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Abstract
Alves, C. R. A. (2023) Essays on macroeconometrics and financial econometrics:
a Bayesian approach. Doctoral Dissertation - Faculdade de Economia, Administração
e Contabilidade de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2023.

The goal of this doctoral dissertation is to showcase the importance and applicability of
Bayesian econometrics in the realm of financial and macroeconomic analysis. The thesis
is formed by four independent essays in macroeconometrics and financial econometrics,
in which the Bayesian estimation is the common factor of the four essays. In the first
article, a heteroscedastic structure with jumps is added to a structural model to measure
inflationary persistence in Brazil from 1995 to 2019. The general result is that includ-
ing stochastic volatility with jumps reduces intrinsic inflation persistence. In the second
article, the Brazilian Central Bank Communication is used to predict the yield curve.
The results indicate that the Central Bank Communication, measured by the sentiment
of the Central Bank, helps to predict the term structure of interest rate. In the third
article we explore the the analysis of Central Bank Communication and yield curve in
a in-sample perspective. The objective of this article is to investigate the bidirectional
relation between the Brazilian Central Bank Communication and the yield curve. The
results shown that the Central Bank Communication can shape yield curve curvature and
slope, and that there is a strong relation between monetary authority communication
and the curvature of the yield curve. Both article two and three present evidence that
words of monetary authority impacts market players, making it a valuable instrument for
monetary policy. The last article proposes an instrumental variable Bayesian shrinkage
approach to estimate the Capital Asset Pricing Model (CAPM) using a large set of in-
struments. Using simulated data, the proposed approach reduces the bias of estimation,
caused by measurement errors. In an empirical application, the proposed method deliv-
ered a different estimation from the traditional approach and this difference increases the
explanatory power of the Capital Asset Pricing Model in explaining the variation in the
average cross-sectional returns of assets.

Keywords: Inflation persistence, Monetary policy, Stochastic volatility, Yield Curve,
Sentiment Analysis, Bayesian Estimation, Instrumental Variable, Shrinkage prior.





Resumo
Alves, C. R. A. (2023) Ensaios sobre macroeconometria e econometria de fi-
nanças: uma abordagem Bayesiana. Tese (Doutorado) - Faculdade de Economia,
Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo, Ribeirão
Preto, 2023.

O objetivo desta dissertação de doutorado é mostrar a importância e aplicabilidade da
econometria bayesiana no domínio da análise financeira e macroeconômica. A tese é
formada por quatro ensaios independentes em macroeconometria e econometria financeira,
em que a estimação Bayesiana é o fator comum dos quatro ensaios. No primeiro artigo,
uma estrutura heterocedástica com saltos é adicionada a um modelo estrutural para medir
a persistência inflacionária no Brasil de 1995 a 2019. O resultado geral é que a inclusão da
volatilidade estocástica com saltos reduz a persistência intrínseca da inflação. No segundo
artigo, a Comunicação do Banco Central do Brasil é utilizada para prever a curva de juros.
Os resultados indicam que a Comunicação do Banco Central, medida pelo sentimento do
Banco Central, ajuda a prever a estrutura a termo da taxa de juros. No terceiro artigo
exploramos a análise da Comunicação do Banco Central e da curva de juros em uma
perspectiva in-sample. O objetivo deste artigo é investigar a relação bidirecional entre a
Comunicação do Banco Central do Brasil e a curva de juros. Os resultados mostraram
que a Comunicação do Banco Central pode moldar a curvatura e a inclinação da curva
de juros, e que existe uma forte relação entre a comunicação da autoridade monetária e a
curvatura da curva de juros. Tanto o artigo dois quanto o terceiro apresentam evidências
de que as palavras da autoridade monetária impactam os agentes do mercado, tornando-se
um instrumento valioso para a política monetária. O último artigo propõe uma abordagem
de encolhimento bayesiano de variável instrumental para estimar o Capital Asset Pricing
Model (CAPM) usando um grande conjunto de instrumentos. Usando dados simulados, a
abordagem proposta reduz o viés de estimativa, causado por erros de medição. Em uma
aplicação empírica, o método proposto forneceu uma estimativa diferente da abordagem
tradicional e essa diferença aumenta o poder explicativo do Capital Asset Pricing Model
em explicar a variação nos retornos transversais médios dos ativos.

Palavras-chaves: Econometria Bayesiana; Finanças; Macroeconomia; Previsão; Variá-
veis instrumentais; Função de Resposta ao impulso .
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1 General Introduction

Over the last decades, there have been significant transformations in the methods
used by researchers to examine economic and financial time series. The increase in com-
puter processing capacity has played a relevant role in these transitions. Researchers are
able to analyze large models in terms of parameters to estimate more than ever before.
These large models may appear either because of large data sets or because of the flex-
ibility in the structure of the model, such as time-varying parameters. In the wake of
computational improvements, Bayesian analysis has gained a highlighted role since it can
estimate complex models using prior knowledge and updating posterior probabilities by
iterative methods that usually require much computation resources.

Models involving a large number of parameters relative to the number of observa-
tions can be naturally dealt with by regularizing it via prior distribution. By combining
prior knowledge with sample information, Bayesian analysis allows us to make inferences
about parameters through analysis of their posterior distribution moments. The posterior
distribution for complex models, such as high-dimensional and non-linear models, usually
has no analytical form and requires simulation methods to estimate its moments. Indeed,
this is the case in many applications in finance and macroeconomics, which frequently
uses time-series data and is interested in latent states that depends on time, consequently
leading to high-dimensional integrals.

The Monte Carlo (MC) method, first introduced by Metropolis and Ulam (1949),
has played a crucial role in simulation methods for estimating posterior distributions
and served as the foundation for modern Markov Chain Monte Carlo (MCMC) methods.
While it could be argued that Monte Carlo was already in use before the twentieth cen-
tury1, Metropolis and Ulam (1949) were the pioneers to propose that statistical sampling
could approximate a solution to a problem without an analytical solution. This idea led to
the development of the Metropolis-Hastings (M-H) algorithm by Metropolis et al. (1953)
and further refinements by Hastings (1970), which is now one of the most widely used
MCMC algorithms for posterior distribution estimation.

The Metropolis-Hastings (M-H) algorithm is designed to generate a sequence of
samples from a Markov Chain that converges to the target posterior distribution, which
may not have a known analytical form or a simple direct way to sample from it. The
algorithm uses an instrumental distribution to generate candidate samples and an accept-
reject step to determine whether the candidate sample or the previous state is the next
value of the Markov Chain. Under certain conditions, the Markov Chain generated by
the M-H algorithm will converge to a stationary distribution equivalent to the target
posterior distribution (For a formal and clear explanation of the mechanism underlying
1 (HITCHCOCK, 2003, pp. 254)
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M-H, please refer Chib and Greenberg (1995)). It makes the algorithm a flexible tool
for estimating complex posterior distributions, with applications in various fields such as
macroeconomics and finance.

The extraction of the volatility of time series, for instance, is a task of interest
of both financial and macroeconomic fields (RUPPERT; MATTESON, 2011). Before
the Bayesian analysis of stochastic volatility models, introduced by Jacquier, Polson and
Rossi (2002), the literature had two options to extract volatility. The first was to estimate
the parameters of a stochastic volatility model via methods of moments and then use the
Kalman filtered (or smoothed) estimates of the volatility. The second approach is to
approximate a non-linear state-space model implied by the stochastic volatility model by
a normal-linear state-space model and then use quasi-maximum likelihood constructed
with the prediction error decomposition obtained from Kalman Filter. Jacquier, Polson
and Rossi (2002) proposed a Bayesian estimation of the stochastic volatility model that
uses the M-H algorithm. The Bayesian solution proposed by these authors dominates
both the method of moments and the quasi-maximum likelihood approaches.

While the Metropolis-Hastings (M-H) algorithm is a flexible and versatile method
for estimating posterior distributions, it can become computationally expensive in high-
dimensional parameter spaces. In such cases, the traditional M-H algorithm can require
large chains to achieve stationary, which can be time-consuming and challenging, even
with modern computational tools. To deal with this problem, the Markov Chain Monte
Carlo (MCMC) literature has evolved to include new algorithms for posterior distribution
sampling, including improved versions of the M-H algorithm.

For example, the Hamiltonian Monte Carlo (HMC) algorithm, also known as Hy-
brid Monte Carlo (DUANE et al., 1987; NEAL et al., 2011), is an efficient MCMC method
that uses gradient information to guide the sampling process, allowing for faster conver-
gence and more efficient exploration of the parameter space. HMC generally requires
much fewer iterations to converge to the stationary distribution than M-H. The cost per
iteration of HMC, however, is higher than that of M-H due to the inclusion of a numerical
integrator used to integrate the differential equations that describe Hamiltonian dynam-
ics. Another example of an MCMC algorithm is the Elliptical Slice Sampler (MURRAY;
ADAMS; MACKAY, 2010), which is less flexible than the M-H algorithm but is better
suited for certain types of distributions. This algorithm uses elliptical contours to define
the proposal distribution, which can be more efficient than the random walk proposal
distribution used in the M-H algorithm.

Overall, new and better posterior distribution sampling techniques have been dis-
covered in the MCMC literature, giving researchers a variety of alternatives to select from
based on the particular situation at hand. These methods have substantially broadened
the use of Bayesian inference, making it possible to analyze increasingly intricate models
and data sets. In this way, this thesis aims to investigate macroeconomic and financial
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issues using these new, advanced sampling techniques. The emergence of these innovative
techniques has made it feasible to study aspects of macroeconomics that were previously
too expensive or unattainable. This thesis utilizes these efficient MCMC methods to
investigate fresh applications in the fields of finance and macroeconomics.

This thesis is formed by four self-contained essays in macroeconometrics and fi-
nancial econometrics. The Bayesian estimation is the common factor of the three essays.
The first one involves a macroeconomic subject: we analyze the inflation persistence tak-
ing into account the stochastic volatility of inflation with changes in level. The second
and third essays treat a theme that is of interest to both macroeconomists and financial
economists: we investigate the impact of the Brazilian Central Bank on the yield curve
by examining both in-sample and out-of-sample effects. The fourth is related to a fi-
nancial econometric issue: we study the estimation of asset price models in a data-rich
environment, aiming to correct measurement errors present in such estimation.

The estimation process of the essays involves jumps in stochastic volatility, sparsity
in data, and regularization tools. These characteristics can be easily dealt with in the
Bayesian approach, using hierarchical models and MCMC methods. In the traditional
Classical approach, such characteristics may be very difficult or even impossible to esti-
mate, due to the difficulties in evaluating the likelihood function and moment conditions
or because of the ill-behaved likelihood function. In this sense, the Bayesian approach
plays an essential role in the estimation of such intricated models.

In Chapter 2, we present a new method for measuring inflation persistence. By
controlling for conditional heteroscedasticity and allowing for jumps in volatility. We find
that the Brazilian inflation persistence is lower compared to the traditional autoregressive
techniques that ignore the changes in volatility and changes in the inflation target. This
paper has been accepted in Economics Bulletin.

Chapter 3 presents evidence on how we can use text information extracted from the
Central Bank documents to better predict the yield curve. Results indicate that, together
with macroeconomic variables, the sentiment of the Central Bank helps to predict the yield
curve. This paper was published in the Journal of Forecasting.

In Chapter 4, the focus is on the relationship between central bank communication
and the yield curve, but with an in-sample perspective. The study evaluates how changes
in central bank communication affect the yield curve and vice versa. The results indicate
that changes in central bank communication affect the yield curve, and central bank
communication also responds to changes in the shape of the yield curve. Furthermore,
there is a strong association between central bank communication and the curvature of
the yield curve.

Finally, Chapter 5 is interested in estimating the capital asset price model in
the context of many instruments. To deal with the many instruments setting we use
a Bayesian regularization technique. Using synthetic data, the results indicate that using
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many instruments achieves better estimates, in terms of bias and variance. In an empir-
ical analysis, the study demonstrates that utilizing many instruments and the Bayesian
regularization technique can enhance the explanatory power of expected cross-sectional
returns.
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2 Measuring inflation persistence under time-
varying inflation target and stochastic
volatility with jumps

Abstract

We analyze whether the presence of a time-varying inflation target and stochastic volatil-
ity affect inflation persistence. We estimated different autoregressive specifications for
inflation with and without time-varying parameters. The results show that the infla-
tion persistence diminishes when we consider time-varying inflation target and stochastic
volatility with jumps. We conclude that neglecting the time variation in inflation target
and inflation volatility results in an upward-biased estimation of persistence.

Keywords: Inflation persistence, Time-varying parameters, Stochastic volatility.
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2.1 Introduction
How long inflation shocks last, and the magnitude of these shocks are measures

that interest monetary policymakers. These quantities are related to inflation persistence
and volatility, which can be obtained by estimating reduced-form models for inflation.
Inflationary processes may present changes in the mean (or inflation target) and the
variance (volatility) over time, and these changes may affect inflation persistence. Thus,
the implications of the time-varying inflation target and time-varying volatility on the
estimation of inflation persistence, if any, should be considered to give more accurate
information to policymakers. This paper addresses these implications.

The unconditional expectation of inflation may change over time due to shifts in
the inflation target, for instance. To capture these changes, researchers proposed the use
of time-varying mean parameters to model inflation and measure its persistence (COG-
LEY; SARGENT, 2001; DOSSCHE; EVERAERT, 2005; BILICI; ÇEKIN, 2020). Their
results showed evidence against constant mean for inflation. Furthermore, the variance
of inflation may be higher or lower over time. According to the literature on modeling
inflation, the volatility of shocks affecting inflation is also governed by a time-varying
parameter (COGLEY; SARGENT, 2005; LAURINI; VIEIRA, 2013). Consequently, mea-
sures of inflation persistence based on the constant mean and homoskedastic models for
inflation may be unreliable.

The literature on transitory and permanent decomposition in macroeconomic time
series usually applies it for the first moment. Examples of this approach are the work
by Stock and Watson (2007), which separates transitory and permanent components
for inflation, and Krane (2011), which uses the decomposition for the transitory and
permanent shocks to the output. The transitory and permanent decomposition of time
series second moment is less common and has been little explored in the literature for
inflation.

The volatility may vary due to institutional or structural changes, representing
permanent shifts, while other sporadic variations represent transitory movements. The
model of stochastic volatility with jumps introduced by Qu and Perron (2013) allows us to
separate these two kinds of changes in the inflation volatility, just as the finance literature
has done (see, e.g., Chaim and Laurini (2018)). Extracting these two components of
inflation volatility gives us information about the magnitude of shocks affecting inflation.

Besides the inclusion of jumps in the inflation volatility, there is no evidence of
the effects of stochastic volatility with jumps (SVWJ) and time-varying inflation target
(TVIT) on inflation persistence. Thus, this paper aims to verify if the presence of a TVIT
and SVWJ affect inflation persistence. To this end, we examine Brazilian inflation data
from 1995 to 2020, which is an interesting case since it includes different levels in the
mean and a relevant institutional change with the inflation target adoption in 1999.

The contribution of this paper is two-folded. First, we analyze how the inclusion
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of TVIT and SVWJ affects inflation persistence. Accordingly, we compare specifications
with and without these characteristics. To model the TVIT, we use the approach of Doss-
che and Everaert (2005). Second, we verify if there exist permanent changes in inflation
volatility by implementing the Qu and Perron (2013) approach to model volatility.

Our approach to decomposing the inflation time series is related to the literature
initiated by Nelson and Plosser (1982), which argues that, in general, macroeconomic
time series are better described by a non-stationary process. Later, this literature was
extended by Perron (1989), which showed that if one considers a breaking point in the
time series, the measure of persistence is affected. Our approach allows multiple breaks
in the inflation time series by introducing a TVIT, and additionally, we introduce time-
varying variance by introducing SVWJ. In this way, we show that, at least for inflation,
these two features affect the persistence of the inflation time series.

The results showed that both TVIT and SVWJ affect inflation persistence. The
specification that includes these two characteristics exhibits an intrinsic inflation persis-
tence of 0.56 compared to 0.76 in the specification without them. Moreover, the SVWJ
presents evidence of permanent shifts in volatility. These results point to the importance
of considering a TVIT and heteroskedastic model to find an accurate measure of inflation
persistence.

2.2 Modeling Inflation
The literature on inflation persistence usually models inflation using the 𝑘-order

autoregressive process, AR(𝑘). This approach allows us to extract a measure of intrinsic
inflation persistence by summing the autoregressive coefficients (FUHRER, 2010). We
adopt this approach and incorporate TVIT and SVWJ.

To introduce TVIT, we follow Dossche and Everaert (2005) and Kozicki and Tinsley
(2005). The inflation is allowed to follow an AR(𝑘) process around the inflation target
perceived by the private agents, 𝜋𝑃

𝑡 :

𝜋𝑡 =
(︃

1−
𝑘∑︁

𝑖=1
𝜙𝑖

)︃
𝜋𝑃

𝑡 +
𝑘∑︁

𝑖=1
𝜙𝑖𝜋𝑡−𝑖 + 𝜎𝑡𝜈𝑡, 𝜈𝑡 ∼ 𝒩 (0, 1), (2.1)

where 𝜎𝑡 represents the standard deviation of shocks affecting inflation.
The perceived inflation target 𝜋𝑃

𝑡 evolves as a convex combination of the perceived
inflation target in the previous period and the inflation target pursued by the Central
Bank, 𝜋𝑇

𝑡 . That is:
𝜋𝑃

𝑡+1 = (1− 𝛿)𝜋𝑃
𝑡 + 𝛿𝜋𝑇

𝑡+1. (2.2)

Private agents may obtain information about 𝜋𝑇
𝑡+1 by comparing the interest rate set by

the Central Bank and their expectation about the interest rate (see Kozicki and Tinsley
(2005), for details). The Central Bank inflation target follows a driftless random walk
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with innovation 𝜂𝑡 ∼ 𝒩 (0, 𝜎2
𝜂), which reflects, for instance, changes in Central Bank

preferences. Using this assumption in equation (2.2), we obtain:

𝜋𝑃
𝑡+1 = (2− 𝛿)𝜋𝑃

𝑡 + (𝛿 − 1)𝜋𝑃
𝑡−1 + 𝛿𝜂𝑡+1. (2.3)

Equations (2.1) and (2.3) model the inflation around a TVIT. Moreover, the way we
model the inflation target allows us to extract an expectation-based inflation persistence
component, measured by (1 − 𝛿). Note that if 𝛿 is close to one, then the private agents
perfectly predict the Central Bank’s inflation target, and there is no persistence effect due
to expectations errors (DOSSCHE; EVERAERT, 2005).

Following Qu and Perron (2013), we decompose the log-variance as the sum of a
transitory component, ℎ𝑡, and a permanent component, 𝜇𝑡, that is, log(𝜎2

𝑡 ) = ℎ𝑡 + 𝜇𝑡, so
that 𝜎𝑡 = exp(ℎ𝑡/2 + 𝜇𝑡/2). The transitory component follows a stationary AR(1), while
the permanent component is a compound binomial process:

ℎ𝑡 = 𝜌ℎ𝑡−1 + 𝜎ℎ𝜀ℎ,𝑡, −1 < 𝜌 < 1 𝜀ℎ,𝑡 ∼ 𝒩 (0, 1), (2.4)

𝜇𝑡 = 𝜇𝑡−1 + 𝑑𝑡𝜎𝑤𝑤𝑡, 𝑤𝑡 ∼ 𝒩 (0, 1), and 𝑑𝑡 ∼ Bernoulli(𝑝) (2.5)

Equations (2.4)-(2.5) allow us to separate transitory changes from permanent shifts
in level of stochastic volatility. These equations together with equations (2.1) and (2.3)
form the complete model. Note that, this general model nested several specifications:
Model 1) 𝜋𝑃

𝑡 and 𝜎𝑡 are constant; Model 2) only 𝜋𝑃
𝑡 is constant; Model 3) 𝜋𝑃

𝑡 varies over
time, but 𝜎𝑡 is constant; and Model 4) both 𝜋𝑃

𝑡 and 𝜎𝑡 varies over time.
All models are estimated using Bayesian methods. Prior distributions are not

presented here to save space but are available upon request. We use Markov Chain Monte
Carlo procedures by combining Metropolis-Hastings and a threshold sampling scheme
with an auxiliary variable to draw the posterior distribution of a permanent component
of volatility, as described in Laurini, Mauad and Aiube (2016).

