore, for disordered interfaces,
corresponding to non-zero w and µ̃, only the charge-conjugation-like symmetry is preserved
and the system is in D class.43

8.4 Summary

One-dimensional p-wave systems with an arbitrary number of internal degrees of
freedom allow the emergence of a variable number of zero energy Majorana excitations at
both ends, if a BDI chiral symmetry is preserved. In this chapter, we have shown that a
hidden chiral symmetry can be derived from the superconducting terms in the Hamiltonian
and provided a geometrical interpretation of the constraints imposed on systems that
preserve it. This condition restricts the isospin-dependent terms of the Hamiltonian by
restricting the possible adjoint elements of the SU(n) representation.

We examined in detail the consequences of this severe restriction imposed on BDI
systems for a spinful 2-band p-wave superconductor, in particular, showing that breaking
chiral symmetry leads to the emergence of minigap states, that the winding number can
assume the values between 0 and 4 and, finally, that odd values of the winding number
are only possible when the spin-band degeneracy is broken.

We reviewed the topological classification of quantum Hall graphene/superconductor
devices by mapping the effective Hamiltonian (7.15) to the Hamiltonian describing a
superconducting ferromagnetic nanowire. The presence of interface potentials breaks all
discrete symmetries but charge-conjugation. Hence, there is only one non-trivial topological
phase possible corresponding to the class D.
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9 Mechanisms of Andreev reflection in quan-

tum Hall graphene

Isn’t it enough to see that a garden is beautiful without having to believe that there
are fairies at the bottom of it too?

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this chapter, we perform realistic simulations of a hybrid superconductor-
graphene device in the quantum Hall regime to indentify the origin of downstream
resistance oscillations in a recent experiment [Zhao et. al. Nature Physics 16, (2020)]. A
comparison between the simulations and the experimental data suggests that disorder-
induced intervalley scattering at the normal-superconductor (NS) interface can be the
dominant cause of oscillations. We also show conductance oscillations due to additional
edge states on clean interfaces with Fermi level mismatch. However, the regular pattern as
a function of external parameters is not visible in the presence of disorder. The results
presented in this chapter provide a way to qualitatively probe the quality of NS interfaces
on multiterminal quantum Hall devices.

9.1 Introduction

Already starting in the early years of graphene, researchers were able to fabricate and
measure high quality graphene–superconductor devices.84,85 The ease of fabrication inspired
a plethora of works, including: tunneling spectroscopy,87,88 Josephson effect,85,90,91,89, mul-
tiple Andreev reflections,92 imaging Andreev scattering,95 quantum phase transitions,96,97

reflectionless tunneling,30 microwave circuits,98 and bolometer devices.99 Because quan-
tum Hall effect in graphene manifests already at relatively low magnetic fields below 1T,
graphene is also uniquely fit to combine quantum Hall physics with superconductivity and
Andreev reflection.46,42,47,100

Because boundary conditions favors the population of one sublattice165,58 and the
lowest Landau level states are valley-sublattice locked,165,48 edge states in quantum Hall
graphene are valley-polarized. The boundary of graphene and a superconductor converts
electrons to holes with opposite valley isospin and, therefore, generates nonlocal Andreev

The content of this is chapter has been previously submitted as a preprint as Antonio L. R. Manesco, I.
M. Flór, C.-X. Liu, and A. R. Akhmerov, Mechanisms of Andreev reflection in quantum Hall graphene,
arXiv:2103.06722.

https://doi.org/10.1038/s41567-020-0898-5
https://arxiv.org/abs/2103.06722
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reflections. The combination of valley-sublattice locking with nonlocal Andreev reflection
makes conductance depend solely on the device geometry (see Sec. 9.3 for details).56 If the
two edges connected to the superconductor are parallel, as depicted in Fig. 11 (a), the
conductance between the two normal leads is56

Gxx = −2e2

h
, (9.1)

where e is the electron charge and h is the Planck constant.

Figure 11 – (a) An example device for probing nonlocal Andreev reflection in graphene. The
device has 3-terminals: two normal leads (grey) and a superconducting lead (blue).
Both graphene edges connected with the superconducting lead are zigzag, which
mimics the valley polarization of a generic graphene boundary. The interface can
be either armchair (main figure) or zigzag (inset). (b) The measured downstream
resistance R̃xx as a function of the magnetic field B and the gate voltage VG in a
multi-terminal setup [courtesy of Zhao et. al.. Zhao et al. (42)] The regions with
filling factor ν = 1 and ν = 2 are highlighted.

N

N

SC

V

(b)(a)

Source: author.

Contrary to the prediction from the theory with idealized conditions,58 a recent work
observed downstream resistance oscillations in a multiterminal device as a function of the
magnetic field and the gate voltage, shown in Fig 11 (b). The authors have interpreted the
data as chiral Andreev edge states interference, supported by tight-binding calculations.42

Our goal is to investigate Andreev states interference and identify its possible
origins. We identified three mechanisms leading to deviations from constant conductance.
We start by following Zhao et. al.42 and study the Andreev interference created by the
lattice mismatch. Interference, in this case, is highly dependent on the interface orientation,
due to the small intervalley coupling. We then consider short-range disorder (Sec. 9.5) and
show that the larger momentum transfer results in irregular oscillations between normal
and Andreev reflections at any interface orientation. Finally (Sec. 9.6), we demonstrate



CHAPTER 9. MECHANISMS OF ANDREEV REFLECTION IN QUANTUM HALL
GRAPHENE 77

that a sufficiently high Fermi level mismatch generates additional edge states and lead to
interference by means of intravalley scattering.

All three mechanisms produce conductance fluctuations, albeit with different
characteristics. Lattice and Fermi level mismatch at perfect interfaces generate a regular
interference pattern in nonlocal conductance due to the translational invariance of the
Hamiltonian. An irregular interference pattern, like the one observed in experiment, occurs
only in the presence of strong disorder. We compare the results with experimental data
and discuss the relevance of our findings in Sec. 9.8.

9.2 Tight-binding model

From this section on, we present numeical results obtained with tight-binding
calculations using the Kwant package.125 The Hamiltonian reads

H =
∑

i

ψ†i (∆iτx − µiτz)ψi −
∑

〈i,j〉

ψ†i (tije
iτzφijτz)ψj, (9.2)

where ψi = (ci, c
†
i)
T , c†i and ci are the electron creation and annihilation operators at

the position ri, and 〈i, j〉 are all the pairs of nearest neighbor sites. We simulate the
interface by using the following position dependence of the chemical potential µi and the
superconducting pairing potential ∆i:

µi = (µSC − µQH)f(ri) + µQH , ∆i = ∆Θ(xi), f(ri) =
1

2

[
1 + tanh

(
xi
χ

)]
, (9.3)

with µQH and µSC the onsite energies at the normal and the superconducting region.
The hopping energies tij = t are constant in the honeycomb crystal structure, and equal
to tij = t/2 in the square lattice that we use to simulate a lattice mismatch with the
superconductor. The Peierls phase is:

φij = −πB
φ0

(yj − yi)(xj + xi)Θ

(
xi + xj

2

)
, (9.4)

where B is the orbital magnetic field, φ0 = h/e is the magnetic flux quantum, and Θ(x)

is the Heaviside step function. The model is rescaled as a 7→ ã = sa and t 7→ t̃ = t/s to
reduce the computational cost keeping the Fermi velocity vF ∝ ta unchanged.166 In all
transport calculations, we use t = 2.8 eV, a = 0.142 nm,54 s = 10, ∆ = 1.3 meV in order
to match the MoRe pairing potential,42 and we choose χ = 50 nm to match, in order of
magnitude, electrostatic estimations in a similar system.86 On band structure calculations
we take ∆ = 0.05t and a square superconductor to better visualize the data. Unless stated
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otherwise, the superconducting region has a honeycomb structure. The τi Pauli matrices,
in the usual representation, act on electron-hole spinor components.

The code and data used to produce the figures and derive the effective model are
available in Zenodo.167 We use Adaptive168 to efficiently sample k-space on bandstructure
calculations.

9.3 Valley-dependence of Andreev reflection

Andreev reflection is a process in which an incoming charge carrier is reflected
back as its time-reversal partner. In graphene, it means that electrons are converted to
holes in the opposite valley.93,91 Thus, a correlation between charge and valley densities is
expected. Moreover, boundary conditions applied to graphene’s lowest Landau level result
in valley-polarized edge modes.48,58 We can observe both phenomena by computing the
local values of valley and charge densities, as shown in Fig. 12. Here we compute the valley
density as the expectation value of the anti-Haldane operator, V .169,170a In the presence of
a magnetic field, we introduce a Peierls phase correction φij(B):

V (B) =
i

3
√

3

∑

〈〈i,j〉〉

ηijs
ij
z e

iφij(B)c†icj, (9.5)

where 〈〈i, j〉〉 denotes a sum performed over the next-nearest-neighbors, ηij = ±1 for a
clockwise/anticlockwise hopping, and sz = ±1 if ri is in the A/B sublattice.

In a two-terminal setup with a NS interface, the longitudinal conductance in the
lowest Landau level was previously shown to be:56

GNS =
2e2

h
(1− cos Φ), (9.6)

where Φ is the angle difference between the valley isospins of the states entering and
leaving the superconductor, depicted in Fig. 13 (a). It turns out that Φ depends on the
geometry, resulting in constant conductance with different values, as shown in Fig. 13 (b).

