
UNIVERSIDADE DE SÃO PAULO
FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE

RIBEIRÃO PRETO
DEPARTAMENTO DE ECONOMIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA

FERNANDA VALENTE

Essays in spatial statistics
Ensaios em estatística espacial

Orientador: Prof. Dr. Márcio Poletti Laurini

RIBEIRÃO PRETO
2023



Prof. Dr. Carlos Gilberto Carlotti Junior
Reitor da Universidade de São Paulo

Prof. Dr. Fabio Augusto Reis Gomes
Diretor da Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Prof. Dr. Milton Barossi Filho
Chefe do Departamento de Economia

Prof. Dr. Luciano Nakabashi
Coordenador do Programa de Pós Graduação em Economia - Área: Economia Aplicada



FERNANDA VALENTE

Essays in spatial statistics
Ensaios em estatística espacial

Tese submetida ao Programa de Pós-Graduação
em Economia - Área: Economia aplicada da Fa-
culdade de Economia, Administração e Contabi-
lidade de Ribeirão Preto da Universidade de São
Paulo, para a obtenção do título de Doutora em
Ciências. Versão Corrigida. A original encontra-
se disponível na FEA-RP/USP.

Orientador: Prof. Dr. Márcio Poletti Laurini

RIBEIRÃO PRETO
2023



Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio con-
vencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Valente, Fernanda
Essays in spatial statistics / Fernanda Valente – Ribeirão Preto,

2023.
245f.: il.; 30 cm

Tese submetida ao Programa de Pós-Graduação em Economia -
Área: Economia aplicada da Faculdade de Economia, Administração
e Contabilidade de Ribeirão Preto da Universidade de São Paulo, para
a obtenção do título de Doutora em Ciências. Versão Corrigida. A
original encontra-se disponível na FEA-RP/USP. – Universidade de
São Paulo

Orientador: Laurini, Márcio Poletti

1. Spatial Point Process. 2. Log Gaussian Cox Process. 3.
INLA. 4. Environmentrics. 5. Climate Events. 6. COVID-19.



Aos meus amados pais.





ACKNOWLEDGMENTS

Agradeço, em primeiro lugar, aos meus amados pais, Eledir e Delson, que sempre me incen-
tivaram a percorrer o caminho da academia e não mediram esforços para garantir uma educação
de qualidade à mim e minha irmã. Eu jamais teria conseguido sem vocês.

À minha amada irmã, Amanda, pelo apoio, admiração e por ter nos dado, ao longo desta
jornada, nosso maior presente, a nossa Isabelinha.

Ao meu amor e parceiro de vida, Kael, por me apoiar em todos os meus sonhos, vibrar pelas
minhas conquistas e me dar suporte nos momentos mais difíceis desta jornada. Obrigada por
me lembrar da minha força e me encorajar a seguir em frente, mesmo que isso significasse a
distância de um oceano entre nós.

Aos amigos que ganhei no Programa, em especial à Patrícia Felini, que deixaram as neces-
sárias horas de estudo mais divertidas e leves.

À minha querida amiga, Franciele Alba, por compartilhar comigo a incrível experiência de
viver e estudar fora do Brasil. Guardo com carinho na memória todos os momentos que vivemos
na 51, Watson Crescent.

Ao meu orientador, Márcio Laurini, pela excepcional orientação, disponibilidade e paciência
em compartilhar seu conhecimento ao longo destes anos de trabalho.

Ao professor Finn Lindgren, por me receber na University of Edinburgh e gentilmente con-
tribuir com nosso trabalho.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 e do Instituto Escolhas
através do Programa Cátedra Escolhas de Economia e Meio Ambiente.





“Torture the data and it will confess to anything”
(Ronald Coase)





ABSTRACT

VALENTE, F. (2023). Essays in Spatial Statistics. Doctoral Thesis. Faculdade de Eco-
nomia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo, Ribeirão
Preto, 2023.

This thesis is composed by eight self-contained papers in spatial statistics. Five papers are ap-
plications of statistical decomposition for spatio-temporal analysis of changes in climate-related
events. The sixth paper is an application of statistical decomposition for climatic time series to
analyze the existence of changes in rainfall and temperature patterns. The two final papers deal
with statistical decomposition for spatio-temporal analysis of coronavirus disease in the national
and global scales.

Keywords: Spatial Point Process, Log Gaussian Cox Process, INLA, Environmentrics, Climate
Events, COVID-19





RESUMO

VALENTE, F. (2023). Ensaios em Estatística Espacial. Tese (Doutorado). Faculdade
de Economia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, 2023.

Esta tese é composta por oito artigos independentes em estatística espacial. Cinco artigos são
aplicações de decomposição estatística para análises espaço-temporais de mudanças em eventos
relacionados ao clima. O sexto artigo é uma aplicação de decomposição estatística para séries
temporais climáticas para analisar a existência de mudanças nos padrões de chuva e temperatura.
Os dois trabalhos finais tratam da decomposição estatística para análise espaço-temporal da
doença do coronavírus em escalas nacional e global.

Palavras-chave: Spatial Point Process, Log Gaussian Cox Process, INLA, Environmentrics,
Climate Events, COVID-19
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GENERAL INTRODUCTION

This thesis is composed by eight self-contained papers in spatial statistics. Five papers
are applications of statistical decomposition for spatio-temporal analysis of changes in climate-
related events like fires and tornadoes. One paper is an application of statistical decomposition
for climatic time series to analyze the existence of changes in rainfall and temperature pat-
terns. The two final papers deal with statistical decompositions for spatio-temporal analysis of
coronavirus disease.

In the first paper we propose to analyze the possible changes in the tornado occurrences in
the Unites States. The results have provided evidences that trend in annual tornado occurrences
in the United States have remained relatively constant, supporting previously reported findings.
This paper was published in Econometrics, v. 8, n. 2, p. 25, 2020.

The second paper investigates the efficiency of a regulatory change in sugarcane production
(Law Nº11.241/2002) that gradually banish the pre-harvest burning in the sugarcane production
sector in the São Paulo state in Brazil, analyzing the occurrences of fires detected by satellite.
The results have provided evidence that the trend component reflects the consistent reduction
in fire occurrences, suggesting the efficiency of the mitigation actions implemented in the São
Paulo state. This paper was published in Cleaner Engineering and Technology, v. 4, p. 100255,
2021.

In the third paper, we present a statistical decomposition for spatio-temporal analysis of
changes in fire occurrence in Australia and its association with climate factors. We found
evidence of variability in the trend results for fire occurrence, and also some evidence that this
variation is related to climate patterns. This paper was published in Stochastic Environmental
Research and Risk Assessment, v. 35, n. 9, p. 1759-1770, 2021.

The fourth paper studies the possible changes in the patterns of fire occurrence in the Legal
Amazon, within the spatio-temporal point process framework. The results show that long-term
movements of fire occurrence exhibits a marked decrease between the beginning of the sample
and 2012, followed by an increase that extents to the end of the sample, which can be related to
governance measures and market mechanisms. Additionally, our model was able to capture the
spatial variability in the Brazilian Amazon, higher in regions where the climate has dry seasons.

Similarly, the fifth paper also analyses the changes in the patterns of fire occurrence based
on remote sensing data, but now in the Brazilian Pantanal. The results obtained indicate that
there are relevant variations in the trends of fires occurrence in the Brazilian Pantanal, the
intensity of occurrence of fires is statistically higher in natural vegetation, and that a relevant
part of the record of fires observed in the first three quarters of 2020 cannot be explained by
climatic factors alone, possibly being caused by intentional human actions.

It is worth noting that, in general, the first five chapters of this thesis are grounded in a
structural modeling framework that incorporates the potential for extracting trend, cycle, and
seasonality components through a structural decomposition framework à la Harvey, while also
integrating spatial elements. Specifically, given that the data under consideration comprises
point pattern observations with associated geographic coordinates within a continuous space,
we adopted the Log Gaussian Cox Process (LGCP), where the decomposition structure is in-
corporated within the intensity function of the LGCP, that is, the intensity function is defined
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as a function of a spatial component plus latent factors.
The LGCP, as introduced by Møller, Syversveen and Waagepetersen (1998), represents a

class of valuable models for addressing spatio-temporal point processes. Cox processes are non-
homogeneous Poisson processes, where the intensity function is a stochastic process. LGCP, in
particular, is a specific type of Cox process in which the log-intensity function follows a Gaussian
random field. The advantage is this case is the fact that, according to Simpson et al. (2016),
the LGCP formulation naturally integrates into the Bayesian hierarchical modeling framework
which allows to perform analysis using integrated nested Laplace approximation method (RUE;
MARTINO; CHOPIN, 2009).

The idea to use INLA to fit LGCP models started with Illian et al. (2010), who developed
a Poisson approximation to the true LGCP likelihood based on regular grids and the counting
number of points within each grid cell. However, Simpson et al. (2016) demonstrated that this
approach could be highly inefficient because the quality of the likelihood approximation depends
on the grid size, requiring the construction of an excessively fine grid, which is computationally
intensive.

As an alternative, Simpson et al. (2016) proposed the use of a stochastic partial differential
equations (SPDE) approach to approximate a Gaussian field as a Gaussian Markov random
field, defined by sparse matrices due to its Markov properties. The key insight provided by
Simpson et al. (2016) is that there’s no need to construct an overly fine grid to approximate the
LGCP likelihood effectively, making way for computationally efficient methods.

Regarding the structural decomposition components, the proposed structure allows us to
identify long-term and transient effects of climate-related occurrences through non-stationary
and stationary latent components, respectively. This, in turn, represents a method for analysing
climate variability patterns through a spatio-temporal structure.

In the sixth paper we propose a novel statistical decomposition of climatic time series into
long-term trend, seasonal and cycle components to analyze the existence of changes in rainfall
and temperature patterns in the metropolitan area of São Paulo. Differently from the previous
chapters, in this case, we do not consider the spatial dimension. However, in this scenario,
we propose the same decomposition structure to extreme values, probability of rain and the
duration of dry days. The results indicate a significant increase in the trend component of daily
temperature and in the rain patterns. In addition, the analysis for annual temperature records
and annual records of daily rainfall support the hypothesis of permanent changes in observed
climatic patterns. On the other hand, there is no significant evidence of changes in the pattern
of duration of dry days nor changes in the trend component for the annual maximum of dry
days, indicating the stability of this component. This paper was published in Urban Climate,
v. 41, p. 101077, 2022.

In the scenario of the final two chapters, the structural decomposition framework is applied
within the time series and polygon-based spatial data context. The models applied are based
on generalized decompositions of trend, seasonality and cycle components incorporating a time-
varying spatial component, which is based on a conditional autoregressive structure, that is, the
prior information for the number of occurrences in a certain region of interest is based on the
information of occurrences in some definition od neighborhood.

The seventh paper proposes a method to estimate the trend in the cases of COVID-19, con-
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trolling for the presence of measurement error. We applied time series decompositions analysis
for the total number of deaths in Brazil and for the states of São Paulo and Amazonas, and
a spatio-temporal analysis for all occurrences of deaths at the state level in Brazil, using two
alternative specifications with global and regional components. This paper was published in
Spatial and Spatio-temporal Epidemiology, v. 39, p. 100455, 2021.

The eighth and final paper also deals with the estimation of the trend of deaths by COVID-19,
but now on a global scale. The proposed model was able to capture the patterns in the occurrence
of deaths related to COVID-19, overcoming the problems observed in COVID-19 data. We found
compelling evidence that spatio-temporal models are more accurate than univariate models to
estimate the patterns of the occurrence of deaths. The findings suggested that the spatial
dynamics have an important role in the COVID-19 epidemic process since the results provided
evidence that spatio-temporal models are more accurate to estimate the general patterns of the
occurrence of deaths related to COVID-19. This paper was published in BMJ open, v. 11, n.
8, p. e047002, 2021.
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1 TORNADO OCCURRENCES IN THE UNITED STATES: A SPATIO-
TEMPORAL POINT PROCESS APPROACH

Fernanda Valente Márcio Laurini

ABSTRACT

In this paper we analyze the tornado occurrences in the Unites States. To perform inference
procedures for the spatio-temporal point process we adopt a dynamic representation of Log-
Gaussian Cox Process. This representation is based on the decomposition of intensity function
in components of trend, cycles, and spatial effects. In this model, spatial effects are also repre-
sented by a dynamic functional structure, which allows to analyze the possible changes in the
spatio-temporal distribution of the occurrence of tornadoes due to possible changes in climate
patterns. The model was estimated using Bayesian inference through the Integrated Nested La-
place Approximations. We use data from Storm Prediction Center’s Severe Weather Database
between 1954 and 2018, and the results have provided evidences, from new perspectives, that
trend in annual tornado occurrences in the United States have remained relatively constant,
supporting previously reported findings.

Keywords: Tornadoes in the United States; Spatio-temporal models; Point Process; Log-
Gaussian Cox Process; INLA

VALENTE, Fernanda; LAURINI, Márcio. Tornado occurrences in the United States: A spatio-
temporal point process approach. Econometrics, v. 8, n. 2, p. 25, 2020.

1.1 Introduction

According to the Intergovernmental Panel on Climate Change report (IPCC, 2014), the glo-
bal average temperature has continued increasing in the last few decades. The climate changes,
associated to natural or anthropological activities, can lead to changes in the likelihood of the
occurrence and/or strength of severe weather and climate events (ALLEN et al., 2014). Severe
events such as heat waves, droughts, tornadoes, and hurricanes cause properties damages and
kill people. According to the Emergency Events Database (EM-DAT) of Centre for Research on
the Epidemiology of Disasters (CRED), in 2018, there were 315 natural disaster events recor-
ded, which caused 11.804 deaths and more than $130 billion dollars in economic losses across
the world.

Tornadoes are extreme weather events defined by “a violently rotating column of air touching
the ground, usually attached to the base of a thunderstorm”1. The United States experiences
more tornadoes per year than any other country, with an average of over 1000 tornadoes each
year, according to the National Oceanic and Atmospheric Administration (NOAA). In 2017,
tornadoes caused almost $650 million in damages and 35 fatalities in the United States (NOAA).
1 See https://www.weather.gov/phi/TornadoDefinition.



30

Given the impact of these events on society, understanding how tornado activity will respond
to climate change is important in order to be prepared for possible impacts.

Previous studies have searched for relationships between tornado activity and global warming
(LEE, 2012; DIFFENBAUGH; SCHERER; TRAPP, 2013; MOORE; DEBOER, 2019). Recent
works analyze the variability of tornadoes occurrence in the United States. As a result, some
studies have found that, when removing many non-metereological factors, there is no significant
changes in the annual frequency of United States tornadoes (KUNKEL et al., 2013; TIPPETT et
al., 2015). Some other studies have generally found that tornadoes are becoming more clustered
over time. Specifically, Tippett, Lepore and Cohen (2016) found that the frequency of U.S.
outbreaks with many tornadoes is increasing since the 1970s and that it is increasing faster for
more extreme outbreaks. Moore (2017) found evidences that the number of (E)F1 and stronger
tornado days has decreased whereas the number of high-frequency (30+) tornado days has
increased, which tended to be focused further east of the Great Plains. Another empirical studies
also propose to analyze if the spatial distribution of tornadoes has shifted over time (GENSINI;
BROOKS, 2018; MOORE; MCGUIRE, 2019). Gensini and Brooks (2018) found evidences
that a significant spatially-varying temporal trends in tornado frequency have occurred since
1979, with negative tendencies in portion of Great Plains and positive trends in portions of the
Midwest and Southeast United States. Moore and McGuire (2019) also found that the spatial
dispersion of tornadoes in the United States have changed between 1954 and 2017, specially
in spring, summer and fall. In addition, their results suggest that the increased occurrence of
tornado outbreaks is contributing to the decrease in dispersion.

Tornadoes can be represented by point processes, which are used to represent occurrences of
events in space associated to their spatial coordinates and temporal instant, which corresponds to
spatio-temporal point processes. The Log Gaussian Cox process (LGCP), proposed by Møller,
Syversveen and Waagepetersen (1998), defines a class of useful models to deal with spatio-
temporal point process. Cox processes are inhomogeneous Poisson processes, which the intensity
function is a stochastic process and LGCP is a special case of Cox processes, where the log-
intensity function is a Gaussian random field.

Recently Illian et al. (2010) proposed to use integrated nested Laplace approximations
(INLA) to fit LGCP models. They construct a Poisson approximation to the true LGCP li-
kelihood based on regular lattices, and counting the number of points in each cell. However,
Simpson et al. (2016) show that this approach could be very inefficient since the quality of the
likelihood approximation depends on the size of the grid, i.e., it is necessary to construct a
much fine grid, which is computationally intense. Therefore, Simpson et al. (2016) propose to
use stochastic partial differential equations (SPDE) approach to approximate a Gaussian Field
(GF) to a Gaussian Markov Random Fields (GMRF), which is defined by sparse matrices, due
to Markov properties. The main result provided by Simpson et al. (2016) is that is not necessary
to construct too fine grids in order to approximate LGCP likelihood, allowing computationally
effective methods. Moreover, according to Simpson et al. (2016), the LGCP formulation fits
naturally within the Bayesian hierarchical modelling framework in combination with Integra-
ted Nested Laplace Approximations (INLA) approach, proposed by Rue, Martino and Chopin
(2009), avoiding convergence problems related to Markov Chain Monte Carlo (MCMC) methods.

The paper herein discuss how to perform inference procedures for spatio-temporal processes
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using a dynamic representation of a LGCP. This representation is based on the modeling of
the intensity function from decomposition of components in trend, cycles, covariates and spatial
effects. We also assume that spatial effects are based on a dynamic formulation, which allows
it to change over time, based on an autoregressive functional structure. Our model follows the
approach introduced by Laurini (2019) which proposes a method for decomposition of trend,
cycle and seasonal components in spatio-temporal models, where the spatial component is based
on a continuous projections of spatial covariance functions. Indeed, our proposed model can be
seen as an extension of Laurini (2019) approach to spatial point process, where the dynamics
in point process are captured by persistent term and mean-reverting components, plus the
spatial term, which is time-varying by the autoregressive group structure. The persistent term
is modeled as a first order random walk for a latent component whereas the cyclic component
is based on a second-order latent autoregressive structure. This formulation is useful since it
allows to identify permanent changes in the intensity of occurrences over time and also to capture
cyclical effects in time series. We apply this methodology in order to model the spatio-temporal
distribution of the tornado occurrences in the United States, taken into account the different
intensities of the occurrences, based on Fujita (prior to 2007) and Enhanced Fujita (2007 and
posterior) damaging rate scales, which ranges from (E)F0 (lowest damage indicator) to (E)F5
(highest damage indicator). The results indicate that the trend in annual tornado occurrences
in the United States have remained relatively constant, supporting previously reported findings,
e.g., Kunkel et al. (2013) and Moore (2017).

This article is organized as follow. Section 2 contains a description of the statistical approach.
Section 3 presents the data. Section 4 shows the results with discussion. Section 5 concludes.

1.2 Material and Methods

To model the spatio-temporal distribution of the occurrence of tornadoes, we use the struc-
ture of point processes, which is a mathematical way of describing random events distributed in
some abstract space. In our application the space used is the product of Cartesian space defined
by the longitude and latitude of the occurrence of the tornado by a space defined by the time of
occurrence of the event. In this work we assume that time t describes the number of tornadoes
that occurred in the year. It is possible to use more complex structures to represent the process,
such as the distribution of tornadoes in the terrestrial sphere or other sample intervals, at the
cost of greater computational complexity.

An essential structure for modeling point processes is the so-called spatial Poisson process. In
this process the number of occurrences in a certain limited region of space is characterized by a
Poisson distribution with an intensity parameter λ. Assuming constant λ we have a homogeneous
Poisson process, which would generate a random but regular distribution of points in space. As
this process is very restrictive, a way of making possible a non-homogeneous distribution in space
is through a function of deterministic intensity, where we usually assume that the intensity of
the process is a deterministic function of a set of fixed and observed covariates in the same space.

This structure is interesting, but it may have several important empirical limitations. It
is necessary to have a structure of covariates observed at each point in the space to assess
the likelihood of the process. This is an important limitation since for practical purposes we
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need covariates observed continuously for their use, and in many cases these covariates are not
observed or are constructed from methods of interpolation of discrete observations in space. The
second limitation is that this structure does not incorporate the possible sources of uncertainty
associated with this process, such as measurement errors and omission of relevant variables in
the model.

Another extremely important limitation is that the Poisson process is conditionally indepen-
dent, i. e., conditional on the covariates of the process, the achievements are independent. This
does not allow incorporating processes of spatial (or temporal) dependence generated by latent
processes or processes of dependence generated by covariates omitted from the system.

An alternative is to allow the dependency function in a point process to be stochastic,
allowing to incorporate spatio-temporal dependency processes in the occurrences and other
forms of randomness in the process including structures of random effects. These effects can be
structured in such a way as to capture possible spatial and temporal dependency structures in
the punctual process, allowing control for the effects of dependence generated by the omission
of relevant covariates, measurement errors and also as an approximation to point processes that
are truly dependent outside of the class of Poisson point process.

We use in this work the structure of Log Gaussian Cox Process (LGCP), which are point
processes defined by a function of stochastic intensity defined by the class of processes known as
Gaussian Markov Random Process (RUE; HELD, 2005a). This class is defined by a structure
of Gaussian latent effects, assuming a Markovian dependence structure which allows the use of
efficient methods of computational representation and inference. Below we define the LGCP
structure used in our work.

1.2.1 Spatio-Temporal Log-Gaussian Cox Process

The model used in this work is a spatio-temporal formulation of point processes with sto-
chastic intensity, using a decomposition of the intensity function into components that vary in
time and space. The central idea is to represent the possible temporal evolution through a
component of stochastic tendency, which serves to identify permanent changes in the process in-
tensity function, and a cycle component, which represents persistent patterns but with reversion
to the mean, in the process intensity function. This interpretation is analogous to the so-called
decomposition of unobserved components in time series, as discussed in Harvey (1989). The
trend component is modeled as a local level process (first order random walk for a latent compo-
nent), and thus changes in this level indicate permanent impacts. Note that this formulation is
extremely useful for identifying possible changes in the intensity of occurrences over time, which
would be associated with permanent changes in the occurrence of tornadoes associated with
climate change. The mean reversion component is based on a second-order latent autoregressive
structure, a parsimonious way of capturing cyclical effects in time series. This structure is im-
portant as it allows estimating the impact of non-permanent shocks on temporal patterns, being
especially useful in modeling climate processes as it allows estimating the aggregate effects of
phenomena such as droughts, cyclical changes in ocean temperature and other periodic patterns.
A detailed discussion of this decomposition applied to climate change patterns can be found at
Laurini (2019). The spatial distribution of the intensity function is captured through a random
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effect, associated with a spatial covariance function projected continuously in space. This effect
represents the spatial variation of the occurrence of tornadoes, and is a simple way to estimate
regions with high and low intensities of occurrence of events. However, it is possible to make this
spatial effect also time-varying, allowing to estimate possible changes in the spatial distribution
of the occurrence of tornadoes, which again could be associated with possible effects of climate
change on the spatial distribution of tornadoes. The decomposition proposed in this article is
therefore especially useful for analyzing possible changes in the temporal and spatial patterns
of the occurrence of events. It captures changes in the average number of occurrences through
the trend component, and changes in the spatial distribution pattern through the time varying
spatial random effect.

The model can be represented as a spatial LGCP where the intensity function is modelled
as follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = α+ µt + ct + ξ(s, t)

µt = µt−1 + ηµ

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Φξ(s, t− 1) + ω(s, t)

Cov(ω(s, t)) = C(h) (1.1)

where Y (s, t) is the number of occurrences in a region s in time t, e(s) is the exposure offset for
the region s, α is the intercept, µt is the long term trend, ct is a cycle component represented
by an second-order autoregressive process with complex roots, and ξ(s, t) is the spatial random
effects represented by the Gaussian process ω(s, t) continuously projected in space and given by

Cov(ω(s, t)ω(s′, t′)) =

0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′ (1.2)

where C(h) is a covariance function of the Matérn class, which can be written as

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (1.3)

where h = ||s− s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial scale
parameter, ν > 0 is the smoothness parameter and Kν is a modified Bessel function.

The Matérn covariance function is a very useful covariance structure in spatial modeling. It
is very flexible; for example, the Gaussian and exponential covariance functions can be obtained
as particular cases of that function. Additionally, it has good approximation properties for other
spatial dependency structures, as discussed in ??), and computational advantages that will be
discussed later.

The marginal variance σ2 is defined by:

σ2 =
Γ(ν)

4πκ2ντ 2Γ(ν + d
2 )

(1.4)

where τ is a scaling parameter and d is the space dimension. Following Lindgren, Rue and
Lindström (2011), we adopt a parameterization in terms of log τ and log κ for the covariance
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function:

log τ =
1
2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (1.5)

where ρ = (8ν)1/2

κ . This representation is advantageous since, conditional on the value of ν, it is
necessary to estimate only two parameters.

Considering a bounded region Ω ∈ R2, it follows that the likelihood for an LGCP associated
with data Y = {si ∈ Ω : i = 1, . . . , n; t = 1, . . . , T} is of the form

π(Y |λ) = exp

(
|Ω| −

∫
Ω
λ(s, t)ds

) T∏
t=1

nt∏
i=1

λ(si, t). (1.6)

Due to the doubly-stochastic property of the intensity function, the likelihood in (1.6) is
analytically intractable. Since the term ω(s, t) corresponds to a GF with Matérn covariance,
it is possible to use the SPDE approach, proposed by Lindgren, Rue and Lindström (2011),
to approximate the initial GF to a GMRF, which has very good computational properties due
to Markov structure, providing a sparse representation of the spatial effect through a sparse
precision matrix (KRAINSKI et al., 2018).