2.3 Data
We used the Brazilian monthly inflation measured by the IPCA (Índice Nacional de

Preços ao Consumidor Amplo - broad national consumer price index) as the observable
variable for inflation in the model presented in section 2.2. The period ranges from
January 1995 to March 2021, including different levels for the inflation target and variance.
The unconditional mean for this sample is 0.55% per month with a variance of 0.18. For
the first half of observations, these sample moments are 0.63% and 0.27, while for the
second half, they are 0.46% and 0.07

The autocorrelation function and partial autocorrelation function are interesting
to determine the number of lags to use in the AR. Figure 2.1 displays these statistics,
which motivate us to use an AR in the estimation.
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Figure 2.1 – Autocorrelation function (acf) and partial autocorrelation function (pacf).

2.4 Results and Discussion
Table 2.1 summarizes the posterior distribution of the models. Since we choose

𝑘 = 1 lag for the AR for inflation, the parameter 𝜙 measures the intrinsic inflation
persistence. For the models with a TVIT, we can obtain the expectation-based inflation
persistence using the parameter 𝛿.

Table 2.1 – Posterior distribution for all models: 25% quantile, mean and 75% quantile

Model 1 Model 2 Model 3 Model 4

q25% mean q75% q25% mean q75% q25% mean q75% q25% mean q75%

𝜙 0.732 0.759 0.785 0.637 0.669 0.702 0.612 0.65 0.689 0.515 0.556 0.597
𝜋𝑃 0.484 0.531 0.576 0.43 0.454 0.48 - - - - - -
𝜎𝜈 0.28 0.288 0.295 - - - 0.271 0.279 0.287 - - -
𝜌 - - - 0.715 0.775 0.846 - - - 0.673 0.738 0.81
𝑝 - - - 0.016 0.031 0.041 - - - 0.013 0.028 0.038

𝜎𝑤 - - - 0.606 0.967 1.213 - - - 0.548 0.969 1.227
𝜎𝜖 - - - 0.255 0.343 0.428 - - - 0.329 0.418 0.507
𝜎𝜂 - - - - - - 0.048 0.069 0.085 0.045 0.061 0.075
𝛿 - - - - - - 0.116 0.141 0.163 0.112 0.135 0.153

The main result is that the intrinsic inflation persistence reduces when we include
the TVIT (Model 2) and SVWJ (Model 3). Considering both TVIT and SVWJ (Model
4), the intrinsic inflation persistence falls drastically from a mean of 0.76 to 0.56. In-
deed, the entire posterior distribution of 𝜙 shifts to the left when we consider these two
characteristics, as illustrated by figure 2.2. This result indicates that both the TVIT and
SVWJ affect intrinsic inflation persistence. Thus, neglecting both the time-varying mean
and variance can bias the intrinsic inflation persistence. Note that the forward-looking
inflation persistence (1−𝛿) is almost unaffected by including stochastic variance (see table
2.1).

There are results about inflation persistence in the literature that disregards the
time-varying effects of inflation target and volatility. Dossche and Everaert (2005) con-
sider the effect of a TVIT, but their models are homoskedastic. Antonakakis et al. (2016)
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Figure 2.2 – Posterior distribution of autoregressive coefficient for all models.

shows that there is a difference between inflation persistence when measured by online
and official price indexes but also ignores the effects of heteroskedasticity. Luengo-Prado,
Rao and Sheremirov (2018), which considers sectoral inflation data to estimate inflation
persistence, considers only structural breaks in the mean process and also considers ho-
moskedastic errors for inflation. As shown by our results, this homoskedastic assumption
for the inflation process may bias the estimation of inflation persistence.

For the Brazilian case, the inflation target perceived by the private agents moves
smoothly, as the unobservable component extracted from Model 4 indicates (see figure
2.3). At the beginning of the sample, the perceived inflation target is higher, which is
an expected result since the economy was in a hyperinflation process before 1995. After
1999, with the implementation of the inflation target system, the perceived inflation target
shows some picks like in mid-2003 and mid-2015, both periods, marked by conturbation
in political issues.

The agents’ perception of macroeconomic variables has been a relevant topic in the
literature. This is the case, for instance, of the work of Krane (2011), Jain (2019) and,
more recently, Clements (2021). This line of inquiry uses professional forecasters’ data
and the revision of their forecasts to identify the agents’ perception of the shocks affecting
the economy. While Krane (2011) and Clements (2021) concentrate on the agents’ view
of GDP shocks, Jain (2019) specifically considers the perception of forecasters to build
a measure of perceived inflation persistence. Her results indicate that the proposed per-
ceived inflation persistence is well below the inflation persistence of the actual data. The
author attributes this difference to the informational rigidity faced by the forecasters.

Our measure of expectation-based inflation persistence is related to the literature
on agents’ perception of macroeconomic variables since it is related to the perceived
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Figure 2.3 – Observed inflation and the unobserved perceived inflation target.

inflation target. The expectation-based inflation persistence considers the presence of
information rigidity, as the agents do not have full information about the actual inflation
target that the central bank is pursuing. As argued by Dossche and Everaert (2005), this
rigidity is similar to those by Mankiw and Reis (2002). The expectation-based inflation
persistence, however, cannot be directly compared to the perceived inflation persistence
proposed by Jain (2019) because it depends on the perceived inflation target, which
is a lower frequency time series than inflation forecasts. Finally, while our approach
considers the general perceptions of agents in the economy, Jain (2019) considers only the
perception of professional forecasts. Thus, a natural extension for future research is to
apply our decomposition to professional forecasters’ data.
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Figure 2.4 – Transitory and permanent component of stochastic volatility.

The stochastic volatility extracted from Model 4 confirms the effects of time-varying
variance for both transitory (left panel) and permanent components (right panel), see
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figure 2.4. The right axis of the left panel of 2.4 measures the probability of the jumps
that occur at each period.

There are three probability peaks. The first occurs in April 1995, which bring the
volatility to a lower level, and is possibly associated with the stabilization plan adopted in
the previous year. The second jump was in November 2003, and the permanent component
of volatility also decreases. In mid-2002 and mid-2003, Brazil experienced a confidence
crisis triggered by the presidential election. Since the victorious candidate continued
to follow the policies initiated by the previous government, the permanent component
volatility has decreased and remained at a low level until the next jump in May 2018.

2.5 Conclusion

We have assessed if TVIT and SVWJ affect inflation persistence. We find that
including these characteristics reduces intrinsic inflation persistence. Moreover, results
indicate the importance of including jumps in stochastic volatility.

Neglecting the time variation in inflation target and inflation volatility with jumps
results in an upward-biased estimation of persistence. Thus, including these character-
istics to model inflation persistence results in a better measure of inflation persistence.
These results are potentially relevant to the inflation literature since measuring inflation
persistence and measuring the magnitude of shocks are fundamental to guiding policy-
makers’ decisions.

Future research could apply the decomposition proposed in this paper to other
economies. Since our model does not make any specific assumption about the Brazilian
economy, it can be used without modifications for other countries, especially for those
whose current inflation is accelerating and with higher volatility.

2.6 Appendix

2.6.1 Bayesian diagnostics

All parameters of the model were estimated using MCMC methods and we have
to assess the convergence. As latent processes such as ℎ𝑡 and 𝜋𝑃

𝑡 increase with the sample
size, the number of parameters to be assessed is large for some of the models. Thus, we
present here the potential scale reduction factor (PSRF)proposed by (GELMAN; RUBIN,
1992) in a graphical approach (except for Model 1, in which the number of parameters
is small). Figure 2.5 presents the frequency of the PSRF for two chains for Models 2, 3,
and 4.

In the figure above we can note that the maximum PSRF was smaller than 1.05
and for all models the greater frequency is around 1.00 and 1.001, indicating convergence
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3 Can Brazilian Central Bank Communica-
tion help to predict the yield curve?

Abstract

This paper investigates whether Brazilian Central Bank communication helps to forecast
the yield curve. Our forecast strategy involves two steps: First, we analyze textual Central
Bank documents to extract sentiment variables that describe its communication, and then,
we include those sentiment variables as additional factors into the dynamic Nelson-Siegel
term structure model. We found that sentiment variables contain predictive information
for yield curve forecasting. Specifically, when combined with macroeconomic variables,
the sentiment variables improve the accuracy of the forecast for short maturities and
forecast horizons. In addition, sentiment variables are useful in forecasting for medium
and long forecast horizons for all maturities. Besides finding a new source of information
to forecast the yield curve, the results indicate that the information provided by Central
Bank affects market participants, proving to be a useful tool for monetary policy.

Keywords: Yield Curve, Sentiment Analysis, Bayesian Estimation, Central Bank Com-
munication.
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3.1 Introduction
Over the last decades, Central Bank communication has been a relevant theme

in the interest rate literature. Central bankers use textual reports to explain their deci-
sions and expectations to the private sector. These communications represent a tool for
managing the expectations that link the short-term interest rate, which the Central Bank
controls, to the entire term structure of interest rates (i. e., the yield curve), which guides
economic decisions (WOODFORD, 2001). For this reason, the yield curve plays a crucial
role in the economy, requiring accurate forecasts by financial and macroeconomists. There
is in-sample evidence for the relation between the Central Bank communication and the
yield curve (BOUKUS; ROSENBERG, 2006; LUCCA; TREBBI, 2009; CHAGUE et al.,
2015). This relation is still little explored for out-of-sample forecast analysis, although
the Central Bank’s words may contain new information about the future path of the yield
curve.

This paper proposes to use Central Bank communication to enhance the informa-
tion set when forecasting the yield curve. We provide out-of-sample evidence that the
Central Bank communication contains predictive information for yield curve forecasting.
The innovation of our approach is to process the textual content of official documents
published by the Central Bank and use it as a new factor in the widely used Dynamic
Nelson-Siegel (DNS) model of Diebold, Rudebusch and Aruoba (2006a). Specifically, we
use sentiment analysis to classify the content of those documents that the Central Bank
uses to communicate with the private sector and construct sentiment variables using this
classification to extend the Dynamic Nelson-Siegel model. Then, we use the extended
model to forecast the yield curve, providing out-of-sample evidence for the connection
between the Central Bank communication and the yield curve.

Our forecast approach produces accuracy gains for all forecast horizons. In partic-
ular, for long forecast horizons, the model with sentiment variables improves the accuracy
of the traditional DNS model. It also beats the random walk benchmark, a competi-
tive yield curve forecaster. At the twelve-month horizon, the forecasts of this model are
10%− 18% more accurate than forecasts of the random walk benchmark. For other fore-
cast horizons, including Central Bank communication in the information set improves the
accuracy for every maturity relative to the traditional DNS. Moreover, when combined
with macroeconomic factors, the model with sentiment variables can beat the benchmark
random walk for the one-step horizon and short maturities.

The information incorporated in the Central Bank communication is crucial for
understanding the improvement in forecast accuracy. This communication with the pri-
vate sector presents a wide range of information. It informs, for instance, the short-term
interest rate decisions, describes the Central Bank vision of the macroeconomic outlook,
and possibly announce some guidance for future decisions on the short-term interest rate.
Market participants consume this type of information when allocating their assets, which
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affects the prices of bonds and, consequently, the term structure of interest rate. The use
of the content published by the Central Bank is especially relevant when markets are be-
ing affected by an exogenous shock, such as the covid-19 pandemic. Given the exogenous
shocks, private agents pay attention to the Central Bank’s assessment of the economic
situation.

Our research is related and contributes to two strands of the literature. First, we
contribute to the literature that attempts to identify good predictors for the yield curve.
The literature has incorporate both unobservable (LITTERMAN; SCHEINKMAN, 1991;
DIEBOLD; RUDEBUSCH; ARUOBA, 2006a) and observable factors (ANG; PIAZZESI,
2003; HÖRDAHL; TRISTANI; VESTIN, 2006; VIEIRA; FERNANDES; CHAGUE, 2017)
to forecast the yield curve. The former uses the level, slope, and curvature factors to form
the information set, while the latter uses or combines these latent factors with macroe-
conomic and financial factors. Besides employing these factors, our approach extends
the information set to include Central Bank communication and access its power to pre-
dict the yield curve. Thus, we contribute to this literature by verifying if Central Bank
communication is a good predictor of the yield curve.

The second branch of literature connected to this work is the one that advocates
that textual analysis of documents published by the Central Bank is beneficial to under-
standing the term structure of interest rate (BOUKUS; ROSENBERG, 2006; LUCCA;
TREBBI, 2009; CHAGUE et al., 2015; MÁTÉ; SEBŐK; BARCZIKAY, 2021). The ex-
planation for using textual analysis in this context is that agents extract information from
the Central Bank communications and use it when pricing assets. In this regard, the sen-
timent analysis of Central Bank documents may explain the behavior of the yield curve.
Some researchers argue that the Central Bank communication affects short maturities
of the yield curve (BOUKUS; ROSENBERG, 2006; CHAGUE et al., 2015), while some
authors claim that long maturities (LAMLA; LEIN, 2011) of the yield curve are affected.
These studies present only in-sample evidence, while our investigation presents an out-of-
sample analysis of the effects of Central Bank communication over each maturity of the
yield curve.

In short, our evidence shows that Brazilian Central Bank communication helps to
predict the yield curve for every maturity, at least concerning the traditional DNS model.
We claim that this improvement is due to the information content about the fundamentals
of the economy.

The rest of the paper is organized as follows. Section 3.2 presents how we analyze
Brazilian Central Bank communication through sentiment analysis and how we extend
the DNS approach to include Central Bank communication in the forecast analysis. In
Section 3.3, we present the results and discuss it in Section 3.4. Finally, in Section 3.5,
we provide the conclusion.
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3.2 Sentiment analysis and yield curve modelling

Our strategy to forecast the yield curve has two steps. First, we quantify the
Brazilian Central Bank communication by extracting the sentiment of the documents
published after the monetary policy committee’s meeting. Second, we use the sentiment
and macroeconomic variables in a Dynamic Nelson-Siegel model to make direct forecasts
for the term structure of interest rate. In the following subsections, we explain these two
steps and how we evaluate the performance of forecasts.

3.2.1 Quantifying the Central Bank Communication

The Monetary Policy Committee (COPOM - Comitê de Política Monetária - Mon-
etary Policy Committee in Brazilian Portuguese) meetings of Central Bank of Brazil rep-
resent a relevant source of information about monetary policy decisions. The content of
these meetings is summarized in text format in two documents: the COPOM statements
and the COPOM minutes. The former is short and only informs the decisions of the
meetings, while the latest describes the economic environment in detail. Both documents
reflect the viewpoints of the Central Bank about the economic outlook, and market par-
ticipants closely monitor these views. Thus, to capture the Central Bank’s perspective,
we examine the textual content of these documents.

We use sentiment analysis to extract information from the two documents pub-
lished by the Central Bank. First, we collect raw text data and treat it appropriately.
After collecting the raw data, for each meeting, we remove punctuation, blank lines, stop
words, and the name of the participants of the monetary policy committee, to exclude
words that should not affect the sentiment of the text. It is worth noting that the Brazil-
ian Central Bank started to publicize the COPOM statements and minutes on regular
dates1 only from 2006, which defines the starting year of our sample in this paper. Sec-
ond, we measure the sentiment of the Central Bank of Brazil from this treated text data
by classifying the content of these documents according to their semantic categories. We
point out that these preprocessing steps are not exclusive to financial studies but are
universal in textual analysis.

We base our sentiment analysis of the COPOM statements and minutes on a
dictionary-oriented approach. The vocabulary of these documents is very specialized, and
the words used in these documents have specific meanings, usually related to financial
meaning. For this reason, we use the financial dictionary proposed by Loughran and
McDonald (2011) to categorize the words of the documents. This dictionary allows us
to identify the semantic content of each word in the text, separating them into positive,
negative, and uncertain.

1 Since 2006, the Central Bank publishes the COPOM statements and minutes every 45 days.
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We build the sentiment variables representing Central Bank communication using
these three semantic categorizations. For both COPOM statements and COPOM minutes,
we consider as sentiment variables the proportion of each category to the total number
of words of each document. Formally, for each period 𝑡 that the COPOM meeting takes
place, we define the sentiment variable as follows:

𝑠ℓ,𝑡 ≡
# of words of category ℓ

# of total words , (3.1)

where ℓ ∈ {positive, negative, uncertain}. Additionally, for the COPOM minutes, which
have a large number of words, we follow Cannon (2015) and define the tone of the docu-
ment as

𝜏𝑡 ≡
# of positive words−# of negative words
# of positive words + # of negative words , (3.2)

summarizing the sentiment of the Central Bank of Brazil in only one variable.
The interpretation of the tone variable is straightforward: If 𝜏𝑡 > 0, then the

document has a overall positive tone; if 𝜏𝑡 < 0, then it has a negative tone; otherwise, the
discourse is neutral. To capture the change in the tone of Central Bank, we use the first
difference of the tone, that is, Δ𝜏𝑡 ≡ 𝜏𝑡 − 𝜏𝑡−1. The tone variable was not computed for
the COPOM statements because the shortness of these documents implies that for some
periods, the sum in the denominator of Equation (3.1) is equal to zero, which is not well
defined.

3.2.2 Forecasting the yield curve

3.2.2.1 The dynamic Nelson-Siegel model

The seminal paper of Nelson and Siegel (1987) introduces a preeminent class of
models for the yield curve. These authors establish a parsimonious model for the term
structure of interest rate that relies on three latent factors, which are interpreted as level,
slope, and curvature of the yield curve and are allowed to vary over time in its dynamic
version (DIEBOLD; RUDEBUSCH; ARUOBA, 2006a). Besides the latent factor, the
literature has identified observable factors that may help to predict the yield curve, such
as macroeconomic variables (see Ang and Piazzesi (2003) and Hördahl, Tristani and Vestin
(2006), for instance). Given the ability to deal with unobservable and observable factors,
we build our model based on the Dynamic Nelson-Siegel (DNS) approach, augmenting it
with macroeconomic and sentiment variables.

The DNS decomposition of the yield curve allows us to make a prediction of the
entire yield curve based on the level, slope, and curvature latent factors, denoted by 𝛽1,𝑡,
𝛽2,𝑡 and 𝛽3,𝑡, respectively. The yield at maturity 𝑚 and period 𝑡 may be approximated by
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𝑦𝑡(𝑚) = 𝛽1,𝑡 + 𝛽2,𝑡

(︃
1− 𝑒−𝜆𝑚

𝜆𝑚

)︃
+ 𝛽3,𝑡

(︃
1− 𝑒−𝜆𝑚

𝜆𝑚
− 𝑒−𝜆𝑚

)︃
+ 𝜂𝑡, (3.3)

where 𝜂𝑡 is normally distributed with zero mean and variance given by 𝜎2
𝜂.

Since 𝛽𝑖,𝑡, for 𝑖 ∈ {1, 2, 3}, are unobservable, the challenge is to find the best
possible estimate of these latent factors to predict the yield curve accurately. In addition
to the autoregressive structure proposed by Diebold, Rudebusch and Aruoba (2006a),
we include both sentiment and macroeconomic variables as explanatory variables for the
latent factors. Following Diebold, Rudebusch and Aruoba (2006b), we use three macro
variables: inflation, 𝜋𝑡, the capacity of utilization 𝐶𝑈𝑡 and Central Bank interest rate
target (Selic Rate), 𝑟𝑡, that are collected in the (3× 1) vector 𝑋𝑡. Denoting the vector of
sentiment variables by 𝑆𝑡, which may include 𝑠ℓ,𝑡 and/or Δ𝜏𝑡, the general structure of 𝛽𝑖

is specified as follow:

𝛽𝑖,𝑡 = 𝑐𝑖 + 𝜑𝑖𝛽𝑖,𝑡−ℎ +
𝐽∑︁

𝑗=1
𝛾𝑗𝑋𝑗,𝑡−ℎ +

𝐾∑︁
𝑘=1

𝛼𝑘𝑆𝑘,𝑡−ℎ + 𝜀𝑖,𝑡, (3.4)

where 𝜀𝑖,𝑡 is normally distributed with zero mean and variance given by 𝜎2
𝑖 , and ℎ is the

horizon forecast.
Based on the general model in Equation (3.4), we consider eight competing speci-

fications, which differ depending on the variables included in 𝑆𝑡, and whether macro and
sentiment variables are considered. Table 3.1 summarizes these models. The first col-
umn presents the abbreviated name of each model, and the other two columns show the
associated variable for each specification.