It is straightforward to compute the nonlocal conductance Gxx of a 3-terminal
device as the one depicted in Fig. 11. First, we take Φ = π. Then, we notice that

Gxx =
2e2

h
−GNS =

2e2

h
cos Φ, (9.7)

leading to Eq. 9.1.

9.4 Andreev interference in clean graphene quantum Hall devices

The NS interface hosts two propagating Andreev states moving along a single
direction (throughout the chapter we neglect spin physics). Linearizing the dispersion of
a Note that this operator has eigenvalues ±1 at the valley K/K ′.
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Figure 12 – (a) Valley, V(r) = 〈r|V (B)|r〉, and (b) charge, C(r) = 〈r| − τz|r〉, densities near a NS
interface (x = 0) with B = 1T and µ = 0.075t in a graphene nanoribbon. It is visible
that both incoming and outgoing modes are valley polarized and that charge and
valley densities are highly correlated. The length is in units of nm (the honeycomb
crystal in the backgound is just illustrative).
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Figure 13 – (a) Incoming νi (solid) and outgoing νo (dashed) valley isospins on the Bloch sphere
for zigzag (armchair) propagating modes in blue (red) in the case of a superconductor
covering different edges in an NS junction. (b) GNS conductance plateaus in the
lowest Landau level on a zigzag edge junction for several values of Φ realized with
different arrangements of the superconductor on the junction.
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the two edge states near zero energy we obtain the edge state Hamiltonian

Heff =

(
v(k + k0) 0

0 v(k − k0)

)
= vkσ0 + vk0σz, (9.8)
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where k is the momentum along the interface, and v is the Fermi velocity of the propagating
chiral modes (see Sec. B for a derivation). The projections of the valley momenta on the
graphene-superconductor interface ±k0 depend on the lattice orientation: k0 = 0 if the
interface is along the armchair direction, while a general boundary orientation results in
k0 ∼ π/a, with a the graphene lattice constant. The Hamiltonian acts on Ψ = (ψ1, ψ2)T

(presented in the Sec. B), where ψ1 is a linear combination of electron states at valley K
and hole states at the valley K ′, and ψ2 is the opposite. The Pauli matrices σ0 and σi=x,y,z
act on Ψ.

Intervalley coupling is added by the Hamiltonian

Hintervalley = mσx, (9.9)

where m is the coupling constant. The coupling between the two chiral edge states with
m leads to oscillations between normal and Andreev reflections as a function of the
magnetic field and the gate voltage.42 A sufficiently low value of m� vk0 preserves the
valley polarization. Estimating m ∼ vkF , the intervalley coupling is non-negligible only if
k0 . kF . Therefore, conductance oscillations are visible only if the NS boundary is oriented
withing angles . kFa ∼ 1◦ from the armchair direction.171,57,165,58

To confirm the absence of interference at clean (small m) NS interfaces with
an arbitrary orientation, we simulate a 3-terminal setup with two different geometries
depending on the NS interface: (a) armchair; (b) zigzag, as shown in Fig. 11. In both
cases, the two edges connected with the superconductor are zigzag, therefore preserving
the hypothesis for Eq. 9.1. The conductance between the two normal leads is computed as

Gxx =
e2

h

∑

i,j

(
T ijee − T ijhe

)
, (9.10)

where T ijee is the probability of an electron from channel j in the source lead transmit as
an electron to the channel i in the drain lead and T ijhe is the probability of an electron
transmit as a hole.

In this section, we follow42 and use square superconductor, which weakly breaks
valley conservation. With an armchair interface [Fig. 14 (a)], the conductance shows an
interference pattern [Fig. 14 (c)]. Chiral modes at zigzag interfaces, on the other hand
[Fig. 14 (b)], have constant nonlocal conductance [Fig. 14 (d)], in agreement with the
analytical model.

We find that interference of chiral Andreev states is highly sensitive to the NS
interface orientation. Moreover, conductance is expected to be constant for clean interfaces
with arbitrary orientation.56 Since it is unlikely that in the experiment42 the NS interface
has a perfect alignment with the armchair direction, we must consider other phenomena
to explain the observed downstream resistance oscillations.
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Figure 14 – Band structure of a NS ribbon with (a) armchair and (b) zigzag terminations with
µQH = µSC = 0.05t, B = 1T . The opacity is the expectation value of f(ri), defined
on Eq. 9.3, with χ = 5. We see that the positive velocity modes (chiral Andreev states)
occur near k = 0 with armchair interfaces and are well-separated in momentum space
for zigzag orientation. The resulting nonlocal conductance presents an interference
pattern for armchair interfaces (c) while the expected constant value from Eq. 9.1 is
obtained for zigzag interfaces (d).
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9.5 Effects of disorder

To increase the transition rate between the two chiral states, we add short-range
disorder. The additional term in the Hamiltonian has the form of an uniformly-distributed
uncorrelated onsite potential:

Hdisorder =
∑

i

ψ†i

(
δµ

(edge)
i + δµ

(SC)
i

)
τzψi, (9.11)



82
CHAPTER 9. MECHANISMS OF ANDREEV REFLECTION IN QUANTUM HALL

GRAPHENE

with δµ(edge)
i , δµ

(SC)
i ∈ [−t, t), illustrated in Fig. 15 (a). The disorder region width in the

quantum Hall region is 6 nm, such that it is always smaller than the magnetic length
lB =

√
~/eB within the magnetic field range considered.

Figure 15 – Effects of disorder on the downstream resistance. (a) Scheme of disorder landscape:
blue represents δµ(edge)

i ; red represents δµ(SC)
i . The resulting nonlocal conductance

with finite δµ(edge)
i (b) is minor and the conductance is still nearly constant in a large

area of the parameter space. When δµ(SC)
i is finite (c), however, the effects are much

stronger and persistent for all µ and B.
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Although the effects disorder at the edges on the conductance are visible, nearly
constant negative values are still visible on large portions of the parameter space [Fig. 15
(b)]. On the other hand, scattering caused by disorder along the NS interface leads to
strong irregular oscillations (Eq. 9.1) for all µQH and B [Fig. 15 (c)]. The conductance
fluctuations with interface disorder are similar to Fig. 11 (b), suggesting that disorder in
the superconducting region is the main cause of interference in the experiment.42
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9.6 Effects of Fermi level mismatch

The superconductor on top of graphene transfers charge carriers to the underlying
layer. Hence, there will be a Fermi level mismatch between the quantum Hall and the
proximity-induced superconducting regions. The resulting potential landscape obtained
via electrostatic simulations varies across tens of nanometers,86 in contrast to previous
theoretical works that consider an abrupt Fermi level change when compared to the other
relevant length scales.93,91 Such smooth variation, therefore, does not promote intervalley
scattering.

An electrostatic potential shift near the NS interface locally changes the filling
factor. Thus, extra bands cross the Fermi energy, as depicted in Figs. 16 (a), and Eq. 9.8
does not hold. Since incoming and outgoing modes connected with the superconductor
couple with all Andreev states, the nonlocal conductance no longer depends only on
valley polarization of edge states connected with the superconductor. Instead, we see an
interference pattern, as depicted in Fig. 16 (b).

Figure 16 – (a) Band structure of a NS ribbon with Fermi energy mismatch (µQH = 0.1t,
µSC = 0.5t, and B = 1T ). The opacity is the same as in Fig. 14. One can clearly see
the presence of extra non-chiral edge states. (b) Nonlocal conductance of a system
with finite Fermi level mismatch (µSC = 0.5t). There is a clear deviation from the
predicted constant value of Eq. 9.1 due to the extra propagating modes.
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It is worth emphasizing that interference caused by Fermi level mismatch is inde-
pendent on the quality of the NS interface. Disorder, however, hides the regular pattern.
Therefore, the electrostatic-induced interference discussed in this section is observed only
when the NS interface is clean.



84
CHAPTER 9. MECHANISMS OF ANDREEV REFLECTION IN QUANTUM HALL

GRAPHENE

9.7 Absorption of quasi-particle excitations by the superconudctor

The absorption of quasi-particles by the superconductor reduces the probability
of outgoing electrons and holes at the end of the interface. We effectively add a “survival
probability” Psurv by modifying the system: we attach a metallic lead to the superconducting
region such that quasiparticles can now tunnel through the superconductor with a finite
probability. Thus, the nonlocal conductance change as42

G̃xx = PsurvGxx (9.12)

where Gxx is given by Eq. 9.7. Thus, the nonlocal conductance is suppressed, as seen in
(Fig. 17, following experimental results.42

Figure 17 – (a) Quasiparticle tunneling to the superconductor suppresses the nonlocal conduc-
tance.
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9.8 Experimental relevance

Our results help to establish a rigorous interpretation of the experiment by charac-
terizing the NS interface quality. Irregular oscillations, similar to the experiment, were
obtained with disorder at the NS interface. Thus, irregular sign changes in nonlocal
transport measurements can be used as a way to check the quality of devices. This is
not possible in the normal state due to the absence of backscattering in the quantum
Hall regime. Clean devices, e.g., with nearly transparent NS interfaces and edges defined
by gate potentials, are expected to present nearly constant conductance or a regular
oscillation pattern caused by Fermi level mismatch. The presence of vortices also plays an
important role when interference is present by adding a phase factor along the interface.42
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Otherwise, vortices just suppress the conductance due to quasiparticle tunneling through
the superconductor, as discussed in the Sec. 9.7.