The first main important result, provided by Whittle (1954) and extensively used by Lind-
gren, Rue and Lindström (2011), is that a GF x(s) with the Matérn covariance function is a
stationary solution to the linear fractional SPDE

(κ−∆)α/2x(s) = W (s), s ∈d, α = ν + d/2, κ > 0, ν > 0 (1.7)

where ∆ =
∑d

i=1
∂2

∂s2
i

is the Laplacian operator and W (s) is a spatial white noise. Therefore, in
order to find a GMRF approximation of a GF, we first need to find the stochastic weak solution
of SPDE (1.7).

Lindgren, Rue and Lindström (2011) proposed to use Finite Elements Method (FEM) to
construct an approximated solution of SPDE. By proposing FEM, Lindgren, Rue and Lindström
(2011) provided a solution for the case of irregular grids, since one of the big advantages of the
FEM method is the irregularity, i.e., the domain can be divided into a irregular non-intersecting
set of elements. The approximation of SPDE solution is given by

x(s, t) ≈ x̃(s, t) =
n∑

j=1

wjφj(s, t) (1.8)

where n is the number of vertices of the triangulation, {wj}nj=1 are the weights with Gaussian
distribution and {φj}nj=1 are the basis functions defined for each node on the mesh.

Replacing the GF ω(s, t) by the GMRF approximation ω̃(s, t) in equation (1.1), we obtain

ξ̃(s, t) = Θξ̃(s, t− 1) + ω̃(s, t). (1.9)

Simpson et al. (2016) show that by replacing ξ(s, t) by ξ̃(s, t) in the intensity function (1.1)
and approximating the integral (1.6) by a quadrature rule, it results that the approximate
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likelihood consists of (n + nt)T independent Poisson random variables, where n is the number
of vertices and nt is the number of observed point processes.

According to Simpson et al. (2016), the LGCP formulation fits naturally within the Bayesian
hierarchical modelling framework and are latent Gaussian models, therefore, it may be fitted
using the let approach of Rue, Martino and Chopin (2009).

1.2.2 Data

We used in this work a subset of the Storm Prediction Center’s Severe Weather Database file.
Although the database covers the 1950-2018 period, we propose to subset the 1954-2018 period
in order to remove the undercount of tornadoes in the first years, as discussed by Agee and Childs
(2014). In order to facilitate the visualization of the results, we use a yearly aggregation of the
daily data. The database also includes damage rating scales, Fujita (F) - prior to 2007 - and
Enhanced Fujita (EF) - beginning in 2007. Both scales range from 0 (lowest damage indicator)
to 5 (highest damage indicator). Table 1.1 shows some descriptive statistics for the annual
counts of tornadoes in each category, and Figure 1.1 show the number of tornado occurrences
reported in each year and each intensity.

In this figure it is possible to observe an increasing in the number of (E)F0 tornadoes after
1990, which can be related to non-meteorological factor (MOORE, 2017). On the other hand,
(E)F1 and stronger tornadoes appear to be are stationary. In addition, it is possible to observe
a slightly decreasing in the number of (E)F1 and (E)F2 tornadoes after 1974, which can be
related changes in to tornado intensity classfication adopted by National Weather Service, as
discussed by Moore (2017). The occurrences of (E)F5 tornadoes are extremely rare, as can be
seen in Table 1.1, therefore, hereafter we just consider (E)F4 and weaker tornadoes.

Total Mean SD Min Max
(E)F0 28844 443.754 267.438 86 1186
(E)F1 20760 319.385 86.037 170 614
(E)F2 8726 134.246 53.257 61 299
(E)F3 2320 35.692 17.064 10 94
(E)F4 520 8.000 5.804 0 30
(E)F5 54 0.831 1.387 0 7

Table 1.1 – Summary Statistics

1.3 Results

In order to apply the inference procedures discussed in Section 1.2, the first step is to define
a triangulation mesh of the interest region. Here, we define a triangulation mesh with 439
triangles covering all the United States area. A discussion of criteria for choosing mesh in
estimating LGCP models can be found in Simpson et al. (2016). As discussed in this work, the
use of the continuous approximation for LGCP avoids the use of very fine meshes in the process
approximation, and thus allows to represent and estimate the parameters and random effects in
a computationally efficient way. This characteristic is especially important in space-time models,
where the computational representation of the process is very intensive in memory.
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Figure 1.1 – Tornado Counts by Year

The second step is to define a set of knots over time to built a temporal mesh. For the
time domain, we define a temporal mesh based on the number of observed years, 65. In order
to obtain the space-time aggregation, we find to which polygon belongs each data point in the
spatial mesh and to which part of the time belongs each data point. Hereafter, we use these
both identification index sets to aggregate the data.

As described in equation 1.1, the parameters to be estimated are the parameters associated
to the intercept (α), the precision of the trend component (1/ηµ) and cycle component (1/ηc).
The parameters of the second-order autoregressive process of the cycle as parameterized as
partial autocorrelatios (PACF1 and PACF2), whereas the parameters of spatial covariance are
represented by log τ and log κ and the parameter of spatial time dependence (Φ).

In Table 1.2 we present the estimated posterior distribution for the parameters associated
with the model given by equation 1.1, for the tornado classifications. The intercept parameter
estimates the unconditional mean of the estimated log intensity function, and we can see that
the values are consistent with the observed magnitude of the number of tornadoes in each
classification. The precision parameters report the variability associated with the trend and
cycle processes. Greater precision is associated with less variability in the component, and
again the results are consistent with the general patterns of the number of tornadoes occurring
in each category analyzed. The partial correlation parameters are related to the autoregressive
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Table 1.2 – Posterior distribution of estimated parameters

Mean SD 0.025q 0.5q 0.975q Mode
(E)F0 tornadoes
Intercept -0.91 0.07 -1.05 -0.91 -0.77 -0.91
Precision for trend 82.81 13.45 59.62 81.70 112.33 79.48
Precision for cycle 35.56 6.40 23.60 35.47 48.45 35.58
PACF1 for cycle -0.00 0.08 -0.17 -0.00 0.16 0.01
PACF2 for cycle -0.05 0.11 -0.25 -0.05 0.19 -0.07
Log τ -0.77 0.04 -0.85 -0.77 -0.70 -0.77
Log κ -0.67 0.04 -0.74 -0.68 -0.60 -0.68
Group Φ 0.90 0.01 0.88 0.90 0.91 0.90
(E)F1 tornadoes
Intercept -1.07 0.12 -1.30 -1.07 -0.85 -1.07
Precision for trend 597.09 101.69 390.67 603.27 775.28 630.87
Precision for cycle 19.15 2.02 15.16 19.19 23.04 19.44
PACF1 for cycle 0.11 0.06 0.01 0.11 0.23 0.09
PACF2 for cycle -0.02 0.05 -0.11 -0.02 0.08 -0.02
Log τ -0.51 0.04 -0.59 -0.51 -0.42 -0.51
Log κ -0.98 0.04 -1.07 -0.98 -0.90 -0.97
Group Φ 0.93 0.01 0.92 0.93 0.95 0.93
(E)F2 tornadoes
Intercept -1.60 0.15 -1.89 -1.60 -1.30 -1.60
Precision for trend 514.76 136.17 262.99 513.72 781.10 512.46
Precision for cycle 76.14 15.58 50.31 74.52 111.19 71.35
PACF1 for cycle 0.22 0.12 0.01 0.21 0.48 0.16
PACF2 for cycle -0.06 0.18 -0.44 -0.05 0.27 0.01
Log τ -0.29 0.06 -0.40 -0.29 -0.18 -0.29
Log κ -1.24 0.05 -1.35 -1.24 -1.13 -1.24
Group Φ 0.88 0.04 0.77 0.89 0.93 0.92
(E)F3 tornadoes
Intercept -2.47 0.22 -2.92 -2.47 -2.03 -2.46
Precision for trend 1133.60 396.70 460.09 1108.60 1969.11 1027.53
Precision for cycle 32.85 9.22 18.78 31.49 54.61 28.94
PACF1 for cycle -0.14 0.14 -0.39 -0.15 0.17 -0.20
PACF2 for cycle -0.06 0.21 -0.48 -0.05 0.33 0.00
Log τ -0.06 0.09 -0.25 -0.05 0.11 -0.04
Log κ -1.51 0.09 -1.68 -1.51 -1.32 -1.53
Group Φ 0.93 0.01 0.90 0.93 0.95 0.93
(E)F4 tornadoes
Intercept -3.62 0.37 -4.38 -3.60 -2.93 -3.57
Precision for trend 24904.71 25883.49 2088.27 17256.64 93210.40 5798.00
Precision for cycle 13.30 8.86 4.14 10.85 36.69 7.75
PACF1 for cycle -0.35 0.27 -0.80 -0.38 0.24 -0.45
PACF2 for cycle -0.22 0.31 -0.76 -0.23 0.40 -0.24
Log τ -0.32 0.13 -0.57 -0.32 -0.06 -0.33
Log κ -1.49 0.13 -1.76 -1.49 -1.23 -1.48
Group Φ 0.95 0.01 0.92 0.95 0.97 0.96
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Figure 1.2 – Spatial Mesh and (E)F0 Tornadoes

parameters in the AR (2) representation of the cycle. In all estimates, the results indicate
the presence of a cyclic component, since the roots of the lag polynomial associated with the
estimated partial correlation coefficients fall in the complex region. The estimated period for the
cycle components for (E)F0, (E)F1, (E)F2, (E)F3 and (E)F4 tornadoes are, respectively, 3.98,
5.63, 5.59, 2.78 and 3.09 years. These periods are consistent with those observed for climatic
phenomena associated with interactions between sea temperature and the atmosphere, such as
El Niño and La Niña, as discussed in Cook et al. (2017). Note that the interpretation of this cycle
component is an approximation for the effects of all shocks with persistent but non-permanent
effects that affect the occurrence of tornadoes.

The estimated trend and cycle components for each tornado intensity are shown in Figures
1.3-1.7, which present the posterior mean of the estimated components with 95% Bayesian
credibility interval. The most important result is related to trend component. Considering
(E)F0 tornadoes, it is possible to observe a growth pattern in the trend component between
1962 and 2000, whereas between 2000 and 2016 it remains stable. From 2016 can be seen a
growth pattern again. This result is consistent to results commonly found in the literature and,
as discussed by Moore (2017), part of this effect can also be attributed to non-meteorological
factors such as changes in reporting practices and technology.

For the tornadoes of (E)F1-(E)F4 classification, it is not possible to infer permanent changes
in the occurrence intensity. The estimated trend components do not show relevant variations,
being all estimated close to zero, with the credibility intervals always covering this value. The
results obtained through the modeling carried out in this article do not indicate the presence
of relevant changes in the trend of occurrences for these categories of tornadoes. Considering
(E)F1-(E)F4 tornadoes, the results are consistent with stationary patterns in the temporal
counts of tornado occurrences, consistent with results found in Kunkel et al. (2013) and Moore
(2017).

To show the importance of the trend and cycle components in the analysis of the tornado
occurrence patterns, we show in Figure 1.8 the predicted value for the tornado count (E)F0 in
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(a) Trend (b) Cycle

Figure 1.3 – Trend and Cycle decomposition - (E)F0

(a) Trend (b) Cycle

Figure 1.4 – Trend and Cycle decomposition - (E)F1

(a) Trend (b) Cycle

Figure 1.5 – Trend and Cycle decomposition - (E)F2

each year given by the sum of the trend, cycle and intercept components of model, and also the
credibility interval of this sum. This represents the prediction of the total count ignoring the
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(a) Trend (b) Cycle

Figure 1.6 – Trend and Cycle decomposition - (E)F3

(a) Trend (b) Cycle

Figure 1.7 – Trend and Cycle decomposition - (E)F4

spatial random effect, obtained by aggregating the exposure of the entire area multiplied by the
exponential of the sum of these components. The analogous figures for the other classifications
(Figures 1.12-1.15) are shown in the Appendix.

We can see that for the (E)F0-(E)F1 classifications, the random effects of trend and cycle
explain a large part of the variability observed in the total tornado count. For the other clas-
sifications, the spatial component is more relevant in explaining the count observed each year,
indicating a greater spatial heterogeneity in the intensity of occurrences.

The spatial heterogeneity of the tornado occurrences can be seen through the estimated
spatial random effect ξ̃(s, t). In this section we show in Figure 1.9 the estimated posterior
distribution of spatial random effect for (E)F0 tornadoes, and in the Appendix the results for
the other classifications in Figures 1.16-1.19.

In these figures it is possible to observe the variability captured by the spatial random effects,
especially in the region known as “Tornado Alley”, which is a nickname given to an area in the
southern plains of the central United States that experiences a high frequency of tornadoes
each year (NOAA). In addition, after 1980s, it is also possible to observe an increasing in the
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Figure 1.8 – Fitted and Observed Tornadoes without consider the spatial
effects - (E)F0

variability in the Southeast region, for all intensities considered, which is consistent with finds
reported in the literature, e.g., Moore and DeBoer (2019) and Gensini and Brooks (2018).

In Figure 1.10 we show the estimated intensity function for the (E)F0 classification tornadoes,
given by the sum of all random components (trend, cycle and spatial) in each year. The analogous
results for the other classifications are shown in the Figures 1.20-1.23 in the Appendix.

In each year shown in these figures we also show the observed occurrences of tornadoes as
black dots. We can observe that the estimated intensity log function adequately explains the
spatio-temporal variation observed in the tornado count for all classifications, indicating that
the space-time LGCP model proposed in this work has an adequate fit to the analyzed pattern
of occurrences.

1.3.1 Zero-inflated Poisson

Data were taken for different intensities of tornadoes, based on Fujita (F) and Enhanced
Fujita (EF) damage rating scales. Historically, stronger tornadoes are less likely to occur, which
led to the database having many zero counts. For classifications with very few occurrences, a
possible modification is to change the likelihood function to account for the possibility of an
excess of zeros. Mixed-distribution models, such as Zero-Inflated-Poisson (ZIP) can be used in
such cases. According to Lambert (1992), ZIP is a model for count with excess zeros, which
assumes that with probability p the observation is 0, and with probability 1 − p, a Poisson is
observed.

We consider two different types of ZIP models: type 0 and type 1. The type 0 likelihood is
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Figure 1.9 – Spatial Random Effects - (E)F0

defined as
Prob(y| . . .) = p× 1[y=0] + (1 − p)× Poisson(y|y > 0) (1.10)

where p is a hyperparameter where

p =
exp(θ)

1 + exp(θ)
(1.11)

and θ is the internal representation of p, meaning that the initial value and prior is given by θ.
On the other hand, the type 1 is defined as

Prob(y| . . .) = p× 1[y=0] + (1 − p)× Poisson(y) (1.12)

where p is a hyperparameter where

p =
exp(θ)

1 + exp(θ)
(1.13)
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Figure 1.10 – Fitted Log-Intensity and Observed Tornadoes - (E)F0
Note: Black points indicate observed tornado occurrences.

where θ has the same meaning above-mentioned. As discussed by Serra et al. (2014), the only
difference between type 0 and 1 is the conditioning on y > 0 for type 0, which means that
for type 0 the probability that y is equal 0 is p, whereas for type 1, the same probability is
p+ (1 + p)Poisson(y).

Table 1.3 shows the estimated posterior distribution for the parameters associated to ZIP
model for (E)F4 tornadoes, considering type 1. For space issue we show only the results obtained
with type 1, which had best results, in terms of fit, in relation to type 0. The results obtained
with type 0 are available with the authors. As in Table 1.2, the precision parameters represent
the variability associated with trend and cycle components. The results indicate great precision
associated to trend component whereas the precision of cycle component are relatively minor.

Figure 1.11 shows the estimated trend and cycle components for the (E)F4 tornadoes, con-
sidering the ZIP model with type 1, where it is possible to observe the absence of permanent
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Table 1.3 – Posterior distribution of estimated parameters - ZIP model Type 1

Mean SD 0.025q 0.5q 0.975q Mode
Intercept -3.202 0.636 -4.542 -3.179 -1.985 -3.137
ZIP parameter 0.480 5.00e-02 0.381 0.480 0.576 0.482
Precision for trend 22484.136 2.01e+04 2716.213 16904.253 76040.634 7676.415
Precision for cycle 10.103 5.95e+00 3.092 8.670 25.554 6.482
PACF1 for cycle -0.143 3.16e-01 -0.711 -0.152 0.478 -0.167
PACF2 for cycle -0.047 1.85e-01 -0.417 -0.042 0.301 -0.017
Log τ 0.021 1.69e-01 -0.311 0.021 0.353 0.022
Log κ -1.787 2.05e-01 -2.198 -1.785 -1.390 -1.775
Group Φ 0.983 8.00e-03 0.964 0.985 0.994 0.987

changes in the occurrence intensity. In addition, it is important to note that the ZIP model with
type 1 results do not present significant changes in the trend and cycle components, relatively
to those results obtained with Poisson distribution and shown in Figures 1.4-1.7.

(a) Trend (b) Cycle

Figure 1.11 – Trend and Cycle decomposition - (E)F4 - ZIP Type 1

1.4 Conclusions

Climate changes, associated to natural or human activities, can lead to changes in the li-
kelihood of the occurrences of severe weather events, such as heat waves, droughts, tornadoes
and hurricanes. The Unites States experiences more tornadoes per year than any other coun-
try, which are responsible for deaths and damages. Given the impact of tornadoes on society,
understanding how these events are responding to climate changes is important in order to be
prepared. Previous studies have searched for relationships between tornado activity and climate
changes, for example Lee (2012), Diffenbaugh, Scherer and Trapp (2013) and Moore and Mc-
Guire (2019). This present paper contributes to this literature by analyzing tornado occurrences
in the United States following a method proposed by Laurini (2019). Therefore, to perform in-
ference procedures for the spatio-temporal point process we adopt a dynamic representation
of Log-Gaussian Cox Process. This representation is based on the decomposition of intensity
function in components of trend, cycles, and spatial effects. In this model, spatial effects are also
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represented by a dynamic functional structure, which allows to analyze the possible change in
the spatial distribution. The decomposition proposed in this article is therefore especially useful
by analyzing possible changes in the temporal and spatial patterns of the occurrence of events,
since it captures changes in the average number of occurrences through the trend component,
and changes in the spatial distribution pattern through the time varying spatial random effect.
We use daily data from Storm Prediction Center’s Severe Weather Database between 1954 and
2018. The results have provided evidences, from new perspectives, that trend in annual tor-
nado occurrences in the United States have remained relatively constant, supporting previously
reported findings.

1.5 Appendix

1.5.1 Fitted and Observed Tornadoes Without Spatial Component

Figure 1.12 – Fitted and Observed Tornadoes without consider the spatial
effects - (E)F1

1.5.2 Spatial Random Effects

1.5.3 Fitted Log-Intensity and Observed Tornadoes
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Figure 1.13 – Fitted and Observed Tornadoes without consider the spatial
effects - (E)F2

Figure 1.14 – Fitted and Observed Tornadoes without consider the spatial
effects - (E)F3
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Figure 1.15 – Fitted and Observed Tornadoes without consider the spatial
effects - (E)F4
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Figure 1.16 – Spatial Random Effects - (E)F1
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Figure 1.17 – Spatial Random Effects - (E)F2
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Figure 1.18 – Spatial Random Effects - (E)F3
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Figure 1.19 – Spatial Random Effects - (E)F4
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Figure 1.20 – Fitted Log-Intensity and Observed Tornadoes - (E)F1
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Figure 1.21 – Fitted Log-Intensity and Observed Tornadoes - (E)F2
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Figure 1.22 – Fitted Log-Intensity and Observed Tornadoes - (E)F3
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Figure 1.23 – Fitted Log-Intensity and Observed Tornadoes - (E)F4
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2 PRE-HARVEST SUGARCANE BURNING: A STATISTICAL ANALYSIS OF
THE ENVIRONMENTAL IMPACTS OF A REGULATORY CHANGE IN
THE ENERGY SECTOR

Fernanda Valente Márcio Laurini

ABSTRACT

We evaluate the efficiency of a regulatory change in sugarcane production (Law Nº11.241/2002)
that gradually banish the pre-harvest burning in the sugarcane production sector in the São
Paulo state in Brazil, analyzing the occurrences of fires detected by satellite. To estimate the
spatio-temporal dynamics of fire occurrence we use a structural representation in a log-Gaussian
Cox process, decomposing the intensity function in components of trend, seasonality, cycles, co-
variates and spatial effects. The results have provided evidence that the trend component reflects
the consistent reduction in fire occurrences, suggesting the efficiency of the mitigation actions
implemented in the São Paulo state, and indicating a permanent advance in the environmental
sustainability of this form of renewable energy production.

Keywords: Sugarcane; Regulatory Changes; Spatio-temporal models; Log-Gaussian Cox Pro-
cess

VALENTE, F.; LAURINI, M. Pre-harvest sugarcane burning: A statistical analysis of the
environmental impacts of a regulatory change in the energy sector. Cleaner Engineering and
Technology, v. 4, p. 100255, 2021.

2.1 Introduction

The sugarcane industry has an important role in the world, with the world’s largest crop by
product, and the three most important countries in sugarcane production are Brazil, India, and
China (Food and Agriculture Organization of the United Nations, 2017). In Brazil, the state
of São Paulo is the dominant sugarcane producer, representing 55% of the national production
in 2017/2018 (Brazilian Sugarcane Industry Association, 2018). After 2003, with the adoption
of flex-fuel vehicles in Brazil, the sugarcane production in the country has expanded sharply,
increasing from 320 million tons in the harvest of 2002/2003 to 641 million tons in 2017/2018
(Brazilian Sugarcane Industry Association, 2018). Also, the production growth was driven by
the increased international interest in alternative energy sources to mitigate global warming,
promoting the use of ethanol to replace fossil fuels to reduce emissions of greenhouse gases
(GHG). Although ethanol is considered as clean fuel, because it originates from sustainable
sources, concerns on its sustainability has raised, mostly due to the way of the sugarcane is
harvested, which can be done by manual labor with a necessary pre-harvest sugarcane straw
burning, or mechanically, with or without pre-harvest burning. Previous studies have shown that
burning of sugarcane residues is responsible for a large emission of pollutant gases in atmosphere
with significant environmental effects, such as impacts on air quality (PARAISO; GOUVEIA,
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2015), GHG emissions (RIBEIRO, 2008), and human health (CANÇADO et al., 2006), and also
the degradation of soils and destruction or damage of high-biodiversity areas (e.g., Goldemberg,
Coelho and Guardabassi (2008)).

Due to environmental and economic reasons, mitigation actions regarding the sugarcane
pre-harvest burning are necessary. Based on this, the São Paulo state implemented a legislation
(Law Nº11.241/2002) to gradually banish the burning practice by 2031. The law establishes
two different calendars for the prohibition of burning, according to soil slope. The deadline for
terrains with land slope less or equal 12% is 2021, whereas for areas with slope greater than 12%
the deadline is 2031. However, to anticipate the end of this burning practice to 2017, a “Green
Protocol” was established in 2007, setting 2014 as a target year for properties with land slope
less or equal 12% and 2017 for non-mechanizable areas.

While these policies promote a new technology pattern in the Brazilian sugarcane production,
it is still necessary to assess the effectiveness of these legal restrictions. In fact, there are
evidence, based on remote sensing data monitoring, that the Green Protocol’s expected goals
has been fulfilled, with an increase of the green harvest in the sugarcane sector, especially on
recently expanded sugarcane fields (AGUIAR et al., 2011). However, based on the fact that
the regulatory changes in the São Paulo state was implemented gradually, the trend analysis
may be an important tool to evaluate the efficiency of the Law Nº11.241/2002, which takes
into consideration the prior knowledge of the producers about the deadline imposed by the
law. Nonetheless, it is worth noting that it is necessary a more complex model to properly
identify trends and changes in patterns over time of a space-time event, such as the possible fire
occurrences caused by the sugarcane pre-harvest burning. To fulfill this task, an estimation of
the permanent and periodic components in spatio-temporal models can be used, following the
definition of Laurini (2019). This structure is used in the modelling of tornado occurrences in
Valente and Laurini (2020), and wildfire events in Valente and Laurini (2021b). The main idea of
the model is obtaining a more robust estimate of long-term trends in the intensity function of the
spatial counting process of fire incidence, controlling for transient effects and possible covariates.
The trend estimation allows verifying whether the implementation of Law Nº11.241/2002 led to
permanent reductions in the intensity of fires in the São Paulo state in Brazil.

In this sense, we aim to contribute to the literature by assessing the efficiency of regulatory
changes in the sugarcane production sector, by analyzing the process of change in the pattern
of fire occurrences in the São Paulo state. Since the data which we use in this work are daily
reports of fires occurrences, which contains information such as location and time of observed
occurrences, one way to model fires occurrences is through spatio-temporal point process models.
In particular, we used a dynamic representation of a log Gaussian Cox process (LGCP), where
the intensity function is modeled through decomposition of components in trend, seasonality,
cycles, covariates and spatial effects (LAURINI, 2019). We use two representations for the
spatial random effects in the model. In the first we assume that spatial effects are time varying,
based on an autoregressive functional structure, and the second representation is based on a non-
separable spatio-temporal covariance function. The results indicate that the trend component
reflects the consistent reduction in fire occurrences related to Sugarcane Burning Law (Law
Nº11.241/2002).
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2.2 Material and Methods

Our objective in this work is to analyze the existence of changes in long-term trends in the
incidence of fires in the São Paulo state that may be related to the progressive application of
Law Nº11.241/2002. For this, we need an appropriate statistical method to model space-time
processes for counting events, in this case, the occurrence of fires that are normally associated
with burning cane straw. In this case, traditional trend analysis methods are not appropriate,
since the process is located in the spatial continuum, and it is a counting process, which does
not allow the use of distributions associated with continuous variables, such as the Gaussian
distribution normally used in trend analysis.