Table 3.1 – Competing specifications used to forecast yield curve

Models
Abbreviated model name 𝑆𝑡 𝑋𝑡

DNS-only Not included Not included
DNS-macro Not included 𝜋𝑡, 𝐶𝑈𝑡, 𝑟𝑡

DNS-macro-state 𝑠ℓ from statements 𝜋𝑡, 𝐶𝑈𝑡, 𝑟𝑡

DNS-macro-min 𝑠ℓ from minutes 𝜋𝑡, 𝐶𝑈𝑡, 𝑟𝑡

DNS-macro-tone Δ𝜏𝑡 from minutes 𝜋𝑡, 𝐶𝑈𝑡, 𝑟𝑡

DNS-tone Δ𝜏𝑡 from minutes Not included
DNS-min 𝑠ℓ from minutes Not included
DNS-state 𝑠ℓ from state Not included

We can estimate the model exposed in Equations (3.3) and (3.4) using both the
Classical and Bayesian techniques. In the Classical approach, we can apply the maximum
likelihood estimator by using the prediction error decomposition obtained from Kalman
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Filter, as proposed by Diebold, Rudebusch and Aruoba (2006b). A drawback of this ap-
proach is that the numerical maximization of the likelihood function may be problematic.
To overcome this limitation, some authors have advocated the Bayesian estimation for
this class of models (LAURINI; HOTTA, 2010; HAUTSCH; YANG, 2012). More specifi-
cally, Equations (3.3) and (3.4) together with prior distributions2 for the parameters form
a hierarchical model that can be estimated using Bayesian techniques. Therefore, we use
the Bayesian approach to simulate the posterior distribution of each parameter of this
hierarchical model.

The Bayesian estimation of the DNS requires Markov Chain Monte Carlo (MCMC)
methods since the posterior distributions of parameters do not have a closed formula. Fol-
lowing Batista and Laurini (2016), we use the Hamiltonian Monte Carlo (HMC) method
to simulate the posterior distribution of each parameter. Batista and Laurini (2016)
showed that the HMC is a viable method to estimate models of DNS class presenting
faster convergence than the standard Metropolis-Hastings algorithm. Specifically, we use
the HMC and the No-U-Turn sampling, proposed by Hoffman and Gelman (2014) and
implemented in ‘Rstan’ package. In the appendix, we briefly describe how HMC works,
but more details can be found in Neal et al. (2011) and Hoffman and Gelman (2014).

3.2.2.2 Forecasting and Performance evaluation

The yield curve forecast is built using the draws from the posterior of the param-
eters of the model. Let 𝜏 be the last period used in the estimation, and ℎ ∈ {1, 6, 12} be
the forecast horizon. The predictive density for a yield of maturity 𝑚 uses the 𝒮-th draw
from the posterior of 𝜆, 𝛽𝑖,𝜏 , for 𝑖 ∈ {1, 2, 3}, to build:

𝑦
(𝒮)
𝜏+ℎ|𝜏 (𝑚) = 𝛽

(𝒮)
1,𝜏 + 𝛽

(𝒮)
2,𝜏

⎛⎝1− 𝑒−𝜆(𝒮)𝑚

𝜆(𝒮)𝑚

⎞⎠+ 𝛽
(𝒮)
3,𝜏

⎛⎝1− 𝑒−𝜆(𝒮)𝑚

𝜆(𝒮)𝑚
− 𝑒−𝜆(𝒮)𝑚

⎞⎠ , (3.5)

where 𝑦
(𝒮)
𝑡+ℎ|𝑡(𝑚) denotes predictive value of the ℎ-steps-ahead forecast of the yield of ma-

turity 𝑚, using the 𝒮-th draw from the latent factors, 𝛽
(𝒮)
𝑖,𝜏 , and from the decay parameter,

𝜆(𝒮). We use the mean of {𝑦(𝒮)
𝜏+ℎ|𝜏 (𝑚)}𝑁iter

𝒮=1 as a point forecast for the yields, where 𝑁iter is
the number of iterations of the Hamiltonian Monte Carlo.

We perform out-of-sample forecasts for the last 24 periods of our sample. We use
a rolling window scheme as follows. We begin by estimating a specification considering
the first window with size 𝐾 = 156. Then, we sequentially re-estimate the specification,
including the next month and excluding the first month of the previous estimation window.
We repeat this process until we exhaust the entire sample. Finally, we compare the
forecast of each specification to the actual data to evaluate the performance.
2 The prior distributions used in this paper are briefly described in appendix.
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To analyze the performance of forecasts, we use the root of mean squared forecast
error (RMSE) as a loss function. Given the maturity and forecast horizon, this loss
function was computed for each model 𝑙 as follows:

RMSE𝑙(𝑚, ℎ) =

⎯⎸⎸⎷ 1
24

24∑︁
𝑡=1

[︁
𝑦𝑡+ℎ|𝑡,𝑙(𝑚)− 𝑦𝑡+ℎ(𝑚)

]︁2
. (3.6)

The model that possesses the minimum RMSE is the one with the best performance.
Although extensively used in the forecasting literature, the RMSE only offers a

measure of accuracy for the entire sample. To overcome this drawback, we also analyze
the cumulative squared forecast error (CSFE), proposed by Welch and Goyal (2008). The
CSFE requires the choice of a benchmark model. We choose the Random Walk (RW)
model as a benchmark since it usually produces good forecast for the yield curve. Thus,
the CSFE is defined as:

CSFE𝑙,𝑇 (𝑚, ℎ) =
𝑇∑︁

𝑡=1

{︂[︁
𝑦𝑡+ℎ|𝑡,RW(𝑚)− 𝑦𝑡+ℎ(𝑚)

]︁2
−
[︁
𝑦𝑡+ℎ|𝑡,𝑙(𝑚)− 𝑦𝑡+ℎ(𝑚)

]︁2}︂
, (3.7)

for each model 𝑙, maturity 𝑚 and forecast horizon ℎ. Equation (3.7) allows us to evaluate
the performance of a model for all periods in the forecast window. When CSFE is in-
creasing, it indicates outperformance of the benchmark, and a decrease in CSFE indicates
that the model underperforms the benchmark.

Additionally, we apply the Model Confidence Set (MCS) procedure, proposed by
Hansen, Lunde and Nason (2011), to verify whether the differences encountered in the loss
functions among models were indeed significant. This procedure allows us to construct a
set of superior models from the set of all alternative models, given a level of significance.
Formally, let 𝑑𝑖𝑗,𝑡 denotes the difference between the loss function of two models 𝑖 and 𝑗

and let ℳ0 denotes the set of all models. Starting from the set of all models, that is,
ℳ =ℳ0, the MCS procedure consists in sequentially testing the null hypothesis:

𝐻0 : 𝜇𝑖𝑗 = 0,∀𝑖, 𝑗 ∈ℳ, (3.8)

where 𝜇𝑖𝑗 = E[𝑑𝑖𝑗,𝑡]. If the null hypothesis is rejected, the model is excluded from ℳ;
otherwise, the test continues until we cannot reject the null hypothesis, given a level of
significance 𝛼. In this manner, the procedure returns the set of superior models ℳ*

1−𝛼.
The test statistic associated with (3.8) is constructed as follows. For each model

𝑖, 𝑗 ∈ℳ, compute

𝑡𝑖𝑗 = 𝑑𝑖𝑗√︁
^𝑣𝑎𝑟(𝑑𝑖𝑗)

, (3.9)
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where 𝑑𝑖𝑗 = (1/𝑀)∑︀𝑀
𝑗=1 𝑑𝑖𝑗. We compute the variance that appears in the denominator

in (3.9) through block bootstrap. Then, the test statistic can be calculated using 𝑇𝑅 =
max𝑖,𝑗∈ℳ |𝑡𝑖𝑗|. The asymptotic distribution of this statistic is nonstandard, and we also
estimate it via bootstrap.

3.3 Empirical analysis

This section empirically assesses the accuracy of the alternative specifications dis-
cussed above. We begin by describing the data on bond yields used to estimate and
forecast the yield curve. Then, we present the extracted Central Bank sentiment vari-
ables and explain their relationship with the term structure of the interest rate. We then
give the forecast accuracy findings for the various models discussed in the section before
(see Table 3.1).

3.3.1 Data description

To investigate the out-of-sample performance of the alternative specifications, we
use monthly Brazilian Treasury yields data from January 2006 to December 2020, total-
ing 𝑇 = 180 observations. The data were taken from the B3, former BM&F-Bovespa,
website3, and interpolated using a smoothing spline. The maturities of the yields are
1, 2, 3, 6, 9, 12, 24, and 36 months. The forecast window starts in January 2019 and
ends in December 2020. Figure 3.1 illustrates the monthly yield data used to produce the
forecasts.
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Figure 3.1 – Brazilian Treasury yields, by maturity, from January 2006 to December 2020.
The dashed vertical line indicates the first period of the forecast window.

3 http://www2.bmf.com.br/pages/portal/bmfbovespa/lumis/lum-taxas-referenciais-bmf-ptBR.
asp

http://www2.bmf.com.br/pages/portal/bmfbovespa/lumis/lum-taxas-referenciais-bmf-ptBR.asp
http://www2.bmf.com.br/pages/portal/bmfbovespa/lumis/lum-taxas-referenciais-bmf-ptBR.asp
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Maturity
(in months) Mean Std Min 25% 50% 75% Max 𝜌(1) 𝜌(6) 𝜌(12)

1 9.97 3.36 1.91 7.28 10.70 12.51 16.61 0.97 0.73 0.43
2 9.98 3.38 1.92 7.30 10.70 12.48 16.94 0.97 0.73 0.43
3 9.97 3.39 1.93 7.26 10.66 12.41 16.93 0.97 0.73 0.43
6 9.98 3.39 1.92 7.28 10.73 12.46 16.46 0.97 0.74 0.43
9 10.01 3.38 1.94 7.32 10.79 12.53 16.19 0.97 0.74 0.44
12 10.06 3.36 2.03 7.45 10.82 12.50 16.03 0.97 0.74 0.44
24 10.36 3.21 2.61 7.86 11.08 12.67 16.22 0.97 0.73 0.44
36 10.68 3.00 3.33 8.45 11.38 12.64 16.56 0.96 0.72 0.43

Table 3.2 – Descriptive statistics for yield curves. The last three columns represents the
sample autocorrelations of order 1, 6 and 12.

The term structure of interest rate presents periods of decreasing and increasing
along with the data range for every maturity. However, in general, the average behavior of
the interest rates shows a decreasing tendency. Specifically, the forecast period presents
the lowest interest rates in the sample, as illustrated in Figure 3.1. In Table 3.2, we
present descriptive statistics for the yields for the entire sample. Three points are worth
noting about these statistics: First, the typical yield curve is upward sloping; second,
in general, longer maturities have lower volatilities; and third, the persistence is similar
across the maturities.

We also use macroeconomic and sentiment variables in the estimation. Regarding
macro variables, we use the IPCA (Índice Nacional de Preços ao Consumidor Amplo -
Broad national consumer price index) as the inflation rate, 𝜋𝑡, the SELIC (Sistema Espe-
cial de Liquidação e de Custódia - Special System for Settlement and Custody) interest
rate as the monetary policy interest rate, 𝑟𝑡, and the capacity utilization of the industry
denoted by 𝐶𝑈𝑡. Except for SELIC, the macroeconomic variables are available only in
monthly data, which defines the frequency of our model. These three macroeconomic
variables are available on the Ipeadata website4. Regarding the sentiment variable that
reflects Central Bank communication, we describe it separately in the next section.

3.3.2 The Central Bank communication

To measure the Central Bank communication, we extract the sentiment of the
Brazilian Central Bank using textual analysis tools, as described in Section 2.1. We
construct the sentiment variables for the days when COPOM statements or minutes were
published. For both documents, the first characteristic identified by the analysis of textual
data was a change in the behavior of Central Bank communication in the last decade, as
shown in Figure 3.2.

4 www.ipeadata.gov.br/

www.ipeadata.gov.br/
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Figure 3.2 – Sentiment of Central Bank of Brazil. Left panel shows the sentiment ex-
tracted from COPOM statement and right panel shows the sentiment ex-
tracted from COPOM minutes.

The main change in Central Bank communication is related to a Central Bank’s
chair change in June 2016, which began to publish more detailed COPOM statements.
In effect, the average number of words before June 2016 was 42 word per meeting; after
that, the average increased to 382. This result indicates an effort by the Central Bank
to increase the transparency of its actions. While the COPOM statements present an
increase in the number of words, this number decreases for the COPOM minutes along the
sample period (see Panel (b) of Figure 3.2). In this case, there are two breaking points in
the number of words. The first breaking point happened in January 2014, and the second
in June 2016. The latter occurs for the same reason as the COPOM statement, but, in
this case, the number of words decreases. This evidence shows a tendency of the Central
Bank to prefer the COPOM statements instead of the COPOM minutes to communicate
with the private sector.

We now present the time series of the sentiment variables used in the estimation.
Panel (a) of Figure 3.3 shows the behavior of these sentiment variables for each day that
the COPOM meeting takes place. It displays the proportion of negative, positive, and
uncertainty words extracted from COPOM statements. Until 2016, the proportions of
words had values equal to zero for several periods. From this year onward, the variables
were always positive. This behavior occurs because the small number of words in COPOM
statements before June 2016, as shown before, implies that any of the words match the
Loughran and McDonald (2011) dictionary.

The sentiment variables extracted from COPOM minutes, in turn, always presented
values greater than zero for the proportion of words, as shown by panel (b) of Figure 3.3.
In this case, the change previously observed in 2016 is not so evident in the proportion of
words, except that the fraction of uncertain words grows from that date. Note, however,
that after June 2016, the behavior of the positive, negative, and uncertain words are very
similar when compared to the result of the proportions found using COPOM statement
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Figure 3.3 – Sentiment of Central Bank of Brazil. The left panel shows the sentiment
extracted from COPOM statement, and the right panel shows the sentiment
extracted from COPOM minutes.

(see Panel (a) of Figure 3.3).
An advantage of the sentiment extracted from COPOM minutes is that we can

compute the tone of the Central Bank (as defined in Equation (3.2)) since the sum of
positive and negative words is always strictly positive. Figure 3.4 plots the tone of the
Central Bank together with short-, medium-, and long-term interest rates (1, 9, and 36
months, respectively). First, we note that for almost all periods, the Central Bank’s tone
was negative. Second, the tone seems to move in the same direction as yields, independent
of maturity. Its correlation with the various maturity interest rate confirms this statement,
as shown in Figure 3.4.
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Figure 3.4 – Tone of Brazilian Central Bank and yields. We select short, medium, and
long maturities of yields to compare with the tone. 𝜌(𝑦𝑡(𝑚), 𝜏𝑡) indicates the
correlation.

For the days that there was no COPOM meeting, and consequently no Central
Bank document publication, we set all sentiment variables to zero and build a series in
daily frequency5. Then, we aggregate these series to obtain the monthly frequency by
5 We also build the sentiment variable repeating the value of the variable in the last meeting for dates
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the maximum value of each month. This step was necessary since the macroeconomic
variables are available only in monthly frequency.

3.3.3 Out-of-sample forecasts

Table 3.3 presents the accuracy of the forecasts for all models and all forecast hori-
zons. Besides the models explained in Section 3.2, we also compare our forecasts with
the Random Walk (RW) model since there is evidence that the RW model is competitive,
especially for short forecasting horizons (JOSLIN; SINGLETON; ZHU, 2011). As we use
the RW as a benchmark, only the column ‘RW’ of Table 3.3 presents the RMSE (in per-
centage points), while the remaining column displays the root of the mean squared error
of each model relative to the RW benchmark. Then, values less than one indicate that
the model outperforms the benchmark, and values greater than one indicate underperfor-
mance. Additionally, Table 3.3 also highlights in bold-type the outperformance model in
maturities.

We first note that the RW confirm to be a challenging competitor. In contrast to
the findings of Diebold, Rudebusch and Aruoba (2006a) and, Vicente and Tabak (2008),
which find that the DNS-only produces a better forecast at longer horizons, the RW
outperforms the DNS-only for every maturity and forecast horizons in our dataset. We
are not the first to find such a result. Caldeira and Torrent (2017), for example, found that
the DNS-only outperformed the RW only for maturities longer than 36 months for the
US yield curve, which is the longer maturity considered here. However, the performance
concerning the benchmark RW varies with maturities and forecast horizons when we add
macro or sentiment variables in the DNS model.

Including macroeconomic variables substantially improves the predictive perfor-
mance for short forecast horizons and maturities. Considering maturities of up to three
months and the one-month horizon forecast, the DNS-macro outperforms the benchmark.
Including the sentiment of the Central Bank together with macroeconomic variables makes
the accuracy even better. In particular, the DNS-macro-state is the best forecaster for
maturities up to three months. It is worth noting that for six months of maturity, the
DNS-macro-tone specification still outperforms the benchmark.

At the six-month horizon, the RW benchmark is the best model for all maturities.
However, the macroeconomic and sentiment variables also help the traditional DNS model
to make better forecasts. Comparing the DNS-only with the DNS-macro, we observe that
adding macro factors increases accuracy for maturities up to six months. Moreover,
except for the DNS-macro-tone specification, using the sentiment and macro variables
jointly improves the accuracy even when compared to the DNS-macro for maturities up
to six months. The two last columns of Table 3.3 also report that, for the six-step-ahead,

that the meeting does not take place. The out-of-sample result is very similar, as shown in the
appendix.
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Maturity
(in months) RW DNS-

only
DNS-
macro

DNS-
macro-
state

DNS-
macro-

min

DNS-
macro-
tone

DNS-
tone

DNS-
min

DNS-
state

1-month forecast horizon
1 0.272* 2.508 0.705* 0.684* 0.825* 0.699* 2.531 1.967 2.260
2 0.274* 2.387 0.771* 0.752* 0.903* 0.764* 2.409 1.879 2.129
3 0.280* 2.312 0.832* 0.821* 0.972* 0.825* 2.332 1.847 2.056
6 0.288* 2.251 1.000* 1.006* 1.152 0.996* 2.269 1.845 1.994
9 0.296* 2.211 1.084* 1.105* 1.228 1.082* 2.227 1.827 1.959
12 0.306* 2.211 1.118* 1.164* 1.259 1.117* 2.225 1.853 1.973
24 0.353* 1.977 1.185 1.254 1.303 1.184 1.988 1.73 1.815
36 0.409* 1.588 1.095 1.170 1.210 1.095 1.598 1.483 1.520

6-month forecast horizon
1 1.401* 1.329 1.153* 1.126* 1.155* 1.559 1.542 1.180* 1.143*
2 1.398* 1.313 1.175* 1.145* 1.175* 1.602 1.526 1.166* 1.128*
3 1.397* 1.308 1.205* 1.172* 1.202* 1.650 1.521 1.161* 1.124*
6 1.381* 1.317* 1.306 1.263* 1.290* 1.790 1.533 1.158* 1.129*
9 1.374* 1.323 1.395 1.343 1.364 1.890 1.540 1.155* 1.135*
12 1.375* 1.334 1.478 1.419 1.432 1.960 1.549 1.160* 1.149*
24 1.391* 1.318 1.594 1.519 1.506 1.984 1.514 1.151 1.161
36 1.405* 1.236 1.531 1.450 1.424 1.831 1.408 1.098* 1.109*

12-month forecast horizon
1 2.389* 1.094* 0.984* 1.467 1.501 2.085 1.281 1.067* 0.892*
2 2.391* 1.083* 1.006* 1.523 1.549 2.109 1.273 1.058* 0.881*
3 2.396* 1.078* 1.031* 1.577 1.595 2.133 1.270 1.049* 0.873*
6 2.385* 1.080* 1.115 1.729 1.727 2.211 1.278 1.024* 0.862*
9 2.373* 1.085* 1.188 1.836 1.820 2.262 1.286 0.996* 0.856*
12 2.362* 1.095* 1.248 1.91 1.886 2.294 1.297 0.970* 0.859*
24 2.317* 1.111 1.353 1.955 1.924 2.265 1.299 0.883* 0.875*
36 2.311* 1.079 1.316 1.797 1.780 2.099 1.239 0.823* 0.872*

Table 3.3 – RMSE for 1-, 6- and 12-step-ahead prediction. The column RW reports the
root of mean squared error (in percentage points) of the random walk bench-
mark, while the other columns display the root of mean squared error of each
model relative to the benchmark. Values in bold indicate outperformance in
the maturity. We indicate by * the models in the set of superior models for
each maturity at 10% of significance.

the DNS specification augmented by the sentiment of the Central Bank improves the
accuracy of the DNS-macro model. In particular, the DNS-state is better than DNS-
macro-state for all maturities, except for one-month maturity. These results indicate that
Central Bank communication can help to forecast the yield curve for the medium-horizon
forecast.