Recent experimental works46,42,47 motivate the combination of quantum Hall effect
and superconducting order in graphene as a platform for Majorana zero modes.43 Our
results cover two different situations that prevent the existence of a non-trivial topological
phase: (i) the strong intervalley scattering caused by disorder closes the topological gap;
(ii) Fermi level mismatch promotes the population of undesired edge states along the
NS interface.43,44 Therefore, fabrication of high-quality graphene/superconductor het-
erostructures is necessary, for example, using van der Waals materials such as NbSe2.86

Moreover, experimental routes to suppress the Fermi level mismatch together with electro-
static simulations are necessary to properly analyze the edge states population at the NS
interface.

9.9 Summary

We reviewed three mechanisms responsible for a deviation from constant Andreev
conductance on quantum Hall graphene devices. We verified that chiral Andreev edge states
interference happens when the graphene orientation along the NS interface is armchair
and are absent otherwise. The reason is the zero momentum separation between the chiral
Andreev edge states on armchair interfaces, such that arbitrarily small intervalley coupling
leads to interference. The perfect alignment with the armchair orientation, however, is
unlikely to happen. We also found that scattering between the two edge states is created
with short-range disorder, leading to irregular Andreev conductance oscillations that
resamble the recent experimental data.42 Finally, we found that, even with clean interfaces,
the population of non-chiral edge states along the NS interface caused by Fermi level
mismatch also leads to Andreev conductance oscillations. Our results provide a series of
considerations necessary to properly interpret experiments and characterize the quality of
devices. Furthermore, we argue that the intense search for Majorana physics in graphene
quantum Hall devices require improvements in the NS interfaces’ quality and proper
understanding and control of the Fermi level mismatch.





Part II

Buckled graphene superlattices



10 Correlations in the elastic Landau level of

spontaneously buckled graphene

Yeah, b***h! Magnets!

Jesse Pinkman, Breaking Bad

Electronic correlations stemming from nearly flat bands in van der Waals materials
have demonstrated to be a powerful playground to engineer artificial quantum matter,
including superconductors, correlated insulators and topological matter. This phenomenol-
ogy has been experimentally observed in a variety of twisted van der Waals materials, such
as graphene and dichalcogenide multilayers. Here we show that spontaneously buckled
graphene can yield a correlated state, emerging from an elastic pseudo Landau level. Our
results build on top of recent experimental findings reporting that, when placed on top of
hBN or NbSe2 substrates, wrinkled graphene sheets relax forming a periodic, long-range
buckling pattern. The low-energy physics can be accurately described by electrons in the
presence of a pseudo-axial gauge field, leading to the formation of sublattice-polarized
Landau levels. Moreover, we verify that the high density of states at the zeroth Landau
level leads to the formation of a periodically modulated ferrimagnetic groundstate, which
can be controlled by the application of external electric fields. Our results indicate that
periodically strained graphene is a versatile platform to explore emergent electronic states
arising from correlated elastic Landau levels.

10.1 Introduction

One of the key features of graphene’s electronic structure is that low-energy electrons
behave as massless Dirac fermions.53,54 Among the successful applications of this model,
we can highlight the prediction of the so-called zeroth Landau level (ZLL) formed exactly
at the Fermi energy,63,54,48,59 in contrast to the well-known behaviour for systems with
parabolic low-energy dispersion.60,61,172 The high density of states resulting from the flat
band dispersion leads to electronic instabilities at half-filling, e.g. the formation of canted
antiferromagnetic ordering in the quantum Hall edge modes.117,173,51,122,50,49

The content of this is chapter has been previously published as Antonio L. R. Manesco, J. L. Lado,
Eduardo V. S. Ribeiro, G. Weber, and D. Rodrigues Jr., Correlations in the elastic Landau level of
spontaneously buckled graphene, 2D Mater. 8 015011 (2021).

https://doi.org/10.1088/2053-1583/abbc5f
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Interestingly, the emergence of Landau levels is not a unique consequence of orbital
magnetic fields. They also appear when the system is subjected to pseudo magnetic
fields (PMF) and their corresponding pseudo-axial gauge fields, for example, due to the
presence of strain,66,174–179 modulated interlayer hopping,180 or interlayer bias.170 In these
artificial Landau levels, which also appear in twisted bilayer graphene systems displaying
the so-called magic angle flat bands bands,181,13,180,182 electronic instabilities are also
present.67,12,183–187,10 The emergence of correlations in van der Waals superlattices has also
been reported in a variety of Moiré graphene multilayers188,189 and Moiré dichalcogenide
multilayers,190,191 suggesting that van der Waals systems combining both graphene and
dichalcogenides can provide an additional new platform for correlated physics.

Here we put forward a minimal graphene-based van der Waals multilayer system
showing a correlated state, stemming from the emergence of localized modes associated to
an elastic gauge field. Our results build on top of recent experimental reports regarding the
formation of buckled graphene superlattices when the material is placed on top of hBN or
NbSe2 substrates.15 Indeed, the experimental data shows the formation of Landau subbands
with sublattice polarization – a distinctive signature of PMF, suggesting a low energy
description realizing a periodically-modulated pseudo-axial gauge field.15,192,15 Furthermore,
electronic correlations were observed when tunning the system to half-filling,15 consitent
with the results showed in this paper.

We investigate the effects of electronic interactions in the pseudo Landau level of
buckled graphene, showing the emergence of localized correlated states. In particular, we
show the emergence of a periodically-modulated ferrimagnetic groundstate, realizing a
magnetic honeycomb superlattice. We also consider the effects of charge doping, motivated
by the possibility of gate-tuning graphene/hBN heterostructures, and spin-orbit coupling
(SOC) due to the lack of inversion symmetry. The first shows optimal magnetization for
half-filling, consistent with the correlation gap opening experimentally oberved,15 while
the second leads to a non-collinear ferrimagnetic ordering. Finally, we show that the
presence of an external perpendicular electric field breaks the global sublattice symmetry
as an effective mass in the superlattice scale, suppressing the magnetic ordering when this
effective mass is comparable with the gap size.

The chapter is organized as follows. Sec. 10.2 is devoted to introducing the studied
model. In Sec. 10.3, we present key results regarding the magnetic ordering and the effects
of gate-tuning, SOC and an external electric field on the interacting system. Finally, in
Sec. 10.4, we summarize our results.
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10.2 The system

In this section, we consider a model for interacting electrons in graphene with a
buckled superlattice, as depicted in Fig. 18 (a). The source code and data used to produce
the figures in this chapter are available.193 Our starting point is the nearest neighbour
tight-binding model for a pristine graphene sheet:

H = −t
∑

s

∑

〈i,j〉

c†iscjs + U
∑

i

c†i↑ci↑c
†
i↓ci↓, (10.1)

where c(†)
is annihilates (creates) electrons in the position i with spin s. For the sake of

lower computational costs, we rescaled the system according to the procedure described
in166,184,183. Namely, we guarantee that the linear dispersion is preserved by fixing the
Fermi velocity as vF ∝ ta, where t is the hopping energy and a is the lattice constant.
Hence, we can change the lattice constant as a→ βa as long as we compensate the hopping
energy by making t→ t/β. We consider the effects of interactions by setting a finite value
for the Hubbard constant U , which we rescale as U → U/β to fix the ratio U/t. Unless
explicitly written, all the results presented in this paper were obtained for a supercell with
25× 25 unit cells, corresponding to β ∼ 2− 3, considering the supercell lattice constant
LM ∼ 14− 18nm.15 We also keep U = t in all calculations, a conservative value compared
with the DFT estimations of U ≈ 2t194 to ensure our results hold even if the strain is
smaller than the observed values. The reduced Brillouin zone for the supercell is depicted
in Fig. 18c. The interacting Hubbard term is solved at the mean-field level.

In the presence of strain, the lattice translational symmetry is broken. Therefore,
we must relax the condition that the hopping energy t (and vF as well) is a constant and
consider three non-equivalent hopping energies, ti, i ∈ {1, 2, 3}, as shown in Fig. 18 (b).
We can parametrize them as

ti = t+ δti, (10.2)

with δti being the difference between the new hopping energy and the one for free-standing
graphene.

The low-energy description obtained by substituting Eq. 10.2 into Eq. 10.1 corre-
sponds to a modified Dirac Hamiltonian with an additional gauge field that depends on
the new hoppings as:

Ax =

√
3

2evF
(t3 − t2), (10.3)

Ay =
1

2evF
(t2 + t3 − 2t1). (10.4)

For the system under investigation, the corresponding PMF landscape was obtained by a
combination of charge distribution and Landau level spacing obtained from STM and is
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Figure 18 – (a) Representation of the buckled graphene superlattice. The colors represent the
magnitude of the PMF, Eq. 10.5 (red is for positive and blue for negative). (b) In
the presence of strain, the three hopping energies of an arbitrary atom have their
degeneracy broken and we distinguish them by indexing them as ti, i ∈ {1, 2, 3}. (c)
Representation (out-of-scale) of the reduced Brillouin zone for the supercell considered
in this chapter (small hexagon) in comparison with the larger Brillouin zone obtained
with graphene’s crystal vectors (large hexagon). This reduced Brillouin zone is a
consequence of the long-wavelength PMF. The high-symmetry points are represented
with lowercase letters to distinguish them from graphene’s original Brilluin zone
high-symmetry points. (d) Valley flux for a system with a 25× 25 supercell.