A common structure used to deal with point pattern data is the Poisson process. However,
this structure is limited even if one assumes a non-homogeneous spatial intensity through some
deterministic function. The limitations are related to the lack of possible sources of uncertainty
and the fact that the Poisson process is conditionally independent. As an alternative, it is
possible to allow the Poisson intensity to be a stochastic function, known as Cox process. In
particular, the Log Gaussian Cox process (LGCP) (MØLLER; SYVERSVEEN; WAAGEPE-
TERSEN, 1998) is a special case of the Cox process, where the log of the intensity function
is given by a Gaussian random field. The LGCP framework is very useful for both theoretical
and empirical motivations. In special, it allows to introduce more complex stochastic structures
in the stochastic intensity function, controlling for general processes of spatial dependence, and
also controlling for omitted variables with spatial dependence. In addition, it is possible to dis-
tinguish long-term changes and periodic components through a decomposition of the intensity
function into trend, seasonality, cycle, covariates and spatial effects (LAURINI, 2019), which is
very interesting in the context of climate-related issues. Below we give some details about the
structure of this model.

From the point of view of inference procedures, the main difficulty associated with LGCP
is the likelihood evaluation, which is analytically intractable due to the integral of the intensity
function. One way to circumvent this problem is approximate the LGCP likelihood through
the stochastic partial differential equation (SPDE) approach (SIMPSON et al., 2016), based
on approximating the Gaussian random field (GRF) generated by a Matérn covariance function
with a latent Gaussian Markov random field (GMRF) (LINDGREN; RUE; LINDSTRÖM, 2011),
which can be estimated within the integrated nested Laplace approximations (let) framework
(RUE; MARTINO; CHOPIN, 2009). One of the main advantages of SPDE approach is the fact
that GMRF are defined by sparse matrices, which makes the process computationally effective.
The SPDE approach has been widely used as a useful tool to deal with spatio-temporal models
in different contexts, e.g., to model the wildfire occurrences in Catalonia, to assess the dynamics
of fuel prices in Brazil (LAURINI, 2017), and to model the evolution of tornado occurrences in
the United States (VALENTE; LAURINI, 2020) and fire occurrences in Australia (VALENTE;
LAURINI, 2021b).

In order to provide a clearer idea of the method adopted herein, we fist present a brief
description of the SPDE approach, considering a general LGCP. The results below are quite
technical, and can be skipped by readers interested only in the empirical results. Let consider a
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LGCP where the intensity function is defined by:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t))

log λ(s, t) = z(s, t)β + ξ(s, t) (2.1)

ξ(s, t) = f(ω(s, t))

where Y (s, t) ≡ {y(s, t)|(s, t) ∈ D× T ∈ R2 ×R} are the observations of occurrences in a region
s in time t, e(s, t) is the exposure offset for the s region, z(s, t) is a set of covariates continuously
observed in the location s and time t, β is a set of parameters related to the covariates, ξ(s, t) are
the spatial random effects, and ω(s, t) is a spatially continuous Gaussian process, with zero-mean
Gaussian distribution and the spatio-temporal covariance function defined as

Cov[ω(s, t), ω(s′, t′)] =

0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′. (2.2)

It follows that V ar(ω(s, t)) = σ2, and we assume that the purely spatial correlation function
C(h) is a Matérn covariance function, which depends on the location s and s′ only through the
Euclidean distance, and is defined by the function

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (2.3)

where h = ||s − s′|| is the Euclidean distance between points s and s′, κ > 0 is parameter for
the spatial scale, ν > 0 is a parameter controlling the smoothness of the process and Kν is the
modified Bessel function. With this structure, the marginal variance σ2 of the Matérn process
is given by:

σ2 =
Γ(ν)

4πκ2ντ 2Γ(ν + d
2 )

(2.4)

where τ is also a scale parameter and d is the spatial dimension. We follow the parameteriza-
tion proposed by Lindgren, Rue and Lindström (2011), using log τ and log κ in the covariance
function. Conditional on a fixed ν, this representation depends on only two parameters:

log τ =
1
2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (2.5)

with ρ = (8ν)1/2

κ .
To approximate the LGCP likelihood we use the so-called SPDE approach (SIMPSON et

al., 2016). This method is based on the equivalence of the ω(s, t) Matérn covariance function
with the solution of a stochastic partial differential equation, and approximating the solution
of this SPDE with a GMRF. The GF ω(s), assuming a Matérn covariance, is equivalent to
the stationary solution to the following linear fractional SPDE (WHITTLE, 1954; LINDGREN;
RUE; LINDSTRÖM, 2011).

(κ−∆)α/2ω(s) = W (s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (2.6)
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with ∆ =
∑d

i=1
∂2

∂s2
i

being a Laplacian operator and W (s) is a spatial white noise. The method
is based on a GMRF approximation of stochastic weak solution of SPDE (2.6), which is ob-
tained by the use of Finite Elements Method (FEM) to solve the SPDE (LINDGREN; RUE;
LINDSTRÖM, 2011) given by

ω(s, t) ≈ ω̃(s, t) =

n∑
j=1

wjφj(s, t) (2.7)

where n is the number of vertices of the mesh, {wj}nj=1 are solution weights following a Gaussian
distribution and {φj}nj=1 are the basis functions localized in the nodes of the mesh, which was
chosen to be piecewise linear on each triangle, that is equal to 1 at the jth vertex of the mesh
and is 0 at all other vertices. See Simpson, Lindgren and Rue (2012) for a discussion of the
choice of basis functions in spatial models. Therefore, it is possible to observe that the equation
(2.7) is a link between the GF and GMRF, where {wj} has a Markovian structure (LINDGREN;
RUE; LINDSTRÖM, 2011).

By replacing the GF ω(s, t) with the GMRF approximation ω̃(s, t) in equation (2.1), we have
an approximate likelihood for the LGCP, which consists of (n+nt)T independent Poisson random
variables, where n is the number of vertices in the mesh and nt is the number of observed fires
(SIMPSON et al., 2016). Under the GMRF structure, it is possible to estimate the model within
the Bayesian framework using the Integrated Nested Laplace Approximation (INLA) framework.
This methodology allows the use of deterministic approximations to perform the estimation of
latent parameters and components in models with an additive structure. These methods are
computationally efficient and are comparable to Markov Chain Monte Carlo methods with a
very large number of samples. See Rue, Martino and Chopin (2009) for a detailed discussion
on this method, and Krainski et al. (2018) for application in spatial and spatio-temporal point
processes.

In order to analyze the process of change in the pattern of fires in the São Paulo state, we
first consider a particular version of the Equation (2.1), with a dynamic version of a spatial
LGCP where the intensity function is modelled as follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t))

log λ(s, t) = µt + st + ct + z(s, t)β + ξ(s, t)

µt = µt−1 + ηµ (2.8)

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Θξ(s, t− 1) + ω(s, t), 0 < Θ < 1.

where Y (s, t) is the number of occurrences in a region s in time t, e(s, t) is the exposure offset
for the region s, µt is the long term trend, st represents the seasonal components, ct is a cycle
component represented by a second-order autoregressive process with complex roots, z(s, t) is a
set of covariates observed in the location s and period t, ηµ, ηc and ηs are nonspatial independent
innovations with ηµ ∼ N(0, σ2

ηµ), ηc ∼ N(0, σ2
ηc) and ηs ∼ N(0, σ2

ηs), and ξ(s, t) are defined as
spatio-temporal Gaussian fields that change in time with first order autoregressive processes,
with Θ being a temporal correlation parameter, and ξ(s, 1) ∼ N

(
0, σ2

1−Θ2

)
. The Gaussian
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process ω(s, t) is continuously projected in space with a Matérn covariance, as previously defined.
This structure was also used to model fire occurrences in Australia (VALENTE; LAURINI,
2021b).

It is worth noting that the proposed model is a separable space-time model, which is defined
as a Matérn/SPDE model for the spatial domain and an first-order autoregressive model for
the time domain. In this case, the precision matrix in the Gaussian random field is given by
the Kronecker product between the spatial and temporal covariance matrices. In particular,
the spatially correlated innovations ω(s, t) introduced in the equation (2.8) can be replaced
by the GMRF ω̂(s, t), where the temporally independent precision matrix QS can be obtained
through the SPDE representation, and its dimension n is given the number of the vertices in the
mesh. On the other hand, the T-dimensional precision matrix QT of the temporal first-order
autoregressive process can be written as

QT =



1/σ2 −Θ/σ2

−Θ/σ2 (1 +Θ2)/σ2

. . .
(1 +Θ2)/σ2 −Θ/σ2

−Θ/σ2 (1 +Θ2)/σ2


(2.9)

and it follows that ξ ∼ N(0,Q−1), where Q = QT ⊗QS .
In the Section 2.4 we introduce an alternative formulation based on a non-separable spatio-

temporal generalization of the Matérn covariance function.
In summary, our goal is to capture the intensity function of a counting process, using a

Poisson distribution with stochastic intensity. In this representation, the intensity function
is decomposed into components of trend, seasonality, cycle, plus the effect of covariates and
the so-called spatial random effect, which captures the local effects not captured by the other
components. Our main interest is in the trend of the process, which summarizes the permanent
dynamics of the process, and from the analysis of this component we can verify if the application
of Law Nº11.241/2002 led to a control of the number of fires in the São Paulo state, whose
fundamental cause is the burning of cane straw. In order to adequately recover these permanent
effects, we have incorporated controls for transient effects, in particular the seasonality in the
number of fires related to the periods of cane harvest, and other possible transient effects but with
dependence on time, which are captured by a component of cycle, which is modeled as a second-
order autoregressive process. We also incorporate covariates in this analysis, to control for the
impact of climate variables on the occurrence of fires (maximum temperature and accumulated
rainfall in the period), as well as a fixed climate effect using the Köppen climate classification,
and other effects directly related to the suitability of the land for sugarcane production, such as
zoning limitations, soil classification and land slope, as discussed in the following section of the
paper.

2.3 Results and Discussion

We use daily data of fire occurrences in the São Paulo state from MODIS Thermal Anoma-
lies/Fires between January 2003 and December 2016 with confidence detection higher than 50%.
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The dataset, provided by NASA1, includes information on fire location and date, and also on
the criteria for the fire classification and detection confidence. We use a quarterly aggregation
of the daily observed data.

We include some covariates that could be important in the fire observations, since our dataset
include fire occurrences of different causes, such as human sources (deliberately or accidentally),
natural causes and also covariates that are directly linked to the potential of sugarcane pro-
duction in the analyzed region. As explanatory variables we use Köppen Climate Classification
system (ALVARES et al., 2013) to control climate effects and NASA MODIS Land Cover Clas-
sification (FRIEDL et al., 2002), as a control dummy for possible use of soil in agricultural
activities. The classes of Köppen classification and MODIS land cover classification can be
found in Additional information. We also include spatially continuous projections of maximum
temperature and precipitation for each period as explanatory variables (LAURINI, 2019), based
on Brazilian meteorological data provided by the National Institute of Meteorology (INMET)2.
These covariates control for possible natural causes in the occurrence of fires, caused by the
combination of high temperatures and periods of low precipitation.

Due to slope restrictions related to mechanical harvesting, we include a soil slope variable,
expressed in degrees, from AMBDATA3. In our empirical analysis, the soil slope variable is set as
a dummy, which is equal 0 in areas with slope less or equal 12% and 1 otherwise. In addition, we
also include monthly global future price of sugar (U.S. cents per pound) provided by International
Monetary Fund (IMF). Finally, we include as explanatory variable the Sugarcane Agroecological
Zoning for the production of ethanol and sugar, provided by the Secretariat for the Environment
of the São Paulo state jointly with the Secretariat of Agriculture of the São Paulo state. The
zoning study evaluate the potential of the land for the production of sugarcane based on some
characteristics as the physical, chemical and mineralogical characteristics of the soil, the climate
risk and environmental regulations. It was established four areas with different potential of the
land for the production of sugarcane: appropriate areas, appropriate areas with environmental
limitations, appropriate areas with environmental restrictions and inappropriate areas (COSTA
et al., 2018).

Note that covariates related to land use, zoning and climate are important to control the fact
that we only observe the occurrence of fires using satellite data, and we do not know directly
whether this burning is directly caused by the burning of sugarcane straw. although this is
one of the fundamental causes of fires in the São Paulo state before the implementation of Law
Nº11.241/2002. By incorporating these covariates, we are controlling for fires caused by climatic
causes, such as high temperatures and drought periods, and also incorporating in the intensity
function the location effects that would indicate the most appropriate soils for the cultivation
of sugarcane, and also the restrictions linked to the very implementation of the law, especially
the slope of the terrain.

To apply the inference procedures, we first define a triangulation mesh to use the SPDE
approximation in the spatial domain. The mesh used in this study (see Fig. 2.9) has 117
triangles covering all the São Paulo state, and allows an approximation with sufficient precision

1 Available at https://modis.gsfc.nasa.gov/data/dataprod/mod14.php.
2 Available at http://www.inmet.gov.br.
3 Available at http://www.dpi.inpe.br/Ambdata/index.php
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for the LGCP. As exhaustively discussed in the literature (e.g., for a theoretical discussion see
Lindgren, Rue and Lindström (2011) and for applied aspects Cameletti et al. (2013)), Bayesian
inference of hierarchical spatio-temporal models face computational issues due to the big dense
covariance matrices related to spatio-temporal datasets. As discussed by Simpson et al. (2016),
the use of the continuous approximation for LGCP avoids the construction of very fine lattices
over observation window in the process approximation, and thus allows us to estimate the
parameters and random effects in a computationally efficient way. This important characteristic
is desirable in spatio-temporal models, where the computational representation of the process is
very intensive in memory. In this case, the choice of the number of vertices n in the triangulation
was made not only considering our computational limitation but also the fact that the SPDE
approach does not requires such fine grids to reach good approximations. For readers who are
interested in the implementation of the SPDE approach, a detailed discussion of criteria for the
choice of the mesh size in LGCP models can be found in Simpson et al. (2016). For the time
index, we use a time mesh for the observed quarters in our sample, 56. With this space-time
grid, we find to which polygon in time and space belongs each observed fire, defining the count
process in this discretization.

As presented in Section 2.2, the model decomposes the intensity function of a stochastic
intensity Poisson process in time series common components, covariate effects and spatial random
effects. The time series components are given by an additive structure of trend, seasonality and
cycle components (LAURINI, 2019). The trend is modeled as a first-order random walk, the
seasonal component by the sum of random intercepts with restriction that the effects most
sum to zero in each year and the cycle is represented by a second-order autoregressive process
with possible complex roots, which allows to capture the periodic and stationary patterns.
The spatial covariance function is given by the SPDE approximation to the spatially Matérn
covariance (Equation 2.2). The parameters to be estimated are the those related to the covariates
(β), the precisions (inverse of variance) of the trend (1/ηµ), seasonality (1/ηs) and cycle (1/ηc)
components. The second-order parameters of the cycle component are reparametrized as partial
autocorrelations (PACF1 and PACF2), and the spatial covariance parameters are represented by
log τ and log κ, assuming the smoothness parameter ν equal to 2, following the recommendation
of Lindgren, Rue and Lindström (2011).

Regarding the identifiability of the model parameters, there is no significant discussion in
the literature about the joint identifiability of the parameters in a model of structural time series
decomposition and a spatial component continuously observed and time varying in the LGCP
model used in this study. Thus, to impose the identification of this model, we impose individual
restrictions on the latent factors of the model. A required constraint to the identifiability of
the model parameters is to assume that the innovation terms to each component (trend, cycle,
seasonality and spatial) are independent, which is imposed by the model in two ways: we
assume independent priors for the parameters related to random effects, and also, we impose
restrictions in the model estimation, imposing a zero-mean constraint for seasonality, cycle and
spatial components, consistent with the expect identification constraints on these factors. We
do not impose this restriction on the trend, but in this case the model does not include an
intercept, which allows the identification of this component. Additionally, another way to verify
the identifiability of the model parameters is through the precision matrix associated with the
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estimations. In models estimated within the INLA framework, the identification problems lead
to problems in the maximization of the posterior mode used in the Laplace approximation, and
thus, in this case, a diagnosis for identification problems in the model parameters is the presence
of singularities or quasi-singularities in the precision matrix of the GMRF representation.

The results of the estimation of the fixed effects (see Table 2.1) indicate a positive relation
between maximum temperatures and the intensity of fire occurrences in São Paulo, and also a
positive relation with soil slope, as expected, due to difficulties related to mechanical harvesting
and in properties with high slope. In addition, although all regions classified as humid subtropi-
cal climate with dry winter and hot summer (Köppen Cwa), tropical climate without dry season
(Köppen Af), humid subtropical oceanic climate, without dry season and hot summer (Köp-
pen Cfa), humid subtropical climate with dry winter and temperate summer (Köppen Cwb),
humid subtropical oceanic climate, without dry season and temperate summer (Köppen Cfb)
and tropical climate with dry winter (Köppen Aw) show a positive relation with fire intensity,
the results indicate that under humid subtropical climate with dry winter and hot summer, the
intensity of fire occurrences is higher than other regions.

The negative relation between sugar price and the intensity of the fire occurrences can be
related productivity effect. Indeed, given some aspects, the mechanical harvesting may be con-
sidered one of the causes of the decreasing in the sugarcane productivity given the difficulties to
appropriately cut stems close to the ground, reducing the useful life of the sugarcane plantations,
and also the significant amount of straw left in the field with the mechanical harvesting, increa-
sing the incidence of pests and diseases in the sugarcane plantations (BACCARIN; OLIVEIRA;
MARDEGAN, 2020). As a result, the small contribution of productivity effects for total growth
in the sugarcane production in the state of São Paulo (CALDARELLI; GILIO, 2018) may be
responsible of the increase in the final price of sugar. The dummy for cropland (Land Cover -
Cropland) also indicates a positive impact on fire intensity, as expected.

In addition, the Sugarcane Agroecological Zoning presents a negative relation with fires
intensity at inappropriate areas. In summary, the posterior distribution of the fixed effects is
consistent with general fire patterns observed in the São Paulo state. Additionally, the results
of the estimated random effects indicate a high precision for trend and seasonal components,
whereas the precision for the components of cycle are relatively lower. In addition, a group
autoregressive persistence equals to 0.70 suggests the high persistence of the spatial random
effects.

In order to better understand the estimated components, we plot (see Fig. 2.1) the estima-
ted trend, seasonality and cycle component (posterior mean of the estimated latent components
along with 95% Bayesian credibility interval). The posterior mean of the estimated trend com-
ponent reflects the reduction in the fire occurrences, which has been clearly intensified after
2010. In particular, this intense reduction in the fire occurrence after 2010 may be linked to
public policies to encourage adherence to the “Green Protocol”, which has established more
responsibilities to each municipality to fulfill (or not) the goal of anticipating the decreasing
of the pre-harvest burnings in the sugarcane production to crop year 2010/11, still conside-
ring the difficulties associated with slopes higher than 12% (AGUIAR et al., 2011). Therefore,
the estimated long-term component suggests the efficiency of the sugarcane burning law (Law
Nº11.241/2002), and the “Green Protocol”, aligned with previous studies which have found a
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Table 2.1 – Estimated Parameters

Mean SD 0.025q 0.5q 0.975q Mode
Fixed Effects
Cwa (Köppen) 2.05 0.19 1.69 2.05 2.42 2.05
Af (Köppen) 0.27 0.18 -0.08 0.27 0.63 0.27
Cfa (Köppen) 1.20 0.17 0.86 1.20 1.54 1.20
Cwb (Köppen) 1.54 0.20 1.16 1.54 1.93 1.54
Cfb (Köppen) 0.85 0.18 0.50 0.85 1.19 0.85
Aw (Köppen) 1.53 0.19 1.17 1.53 1.90 1.53
Approp. zone with limitations 0.22 0.07 0.09 0.22 0.35 0.22
Approp. zone with restrictions 0.13 0.07 -0.01 0.13 0.28 0.13
Inappropriate zone -0.09 0.07 -0.24 -0.09 0.05 -0.09
Land Cover - Cropland 0.16 0.08 -0.00 0.16 0.33 0.16
Sugar Price -0.01 0.02 -0.05 -0.01 0.02 -0.01
Soil Slope (dummy) 0.27 0.08 0.11 0.27 0.43 0.27
Max. Temperature 0.02 0.00 0.02 0.02 0.03 0.02
Rainfall -0.00 0.00 -0.00 -0.00 0.00 -0.00

Random Effects
Precision for Trend 2379.24 8138.08 60.66 722.71 14788.14 141.72
Precision for Seas. 26933.38 23395.89 3237.08 20538.46 88612.96 9204.33
Precision for Cycle 7.57 2.41 3.62 7.34 12.96 6.85
PACF1 for Cycle 0.34 0.16 0.01 0.35 0.65 0.35
PACF2 for Cycle -0.15 0.16 -0.45 -0.16 0.18 -0.17
Log τ -2.32 0.04 -2.40 -2.32 -2.23 -2.33
Log κ 1.33 0.03 1.26 1.33 1.39 1.33
Group Θ 0.70 0.01 0.67 0.70 0.73 0.71
waic 103478.4

significant reduction in the burned sugarcane area of the total harvested area (RUDORFF et
al., 2010), and a reduction of annual gas emissions in areas of mechanically-harvested sugarcane
(ARRAES et al., 2010), both based on remote sensing data.

Also, it is important to highlight that 2009 economic crisis may have exerted some effects
in decreasing the number of fire occurrences, i.e., from 2008/2009 to 2011/2012 was a period of
great caution and instability, which caused reduction in the international investment in sugar-
alcohol sector, thus affecting the sugarcane production (CALDARELLI; GILIO, 2018). After
2015, the estimated trend component becomes more stable, with a slight increase in the number
of fire occurrences in the end of the analyzed sample. In addition, the seasonal component
exhibits a very stable behavior over time, as expected. The cycle component corresponds to an
AR(2) model with complex roots: 0.392 and -0.150, which is consistent with a periodic (cyclic)
pattern. Plus, this result corresponds to a cycle period of 6.04 quarters.

Through the estimated spatial random effects (see Fig. 2.2 and 2.3) it is possible to observe
significant variation in the temporal evolution of spatial random effects while the intensity of the
fires fitted by the model (see Fig. 2.4 and Fig. 2.5; in all figures columns indicate the quarter
whereas rows indicate the years) suggests that the model has a good fit. In order to facilitate
the visualization, the figures were separated in two blocks, the first being from 2003 to 2009 and
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(a) Trend (b) Seasonal

(c) Cycle

Figure 2.1 – Trend, Seasonal and Cycle decomposition of fire occurrences in São Paulo

the second being from 2010 to 2016.

2.4 Non-separable spatio-temporal model

The spatio-temporal model proposed in Section 2 is based on a separability structure between
spatial and temporal effects, using a Kronecker product structure to obtain the spatio-temporal
representation. Although the form used is quite flexible, an alternative form can be formulated
using a non-separable structure for the interaction between spatial and temporal effects, allowing
for a more complex dependency structure. As discussed in Bakka et al. (2020), often the choice
of a separable structure is given only by computational limitations, being more appropriate to
use a non-separable structure. As an additional robustness analysis for our model, we estimate
an alternative form of the model using the non-separable representation for the spatiotemporal
random effect using the generalization of Matérn’s spatiotemporal covariance matrix proposed
in Bakka et al. (2020). In this representation the random field representing the structure of
space-time random effects is given by a diffusion-based extension of the Matérn field (DEMF).
The random field u(s, t) is given by the expression:
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Figure 2.2 – Spatial Random Effects 2003 - 2009. Note: Columns indicate quarter whereas
rows indicate the year, from 2003 to 2009.

(
γt

d

dt
+ Lαs/2

)αt

u(s, t) = EQ(s, t) (2.10)

with L = γ2
s − ∆, EQ(s, t) is Gaussian noise that is white in time but correlated, with preci-

sion operator Q(γs, γϵ, αϵ) = γ2
ϵL

αϵ , with (γt, γs, γe) fixed scaling parameters, and (αt, αs, αe)
parameters in the model.

Defining α = αe + αs(αt − 1/2)., and assuming that αt, αs, αe satisfy α > 1 the solution
u(s, t) has marginal spatial covariance function given by:

C(u(t, s1), u(t, s2)) =
σ2

Γ(νs)2ν−1 (γs∥s1 − s2∥)νsKνs(γs∥s1 − s2∥), (2.11)

where νs = α− 1 and

σ2 =
Γ(αt − 1/2)Γ(α− 1)

Γ(αt)Γ(α)8π3/2γ2
eγtγ

2(α−1)
s

. (2.12)

We estimate a non-separable version of the LGCP model, replacing the separable structure
ξ(s, t) of the original model with the random field u(s, t) defined above, having the representation
now given by:
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Figure 2.3 – Spatial Random Effects 2010 - 2016. Note: Columns indicate quarter whereas
rows indicate the year, from 2010 to 2016.

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t))

log λ(s, t) = µt + st + ct + z(s, t)β + u(s, t)

µt = µt−1 + ηµ (2.13)

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

(2.14)

Following the discussion in Bakka et al. (2020), we assume that the scale parameters (γt, γs, γe)
are given by (1,1,5), and we use the reparametrization of the parameters defining σ, rs, rt as:

c1 =
Γ(αt − 1/2)Γ(α− 1)

Γ(αt)Γ(α)4
√
π

(2.15)

σ = γ−1
ϵ c

1/2
1 γ

−1/2
t γ−(α−1)

s (2.16)

rs = γ−1
s

√
8νs (2.17)

rt = γt
√

8(αt − 1/2)γ−αs
s , (2.18)
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Figure 2.4 – Fitted Intensity and Fires 2003 - 2009. Note: Columns indicate quarter whereas
rows indicate the year, from 2010 to 2016. Black dots indicate observed fires in
each period.

and the model is estimated using as parameters log σ, log rs, log rt. The model is estimated
using the same mesh structure and the prior structure of the separable model, again using the
INLA approximations to perform the Bayesian inference procedures. The estimated posterior
distribution of parameters in the non-separable spatio-temporal LGCP model is presented in
the Table 2.2, the estimated latent components of trend, seasonal and cycle components in the
Figure 2.6 and the non-separable spatio-temporal random effect is presented in the Figures 2.7
and 2.8.

