• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.96.2011.tde-03012012-161225
Documento
Autor
Nombre completo
Vanessa Anelli Borges
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Ribeirão Preto, 2011
Director
Tribunal
Lima, Fabiano Guasti (Presidente)
Lima, Gerlando Augusto Sampaio Franco de
Minardi, Andrea Maria Accioly Fonseca
Título en portugués
Contribuição da segmentação de dados para a decisão de concessão de crédito ao consumidor: uma comparação de resultados
Palabras clave en portugués
análise discriminante
crédito
inadimplência
redes neurais
segmentação dos dados
Resumen en portugués
Este trabalho explora a contribuição da segmentação de dados, manual e estatística, combinada com análise discriminante e com redes neurais, para a tomada de decisão de concessão de crédito ao consumidor. A grande importância que a decisão de concessão de crédito tem para o mercado varejista e para a área de controladoria de uma empresa dão cenário para o aumento da relevância do gerenciamento do risco de crédito. O mercado necessita, cada vez mais, de modelos capazes de produzir boas expectativas do comportamento dos clientes, com vistas de reduzir perdas com inadimplência. Dado um banco de dados composto por 50 mil clientes de uma importante loja do setor varejista, primeiro aplica-se a análise discriminante, depois as redes neurais, para que se classifique a capacidade preditiva de cada técnica nesta etapa. Posteriormente, os dados são segmentados com base na região à qual a filial de venda pertence e, depois, por meio das análises de clusters K-Means e TwoStep Cluster. A próxima etapa compreende a aplicação da análise discriminante, depois das redes neurais, para cada um dos grupos formados, tanto pela segregação por região, quanto pela segregação por meio das técnicas de análise de clusters. A última etapa abrange a comparação da soma dos acertos dos bons e dos maus pagadores obtida tanto para análise discriminante, quanto para redes neurais, combinadas com a segmentação de dados, com os resultados obtidos na primeira etapa sem a segmentação dos dados. O modelo híbrido que combina a segmentação manual dos dados com análise discriminante e com redes neurais, formando-se 21 micro-regiões foi o que apresentou maiores porcentagens de acerto de classificação. O modelo híbrido que combina análise discriminante e redes neurais com a análise de clusters TwoStep Cluster não apresenta resultados de classificação adequados à proposta deste trabalho, devendo, portanto, ser descartado.
Título en inglés
Contribution of targeting data to the decision to grant credit to consumers: a comparison of results
Palabras clave en inglés
delinquency
discriminant analysis
neural networks
segmentation of data
Resumen en inglés
This paper explores the contribution of data segmentation, and statistical manual, combined with discriminant analysis and neural networks, for making the decision to grant credit to consumers. The great importance that the decision to grant credit is for the retail market and the area of controlling a business scenario to give increasing importance of managing credit risk. The market needs, increasingly, models capable of producing good expectations of customer behavior, in order to reduce losses from default. Given a database consisting of 50 000 customers of a major retail store, the first applies to discriminant analysis, then the neural networks, in order to classify the predictive ability of each technique in this step. Subsequently, the data are segmented based on the region to which the branch belongs to sell and then through the analysis of clusters K-Means and TwoStep Cluster. The next step involves the application of discriminant analysis, neural networks then, for each of the groups formed by both the segregation by region, by segregation and by the techniques of cluster analysis. The last step includes comparing the sum of the hits of the good and bad debtors obtained for both discriminant analysis and neural networks, combined with the segmentation of data, with the results obtained in the first stage - without the segmentation of the data. The hybrid model that combines the manual segmentation of the data with discriminant analysis and neural networks, forming 21 micro-regions showed the highest percentage of correct classification. The hybrid model that combines neural networks and discriminant analysis with cluster analysis results TwoStep Cluster does not have appropriate rating to the proposal of this work and should therefore be discarded.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2012-01-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.