Source: author.

given by:15,192,15

B(r) = Beff

3∑

i=1

cos(bi · r), (10.5)

with

b1 =
2π

LM

(
− 1√

3
, 1, 0

)
, (10.6)

b2 =
2π

LM

(
2√
3
, 0, 0

)
, (10.7)

b3 =
2π

LM

(
− 1√

3
,−1, 0

)
. (10.8)
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It can be implemented by taking:

δti = −
√

3evFLM
4π

sin(bi · r). (10.9)

Thus, the resulting gauge choice explicitly preserves the C3 symmetry in the tight-binding
basis. Due to the rescaling of the system, we will measure the magnetic field in terms of the
dimensionless parameter LM/lB, where lB =

√
~/eBeff. Taking B = 120T , LM/lB ∼ 6−8,15

so we take the intermediate value of LM/lB = 7 for our simulations. In fact, Fig. 20 shows
that a correlated state takes place at values slightly below LM/lB = 6, even with U = t.
Therefore, using realistic values of U ≈ 2t194 a spontaneous symmetry breaking is expected
within the experimental range.

The emergence of a pseudo-axial gauge field can also be explicitly derived from
the real-space tight-binding model in Eq. 10.1 with hopping constants given by Eq. 10.2
without resorting to the low-energy description. For this purpose, we consider the real-space
valley Berry flux χ(r) and define the valley Chern number of the system as its integral
over the unit cell:

CV = CK − CK′ =

∫

u.c.

χ(r)d2r. (10.10)

The real-space valley Berry flux in the tight-binding model is equivalent to the analytically
derived valley-dependent magnetic field, and therefore will reflect the real-space structure
of the emergent magnetic field explicitly in the full tight binding model across the unit cell.
The real-space valley Berry flux can be computed within the Green’s function formalism
as:195,183

χ(r) = 〈r|
∫ 0

−∞
dω

∫

BZ

d2k

(2π)2

εαβ
2
GV (∂kαG

−1
V )(∂kβGV )|r〉. (10.11)

Here, εαβ denotes the Levi-Civita tensor,

GV = [ω −H(k) + i0+]−1PV (10.12)

the Green’s function associated to the Bloch Hamiltonian H(k), and PV the valley
operator.170,169,196 As shown in Fig. 18 (d), it is clearly observed that certain regions of
the system show a positive valley flux, whereas others have negative flux. The negative
valley flux is associated with the regions with compressive anisotropic strain, whereas the
positive valley flux is associated with tensile anisotropic strain. This is the very same
phenomenology expected from the artificial magnetic field obtained with a low energy
Dirac expansion, reinforcing the connection between the low energy model and the exact
solution of the tight-binding model.

We now study the electronic dispersion in the absence (Fig 19 (a)) and presence
(Fig 19 (b)) of electronic interactions. In the non-interacting case, the system remains
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gapless even in the presence of modulated strain, but with a highly reduced Fermi velocity
due to a bandwidth quench to W ∼ 0.2t (Fig 19 (a)). Moreover, we observe that the strain
modulation does not create intervalley scattering by projecting the resulting band diagram
onto the valley states by means of the valley polarization operator PV ,170,169,196 see Fig
19 (a). Hence, valley is still a good quantum number. Interestingly, when interactions
are turned on (Fig 19 (b)), a correlation gap ∆corr ∼ 0.01t, consistent with the recent
experiment,15 opens up in the electronic structure stemming from an emergent magnetic
state that slightly breaks sublattice symmetry of the electronic spectrum, which was also
experimentally observed.15 We highlight that such magnetism is not expect for pristine
graphene with U = t, and, therefore, the bandwidth quench caused by strain is essential
for a correlated state, since W � U . In the following, we address in details the origin of
this symmetry breaking.

Figure 19 – (a) Band diagram for a non-interacting system consisting of a periodically strained
graphene sheet projected onto the valley degrees of freedom, showing the absence
of inter-valley mixing. (b) Selfconsistent band diagram for the corresponding inter-
acting system projected onto sublattice degrees of freedom, showing an spontaneous
sublattice asymmetry. The color scale in (a) indicates +1 for valley K and −1 for
K ′, while in (b) +1 corresponds to sublattice A and −1 to sublattice B.

Source: author.

10.3 Magnetic ordering

10.3.1 Formation of periodically-modulated magnetization

To better understand the emergence of the correlated state, it is convenient to look
at the spatial distribution of the low energy states in the absence of interactions (Fig. 20
(a)). The spatial distribution of these states corresponds to the zones of the superlattice
under the influence of a strong elastic gauge field. Hence, according to the previous low
energy discussion, these regions would be associated to zero pseudo Landau levels. A
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Figure 20 – (a) Local density of states for the non-interacting case and (b) magnetization along
the z-direction revealing antiferromagnetic ordering for the interacting case. A closer
analysis reveals a ferrimagnetic periodic ordering, with the ferromagnetic component
changing in sign with B(r). (c) The dependence of both the modulated ferromagnetic
(Ξ) and antiferromagnetic (N ) order parameters on the PMF for a 10× 10 supercell.

Source: author.

closer look also reveals that each extrema of the local density of states (LDOS) is strongly
sublattice polarized, with the occupied sublattice depending on the PMF direction, as
expected197 and experimentally observed.15 The localized states resulting from the buckling
pattern indeed present non-zero magnetic order parameters when Hubbard interactions
are considered. As expected, the magnetization (Fig. 20 (b)) correlates with the density of
states of the non-interacting system (Fig. 20 (a)).

Figure 20 (b) shows the development of a periodically-modulated ferrimagnetic order
parameter, which can also be interpreted as an antiferromagnetic signal with a noticeable
sublattice imbalance due to the superposition of a smaller ferromagnetic signal, see Fig. 20
(c), in agreement with previous studies of a similar system.67 The ferrimagnetism, in a first
look, is counterintuitive following Lieb’s theorem for a bipartide lattice,198 and requires,
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thus, a sublattice symmetry breaking. That is provided by the PMF,197 as discussed in the
previous paragraph. Furthermore, even though the groundstate is ferrimagnetic, the net
magnetization of the system is zero. That is again a consequence of the pseudomagnetic
field, since the sublattice polarization depends on the PMF sign. In other words, it is a
consequence of the sublattice symmetry being broken only locally, but globally preserved
with such PMF landscape.

In order to properly quantify the magnetization using global values within the
supercell, one must carefully choose the order parameters. Since we are dealing with a
system with ferrimagnetic ordering (in other words, a superposition of spatially-modulated
antiferromagnetic and ferromagnetic order parameters), a good representative quantity is
the standard Nèel order parameter:

N =

∣∣∣∣∣
∑

i

(mi · ẑ)σi

∣∣∣∣∣ , (10.13)

where mi is the magnetic moment at position i and σi is the corresponding sublattice index
±1. It is interesting to note that the magnetization profile shown in Fig. 20 (b) corresponds
to an emerging honeycomb superlattice (actually, such emerging superlattice is already
visible in the non-interacting LDOS profile in Fig. 20 (a)). Namely, we can distinguish two
different ferrimagnetic regions with net magnetization Mz > 0 and Mz < 0 with majority
of electrons located at A and B sublattices, respectively. Each of these regions can be
understood as different Wannier orbitals of the emerging superlattice. Therefore, defining
the usual ferromagnetic order parameter

∑
i mi · ẑ is pointless, since the contribution of

neighboring Wannier orbitals will cancel themselves out, leading to zero net contribution.
A better idea is then to modulate the usual ferromagnetic order parameter with a function
that changes in sign for different superlattice Wannier orbitals. In fact, this can be done
by considering the sign of the PMF. Namely,

Ξ =

∣∣∣∣∣
∑

i

sgn [B(ri)] (mi · ẑ)

∣∣∣∣∣ . (10.14)

The resulting order parameter Ξ is intuitively understood as the superstructure’s Nèel
order parameter. Thus, all the phenomenology can be reduced to the analysis of such
emerging honeycomb structure. We emphasize that Eq. 10.14 does not imply a dynamical
coupling between the electronic spins and the PMF, but it reflects an indirect correlation
between the magnetization and the PMF caused by sublattice plarization at the zeroth
pseudo Landau level.197

We show in Fig. 20 (c) the dependence of both magnetizations on the PMF,
indicating a clear phase transition. As a matter of fact, previous results showed that the
scale-independent parameter is actually the product between the PMF and the number of
sites inside the supercell,67 a conclusion we verified for the system under consideration.
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Figure 21 – (a, b) In plane magnetization for both sublattices of the emerging honeycomb
superlattice, showing that the groundstate presents non-collinear magnetism. In (a),
we zoom in the regions corresponding to Mz < 0 from Fig. 20 (b), while in (b), in
the regions correponding to Mz > 0. The out-of-plane component, however, is about
an order of magnitude larger and is qualitatively the same as in the case without
SOC. (c) Dependency of magnetization with the filling factor for a 10× 10 supercell
showing that the magnetization is sensitive to doping.