The results of the non-separable model indicate a more relevant variation in relation to
fixed effects related to land type and use, and similar effects for climate parameters, suggesting
that the non-separable structure indicates an interaction behavior with these covariates. In this
specification the spatiotemporal random effect component also shows a wider range of values
compared to that estimated by the separable model, as can be seen in Figures 2.7 and 2.8.
We can also observe that the non-separable model has the best fit for the observed data (see
Table 2.3 in the Appendix) by comparing models using WAIC (WATANABE, 2013), indicating
a possible fit gain with the non-separable structure. However, when observing the distribution
obtained for the latent components (Figure 2.6), we can observe that the qualitative patterns
are similar to those obtained by the model with the separable structure (Figure 2.1), and so the
general interpretation of the trend, seasonality and cycle components are similar between the
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Figure 2.5 – Fitted Intensity and Fires 2010 - 2016. Note: Columns indicate quarter whereas
rows indicate the year, from 2010 to 2016. Black dots indicate observed fires in
each period.

two models, also given support to the reduction in the posterior mean of the estimated trend
component, and indicating the success of Law Nº11.241/2002 in the control of the number of
observed fire occurrences related to the burning of sugarcane straw.

2.5 Conclusion

Brazil is a major sugarcane producer, and the São Paulo state represents more than half of
national production. Nevertheless, the adverse effects of the large-scale sugarcane production
have led to environmental policies to reduce the problems associated to pre-harvest sugarcane
burning. Due to environmental and economic reasons the São Paulo state implemented a legisla-
tion (Law Nº11.241/2002) to banish the burning practice gradually by 2031, following a calendar
that takes into account the terrain slope. In 2007 the so-called “Green Protocol” anticipates the
end of pre-harvest burning, setting 2014 as a target year for properties with slope less or equal
12% and 2017 for non-mechanizable areas.

The objective of this work is to analyze the impact of the regulatory change given by the
ban on burning sugarcane straw in the state of São Paulo, introduced by Law Nº11.241/2002.
Our approach for this analysis was through a spatio-temporal decomposition of the occurrence
of fire outbreaks, using satellite measurements, using a model based on the Log Gaussian Cox
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Table 2.2 – Estimated Parameters - Non-separable spatio-temporal LGCP model

Mean SD 0.025q 0.5q 0.975q Mode
Fixed Effects
Cwa (Köppen) 3.43 0.28 2.89 3.42 3.99 3.41
Am (Köppen) 2.83 0.40 2.04 2.83 3.63 2.83
Af (Köppen) 2.66 0.28 2.12 2.66 3.24 2.65
Cfa (Köppen) 3.17 0.27 2.64 3.16 3.73 3.15
Cwb (Köppen) 3.03 0.28 2.49 3.03 3.61 3.01
Cfb (Köppen) 3.17 0.27 2.64 3.16 3.73 3.15
Aw (Köppen) 3.37 0.28 2.83 3.36 3.93 3.35
Approp. zone with limitations 0.15 0.03 0.09 0.15 0.21 0.15
Approp. zone with restrictions 0.24 0.03 0.17 0.24 0.30 0.24
Inappropriate zone 0.10 0.04 0.01 0.10 0.18 0.10
Land Cover - Cropland 0.27 0.02 0.22 0.27 0.33 0.27
Sugar Price -0.01 0.01 -0.03 -0.01 0.01 -0.01
Soil Slope (dummy) 0.06 0.04 -0.03 0.06 0.16 0.06
Max. Temperature 0.02 0.00 0.01 0.02 0.02 0.02
Rainfall 0.00 0.00 0.00 0.00 0.00 0.00

Random Effects
log σ 2.20 0.02 2.15 2.20 2.25 2.20
log rs -0.65 0.01 -0.67 -0.65 -0.63 -0.65
log rt -0.10 0.00 -0.12 -0.10 -0.08 -0.10
Precision for Trend 2300.48 620.64 1260.58 2246.76 3674.66 2142.17
Precision for Seas. 1217.83 186.32 837.52 1229.49 1546.11 1282.09
Precision for Cycle 7.05 2.07 3.28 7.01 11.11 6.87
PACF1 for Cycle 0.18 0.07 0.03 0.18 0.32 0.18
PACF2 for Cycle -0.13 0.15 -0.45 -0.12 0.13 -0.07
waic 103294.84

Process structure, and including as controls related to possible land use, climate, zoning, sugar
price and soil slope as covariates. The analysis of the impact of the Law No. 11.241/2002 on the
intensity of fires is not trivial, since the regulation was introduced gradually, and additionally
there was a self-regulation of the producers’ market in this sector, leading to an acceleration of
the implementation of the law. In this sense, this regulation has a very different characteristic
from traditional forms of regulation that clearly delimit a period before and after, which prevents
the use of traditional forms of causal impact analysis as differences-in-differences methods or
control and treatment groups.

Since there is no simple temporal or spatial delimitation of the validity of the law, to overcome
the problem, we build a statistical model that allowed us to analyze the general trends in the
intensity of fire occurrences, controlling for the covariates related to the possible use of the
soil in sugarcane planting before and after the implementation of the law. To perform inference
procedures we adopt a dynamic representation of Log-Gaussian Cox process, where the intensity
function is modelled as a sum of components of trend, seasonality, cycles, covariates and time
varying spatial effects. We adopt the SPDE approach to approximate the initial Gaussian Field
to a Gaussian Markov Random Field, which is defined by sparse matrices and fits naturally
within Bayesian hierarchical modelling framework, and allows to use Integrated Nested Laplace
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(a) Trend (b) Seasonal

(c) Cycle

Figure 2.6 – Trend, Seasonal and Cycle decomposition of fire occurrences in São Paulo - Non-
separable model

Approximations approach to perform the inference procedures.
By controlling for the covariates of land use in sugarcane planting, and also for climatic

variables, which are mostly related to natural-induce fires, generated by the combination of high
temperatures and low rainfall, we can analyze the impact general of the regulation by the trend
estimated by the model. This component captures the general behavior of the intensity of fire
outbreaks not controlled by the climate and by the covariates that control the areas affected by
the regulation introduced in Law Nº11.241/2002.

Thus, our main focus was to verify the general behavior of the trend that captures the
persistent patterns in the fire outbreaks, which would be linked to possible burning of remaining
sugarcane straw. As we do not have a clear delimitation of treatment and control effect in time
and space, the results of our analysis do not have a strict causal interpretation, but can be
seen as an observational/descriptive analysis using the possible controls for the regions under
influence from the law (producing regions or with potential for the production of sugar cane with
mechanized harvesting) and also for the other important source of fire occurrence, which are the
effects of a combination of dry weather and high temperatures. The results obtained indicate
that there was no increase in the estimated trend for fire occurrence intensity, and a reduction
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Figure 2.7 – Spatial Random Effects 2003 - 2009 - Non-separable model. Note: Columns
indicate quarter whereas rows indicate the year, from 2003 to 2009.

if we observe the point estimate for the trend. Note that in the period under analysis there
was a large increase in sugarcane planted area in the state of São Paulo, and several periods
combining abnormal temperatures and drought. Thus, our empirical results are consistent with
a positive impact of Nº11.241/2002 on the burning of sugarcane, reducing the environmental
and ecological impact of this sector.

2.6 Appendix

2.6.1 Köppen Climate Classification for Brazil

Köppen Climate Classification for Brazil (ALVARES et al., 2013):

1. Cwa: (C) Humid subtropical (w) With dry winter (a) and hot summer

2. Am: (A) Tropical (m) monsoon

3. Af: (A) Tropical (f) without dry season

4. Cfa: (C) Humid subtropical (f) Oceanic climate, without dry season (a) and hot summer

5. Cwb: (C) Humid subtropical (w) With dry winter (b) and temperate summer

6. Csb: (C) Humid subtropical (s) With dry summer (b) and temperate summer
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Figure 2.8 – Spatial Random Effects 2010 - 2016 - Non-separable model. Note: Columns
indicate quarter whereas rows indicate the year, from 2010 to 2016.

7. Csa: (C) Humid subtropical (s) With dry summer (a) and hot summer

8. Cfb: (C) Humid subtropical (f) Oceanic climate, without dry season (b) and temperate
summer

9. BSh: (B) Dry (S) Semi-arid (h) low latitude and altitude

10. As: (A) Tropical (s) with dry summer

11. Cwc: (C) Humid subtropical (w) With dry winter (c) short and cool summer

12. Aw: (A) Tropical (w) with dry winter

MODIS Land Cover Classification (FRIEDL et al., 2002):

1. Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2m). Tree
cover >60%.

2. Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees (canopy
>2m). Tree cover >60%.

3. Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees (canopy
>2m). Tree cover >60%.
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Figure 2.9 – Triangulated Mesh

4. Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2m). Tree
cover >60%.

5. Mixed Forests: dominated by neither deciduous nor evergreen (40-60% of each) tree type
(canopy >2m).Tree cover >606 Closed Shrublands: dominated by woody perennials (1-2m
height) >60% cover.

7. Open Shrublands: dominated by woody perennials (1-2m height) 10-60% cover.

8. Woody Savannas: tree cover 30-60% (canopy >2m). 9 fb13 Savannas: tree cover 10-30%
(canopy >2m).

9. Grasslands: dominated by herbaceous annuals (<2m).

10. Permanent Wetlands: permanently inundated lands with 30-60% water cover and >10%
vegetated cover.

11. Croplands: at least 60% of area is cultivated cropland.

12. Urban and Built-up Lands: at least 30% impervious surface area including building ma-
terials, asphalt and vehicles.

13. Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40-60% with
natural tree, shrub,or herbaceous vegetation.

14. Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10
months of the year.

15. Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than
10% vegetation.

16. Water Bodies: at least 60% of area is covered by permanent water bodies.
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2.6.2 Model’s comparison using WAIC

The Table 2.3 reports the widely applicable information criterion (WAIC), also known as
Watanabe–Akaike information criterion (WATANABE, 2013), for several specifications of the
models used in our work, imposing restrictions on the components included and also on the
specification of spatial random effects used in the article. The two best specifications by WAIC
are the model with covariates, all components of trend, seasonality and cycle, and time-varying
spatial random effects, whose results are reported in Table 2.1, with a WAIC value of 103478.4,
and the model with non-separable random effects, which also include all covariates and latent
components of trend, seasonality, and cycle (Table 2.2), with a WAIC value of 103294.8. For
this criterion, the best specification is given by the model with the non-separable structure of
space-time random effects.

Table 2.3 – Model’s comparison using WAIC

Model WAIC
Model 1: including all the latent components (trend, seasonality, cycle), covariates, and time varying spatial effect 103478.4
Model 2: including all the latent components (trend, seasonality, cycle), covariates, and fixed spatial effect 146354.3
Model 3: including all the latent components (trend seasonality, cycle) and covariates 182148.4
Model 4: including the trend and seasonality components, and covariates 182149.0
Model 5: including trend component and covariates 182150.2
Model 6: including fixed intercept and covariates 235982.2
Model 7: including all the latent components (trend, seasonality, cycle) and time varying spatial effect 104065.4
Model 8: including all the latent components and spatial effect 146437.9
Model 9: including all the latent components (trend, seasonality, cycle), covariates, and non-separable random effect 103294.8
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3 SPATIO-TEMPORAL ANALYSIS OF FIRE OCCURRENCE IN AUSTRA-
LIA

Fernanda Valente Márcio Laurini

ABSTRACT

Fire is one of the most notorious hazards in Australia, with important economic impacts and
damage to ecosystems. There is a concern of worsening fire conditions under climate variability,
but there is little understanding of the variability in fire occurrence related to climate patterns.
We present a statistical decomposition for spatio-temporal analysis of changes in fire occurrence
in Australia and its association with climate factors. We found evidence of variability in the
trend results for fire occurrence, and also some evidence that this variation is related to climate
patterns. Our approach has applicability to other climate-related issues, providing a useful
tool to identify possible changes in the intensity of occurrence over time, capturing long-term
changes, and also seasonal and cyclical effects.

Keywords: Australia; Climate Variability; Fire occurrence ; Spatio-temporal models; Trend-
Cycle decomposition

VALENTE, Fernanda; LAURINI, Márcio. Spatio-temporal analysis of fire occurrence in Austra-
lia. Stochastic Environmental Research and Risk Assessment, v. 35, n. 9, p. 1759-1770,
2021.

3.1 Introduction

There are evidence that climate and weather are important drivers of wildfire events, among
different regions of the world, such as North America (e.g., Gillett et al. (2004), Westerling et
al. (2006), Chen (2007), Goff, Flannigan and Bergeron (2009), Wotton, Nock and Flannigan
(2010), Gedalof (2011)), Europe (e.g., Reinhard, Rebetez and Schlaepfer (2005), Lozano et al.
(2017)), as well as in Oceania (e.g., Williams, Karoly and Tapper (2001), Pitman, Narisma and
McAneney (2007), Clarke, Lucas and Smith (2013)). In the most systems, it is climate that
controls the amount of fuel available to burning, and also determines the flammability of the
available fuel and the continuity of the fire. Anthropogenic factors may also exhibit influences
on fire, directly by starting and managing fires or indirectly through anthropologically driven
climate changes (ALDERSLEY; MURRAY; CORNELL, 2011). In Australian ecosystems, fire
plays an important role, influencing and determining the vegetation, due to factors such as floral
composition, topography, and climate (RAHMAN et al., 2018). In the savannahs of northern
Australia, intense fires dominate whereas massive fires in the arid zone occur after periods with
above-average rainfall, with relatively less frequency. On the other hand, in the temperate forests
of the south, large and intense fires occur, but is less extensive and also less regular (MORITZ
et al., 2014).
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The relationship between fire occurrence and the climate factors in Australia has been ex-
plored in the literature (VERDON; KIEM; FRANKS, 2004; RUSSELL-SMITH et al., 2007;
MARIANI et al., 2016; DOWDY, 2018). In particular, the most important Australian cli-
mate drivers are the El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and
Southern Annular Mode (SAM), causing spatio-temporal variations of temperature and rainfall
(HENDON; THOMPSON; WHEELER, 2007; RISBEY et al., 2009), and therefore affecting
the Australian fire behaviour. Additionally, some studies have identified some trends in the
variables underlying fire indices. It has been observed an increase in the temperature extremes
in Australia, with a particular increase in the number of record warm days while the number
of record cold days has decreased (ALEXANDER et al., 2007). Some studies have also found
that Australian rainfall patterns have changed, with a significant decrease in rainfall in the
southwest of Australia and a significant increase in the proportion of total precipitation from
extreme events in eastern Australia (TIMBAL; ARBLASTER; POWER, 2006; GALLANT;
HENNESSY; RISBEY, 2007).

As a consequence of climate patterns, current and potential future changes in fire activity
might pose threats to ecosystems and human health (ABATZOGLOU; WILLIAMS, 2016), and
understanding the patterns of fire occurrence is important to avoid loss and facilitate manage-
ment decisions. The fire weather index is a common methodology used to assess the fire danger
and to explore the effects of climatic indices in the Australian fire danger. In particular, several
studies have adopted the McArthur Forest Fire Danger Index (FFDI) to find evidences of the
variability of fire weather in Australia, and also to assess the linkages between climate drivers
and FFDI (VERDON; KIEM; FRANKS, 2004; CLARKE; LUCAS; SMITH, 2013; HARRIS;
LUCAS, 2019). However, there is an important drawback related to the fire weather index
methods. Usually these indexes are calculated based on weather monitoring station data, which
may limit the analysis due to the fact that this kind of data may not be ideal for understanding
the aspects of the spatial variability (DOWDY, 2018). In order to be complementary to pre-
vious studies (DOWDY, 2018) have proposed to assess the long-term variations in fire weather
conditions based on gridded data, and have found that changes in fire weather conditions in
southern Australia are related to anthropogenic climate change. However, while there is an
increased concern of worsening fire conditions under climate change and variability, there is still
little understanding of the relationship between the spatio-temporal changes of Australian fire
occurrence and climate factors.

In order to contribute to this literature, we propose an alternative way to verify the existence
of changes in the patterns of the fire activity, through the estimation of long-term and periodic
components, using statistical tools to decompose the observed data into trend, seasonal, and
cycle components. In addition, since fire occurrence can be associated with their spatial coordi-
nates and temporal instant, to take into account the spatial heterogeneity of climate effects, we
propose to combine elements of structural time series decomposition with spatio-temporal mo-
dels with continuous spatial random effects, which can be thought as a process of decomposing
geostatistical time series into a sum of persistent and mean-reverting components (LAURINI,
2019; VALENTE; LAURINI, 2020).

Therefore, in this study we will analyze the variability in the patterns of the fire occurrence
in Australia within spatio-temporal point process framework, through a structural decomposi-
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tion (e.g., Harvey (1990)) in spatio-temporal point pattern data. In particular, we extent the
trend-cycle decomposition in spatio-temporal models to spatio-temporal point pattern data, by
proposing to use a dynamic representation of a Log Gaussian Cox process (LGCP) where the
intensity function is modeled through the decomposition of components into trend, seasonality,
cycles, covariates and spatial effects (LAURINI, 2019; VALENTE; LAURINI, 2020). This is a
useful formulation to identify possible changes in the intensity of occurrence over time, being
capable to capture seasonal and cyclical effects, and to identify long-term changes in the fire
events, that may be associated with climate variability.

We present here, the results of analyzing data for fires in Australia, from 2003 to 2019, using
two different model specifications, with and without covariate effects, in order to assess the
relationship of the variability in the patterns of fire events and climate factors. In addition to the
above, we were also interested in assessing the possible variability in the maximum temperature
and rainfall in Australia, evidencing the relationship between the changes in patterns of fire
events and the seasonal, internannual and longer-term climate variability. In summary, results
indicate an increase in the trend component of the fire occurrence, when the covariate effects are
not included. On the other hand, when we included explanatory variables to control the main
fixed effect related to climate patterns, the trend component remains relatively stable, which
may suggests that the variability in the fire occurrence is attributable at least in part to climate
factors. In addition, the results also give support to the increase in the trend component of the
observed maximum temperature series.

3.2 Materials and Methods

3.2.1 Data

We used daily data of fire occurrence in Australia from MODIS (Moderate Resolution Ima-
ging Spectroradiometer) Thermal Anomalies/Fires product between January 2003 and Decem-
ber 2019 (GIGLIO; JUSTICE, 2015). The dataset, provided by NASA, includes information like
fire occurrences (day/night), fire location (geographic coordinates), the criteria for the fire de-
tection which are based on the apparent temperature of the fire pixel and the difference between
the fire pixel and its background temperature, the detection confidence value which ranges from
0% and 100%, and other layers describing fire pixel attributes (GIGLIO; JUSTICE, 2015). In
addition, in order to facilitate the visualization of the results, we used a quarterly aggregation
of the daily data. To illustrate, we plot the number of fire occurrences in Australia by quarter
(see Figure 4.1) and the spatial distribution by quarter (see Figure 3.2). In general, fires are
observed in all quarters in Australia, although fire frequency is higher experienced during the
last quarter of the year (summer/dry seasons), especially in Western Australia, Northern, and
Queensland. The consistency of fire occurrence throughout the year in wealthier countries such
as the United States and Australia is related to fuel management practices occurring during the
cooler/wetter nonfire season, especially in highly populated areas (EARL; SIMMONDS, 2018).

We also included some covariates that could be important in the fire observations since
our data set includes fire occurrences of different causes, such as human sources (deliberately
or accidentally), and natural causes, that can be influenced by climate variables. As expla-
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Figure 3.1 – Fires in Australia by quarter - From 2003 to 2019

natory variables, we used monthly remote sensing data of maximum temperature and rain-
fall from AusCover data portal (http://www.auscover.org.au/) of Terrestrial Ecosystem Rese-
arch Network (TERN), the distance from the geographic positioning of the sealed roads from
National Topographic Database of Australia (GEODATA TOPO 250K series 3, available at
https://data.gov.au/data/dataset/a0650f18-518a-4b99-a553-44f82f28bb5f), and the geographi-
cal latitude. Temperature, rainfall and latitude are direct explanatory factors for the natural
occurrence of fires, while the distance to sealed roads is a control for human influence in the
occurrence of these events.

3.2.2 Spatio-temporal Log Gaussian Cox Process

One way to deal with spatio-temporal point pattern data comes from spatio-temporal point
processes. The Poisson process is a common structure used to model point process. However,
this structure is limited even if one assumes a inhomogeneous distribution in space through a
function of deterministic intensity. The limitations are related to the lack of possible sources of
uncertainty and the fact that the Poisson process is conditionally independent. An alternative
is to allow the dependency function to be a stochastic function, known as Cox process. In
this paper, we used the structure of Log Gaussian Cox Process, which is a particular case of
the Cox process, where the log-intensity function is a Gaussian random field. Additionally, to
identify long term variability, and cyclical and seasonal effects, we adopted a decomposition of
the intensity function into trend, seasonality, and cycle components along with spatial random
effects.

Therefore, the model used in this work is a spatio-temporal formulation of point processes
with stochastic intensity, using a decomposition of the intensity function into components that
vary over time and space. The proposed model (VALENTE; LAURINI, 2020) can be written as
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(a) 2003 - 2011 (b) 2012 - 2019

Figure 3.2 – Spatial distribution of fires in Australia - From 2003 to 2019

follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = α+ µt + st + ct + z(s, t)β + ξ(s, t)

µt = 2µt−1 − µt−2 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Φξ(s, t− 1) + ω(s, t) (3.1)

where Y (s, t) is the number of occurrences in a region s in time t, e(s, t) is the exposure offset
for the region s, α is the intercept, µt is the long term trend modeled as a second-order random
walk (RW2), which imposes a smoothness structure that is able to identify the trend component.
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In addition, the RW2 structure can be thought as a non-parametric trend structure since it can
be related to spline models, which allows to identify in a more adequate way the persistent
patterns of long-term variability. The st represents the seasonal components, ct is a cycle
component represented by an second-order autoregressive process with possibly complex roots.
This component allows the reproduction of patterns with periodic (cyclic) components, which
are appropriate for effects that are repeated over time (irregular periodicity) but eventually
dissipate. In the problem in question, the cycle component is interesting since it allows to
reproduce the effect of climatic variables that generate periodic patterns that last for more than
a year, and thus climatic effects that are beyond pure seasonal components. The z(s, t) is a set
of covariates observed in the location s and period t, ηµ, ηc and ηs are nonspatial independent
innovations with ηµ ∼ N(0, σ2

ηµ), ηc ∼ N(0, σ2
ηc) and ηs ∼ N(0, σ2

ηs). The ξ(s, t) are the spatial
random effects represented by the Gaussian process ω(s, t) continuously projected in space and
given by

Cov(ω(s, t)ω(s
′, t′)) =

0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′

where C(h) is a covariance function of the Matérn class and σ2 is the marginal variance. More
detailed discussion about the method are available in Supplementary Information.

As the LCGP likelihood is analytically intractable, it is necessary to approximate the like-
lihood. To do this, one may use the SPDE approach (LINDGREN; RUE; LINDSTRÖM, 2011),
by using the approximation of SPDE solution as follows:

ω(s, t) ≈ ω̃(s, t) =

n∑
j=1

wjφj(s, t) (3.2)

where n is the number of vertices of the triangulation, {wj}nj=1 are the weights with Gaussian
distribution and {φj}nj=1 are the basis functions defined for each node on the mesh. The idea is to
calculate the weights {wj}, which determine the values of the field at the vertices, while the values
inside the triangles are determined by linear interpolation (LINDGREN; RUE; LINDSTRÖM,
2011).

Replacing the Gaussian Field (GF) ω(s, t) by the Gaussian Markov Random Field (GMRF)
approximation ω̃(s, t) in Eq. (3.1), and approximating the integral in the LGCP likelihood by
a quadrature rule, it results that the approximate likelihood consists of (n+ nt)T independent
Poisson random variables, where n is the number of vertices and nt is the number of observed
point processes (see Appendix for details). In addition, according to Simpson et al. (2016),
the LGCP formulation fits naturally within the Bayesian hierarchical modeling framework and
are latent Gaussian models, therefore, it may be fitted using the Integrated Nested Laplace
Approximations (INLA) approach of (RUE; MARTINO; CHOPIN, 2009).

3.3 Results

Our analysis is based on a statistical model to decompose the temporal and spatial patterns
of fire occurrence into long-term changes and transient effects. The model consists of a trend
component, identifying persistent changes in fire patterns, transient components capturing cy-
clical and seasonal effects, and a spatial component capturing the territorial heterogeneity in
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the occurrence of these events. We performed the estimation of the parameters based on two
different specifications, with and without covariates effects, which we call model M2 and M1,
respectively. It is important to note that the formulation of model M1 is able to explain the
spatio-temporal patterns of observed fire occurrence. However, we were also interested in to
assess if the changes in the patterns of fire events can be related to climate variability. While
maximum temperature and rainfall are related to climate factors, the location of the sealed ro-
ads provides evidence of intentional fire, since proximity to highways indicates accessibility and
may provide evidence of human-induced fires. We use alternative formulations using unsealed
roads, and the combination of sealed and unsealed roads. The specification with sealed roads
had a slightly superior performance in terms of model fit, and so it is the form maintained in the
model. We also included latitude as a covariate in this model, since there is evidence pointing
to the dependence of fires regimes on this variable (MURPHY et al., 2013; WILLIAMSON et
al., 2016).

First, we estimated the parameters described in Equation (3.1) without the effects of the
covariates (model M1). In this case, the estimated parameters are the intercept (α), the precision
of the trend component (1/ηµ), seasonal component (1/ηs), and cycle component (1/ηc), the
parameters of the second-order autoregressive process of the cycle (PACF1 and PACF2), the
parameters of spatial covariance (log τ and log κ), and the parameter of spatial time dependence
(Φ). The parameters log τ and log κ are due to the parameterization proposed by Lindgren, Rue
and Lindström (2011), which are better defined in Appendix. In the second model specification
(model M2) were included four explanatory variables namely, maximum temperature, rainfall,
latitude, and sealed roads. In addition to the above, in this case, the estimated parameters
include the parameters associated with the set of observed covariates (β).