The best performance of the specifications with only sentiment variables (DNS-
min and DNS-state specification, for example) occurs in the longer forecast horizon. At
the twelve-month horizon, the forecasts of this model are 10% − 18% more accurate
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than forecasts of the Random Walk benchmark. In this case, although the model with
macro variable outperformed the benchmark RW for the shortest maturity, the DNS-
state was the best model for all maturities, except the longer one, in which the DNS-
min presented the most accurate forecast, outperforming even the RW benchmark. This
evidence indicates that Central Bank communication also helps to forecast the yield curve
at the long horizon.

Table 3.3 also presents the models included in the Model Confidence Set. First,
note that the RW is in the superior set models for all maturities and forecast horizons.
Specifications with macro and sentiment variables are also in the set of superior models
for short and medium maturities at the one-month horizon. At the six-month horizon,
the specification with only sentiment variables is among the best models for almost every
maturity. The specifications with sentiment and macro variables are in the set of best
models only for maturities shorter than six months. The DNS-min and DNS-state are
among the best at the twelve-month horizon, independent of maturity.

Finally, to further investigate the accuracy along the forecast period, we analyze
the cumulative squared forecast error. We construct this measure of accuracy using the
RW as a benchmark. Here, we present the result only for the six-months horizon, and the
appendix shows the other forecast horizons. Figure 3.5 presents the CSFE for ℎ = 6.
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Figure 3.5 – Cumulative squared forecast errors (CSFE) six-step-ahead: An increase in a
line indicates better performance of the named variable; a decrease in a line
indicates better performance relative to the random walk.

Figure 3.5 shows that the CSFE alternate between periods of positive and negative
slope. We observe that between the last months of 2019 and the first months of 2020,
there is an increasing trend in the CSFE for various models. However, at the end of the
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sample, the lines are downward slope, implying a worse performance than the benchmark.
This result indicates that the accuracy of each model compared to the RW may vary in
time. Also, note that for the DNS-macro-tone and DNS-tone, the lines of the CSFE
are decreasing for every period. Thus, these models underperform the benchmark in the
entire forecast window.

3.4 Discussion

The main question of this paper, which is whether the Brazilian Central Bank com-
munication can help to predict the yield curve, is answered by our results. The Brazilian
Central Bank communication does contain predictive information about the yield curve.
The out-of-sample analysis pointed to three main results. First, the DNS specifications
augmented by sentiment variables (but without macro) are a good competitor for long
horizons. Second, including macroeconomic variables improves the forecast accuracy for
the short horizon, and this result agrees with the literature (ANG; PIAZZESI, 2003; HÖR-
DAHL; TRISTANI; VESTIN, 2006). However, while our results showed an improvement
for short forecast horizons, Vereda, Lopes and Fukuda (2008) argues there is no significant
improvement for short-term forecasts. Third, besides the macro variables, incorporating
the sentiment of the Central Bank of Brazil in the DNS specifications makes the forecasts
even better for short horizons.

The finding that Central Bank communication helps to forecast the yield curve
corroborates the argument that agents use the information published by the Central Bank
to form their expectations and pricing assets. In this regard, our results are consistent
with earlier studies linking Central Bank communication with the yield curve, such as
Boukus and Rosenberg (2006), Lucca and Trebbi (2009), Chague et al. (2015), Máté,
Sebők and Barczikay (2021). While these researches focus on in-sample analysis, our
results contribute to the literature by providing out-of-sample evidence of the relation
between the yield curve and Central Bank communication.

The reason why Central Bank communication is a good predictor for medium and
long horizons is related to the information effect, discussed in Romer and Romer (2000)
and explored in Nakamura and Steinsson (2018). In the COPOM minutes and statements,
the Central Bank informs its vision about the economic fundamentals. The Central
Bank announcements lead the private agents to update their beliefs about the monetary
policy path and the macroeconomic outlook. The change in agents’ beliefs may alter
the composition of fixed income portfolios, moving from long to short-term bonds or vice-
versa, depending on Central Bank assessment of economic fundamentals. This change will
impact the price and yield of the bonds and thus make the Central Bank communication a
crucial ingredient to the information set in the yield curve forecast. In addition, Hansen,
McMahon and Tong (2019) argues that the news on economic uncertainty affects the yield
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curve. In our approach, we also consider the proportion of uncertain words in Central
Bank communication, which may be information that impacts agents’ behavior.

Although our results are promising, they have some limitations which may be ad-
dressed in future publications. First, we use a dictionary approach to classify the words of
Central Bank documents. This approach has the disadvantage that the chosen dictionary
(LOUGHRAN; MCDONALD, 2011) is a financial dictionary rather than a dictionary for
macro or monetary policy context. Among the available dictionaries, however, a financial
dictionary is the one that is close to the Central Bank documents. Future research can
measure Central Bank communication using a dictionary-free approach, using tools such
as the Latent Dirichlet Allocation for topic classification. Our strategy, however, is in-
dependent of the parametric assumptions implicit in Latent Dirichlet Allocation (BLEI;
NG; JORDAN, 2003), which may be an advantage. A further possible advantage to our
approach compared with Latent Dirichlet Allocation is that Latent Dirichlet Allocation
may not perform well when the texts are short, as is the case with tweets and microblogs
(QUAN et al., 2015; MEHROTRA et al., 2013). Many of the texts used in this paper
are rather short, and despite their short length our analysis shows that their content is
relevant in yield curve prediction. A second limitation is related to external validity since
our results only reflect the Brazilian Central Bank communication. Future research may
use Central Bank communication to forecast the yield curve for economies that explicitly
uses forward guidance as a monetary policy tool.

In conclusion, our result shows that Central Bank communication does contain pre-
dictive information about the yield curve, especially for long movements. We argue that
the improvement in accuracy is due to the information effect. Since it affects long hori-
zons and maturities of the term structure of interest rate, Central Bank communication
reveals to be a relevant tool for monetary policy.

3.5 Conclusion

In this paper, we augment the Dynamic Nelson-Siegel model to include Central
Bank communication and use this model to forecast the Brazilian yield curve. We conclude
that Central Bank communication, measured by the sentiment of the Central Bank, helps
to predict the term structure of interest rate. The biggest accuracy gain is for long
forecast horizons and long maturity yields. This improvement happens because when the
Central Bank publicizes its assessment of the macroeconomic outlook, market participants
change the composition of their fixed income portfolio, affecting the entire term structure
of interest rate. Thus, the use of a measure of Central Bank communication improves
yield curve predictability.
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3.6 Appendix

3.6.1 Bayesian estimation of the DNS model by the Hamiltonian Monte Carlo
(HMC) method

Suppose we collect all parameters of interest in a vector 𝑞. The idea underlying
the Hamiltonian Monte Carlo method is to use the Hamiltonian dynamics from physics
to sample from a (posterior) distribution 𝜋(𝑞). In this context, we view the vector 𝑞 as a
position variable, and it is necessary to introduce a momentum variable, which we denote
by 𝑝. Intuitively, the HMC consists of building a Markov Chain as follows: Generate
proposals of the position by exploring the evolution of the Hamiltonian system, and use
a Metropolis acceptance step to decide whether the position variable moves or returns to
its previous values.

Formally, it is necessary to relate the posterior distribution and the Hamiltonian
dynamics. Consider that the joint probability of the momentum and position variables is
given by 𝜋(𝑞, 𝑝) = 𝜋(𝑝|𝑞)𝜋(𝑞), and define the Hamiltonian 𝐻(𝑝, 𝑞) ≡ − log(𝜋(𝑞, 𝑝)), such
that:

𝐻(𝑝, 𝑞) = 𝐾(𝑝, 𝑞) + 𝑉 (𝑞),

where 𝐾(𝑝, 𝑞) ≡ − log(𝜋(𝑝|𝑞)) is the Kinetic energy and 𝑉 (𝑞) ≡ − log(𝜋(𝑞)) is the
potential energy, so that 𝐻(𝑝, 𝑞) is a energy function. Using the concept of canoni-
cal distribution from statistical mechanics, the joint distribution of (𝑞, 𝑝) is given by
𝑃 (𝑞, 𝑝) ∝ exp(−𝐻(𝑞, 𝑝)). Thus, we can analyze the dynamic of (𝑞, 𝑝) by using Hamilton
equations:

𝑑𝑞

𝑑𝑡
= 𝜕𝐻

𝜕𝑝
= 𝜕𝐾

𝜕𝑝
𝑑𝑝

𝑑𝑡
= −𝜕𝐻

𝜕𝑞
= −𝜕𝐾

𝜕𝑞
− 𝜕𝑉

𝜕𝑞
.

Since the moment 𝑝 is independent of 𝑞, then 𝜋(𝑝|𝑞) = 𝜋(𝑝), which implies that
𝜕𝐾/𝜕𝑞 = 0. Consequently the system of differential equation is given by 𝑑𝑝/𝑑𝑡 = −𝜕𝑉/𝜕𝑞

and 𝑑𝑞/𝑑𝑡 = 𝜕𝐾/𝜕𝑝. This system can be solved using the leapfrog integrator, an algorithm
that operates through discrete time steps in a small interval 𝜖. Then, it toggle between
an update at 𝑡 + 𝜖/2 to 𝑞 and an update at 𝑡 + 𝜖 to 𝑝 and 𝑞, as follow:

𝑝(𝑡+𝜖/2) ←− 𝑝(𝑡) − (𝜖/2)𝜕𝑉 (𝑡)

𝜕𝑞
(3.10)

𝑞(𝑡+𝜖) ←− 𝑞(𝑡) + 𝜖Σ𝑝(𝑡 + 𝜖/2) (3.11)

𝑝(𝑡+𝜖) ←− 𝑝(𝑡+𝜖/2) − (𝜖/2)𝜕𝑉 (𝑡+𝜖/2)

𝜕𝑞
. (3.12)
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After 𝐿 discrete iterations, the algorithm returns the final state, denoted by (𝑞*, 𝑝*).
This states is accepted or rejected according to a Metropolis condition, that is, is accepted
with probability min{1, exp[𝐻(𝑞, 𝑝) − 𝐻(𝑞, 𝑝)]}. More details about the use of HMC in
the Bayesian estimation of DNS models can be found in (BATISTA; LAURINI, 2016).

We run a different number of iterations for each model described in Table 3.1. As
a general rule, the simpler the model, the smaller the number of iterations required to
achieve convergence. Specifically, for the DNS-macro, we run 2×104 iterations, discarding
the first 50% of the chain as burn-in. For the DNS-macro and DNS-macro-state, we run
3.5 × 104, discarding the first 1.5 × 104 draws as burn-in. For the DNS-min, we run
4.5× 104, discarding the first 2× 104 as burn-in. For DNS-macro-tone, we run a total of
8× 104 iterations, discarding the first 50% of the chain as burn-in. For the DNS-tone, we
run 1.6 × 104 and discard the first 6000, and for DNS-min, we run 2.5 × 104, excluding
the first 104. Finally, the DNS-state required 5.5 × 104 with the first 2.5 × 104 used as
burn-in.

The prior distribution can be briefly summarized as follow. For the variance pa-
rameters, 𝜎2

𝑖 and 𝜎𝜂, we specify gamma distributions to ensure the positiveness of these
parameters. The decay parameter 𝜆 also needs to be positive. Therefore, we use a lognor-
mal distribution for this parameter. For the persistence parameters, 𝜑𝑖, we use a normal
distribution truncated in the range (0, 1) to guarantee the stationary of the model. The
prior distribution for the rest of the parameters, 𝑐𝑖, 𝛾𝑖, and 𝛼𝑖, are standard normal
distributions. More details about the prior distributions are available upon request.

3.6.2 Cumulative Squared Forecasting Error

Besides the cumulative squared forecasting error (CSFE) presented in the main
text, here we show the CSFE for ℎ = 1 and ℎ = 12. Figures 3.6 and 3.7 depict the result
for these forecast horizons. Again, each line represents a specific model. A positive slope
indicates outperformance, and a negative slope represents underperformance in a given
period.

For the one-step-ahead forecast, the CSFE presents a positive slope for all models
that include macroeconomic variables (DNS-macro, DNS-macro-state, and DNS-macro-
tone) for maturities up to three months, outperforming the benchmark for every period.
Regarding six-month maturity, we observe some periods of positive slope for these models.
However, in the last months of the forecast period, the CSFE is decreasing, implying
a worst overall performance than the benchmark RW. For maturities greater than six
months, all models underperform the RW. In particular, DNS-only and the models that
include only sentiment variables dramatically decrease over the entire period, independent
of the maturity.

Finally, Figure 3.7 displays the CSFE for ℎ = 12. In this case, only the DNS-min
and DNS-state specifications present a positive slope, while the remaining competitors
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Figure 3.6 – Cumulative squared forecast errors (CSFE) one-step-ahead: An increase in
a line indicates better performance of the named variable; a decrease in a
line indicates better performance relative to the random walk.
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Figure 3.7 – Cumulative squared forecast errors (CSFE) twelve-step-ahead: An increase
in a line indicates better performance of the named variable; a decrease in a
line indicates better performance relative to the Random Walk.

present decreasing line, indicating underperformance relative to the RW model.
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3.6.3 Robustness analysis

We forecast the yield curve again, considering some modifications. The first one
concerns the construction of the sentiment variable. Instead of filling in the gaps created
by the absence of Central Bank meetings with zeros, we use the sentiment variable’s value
from the most recent Central Bank meeting. The second one concerns the forecast period.
We changed the forecast window to exclude the covid-19 pandemic period. The last
modification is related to the change in the number of words in Central Bank documents,
shown in Figure 3.2. We redo the forecasts considering a dummy variable to separate the
“few words" period from the “many words" period. None of these modifications changed
the conclusion of the results presented in the main text. In what follows, we show the
results of these modifications.

Table 3.4 presents the forecast accuracy considering a different forecast period. We
forecast the period between 2018 and 2019 rather than the range between 2019 and 2020.
Also, the specifications that consider Central Bank communication use a different the
construction of the sentiment variables, as explained before. The result is very similar to
those presented in Table 3.3 in the text, as shown in Table 3.4.

Additionally, we run specifications that include a dummy variable to control for
the different partners in the number of words in the period after June 2016. Thus, for
every model that includes sentiment variables, we run the following specification:

𝛽𝑖,𝑡 = 𝑐𝑖 + 𝜑𝑖𝛽𝑖,𝑡−ℎ +
𝐽∑︁

𝑗=1
𝛾𝑖𝑗𝑋𝑗,𝑡−ℎ +

𝐾∑︁
𝑘=1

(𝛼𝑖𝑘 + 𝛿𝑖𝑘𝑑𝑡−ℎ)𝑆𝑘,𝑡−ℎ + 𝜀𝑖,𝑡, (3.13)

where 𝜀𝑖,𝑡 is normally distributed with zero mean and variance given by 𝜎2
𝑖 and 𝑑𝑡 is equal

to 1 for every period after June 2016 and 0 otherwise.
In general, the result of the forecast produced by Equation (3.13) and those pro-

duced by Equation (3.4) are very similar, and the dummy variable 𝑑𝑡 does not affect
the accuracy of the forecast. However, for some specifications, specifically for 12−steps
ahead forecasts, the MCMC diverges from the stationary distribution, even when we use
a large number of MCMC iterations. For those specifications that the MCMC achieves
convergence, the forecasts are very similar. Figure 3.8 illustrates the similarity between
DNS-state with and without the dummy variable.
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Maturity
(in months) RW DNS-

only
DNS-
macro

DNS-
macro-
state

DNS-
macro-

min

DNS-
macro-
tone

DNS-
tone

DNS-
min

DNS-
state

1-month forecast horizon
1 0.185* 2.738 1.389 1.288* 1.478 1.411 2.771 1.896 2.162
2 0.188* 2.548 1.452 1.362* 1.570 1.467 2.574 1.758 1.898
3 0.194* 2.419 1.503 1.421* 1.651 1.516 2.439 1.704 1.729
6 0.234* 2.072 1.471* 1.405* 1.665* 1.484* 2.088 1.612 1.428
9 0.282* 1.827 1.335* 1.282* 1.514* 1.344 1.839 1.485 1.279
12 0.332* 1.696 1.210* 1.153* 1.346* 1.208* 1.702 1.371 1.213
24 0.461* 1.467 1.113* 1.044* 1.143 1.098* 1.465 1.181 1.129*
36 0.521* 1.261* 1.043* 1.005* 1.073* 1.034* 1.263* 1.084* 1.040*

6-months forecast horizon
1 1.013* 1.271 1.074 0.922 0.926 1.709 1.548 1.171 0.746*
2 1.000* 1.242 1.085 0.894 0.896 1.760 1.519 1.175* 0.733*
3 0.983* 1.240 1.127 0.896 0.896 1.832 1.516 1.204* 0.745*
6 0.963* 1.254 1.291 0.961* 0.952* 2.015 1.522 1.307* 0.807*
9 0.981* 1.260 1.431 1.045* 1.031* 2.106 1.510 1.357* 0.854*
12 1.041* 1.251 1.510 1.104* 1.087* 2.104 1.475 1.329* 0.869*
24 1.240* 1.198* 1.539 1.147* 1.125* 1.923 1.345 1.179* 0.881*
36 1.339* 1.138* 1.415 1.061* 1.041* 1.720 1.241 1.121* 0.881*

12-months forecast horizon
1 2.681 1.026 0.801 1.135 1.769 1.377 1.200 1.177 0.751*
2 2.616 1.011 0.809 1.202 1.753 1.409 1.198 1.235 0.740*
3 2.532 1.010 0.831 1.282 1.759 1.458 1.210 1.313 0.739*
6 2.309 1.022 0.924 1.531 1.809 1.623 1.267 1.567 0.751*
9 2.152 1.036 1.027 1.743 1.861 1.768 1.317 1.800 0.765*
12 2.068 1.046 1.118 1.893 1.893 1.870 1.351 1.961 0.778*
24 1.964 1.042 1.293 2.053 1.876 1.990 1.368 2.213 0.811*
36 1.968 1.006 1.284 1.910 1.757 1.906 1.304 2.244 0.829*

Table 3.4 – RMSE for 1-, 6- and 12-step-ahead prediction. The column RW reports the
root of mean squared error (in percentage points) of the random walk bench-
mark, while the other columns display the root of mean squared error of each
model relative to the benchmark. Except for the first column, values less
than 1 indicates outperformance relative to the benchmark. Values in bold
indicate outperformance in the maturity. We indicate by * the models in the
set of superior models for each maturity at 10% of significance.
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4 The effects of Brazilian Central Bank Com-
munication on the yield curve

Abstract

This paper investigates the bidirectional relation between the Brazilian Central Bank
Communication and the yield curve. Using latent factors, observable macroeconomic
variables, and observable variables representing central bank communication, we estimate
a model that summarizes the yield curve. We find evidence of the effects of Brazilian
Central Bank Communication on the movements of the yield curve and the impact of the
yield curve components in Brazilian central bank communication. In particular, Central
Bank Communication can shape yield curve curvature and slope. Additionally, we find
a strong relation between Central Bank Communication and the curvature of the yield
curve. These results show that Central Bank Communication impacts market players,
making it a valuable instrument for monetary policy.

Keywords: Yield Curve, Sentiment Analysis, Bayesian Estimation, Central Bank Com-
munication.
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4.1 Introduction

Researchers and practitioners have increasingly recognized the importance of cen-
tral bank communication on macroeconomic variables, such as inflation and interest rates.
It is still unclear, however, how the Central Bank Communication impacts the term struc-
ture of interest rates and how it is affected by changes in those interest rates. Some au-
thors argue that central bank communication affects the long maturity of the yield curve
(LEOMBRONI et al., 2021, for instance), and others advocate that it affects only the
short maturity of the yield curve (MÁTÉ; SEBŐK; BARCZIKAY, 2021, for instance).
Also, the effects of yield curve shape on Central Bank Communication, if any, are unclear.
This paper investigates the bi-direction effects between the Central Bank Communication
and the term structure of the interest rate.

The most common monetary policy instrument is the short-term interest rate,
which policymakers can control directly. Nevertheless, policymakers cannot directly affect
longer maturities of interest rates. Since the entire term structure of interest rates affects
investment and consumption decisions, all maturities are relevant to policymakers. The
change in the short-term interest rate by the central bank may cause an indirect impact
on the yield curve because investors will respond to the new short-term interest rate
by trading their assets. How the investor will relocate their portfolio, however, will
depend on their expectation about the future path of monetary policy and other economic
fundamentals, and it is out of the control of the interest rate policy instrument.