Source: author.

The transition occurs slightly below LM/lB = 6, meaning that a magnetic groundstate is
expected for PMFs within the experimental range,15 even using a conservative value of
U = t, implying that for a realistic Hubbard coupling constant (U ≈ 2t)194 a spontaneous
symmetry breaking is expected even for lower strain values.

10.3.2 Effects of doping and spin-orbit coupling

We now consider two relevant effects: (i) charge doping due to gate-tuning and
(ii) effects of spin-orbit coupling (SOC) due to the breaking of inversion symmetry in the
presence of a substrate.

Considering charge doping, one can check in Fig. 21 (c) a rapid decay in the
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magnetic ordering as one goes away from half-filling. This result is consistent with the
experimental observation of a gap opening as the Fermi energy approaches half-filling

We include spin-orbit coupling stemming from broken mirror symmetry with the
substrate by adding a Rashba-like term to the graphene Hamiltonian:

HSOC = iλR
∑

i,j

(dij × σs,s′c†iscjs′) · ẑ, (10.15)

with λR = 0.015t to match ab initio estimations for graphene/NbSe2 heterostructures.199

Spin-momentum coupling explicitly breaks the spin rotation symmetry, allowing in-plane
contributions to the magnetization to appear, as shown in Fig. 21 (a, b). On the other
hand, the out-of plane contribution is an order of magnitude larger and qualitatively equal
to calculations without SOC.

10.3.3 Breakdown of magnetic ordering with electric fields

The buckling pattern induces a non-homogeneous height variation of the graphene
sheet with respect to the underlying substrate. Hence, the application of a perpendicular
electric field should induce non-homogeneous energy shifts in real space. To account for
this phenomenology, we consider the contribution from the following Hamiltonian:

Helec =
3∑

i=1

µ(ri)c
†
iscis , µ(r) = µ0

3∑

i=1

cos(bi · r), (10.16)

where µ0 = E δh/4.5 is proportional to the electric field E and the buckling amplitude
δh = 0.4nm (the factor 4.5 comes from the amplitude of the summation in Eq. 10.16). It
is important to emphasize a peculiar feature of the heterostructure we consider in this
chapter which is not expected for similar systems, e.g. corrugated graphene.177 Namely,
the functional forms of µ(r) (Eq. (10.16)) and the PMF B(r) (Eq. (10.5)) match. This is
a direct consequence of the PMF following the topography modulation in the system.15

Such unique property results from a strong in-plane deformation which is hard to extract
from STM measurements.a Indeed, this feature is essential for the electric tunnability of
the system, since the nonzero values of µ(r) coincide with the locations with higher local
density of states.

The resulting band diagram for the noninteracting system in Fig. 22 (a) shows
that, in the presence of such perpendicular electric field, a gap opens and global sublattice
symmetry breaks. It is straightforward to understand this effect, if we consider the emerging
honeycomb superlattice: the electric field has the same effect as a sublattice mass in the
superlattice.

a Privite communication with Slaviša Milovanović.
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Figure 22 – (a) Band structure in the presence of a perpendicular bias, showing the emergence
of a gap stemming from sublattice inequivalence (µ0 = 0.005t). This bias induced
gap is expected to compete with the interaction induced gap. (b) Dependence of the
magnetization on the external perpendicular electric field for a 10× 10 supercell.

Source: author.

When electronic interactions are considered, one must expect a competition between
two effects. In the presence of a finite sublattice mass, states with positive energy will be
located in the sublattice A, while negative states, in the sublattice B, as one can see in
Fig. 22 (a). On the other hand, in the presence of magnetic ordering, both sublattices
are populated below and above the Fermi level, see Fig. 19 (b). As the sublattice mass
increases, just one sublattice becomes populated below the Fermi energy, with both spin-up
and spin-down states. In other words, one should expect that the magnetic ordering should
be suppressed when the sublattice mass is larger than the antiferromagnetic gap, which
should happen for E ∼ 0.1V/nm. Indeed, that is exactly what we observe in Fig. 22 (b).

10.4 Summary

We showed that the zeroth pseudo Landau level subband formed in buckled
graphene superlattices hosts a periodic magnetically ordered groundstate at half-filling, in
agreement with recent experimental results. This periodic pattern results in an emerging
antiferromagnetic honeycomb superlattice. Moreover, we showed that in the non-interacting
scenario, a perpendicular electric field opens up a gap and can be interpreted as a
sublattice effective mass in the superlattice scale. Interestingly, in the interacting case,
the competition between the bias induced mass and the antiferromagnetic gap provides
a route for electrically controlling the magnetic groundstate of the system. Our results
show that strained graphene provides a powerful two dimensional platform to explore
correlated physics in hybrid van der Waals structures, and to study the interplay between
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artificial gauge fields and interactions. Finally, it is worth noticing that the interplay
of such magnetic state with the NbSe2 superconductivity, not addressed in the current
chapter, can lead to a versatile platform to explore superlattice Yu-Shiba-Rusinov physics,
and ultimately Majorana states.



11 Correlation-induced valley topology in

buckled graphene superlattices

Eu quero dizer
Agora o oposto do que eu disse antes
Eu prefiro ser
Essa metamorfose ambulante

Raul Seixas, Metamorfose Ambulante

Flat bands emerging in buckled monolayer graphene superlattices have been re-
cently shown to realize correlated states analogous to those observed in twisted graphene
multilayers. Here, we demonstrate the emergence of valley topology driven by competing
electronic correlations in buckled graphene superlattices. We show, both by means of
atomistic models and a low-energy description, that the existence of long-range electronic
correlations leads to a competition between antiferromagnetic and charge density wave
instabilities, that can be controlled by means of screening engineering. Interestingly, we find
that the emergent charge density wave has a topologically non-trivial electronic structure,
leading to a coexistent quantum valley Hall insulating state. In a similar fashion, the
antiferromagnetic phase realizes a spin-polarized quantum valley-Hall insulating state.
Our results put forward buckled graphene superlattices as a new platform to realize
interaction-induced topological matter.

The data shown in the figures, as well as the code generating all of the data in this
chapter is available on Zenodo.200

11.1 Introduction

Mesoscopic systems provide a powerful platform to design quantum matter,14,201–204

with the paradigmatic example of topological superconductivity artificially engineered
in hybrid systems.24,130,33,43,28,40,205–208 Moire two-dimensional materials have risen as a
tunable platform to engineer states of matter,204 ultimately allowing to explore a variety of

The content of this is chapter has been previously submitted as a preprint as Antonio L. R. Manesco,
J. L. Lado, Correlation-induced valley topology in buckled graphene superlattices, arXiv:2104.00573.

https://arxiv.org/abs/2104.00573
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controlable correlated states.209–212 This emergence of tunable correlations stems from the
quench of kinetic energy in emergent flat bands, controllable by twist engineering.213–215

A variety of twisted van der Waals materials have been demonstrated in this direction,
including bilayers, trilayers and tetralayers.12,189,216–219

Beyond the wide family of twisted moire multilayer heterostructures,204 monolayer
graphene has also been experimentally shown to realize moire-induced correlation physics in
the single layer limit.15 The field of straintronics, i.e., the control of electronic properties of
materials with strain,220 has shown different methods to create two-dimensional periodically-
strained superlattices, from substrate engineering221 to inducing buckling transitions during
fabrication.15 From a low-energy perspective, strain fields act as valley-dependent pseudo-
magnetic fields, leading to the emergence of pseudo-Landau levels.66,179,222,223 From a
critical value of in-plane strain, the elastic energy is spontaneously reduced with out-of-
plane distortions,224–226 as depicted in Fig. 23(a). The electronic structure reconstruction
due to the strain field leads to the formation of nearly flat bands.15,192 Moreover, the
bandwidth suppression enhances the interaction effects and leads to electrically-controllable
correlated phases.15,16

Here we show that buckled graphene superlattices yield correlation-induced topo-
logical states, stemming from the combination of pseudo-Landau levels and non-local
electronic interactions.15,16 In particular, we demonstrate that the low-energy states gener-
ated by the buckling [Fig. 23(b)] show an emergent honeycomb structure. Also, similarly
to free-standing graphene, the bandstructure [Fig. 23(d)] has Dirac cones at the corners
of the mini-Brillouin zone.16 We derive the low-energy model describing the bands closer
to the Fermi energy (Sec. 11.2), and explore the impact of electron-electron interactions,
showing the existence of charge density wave and antiferromagnetic ground states (Sec.
11.3). Interestingly, these phases driven by electronic interactions show finite valley Chern
numbers, and associated topological surface states. We finally demonstrate the robustness
of our model by comparing it with full atomistic selfconsistent calculations, showing analo-
gous phenomenology as the one predicted by the effective model. Our results demonstrate
that buckled graphene monolayer can sustain a rich family of correlated topological states,
realizing analogous physics to twisted graphene multilayers in the single monolayer limit.