The estimated precision parameters of trend, seasonal and cycle components under model
M1 (see Supplementary Table 3.2) show a high precision associated with the seasonal component
(estimated posterior mean equals 14267.626) as well as the trend component (estimated pos-
terior mean equals 8379.048), whereas the cycle component shows a relatively minor precision
(estimated posterior mean equals 2.228). The partial correlation parameters are related to the
autoregressive parameters in the AR(2) representation of the cycle. The estimated parameters
(0.194 and -0.044) indicate the presence of a cyclic component with the estimated period for the
cycle component being equal 5.88 quarters.

Based on the estimated trend, seasonality, and cycle components of model M1 (posterior
mean and 95% Bayesian credibility interval; Figure 3.3), the most notable result is the trend
component, which shows that there was a decrease in Australian fire occurrence from 2003 to
2010. This was followed by an upsurge in 2011, previously discussed in the literature (e.g.,
Giglio, Randerson and Werf (2013), Dutta, Das and Aryal (2016), Earl and Simmonds (2017)).
In addition, from 2011 to 2020, the fire levels exhibit a growth pattern. The seasonal component
is stable with very tight credible intervals, which is consistent with the estimated precision
parameter.

In order to assess if the variability in the patterns of fires can be associated with climate
factors, we performed the estimation of model M2, which were included four explanatory varia-
bles. The estimated posterior means (see Supplementary Table 3.1) indicate a negative relation
between fire events and rainfall (-0.002), and the distance from sealed roads (-0.007), as ex-
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(a) Trend (b) Seasonal

(c) Cycle

Figure 3.3 – Trend, Seasonal and Cycle decomposition of fire occurrence in Australia - Model
without covariates (M1). The shaded areas in the graph represents the 95%
Bayesian credibility interval.

pected, and a positive relation between maximum temperature and fire occurrences (0.149). In
addition, there are evidences of the influence of the latitudinal gradient in the fire activity, which
is reflected in the weather conditions during the fire events Williamson et al. (2016), Murphy
et al. (2013). Based on these discussions, we included the geographical latitude as a covariate,
which exerts a positive effect on the fire occurrence. It is possible to note that, under model M2
specification, the trend component is relatively stable after the upsurge in 2011 (Figure 3.4).

The spatial heterogeneity of the fire occurrences in Australia can be seen through the estima-
ted spatial random effects under models M1 (see Supplementary Figure 3.9) and M2 (Figures 3.5
and 3.6). In addition, to show the importance of the trend, seasonal and cycle components in
the analysis of fire occurrence, we plotted the observed total fire count and the predicted value
of fire count in each year given by the sum of the estimated trend, seasonal, cycle and intercept
components of the models M1 (see Supplementary Figure 3.10) and M2 (Figure 3.7). The results
provide evidence that the latent components explain the most part of the variability observed
in the total fires count since the prediction of the total count mostly lies inside the 95% credi-
bility interval for the whole period. Also, the estimated intensity function and the observed fire
occurrence (black dots) for models M1 (see Supplementary Figure 3.11) and M2 (Supplemen-



87

(a) Trend (b) Seasonal

(c) Cycle

Figure 3.4 – Trend, Seasonal and Cycle decomposition of fire occurrence in Australia - Model
with covariates (M2). The shaded areas in the graph represents the 95% Bayesian
credibility interval.

tary Figure 3.12) shows that the estimated log intensity function explains the spatio-temporal
variation observed in the fire count, which suggests that the proposed model has a good fit.
Supplementary Table 3.3 shows some fit measures for the two models (mean error (ME), root
mean squared error (RMSE), mean absolute error (MAE) and mean percentage error (MPE)).
In general, the models present a good fit in these measures, with a small negative bias in both
models, but of very low magnitude, with mean percentual errors of -0.332% and -0.327% for
models M1 and M2, respectively.

In order to support the evidence that changes in fire occurrences have been related to climate
factors, we performed a similar method for decomposition of trend, cycle and seasonal compo-
nents in spatio-temporal models to investigate the existence of variability in the patterns of the
maximum temperature and rainfall from 2003 to 2019 in Australia. In summary, the central
idea of the method is to decompose the time series in a similar way to a time series structural
decomposition, with the innovation process in each location that contains an error component
projected in the spatial continuum (LAURINI, 2019). For the observed maximum temperature
our analysis show the presence of a tendency from 2010 to 2019 (see Figure 3.8), evidencing the
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Figure 3.5 – Spatial Random Effects - Model with covariates (M2) 2003-2011

relationship between climate factors and fire occurrence in Australia, in agreement with previous
results (e.g., Hughes (2003), Griffiths et al. (2005), Alexander et al. (2007)). On the other hand,
the results obtained through the modeling carried out in this article do not indicate the presence
of relevant changes in the trend of rainfall series (see Supplementary Figure 3.13). In addition,
the proposed model was not able to capture a significant cycle component.

3.4 Discussion

Before moving to discuss our findings, it is worth spending a few words on what we consider
the main limitations of this study. There is a meaningful limitation related to the selected
covariates in our analysis. Since the proposed model performs a spatio-temporal analysis for the
occurrences of a process observed continuously in space, the covariates must to be available at
every location of the interest region within the observation window. Due to this methodological
constraint, the number of available covariates are limited. In particular, in our paper, we were
able to include only information in climatic patterns and measures of human presence.

The second limitation is more significant and difficult to overcome. As previously stated, our
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Figure 3.6 – Spatial Random Effects - Model with covariates (M2) 2012-2019

database contains only 16 years of data from fire occurrences in Australia and due to the limited
data sample the results demand our attention. In other words, given data limitations, our results
may be sensitive to uncertainty and caution is required in its interpretation. In fact, strongest
results to provide baselines for assessing the long-term changes in the pattern of fire occurrence
in Australia require longer time series. Although, we believe that the problem addressed in our
paper is important and timely, and the proposed method can give some new insights to this
subject, significantly contributing to the literature of statistical analysis of climate variability
through spatio-temporal models. In addition, to highlight the potential of our approach, we
discuss here about the validity of using statistical modeling for the analysis of relevant climate-
related issues under data availability limitations, and also how the model can provide compelling
evidence (although not conclusive) of the impact of climate patterns in the spatio-temporal
variability of Australian fire activity.

In fact, the most relevant issue is the separation between long-term and transient effects
of the fire occurrences, which is central in the interpretation of the model results. The trend
component plays a crucial role, incorporating the persistent changes in the fire occurrence. In our
model, the use of a random walk model imposes an statistical identification that ensures that the



90

Figure 3.7 – Predicted fires by the sum of trend, seas and cycle components and observed
fires - Model with covariates (M2). Shaded areas in the graph represent the 95%
Bayesian credibility interval.

trend component only captures long-term changes, isolating the effects of short-term changes
which are captured by the cycle and seasonality components, and also the spatial patterns.
Thus, we are using interpretation features that are common to other statistical models that
try to identify possible long-term movements in climate-related issues through non-stationary
latent components, which comprises a rich literature of statistical models to analyze climate
changes (e.g. Bloomfield (1992), Estrada, Perron and Martínez-López (2013), Laurini (2019),
Valente and Laurini (2020)). After all, the whole idea is precisely imposing an identification
structure that encompasses all the persistent changes in a common component, which aggregates
all changes with relevant long-term effects, which is in turn a way of estimating patterns of
climate variability (or climate change, considering longer observed time series) using temporal
and spatio-temporal models. In particular, in the presence of limited data it is necessary to
impose restrictions in order to be able to separate long term and transient effects, which is also
necessary due to the non-stationary nature of the long-term climate variability processes.

With these caveats in mind we move on to discuss the findings. Our evidence suggests that
there were an increasing trend of the intensity of fire occurrence in Australia since 2010. Yet,
as previously discussed, mathematically, the estimated long-term component can be seen as the
accumulation of all shocks that occurred in the past with non-transitory effects, and this is
the reason why the level shift would correspond to persistent changes. However, despite the
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(a) Trend (b) Seasonal

(c) Cycle

Figure 3.8 – Trend, Seasonal and Cycle decomposition of maximum temperature

evidence of long-term changes in fire activity, given data limitation in this particular case, we
cannot state with confidence that the observed variability in the estimated trend component
corresponds to long-term changes. Indeed, since the decadal climate variability and climate
change overlap, based on a short observed time series, it is difficult to distinguish between the
two effects. Changes in fire weather over longer time scales have been widely discussed in the
literature, and it have been associated with anthropogenic climate changes (DOWDY; FIELD;
SPESSA, 2016; HARRIS; LUCAS, 2019), but also with climate variability (e.g., Interdecadal
Pacific Oscillation) (VERDON; KIEM; FRANKS, 2004). On the other hand, it is worth noting
that, for longer time series, our proposed model could be considered as an important tool to
identify the distinct effects from climate change and climate variability, given the model ability
to capture persistent and mean-reverting (seasonal and components with irregular periodicity)
terms, taken into account the effects of covariates and the spatial heterogeneity.

Given the mean-reverting and irregular periodicity nature of the cycle component, it was
possible to capture the effects of interannual and/or multi-year climate variability in the fire
activity. As an example, based on the results, it is possible to observe that the estimated cycle
component was able to capture the considerable decrease in the fire activity in 2010-11, which
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coincides with weak to moderate and moderate to strong La Niña events1, being one of the
wettest calendar years on record for Australia, and also the lagged response from the same
La Niña, which drove up fuel loads in central Australia, which consequently increase the fire
activity.

By including covariates in the model we were able to investigate the link between the increases
in fire activity and anthropological activities and climate factors over time. Our findings suggest
that climate patterns and human activities are underlying factors that have driven the upward
trend of the fire occurrence. Fire requires sufficient biomass, biomass available to burn, ambient
conditions conductive to spread, and ignitions (BRADSTOCK, 2010). These factors influence
the spatio-temporal fire activity, and is strongly dependent on the meteorological conditions and
how these conditions interact with the vegetation, or fuel, resulting in fundamentally different fire
regimes across Australia. The anthropological influence may further complicate the influence
of biophysical drivers, through land-use modification, human ignitions, and fire suppression
(ANDELA et al., 2017). Supporting the evidence that the variability in the fire occurrence have
been related to climate variability, our findings suggest a growth pattern of the trend of maximum
temperature. This result is in agreement with some other studies, which have reported that the
variability in fire occurrence conditions are consistent with observed changes in temperature
and rainfall throughout Australia (RUSSELL-SMITH et al., 2007; CLARKE; LUCAS; SMITH,
2013; DOWDY, 2018). On the other hand, the lack of meaningful results related to changes
in the trend of rainfall series may be related to different patterns of precipitation throughout
Australia. Many studies have analyzed Australian rainfall trends and have shown more regionally
dependent variations (HUGHES, 2003). Thus, since we assessed the rainfall trend over a large
area, it is too hard to capture the presence of a tendency for rainfall.

In addition, by including the geographical latitude as a covariate, our results corroborates
previous analyses of spatio-temporal variability in fire activity over the entire country, pointing
out the importance of the latitudinal information in shaping temporal patterns of fire activity
(MURPHY et al., 2013; WILLIAMSON et al., 2016). Our findings suggest that the latitude has
a positive effect on fire intensity, in that by increasing the geographical latitude the fire frequency
is more intense. It is worth noting that as the entire analyzed region is below the equator, the
latitudes are negative, indicating that the higher fire frequency is concentrated along with the
northern Australia. Indeed, as discussed by Murphy et al. (2013), the variation in Australian fire
regimes is related to latitudinal gradient in season rainfall, driven by summer monsoon activity
in the north and winter frontal activity in the south. The very reliable dry-wet cycle in the
north allows the high fire frequencies to occur annually (mostly in the dry season, from April
to November), and thereby limiting maximum fire intensities. On the other hand, in the south,
as the influence of the summer monsoon rainfall diminishes, fire frequency becomes strongly
constrained by the fire weather and fuel moisture (BRADSTOCK, 2010), and the coincidence
of extreme fire conditions and abundant fine fuels might only occurs every 5-10 years, which in
turn increase maximum fire frequencies, occurring mostly during the summer and autumn. In
the arid zones, the fire activity is constrained by the lack of continuous fuels or slow vegetation
grows, and is characterized by intermittent periods of fire activity, which occurs mainly after

1 See <http://www.bom.gov.au/climate/enso/lnlist/index.shtml>.

http://www.bom.gov.au/climate/enso/lnlist/index.shtml
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periods of high-rainfall, often associated with La Niña events(MURPHY et al., 2013).
From the spatial perspective, there is evidence of the temporal variability of fire activity

across different regions of the country. Such a knowledge is important for management and
planning applications that requires to consider potential threats to human life and economic
losses under natural hazards. Based on our analysis it is possible to observe that fire is most
frequent in northern Australia, where tropical monsoon climate dominates. On the other hand,
fire occurrence is less frequent in the arid (central) and temperate (southern) zones. Indeed, it
is possible to observe an increase in the fire activity in the arid central zones in 2011, which
reflects the lagged response of the La Niña event between 2010 and 2011, that caused periods of
high-rainfall. The temperate southern Australia is characterized by infrequent but intense fires,
which is associated with severe drought. In particular, based on the spatial random effects,
it is possible to see that our model was able to capture the intense fire activity in southern
Australia between 2003 and 2011, when the “Millennium Drought” (DIJK et al., 2013) was
broken by the above average rainfall in 2010 and 2011. It is worth noting that the results of this
spatio-temporal variability of the fire activity are also useful to highlight the influence of the
climate variability in this kind of event. In particular, is possible to observe that spatio-temporal
results are consistent with the expected variations under Australian climate influences, like the
monsoon and the east to southeasterly winds in the northern areas of Australia, and also the
frontal systems and blocking highs in the southern Australia. These kind of climate drivers are
capable to affect weather variables, such as temperature and rainfall, influencing the fire activity
(DOWDY, 2018). Therefore, the spatio-temporal analyses of the variability of the fire events
over Australia is a useful tool to understand the general patterns and temporal variability of the
fire activity, and how climate drivers can influence it over space and time.

Evidence that climate patterns are responsible for the variability in fire occurrence in Aus-
tralia has been previously reported in the literature, however our approach provides a structural
time series decomposition of fire occurrence in Australia into a sum of trend, seasonal, and cycle
components plus the effect of additional covariates, taking into account the spatial heteroge-
neity. Our method reveals the fire occurrence behavior and its association with climate factors
avoiding some problems usually faced by inference procedures on climate-related issues, such
as the dimensionality of the data and the difficulty to include spatial information of climatic
effects. Furthermore, our results enable a more comprehensive understanding of the variability
of fire occurrences in Australia under climate variability and can better inform the management
and policy decisions.

3.5 Conclusion

As a contribution to the understanding of Australian patterns of fire occurrence, we propose
to use a dynamic representation of a Log Gaussian Cox process where the intensity function is
modeled through a decomposition of components into trend, seasonality, cycles, covariates and
spatial effects, which is useful to identify persistent changes in the intensity of occurrences over
time, and to capture seasonal and cyclical effects, taking into account the spatial heterogeneity.
Within this framework, our findings suggested the existence of the variability in the trend
component of Australian fire activity, suggesting that this variation may be associated with
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anthropological activities and climate factors over time. Furthermore, we find a growth pattern
of the trend of maximum temperature, evidencing the relationship between the variability in
the fire occurrence have been related to climate patterns.

3.6 Supplementary Information

3.6.1 Methods

The covariance function of the Matérn class is given by

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (3.3)

where h = ||s− s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial scale
parameter, ν > 0 is the smoothness parameter and Kν is a modified Bessel function.

The marginal variance σ2 is defined by:

σ2 =
Γ(ν)

4πκ2ντ 2Γ(ν + d
2 )

(3.4)

where τ is a scaling parameter and d is the space dimension. To reduce the number of estimated
parameters, we adopted a parameterization in terms of log τ and log κ for the covariance function
as follows

log τ =
1
2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (3.5)

where ρ = (8ν)1/2

κ .
Considering a bounded region Ω ∈ R2, then the likelihood for an LGCP associated with data

Y = {si ∈ Ω : i = 1, . . . , n; t = 1, . . . , T} is of the form

π(Y |λ) = exp

(
|Ω| −

∫
Ω
λ(s, t)ds

) T∏
t=1

nt∏
i=1

λ(si, t). (3.6)

In order to approximate the likelihood in Equation (3.6), we adopted the SPDE approach
(LINDGREN; RUE; LINDSTRÖM, 2011). The main idea is to approximate the initial GF to
a GMRF, and this approximation is possible due the fact that the GF x(s) with the Matérn
covariance function is a stationary solution to the linear fractional SPDE (LINDGREN; RUE;
LINDSTRÖM, 2011)

(κ−∆)α/2x(s) = W (s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (3.7)

where ∆ =
∑d

i=1
∂2

∂s2
i

is the Laplacian operator and W (s) is a spatial white noise. Therefore, in
order to find a GMRF approximation of a GF, we need to find the stochastic weak solution of
SPDE, through FEM, in which the approximation of SPDE solution is given by equation

ω(s, t) ≈ ω̃(s, t) =
n∑

j=1

wjφj(s, t). (3.8)
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Additionally, the basis function was chosen to be piecewise linear on each triangle, and the
points where the weights {wj} are evaluated are given by the function:

φl(s, t) =

1 at vertex l

0 elsewhere
(3.9)

Through the replacement of GF ω(s, t) by the GMRF approximation ω̃(s, t) in equation

ξ(s, t) = Φξ(s, t− 1) + ω(s, t) (3.10)

and approximating the integral in Equation (3.6) by a quadrature rule, it is possible to obtain
the LGCP likelihood approximation and, to perform inference procedures through the INLA
algorithm, which provides accurate and efficient approximations on Bayesian hierarchical models
that can be represented as latent Gaussian models.

3.6.2 Supplementary Results

Table 3.1 – Estimated Parameters - Model without Covariates (M1)

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Intercept -0.237 0.042 -0.32 -0.237 -0.154 -0.237
Random Effects
Precision for trend 8379.048 1779.985 4798.899 8487.590 11414.706 8942.509
Precision for seasonality 14267.626 1525.812 11518.750 14182.542 17503.051 14010.271
Precision for cycle 2.228 0.198 1.852 2.225 2.627 2.226
PACF1 for cycle 0.194 0.057 0.070 0.200 0.289 0.220
PACF2 for cycle -0.044 0.049 -0.140 -0.044 0.053 -0.043
Log τ -1.638 0.018 -1.675 -1.637 -1.606 -1.632
Log κ -0.393 0.016 -0.423 -0.393 -0.361 -0.395
Group Φ 0.481 0.025 0.444 0.477 0.538 0.458
Deviance Information Criterion (DIC) 62259.83
Marginal log-Likelihood

Table 3.2 – Estimated Parameters - Model with Covariates (M2)

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Intercept -1.201 0.344 -1.878 -1.201 -0.527 -1.200
Rainfall -0.002 0.000 -0.003 -0.002 -0.002 -0.002
Max. Temp. 0.149 0.014 0.122 0.149 0.176 0.149
Distance to roads -0.002 0.001 -0.003 -0.002 -0.001 -0.002
Latitude 0.076 0.014 0.048 0.076 0.103 0.076
Random Effects
Precision for trend 7820.833 2097.167 3963.801 7795.822 11947.168 7750.662
Precision for seasonality 13165.237 3099.644 7565.813 13061.425 19543.288 12918.825
Precision for cycle 5.253 1.083 3.609 5.082 7.819 4.718
PACF1 for cycle 0.355 0.081 0.197 0.355 0.514 0.349
PACF2 for cycle -0.351 0.060 -0.464 -0.353 -0.226 -0.358
Log τ -1.738 0.018 -1.776 -1.737 -1.705 -1.734
Log κ -0.270 0.015 -0.299 -0.270 -0.238 -0.272
Group Φ 0.503 0.013 0.480 0.501 0.531 0.497
Deviance Information Criterion (DIC) 62027.57
Marginal log-Likelihood -43955.13
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Figure 3.9 – Spatial Random Effects - Model without covariates (M1)



97

Figure 3.10 – Fitted Intensity and Observed Fires - Model without covariates (M1). Shaded
areas in the graph represent the 95% Bayesian credibility interval.
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Figure 3.11 – Fitted and Observed Fires - Model without covariates (M1)
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Figure 3.12 – Fitted and Observed Fires - Model with covariates (M2)

Table 3.3 – Model Fit Measures

Model ME RMSE MAE MPE
M1 -11.888 12.038 11.888 -0.332
M2 -11.783 12.007 11.783 -0.327

Note: ME - Mean Error, RMSE - Root Mean
Squared Error, MAE - Mean Absolute Error,
MPE - Mean Percentual Error. M1 - Model
without covariates. M2 - Model with rainfall,
max. temperature, distance to sealed roads
and latitute covariates.
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(a) Trend (b) Seasonal

Figure 3.13 – Trend and Seasonal decomposition of rainfall
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4 A SPATIO-TEMPORAL APPROACH TO ESTIMATE POSSIBLE CHAN-
GES IN THE PATTERNS OF FIRE OCCURRENCE IN THE BRAZILIAN
AMAZON

Fernanda Valente Márcio Laurini

ABSTRACT

Fire occurrences are relevant disturbances in the Amazon region, with effects on the atmosphere
composition, forest structure and composition, and the cycle of carbon. Understanding the
patterns of fire occurrence is important to avoid loss and facilitate management decisions. As a
contribution, we analyze the changes in the patterns of fire occurrence in the Brazilian Amazon,
within the spatio-temporal point process framework. To perform inference procedures, we pro-
pose a novel methodology to extent the trend-cycle decomposition in spatio-temporal models
to spatio-temporal point pattern data, by proposing to use a dynamic representation of a Log
Gaussian Cox process where the intensity function is modeled through the decomposition of
components into trend, seasonality, cycles, covariates and spatial effects. Overall, our results
show that long-term movements of fire occurrence exhibits a marked decrease between the be-
ginning of the sample and 2012, followed by an increase that extents to the end of the sample,
which can be related to governance measures and market mechanisms. Additionally, our model
was able to capture the spatial variability in the Brazilian Amazon, higher in regions where the
climate has dry seasons.
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4.1 Introduction

The Amazon biome is one of Earth’s greatest biological treasures, containing more than half
of the world’s rainforests and a quarter of all terrestrial species (MALHI et al., 2008). The
Amazon rainforest also provides an environmental service by storing carbon, in both biomass
and soils, and thus reducing the global warming (FEARNSIDE, 2012). Plus, evaporation and
precipitation over Amazonia play important roles in the global atmospheric circulation, with
effects on the climate across South America and North Hemisphere (GEDNEY; VALDES, 2000;
WERTH; AVISSAR, 2002). Although the Amazon rainforest is shared by nine countries, about
60 percent of the Amazon Basin is in Brazil, where the political-administrative area called Legal
Amazon encompasses nine Brazilian states, corresponding to 61% of the national territory.

Fire occurrences, related to both natural and anthropogenic activity, are relevant distur-
bances in the Amazon region, affecting the atmosphere composition (CRUTZEN; ANDREAE,
1990; LONGO et al., 2009), forest structure and composition (COCHRANE; SCHULZE, 1999),
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and the cycle of carbon. In general, fire occurrence in the Amazon rainforest is related to land
use, land cover, and climate patterns. In terms of total forest loss and fire occurrence, most of
the changes in the land cover and human activities are concentrated along with the southern
and eastern extent of the Brazilian Amazon region, called “arc of deforestation” (MORTON et
al., 2006), which is related to the presence of roads and human accessibility (SIEGERT et al.,
2001; SERRA et al., 2014). The expansion of roads and agriculture in the Legal Amazon began
in the early 1970s when the Transamazon Highway was built. The construction of roads was
accompanied by high rates of deforestation. For instance, between 1980 and 1990, the rates of
deforestation in the Legal Amazon increased considerably, where approximately 225000km2 of
forest were cleared. In the same period, the extension of paved roads increased by more than
100% and unpaved roads increased by approximately 460% (FERRAZ, 2001).

From an economic standpoint, the fire occurrence in the Amazon region generates a great
variety of costs with private and social consequences. In rural properties, the main losses occur
when burning gets out of control and spread into pasture and forest areas. Also, losses related to
fire occurrence may reach social proportions, through the release of carbon into the atmosphere,
affecting global climate patterns, and provoking adverse health outcomes which impose direct
and indirect costs on society, such as medical costs, labor loss, and utility loss (MENDONÇA
et al., 2004; MENDONÇA; SACHSIDA; LOUREIRO, 2006).

Many factors may change the patterns of fire occurrence in the Amazon region. Previous
studies have reported the impact of dry conditions on forest fire risk (NEPSTAD et al., 2004;
ARAGÃO et al., 2007), and the effects of deforestation and fragmentation on regional climate,
which have shown a significant increase in the mean surface temperature, and a decrease in the
annual evapotranspiration and precipitation, which can further increase fire danger (NOBRE;
SELLERS; SHUKLA, 1991; COSTA et al., 2007). Changes in the patterns of forest fire has also
been reported to be related to agricultural expansion (MORTON et al., 2008), since the fire is
a common and inexpensive tool used by Brazilian farmers to expand agricultural frontiers and
to maintain and renew pastures. Also, due to climatic change, circulation shifts and increased
anomalies such as El Niño events exacerbate extreme dry seasons in Amazonia (MARENGO,
2004; LI; FU; DICKINSON, 2006; MARENGO et al., 2008), changing the vegetation structure,
potentially transforming the forest from highly resistant to fire ignition to extensively flamma-
ble (COCHRANE; BARBER, 2009), eventually leading to future increases burning frequency.
Furthermore, there is evidence that forest fires create positive feedbacks in fire susceptibility, fuel
loading, and fire intensity whereby recurrent fires become more likely and severe (COCHRANE
et al., 1999; SIEGERT et al., 2001).