The recent literature on central banking recognized that Central Bank Communi-
cation may also serve as a monetary policy instrument. This sort of policy instrument,
in turn, may affect medium- and long-term interest by shaping the agent’s expectations.
By telling their vision about future interest rate decisions, inflation, and economic activ-
ity, the central bank may update the agent’s beliefs about the economic fundamentals,
affecting their trading and, ultimately, the price and the assets’ returns. This mechanism
is known as the information effect: Central Bank announcements lead the private sec-
tor to update its belief about the monetary policy path and future time path economic
fundamentals (ROMER; ROMER, 2000; NAKAMURA; STEINSSON, 2018).

The empirical evidence of how central bank communication affects the term struc-
ture of interest rates is conflicting. Part of the literature argues that Central Bank commu-
nication impacts only short-term yield curve maturities (LUCCA; TREBBI, 2009; MÁTÉ;
SEBŐK; BARCZIKAY, 2021) and the other part says that, instead, it affects long-term
yield curve maturities (LAMLA; LEIN, 2011; CHAGUE et al., 2015; LEOMBRONI et
al., 2021). This conflicting evidence may be related to different data and hypotheses used
to model and estimate yield curves and central bank communication. For instance, an
assumption in the literature is that the equation drove the economy and the central bank
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communication have no contemporaneous or lagged interest rate for any maturity1. Also,
in some works, the effect of central bank communication on the interest rate is modeled
for a given maturity (LUCCA; TREBBI, 2009; LAMLA; LEIN, 2011; MÁTÉ; SEBŐK;
BARCZIKAY, 2021), requiring estimating a different model for each maturity. Likewise,
a branch of the literature assumes that Central Bank Communication is determined inde-
pendently of the shape of the yield curve. This hypothesis implies a unidirectional effect
from CBC to yield curve (CBC-yield assumption). The Central bank may, however, react
to changes in the shape of the yield curve since it is related to several macroeconomic
variables.

This paper aims to investigate the bidirectional relationship between central bank
communication and the yield curve. In doing so, we allow for both the yield curve affecting
the CBC and CBC affecting the yield curve. Specifically, we extend the DNS of Diebold
and Li (2006) to also include the central bank communication in addition to the latent
factors (level, slope, and curvature) and macroeconomic factors (inflation, capacity of
utilization, and interest rate). This model allows us to study the bidirectional effect
between CBC and the yield curve and also to consider the lagged effects of the yield
curve due to the autoregressive structure of latent factors.

Our results showed that central bank communication indeed impacts the shape of
the yield curve. Specifically, if the central bank talks in a more positive way the curvature
of the yield curve response is positive. If instead, the central bank has a negative discourse,
then the slope and curvature response is negative. Since changes in curvature are related
to intermediate maturity changes, our results indicate that the central bank can affect
more than just the short-term interest rate by using central bank communication as a
policy instrument. We also find that, conversely, changes in the shape of the yield curve
affect central bank communication. Finally, we find a relation between the central bank
communication to the curvature factor of the yield curve.

Our findings complement and connect to the following works of literature. While
Diebold, Rudebusch and Aruoba (2006a) relates the level and slope factors to macroeco-
nomic variables, we relate the curvature factor with central bank communication. Chun
(2011) relates the fluctuations in bonds with the expected path of monetary policy and
macroeconomy using analyst forecasts. Our approach can be seen as an alternative that
uses Central Bank Communication as an agent expectation. Han, Jiao and Ma (2021)
relate the shape of the yield curve, associated with a time-varying factor loading, with
real macroeconomic variables and argue that this time-varying factor loading contains
information about the market perception of the economic risk and uncertainty. In our
approach, we use central bank communication to include the perception of economic risk
in the model. We believe that our results shed new light on the effects of central bank
communication on the yield curve.

1 See, for example, Lucca and Trebbi (2009), p. 30.
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4.2 Quantifying the Central Bank Communication

The most usual form Central Bank Communicates with the private sector is by
issuing press releases. This sort of communication often occurs after a council meet-
ing, which defines the short-term interest rate considering the council members’ vision
of the economic outlook. The content is documented in the textual press release and
made available for private agents in the economy. In the case of the Brazilian Central
Bank, this communication takes place every forty-five days using two press releases: the
COPOM Minutes and the COPOM Statements. While the Statement is a short document
that briefly explains the decision on a short-term interest rate, the Minutes are a longer
document detailing the macroeconomic outlook and discussing the decision made by the
committee.

A natural way to quantify the Central Bank Communication is to analyze the press
release issued by the Central Bank, and researchers widely use this practice (BOUKUS;
ROSENBERG, 2006; LUCCA; TREBBI, 2009; ROSA, 2011; CHAGUE et al., 2015). To
transform the textual information into numerical variables, we used sentiment analysis to
extract information from the COPOM minutes made available for the Central Bank. We
start by acquiring unprocessed text data and appropriately handling it. After collecting
the raw data at each meeting, we remove punctuation, blank lines, stop words, and
the names of the members of the monetary policy committee in order to remove words
that should not impact the tone of the text. It is important to note that the COPOM
announcements and minutes were only regularly published by the Brazilian central bank
starting in 2006, which serves as the starting year for our sample in this article. By
categorizing the content of these papers into semantic categories, we utilize this processed
text data to measure the Central Bank of Brazil’s attitude.

We use a dictionary-oriented technique to analyze the sentiment of the COPOM
minutes. The vocabulary of these documents is highly specialized, and the phrases em-
ployed have specific connotations, usually with financial meanings. As a result, we clas-
sified the words in the papers using the financial dictionary offered by Loughran and
McDonald (2011). This dictionary helps us to identify each word’s semantic content,
categorizing it as positive, negative, or uncertain. We create the sentiment variables rep-
resenting central bank communication using these three semantic categorizations. We
regard the proportion of each category to the total amount of words in each document as
sentiment variables for COPOM minutes. For every period 𝑡 that the COPOM meetings
take place, we denote the proportion of positive, negative, and uncertainty words by 𝑠𝑝,𝑡,
𝑠𝑛,𝑡 and 𝑠𝑢,𝑡. We also follow Cannon (2015) to define the tone of the central bank by:

𝜏𝑡 ≡
𝑠𝑝,𝑡 − 𝑠𝑛,𝑡

𝑠𝑝,𝑡 + 𝑠𝑛,𝑡

. (4.1)
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The tone summarizes the sentiment of the central bank in one variable, and it is helpful
to analyze the central bank communication and yield curve relationship. We used these
four variables to analyze how central bank communication affects the term structure of
interest rates.

4.3 The Yield Curve and the Central Bank Communication
To analyze the interconnection between the yield curve and central bank commu-

nication, we augmented the Dynamic Nelson and Siegel (DNS) proposed by Diebold and
Li (2006) to include Central Bank Communication as a new factor. Considering observ-
ables and latent factors, the DNS has proved to perform well in fitting and forecasting
the yield curve. The original DNS of Diebold and Li (2006) decomposes the yield curve
using only the unobserved factors known as level (𝐿𝑡), slope (𝑆𝑡), and curvature (𝐶𝑡).
Then, Diebold, Rudebusch and Aruoba (2006a) extend the original model to include a
bi-direction relation between the unobserved factors and observed macroeconomic factors,
specifically inflation, the capacity of utilization, and interest rate. Our model extends this
macro-yield model to include central bank communication.

To include the central bank communication in the DNS model, let us define the
vector of factors as 𝑋𝑡 ≡ (𝐿𝑡, 𝑆𝑡, 𝐶𝑡, 𝑠𝑝,𝑡, 𝑠𝑛,𝑡, 𝑠𝑢,𝑡, 𝐶𝑈𝑡, 𝑅𝑡, 𝜋𝑡)′. We assume that the factors
follow a Vector Auto-Regression (VAR) representation:

𝑋𝑡 = 𝑐 + Φ𝑋𝑡−1 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, 𝑄), (4.2)

where 𝑐 is a vector of constant, Φ is a 9× 9 matrix of VAR coefficients and 𝑄 is assumed
to be diagonal. In line with the DNS model, we use the unobserved factors to build the
entire term structure of interest rate:

𝑦𝑡(𝑚) = 𝐿𝑡 + 𝑆𝑡

(︃
1− 𝑒−𝜆𝑚

𝜆𝑚

)︃
+ 𝐶𝑡

(︃
1− 𝑒−𝜆𝑚

𝜆𝑚
− 𝑒−𝜆𝑚

)︃
+ 𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝜎2

𝜂), (4.3)

where 𝑦𝑡(𝑚) is the interest rate in period 𝑡 of a bond with maturity 𝑚 and 𝜆 is a factor
decay.

The model formed by Equations (4.2) and (4.3) describes the dynamics of the yield
curve considering macroeconomic variables and central bank communication. The param-
eters of the model can be summarized in a vector 𝜃 = (𝑐, 𝜑𝑖𝑗, 𝑞𝑖, 𝜆, 𝜎2

𝜂), where 𝜑𝑖𝑗 is the
elements of the matrix Φ, 𝑞𝑖 is the diagonal elements of the matrix 𝑄 and 𝑖, 𝑗 ∈ {1, · · · , 9}.
For a given set of parameters 𝜃, we can assess how the central bank communication (and
macroeconomic variables) affects the latent factor 𝐿𝑡, 𝑆𝑡, and 𝐶𝑡. Depending on the size
of the factor decay 𝜆, the latent factors will build the entire term structure of interest rate,
so we can indirectly assess the effect of communication and macroeconomic shocks in the
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yield curve. The level, slope, and curvature are unobservable, and we need to estimate
them.

We can estimate the vector of parameter 𝜃 and latent components in a Frequentist
or Bayesian approach. In the Frequentist case, we can construct the likelihood function by
the prediction error decomposition produced from the Kalman Filter and then maximize
this function (DIEBOLD; RUDEBUSCH; ARUOBA, 2006a). The maximum likelihood
estimation, however, may present numerical problems, particularly when the number of
factors increases. We use a Bayesian technique estimation (LAURINI; HOTTA, 2010)
to prevent this kind of issue. In the Bayesian case, we elicit prior distribution to mix
with likelihood function information. Then, we use Markov Chain Monte Carlo (MCMC)
methods to sample from the posterior distribution. In Appendix 4.6.1, we present prior
distribution and MCMC details.

4.4 Results

4.4.1 Yield curve fit

We estimate the model for yields of eight different maturities, presented in the first
column of Table 4.1. The DNS model augmented with central bank communication fits the
yield curve well since the difference between the fitted yield curve and the observed yield
curve, using the estimated latent factors, is negligible. Table 4.1 shows some statistics of
this difference.

Table 4.1 – Summary statistics for the difference between the fitted yield curve and the
observed yield curve.

Maturities
(in months) Mean Std. dev. Min 25% 50% 75% Max

1 -0.0002 0.0001 -0.0004 -0.0002 -0.0002 -0.0001 0.0001
2 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0001 0.0002
3 0.0001 0.0000 -0.0001 0.0000 0.0001 0.0001 0.0002
6 0.0001 0.0001 -0.0001 0.0001 0.0001 0.0002 0.0003
9 0.0001 0.0001 -0.0003 0.0000 0.0001 0.0002 0.0004
12 -0.0000 0.0001 -0.0005 -0.0001 -0.0000 0.0001 0.0004
24 0.0000 0.0003 -0.0011 -0.0002 0.0000 0.0002 0.0009
36 0.0003 0.0004 -0.0015 -0.0000 0.0003 0.0006 0.0015

Figure 4.1 shows the estimated latent factors used to build the fitted yield curve.
The level factor presents high persistence behavior and displays a decreasing tendency
overall. In contrast, the estimated slope and curvature are less persistent and assume
both positive and negative values. Also, there is a correlation of 0.5 between the slope
and curvature movements.
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Figure 4.1 – Latent factors: level, slope and curvature

Since these three unobservable factors form the entire yield curve in the DNS
model, analyzing their dynamic behavior and relation to other observed factors helps us
to understand the yield curve behavior.

4.4.2 Unobservable factors and related variables

We begin by analyzing the correlation between the latent factors and the extracted
sentiment of central bank communication, described in the proportion of positive, nega-
tive, and uncertain words. Figure 4.2 displays the correlation matrix of latent factors and
sentiment variables. In general, the correlation between latent factors and the sentiment
of the central bank is high. Specifically, the curvature of the yield curve is related to all
sentiment variables. The slope, in turn, is only weakly correlated to the proportion of pos-
itive and uncertain words, but it is highly associated with proportion of negative words.
The level is also weak correlated to the positive words. This fact leads us to investigate
further the relationship between the curvature factor and central bank communication.

A large body of literature links the level factor with inflation and the slope factor
with the economic activity cycle. Links between observable variables and the curvature
of the yield curve are less frequent. Here, we summarize the central bank communication
in the tone variable, as defined in Equation (4.1), and link the curvature of the yield
curve with this variable. Figure 4.3 displays the estimated latent factors and the linked
comparison series.

In panel (a) of Figure 4.3, we can observe that the level of the yield curve is
correlated with inflation, as highlighted in the literature (see, e. g., Diebold, Rudebusch
and Aruoba (2006a)). The literature also usually connects the slope factor with the
economic cycle. We use the year-on-year economic growth to represent the cycle. In
contrast to the finds in the literature, the correlation between the cycle and the slope
factor is low (see panel (b) of Figure 4.3). Surprisingly, the curvature factor and the
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Figure 4.2 – Heat-map of correlation matrix: Yield curve latent factors and central bank
communication

central bank communication (represented by the tone variable) move in the same direction
overall, presenting a Pearson correlation of 0.50, as shown by panel (c) of Figure 4.3.

The linkage between the curvature factor and central bank communication sheds
new light on how Central bank communication can serve as a tool to affect the term
structure of interest rates. Increasing the curvature of the yield curve means that medium-
term maturities will have higher interest rates (LITTERMAN; SCHEINKMAN, 1991;
DIEBOLD; LI, 2006). Accordingly, our find implies that central bank communication is
related to the movements in medium-term maturities, which is in line with the literature
that argues that the impact of the CBC is beyond the short-term but can affect other
maturities too (LAMLA; LEIN, 2011; CHAGUE et al., 2015; LEOMBRONI et al., 2021).

For the Brazilian yield curve, the slope and curvature are positively correlated.
Thus, the tone of central bank communication is also associated with the yield curve slope,
presenting a correlation of 0.42. The literature argues that the yield curve slope can pre-
dict recessions (FAMA, 1986; ESTRELLA; MISHKIN, 1998; RUDEBUSCH; WILLIAMS,
2009; BENZONI; CHYRUK; KELLEY, 2018). Financial economists claim that the yield
curve slope “contains information about current and expected future monetary actions”
(BENZONI; CHYRUK; KELLEY, 2018, p. 1).

We claim that the central bank informs the private sector about the current and
expected future monetary policy in their communications and also their point of view
about the economic scenario. Therefore, CBC also contains information about the cycle,
which is in line with previous results of Gardner, Scotti and Vega (2022), who argue
that their sentiment index of FOMC describes good and bad times. Indeed, for the
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Figure 4.3 – Level, Slope and curvature factors and its empirical counterparts.

Brazilian case, the tone of the Brazilian central bank presents a decreasing tendency
during recessions, as shown in Figure 4.6, in Appendix 4.6.2. Han, Jiao and Ma (2021)
also argues that, before recessions, the role of curvature and slope is smaller, and during
recessions, it tends to play a more relevant role. The tone of the Brazilian central bank,
which is correlated with the slope and curvature in the data, captures this movement and
informs the market. This knowledge changes the investors’ beliefs, possibly implying a
change in their portfolios, affecting prices and interest rates of different maturities.
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4.4.3 The yield curve and central bank communication dynamics

We now carry out an impulse response analysis to verify how the effects of the
different types of discourse (more positive, negative, or uncertain) impact the yield curve.
We divide the impulse response function analysis into two groups. The first analyzes how
central bank communication shocks affect the latent factors of the yield curve and how
long these shocks last to dissipate. The second group examines how the latent factors
shocks affect central bank communication. In Appendix 4.6.2, we present the complete
impulse response function in Figure 4.72.

Let us now describe the first group of impulse responses. Figure 4.4 displays the
response of level, slope, and curvature to shocks in negative, positive, and uncertainty
words, all in the proportion of total words. The response of the level factor to shocks in
negative words is negligible, but it is non-negligible for shocks in the proportion of positive
and negative words. In reaction to the proportion of positive word shocks, the level rises
and then dissipates slowly. The level response to uncertain word shocks is negative and
more persistent.

The intriguing reactions to analyze are the response of slope and curvature since
the results of section 4.4.2 indicate a relation of these two factors with central bank
communication. An increase in the proportion of negative words (which decreases the
tone) reduces both the slope and the curvature factor. Around five months ahead, the
curvature achieves a negative one-to-one response. Similarly, the response of the curvature
to an increase in the proportion of positive words (which increases the tone) reaches a
positive one-to-one around five months. The reaction of slope to shocks in the proportion
of positive words is almost negligible, considering the 50% credible interval.

We can interpret these responses of curvature and slope to the shocks in positive
and negative words as an effect of the central bank communication in the short and
medium term of interest rate. When the Central bank surprisingly informs the market
of its vision about the economic outlook, increasing the proportion of positive (negative)
words in its communications, private agents will change their portfolios in such a way
that the curvature of the yield curve will increase (decrease). This increase (decreasing)
means that medium-term yield bonds are also increasing (decreasing). Since the slope
also declines with a positive shock in the proportion of negative words, the short-term
yield bonds will also reduce. Thus, central bank communication can serve as a tool to
affect not only short-term interest rates but also medium-term yields. Again, this result
is in line with the literature that argues that the impact of the CBC is beyond the short-
term but can affect other maturities too (LAMLA; LEIN, 2011; CHAGUE et al., 2015;
LEOMBRONI et al., 2021).

2 The impulse response function in Figure 4.7 of appendix 4.6.2 also shows the 90% credible interval. In
the main text, however, we only present the 50% credible interval to take a closer look at the behavior
of point estimation of the responses, represented by the median of the posterior.
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Figure 4.4 – Impulse response function: level, slope, and curvature response to shocks
in sentiment variables. The solid blue line represents the median and the
shaded blue area represents the 50% credible interval.

Finally, let us describe the second group of impulse responses, which analyzes how
central bank communication reacts in response to changes in the shape of the yield curve.
To do so, we analyze the impulse response function presented in Figure 4.5. In general,
the proportion of negative, positive, and uncertain words increases – some months ahead
– considering the credible interval 50%. An increase in the level factor does not affect
the proportion of negative words in the first months, considering the credible interval.
Around ten months ahead, however, the increase in the level also raises the proportion of
the negative words publicized by the central bank. We find a similar pattern for slope and
curvature shocks. This result means that the central bank does not react immediately to
the proportion of negative words, although it will increase at some point.

The proportion of positive and uncertain words increases immediately for shocks
in any of the latent factors3 and the response dissipates around thirty months ahead. The
reaction of the proportion of uncertain words is also positive and immediate for all three
shocks. Thus, we can conclude that the central bank communication also reacts to the
changes in the yield curve shape, represented by the latent factors.

3 An exception is the reaction of the proportion of positive words to the curvature shock, which decreases
in the first month but then starts to increase. Considering the credible interval, however, we can view
the pattern as equal to the other shocks
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Figure 4.5 – Impulse response function: Proportion of negative, positive, and uncertainty
response to shocks in latent factors of the yield curve. The solid red line
represents the median and the shaded red area represents the 50% credible
interval.

4.5 Conclusion
In this paper, we study the effect of central bank communication on the yield

curve. To do so, we used an augmented dynamic Nelson and Siegel model that makes
the shape of the yield curve depend on central bank communication. We find that the
yield curve, represented by its latent factors, affects and is affected by the Central bank
communication. Specifically, we find that the curvature of the yield curve is closely
related to Central bank communication. A central bank with a more positive discourse is
associated with a greater curvature of the yield curve. Central bank communication is also
related to the slope factor, showing that short and medium maturities of interest rates are
affected by Central bank communication. Therefore, Central bank communication may
serve as a monetary policy tool cable to impact medium-term interest rates in addition
to the traditional short-term interest rate instrument.
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4.6 Appendix

4.6.1 Bayesian estimation details

The prior distribution can be briefly summarized as follows. For the variance
parameters, 𝜎2

𝑖 and 𝜎𝜂, we specify gamma distributions to ensure the positiveness of these
parameters. The decay parameter 𝜆 also needs to be positive. Therefore, we use a log-
normal distribution for this parameter. For the persistence parameters, 𝜑𝑖𝑖, we use a
normal distribution truncated in the range (0, 1), since we are interested in a stationary
system. For the parameters 𝜑𝑖𝑗, with 𝑗 ̸= 𝑖 we assume a prior normal distribution. The
prior distribution for the rest of the parameters, 𝑐𝑖, 𝛾𝑖, and 𝛼𝑖, are standard normal
distributions. More details about the prior distributions are available upon request.