11.2 The system

First, we review the electronic structure obtained with atomistic calculations
discussed in Chapter 10. Under the periodic pseudo-magnetic field in Eq. 10.5, the
electronic structure is folded into the mini-Brillouin zone defined by the bn vectors from
Eq. 10.6 [see Fig. 23(c)], and the hoppings are modulated as Eq. 10.9. As the strain takes
a finite value, the crossings due to band foldings are split, creating mini-bands [see 23(d)]
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Figure 23 – (a) Scheme of the buckled graphene superlattice studied. The B-field is the same as
in Eq. 10.5 (b) Local density of states from full-lattice calculations. It is possible to
note the emerging honeycomb structure. Valley-projected band structures from a
full-lattice simulation of a buckled graphene superlattice (c) in the absence of strain
and (d) in the buckled state. The dashed grey regions indicate the active bands for
which we derive the effective model.

(a) (b)

(c) (d)

Source: author.

which we interpret as pseudo-Landau bands.15,16 Hence, quasiparticles feel a bandwidth
quench.

We perform the valley projection in full-lattice calculations (Figs. 23d and 28) com-
puting the expectation value of the anti-Haldane coupling, 〈V 〉 = 〈Ψ|V |Ψ〉, with169,170,227

V =
i

3
√

3

∑

〈〈i,j〉〉

ηij(σz)ijψ
†
iψj, (11.1)

where ηij = ±1 for clockwise/anticlockwise hopping, 〈〈i, j〉〉 denotes a sum over second-
neighbors, and σz acts om sublattice degrees of freedom.

From the local density of states plot in Fig. 23(b), obtained with full-lattice tight-
binding calculations described in Chapter 10,16 it is possible to infer that the system has
an emerging honeycomb superlattice. The Wannier sites are localized at the minima and
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Figure 24 – (a) Schematic representation of the effective model in Eq. 11.2. (b) Valley-projected
bandstructure of the effective model described by the Hamiltonian 11.2 with m =
M = t̃.

(a) (b)

Source: author.

maxima of B(r) [Eq. 10.5] since the characteristic length
√
~/eB(r) is smaller near the

extrema. The two extrema (minimum and maximum) correspond to the two sublattices of
this effective honeycomb structure. To reduce the computational cost of our numerical
calculations, we now focus on the low-energy model describing these Wannier states, i.e.,
on the active bands closer to the Fermi energy, highlighted in Fig. 23(d). This approach is
analogous to low-energy models of twisted-bilayer graphene.

From both the space-dependent hopping constants (Eq. 10.9) and density of states
[Fig. 23(b)], we conclude that the system is invariant under C3-rotations. Moreover, the
bandstructure in Fig. 23(d) suggest that valley number is a conserved quantity. Finally, in
the absence of electronic interactions, the system has time-reversal symmetry. With the
current constraints, we find that the family of honeycomb Hamiltonians restricted to these
symmetries is228

H = −µ̃
∑

i

∑

s,τ

c†isτcisτ +m
∑

i

∑

s,τ

(σz)iic
†
isτcisτ (11.2)

− t̃
∑

s,τ

∑

〈i,j〉

c†isτcjsτ + iλ
∑

s,τ

∑

〈〈i,j〉〉

(τz)ττηijc
†
isτcjsτ

where c†isτ are creation and cisτ annihilation operators operators at the site i, sublattice σ,
valley τ , and spin s. The Pauli matrices σi and τi act on sublattice and valley degrees of
freedom. The onsite energy and the hopping constants are denoted by µ̃ and t̃ to distinguish
from the atomistic model. There is also a sublattice imbalance m and a valley-dependent
second-neighbors hopping λ. An scheme of this model is shown in Fig. 24(a). Note that,
since the Brillouin zone of this system corresponds to the mini-Brillouin zone from the
atomistic model, there is an extra mini-valley degree of freedom corresponding to the two
nonequivalent points κ and κ′ in effective model Brillouin zone.
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It is visible that the Hamiltonian of Eq. 11.2 is equivalent to the Kane-Mele (KM)
model: it consists on the tight-binding model of a honeycomb structure with a sublattice
imbalance and a second-neighbors hopping that depends on the valley isospin. The mapping
between both models is made by identifying the valley isospin in the buckled superlattice
to spin in KM model (spinKM → valleybuckled), as well as identifying the mini-valleys
κ and κ′ in the buckled system to the valleys K and K ′ in KM model (valleyKM →
mini-valleybuckled).82,83 As shown in Fig. 24(b), the energy dispersion is similar to the
bandstructure of the full system [Fig. 23(d)] when m = 3

√
3λ =: M . Therefore, the non-

interacting strained system (without symmetry breakings) is enforced to have M = m = t̃

due to its gapless nature. Note that arbitrarily small variations of m/M open a gap in
the effective model. If δ(m/M) > 0, the system becomes a trivial insulator. On the other
hand, δ(m/M) < 0 opens a topological gap and the system becomes a quantum valley
Hall insulator, in analogy to the spin Hall insulator phase in the KM model.

Since the topographic shape of the buckling has the same functional form of B(r),
out-of-plane displacement fields lead to a modulation of onsite energies as shown in Eq.
10.16.16 Thus, near the maxima of B(r), µ(r) ≈ 3µ0, while µ(r) ≈ 3µ0/2 near the minima
of B(r). From the effective model perspective, the onsite energy modulation due to an
additional displacement field is:

Helec = 3µelec

∑

i∈A

∑

s.τ

c†isτcisτ −
3µelec

2

∑

i∈B

∑

s,τ

c†isτcisτ , (11.3)

where µelec ∝ µ0. The sum over i is performed on different sublattices in Eq. 11.3, since the
corresponding Wannier sites are located at the maxima and minima of µ(r). This extra
term modifies the Hamiltonian as m→ m+ 3µelec/2, and µ̃→ µ̃− 3µelec/2. Therefore, out-
of-plane displacement fields might be used as a knob to control the ratio m/M , ultimately
working as an electric control of the system’s topology, as shown in Fig. 25 (a).

11.3 Interaction-driven quantum valley Hall effect

The reduced bandwidth reduction due to the pseudo-magnetic field has been shown
to lead to a correlated phase.15,16 Yet, due to the degeneracy of the low energy states,
different groundstates may be realized in the system, depending on the range and strength
of interactions.50,48,49 The computational cost of full-lattice calculations makes an extensive
investigation of possible groundstates impractical. Hence, the reduced computational cost
with an effective model allows us to explore the phase diagram as a function of electronic
interactions.

To investigate the phase diagram of buckled graphene, we now include electronic
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Figure 25 – Valley Chern number dependence on (a) sublattice imbalancem and antiferromagnetic
mass mAF for the effective model, taking constant λ. Panel (b) shows the valley
Chern number obtained after including interactions in the model, as a function of
the Hubbard constant Ũ and nearest-neighbors interactions Ṽ . Solid lines indicate
a topological phase transition and dashed lines indicate m = M , which for mAF

corresponds to the non-interacting strained system.

Source: author.

interactions in the low energy model

Hint = Ũ
∑

α,β
α 6=β

∑

i

niαniβ + Ṽ
∑

〈i,j〉

∑

α,β

niαnjβ (11.4)

where Ũ is the onsite Hubbard interaction, Ṽ is the nearest-neighbor interaction, and
niα := c†iαciα is the number operator at the Wannier site i. The subindices α and β are a
short-hand notation to include both valley and spin degrees of freedom.

We solve this Hamiltonian by means of a mean-field approximation. Namely, we
make

Hint ≈ HMF =
∑

i,j,α,β

χijαβc
†
iαcjβ, (11.5)

and find χijαβ self-consistently. First, it is important to note that the interaction strengths
Ũ and Ṽ depend on the screening created by the substrate of the buckled structure,229

and as such can be controlled by screening engineering.229–232 In the following, we will
explore the potential symmetry broken states as a function of the two interaction strengths,
keeping in mind that such values would be controlled by substrate engineering. As we
change the ratio of the local and non-local interactions, we see that there are two different
groundstates, shown in the phase diagram of Fig. 26(c). The order parameters are extracted
by computing checking the matrix form of χijαβ: a change in the sublattice imbalance m is
interpreted as a charge density wave; while an additional term with the same matrix form
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Figure 26 – Illustration of (a) antiferromagnetic and (b) charge density wave groundstates. (c)
Phase diagram as a function of the coupling constants Ũ and Ṽ . The groundstate is a
charge density wave (CDW) unless Ũ is sufficiently high. For Ũ higher than a critical
value, an antiferromagnetic (AF) order develops. (d) System gap as a function of
the electron-electron couplings. It is visible that the gap closes outside the region in
which the broken symmetry changes.

(a) (b) (c) (d)

Source: author.

of Eq. 11.6 is interpreted as an antiferromagnetic order. A charge density wave, illustrated
in Fig. 26(b), develops and persists until the Hubbard constant reaches a critical value
at which an antiferromagnetic ordering, depicted in Fig. 26(a), occurs. For Ṽ = 0, this
critical value is Ũc ∼ 2t, as expected for honeycomb systems.194

From a mean-field perspective, the charge density wave groundstate leads to a change
in the sublattice imbalance. In other words, it leads to a transformation m→ m+mCDW.
The effects of an antiferromagnetic order lead to the additional term in the Hamiltonian
11.2:

HAF = mAFκ0 ⊗ τ0 ⊗ σz ⊗ sz, (11.6)

where sz acts on the spin space. Note that one can interpret the antiferromagnetic term as
a spin-dependent sublattice imbalance.