One way to verify the existence of changes in the patterns of the climate-related events, such
as fire occurrence, is through the estimation of permanent and periodic components (BLOOM-
FIELD, 1992; PROIETTI; HILLEBRAND, 2017; LAURINI, 2019), using statistical tools to
decompose the observed temporal variability into trend, seasonal and cycle components. Howe-
ver, the existing methods used to extract trends, seasonal, and cycle components face some
problems to perform inference procedures on climate-related issues. First, these models are not
fully adapted to the dimensionality of data sources used in climatology. Also, it does not take
into account the spatial heterogeneity of climate effects. An alternative way to circumvent the
aforementioned problems is a method that combines elements of structural time series decompo-
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sition with spatio-temporal models with continuous spatial random effects, which can be thought
as a process of decomposing geostatistical time series into a sum of trend, seasonal and cycle
components and the effect of additional covariates (LAURINI, 2019; VALENTE; LAURINI,
2020).

The purpose of this paper is to analyze the existence of changes in the patterns of the fire
occurrence in the Legal Amazon, within the spatio-temporal point process framework. To do
this, we propose a methodology to extent the trend-cycle decomposition in spatio-temporal mo-
dels to spatio-temporal point pattern data, by proposing to use a dynamic representation of a
Log Gaussian Cox process (LGCP) where the intensity function is modeled through the decom-
position of components into trend, seasonality, cycles, covariates and spatial effects (LAURINI,
2019; VALENTE; LAURINI, 2020). This is a useful formulation to identify possible changes in
the intensity of occurrence over time, such as permanent changes in the fire occurrence, and to
capture seasonal and cyclical effects.

The LGCP is a particular case of the Cox process, where the log-intensity function is a
Gaussian random field. Due to the stochastic property of the LGCP, fitting this model is often
computationally expensive. In this sense, to perform the estimation in a computationally ef-
fective way, we use the stochastic partial differential equation (SPDE) approach (LINDGREN;
RUE; LINDSTRÖM, 2011) to transform the initial Gaussian random field (GRF) to a Gaus-
sian Markov Random Field (GMRF), which is defined by sparse matrices. Furthermore, the
resulting Bayesian hierarchical model fits within the integrated nested Laplace approximations
(INLA) framework (RUE; MARTINO; CHOPIN, 2009), also providing significant computational
improvements.

We present here the results of analyzing data for fire occurrence in the Legal Amazon, from
January 2002 to December 2022. Our database contains daily fire reports from Moderate-
Resolution Imaging Spectroradiometer (MODIS), with information such as spatial coordinates
and temporal instant of fire events. Also, we include explanatory variables to control the main
fixed effect related to climatic conditions and the use of the soil. Our results show that long-
term movements of fire occurrence exhibits a marked decrease between the beginning of the
sample and 2012, followed by an increase that extents to the end of the sample, which can be
related to governance actions and market mechanisms. Our model also was able to capture the
variability in the Legal Amazon, especially in the regions classified as wet tropical (Am), which
is characterized by a dry season, that occurs between August and November (third and fourth
quarters), and tropical with dry season (Aw). On the other hand, in western Amazon, where
the climate is predominantly tropical without dry season (Af), the variability is low.

Our paper proceeds as follows. In section 2 we present the proposed method and data. In
section 3 we present the results. In section 4 we discuss the results. We conclude in Section 5.

4.2 Material and Methods

4.2.1 Methods

Among models for the spatial point process, the Poisson process is the most fundamental
structure. However, its application is limited due to its simplistic nature (TENG; NATHOO;
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JOHNSON, 2017), even if one assumes a non-homogeneous distribution in space through a
function of deterministic intensity. The limitations are related to the lack of possible sources of
uncertainty and the fact that the Poisson process is conditionally independent. A related, but
more flexible structure, is the Log Gaussian Cox process, a hierarchical structure where at the
first level the process is assumed Poisson conditional on the intensity function, and at the second
level, the log of the intensity function is assumed to be a Gaussian field (TENG; NATHOO;
JOHNSON, 2017).

Given the doubly-stochastic property of the LGCP, fitting this model is a computational
challenge. Within the Bayesian framework, the conditional autoregressive approach is a pos-
sible alternative to perform inference procedure and may be fitted using the INLA (ILLIAN
et al., 2010). However, this approach is based on regular lattices over the observation window
(SIMPSON et al., 2016), which could be highly inefficient since it requires to construct a much
fine grid. For spatial models that combine a GRF with a Matérn correlation structure, the
stochastic partial differential equations approach is a way to bypass the problem of inefficiency
in the estimation under INLA method. The key of the approach is to use the fact that a GRF
with Matérn covariance function is a solution to a SPDE and then the SPDE representation is
used in conjunction with basis representation to construct a discrete approximation of the con-
tinuous field over the vertices of a 2-dimensional mesh covering the spatial domain (SIMPSON
et al., 2016), i.e., the idea of the SPDE approach is to approximate the initial Gaussian field to
a Gaussian Markov random field. One of the main advantages of this approach is the fact that
GMRFs are defined by sparse matrices, allowing computationally effective methods.

In this paper we propose a spatio-temporal formulation of point processes with stochastic
intensity, using a decomposition of the intensity function into components that vary in time and
space. Specifically, we propose to use a LGCP structure, where the intensity function is decom-
posed into trend, seasonal, and cycle components together with spatial random effects, which
allows us to identify permanent changes, and cyclical and seasonal effects. To perform inference
procedure, we use the SPDE approach, allowing the use of Bayesian inference procedures based
on INLA.

We first give a brief description of the SPDE approach, and a detailed discussion can be
found in (LINDGREN; RUE; LINDSTRÖM, 2011; SIMPSON et al., 2016). Spatio-temporal
data can be represented as realizations of a stochastic process indexed by a space and a time
dimension

Y (s, t) = {y(s, t) | (s, t) ∈ D × T ∈ R2 × R} (4.1)

where D is a subset of R2, T is a subset of R, s denotes a spatial coordinate and t denotes a
time index. Using this structure, we can represent a spatio-temporal LGCP modelled as

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = z(s, t)β + ξ(s, t)

ξ(s, t) = Φξ(s, t− 1) + ω(s, t) (4.2)

where Y (s, t) is the number of occurrences in a region s and in time t, e(s, t) is the exposure
offset for the region s, z(s, t) is a set of covariates observed in the location s and period t, and
ξ(s, t) are the spatial random effects represented by the Gaussian process ω(s, t) continuously
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projected in space and given by

Cov(ω(s, t)ω(s
′, t′)) =

0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′ (4.3)

where C(h) is a covariance function of the Matérn class, which can be written as

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (4.4)

where h = ||s − s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial
scale parameter, ν > 0 is the smoothness parameter and Kν is a modified Bessel function. The
marginal variance σ2 is defined by:

σ2 =
Γ(ν)

4πκ2ντ 2Γ(ν + d
2 )

(4.5)

where τ is a scaling parameter and d is the space dimension. Additionally, we adopt a parameteri-
zation in terms of log τ and log κ for the covariance function (LINDGREN; RUE; LINDSTRÖM,
2011):

log τ =
1
2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (4.6)

where ρ = (8ν)1/2

κ . This representation is advantageous since, conditional on the value of ν, it is
necessary to estimate only two parameters.

Considering a bounded region Ω ∈ R2, it follows that the likelihood for an LGCP associated
with data Y = {si ∈ Ω : i = 1, . . . , n; t = 1, . . . , T} is of the form

π(Y |λ) = exp

(
|Ω| −

∫
Ω
λ(s, t)ds

) T∏
t=1

nt∏
i=1

λ(si, t). (4.7)

Due to the doubly-stochastic property of the intensity function, the likelihood in (4.7) is
analytically intractable. Since the term ω(s, t) corresponds to a GF with Matérn covariance, it
is possible to use the SPDE approach to approximate the initial GF to a GMRF. The first main
important result for the SPDE approach, is the fact that a GF x(s) with the Matérn covariance
function is a stationary solution to the linear fractional SPDE (WHITTLE, 1954; LINDGREN;
RUE; LINDSTRÖM, 2011)

(κ−∆)α/2x(s) = W (s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (4.8)

where ∆ =
∑d

i=1
∂2

∂s2
i

is the Laplacian operator and W (s) is a spatial white noise. Therefore, to
find a GMRF approximation of a GF, it is necessary to find the stochastic weak solution of a
SPDE, which can be constructed through Finite Elements Method (FEM) (LINDGREN; RUE;
LINDSTRÖM, 2011). Thus, the approximation of SPDE solution is given by

ω(s, t) ≈ ω̃(s, t) =
n∑

j=1

wjφj(s, t) (4.9)
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where n is the number of vertices of the triangulation, {wj}nj=1 are the weights with Gaussian
distribution and {φj}nj=1 are the basis functions defined for each node on the mesh. In summary,
the idea is to calculate the weights {wj}, which determine the values of the field at the vertices,
while the values inside the triangles are determined by linear interpolation (LINDGREN; RUE;
LINDSTRÖM, 2011). Here, the basis functions are chosen to be piecewise linear on each triangle:

φl(s, t) =

1 at vertex l

0 elsewhere
(4.10)

The stochastic weak solution of (4.8) is found by requiring

{⟨ϕ, (κ2 −∆)α/2ω⟩}Ω
d
= {⟨ϕ,W ⟩}Ω, (4.11)

where {ϕi(s), i = 1, . . . ,m} are test functions and “ d
=” denotes equality in distribution. Repla-

cing (4.9) in (4.11) gives us

{⟨ϕi, (κ
2 −∆)α/2φj⟩}Ωw

d
= {⟨ϕi,W ⟩}Ω, (4.12)

for i = 1, . . . ,m, where m is the number of test functions. The finite dimensional solution is
obtained by finding the distribution for the Gaussian weights in equation (4.9) that fulfils (4.12)
for only a specific set of test functions, with m = n. When ϕk = (κ2 = ∆)1/2φk for α = 1 and
ϕk = φk for α = 2, these two approximations are denoted the least squares and the Galerkin
solution, respectively. Choosing α = 2 and ϕk = φk yields(

κ2{⟨φi, φj⟩}+ {⟨φi,−∆φj⟩}
)
w

d
= {⟨φi,W ⟩}. (4.13)

Define the n× n matrices, C and G as

Cij = ⟨φi, φj⟩

Gij = ⟨∇φi,∇φj⟩, (4.14)

then a weak solution to (4.8) is given by (4.9), where

(κ2C+G)w ∼ N(0,C) (4.15)

and the precision of the weights, w, is

Qα=2 = (κ2C+G)TC−1(κ2C+G). (4.16)

Although Gij and Cij are sparse matrices, C−1 is not sparse. The solution is to replace Cij =

⟨φi, φj⟩ by the diagonal matrix Cii = ⟨φi, 1⟩, that yields a Markov approximation. Therefore,
w is a GMRF with precision matrix defined by (4.16).

Replacing the GF ω(s, t) by the GMRF approximation ω̃(s, t) in equation (4.17), and ap-
proximating the integral in (4.7) by a quadrature rule, results that the approximate likelihood
consists of (n+ nt)T independent Poisson random variables, where n is the number of vertices
and nt is the number of observed point processes. By obtaining the LGCP likelihood approxima-
tion, it is possible to perform inference procedures through the INLA algorithm, which provides
accurate and efficient approximations on Bayesian hierarchical models that can be represented
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as latent Gaussian models. For reasons of space, we do not detail the INLA method here, which
can be found in (RUE; MARTINO; CHOPIN, 2009).

The dynamic formulation proposed in this paper is a generalization of the formulation given
in Equation (4.17). In this case, we include the components µt and stas follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = µt + st + z(s, t)β + ξ(s, t)

∆2µt = µt − 2µt+1 + µt+2

st = st−4 + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Φξ(s, t− 1) + ω(s, t) (4.17)

where µt is the long term trend modeled as a second-order random walk (RW2), also known as
the local-level model. The st represents the seasonal components, which is based on a seasonal
autoregressive model. The ct is a cycle component represented by an second-order autoregressive
process with possible complex roots, which allows to capture cyclic patterns if the roots are
complex numbers (LAURINI, 2019). The ηµ, ηc and ηs are nonspatial independent innovations
with ηµ ∼ N(0, σ2

ηµ), ηc ∼ N(0, σ2
ηc) and ηs ∼ N(0, σ2

ηs). In all estimation procedures, we use
default priors for the SPDE model in the R-INLA package implementation, which is available
upon request from the authors.

4.2.2 Data

In this paper we use daily data of fire occurrence in the Legal Amazon from MODIS Ther-
mal Anomalies/Fires between January 2002 and December 2022, which provides information
such as fire occurrences (day/night), fire location, the logical criteria for the fire selection, and
detection confidence. In order to provide better interpretations of the results, we use a quarterly
aggregation of the daily data. In addition, from the computational aspect, the use of a very high
frequency could lead to numerical problems in the estimation and inference processes since the
dimension of the spatio-temporal covariance matrix is given by the Kronecker product between
the time and spatial dimensions.

To illustrate, Figure 4.1 provides the number of fire events over time in the Legal Amazon,
while Figure 4.2 shows a graphical distribution of the fires over time and space. From July to
October 2005 large areas of the Amazon region experienced one of the most strong drought of
the past 100 years (MARENGO et al., 2008). The event in 2005 was driven by elevated tropical
North Atlantic sea surface temperatures associated with a weaker cold anomaly in the South
Atlantic (MARENGO et al., 2008; COX et al., 2008), and caused intense forest fire. After
the peak in 2005, the fire occurrence in the Legal Amazon decreased until 2012, whereas from
2013 to 2022 forest fires increased (see Figure 4.1). The spatial distribution of fire occurrence
shows that forest fires are more concentrated in the region called “arc of deforestation”, an area
that extends from Maranhão to Acre, but with a pattern of increasing toward central areas.
Additionally, it is possible to note that most of the fire events occur during the third and fourth
quarter, the dry season (May to October).
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Figure 4.1 – Fires in Legal Amazon by quarter between 2002 and 2022

Since our data base includes fire occurrence of different causes, such as human sources (de-
liberately or accidentally), and natural causes, it is important to include explanatory variables
in the analysis to control the main fixed effects related to climatic conditions and to control
for possible use of the soil in agricultural and livestock activities. Thus, to reach our goal, we
include explanatory variables, as the Koppen climate Classification, which classifies the climate
in a certain region by types (see Appendix) that are characterized by two or three characters,
where the first indicate the climate zone defined by the temperature and rainfall, the second is
defined by the rainfall distribution, and the third considers the sea seasonal temperature vari-
ation (ALVARES et al., 2013). According to Köppen Classification, the climate in the Legal
Amazon is mostly wet tropical (Am) in the central areas, tropical with dry winter (Aw) in the
South Eastern Amazon and tropical without dry season (Af) in Western Amazon.

We also include MapBiomas Collection 7 for Amazon biome that contains annual land use
and land cover maps (LULC), that classifies the Amazon Biome into 7 different classes of land
cover/land use including forest formation, savanna formation, wetland, grassland formation,
pasture, agriculture, other non-vegetated area, non observed, and water bodies1.

Evidence of intentional fire can be seen through the proximity of fire outbreaks and highways,
as proximity to highways implies in human accessibility and lower transportation costs for agri-
cultural and livestock production. Therefore, as explanatory variable, we also include the dis-

1 Available at <https://mapbiomas.org/>

https://mapbiomas.org/
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Figure 4.2 – Spatial distribution of fires in Legal Amazon between 2002 and 2022

tance of fire occurrence from federal and state highways. The data base containing the location
of federal and state highways is provided by Departamento Nacional de Infraestrutura de Trans-
portes (DNIT) and Empresa de Planejamento e Logística (EPL).

Lastly, we include rainfall and maximum temperature information which were constructed
using the time series of the monitoring stations provided by Agência Nacional de Águas and
Instituto Nacional de Meteorologia (INMET), whereas the maximum temperature data were
obtained based on the information provided by the INMET. In both cases, we used the spati-
ally continuous projections for each period in the sample, which were calculated based on the
methodology proposed by Laurini (2017).

4.3 Results

We perform inference procedure based on the the specification described in Equation (4.17).
Thus, the estimated parameters are the precision of the trend component (1/ηµ), seasonal com-
ponent (1/ηs), and cycle component (1/ηc), the parameters of the second-order autoregressive
process of the cycle (PACF1 and PACF2), the parameters associated with the set of observed co-
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variates (β), the parameters of spatial covariance (log τ and log κ), and the parameter of spatial
time dependence (Φ).

Table 4.1 reports the estimated parameters. As might be expected, the results indicate a
negative relation between the distance to roads and the fire occurrence. The importance of the
highways as a prime driver of fire occurrence and deforestation at local scales has been discussed
in the literature, showing that the roads play important roles facilitating transformation of
land-use practices, creating fresh access to new settlements in frontier regions, and reducing
transportation costs in earlier settled areas (FERRAZ, 2001; FEARNSIDE, 2006).

Regarding the rainfall and temperature covariates, the results indicate a negative relationship
between rainfall and the intensity of fire occurrences and, on the other hand, higher temperatures
are related with higher incidence of fires, according to the results.

Table 4.1 – Estimated Parameters for the Legal Amazon

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Distance Highways -0.012 0.001 -0.014 -0.012 -0.010 -0.012
Temperature 0.155 0.011 0.132 0.155 0.177 0.155
Rainfall -0.006 0.001 -0.007 -0.006 -0.005 -0.006
Koppen 1 (Cwa) 0.012 0.248 -0.474 0.012 0.497 0.012
Köppen 2 (Am) 0.252 0.061 0.134 0.252 0.371 0.252
Köppen 3 (Af) 0.219 0.094 0.035 0.219 0.404 0.219
Köppen 4 (Cfa) 0.153 0.254 -0.344 0.153 0.650 0.153
Köppen 10 (As) 0.265 0.159 -0.045 0.265 0.576 0.265
Köppen 12 (Aw) 0.444 0.143 0.165 0.444 0.724 0.444
Forest Formation -0.024 0.055 -0.131 -0.024 0.084 -0.024
Savanna Formation 0.056 0.084 -0.109 0.056 0.220 0.056
Mangrove 0.133 0.152 -0.166 0.133 0.432 0.133
Wetland 0.205 0.112 -0.015 0.205 0.426 0.205
Grassland 0.151 0.078 -0.003 0.151 0.304 0.151
Pasture 0.076 0.079 -0.078 0.076 0.230 0.076
Mosaic of Uses 0.078 0.128 -0.173 0.078 0.328 0.078
Beach, Dune and Sand Spot 0.542 0.248 0.055 0.542 1.029 0.542
Other non Vegetated Areas -0.541 0.177 -0.888 -0.541 -0.195 -0.541
River, Lake and Ocean 0.154 0.066 0.024 0.154 0.284 0.154
Soybean 0.088 0.177 -0.258 0.088 0.435 0.088
Other Temporary Crops 0.116 0.169 -0.214 0.116 0.447 0.116

Random Effects
Precision for trend 5.270 0.185 4.897 5.271 5.633 5.284
Precision for seasonality 1.059 0.082 0.933 1.049 1.251 1.010
PACF4 for seasonality 0.136 0.039 0.074 0.132 0.224 0.112
Precision for cycle 4.673 0.161 4.344 4.676 4.983 4.694
PACF1 for cycle 0.308 0.020 0.264 0.309 0.344 0.314
PACF2 for cycle -0.366 0.017 -0.403 -0.365 -0.336 -0.360
Log τ -2.135 0.007 -2.148 -2.136 -2.120 -2.137
Log κ -0.035 0.008 -0.052 -0.034 -0.022 -0.031
Group Φ 0.842 0.003 0.837 0.842 0.847 0.841
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As described earlier, the climate of the Legal Amazon, according to Köpper classification, are
mostly wet climate, occurring precipitation in all months of the year (Af), monsoon, with a mean
annual total precipitation > 1500mm and a dry season occurring between August and November
(Am), and tropical with dry season (Aw). As expected, obtained results suggest that the types
of climate with dry season (Am, As, and Aw) have higher influence on fire occurrence than those
without dry season (Cwa, Af, and Cfa). Our analysis associated to land cover classifications
show a positive relation between fire occurrence and savanna formation, mangrove, wetland,
grassland, pasture, mosaic of uses, sand spot, water bodies, soybean, and other temporary
crops. On the other hand, the estimated parameters indicate a negative relation between fire
occurrence and forest formation and other non vegetated areas.

Regarding the random effects, the precision parameters represent the variability associated
with the trend, seasonal and cycle components, where high values indicate low variability. Based
on the results reported in the Table 4.1, it is possible to note a high precision associated with
the cycle component as well as the trend component, whereas the seasonality component shows
a relatively minor precision.

A primary empirical motivation for the present study was to assess the existence of changes
in the patterns of fire occurrence in the Legal Amazon. To better understanding the results, we
plotted the estimated trend, seasonal and cycle components (posterior mean and 95% Bayesian
credibility interval; see Figure 4.3). The trend component exhibits a marked decrease between
the beginning of the sample and 2012, followed by an increase that extents to the end of the
sample. Regarding the cycle and seasonal components, based on Figure 4.3, it is possible to
note that both are quite stable, and the model does not indicate relevant changes in those
components.

The spatial heterogeneity of the fire occurrence in the Legal Amazon can be better seen
through the estimated spatial random effect (posterior mean of estimated spatial random effect;
see Figure 4.4).

In order to show the model’s ability to fit the fire occurrence, we plotted the estimated log
intensity function and the observed fire occurrence (black dots; see Figure 4.5), which shows
that the estimated log intensity function explains the spatio-temporal variation observed in the
fire count in the Legal Amazon, suggesting that the model has a good fit. Additionally, to show
the importance of the trend, seasonal and cycle components in the analysis of fire occurrence in
the Legal Amazon, we plotted the observed total fire count and the predicted value of fire count
in each year given by the sum of the estimated trend, seasonal, cycle and intercept components
(see Figure 4.6)

4.3.1 Amazon Biome

The region known as Legal Amazon in Brazil comprises nine Brazilian states, containing three
different biomes: Amazon, Cerrado and Pantanal. These biomes differ from each other not only
in vegetation and fauna, but in the way they provide ecosystem services. As a complementary
analysis, we did the same previous analysis, but now considering the Amazon biome, in order
to uncover possible changes in the patterns only in this biome. The results (see Table 4.2)
obtained with the analysis of the Amazon biome differ from the previous one mostly in terms
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(a) Trend (b) Seasonal

(c) Cycle

Figure 4.3 – Trend, Seasonal and Cycle decomposition of fire occurrences in the Legal Amazon

of land cover. While we consider the three biomes in the analysis, the relationship between
fire occurrence and wetland, grassland, pasture and soybean were positive. On the other hand,
when we consider only the Amazon biome, these relationships become negative.

In the case of wetlands and grasslands, this result can be attributed to the fact that the
Pantanal biome is the major wetland ecosystem of the world, characterized by the well-defined
dry and wet seasons. Also, the Panantal and Cerrado are biomes in which fire-dependent ecosys-
tems (savanna and grassland) predominates, i.e., in these type of formation fires are typically
mild and frequent, often occurring in the transitional months between seasons, mostly during
dry seasons, and providing benefits to the fauna and flora (PIVELLO, 2011; PIVELLO et al.,
2021). Differently from the Pantanal and Cerrado, the Amazon biome is covered predominantly
by dense forest formation, which is considered fire-sensitive. As a consequence, in the absense
of Pantanal and Cerrado biomes in the analysis, when we consider only the Amazon biome, due
to its features, the relationship between the intensity of fire activity and cerrado, savanna, and
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Figure 4.4 – Spatial Random Effects - Legal Amazon

wetland become negative.
Regarding the pasture and soybean fields, according to Oliveira et al. (2022), in the Cerrado

and Pantanal, the climate is the major determinant of fire activity, while human action is the
main driver factor in the Amazon biome. In this case, the incidence of accidental fires in pastures
and agricultural areas caused by climate variables is higher in the Panantal and Cerrado than in
the Amazon biome. As a consequence, when we analyze only the Amazon biome, the relationship
between the intensity of fire activity and pasture and soybean fields become negative.

Figure 4.7 shows the posterior mean and 95% Bayesian credibility interval for the estimated
trend, seasonal and cycle components considering the data for the Amazon biome. As the
previous result, the trend component also exhibits a marked decrease between the beginning of
the sample and 2012, followed by an increase that extents to the end of the sample. Similarly,
the cycle and seasonal components are also quite stable, and the model does not indicate relevant
changes in those components.

The spatial heterogeneity of the fire occurrence in the Amazon biome (see Figure 4.9 in
Appendix) is also very similar to the previous analyze, as well as the estimated log intensity
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Figure 4.5 – Estimated log-intensity function and observed fire occurrence - Legal Amazon

function and the observed fire occurrence (black dots; see Figure 4.10 in Appendix), and the
observed total fire count and the predicted value of fire count in each year given by the sum of
the estimated trend, seasonal, cycle and intercept components (see Figure 4.11 in Appendix).

4.3.2 Monthly Data

In order to consolidate our results, we also provide a monthly analysis of the changes in
the patterns of fire intensity in the Legal Amazon, and the results are presented in Table 4.4 in
Appendix. With respect to the estimated trend, seasonality, and cycle components, the monthly
analysis revealed the same patterns observed in the previous analysis, however, as expected,
with less uncertainty. Lastly, considering the observed total fire count and the predicted value
of fire count in each year given by the sum of the estimated trend, seasonal, cycle and intercept
components (see Figure 4.12 in Appendix), it also shows the importance of the trend, seasonal
and cycle components in the analysis of fire occurrence in the Legal Amazon.
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Figure 4.6 – Predicted fires given by the sum of trend, seasonality and cycle components and
observed fires. Shaded areas in the graph represent the 95% Bayesian credibility
interval.

4.4 Discussion

Our evidence suggests that there is a variability in the intensity of fire occurrence in both the
Legal Amazon (considering Amazon, Cerrado and Pantanal biomes) and only in the Amazon
biome. This result corroborates with the results presented by Libonati et al. (2021), which
brings an analysis of the relationships between deforestation, fire, and droughts in the Brazilian
Amazon.