We run three chains with a total of 20, 000 iterations to estimate the posterior
distribution of the model and exclude the first 10, 000 as a burn-in period. For this number
of iterations, the MCMC algorithms converge, following usual diagnostics (Gelman and
Rubin (1992), Geweke (1992), and visual inspection of trace plots.).

The method used to sample from the posterior of the augmented DNS model
was the Hamiltonian Monte Carlo. The Hamiltonian Monte Carlo (HMC) is a Markov
Chain Monte Carlo (MCMC) algorithm that uses gradient information to sample from the
posterior distribution efficiently. The samples are generated by simulating Hamiltonian
dynamics in the posterior distribution. By using gradient information, the HMC can
explore the parameter space more efficiently than traditional methods, such as Random
Walk Metropolis-Hastings. In short, the algorithm consists in proposing a new draw
by combining gradient information and the simulated Hamiltonian dynamics and, then,
accepts this proposal using a metropolis step. See Laurini and Hotta (2010) for a detailed
explanation of the DNS model Bayesian estimation using HMC, and see Hoffman and
Gelman (2014) and Betancourt (2017) for a detailed explanation of the HMC algorithm.

4.6.2 Additional Figures
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Figure 4.7 – Complete impulse response functions
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5 Estimating the Capital Asset Pricing Model
with many instruments: A Bayesian Ap-
proach

Abstract

This paper proposes an instrumental variable Bayesian shrinkage approach to estimate the
Capital Asset Pricing Model (CAPM) using a large set of instruments. Using simulated
data, we find that our approach may reduce the size of mean bias caused by error-in-
variables. While the traditional two-stage least squares estimation for the CAPM beta
becomes biased as the number of instruments increases, our approach corrects the bias for
the case of many instruments. However, this bias reduction is attenuated as the number
of instruments increases. In an empirical application, the estimated CAPM beta using
our approach is subtly different from the ordinary least squares estimator and the tra-
ditional two-stage least squares, and this difference is economically relevant. Moreover,
when using our approach to explain the variation in average cross-section asset returns
the explanatory power of CAPM increases in relation to those found by the two-stage
least squares estimator.

Keywords: Bayesian Estimation, Shrinkage, Instrumental Variables, CAPM
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5.1 Introduction
Many asset pricing models use the return of the market portfolio as an indepen-

dent variable in the estimation process. The Sharpe (1964) and Lintner (1965) Capital
Asset Pricing Model (CAPM) is perhaps the most famous example of these models, due
to its theoretical simplicity and ease of interpretation. Estimating the CAPM requires
a surrogate for the return of the market portfolio given the market portfolio’s unobserv-
ability (ROLL, 1977; STAMBAUGH, 1982; PRONO, 2015). Using a substitute for the
market portfolio return introduces an error-in-variables (EIV) problem, which biases the
estimates and makes it difficult to interpret the results. This is known as Rolls’ critique
(ROLL, 1977). The error-in-variables (EIV) problem makes it challenging to estimate the
CAPM and evaluate its empirical performance.

The usual econometric solution to the error-in-variables (EIV) problem is to use
instrumental variables. However, it can be challenging to find ‘strong’ instruments for
the market return. (MENG; HU; BAI, 2011; SIMMET; POHLMEIER, 2020). The data-
rich environment of financial data sets offers many candidates for instrumental variables,
although they are usually only weakly correlated to the return of the market portfolio.
Alternatively, in contrast to low-dimensional model settings, in which we select a small set
of instruments – imposing an ad hoc sparsity –, all these many candidates for instrumental
variables may be incorporated into the model, leading to high-dimensional model setting.
Unfortunately, conventional econometric techniques cannot deal with high-dimensional
asset pricing model settings (NAGEL, 2021).

This paper proposes an instrumental variable Bayesian shrinkage approach to esti-
mate the capital asset pricing model using a large set of instruments. Bayesian shrinkage
techniques can deal with high-dimensional models by using regularization priors. This
approach has been increasingly adopted in financial econometrics (HOTZ-BEHOFSITS;
HUBER; ZÖRNER, 2018; KOWAL; MATTESON; RUPPERT, 2019; KOZAK; NAGEL;
SANTOSH, 2020; NARD, 2022, for example). Regularization priors are particularly
helpful when there are several potential instruments, as in the case of CAPM estimation.
Without these regularization priors, using many instruments generates biased estimates
(BEKKER, 1994; NEWEY; SMITH, 2004; NG; BAI, 2009). In terms of the two-stage
least squares (2SLS), for example, a large set of instruments will imply overfitting in the
first-stage, because of the tendency of the ordinary least squares (OLS) to fit too well.
Then, the second-stage will be closer to a simple OLS, which is biased in the presence of
EIV. The regularization priors avoid this overfitting in the first-stage and, consequently,
also avoid the bias in the many instruments setting. Thus, the high-dimensional model
setting combined with prior regularization may offer a new approach to deal with Rolls’
critique.

Although high-dimensional models have increasingly become popular in financial
econometric literature, high-dimensional models for instrumental variables combined to
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regularization techniques are still a little-explored field. In this paper, we estimate the
capital asset pricing model using a large set of instruments and shrinkage priors over the
parameters associated with the instruments. To do so, we use the Bayesian approach
proposed by Hahn, He and Lopes (2018) to shrink unimportant instruments and compare
the size of the estimated bias with that produced by the traditional estimation methods
(ordinary least squares and two-stage least squares).

We compare our approach both in simulated data and in observed data. In the
simulation exercises, we analyze whether the shrinkage method can help to improve the
inference on the CAPM beta. In the empirical application, we use the shrinkage approach
to verify if it delivers better estimates for the beta CAPM by comparing the beta estimates
between methods. We also verify if our proposal can help explain the cross-section of
returns by running the two-step procedure of (FAMA; MACBETH, 1973).

The results indicate that the regularization over the instruments coefficient im-
proves the estimates of CAPM beta. In the Monte Carlo simulation analysis, we find
that the regularized Bayesian instrumental variable dramatically reduces the mean bias
concerning the traditional 2SLS. Moreover, the Root of Mean Squared Error and Mean
Absolute Bias are smaller when using the regularization technique. This evidence shows
that high-dimensional settings offer a better way to deal with the CAPM error-in-variable
problem. Using many instruments, we can find more precise and unbiased measures of
CAPM stock’s beta, which helps us accurately evaluate the systematic risk. In addition,
more accurate estimates for betas in the first-pass time-series regression offer an ade-
quate input for the second-pass cross-section regression in the Fama and MacBeth (1973)
two-step procedure.

In the empirical application, the beta estimates using our approach present a subtle
difference to OLS and 2SLS estimates that vary across the assets. This difference in
estimated betas is economically relevant since many financial models are sensitive to
beta. To further investigate whether the difference among estimated betas is indeed
relevant, we run the second-step of Fama-Macbeth procedure for both individual stocks
and portfolios sorted by size and book-to-market. For the portfolio data, the results show
that our approach can explain around 15% of the cross-section of portfolio return, while
the standard 2SLS explains only 5%. For the stocks individually, the betas from our
approach can explain 3% of the cross-section of the stock’s return, compared to nearly
0% of the standard 2SLS.

These results shed new light on the estimation of asset pricing models with mea-
surement errors. By using high-dimensional data and proper techniques, we can attenuate
the error-in-variables problem in the estimation of systematic risk, which in turn will do
a better job in explaining the cross-section of return. We note that, even if the power
of explanation of the cross-section of returns found in our empirical application is small,
compared to multi-factor models, the use of many instruments and regularization pri-
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ors can improve this power concerning the unregularized approaches. Thus, the use of
many instruments with regularization priors can be useful in other contexts too, espe-
cially in asset pricing models that include variables with large measurement errors, such
as macroeconomic variables.

This paper is organized as follows. Section 5.2 reviews the Capital Asset Pricing
Model and introduces the notation used in the paper. Section 5.3 explains the Bayesian
estimation and prior regularization. Section 5.4 presents the Monte Carlo analysis and
the empirical results of the paper. Finally, Section 5.5 concludes the paper.

5.2 The CAPM and measurement errors
The seminal paper of Markovitz (1959) prepared the framework for the Capital

Asset Pricing Model (CAPM). The author established the investor problem in terms of
a trade-off between risk and return and defined the mean-variance efficiency concept of
portfolio allocation. This definition states that, for a given level of return, the portfolio
is mean-variance efficient if it minimizes the variance. Sharpe (1964) and Lintner (1965)
worked on Markovitz (1959) results to analyze the implication for the asset pricing and
developed what is called the Sharpe-Lintner CAPM, or just CAPM.

Assuming that investors possess homogeneous expectations Sharpe (1964) and
Lintner (1965) showed that, in the absence of market frictions, if all investors choose
an efficient portfolio, then the market portfolio is also mean-variance efficient. In this
context, the market portfolio includes all assets in the economy, for instance, stocks, real
estate, and commodities, which makes it an unobserved variable. In practice, usual sur-
rogates for the market portfolio are market indexes, such as S&P500, but these indexes
do not contain all assets and, consequently, the market portfolio is observed only with
errors. Despite this practical difficulty, the efficiency of the market portfolio will imply a
relation between assets risk-premium and the market risk premium:

E [𝑅𝑖]−𝑅𝑓 = 𝛽𝑖 (E [𝑅𝑚]−𝑅𝑓 ) , (5.1)

where 𝛽𝑖 ≡ 𝜎𝑖𝑚/𝜎2
𝑚. Therefore, the CAPM summarized in Equation (5.1) is an equilibrium

result that holds for a single period.
The relation established in Equation (5.1) for one period is not enough to empiri-

cally assess the CAPM. To proceed with econometric analysis, an additional assumption
is required: the returns are independent and identically distributed along time and mul-
tivariate Gaussian. Although this hypothesis is a strong one, it possesses some benefits.
First, it is consistent with the CAPM holding for each period in time. Moreover, it is
a good approximation for monthly returns (CAMPBELL et al., 1997). Under this as-
sumption, the CAPM may be represented by the single index model, which is described
by
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𝑅𝑖𝑡 −𝑅𝑓𝑡 = 𝛾𝑖 + 𝛽𝑖 (𝑅𝑚𝑡 −𝑅𝑓𝑡) + 𝜀𝑖𝑡, 𝜀𝑖𝑡 ∼ 𝒩 (0, 𝜎2
𝑖 ). (5.2)

In Equation (5.2), if 𝛾𝑖 is equal to zero, then the CAPM holds for each period in time.
The representation of the CAPM model given by Equation (5.2) started a tradition

of testing the model that became known as the time series approach. To empirically test
the CAPM model, Jensen, Black and Scholes (1972) proposed to use time series for the
return of assets, for return risk-free assets, and a proxy to the return of the market
portfolio to estimate Equation (5.2). The usual choice for the risk-free asset is the US
Treasure Bill and S&P5500 for the return of the market portfolio. Then, their approach
suggests testing whether the estimated intercept is equal to zero, which may be done by
using a Wald test or the test proposed by (GIBBONS; ROSS; SHANKEN, 1989).

Testing the CAPM using the Jensen, Black and Scholes (1972) approach is prob-
lematic once the return of the market portfolio, 𝑅𝑚𝑡, is a variable contaminated by mea-
surement errors. The source of measurement errors appears because the market indexes
used to estimate the model contain only a subset of assets. Moreover, even if all universe
of assets were observed, the measurement error could appear due to misspecification in
the weights of assets. This problem is known as Roll’s critique, due to Roll (1977) who
argued that, once the market portfolio is not observed, the CAPM cannot be tested. Ac-
cording to this author, a rejection of the CAPM could be due to measurement errors in
the return of the market portfolio. In an econometric sense, the present problem is a case
of classical measurement errors and should be treated as such.

To put the problem in terms of the classical measurement errors, let �̃�𝑚𝑡 denote
the observed return of the market portfolio. Also, denote by 𝑥*

𝑡 ≡ 𝑅𝑚𝑡 − 𝑅𝑓𝑡 the excess
of the return on the true market portfolio and by 𝑥𝑡 ≡ �̃�𝑚𝑡−𝑅𝑓𝑡 the excess of the return
on the observed market portfolio. The excess of return on the asset 𝑖 is denoted by 𝑦𝑖𝑡,
and there is no error in variable in this case. Instead of Equation (5.2), the model to be
estimated to test the CAPM should be

𝑦𝑖𝑡 = 𝛾𝑖 + 𝛽𝑖𝑥𝑡 + 𝜀𝑖𝑡, 𝜀𝑖𝑡 ∼ 𝒩 (0, 𝜎2
𝑖 ), (5.3)

𝑥𝑡 = 𝑥*
𝑡 + 𝑢𝑡, 𝑢𝑡 ∼ 𝒩 (0, 𝜎2

𝑢). (5.4)

Equation (5.4) assumes that the measurement error is additive. If one ignores this additive
measurement error and estimates Equation (5.3) using least squares, then the estimates of
betas will suffer from attenuation bias and the intercept will be upward biased, implying
positive alphas, even if CAPM holds. Thus, to appropriately deal with error-in-variable
problems, the equations (5.3) and (5.4) must be considered to estimate and test CAPM
model.
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5.3 Methods and Data
The data-rich environment available in the financial data set allows us to use many

instruments to correct the bias caused by measurement errors, even though these instru-
ments are possibly weak. The many instruments setting needs to be used carefully, as long
as it can itself be a source of bias. To overcome this inconvenience, we need a regulariza-
tion step, such as variable selection or shrink of less important parameters. Examples of
regularization methods are LASSO, ridge, Elastic Net, or via Bayesian shrinkage priors,
which penalize the number of covariates in some form.

In instrumental variable regression, it is interesting to use a method that jointly
estimates “two stages" and the Bayesian approach has this advantage. The regression
of the treatment variable on the instruments and the estimation of the target variable
on the treated variable can be estimated in a single step. In this sense, the Bayesian
shrinkage priors are preferred rather than other regularization methods. In particular,
the factor-based prior proposed by Hahn, He and Lopes (2018) has the advantage of
linearly combining the information in all possibly weak instruments in such a way that,
taken together, makes them stronger. In the next subsection, we present this structure of
shrinkage prior to the IV regression context.

5.3.1 Bayesian regularization methods in IV regression

When dealing with measurement error, instrumental variable regression may be
used. Consider the model:

𝑥𝑡 = 𝑧′
𝑡𝛿 + 𝜀𝑥𝑡 , (5.5)

𝑦𝑡 = 𝛾 + 𝑥𝑡𝛽 + 𝜀𝑦𝑡 , 𝑡 ∈ {1, · · · , 𝑛} (5.6)

where 𝑥𝑡 are the endogenous or treatment variable, 𝑧𝑡 is a (𝑝× 1) vector of instruments,
𝑦𝑡 is the response variable, and it is supposed that⎡⎣ 𝜀𝑥𝑡

𝜀𝑦𝑡

⎤⎦ ∼ 𝑁

⎛⎝⎡⎣ 0
0

⎤⎦ ,

⎡⎣ 𝜎2
𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎2
𝑥

⎤⎦⎞⎠
Since 𝑝 may be large, some regularization on Equation (5.5) is necessary. The

Bayesian solution to this problem is to impose shrinkage priors on 𝛿 to shrink those pa-
rameters which have little power to explain 𝑥𝑡. By imposing such a prior, the usual Gibbs
sampler scheme (LOPES; POLSON, 2014) used to estimate model (5.5)-(5.6) cannot be
employed. Hahn, He and Lopes (2018) developed an elliptical slice sampler that can deal
with arbitrary priors on 𝛿, allowing us to use shrinkage prior, such as Laplace distribution,
as well as the factor-based-prior also developed by the same authors. Then, it is instruc-
tive to describe the estimation for an arbitrary prior distribution on 𝛿. To understand the
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Bayesian estimation of IV regression, consider the reduced form of equations (5.5) and
(5.6):

𝑥𝑡 = 𝑧′
𝑡𝛿 + 𝜈𝑥𝑡 (5.7)

𝑦𝑡 = 𝛾 + 𝑧′
𝑡𝛿𝛽 + 𝜈𝑦𝑡 (5.8)

where 𝜈𝑥𝑡 ≡ 𝜀𝑥𝑡 and 𝜈𝑦𝑡 ≡ 𝛽𝜀𝑥𝑡 + 𝜀𝑦. Defining 𝑇 =
⎡⎣ 1 0

𝛽 1

⎤⎦ implies that:

Ω ≡Cov
⎛⎝⎡⎣ 𝜈𝑥𝑡

𝜈𝑦𝑡

⎤⎦⎞⎠ = 𝑇𝑆𝑇 ′ =
⎡⎣ 𝜎2

𝑥 (𝛼 + 𝛽)𝜎2
𝑥

(𝛼 + 𝛽)𝜎2
𝑥 (𝛼 + 𝛽)2𝜎2

𝑥 + 𝜉2

⎤⎦ ,

with 𝛼 ≡ 𝜎𝑦

𝜎𝑥
𝜌 and 𝜉2 ≡ (1 − 𝜌2)𝜎𝑦. Note that, the parameters to be estimated are

Θ = (𝜎2
𝑥, 𝛿, 𝜉2, 𝛾, 𝛽, 𝛼). Then, conditional on the set of instruments, the likelihood function

may be written as:

𝑓(𝑥, 𝑦|𝑧, Θ) = 𝑓(𝑦|𝑥, 𝛿, 𝛼, 𝛽, 𝜉2)× 𝑓(𝑥|𝑧, 𝜎2
𝑥𝛿) (5.9)

= 𝑁
(︁
𝛾 + 𝑥𝑡𝛽 + 𝛼(𝑥𝑡 − 𝑧′

𝑡𝛿), 𝜉2
)︁
×𝒩 (𝑧′

𝑡𝛿, 𝜎2
𝑥). (5.10)

This decomposition of the likelihood function allows us to form a Gibbs sampler
scheme by choosing the following prior distributions:

𝛿 ∼ arbitrary, (5.11)

𝜎2
𝑥 ∼ ℐ𝒢(shape = 𝑘𝑥, scale = 𝑠𝑥), (5.12)

(𝜉2, 𝛾, 𝛽, 𝛼)′ ∼ 𝒩ℐ𝒢
(︃

0, 𝜉2Σ−1
0 , shape = 𝑘

2 , scale = 𝑠

2

)︃
. (5.13)

Combining these priors with the likelihood function in Equation (5.10), gives us
the posterior distribution. To sample from this posterior distribution, it is possible to
break it into three full conditional posteriors to form a Gibbs sampler scheme. To explain
these three blocks, it is useful to introduce some definitions. Define1 �̃� ≡ (1, 𝑥, 𝑧′𝛿),
𝑀 ≡ Σ0 + �̃�′�̃�, 𝑎 ≡ 𝑘 + 𝑛 and 𝑏 ≡ 𝑠 + 𝑦′𝑦 − 𝑦′�̃�𝑀−1�̃�′𝑦. It is possible to show that
𝑓(𝑦|𝑥, 𝑧, 𝛿) ∝ |𝑀 |− 𝑎

2 𝑏− 1
2 . With these definitions, we can describe each of these blocks:

Full conditional posterior for 𝛿|Θ, data: given Θ, from Equations (5.10) and
(5.11) the conditional posterior is proportional to 𝑓(𝑥|Θ)𝑓(𝑦, |𝑥, Θ)𝜋(𝛿). Since we are con-
sidering an arbitrary prior for 𝛿, this full conditional posterior may not have a closed form,
requiring alternative methods to sample it. Although traditional Metropolis-Hastings can
1 In general, the notation with no subscript 𝑡 means that the variable contains all observations. For ex-

ample, 𝑥 ≡ (𝑥1, 𝑥2, ..., 𝑥𝑛). A particular case is the vector of instruments, 𝑧𝑡, for which all observations
are denoted by 𝑍 since it becomes a matrix of dimension (𝑝× 𝑛).
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be used in this case, it scales poorly due to possibly high dimension and multimodality
of the full conditional posterior. Instead, Hahn, He and Lopes (2018) proposed to sample
it using an elliptical slice sampler, which only requires the ability to evaluate 𝜋(𝛿). This
algorithm is described below:

Algorithm 1 Elliptical Slice Sampler
1: procedure Slice Sampler(𝛿, 𝜎2

𝑥, 𝑥, 𝑍, 𝑦)
2: Define 𝛿 = (𝑍𝑍 ′)−1𝑍𝑥 and Δ = 𝛿 − 𝛿
3: Draw 𝜁 ∼ 𝒩 (0, 𝜎𝑥(𝑍𝑍 ′)−1) and 𝑣 ∼ 𝑈(0, 1)
4: Compute ℓ ≡ log(𝑓(𝑦|𝑥, 𝑍, 𝛿) + log(𝜋(𝛿)) + log(𝑣)
5: Draw an angle 𝜙 ∼ 𝑈(0, 2𝜋), and do Lower← 𝜙− 2𝜋 and Upper← 𝜙

6: Update Δ and 𝛿: Δ̄ = Δ cos(𝜙) + 𝜁 sin(𝜙) and 𝛿 = 𝛿 + Δ
7: while log(𝑓(𝑦, 𝑥, 𝑍, 𝛿)) + log(𝜋(𝛿)) < ℓ do
8: If 𝜙 < 0, then Lower← 𝜙. Else Upper← 𝜙
9: Draw a new angle 𝜙 ∼ 𝑈(Lower, Upper)

10: Update Δ and 𝛿: Δ̄ = Δ cos(𝜙) + 𝜁 sin(𝜙) and 𝛿 = 𝛿 + Δ
11: 𝛿 ← 𝛿 + Δ̄.
12: return 𝛿

Note that the only requirement of the Algorithm (1) is the ability to evaluate the
prior density 𝜋(𝛿).

