• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.96.2021.tde-24092021-154707
Document
Auteur
Nom complet
Pedro Antonio Sá Barreto de Lima
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Ribeirão Preto, 2021
Directeur
Jury
Laurini, Marcio Poletti (Président)
Dario, Alan de Genaro
Gomes, Fabio Augusto Reis
Saporito, Yuri Fahham
Titre en anglais
Forecasting sovereign CDS returns via deep learning
Mots-clés en anglais
Deep learning
Recurrent neural networks
Sovereign credit default swap
Time series forecasting
Resumé en anglais
This paper is an empirical exercise of forecasting for a class of credit derivatives known as sovereign credit default swaps. Utilizing non-linear and non-parametric machine learning techniques termed Deep Learning, this study was made utilizing daily emerging country data and a set of financial and macroeconomic indicators as features. The non-linear nature of the financial derivative studied here suggests that this novel technique can better capture data behavior compared to a baseline random walk model. A Grid Search Cross-validation is conducted to estimate the hyperparameters of the model. To evaluate the predictive out of sample forecasting is utilized deterministic and statistical metrics concluding that there is a predictive gain utilizing this technique.
Titre en portugais
Previsão de retornos de CDS soberanos por meio de aprendizagem profunda
Mots-clés en portugais
Credit default swap soberano
Previsão para série de tempo
Redes neurais profundas
Redes neurais recorrentes
Resumé en portugais
Este artigo é um exercício empírico de previsão para uma classe de derivativos de crédito conhecida como credit default swap soberano. Utilizando técnicas de aprendizado de máquina não lineares e não paramétricas denominadas Redes Neurais Profundas, este estudo foi feito usando dados diários de países emergentes e um conjunto de indicadores financeiros e macroeconômicos como variáveis preditivas. A natureza não linear do derivado financeiro estudado aqui sugere que esta técnica pode capturar melhor o comportamento dos dados em comparação com um modelo de passeio aleatório, que foi utilizado para ser base comparativa. Uma validação cruzada utilizando grid search é conduzida para estimar os hiperparâmetros do modelo. Para avaliar a previsão fora da amostra, são utilizadas métricas determinísticas e estatísticas, concluindo que há um ganho preditivo usando esta técnica.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-10-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2023. Tous droits réservés.