As discussed in Sec. 11.2, small variations on the ratio m/M lead to a gap opening.
That makes one wonder if there are topological phase transitions as we change the electron-
electron coupling constants. Hence, we compute, for different values of m and mAF, the
valley Chern number195,183

CV = CK − CK′ =

∫ 0

−∞
dω

∫

BZ

d2k

(2π)2

εαβ
2
GV (∂kαG

−1
V )(∂kβGV ). (11.7)

Here, εαβ denotes the Levi-Civita tensor,

GV = [ω −H(k) + i0+]−1PV (11.8)

the Green’s function associated with the Bloch Hamiltonian H(k), and PV = τz is the
valley operator.
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Figure 27 – Sublattice-projected bandstructure for selected Ũ and Ṽ showing all four distinct
phases: (a) charge density wave, (b) antiferromagnet, (c) quantum valley Hall insulator,
and (d) spin-polarized quantum valley Hall insulator.

Source: author.

We see in Fig. 25 (a) that there are two topologically nontrivial phases: one of them
is a QVHI for both spin channels (valley Chern number 4), the other is the one that we
predict to exist in a single spin channel (valley Chern number 2). The formation of both
phases is rather intuitive to understand. While the QVHI takes place when δ(m/M) < 0,
the sQVHI phase exist for any finite mAF. The reason is that while one spin channel suffers
a shift m → m + mAF, the other is shifted as m → m −mAF. Thus, one spin channel
becomes topological and the other becomes a trivial insulator. This is visible in Fig. 27: in
the QVHI phase [Fig. 27 (c)], all four bands show a band inversion; and in the sQVHI
phase [Fig. 27 (d)], only two out of the four bands show a band inversion. The band
inversion occurs in the spin channels for which the sublattice imbalance decreases.

Now we note that, even though there are only two regions in the order parameter
map of Fig. 26(c), there are several gap closings in Fig. 26(d). Reviewing the phase diagram
by also checking the valley Chern number, it is visible that varying Ũ and Ṽ yields four
distinct phases: trivial charge density wave and antiferromagnet, as well as topological
charge density wave (QVHI) and topological antiferromagnet (sQVHI). We also show
selected valley-projected band diagrams in Figs. 27 (a-d). While the trivial charge density
wave [Fig. 27(a)] and antiferromagnetic [Fig. 28(b)] bulk bands have well-defined sublattice
numbers, the QVHI [Fig. 27(c)] and the sQVHI [Fig. 27(d)] show a band inversion.

To compare with the effective model calculations, we perform self-consistent Hub-
bard mean-field calculations in a superlattice following our the results of Chapter 10.16

To reduce the computational cost, we rescaled the system as a → βa and t → t/β so
the Fermi velocity keeps constant.166 We choose, as an example, the Hubbard constant
to be U = 0.3t, resulting in a correlation gap in the bandstructure [see Fig. 28(b)]. The
gap is a result of a magnetic phase in the form of a superlattice-modulated ferrimagnetic
order [see Fig. 28(a)]. Integrating the magnetization in the vincinity of a minimum of
B(r) the magnetization is finite and positive, while it is negative in the neighborhood of
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Figure 28 – (a) Magnetization along the z-direction. A periodically modulated ferrimagnetic order
is formed. From a superlattice perspective, it corresponds to a antiferromagnetic
honeycomb structure. Results of full-lattice calculations with modulated hoppings
in Eq. 10.9 solved self-consistently with an additional Hubbard constant U = 0.3t.
Valley Chern number in a (b) infinite system and (c) in a nanoribbon. (d) y-position
projection of a nanoribbon bandstructure. We see that each edge has two counter-
propagating edge states with opposite valley-polarization.

(a) (b)

(c) (d)

Source: author.

pseudo-magnetic field maxima. In this situation, the system has a valley Chern number 2,
in accordance with our effective model calculations with an antiferromagnetic ordering.
We found that this system is in the sQVHI phase, with valley Chern number 2, compatible
with the magnetically ordered groundstate observed.16 The existence of topological edge
states is visible in the bandstructure of a nanoribbon, shown in Fig. 28(c) and 28(d). As
expected, we observe two counter-propagating (helical-like) edge states with opposite valley
numbers at both boundaries, similarly to the Kane-Mele model.82,83 Finally, we note that
the local charge accumulation with the periodic potential might also change the values
of Ũ and Ṽ . Furthermore, the increase of out-of-plane fields closes the antiferromagnetic
gap.16 Thus, electrostatic control is not only a knob to control topology, but also electronic
correlations.
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11.4 Summary

To summarize, we have shown that buckled graphene superlattices show spontaneous
symmetry breaking driven by electronic interactions, leading to a topological gap opening.
First, by combining atomistic low energy models with a symmetry analysis, we derived an
effective model for the lowest bands of buckled graphene superlattices. We then included
electronic interactions in a non-local form in the low-energy model, showing the emergence
of competing ground states. Namely, an antiferromagnetic and a charge density wave.
Remarkably, the spontaneous breaking of symmetries was shown to lead to a topological
gap opening for a wide range of the non-local interactions. The charge density wave
phase hosts a quantum valley Hall insulator, while the antiferromagnetic phase has a
spin-polarized quantum valley Hall insulator region in the parameter space. Our results put
forward buckled graphene superlattices as a platform to study interaction-induced valley
topology, and highlight that single layer moire systems can potentially host analogous
correlated states to those of complex twisted graphene multilayers.





Part III

Concluding remarks



And in the end
The love you take
Is equal to the love you make

The Beatles, The End

Graphene’s versatility led to several groundbreaking discoveries in the field of
Condensed Matter Physics. Not only the fabrication of high-quality two-dimensional
mesoscopic devices, but also the possibility to engineer correlated and topological phases.
The plethora of different phenomena reported and predicted in the last couple of decades
makes graphene a candidate to spintronics, valleytronics, twistronics, straintronics and
quantum computation. Combining graphene with other materials opens an even wider
range of possibilities. In this thesis, we covered experimental realizations of hybrid devices
that use graphene as a building block. We both investigated the current status of state-
of-art experiments as well as proposed new phenomena and ways to improve ongoing
experiments.

In Part I, we investigated electronic, topologial and transport properties of quantum
Hall graphene/superconductor junctions. First, a low-energy theory was derived using a
combination of wave-matching with Wilson masses to describe topological superconductivity
at half-filling. Our theory suggest the need to minimize intervalley scattering to open
the topological gap. Moreover, Fermi level mismatch must also be avoided to ensure a
finite gap. Thus, the topologically non-trivial phases is sensitive to parameters that are
challenging to control in experiments.

A recent Andreev conductance measurements in quantum Hall graphene devices
was then studied, as a way to better understand the current status of fabrication quality.
We investigated different mechanisms that could lead to interference of chiral Andreev
states recently reported in an experiment. We showed that lattice orientation produces
intervalley scattering, leading to interference-induced conductance oscillations when the
interface is along the armchair orientation. The interference, however, is rapidly supressed
as one moves away from the armchair orientation. Such perfect alignment with the armchair
orientation would be accidental in experiments. Hence, it is unlikely to be the reason of
the reported interference. However, if intervalley mixing is enhanced by disorder, irregular
oscillations in conductance as a function of magnetic field and gate voltage appear, in
good qualitative agreement with experiments.

We further consider Fermi level mismatch between the quantum Hall region and
the superconductor. Electrostatic simulations in previous works showed that the potential
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landscape is smooth, such that intervalley scattering is not possible. The mismatch, on
the other hand, locally changes the filling factor. Thus, close to the interface, non-chiral
edge states are also populated. The incoming edge states couples with the multiple edge
states, resulting on extra interference patterns.

Our analysis has several consequences to the interpretation of state-of-art experi-
ments. First, the similarity of our simulations including disorder with the experimental
data suggest that there is a need to improve the quality of graphene/superconductor
interfaces. A possible alternative is to use van der Waals superconductors, such as NbSe2.
The interference caused by Fermi level mismatch also motivates further attention to
the electrostatic profile close to the junction. Moreover, the existance of both effects is
detrimental to engineer Majorana zero modes.

We then moved to the investigation of recently fabricated graphene/NbSe2 hybrid
systems. It has been shown that compressive strain introduced during fabrication results in
a buckling transition to reduce elastic energy. The out-of-plane deformation has a periodic
pattern, resulting in superlattices with period ∼ 14 nm. The bandstructure resconstruction
due to strain leads to the formation of nearly flat bands.

The kinetic energy quench caused by the superlattice strain field enhances the
effect of electron-electron interactions. We showed that this buckled system undergoes a
spontaneous symmetry breaking, in agreement with experiments. Namely, we showed the
system has a modulated ferrimagnetic order parameter. Using the system’s topography,
we also showed that it is possible to electrically control the correlations. Finally, our
calculations showed that spin-orbit coupling leads to non-collinear magnetic groundstates.