Full conditional posterior for 𝜎2
𝑥|Θ, data: Fortunately, for an inverse-gamma

prior on 𝜎2
𝑥 the full conditional posterior for 𝜎2

𝑥 have a closed form. Combining the
likelihood 𝑓(𝑥|𝑍, 𝛿, 𝜎2

𝑥) with the prior given in (5.12), it is possible to show that the
full conditional posterior is an Inverse-Gamma with shape parameter 𝑘𝑥 + 𝑛 and scale
𝑠𝑥 +∑︀𝑛

𝑖=1(𝑥𝑡 − 𝑧′
𝑡𝛿)2 (see proof in Appendix).

Full conditional posterior for (𝜉2, 𝛾, 𝛽, 𝛼)′|Θ, data: This block also have a
closed form. By using the bivariate normal properties, we can write the likelihood in
terms of the transformed variable �̃�, which follows 𝑦𝑡|�̃�𝑡 ∼ 𝑁 (�̃�𝑡𝜃, 𝜉2). Combining this
likelihood with the prior give in (5.13), it can be shown that the full conditional posterior
(𝜉2, 𝛾, 𝛽, 𝛼)′|Θ, data follows a Normal-Inverse-Gamma distribution. Specifically:

(𝜉2, 𝛾, 𝛽, 𝛼)′|Θ, data ∼ 𝒩ℐ𝒢
(︃

𝑀−1�̃�′𝑦, 𝜉2𝑀−1, shape = 𝑎

2 , scale = 𝑏

2

)︃
.

(See Appendix for proof).

We can use these full conditional posteriors to form a three-block Gibbs sampler,
by iterative sampling over the blocks. This methodology is interesting because we can
choose arbitrary priors for 𝛿, and it still works well. In particular, we can elicit several
shrinkage priors over 𝛿, since the many instruments setting requires regularization.
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5.3.2 Shrinkage priors for instruments coefficients

There is a large range of shrinkage priors in the literature (ERP; OBERSKI; MUL-
DER, 2019). The underlying idea of these priors is to give a higher prior probability
around zero, such that if the parameter is not too important, it shrinks to zero. In what
follows, we present some of these priors that can be directly applied to 𝛿 = (𝛿1, · · · , 𝛿𝑝).
Then, we proceed with the factor-based prior distribution.

5.3.2.1 Heavy-tailed priors

Popular choices of shrinkage priors are the Cauchy, Laplace, and Horseshoe densi-
ties (CARVALHO; POLSON; SCOTT, 2010). The horseshoe density is the stronger one,
in the sense that it concentrates high probability density around zero. In the same sense,
the Laplace prior is strong, while the Cauchy density is relatively weaker, although it also
concentrates much density around zero, and so it also works as a shrinkage prior. The
left panel of Figure 5.1 depicts these three priors.
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Figure 5.1 – Three examples of shrinkage priors: Horseshoe, Double-exponential, and
Cauchy, all of them centered at zero.

An advantage of the Horseshoe prior is that at the same time, it concentrates high
probability density around zero, shrinking unimportant coefficients to this point, it also
has heavy tails. The right panel of Figure 5.1 compares the right tails of the three priors
considered here. Notice that the tail of the Horseshoe prior is above the Laplace and
closer to the Cauchy tail. This heavy tail allows the identification of parameters that are
different from zero.

In the IV regression case, we can choose one of these priors for each 𝛿𝑗 and assume
that they are independent for all 𝑖 ̸= 𝑗, with 𝑖, 𝑗 ∈ {1, · · · , 𝑝}. Although it may work, it
neglects the covariance between the instruments. To consider the covariance between the
instruments, a more sophisticated prior is required, and this subject is discussed in the
next subsection.
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5.3.2.2 Factor-based shrinkage prior

The idea underlying the factor-based prior, proposed by Hahn, He and Lopes
(2018), is to explore the covariance of instruments to extract factors that represent ‘strong’
instruments. To formalize this intuition, consider the following decomposition of the
covariance matrix of instruments:

Cov(𝑧𝑡) = 𝐵𝐵′ + Ψ2, (5.14)

where, 𝐵 is a (𝑝 × 𝑘) matrix and Ψ2 is a diagonal (𝑝 × 𝑝). Despite the fact that every
covariance matrix admits this decomposition, the interest here is on the case where 𝑘 <<

𝑝, where 𝑘 represents the number of factors to be extracted, denoted by 𝑓𝑡. Suppose that
the instruments 𝑧𝑡 and the factors 𝑓𝑡 are jointly Normally distributed as follows:

⎡⎣ 𝑧𝑡

𝑓𝑡

⎤⎦ ∼ 𝑁

⎛⎝⎡⎣ 0
0

⎤⎦ ,

⎡⎣ 𝐵𝐵′ + Ψ2 𝐵

𝐵′ 𝐼𝑘

⎤⎦⎞⎠ .

This assumption implies that E[𝑓𝑡|𝑧𝑡] = 𝐴𝑧𝑡 =: 𝑓𝑡, with 𝐴 ≡ 𝐵′(𝐵𝐵′ + Ψ2)−1.
Now, consider the factor regression model:

𝑥𝑡 = 𝜃𝑓𝑡 + 𝜀𝑡, (5.15)

where 𝜃 is a (1× 𝑘). From Equation (5.15) and the definition of 𝑓𝑡 it is possible to show
that 𝛿′ = 𝜃𝐴. However, this specification is only correct if 𝛿 lies in the row space of 𝐴;
otherwise, the model is misspecified. Then, it is necessary to extend the model to include
the possibility that 𝛿 lies in the row space of 𝐴. For that end, the specification in Equation
(5.15) needs to be modified to

𝑥𝑡 = 𝜃𝑓𝑡 + 𝜂𝑟𝑡, +𝜀𝑡 (5.16)

where 𝜂 is a (1×𝑝) vector of parameter and 𝑟𝑡 ≡ (𝐼𝑝 +𝐴+𝐴)𝑧𝑡 and 𝐴+ denote the Moore-
Penrose pseudo-inverse of 𝐴. In this case, it can be shown that 𝛿′ = 𝜃𝐴 + 𝜂(𝐼𝑝 + 𝐴+𝐴).

Defining 𝛿′ = (𝜃, 𝜂), we note that 𝛿 = 𝐻𝛿, where

𝐻 ′ =
⎡⎣ 𝐴

𝐼𝑝 + 𝐴+𝐴

⎤⎦ .

Consequently, we can rewrite (5.16) as 𝑥𝑡 = 𝐻𝛿𝑧𝑡 + 𝜀𝑡. Assuming we know 𝐴 (and then
𝐻), this specification allows us to attribute a prior over 𝛿 by imposing strong shrinkage
prior over 𝛿. If we solve the system 𝛿 = 𝐻𝛿, using the theory of pseudo-inverses, we have
𝛿 = 𝐻+𝛿 + (𝐼𝑝+𝑘 + 𝐻+𝐻)𝜔, for an arbitrary vector 𝜔. With this identity, conditional on



82

𝜔, we can impose a Horseshoe prior, for instance, on 𝛿 and it induces a prior on 𝛿. That
is:

𝜋(𝛿|𝜔) =
𝑘+𝑝∏︁
𝑗=1

{︃(︁
2𝜋3

)︁− 1
2 log

(︃
1 + 4

𝛿2
𝑗

)︃}︃

𝜋(𝛿|𝜔) =
𝑘+𝑝∏︁
𝑗=1

⎧⎪⎨⎪⎩
(︁
2𝜋3

)︁− 1
2 log

⎛⎜⎝1 + 4{︁
[𝐻+𝛿 + (𝐼𝑘+𝑝 −𝐻+𝐻) 𝜔]𝑗

}︁2

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Following Hahn, He and Lopes (2018), we assume that 𝜔 ∼ 𝒩 (0, 𝐼𝑘+𝑝). Once
we know 𝜔, we can evaluate the prior 𝜋(𝛿|𝜔), which is the only requirement of the slice
sampler presented in Algorithm 1. Then we can sample 𝛿 by inducing a prior on 𝛿 via
horseshoe prior over 𝛿. Note that, under this specification, the factor structure derived in
this section is taken into account in the prior over 𝛿. In practice, however, the matrices 𝐵,
Ψ are unknown and, consequently, 𝐴 and 𝐻 is also unknown. Instead of estimating it in a
Bayesian fashion, we use point estimates of these matrices, which is found by minimizing
the trace of Cov(𝑧𝑡)−𝐷, by choosing 𝐷, subject to 𝐷 be diagonal and positive-definite.

Finally, for all shrinkage priors, we incorporate a global shrinkage parameter 𝜆.
Introducing this as a parameter in the model is a key feature in Bayesian regularization
because it avoids procedures like cross-validation or setting it as a fixed parameter. We
sample the global shrinkage parameter via a Metropolis-Hastings step.

5.3.3 Data

To analyze whether our empirical method performs well, we start by using it in
simulated data by means of a Monte Carlo analysis. When we know the true generat-
ing process, we can calculate the error of the estimate and compare it with alternative
methodology (for instance, OLS, 2SLS, etc.). Besides, in the simulation exercise, we also
apply the empirical method in real financial data. To estimate the CAPM, we need asset
return data, a surrogate for the market return, and a risk-free asset. As the risk-free asset,
we consider the one-month Treasury Bill rate and take the surrogate of the market return
data from Kenneth French’s web site2. Finally, we consider the return of 277 stocks listed
in the S&P500 with data availability in the last five years. All data is daily and ranges
from 2017-01-01 to 2021-12-31, resulting in 1, 260 observations.

2 The return on market return and the risk-free asset is taken form https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/. The return of the stocks is based on the close price of the stocks
and is taken from yahoo finance.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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5.4 Results
In this section, we describe and discuss the results of our paper. We begin by

describing the outcome of a simulation exercise, in which we compare the Bayesian reg-
ularization discussed in the previous section with traditional ordinary least squares and
two-stage least squares estimation. Then, we present the result of CAPM estimation for
observed data using the proposed Bayesian shrinkage approach.

5.4.1 Monte Carlo analysis: Simulation procedures

To simulate the CAPM we consider a classical additive measurement error model,
as follows:

𝑥𝑡 = 𝑥*
𝑡 + 𝑢𝑡, 𝑢𝑡 ∼ 𝒩 (0, 𝜎2

𝑢) and 𝑥*
𝑡 ∼ 𝒩 (0, 𝜎2

𝑥), (5.17)

𝑦𝑖𝑡 = 𝛽𝑖𝑥
*
𝑡 + 𝜀𝑖𝑡, (5.18)

for 𝑖 ∈ {1, ..., 𝑝 + 1} and 𝑡 ∈ {1, ..., 𝑛}. In Equations (5.17) and (5.18) 𝑥*
𝑡 is the true

market return, and it is assumed to be Gaussian with mean zero and variance 𝜎2
𝑥, 𝑢𝑡 is

Gaussian measurement error, with mean zero and variance 𝜎2
𝑢, 𝑥𝑡 is the observed market

return. The sensitivity to the market return, which is measured by 𝛽𝑖, is assumed to be
known, and based on these values and given the error term 𝜀𝑡, we construct the assets
return, as described in Equation (5.18). The error term 𝜀𝑡 is also assumed to be Gaussian,
with mean zero and variance 𝜎2

𝜀 .
To simulate the model, we need to calibrate the parameters (𝜎2

𝑢, 𝜎2
𝑥, 𝜎2

𝜀 , 𝛽𝑖). For
the 𝛽𝑖, we consider a linear grid between 0.3 and 1.5. Based on data of a proxy of market
return, we calibrated 𝜎𝑥 = 0.01. We calibrated one of the assets with 𝜎𝜀 = 0.001 and
the other 𝑝 − 1 with 𝜎𝜀 = 0.9. We use these different values for 𝜎𝜀 to create one strong
instrument and 𝑝 − 1 weak instruments. A lower standard deviation creates assets that
will be stronger instruments than those with a higher standard deviation. Besides these 𝑝

assets, we consider an additional one with 𝛽 = 1 and 𝜎𝜀 = 0.04, which is used as a target
variable in the CAPM estimation. Finally, we calibrate 𝜎𝑢 = 2𝜎𝑥 to create a situation with
a high measurement error. These parameters calibration allow us to simulate all variables
of interest in CAPM. We set the hyper-parameters of the remaining prior distribution
parameters to reflect a diffuse prior.

To evaluate the accuracy of each method, we simulate the model 𝑁sim = 1, 000
times. At each iteration, we estimated the parameters using six methods. The first one
was the traditional Ordinary Least Squares (OLS), regressing 𝑦𝑖𝑡 on 𝑥𝑡, which is known to
be inconsistent in the presence of measurement errors. Second, we consider the two-stage
least squares (2SLS), using all asset returns but the regressand in the CAPM Equation
as instruments (see (MENG; HU; BAI, 2011), for a similar approach). We believe that
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these variables satisfy the requirement of an instrument: they are correlated with the
market return but uncorrelated with the error term in the CAPM equation. Third, we
use the Limited Information Maximum Likelihood (LIML) (FULLER, 1977) estimator
with the same set of instruments. Although our main interest is to verify whether the
Bayesian regularization of the two-stage can improve the inference about beta, we include
the results of the LIML estimator since it is known to be unbiased in the presence of many
instruments (HANSEN; HAUSMAN; NEWEY, 2008) 3. In the last three methods, we
consider the same set of instruments to estimate the model using the Bayesian method
described in Section 5.3. We use the Horseshoe, Laplace, and Factor-Based Shrinkage
prior distributions over 𝛿. This estimation is referred to as BHS, BLA, and BFB.

Table 5.1 – Measures for the beta estimation error, 𝑛 = 1000

OLS 2SLS LIML BHS BLA BFB
𝑝 = 2 Mean bias -0.798 -0.001 0.003 0.007 0.012 0.013

Mean abs. bias 0.798 0.633 0.117 0.117 0.119 0.119
RMSE 0.800 4.970 0.143 0.144 0.146 0.146

𝑝 = 10 Mean bias -0.799 -0.029 0.007 0.017 0.018 -0.005
Mean abs. bias 0.799 0.123 0.121 0.120 0.123 0.119
RMSE 0.801 0.154 0.151 0.151 0.155 0.149

𝑝 = 20 Mean bias -0.799 -0.066 0.012 0.021 0.023 -0.055
Mean abs. bias 0.799 0.126 0.122 0.121 0.125 0.120
RMSE 0.801 0.158 0.155 0.155 0.160 0.152

𝑝 = 40 Mean bias -0.798 -0.146 0.003 0.010 0.006 -0.166
Mean abs. bias 0.798 0.167 0.126 0.122 0.159 0.181
RMSE 0.800 0.198 0.161 0.158 0.308 0.211

𝑝 = 80 Mean bias -0.803 -0.252 0.017 0.008 -1.133 -0.320
Mean abs. bias 0.803 0.253 0.135 0.129 1.234 0.320
RMSE 0.805 0.279 0.172 0.163 1.444 0.339

𝑝 = 160 Mean bias -0.799 -0.407 0.010 -0.079 -1.149 -0.508
Mean abs. bias 0.799 0.407 0.158 0.138 1.153 0.508
RMSE 0.801 0.421 0.199 0.168 1.249 0.517

Note: We report mean bias, mean absolute bias, and the root mean of squared
error (RMSE) of each estimator. We highlight in bold type the best estimator for
each criterion and number of instruments.

We simulate and estimate the model for different numbers of assets and hence
different numbers of instruments. Specifically, we start with 𝑝 = 2, and then increase it
to 10, 20, 40, 80, and 160. In the estimation process, we consider the asset with 𝛽 = 1.
Because of measurement error, the OLS estimator is downward biased. To assess the
ability of each estimation method to correct this bias, we use three criteria: mean bias,

3 The LIML estimator, however, is also known to have no moments. The modification version of LIML,
due to Fuller (1977), solves this drawback. Still, the modification introduces an additional parameter
that must be chosen by the econometrician.
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mean absolute bias, and the root mean of squared error (RMSE). According to these
criteria, the lower its absolute value, the better the estimator.

Table 5.1 summarizes the Monte Carlo results. In this table, we highlight in bold
the best estimator for the criterion and the number of instruments. The Bayesian “two-
stage” procedure with Horseshoe regularization prior (BHS) is better than traditional
2SLS for all criteria and choices of 𝑝, except for the mean bias criteria and 𝑝 = 2. This
result shows that the regularization over the instrumental variables indeed avoids bias in
the presence of many weak instruments. The mean bias of BHS is closer to the mean
bias of LIML. For 𝑝 = 80, it is even smaller than those of LIML, which corrects the many
instruments bias (HANSEN; HAUSMAN; NEWEY, 2008). We note that, for the other
values of 𝑝 ̸= 80, the LIML has a smaller mean bias. However, considering the mean
bias and the root of mean squared error, which also penalizes for variance, the Bayesian
approach always dominates the LIML, except for 𝑝 = 2. Thus, we conclude that the
Bayesian regularization in the estimation of the CAPM model improves the inference
about the betas in two ways: decreasing the bias and reducing the estimates’ variance.

0 10 20 40 80 160

Number of instruments, p

0.0
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Figure 5.2 – Boxplots of the estimated CAPM betas for different numbers of instru-
ments: Comparison between Bayesian Horseshoe (BHS) and Two-Stage
Least Squares (2SLS). The horizontal black line represents the true CAPM
beta value, which is one

Among the three types of regularization priors, the horseshoe outperforms the
other at least in terms of mean bias, except for 𝑝 = 10. For this reason, we now focus on
the horseshoe prior in comparison with the traditional 2SLS. In Figure 5.2 we present the
distribution of the BHS and 2SLS for several number of instruments, as well as the OLS
estimates. For small sets of instruments, say up to 20, the 2SLS bias is small and can be
entirely corrected by Bayesian regularization. When the number of instruments increases
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to 40 and 80, the bias becomes greater, and the Bayesian regularization still entirely
corrects the bias, maintaining the distribution of the estimates around the true CAPM
beta, which is one. The bias of the traditional 2SLS can be explained by the tendency
of the OLS, in the first-stage, to fit too well, as the number of instruments increases, see
(DAVIDSON; MACKINNON et al., 1993, pp. 222). The BHS penalizes the “first-stage”
estimation, avoiding this tendency to overfitting, and hence reducing the bias (see Figure
5.2). The size of the correction diminishes when we increase the number of instruments
to 160, but it is still better than 2SLS, as shown both by Figure 5.2 and Table 5.1.

In the appendix, we present a robustness check, in which we change some param-
eters of the simulated CAPM.