Our analysis of the trend component revealed a decrease in the fire activity between 2002 and
2012, which can be primarily attributed to governance measures along with market mechanisms.
Indeed, the set of policies adopted to reduce the deforested area underwent significant revisions
during 2000s, introducing innovative procedures for monitoring, environmental control, and
territorial management, such as the Action Plan for the Prevention and Control of Deforestation
in the Legal Amazon (PPCDAm), which launched its first and more successful phase in 2004.
Additionally, novel policy measures were implemented in 2008, targeting municipalities with
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Table 4.2 – Estimated Parameters for the Amazon biome

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Distance Highways -0.011 0.001 -0.014 -0.011 -0.009 -0.011
Rainfall 0.003 0.001 0.002 0.003 0.004 0.003
Koppen 1 (Cwa) -0.088 0.431 -0.932 -0.088 0.756 -0.088
Köppen 2 (Am) 0.325 0.065 0.197 0.325 0.454 0.325
Köppen 3 (Af) 0.357 0.087 0.186 0.357 0.529 0.357
Köppen 4 (Cfa) 0.534 0.209 0.123 0.534 0.945 0.534
Köppen 10 (As) -0.391 0.158 -0.701 -0.391 -0.082 -0.391
Köppen 12 (Aw) 0.238 0.136 -0.028 0.238 0.503 0.238
Forest Formation -0.094 0.158 -0.404 -0.094 0.215 -0.094
Savanna Formation 0.001 0.169 -0.331 0.001 0.333 0.001
Mangrove 0.298 0.252 -0.196 0.298 0.792 0.298
Forest Plantation 0.530 0.561 -0.569 0.530 1.629 0.530
Wetland -0.418 0.195 -0.799 -0.418 -0.037 -0.418
Grassland -0.105 0.165 -0.430 -0.105 0.219 -0.105
Pasture -0.071 0.159 -0.383 -0.071 0.241 -0.071
Beach, Dune and Sand Spot 0.064 0.234 -0.394 0.064 0.522 0.064
Urban Area 0.532 0.571 -0.587 0.532 1.651 0.532
Salt Flat -0.146 0.358 -0.848 -0.146 0.556 -0.146
River, Lake and Ocean 0.101 0.156 -0.204 0.101 0.407 0.101
Soybean -0.053 0.181 -0.408 -0.053 0.302 -0.053
Other Temporary Crops 0.042 0.189 -0.328 0.042 0.413 0.042

Random Effects
Precision for trend 5.622 0.453 4.817 5.591 6.604 5.506
Precision for seasonality 0.421 0.034 0.361 0.418 0.493 0.411
PACF4 for seasonality 0.769 0.016 0.739 0.768 0.801 0.765
Precision for cycle 4.033 0.408 3.270 4.020 4.875 4.007
PACF1 for cycle 0.149 0.048 0.055 0.148 0.246 0.144
PACF2 for cycle -0.379 0.057 -0.478 -0.383 -0.255 -0.398
Log τ -2.157 0.014 -2.182 -2.157 -2.129 -2.158
Log κ -0.125 0.012 -0.148 -0.126 -0.099 -0.129
Group Φ 0.873 0.004 0.863 0.873 0.881 0.874

critical rates of deforestation and constraining rural credit (ASSUNÇÃO et al., 2015). The
effectiveness of the policies and how the market mechanisms have impacted the deforestation
in the Legal Amazon has been widely discussed in the literature, showing that, in general, the
conservation policies, the decreases in agricultural prices, and the availability of rural credit has
curbed deforestation (e.g., Assunçãoa et al. (2013), Hargrave and Kis-Katos (2013), Lapola et
al. (2014), Nepstad et al. (2014), Assunção et al. (2015), Marle et al. (2017)).

We also showed that from 2013 onwards there is an increasing pattern in the long term
component, which appears to reflect the increasing number in the international markets opened
for Brazilian beef and soy during this period, increasing the pressure on forests. Additionally, the
Brazil’s Forest Code (Law 4771/1965) was replaced by Law 12651/2012, reducing restrictions
and pardoning areas of illegal clearing done by 2008, causing significant environmental and social



117
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Figure 4.7 – Trend, Seasonal and Cycle decomposition of fire occurrences in the Amazon
biome.

issues (FEARNSIDE, 2017).
By including covariates in the model we were able to investigate the relationships between

the intensity of fire occurrences, human activities, and climate variables over time. Essentially,
four factors are required for fire to occur: sufficient biomass, biomass available to burn, ambient
conditions conductive to spread, and ignitions (BRADSTOCK, 2010). These factors rely on
meteorological conditions and how these conditions interact with different kinds of vegetation.
Our findings suggest that climate patterns and human activities are underlying factors that have
driven the trend of the fire occurrence. Supporting the evidence that the intensity in the fire
occurrence have been related to climate variability, our model provides evidence of the positive
relationship between temperature and fire activity, and a negative relationship between rainfall
and fire occurrence. Additionally, the human influence may further complicate the influence
of biophysical drivers, through land-use modification, human ignitions, and fire suppression
(ANDELA et al., 2017). In this context, our results provided evidence that pasture, mosaic
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(a) Trend (b) Seasonal

(c) Cycle

Figure 4.8 – Trend, Seasonal and Cycle decomposition of fire occurrences in the Legal Ama-
zon.

of uses, soybean and other temporary crops are positive related with fire intensity, whereas
other non vegetated areas are negatively related with fire occurrence. Indeed, humans have
manipulated fire regimes for several thousand years, suppressing wildfires to protect lives and
properties, and creating landscapes that inhibit large-scale fire spread. As a consequence, such
anthropogenic influences result in fire regimes that differ in terms of frequency, severity, and
seasonality from how ecosystems would burn in the absence of humans (RABIN et al., 2015;
SYPHARD et al., 2017).

From the spatial perspective, it is possible to observe that the spatial random effects capture
the variability in the Legal Amazon, especially in the regions classified as wet tropical (Am),
which is characterized by a dry season, that occurs between August and November (third and
fourth quarters), and tropical with dry season (Aw). On the other hand, in western Amazon,
where the climate is predominantly tropical without dry season (Af), the variability is low.
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4.5 Conclusion

The Amazon biome plays an important role in the climate system, with relevance at regional
and global scales. Fire occurrences, related to both natural and anthropogenic activities, are
relevant disturbances in the Legal Amazon, with significant effects. Changes in the patterns of
fire occurrence in the Amazon region have been widely reported in the literature and are related
with a variety of factors, including dry conditions, deforestation, agricultural expansion, climate
changes, and climatic anomalies such as El Ninõ events.

The purpose of this paper was to analyze the existence of changes in the patterns of the
fire occurrence in the Legal Amazon, within the spatio-temporal point process framework. To
perform inference procedures, we proposed a structural decomposition to spatio-temporal point
pattern data. In particular, we proposed to use a dynamic representation of a Log Gaussian
Cox process where the intensity function was modeled through the decomposition of components
into trend, seasonality, cycles, covariates and spatial effects. This useful formulation was able
to capture permanent changes in the fire occurrence and also, to identify seasonal and cyclic
effects. Plus, the resulting Bayesian hierarchical structure allowed us to perform inference in a
computationally effective way within the integrated nested Laplace approximation framework.

We presented here, the results of analyzing data for fire occurrence in the Legal Amazon
reported by MODIS, from January 2002 to December 2022. Also, we included explanatory
variables to control the main fixed effect related to climatic conditions and the use of the soil in
agricultural activities. Our results show that the estimated trend component of fire occurrence
exhibits a marked decrease from 2002 to 2012, followed by an increase that extents to the end of
the sample, which can be related to governance actions and market mechanisms. Furthermore,
our model also was able to capture the variability in the Legal Amazon, especially in the regions
classified as wet tropical (Am), which is characterized by a dry season, that occurs between
August and November (third and fourth quarters), and tropical with dry season (Aw). On the
other hand, in western Amazon, where the climate is predominantly tropical without dry season
(Af), the variability is low.

4.6 Appendix

4.6.1 Climate classification

4.6.2 Amazon biome - Additional results

4.6.3 Monthly data - Additional results
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Table 4.3 – Köppen Climate Classification

Characters Description
Cwa (C) Humid subtropical (w) With dry winter (a) and hot summer.
Am (A) Tropical (m) monsoon.
Af (A) Tropical (f) without dry season.
Cfa (C) Humid subtropical (f) Oceanic climate, without dry season (a) and hot

summer.
Cwb (C) Humid subtropical (w) With dry winter (b) and temperate summer.
Csb (C) Humid subtropical (s) With dry summer (b) and temperate summer.
Csa (C) Humid subtropical (s) With dry summer (a) and hot summer.
Cfb (C) Humid subtropical (f) Oceanic climate, without dry season (b) and tem-

perate summer.
BSh (B) Dry (S) Semi-arid (h) low latitude and altitude.
As (A) Tropical (s) with dry summer.
Cwc (C) Humid subtropical (w) With dry winter and (c) short and cool summer.
Aw (A) Tropical (w) with dry winter.

Figure 4.9 – Spatial Random Effects - Amazon biome
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Figure 4.10 – Estimated log-intensity function and observed fire occurrence - Amazon biome
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Figure 4.11 – Predicted fires given by the sum of trend, seasonality and cycle components and
observed fires. Shaded areas in the graph represent the 95% Bayesian credibility
interval.
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Table 4.4 – Estimated Parameters for the Legal Amazon - Monthly data

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Distance Highways -0.013 0.001 -0.015 -0.013 -0.012 -0.013
Temperature 0.086 0.005 0.076 0.086 0.096 0.086
Rainfall -0.014 0.001 -0.016 -0.014 -0.012 -0.014
Koppen 1 (Cwa) -0.061 0.181 -0.415 -0.061 0.294 -0.061
Köppen 2 (Am) 0.306 0.044 0.220 0.306 0.391 0.306
Köppen 3 (Af) 0.030 0.065 -0.098 0.030 0.158 0.030
Köppen 4 (Cfa) 0.237 0.206 -0.167 0.237 0.642 0.237
Köppen 10 (As) 0.312 0.113 0.091 0.312 0.533 0.312
Köppen 12 (Aw) 0.736 0.090 0.559 0.736 0.913 0.736
Forest Formation 0.037 0.041 -0.043 0.037 0.117 0.037
Savanna Formation 0.140 0.062 0.019 0.140 0.261 0.140
Mangrove 0.085 0.111 -0.133 0.085 0.303 0.085
Wetland 0.243 0.090 0.065 0.243 0.420 0.243
Grassland 0.264 0.058 0.150 0.264 0.378 0.264
Pasture 0.211 0.059 0.097 0.211 0.326 0.211
Mosaic of Uses 0.302 0.108 0.091 0.302 0.513 0.302
Beach, Dune and Sand Spot 0.651 0.184 0.291 0.651 1.011 0.651
Other non Vegetated Areas -0.617 0.157 -0.924 -0.617 -0.310 -0.617
River, Lake and Ocean 0.235 0.049 0.140 0.235 0.330 0.235
Soybean 0.372 0.135 0.107 0.372 0.638 0.372
Other Temporary Crops 0.251 0.144 -0.031 0.251 0.533 0.251

Random Effects
Precision for trend 5.402 0.115 5.144 5.411 5.588 5.468
Precision for seasonality 0.908 0.013 0.883 0.908 0.936 0.906
PACF4 for seasonality 0.067 0.009 0.048 0.068 0.083 0.070
Precision for cycle 4.862 0.092 4.689 4.858 5.057 4.844
PACF1 for cycle 0.341 0.009 0.321 0.342 0.356 0.345
PACF2 for cycle -0.349 0.008 -0.366 -0.349 -0.334 -0.347
Log τ -2.250 0.006 -2.265 -2.249 -2.240 -2.245
Log κ 0.286 0.004 0.280 0.285 0.294 0.284
Group Φ 0.853 0.002 0.850 0.852 0.856 0.851
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Figure 4.12 – Predicted fires given by the sum of trend, seasonality and cycle components and
observed fires. Shaded areas in the graph represent the 95% Bayesian credibility
interval.
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5 THE DYNAMICS OF FIRE ACTIVITY IN THE BRAZILIAN PANTANAL

Fernanda Valente Márcio Laurini

ABSTRACT

We analyze the changes in the patterns of fire occurrence in the Brazilian Pantanal based on
remote sensing data resources. To estimate the spatio-temporal dynamics of fire occurrence we
use a structural representation in a log-Gaussian Cox process, decomposing the intensity function
in components of trend, seasonality, cycles, covariates and spatial effects. The results obtained
indicate that there are relevant variations in the trends of fires occurrence in the Brazilian
Pantanal, the intensity of occurrence of fires is statistically higher in natural vegetation, and
that a relevant part of the record of fires observed in the first three quarters of 2020 cannot be
explained by climatic factors alone, possibly being caused by intentional human actions.

Keywords: Fires, Spatio-Temporal Point Process, LGCP, Brazilian Pantanal

5.1 Introduction

The Pantanal biome is the major wetland ecosystem of the world, located in the Upper Pa-
raguay River Basin (UPRB) between the Cerrado and Amazon biomes. The Brazilian Pantanal
is located in the southwest region, mostly in the state of Mato Grosso do Sul (65%), but also in
the state of Mato Grosso (35%) (SILVA; ABDON, 1998). The biome is mainly characterized by
the well-defined dry and wet seasons, producing periodic fluctuations in the water level (flood
pulse), shaping the scope of terrestrial and aquatic places on the lowland, and influencing the
fauna and flora. The vegetation in the Pantanal is heterogenous, with several vegetation clas-
ses identified, and also serving as the habitat for substantial populations of animals, including
threatened species (TOMAS et al., 2019).

This high Pantanal’s biological diversity has attracted great attention, making this biome
more susceptible to anthropological threats. In the last few decades, the Pantanal has expe-
rienced a rapid evolution of the agricultural and livestock systems, replacing areas of natural
vegetation by production zones (HARRIS et al., 2005; SILVA et al., 2011; ARVOR et al., 2012).
The monitoring activities of 2012-2014 to assess the environmental impact in the UPRB have
identified that 58% of the original vegetation in the plateau areas were converted to anthro-
pic uses, whereas in the lowlands this conversion corresponds to 42%. In addition, the report
also have found that 99% of all converted areas have been used as pastureland, while 0.6% for
agriculture, and 0.4% for mining and urban areas (PANTANAL; WWF-BRASIL, 2015).

Related to agriculture and cattle ranching, the inclusion of exotic grass species and the
burning practice are important threats in the region. As a consequence of replacing the original
vegetation by cultivated pastures and the uncontrolled fires, the severe erosion has led to changes
in the hydrological regimes and the patterns of water flow (HARRIS et al., 2005). As discussed
by Ivory et al. (2019), changes in the vegetation productivity in these landscape are likely linked
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to changes in rainfall and the flood-pulse, with different responses based on position relative to
inundated areas. As a consequence, these changes in the vegetation cycle can lead to changes in
the fire activity. Although occasional fire plays an important ecological role in the wetland, with
positive impacts on some vegetation structure and nutrient recycling (OLIVEIRA et al., 2014;
ARRUDA et al., 2016), fire is one of the most important environmental disturbances, affecting
the variations of flood and dry periods, and, as a consequence, changing the required time of
plants and animals to recover after the dry periods (JUNK et al., 2006).

Extensive and more frequent fire events has been reported in the Brazilian Pantanal in the
last few years. For instance, in 2020, more than 22 thousand fire outbreaks were registered in
the Pantanal, with a burned area of 33.000km2, exceeding by 176% the historical record of fire
outbreaks registered in 2005 since the beginning of the monitoring by the Instituto Nacional
de Pesquisas Espaciais (INPE) in 1998. In addition, the area burnt in 2019 in the Brazilian
Pantanal was surprisingly 996% higher than in 2018, which is particularly high when compared
with the neighbor biomes (Cerrado and Amazon) that have recorded an increase around 40%
and 65% of the burned area from 2018 to 2019, respectively. In addition, it is worth noting
that 95.72% of the fire events in the Pantanal have occurred in native vegetation, whereas only
4.28% was in anthropized areas (MapBiomas, 2020). One reason for this increasing may be
related to land use and climate changes, which has the potential to affect the rainfall intensity
and the dry period, favoring the frequency of fire events, mostly human-induced (accidentally
or deliberately), which tends to start in grasslands and then move to woodlands (ARRUDA et
al., 2016). In the absence of specific legislation requiring that landowners restrict a minimum
percentage of native vegetation cover in the farms, it is expected an average vegetation loss
around 10% for the plateau and 3% for the lowland by 2050 (GUERRA et al., 2020b; GUERRA
et al., 2020a).

Given the widely-expected trend of agriculture and livestock expansion, and the importance
of the Brazilian Pantanal to provide ecosystem services and the economic valuation of the region
(COSTANZA et al., 1997; SEIDL; MORAES, 2000; COSTANZA et al., 2014), there is an
urgency to evaluate the possible changes in the patterns of fire occurrence in the region, in order
to find solutions to minimize the impacts. Despite the existent long-term studies evaluating the
variations in rainfall patterns in the Pantanal and the related consequences for fire frequency,
the study of climate landscape dynamics is underdeveloped in the Pantanal (SCHULZ et al.,
2019). In particular, for fire occurrences, there is a gap in research that our study aims to
help fill. Additionally, the development of remote sensing technology have became an important
tool to assessing fire occurrences and monitoring the possible changes in the patterns of these
events. In this sense, to monitor the patterns of fire occurrence in the Brazilian Pantanal, we
propose to model the counting events geographically located (fire spots) based on remote sensing
data resources through trend-cycle decomposition for spatio-temporal point process models. In
particular, we use a dynamic representation of a log Gaussian Cox process (LGCP), where
the intensity function is modeled through decomposition of components in trend, seasonality,
cycles, covariates and spatial effects (LAURINI, 2019; VALENTE; LAURINI, 2020; VALENTE;
LAURINI, 2021a; VALENTE; LAURINI, 2021c), assuming that spatial effects are time varying,
based on an autoregressive functional structure.
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5.2 Data and Methods

Our main goal is to analyze the changes in the permanent and transitory patterns of fire
occurrence in the Brazilian Pantanal biome, which was delimited based on The Map of Bio-
mes and Coastal-Marine System of Brazil from Instituto Brasileiro de Geografia e Estatística
(IBGE)1. For that, we use daily data of fire spots in the Brazilian Pantanal from July-1998 to
December-2022, provided by the Programa Queimadas2, from Brazilian National Institute of
Spatial Research (Instituto Nacional de Pesquisa Espacial-INPE). We also included covariates
that could be important in the fire observations since our data set includes fire occurrences of
different causes, such as human sources and natural causes, that can be influenced by climate
variables. In particular, we included information on maximum temperature, rainfall, and land
use/land cover (LULC) from 1998 to 2022. A detailed description can be found in the Appendix.

To properly deal with point pattern data we use a spatio-temporal decomposition based on a
LGCP, a doubly stochastic version of the Poisson process, where the log of the intensity function
is given by a Gaussian random field. This framework is a flexible way to overcome the limited
structure of the Poisson process, by allowing to introduce more complex stochastic structures
in the intensity function, controlling for general processes of spatial dependence. However,
inference procedures on the LGCP are difficult given the fact that the likelihood of theses
processes is analytically intractable. To bypass this problem, Simpson et al. (2016) proposed to
approximate the LGCP likelihood through the stochastic partial differential equation (SPDE)
approach (LINDGREN; RUE; LINDSTRÖM, 2011), which is a computationally effective way to
deal with spatio-temporal models in the context of point pattern data. In addition, as proposed
by Laurini (2017) and Valente and Laurini (2020), the LCGP structure allows us to estimate
long-term changes and transient components through a trend-cycle decomposition (à la Harvey
(1990)) of the intensity function. In particular, we proposed to decompose the intensity function
into latent factors of trend, seasonality, and cycle, along with covariates and spatial effects.

In the analysis of the temporal pattern, the main object is the trend component, which
shows the evolution of the average level of occurrences over time, and thus shows the persistent
patterns of fire occurrence in the Pantanal. Variations in this component may indicate variations
that are possibly related to changes in the patterns of land use management in agricultural
activities, such as the use of burning for the removal of native vegetation and later use in
pastures and plantations. This interpretation is possible by controlling the climatic effects
through covariates, and also by controlling other possible non-permanent effects by including
the seasonality and cycle components. In addition to the inclusion of these common temporal
and covariate components, the model used in the analysis includes a structure of time-varying
spatial random effects, which allow the capture of the remaining spatial patterns, allowing to
analyze also if there are other effects in the fire patterns that have spatial dependence.

To provide a clearer idea of the method employed to reach our goals, we present a brief
description of the SPDE approach in the Appendix, following the notation adopted by Lindgren,
Rue and Lindström (2011). Herein we provide some details about the model structure used in

1 Available at <https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.
html?=&t=o-que-e>.

2 Data and more information available at http://queimadas.dgi.inpe.br/queimadas/portal

https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html?=&t=o-que-e
https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html?=&t=o-que-e


128

our analysis. Consider a dynamic version of a spatial LGCP where the intensity function is
modelled as follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t))

log λ(s, t) = µt + st + ct + z(s, t)β + ξ(s, t)

µt = µt−1 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Θξ(s, t− 1) + ω(s, t) (5.1)

where Y (s, t) is the number of occurrences in a region s in time t, e(s, t) is the exposure offset
for the region s, µt is the long term trend, st represents the seasonal components, ct is a cycle
component represented by an second-order autoregressive process with complex roots, z(s, t) is
a set of covariates observed in the location s and period t, and ξ(s, t) are the spatial random
effects represented by the Gaussian process ω(s, t) continuously projected in space and given by

Cov[ω(s, t), ω(s′, t′)] =

0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′ (5.2)

In this structure, the trend component is modeled as a first order random walk, which is a way
widely used to model persistent components in time series models. The seasonality component is
given by components that add up to zero within the year, which incorporate seasonal deviations
from the series average in each period. The cyclic component is modeled with a second-order
stationary autoregressive process, which is a parsimonious way of recovering periodic patterns
in time series.

The spatial component is defined by a spatially continuous covariance function. By assump-
tion, C(h) is a covariance function of the Matérn class, which can be written as

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (5.3)

where h = ||s− s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial scale
parameter, ν > 0 is the smoothness parameter and Kν is a modified Bessel function.

To sum up, our goal is to obtain the intensity function of a counting event, which is decom-
posed into components of trend, seasonality, cycle, plus the effect of covariates and the so-called
spatial random effect, which captures the local effects not captured by the other components.
By using this structure, we are able to assess possible changes in the patterns of fire occurrence
in the Brazilian Pantanal. In addition, the reason to incorporate covariates in the analysis is to
control the impact of climate variables and other effects related to the land use and land cover.

5.3 Results and Discussion

In this section, we discuss the results of the final specification for the analyzed model,
where the statistically significant covariates were rainfall, given by the rainfall accumulated in
the quarter, and land use/cover variables in each location analyzed. Regarding the maximum
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temperature variable, it did not provide a statistically significant pattern to explain the variation
in the fire events, even though there was a long-term increase in maximum temperature trends
in the Pantanal region. Additionally, from the obtained results (see Table 5.2), it is possible
to observe a negative relation between rainfall and the intensity of fire events, i.e., the lower
precipitation leads to higher fire intensity. On the other hand, natural forest such as forest
formation, savanna, and natural grassland has a positive effect on fire intensity. It is important
to emphasize that other types of land use/cover were not statistically significant in terms of the
intensity of the process, especially land use in agricultural activities.

It is not surprising that ecosystems formed by savannas and grasslands are positively rela-
ted to fire intensity since they are mostly fire-dependent ecosystems (HARDESTY; MYERS;
FULKS, 2005). Indeed, fires in these type of formation are typically mild and frequent, often
occurring in the transitional months between seasons and providing benefits to the fauna and
flora (PIVELLO, 2011; PIVELLO et al., 2021). However, in this kind of vegetation there is
also the occurrence of anthropogenic fires, which is used to clean the field, control pests, and to
stimulate the regrowth of grasses to cattle, increasing the fire frequency. The natural fires are
usually controlled by the rainy season, while human-induced fires usually also occur in dry season
and are more intense than natural fires, spreading more easily and without rain to extinguish
it. As a consequence, recurrent human-induced fires can affect the spatial pattern and intensity
of the fire activity even in the fire-dependent environments. In combination with drought, these
alterations can cause severe and catastrophic fires, as those recorded in 2020 in the Pantanal
(PIVELLO et al., 2021). Additionally, it is important to emphasize that riparian and gallery
forests along water bodies in the grassland and savanna formation are classified as fire-sensitive
environments, and can be gradually reduced when in contact with recurrent fires (ARRUDA
et al., 2016). However, it is important to highlight that our results do not distinguish whether
the fire occurrence is natural or caused by human actions, thus additional studies are needed to
better elucidate the role of human influences in the fire activity in this kind of vegetation.

On the other hand, forest formation is considered fire-sensitive, i.e., are not capable to adapt
to natural fire regimes and where fire disrupts the ecosystem (HARDESTY; MYERS; FULKS,
2005). However, according to our results, this formation is positively related with the intensity
of fire activity in the Pantanal, which may be due to a combination of factors, such as recurrent
droughts, human activities, and the lack of environmental policies to cope with illegal fires
(PIVELLO et al., 2021).

The precision parameters of the seasonality, cycle, and trend cannot be directly interpreted,
and they are better interpreted through the time series of posterior distribution of these compo-
nents shown in Figure 5.1. Thus, we decided to focus on the interpretation of the figures with
the time series containing the posterior averages (solid lines) and the estimated 95% Bayesian
credibility intervals (shaded areas) for each component. These components are interpreted as
the contribution to the log-intensity function of the process. The mapping for the number of
occurrences of the event in each cell of the mesh is given by the exponential of the value of this
component, multiplied by the area of each cell in the mesh.

Regarding the trend component (sub-figure (a) of Figure 5.1), we can observe a constant
growth between 1998 and 2005, a rapid reduction between 2005 and 2008, with a stabilization
in the values of the trend between 2008 and 2014. From 2015 until 2023, we can see two peaks,
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with the most significant between 2018 and 2021. Finally, at the end of the observed period,
the trend reverts to the lower average level between 1998 and 2023.