Observing the local density of states at Fermi energy, we see that the studied
buckling pattern induces a honeycomb potential. Electrons are bounded to the lower and
upper bounds of the pseudo-magnetic field caused by strain. Using symmetry arguments,
we developed a low-energy theory for the system, reducing the computational cost to
evaluate the effects of external fields and interactions. Our calculations showed that the
system has two competing groundstates: charge density wave and antiferromagnetism,
both of which have a topological region. While the CDW phase is a quantum valley Hall
insulator, the AF phase is a spin-polarized quantum valley Hall insulator. Thus, this
buckled graphene superlattice is an ideal platform to design valley topology.

To summarize, in this thesis we explored the interplay of electronic correlations and
topology in hybrid graphene-based systems. We investigated two different systems explored
in recent state-of-art experiments. We suggested possible improvements for upcoming
experiments studying superconducting coherence in quantum Hall edge states, ultimately
aiming to create Majorana zero modes. We also predicted competing correlated phases in
buckled graphene superlattices, some of them showing non-trivial valley topology.
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APPENDIX A – Low-energy model at the

antiferromagnetic quantum

Hall/superconductor interface

A.1 Gamma matrices

The Γ-matrices appearing in (7.2) are defined as:

Γ0 := τ3 ⊗ ρ0 ⊗ s0 ⊗ σ0, (A.1)

Γ1 := τ3 ⊗ ρ0 ⊗ s1 ⊗ σ0, (A.2)

Γ2 := τ3 ⊗ ρ0 ⊗ s2 ⊗ σ0, (A.3)

Γ3 := τ0 ⊗ ρ3 ⊗ s3 ⊗ σ1, (A.4)

Γ4 := τ0 ⊗ ρ0 ⊗ s0 ⊗ σ3, (A.5)

Γ5 := τ1 ⊗ ρ0 ⊗ s0 ⊗ σ0, (A.6)

where {τν} corresponds to electron-hole, {ρν} to valley, {sν} to sublattice and {σν} to
spin degrees of freedom, respectively. The index ν = 0 corresponds to the identity and
ν = 1, 2, 3, to the three Pauli matrices in the usual representation.

A.2 Interface modes

The construction of a basis for the solutions of quantum Hall antiferromagnetic
graphene/superconductor junctions outlined in section 7.2 leads to the following set of
eigenspinors {ψκη}, κ, η = ±, in which the upper indices < and > indicate the regions
y < 0 and y > 0, respectively. Here, to avoid cluttering, we introduce the functions:

φ1(B,m, y) =
2me

1
2
y
√
B2y2+4m2

√
By
(
By −

√
B2y2 + 4m2

)
+ 4m2

, (A.7)

φ2(∆, µ, y) = e−∆y sin(µy), (A.8)

φ3(∆, µ, y) = e−∆y cos(µy), (A.9)
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so that the eigenspinor basis can be written as

ψ<++(y) =
1

N




0

0

0

0

0

φ1(B,m, y)

−φ1(B,m, y)

0

0

0

0

0

φ1(B,m, y)

0

0

φ1(B,m, y)




, ψ>++(y) =
1

N




0

0

0

0

−φ2(∆, µ, y)

φ3(∆, µ, y)

−φ3(∆, µ, y)

−φ2(∆, µ, y)

0

0

0

0

φ3(∆, µ, y)

φ2(∆, µ, y)

−φ2(∆, µ, y)

φ3(∆, µ, y)




, (A.10)

ψ<+−(y) =
1

N




0

0

0

0

φ1(B,m, y)

0

0

−φ1(B,m, y)

0

0

0

0

0

φ1(B,m, y)

φ1(B,m, y)

0




, ψ>+−(y) =
1

N




0

0

0

0

φ3(∆, µ, y)

−φ2(∆, µ, y)

−φ2(∆, µ, y)

−φ3(∆, µ, y)

0

0

0

0

φ2(∆, µ, y)

φ3(∆, µ, y)

φ3(∆, µ, y)

−φ2(∆, µ, y)




, (A.11)
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ψ<−+(y) =
1

N
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0

0
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1
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φ2(∆, µ, y)

φ2(∆, µ, y)

φ3(∆, µ, y)

0

0

0

0




, (A.12)

ψ<−−(y) =
1

N




φ1(B,m, y)

0

0

φ1(B,m, y)

0

0

0

0

0

−φ1(B,m, y)

φ1(B,m, y)

0

0

0

0

0




, ψ>−−(y) =
1

N




φ3(∆, µ, y)

φ2(∆, µ, y)

−φ2(∆, µ, y)

φ3(∆, µ, y)
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0

0

0

φ2(∆, µ, y)

−φ3(∆, µ, y)

φ3(∆, µ, y)
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0

0

0
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. (A.13)

We end this appendix with some important observations regarding the spinor
structure of the above basis. First, we note that in the QHAF region the well known
identification of valley and sublattice degrees of freedom at the zeroth Landau level
still holds, as well as the well defined spin polarization of these degrees of freedom.
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Indeed, this suggests that κ is related to valley polarization, whereas η is related to the
helicity of the modes. On the superconducting side, although both spin polarizations
are present, they are described by orthogonal functions. Thus, exactly at the interface,
corresponding to θ = π, only the chiral propagating modes remain. Finally, the presence
of superconductivity adds the charge-conjugation symmetry. So that by changing the
canting angle, the chiral superconducting modes become gapped and the system can be
regarded as an one-dimensional topological superconductor, as the effective Hamiltonian
(7.15) suggests.



APPENDIX B – Low-energy model at the

quantum Hall/superconductor interface

To derive the low-energy effective model presented in Sec. 9.4, we start with the
valley-symmetric Dirac-Bogoliubov-de Gennes Hamiltonian58 for graphene. We consider an
infinite system along the y-axis, for which the x < 0 region has a finite orbital magnetic
field and x > 0 has a finite superconducting order parameter (this is the k · p version
Eq. 9.2). Therefore, we have:

H = ~vτz ⊗ [−iρ0σx∂x + (kρ0 + k0ρz)⊗ σy]− µτz ⊗ ρ0 ⊗ σ0

+ τ0 ⊗ ρ0 ⊗ vA(x) · σ + ∆(x)τx ⊗ ρ0 ⊗ σ0, (B.1)

A(x) = (0,−Bx)Θ(x) , ∆(x) = ∆Θ(x), (B.2)

where the ρ, σ, and τ Pauli matrices act on valley, sublattice, and electron-hole spaces; k
is the momentum along the y-direction; k0 is the Dirac nodes momentum for an arbitrary
nanoribbon orientation; A is the gauge field; ∆ is the superconducting order parameter; µ
is the chemical potential; v is the Fermi velocity; and Θ(x) is the Heaviside step function.
We also simplify the problem by taking µ to be constant over the entire system.

We now compute the effective hamiltonian using first order in perturbation
theory43,44,102. The perturbation is

Hpert = ~v (kρ0 + k0ρz)⊗ σy, (B.3)

and the unperturbed term is

H0 = H −Hpert. (B.4)

Thus, the effective hamiltonian is obtained by computing

(Heff)ij := 〈ψi|Hpert |ψj〉 , (B.5)

where {ψi} are the zero-energy solutions of H0.

In order to find {ψi}, we solve

∂xψ = m(x)ψ, (B.6)

m(x) =
iΓ−1

1

~v
[eBxΘ(x)Γ4 + µΓ0 −∆Θ(x)Γ3] , (B.7)
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where we used Γ-matrices defined as:

Γ0 := τz ⊗ ρ0 ⊗ σ0, (B.8)

Γ1 := τz ⊗ ρ0 ⊗ σx, (B.9)

Γ2 := τz ⊗ ρ0 ⊗ σy, (B.10)

Γ3 := τx ⊗ ρ0 ⊗ σ0, (B.11)

Γ4 := τ0 ⊗ ρ0 ⊗ σy, (B.12)

Γ5 := τz ⊗ ρz ⊗ σy; (B.13)

and fixed the Landau gauge Ax = 0, Ay = −Bx. Thus,

ψ(x) = ψi(x)eλi(x), (B.14)

where ψα(x) and λα(x) are the eigenvectors and eigenvalues of

M(x) =

∫ x

0

dξ m(ξ). (B.15)

We then have

ψi =
1

N
(
ψx<0
i Θ(−x) + ψx>0

i Θ(x)
)
, i = 1, 2, (B.16)

where N is the normalization constant,

ψx<0
1 =




g(x)

i

0

0

ig(x)

1

0

0




α(x) , ψx>0
1 =




i

i

0

0

1

1

0

0




β(x), (B.17)

and

ψx<0
2 =




0

0

g(x)

i

0

0

i

g(x)




α(x) , ψx>0
2 =




0

0

i

i

0

0

1

1




β(x), (B.18)
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with

g(x) = − 2µx

Bex2 − 2 (B2e2x2/4− µ2)1/2 |x|
, (B.19)

α(x) = e
−

(B2e2x2/4−µ2)
1/2
|x|

~vF , (B.20)

β(x) = e
−x(∆−iµ)

~vF . (B.21)

It is easy to see that ψ1 is a linear combination of an electron state at the valley K with a
hole state at valley K ′, while ψ2 is the opposite. Using Eq. B.5, it is straightforward to
obtain Eq. 9.8. Finally, the intervalley scattering term from Eq. 9.9 is obtained by adding
ωτ0 ⊗ ρx ⊗ σ0 to Eq. B.3.
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