5.4.2 Empirical Application

This section uses the Bayesian regularization procedure to estimate the CAPM
using observed data and compare it with the traditional 2SLS, LIML, and OLS estimators
of CAPM beta. We estimate the model for 278 stocks listed in the S&P500 index. The
instruments for each model consist of all other stock returns listed in the S&P500, but
the one used in the CAPM target equation. The original set contains 366 stocks for
the period between January 2017 to December 2021, but we exclude 88 stocks with a
correlation above 0.7. This exclusion is needed to avoid numerical approximation errors
in the inversion of 𝑍𝑍 ′, a requirement of Algorithm 1. All data is daily and ranges from
January 2017 to December 2021, totaling 1, 260 observations.

The posterior distribution for CAPM beta was similar for the factor-based prior
and Laplace prior (BFB and BLA, see Figure 5.6 in Appendix). This result indicates
that, for these stocks, these two priors perform equally. The reason why the Factor-
Based shrinkage prior cannot do a better job than the straight horseshoe prior may be
related to the covariance structure of the instruments. Indeed, the eigenvalues of the
covariance matrix decay drastically from the first to the second eigenvalues and then
decline slowly. The covariance of the minimized-trace (the Cov(𝑧𝑡) − 𝐷 discussed in
Section 5.3.2.2) presents a similar behavior, see Figure 5.7 in Appendix. Thus, we cannot
isolate “commonalities" and, hence, the prior information is unable to help in the shrinkage
of parameters. The Horseshoe prior presents a subtly different result, compared to BLA
and BFB (see Figure 5.6 in Appendix). We focus on the Horseshoe prior because of their
better performance in the simulation exercise.

When comparing the Bayesian IV estimates with OLS and 2SLS estimates, we find
different results across the stocks. While for some stocks the Bayesian IV delivers greater
betas than the other methods for some stocks, there is also a group of stocks whose BIV
estimates are less than (or very similar to) the unregularized estimates. On one hand, a
beta greater than the OLS is a better estimate, since the OLS is downward biased in the
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presence of EIV. On the other hand, the appearance of betas smaller than the OLS may
reflect another hypothesis that may be failing in the model, such as an omitted variable.

Figure 5.3 brings two examples of stocks where BIV delivers a greater beta than
the other estimators. The stocks are Nvidia (NVDAO) and AMD, which are enterprises
from the technology sector and present the highest return in our data set. Since they
possess the high returns we expected, according to the CAPM theory, they hold higher
systematic risk and, consequently, a higher beta.
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Figure 5.3 – Posterior distribution of CAPM beta estimated by Bayesian Instrumental
Variable with Horseshoe prior for three assets: (a) Nvidia and (b) AMD.
The figure also presents the mean of the posterior distribution and the OLS
and 2SLS estimates.

For both the Nvidia and AMD stock, the 2SLS and OLS estimates are similar,
though the 2SLS is slightly smaller. It is an expected result since when the number of
the instruments is large (as in this case, 𝑝 = 277) relative to the number of observations
(𝑛 = 1, 260), the 2SLS estimates tend to the OLS estimates4. In addition, since the market
return contains measurement error, we know that the OLS estimates are downward biased
and, consequently, so are the 2SLS estimates.

The Bayesian approach, in turn, delivers a greater CAPM beta for the two stocks,
considering the posterior mean as a point estimation (see black line in Figure 5.3). For
Nvidia stock, while 𝛽𝑂𝐿𝑆 = 1.61 and 𝛽2𝑆𝐿𝑆 = 1.57 the posterior mean of beta is 1.68, using
the Horseshoe prior. For AMD stock, while 𝛽𝑂𝐿𝑆 = 1.49 and 𝛽2𝑆𝐿𝑆 = 1.44 the posterior
mean of beta is 1.68. Although we do not know the true beta in this case, we know that
OLS is downward biased, which puts our approach in a better position. Even though the
difference between the BIV and 2SLS beta estimates is not too stark, these discrepancies
in estimated beta may have drastic implications for finance practitioners. As noted by
Malloch, Philip and Satchell (2021), some analysis in finance, such as valuation, is very
sensitive to the estimated beta. Thus, the many instruments approach with shrinkage
priors can offer a better way to make such financial analysis.
4 In the extreme case where 𝑝 = 𝑛 the two estimators are equivalent.



88

The above discussion only considers two stocks with the highest return of the an-
alyzed data set. We extend this analysis to include all 277 stocks and, hence, consider
all the differences among the different estimators. To do so, we analyze how the esti-
mated betas of each estimator can explain the heterogeneity in the cross-section return
by running the second-pass regression of the two-pass procedure proposed by Fama and
MacBeth (1973). The idea of the second pass regression is to regress the cross-section
of the returns against the betas. Thus, we can verify how much of the cross-sectional
variation in the returns is explained by the betas. Specifically, we follow an approach
similar to Lettau and Ludvigson (2001), regressing:

�̄�𝑖 = 𝜆0 + 𝜆1𝛽𝑖 + 𝑢𝑖 (5.19)

where �̄�𝑖 ≡
∑︀𝑛

𝑡=0 𝑅𝑖𝑡.

The second-pass regression also suffers from the EIV problem because 𝛽𝑖 carries
error estimation from the first-pass (the time-series regression). As argued in the simula-
tion exercise, our approach can improve the estimation of the betas both in terms of bias
and variance. Thus, a more efficient estimate and possibly bias-corrected can improve the
estimation of the second-pass, alleviating its EIV problem. Traditionally, the two-pass
procedure is done by grouping the stock in portfolios to avoid the EIV in the second pass
5. Since our approach improves the estimation in the first step, we consider the two-pass
procedure for stocks instead of for portfolios. We also consider, however, the analysis for
the portfolio to allow some comparison to previous literature.

Figure 5.4 plots the results of the second-pass regression using the betas from 2SLS
and from BHS. In this figure, the horizontal axis measures the realized return, and the
vertical axis the fitted return obtained from the regression (5.19). If the CAPM fitted the
data perfectly all points should lie exactly in the 45-degree line. The CAPM, however,
has been challenging in explaining the cross-section return. In part (a) of Figure 5.4,
we observe that the return of the market portfolio can explain little of the cross-section
variation of stock returns when we use the betas from 2SLS (𝑅2 = 0%). Using betas
from BHS, in part (b) of Figure 5.4, we can observe an increase in the explanation of
cross-section return, with a 𝑅2 = 3%. This power of explanation is still low compared to
alternative models in the literature, such as multi-factor models, but it represents some
improvement in the explanation of heterogeneity of cross-section return by the market
factor.

5 Grouping stocks in portfolios have some shortcomings. See Jegadeesh et al. (2019) for a discussion.
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Figure 5.4 – Realized versus fitted stocks return: (a) fitted return obtained from 2SLS
betas estimates; (b) fitted return obtained from BHS.

We can interpret this result as a “possible improvement in the measure”. Using
many instruments and regularization techniques, we can directly deal with the EIV of the
return on the market portfolio, alleviating the problems caused by the EIV. In a certain
sense, our approach deals with Roll (1977) critique: even though we cannot measure
the return on the market portfolio exactly, we can use a data-rich environment to treat
the mismeasured variable. The shrinkage approach makes it possible to downplay the
significance of unimportant instruments and use all the relevant information in the data.
This better use of the data allows for a better estimate of the betas in the first step;
hence, the second step can explain a higher variation of the cross-section return.

To illustrate the argument above, we highlight in Figure 5.4 the points representing
the AMD and Nvidia stocks. Notice that these two stocks present the highest realized
return among all stocks. They are, however, distant from the 45-degree line. For a given
estimate of 𝜆0 and 𝜆1 > 0 6, a higher Nvidia or AMD beta would increase its fitted return,
bringing the points of these stocks closer to the 45-degree line. As shown in Figure 5.3,
the point BHS estimate of the CAPM beta is greater than the 2SLS, which brings the
points closer to the 45-degree line and increases the 𝑅2.

We also analyze the two-pass procedure using portfolios instead of stocks. Specif-
ically, we consider the 25-Fama-French portfolios sorted by size and book-to-market to
run the Fama and MacBeth (1973) two-step procedure, as in the case of the stocks pre-
sented above. The portfolio data ranges from 1963-Q3 to 2019-Q4. Following Lettau and
Ludvigson (2001) and Meng, Hu and Bai (2011), we use the data in quarterly frequency.
6 We note, however, that different values of 𝛽𝑖 would affect the estimates of 𝜆𝑗 , 𝑗 = 0, 1. We also note

that, in our case, the estimated 𝜆0 and 𝜆1 are positive both for betas from 2SLS and betas from BHS,
with the last being greater than the former.
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Figure 5.5 presents the fitted return versus the realized return of the 25 portfolios. Com-
paring the results using the betas from 2SLS in part (a) with the results using BHS in
part (b) of Figure 5.5, we again observe an increase in the 𝑅2. That is, using the betas
from the BHS increases the percentage of variation in the portfolio returns explained by
the market beta.

3.0 3.5 4.0 4.5 5.0 5.5

Realized Return, in %

3.0

3.5

4.0

4.5

5.0

5.5

F
it

te
d

R
et

ur
n,

in
%

R2 = 5%

45◦

(a) TSLS

3.0 3.5 4.0 4.5 5.0 5.5

Realized Return, in %

3.0

3.5

4.0

4.5

5.0

5.5

R2 = 15%

45◦

(b) BIV

Figure 5.5 – Realized versus fitted portfolio return: (a) fitted return obtained from 2SLS
betas estimates; (b) fitted return obtained from BHS.

A large body of the literature documented the CAPM’s incapability to explain the
heterogeneity of cross-section average return (FAMA; FRENCH, 1992; FAMA; FRENCH,
1993). By using methods that ignore the EIV problems, such as OLS, or instrumental vari-
ables without regularization techniques and high-dimensional settings, previous literature
has reported that the CAPM can explain around only 1% of the variation in cross-section
return of 25 Fama-French portfolios (LETTAU; LUDVIGSON, 2001; MENG; HU; BAI,
2011). In contrast, by exploring the high-dimensional settings in instrumental variables,
our approach shows that CAPM betas can explain 16% of the variation in the return of
25 Fama-French portfolios.

These findings provide fresh insight into the estimate of asset pricing models with
measurement errors. We can lessen the error-in-variables problem in the assessment of
systematic risk, which in turn will better explain the cross-section of return, by employing
high-dimensional data and appropriate approaches. Although the power of explanation of
the cross-section of returns reported in our empirical application is modest compared to
multi-factor models, we emphasize that the inclusion of several instruments and regular-
ization priors might increase this power relative to unregularized techniques. Therefore,
using a variety of instruments with regularization priors can be beneficial in other contexts
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as well, particularly in asset pricing models that incorporate variables with significant
measurement errors, such as macroeconomic variables.

5.5 Conclusion

This paper contributes to the literature that works on the solution of Roll (1977)
critique, in particular the strand of literature that uses the instrumental variable. The
data-rich environment available in finance offers a wide range of instruments to solve the
error-in-variable present in the capital asset pricing model. These instruments, however,
are usually weakly correlated with the endogenous market return, and using too many
instruments may induce bias. This paper proposes to estimate the capital asset pricing
model using a large set of instruments and shrinkage priors over the parameters associated
with the instruments.

In a simulation exercise, the results show that the proposed approach reduces the
bias of the CAPM beta estimates. In the empirical application, we argue that the high-
dimensional settings can also improve the estimation of CAPM. We verify empirically
that for some stocks our proposal produces greater betas than the OLS and 2SLS meth-
ods. Since OLS is downward biased, the regularized Bayesian approach delivers better
results than the traditional 2SLS for this application. This find is supported by a large
literature that shows beta’s incapacity to appropriately measure the magnitude of risk.
This difference in estimated betas is economically important since many financial models
are sensitive to beta. Moreover, for both stocks individually and for portfolio analysis,
our approach helps to explain the heterogeneity of the cross-section of return.

Future research can extend the results of this work in at least two ways. The
first is to generalize the model presented here to consider the joint estimation of all beta
assets. This generalization can be a way to increase the efficiency of the estimates since
it will consider the covariance of all stock returns in the estimation. Second, a limited
information Bayesian approach may be designed to also include prior regularization, in
an analogous manner as presented here.

An important comment about the contribution of our work is its general applica-
tion in more general contexts than CAPM estimation. Note that the same estimation
methodology can be applied in the context of multifactor risk models, especially in the
construction of risk factors based on asset sorting using characteristics such as the so-
called Fama-French factors (FAMA; FRENCH, 1993). These factors are built by ordering
the assets based on observable characteristics, and then building the risk factors based
on quantile separation. Note that in this procedure there are several possible sources of
measurement risk, such as the frequency of reordering based on the observed character-
istic, the choice of quantile level for separating the portfolios, etc. These ad hoc choices
can introduce a component of measurement error in the construction of these risk factors,
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as discussed for example in Jegadeesh et al. (2019) and Giglio and Xiu (2021).
The primary focus of our work was to analyze the performance and properties of

Bayesian estimation methods when dealing with measurement errors and utilizing shrink-
age within the CAPM framework. However, the natural extension of our findings lies in
the realm of risk pricing for multifactor models, where the presence of contaminations by
measurement errors can lead to biased estimates of risk premia.

In conclusion, our research not only addresses CAPM estimation but also opens up
avenues for improving risk pricing methodologies in more complex multifactorial contexts
by considering and mitigating the impact of measurement errors.
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5.6 Appendix

5.6.1 Full conditional posterior

First full conditional posterior 𝜎2
𝑥|𝛿, 𝛽, 𝛼, 𝜉2

From Equation (5.5) we know that

𝑓(𝑥𝑡|𝑧𝑡, 𝛿, 𝜎2
𝑥) = 𝒩 (𝑧′

𝑡𝛿, 𝜎2
𝑥),

which represents the likelihood. It implies that the density of 𝑥 ≡ (𝑥1, ..., 𝑥𝑛)′ given
𝑧 ≡ (𝑧1, ..., 𝑧𝑛)′ is:

𝑓(𝑥|𝑧, 𝛿, 𝜎2
𝑥) ∝ (𝜎2

𝑥)− 𝑛
2 exp

{︃
− 1

2𝜎2
𝑥

(𝑥− 𝑧′𝛿)′(𝑥− 𝑧′𝛿)
}︃

.

Consider the inverse-gamma prior with 𝑠𝑥/2 scale parameter and 𝑘𝑥/2, it follows
that the conditional posterior is:

𝜋(𝜎𝑥|𝑥, 𝑦, 𝑍, 𝛿) ∝ (𝜎2
𝑥)

−𝑘𝑥−𝑛−2
2 exp

{︃
− 1

2𝜎2
𝑥

[︃
𝑠𝑥 +

𝑛∑︁
𝑖=1

(𝑥𝑡 − 𝑧′
𝑡𝛿)2

]︃}︃
,

which is the kernel of an inverse-gamma.

Second full conditional posterior 𝛿|𝜎2
𝑥, 𝛼, 𝛽, 𝜉2

Use the elliptical slice sampler for this parameter, described in Algorithm 1.

Third full conditional posterior (𝛾, 𝛽, 𝛼, 𝜉2)|𝛿, 𝜎2
𝑥, 𝛼, 𝛽, 𝜉2

To simplify the notation, define 𝜃 ≡ (𝛾, 𝛽, 𝛼)′, which is a (3× 1) vector. From eq.
(5.5) and (5.6) and using the bivariate normal properties, we can find the conditional dis-
tribution 𝜀𝑦𝑡|𝜀𝑥𝑡 ∼ 𝑁 (𝛼(𝑥𝑡 − 𝑧′

𝑡𝛿), 𝜉2) , where 𝛼 ≡ 𝜌𝜎𝑦

𝜎𝑥
, 𝜉2 ≡ (1−𝜌2)𝜎2

𝑦 and note that 𝜀𝑥𝑡 =
𝑥𝑡−𝑧′

𝑡𝛿. Then, from eq. (5.6), we can conclude that: 𝑦𝑡|𝑥𝑡 ∼ 𝒩 (𝛾 + 𝑥𝑡𝛽 + 𝛼(𝑥𝑡 − 𝑧′
𝑡𝛿), 𝜉2).

Define �̃�𝑡 ≡ (1, 𝑥𝑡, 𝑥𝑡 − 𝑧′
𝑡𝛿),which is a (1 × 3). It will be useful to consider 𝑛 × 3

matrix of observation: �̃� = (�̃�′
1, ..., �̃�′

𝑛)′. Thus, we can write 𝑦𝑡|𝑥𝑡 ∼ 𝑁 (�̃�𝑡𝜃, 𝜉2) . The
conditional likelihood will be:

𝑓(𝑦|𝑥, 𝑍, · · · ) ∝ (𝜉2)− 𝑛
2 exp

{︃
− 1

2𝜉2 (𝑦′𝑦 − 𝑦′�̃�𝜃 − 𝜃′�̃�′𝑦 − 𝜃′�̃�′�̃�𝜃)
}︃

Combining this likelihood with the Normal-inverse-gamma prior:

𝜋(𝜃, 𝜉2|𝜉2) ∼ 𝒩ℐ𝒢
(︃

0, 𝜉2Σ−1
0 , shape = 𝑘

2 , scale = 𝑠

2

)︃
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and defining 𝑎 ≡ 𝑘 + 𝑛 and 𝑀 = Σ0 + �̃�′�̃�, allow us to find the third full conditional
posterior:

𝜋(𝜃, 𝜉2|𝑦, 𝑥, 𝑍, 𝜎2
𝑥, 𝛿) = 𝒩ℐ𝒢

(︃
𝑀−1�̃�′𝑦, 𝜉2𝑀−1, shape = 𝑎

2 , scale = 𝑏

2

)︃

where 𝑏 ≡ 𝑠 + 𝑦′𝑦 − 𝑦′�̃�𝑀−1�̃�′𝑦.

5.6.2 Robustness check

We also consider alternative calibration in the simulation exercise. Besides the
results presents in the main text, we also consider a context in which the number of weak
instruments and strong instruments are always equal, that is, half of instruments are
strong, and half are weak. Specifically, we set the standard deviation of half of the assets
to 𝜎𝑖 = 0.01 and the other half to 𝜎𝑖 = 0.04. We also consider a less intense measurement
error, setting the standard deviation of measurement error to 𝜎𝑢 = 0.9𝜎𝑥. The calibration
of the other parameters is the same as described in the main text. Table 5.2 presents the
results for this setting.

Table 5.2 – Measures for the beta estimation error, 𝑛 = 1000, equal number of weak and
strong instruments

OLS 2SLS LIML BHS BLASSO BFBS
𝑝 = 2 Mean bias -0.449 1.009 0.008 0.022 0.018 0.019

Mean abs. bias 0.449 2.000 0.230 0.236 0.235 0.236
RMSE 0.458 28.312 0.288 0.297 0.295 0.296

𝑝 = 10 Mean bias -0.452 -0.024 -0.008 -0.011 -0.017 -0.019
Mean abs. bias 0.452 0.154 0.150 0.149 0.148 0.148
RMSE 0.462 0.196 0.188 0.187 0.185 0.185

𝑝 = 20 Mean bias -0.445 -0.013 0.009 0.001 -0.011 -0.014
Mean abs. bias 0.445 0.124 0.125 0.123 0.120 0.120
RMSE 0.455 0.158 0.158 0.156 0.154 0.154

𝑝 = 40 Mean bias -0.449 -0.044 -0.006 -0.022 -0.044 -0.053
Mean abs. bias 0.449 0.121 0.118 0.117 0.118 0.120
RMSE 0.458 0.152 0.151 0.147 0.149 0.150

𝑝 = 80 Mean bias -0.445 -0.070 -0.004 -0.042 -0.084 -0.105
Mean abs. bias 0.445 0.115 0.109 0.106 0.117 0.128
RMSE 0.454 0.145 0.137 0.134 0.148 0.159

𝑝 = 160 Mean bias -0.450 -0.120 0.000 -0.114 -0.179 -0.221
Mean abs. bias 0.450 0.143 0.113 0.136 0.184 0.222
RMSE 0.460 0.171 0.142 0.163 0.209 0.244

Note: We report mean bias, mean absolute bias and the root mean of squared error
(RMSE) of each estimator. We highlight in bold-type the best estimator for each
criterion and number of instruments.

From Table 5.2 we can notice that the Bayesian horseshoe approach dominates
the 2SLS for all criteria and choices of 𝑝, in line with the results in the main text. Also,
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except for 𝑝 = 2 the horseshoe prior performs better than the other regularization priors in
terms of mean bias. In this setting, however, the improvement of the Bayesian horseshoe
in relation to the unregularized 2SLS is attenuated as the number of instruments increases.
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5.6.3 Additional Bayesian estimation results
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