• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.96.2018.tde-10072018-111254
Documento
Autor
Nombre completo
Adriano Barasal Morales
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Ribeirão Preto, 2018
Director
Tribunal
Laurini, Marcio Poletti (Presidente)
Achcar, Jorge Alberto
Porsse, Alexandre Alves
Toneto Junior, Rudinei
Título en portugués
Localização industrial: uma aproximação usando processos pontuais espaciais
Palabras clave en portugués
Localização de firmas; São Paulo; Estatística espacial; Processo pontual de Poisson; LGCP; INLA
Resumen en portugués
O objetivo desta pesquisa é mostrar como aproveitar novas bases de dados disponíveis e o avanço de métodos computacionais para extrair informações estatísticas sobre a localização espacial de firmas. Para isso, propomos uma aplicação de métodos de estatística espacial para modelar o padrão de localização de novas empresas de serviços no município de São Paulo. Neste trabalho, assumimos que a localização espacial dessas firmas foi gerada através de um processo pontual bidimensional e assim aplicamos dois modelos distintos: um baseado em intensidade não estocástica baseada no processo de Poisson, e um modelo de intensidade estocástica baseado processo de Cox log Gaussiano (Log Gaussian Cox Process - LGCP). A principal base de dados utilizada é base georeferenciada baseada no Cadastro Central de Empresas construída pelo Centro de Estudos da Metrópole (CEM), contendo observações de empresas na região metropolitana de São Paulo, para o ano base de 2000. Utilizamos como variáveis explicativas de localização informações advindas de sistemas de informações geográficas (SIG), o Censo demográfico e imagens de satélite do National Oceanic and Atmospheric Administration (NOAA). Os resultados encontrados mostram a importância dessa metodologia no processo de construção de modelos de localização espacial, combinando distintas fontes de dados e introduzindo novas perspectivas sobre o estudo empírico de economia urbana.
Título en inglés
Firm location: an approach using spatial point process
Palabras clave en inglés
Location of firms; São Paulo; Spatial statistics; Poisson point process; LGCP; INLA
Resumen en inglés
The objective of this research is to show how to take advantage of new available databases and computational methods to extract statistical information about the spatial location of firms. In this sense, we propose an application of spatial statistics methods to model the location patterns of new services firms in the city of São Paulo. In this paper, we assume that the spatial location of these firms was generated through a two-dimensional point process and thus we applied two distinct models: one based on non-stochastic intensity based on the Poisson process, and a stochastic intensity model based on the Log Gaussian Cox process (LGCP). The main input used is a georeferenced database based on the Central Business Register made by the Center for Metropolis Studies (CEM), containing data of firms in the metropolitan region of São Paulo, for the base year 2000. We use as explanatory variables information from geographic information systems (GIS), demographic census and satellite imagery from National Oceanic and Atmospheric Administration (NOAA). The results show the usefulness of these models the construction of spatial location models, combining different data sources and introducing new perspectives on the empirical study of urban economics.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-08-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.