The estimated seasonal component (sub-figure (b) of Figure 5.1) is quite stable, and the
model does not indicate relevant changes in this pattern. It is also important to note that the
estimated cyclical component (sub-figure (c) of Figure 5.1) has a stable behavior over time.

(a) Trend (b) Seasonal

(c) Cycle

Figure 5.1 – Trend, Seasonal and Cycle decomposition of fire occurrences in the Brazilian
Pantanal

The quarterly spatial heterogeneity of the fire events over 1998 and 2022 in the Brazilian
Pantanal is clearer through the estimated spatial random effects (see Figure 5.2), which capture
the observed variability of dry (with higher risk of fire occurrence) and wet periods in the region,
with higher variability in the most fire-susceptible areas, i.e., mainly in the south and central
areas, but also in the northeast and north portion of the Pantanal.
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Figure 5.2 – Spatial Random Effects

Figure 5.3 shows the predicted values for the model for the log-intensity of the LGCP process,
between 1998 and 2022. We can observe that this function adequately explains the variations
observed in the occurrences of fires in each quarter of the sample, in particular the periods with
the record of occurrences of events in 2005Q3, 2007Q3 and 2020Q3.

As discussed by Marengo et al. (2021), the Pantanal region has suffered a prolonged drought
since 2019. During both the summer of 2019 and 2020, there were significant changes in upper,
middle and lower-level circulation and moisture transport in South America, causing rainfall
anomalies, which has caused a decrease in the hydrometric levels throughout the Paraguay River.
These unusually drought and warm conditions favoring the fire spread, causing unprecedented
wildfires in the region in the year 2020 (LIBONATI et al., 2020). However, by analysing the
results of the estimated model and, in particular the growing trend, the hypothesis that the
record of fires is explained only by the low accumulated rainfall is not supported. Low rainfall
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Figure 5.3 – Fitted Log Intensity

plays an important role in the rainfall record, but there is also a permanent change in the average
pattern that is captured by the trend component.

The recent observed increase in the number of fire outbreaks in the Brazilian Pantanal may
be linked to the recent Brazilian environmental policies. Indeed, we do not have a singular
government intervention that could affect the fire occurrence, but rather a set of interventions
that could affects the Brazil’s environmental system. Although the weakening of Brazilian
environmental laws are not entirely new, the election of Brazil’s former president, Jair Bolsonaro,
has weakened environmental protect measures. Supported by the ruralist groups, Bolsonaro has
introduced several measures that encourage the expansion of agriculture and livestock, such as
drastic reduction in funds for controlling and monitoring biomes and freer use of agrochemicals
and pesticides, leading to substantial environmental damage (ABESSA; FAMÁ; BURUAEM,
2019).
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Therefore, considering this scenario where along with the relaxation of environmental legis-
lation, we have an historical record of fire outbreaks registered in 2020, we aimed to estimate
the difference of the observed and predicted trajectory of the trend of fire events in the Brazilian
Pantanal. One way to analyze this issue is through a counterfactual decomposition, which can
also be interpreted as a form of causal effect given by some intervention. In this work we use a
generalization of the causal decomposition mechanism for time series proposed in Brodersen et
al. (2015). The idea is to use a state space model with the inclusion of covariates to perform the
analysis of a possible causal effect given by intervention, controlling for the effect of covariates
that are not affected by the intervention. More details about the method used to construct the
counterfactual can be found in the Appendix.

From this decomposition, we map the difference between the estimated and predicted trend
values for the event occurrence scale, which is the variable of interest in our counterfactual
decomposition. In this analysis the interpretation is what is the difference in the number of
fires with the trend estimated with the entire sample in relation to the trend forecast before the
intervention. The Figure 5.4 shows the (a) posterior predictive expectation of the counterfactual
(solid line) and the estimated 95% Bayesian credibility interval (shaded area), and (b) the
cumulative difference between estimated trend based on the intensity function decomposition
and the counterfactual prediction (solid line) and the estimated 95% Bayesian credibility interval
(shaded area). It is important to note that this mechanism is considering the effect of covariates
on the model, especially the rainfall observed in the year 2020. Thus, this decomposition gives
the counterfactual effect on the number of fires if there had not been a change in the behavior
of the model trend.
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Figure 5.4 – Counterfactual Analysis

The posterior mean of the counterfactual difference in the number of occurrences is 2176.375
for the first quarter of 2020, 2729.177 for the second quarter and 3410,083 for the third quarter
of 2020, totaling an estimated value of 8315.635 fire spots given by the difference in the trend
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estimated by the model, for a total of 18259 observed fires. This result indicates that about
45% of fires occurrences cannot be attributed to climatic factors (rainfall) or other transient
factors, and are permanent changes in the pattern of fires in the Pantanal. This result supports
the interpretation that changes in the occurrence patterns of fires in the Pantanal are partly
permanent changes, and cannot be explained by climatic factors and other non-permanent ef-
fects, supporting the hypothesis of an increase in the number of intentional fires due to human
actions.

Additionally, in the Appendix, we provide a non-separable version of our spatio-temporal
model, which allows us to analyse a more complex dependency structure, despite the computa-
tional cost involved in this type of analysis.

5.4 Conclusion

As a contribution to assess the changes in the patterns of fire occurrences in the Brazilian
Pantanal, we propose to use a dynamic version of a Log Gaussian Cox process where the intensity
function is decomposed into latent components such as trend, seasonality, cycles, and covariates
and spatial effects, allowing us to identify long-term changes in the intensity of occurrences over
time, and also to capture mean-reverting effects, taking into account the spatial heterogeneity.
Within this framework, our findings suggest the existence of a variability in the trend component,
which exhibits a growth pattern between 1998 and 2005, and after 2019, whereas it remained
relatively stable between 2008 and 2019, and also a statistically significant major incidence of
fires in natural vegetation areas. By analyzing the historical record on fire spots in the first three
quarters of 2020, our results suggest that it cannot be totally attributed to climate variables,
providing evidence of human-induced events.

5.5 Appendix

5.5.1 The spatial covariance function and model details

In this section we provide a brief description of the SPDE approach proposed by lind-
gren2011explicit. The spatial structure of the model is given by the Matérn family, as discussed
in the section Data and Methods. The marginal variance of the covariance function σ2 is given
by:

σ2 =
Γ(ν)

4πκ2ντ 2Γ(ν + d
2 )

(5.4)

where τ is a scaling parameter and d is the space dimension. In order to easier obtain the results,
we adopt a parameterization in terms of log τ and log κ for the covariance function, following
Lindgren, Rue and Lindström (2011):

log τ =
1
2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (5.5)

where ρ = (8ν)1/2

κ . To approximate the LGCP likelihood, we adopt SPDE approach, using the
fact that the term ω(s, t) corresponds to a random field with a Matérn covariance, which allows
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to approximate this structure with a Gaussian Markov Random Field (GMRF). Thus, the first
main result for the SPDE approach, is that the GF ω(s) with the Matérn covariance function
is a stationary solution to the linear fractional SPDE (WHITTLE, 1954; LINDGREN; RUE;
LINDSTRÖM, 2011):

(κ−∆)α/2x(s) = W (s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (5.6)

where ∆ =
∑d

i=1
∂2

∂s2
i

is the Laplacian operator and W (s) is a spatial white noise. Therefore, in
order to find a GMRF approximation of a GF, we need to find the stochastic weak solution of
SPDE (5.6). Using Finite Elements Method (FEM), it is possible to construct an approximated
solution of SPDE lindgren2011explicit, which is given by

x(s, t) ≈ x̃(s, t) =
n∑

j=1

wjφj(s, t) (5.7)

where n is the number of vertices of the triangulation, {wj}nj=1 are the weights with Gaussian
distribution and {φj}nj=1 are the basis functions defined for each node on the mesh. In summary,
the idea is to calculate the weights {wj}, which determine the values of the field at the vertices,
while the values inside the triangles are determined by linear interpolation (LINDGREN; RUE;
LINDSTRÖM, 2011), and the equation (5.7) represents a link between the GF and GMRF, where
{ωj} has a Markovian structure (LINDGREN; RUE; LINDSTRÖM, 2011). By replacing the
GF by the GMRF approximation, we obtain an approximation of the LGCP likelihood, which
consists of (n+ nt)T independent Poisson random variables, where n is the number of vertices
and nt is the number of observed fires (SIMPSON et al., 2016). Under the GMRF structure,
it is possible to estimate the model within the Bayesian framework using the Integrated Nested
Laplace Approximation (INLA) framework, which allows the use of deterministic approximations
to perform the estimation of latent parameters and components in models with an additive
structure. More detailed description of the INLA method can be found in Rue, Martino and
Chopin (2009). In all analyzes we use the standard reference prior structure described in Martino
and Rue (2020). Details can be obtained from the authors.

5.5.2 Data details

The daily data of fire spots used in the paper is provided by the Programa Queimadas3,
from Brazilian National Institute of Spatial Research (Instituto Nacional de Pesquisa Espacial-
INPE), which uses two different sensors as the main source of information, namely Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra products, and the Advanced
Very High Resolution Radiometer (AVHRR) from National Oceanic and Atmospheric Admi-
nistration (NOAA). In particular, the NOAA/AVHRR was used as reference satellite for INPE
from 1998 to 2002, when it was replaced by MODIS sensor, causing inhomogeneities in the
observed time series, which can be considered an important limitation of our analysis.

However, despite the discontinuity in the observed data, it is worth noting that even indica-
ting a fraction of the actual number of fires and forest fires, for using the same detection method
and collecting images at close times over the years, the results obtained from both reference
3 Data and other information available at http://queimadas.dgi.inpe.br/queimadas/portal
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satellite allows us to analyze the spatial and temporal trends of the fires. In this sense, to reach
our goal, we use the data from the MODIS/NASA and AVHRR/NOAA satellites, with the data
validation carried out by the Queimadas system. The data set provides geographical informa-
tion, and time and period of fire spots within Brazilian Pantanal, which is located within the
states of Mato Grosso do Sul and Mato Grosso, in the southwest region. In addition, in order
to provide a clearer interpretation of the results obtained, we used a quarterly aggregation of
the daily data, which is the sum of the observed fire events in each quarter of the year.

We have plotted the number of quarterly observed of fire spots (see Figure 5.5), from 1998 to
2020, where it is possible to see the unprecedented fire outbreak in 2020. To emphasize the large
number of fire outbreaks detected in 2020, in Figure 5.6 we show the observed fire events (black
dots) in the Brazilian Pantanal in the third quarters of 2018 and 2020 (on the top of the figure).
Also, in the bottom of Figure 5.6, it is possible to observe the non-parametric kernel density
estimate of the intensity function (BADDELEY; RUBAK; TURNER, 2015) of the occurrence
process. We choose to compare the fire outbreak in 2020 with 2018 since the latter presented fire
patterns close to the average in comparison to the past 20 years. Based on Figure 5.6, we can see
a notable increase in the intensity and spatial distribution of fire outbreaks in 2020 compared
to 2018.
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Figure 5.5 – Observed fire events by quarter in Brazilian Pantanal

Regarding the covariates, it is worth discussing about a meaningful limitation related to
the selected covariates in our analysis. Since the proposed model performs a spatio-temporal
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Figure 5.6 – Observed fires (top left and top right) and nonparametric intensity estimation
(bottom left and botom right) - 2018Q3 (top and bottom left) and 2020Q3 (top
and bottom right)

analysis for the occurrences of a process observed continuously in space, the covariates must
to be available at every location of the interest region within the observation window. Due
to this methodological constraint, the number of available covariates are limited, and we were
able to include limited information in climatic patterns and land use. In particular, regarding
the rainfall and maximum temperature data, we calculated the spatially continuous projections
from weather station data, following the Laurini (2017) methodology, as discussed below.

The rainfall data were constructed using the time series of the monitoring stations provi-
ded by Brazilian National Agency of Waters (Agência Nacional de Águas-ANA) and National
Institute of Meteorology (Instituto Nacional de Metereologia - INMET), whereas the maximum
temperature data were obtained based on the information provided by the INMET. For both
data, we calculated the spatially continuous projections for each period in the sample, following
the methodology proposed by Laurini (2017). By adopting this methodology, we were able to
avoid some common problems faced for the analysis of the data sources used in climatology, na-
mely, the dimensionality of the spatio-temporal dataset, the importance of the spatial features,
and missing data. In particular, by combining a structure of trend-cycle decomposition with
the continuous spatial formulation, the approach allows us not only to estimate the patterns
throughout the spatial continuum and how it propagates throughout the area of interest, but
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also provides a way to solve the missing data problems by adding the latent components with the
prediction obtained for the spatial effect in the geographic position of the weather station using
the continuous projection of the spatial effect, without the necessity of additional treatments for
missing data or interpolation methods. In summary, this methodology allows us to control for
possible changes in weather patterns, and is also based on possible changes in trends, seasonality
and cycles in climate data.

In addition, we included, as categorical variables, yearly information on LULC provided by
the Landsat-based MapBiomas project (Collection 5). The database includes annual historical
maps of each biome, which contains a hierarchical system of classification of land use/land cover
following the Food and Agriculture Organization (FAO) and Instituto Brasileiro de Geografia
e Estatística (IBGE) classification systems. The first level contains six classes, namely, forest,
non-forest formation, farming, non vegetated area, water, and non-observed. Forest constitutes
natural forest and forest plantation, whereas the non forest natural formation includes wetland,
grassland, salt flat, rocky outcrop, and other non forest formations. The farming class includes
pasture and agricultural land and mosaic. The non vegetated area are defined by beach and
dune, urban area, mining e and other non vegetated areas. Finally, water class includes river,
lake, ocean, and aquaculture. The accuracy statistics varies according to the level and biome.
In particular, considering the Pantanal biome, the first level has 81.6% of overall accuracy with
12.9% of allocation mismatch and 5.6% of quantity mismatch. For the second and third levels,
the overall accuracy is 73.5%, whereas the allocation and quantity mismatch are 17.5% and
9%, respectively. The methodology overview of the MapBiomas project is available at <https:
//mapbiomas.org/>, whereas the accuracy assessment for the Brazilian biomes is available in
the MapBiomas accuracy statistics web page4. A detailed description of the MapBiomas land
use/land cover classification can be found in Table 5.1, while Figure 5.7 shows a map with the
Mapbiomas classifications for the year 2019.

5.5.3 Additional results of the spatial-temporal model

As discussed in the Data and Methods section, the estimation of the spatio-temporal model
is based on the construction of a mesh, which represents a discretization of the continuous space
for the evaluation of the likelihood function of the Log Gaussian Cox Process. In this work, we
use a mesh with 804 triangles, as shown in Figure 5.8. Through the INLA method, we estimated
the posterior distribution of the parameters described in the Equation (5.1). Thus, the estimated
parameters (see Table ??) are the precision of the trend component (1/ηµ), seasonal component
(1/ηs), and cycle component (1/ηc), the parameters of the second-order autoregressive process
of the cycle (PACF1 and PACF2), the parameters associated with the set of observed covariates
(β), the parameters of spatial covariance (log τ and log κ), and the parameter of spatial time
dependence (Φ).

The estimated cycle parameters indicates low persistence in this component, with low values
of partial autocorrelations, but with a relevant variance over time, as shown in Figure 5.1. The
parameters Log τ , Log κ and Group Φ are linked to the representation of the Matérn spatial
covariance matrix used in the representation of the model, and which are also better interpreted
4 <https://mapbiomas.org/en/estatistica-de-acuracia?cama_set_language=en>

https://mapbiomas.org/
https://mapbiomas.org/
https://mapbiomas.org/en/estatistica-de-acuracia?cama_set_language=en
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Figure 5.7 – Land use/Land cover in the Brazilian Pantanal from MapBiomas - 2019

by the posterior distribution of the spatial random effect (Figure 5.2) . It is important to note
that the temporal persistence of the spatial effect is relatively low, with Group Φ parameter
estimated with a posterior mean value of 0.327.

5.5.4 Counterfactual inference

From the decomposition of the intensity function, we propose to use the Brodersen et al.
(2015) approach to obtain the posterior predictive expectation of the counterfactual, which is
estimated on the basis of a diffusion-regression state-space model that predicts the counterfactual
response in a synthetic control that would have occurred without any intervention. The synthetic
control method (ABADIE; GARDEAZABAL, 2003; ABADIE; DIAMOND; HAINMUELLER,
2010) is a systematic way to construct the counterfactual. By constructing a synthetic control,
Brodersen et al. (2015) proposes to combine three sources of information, using a state-space
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Table 5.1 – MapBiomas Land Use/land cover Classification

LULC ID
1. Forest 1
1.1. Natural Forest 2
1.1.1. Forest Formation 3
1.1.2. Savanna Formation 4
1.1.3. Mangrove 5
1.2. Forest Plantation 9
2. Non Forest Natural Formation 10
2.1. Wetland 11
2.2. Grassland Formation 12
2.3. Salt Flat 32
2.4. Rocky Outcrop 29
2.5. Other non Forest Formation 13
3. Farming 14
3.1. Pasture 15
3.2. Agriculture 18
3.2.1. Temporary Crop 19
3.2.1.1. Soybean 39
3.2.1.2. Sugar cane 20
3.2.1.3. Other Temporary Crops 41
3.2.2. Perennial Crop 36
3.3. Mosaic of Agriculture and Pasture 21
4. Non vegetated area 22
4.1. Beach and Dune 23
4.2. Urban Infrastructure 24
4.3. Mining 30
4.4. Other non Vegetated Areas 25
5. Water 26
5.1. River, Lake and Ocean 33
5.2. Aquaculture 31
6. Non Observed 27

time-series model: (1) the time series behavior of the response itself, prior to the intervention; (2)
the behavior of other time series that were predictive of the target series prior to the intervention;
(3) prior knowledge about the model parameters.

In the structure proposed in Brodersen et al. (2015), the permanent causal effect is given
by the difference of the values adjusted by the model using all available information, with the
values predicted by the model using the trend component forecast using the data before the
intervention. Thus, the causal effect is given by the difference in the forecast using the trend
observed using the entire sample, with the model using a trend forecast with the information
before the intervention occurred. In this form, the model captures the causal effect as the
permanent change given by the intervention, controlling for all other transient and covariate
effects included in the model. Our generalization is based on the generalization of this model of
time series to a spatio-temporal context, given by the inclusion of random spatial effects.

Through Bayesian approach, the inference procedure start by specifying a prior distribution,
p(θ), on the model parameters as well as a distribution on the initial state values, p(δ0|θ).
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Figure 5.8 – Spatial mesh of the Brazilian Pantanal

According to Brodersen et al. (2015), the posterior inference can be broken down into three
pieces: simulate draws of the model parameters θ and the state vector δ given the observed
data µ1:n, using MCMC; from posterior simulations, simulate from the posterior predictive
distribution p(µ̃n+1:m|µ1:n) over the counterfactual time series µ̃n+1:m given the observed pre-
intervention µ1:n; use the posterior predictive samples to compute the posterior distribution of
the (pointwise) impact, which is defined as

ϕ
(τ)
t := µt − µ̃

(τ)
t (5.8)

for each draw τ and each time point t = n+ 1, . . . ,m. From the same samples it is possible to
obtain posterior distribution of cumulative impact, estimated by

t∑
t′=n+1

ϕ
(τ)
t′ ∀t = n+ 1, . . . ,m. (5.9)

5.5.5 Non-separable spatio-temporal model

The model proposed in this paper assumes a separable structure between the spatial and
temporal effects, assuming a Kronecker product between the spatial and temporal covariances to
obtain the spatio-temporal representation, which is advantageous due to its flexibility. Despite
the computational cost, by assuming a non-separable structure for time and space, it is possible
to analyse a more complex dependency structure. In order to provide an additional robustness
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Table 5.2 – Estimated Parameters

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Rainfall -0.00 0.000 -0.003 -0.002 -0.001 -0.002
Forest formation 0.093 0.036 0.023 0.093 0.163 0.093
Savanna formation 0.083 0.038 0.009 0.083 0.156 0.083
Grassland formation 0.173 0.034 0.106 0.173 0.239 0.173

Random effects
Precision for trend 5.341 0.120 5.099 5.339 5.592 5.336
Precision for seasonality 13385.045 396.383 12693.202 13365.335 14273.920 13247.130
Precision for cycle 1.346 0.015 1.318 1.345 1.377 1.342
PACF1 for cycle 0.143 0.013 0.120 0.142 0.170 0.139
PACF2 for cycle -0.101 0.012 -0.128 -0.100 -0.080 -0.095
Log τ -4.029 0.007 -4.045 -4.029 -4.015 -4.028
Log κ 2.166 0.008 2.151 2.165 2.184 2.162
Group Φ 0.355 0.005 0.345 0.355 0.364 0.355

analysis, we estimated a non-separable version of the proposed model presented in the previous
section, following Bakka et al. (2020), which provides a non-separable representation for the
spatio-temporal random effects using the generalization of the Matérn covariance structure. In
particular, in this representation the structure of the spatio-temporal random effects is given by
a diffusion-based extension of the Matérn field, i.e., the random field u(s, t) can be written as

(
γt

d

dt
+ Lαs/2

)αt

u(s, t) = EQ(s, t) (5.10)

with L = γ2
s −∆, EQ(s, t) is Gaussian noise that is white in time but correlated, with precision

operator Q(γs, γϵ, αϵ) = γ2
ϵL

αϵ , with (γt, γs, γe) being a fixed scaling parameters, and (αt, αs, αe)
parameters in the model.

Defining α = αe+αs(αt−1/2), and assuming that αt, αs, αe satisfy α > 1 the solution u(s, t)

has marginal spatial covariance function given by:

C(u(t, s1), u(t, s2)) =
σ2

Γ(νs)2ν−1 (γs∥s1 − s2∥)νsKνs(γs∥s1 − s2∥), (5.11)

where νs = α− 1 and

σ2 =
Γ(αt − 1/2)Γ(α− 1)

Γ(αt)Γ(α)8π3/2γ2
eγtγ

2(α−1)
s

. (5.12)

In order to carry on our analysis, we estimate a non-separable version of our LGCP model,
replacing the random field structure, ξ(s, t), of the model defined in 5.1, with the random field
u(s, t) previously defined. In this case, the representation of the model 5.1 can be written now
as
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Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t))

log λ(s, t) = µt + st + ct + z(s, t)β + u(s, t)

µt = µt−1 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

(5.13)

We also assume the parametrization of the parameters defining σ, rs, rt as:

c1 =
Γ(αt − 1/2)Γ(α− 1)

Γ(αt)Γ(α)4
√
π

σ = γ−1
ϵ c

1/2
1 γ

−1/2
t γ−(α−1)

s

rs = γ−1
s

√
8νs

rt = γt
√

8(αt − 1/2)γ−αs
s , (5.14)

and the model is estimated using as parameters log σ, log rs, log rt. Due to the higher computa-
tional cost and memory limitations in representing the model with the non-separable structure,
we estimate the model with an alternative mesh with a lower resolution than the separable mo-
del, shown in Figure 5.9, with the same prior previously defined for the estimation of the model
5.1, and also adopting the INLA approximations to perform the Bayesian inference procedures.
The estimated posterior distribution of parameters in the non-separable spatio-temporal LGCP
model is presented in the Table 5.3, the estimated latent components of trend, seasonal and
cycle components in the Figure 5.10 and the non-separable spatio-temporal random effect is
presented in the Figures 5.11.

Figure 5.9 – Spatial mesh of the Brazilian Pantanal - Non-separable spatio-temporal model

The results of the estimated non-separable spatio-temporal model indicate similar effects
for the covariates in relation to those obtained in the model with the separable spatial random
effects. Additionally, this model was able to capture a wider range of values for the random
effects when compared to those estimated by the separable model, as can be seen in Figure
5.11. Regarding the estimated components, in Figure 5.10, it is possible to observe that the
non-separable model was able to capture an increase in the trend component during 2019 and
2020, when the historical fires occurred in the Pantanal biome. Despite that, the estimated cycle
and seasonal components presented similar patterns to those obtained by the model with the
separable structure.
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Table 5.3 – Estimated Parameters - Non-separable spatio-temporal model

Mean SD 0.025quant 0.5quant 0.975quant Mode
Fixed effects
Rainfall -0.006 0.000 -0.007 -0.006 -0.006 -0.006
Forest formation 0.417 0.035 0.348 0.417 0.485 0.417
Savanna formation 0.606 0.042 0.524 0.606 0.689 0.606
Grassland formation 0.594 0.032 0.531 0.594 0.657 0.594

Random effects
Precision for trend 3.999 0.125 3.728 4.002 4.225 4.037
Precision for seasonality 8535.374 408.976 7826.038 8512.086 9459.335 8390.847
Precision for cycle 0.672 0.042 0.608 0.668 0.771 0.647
PACF1 for cycle 0.062 0.018 0.028 0.061 0.100 0.058
PACF2 for cycle -0.719 0.009 -0.736 -0.719 -0.698 -0.721
log σ 1.237 0.013 1.211 1.237 1.263 1.237
log rs -0.922 0.006 -0.933 -0.922 -0.910 -0.922
log rt 0.507 0.004 0.498 0.507 0.515 0.508
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Figure 5.10 – Trend, Seasonal and Cycle decomposition of fire occurrences in the Brazilian
Pantanal - Non-separable spatio-temporal model
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Figure 5.11 – Spatial Random Effects - Non-separable spatio-temporal model
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6 URBAN CLIMATE CHANGE: A STATISTICAL ANALYSIS FOR SÃO
PAULO

Fernanda Valente Márcio Laurini

ABSTRACT

In this paper we propose novel statistical decompositions of climatic time series into long-
term trend, seasonal and cycle components to analyze the existence of changes in rainfall and
temperature patterns. The main contribution is the generalization of these decompositions to
extreme values, probability of rain and the duration of dry days. We apply these methods for
the metropolitan region of São Paulo. This region is characterized by a rapid urbanization
process and a high population density, which is related to increased danger and vulnerability
to hydrometeorological hazards. We analyzed daily series of temperature and precipitation
between 1933 and 2019 from Institute of Astronomy, Geophysics and Atmospheric Sciences of
University of São Paulo (IAG-USP) and the results indicate a significant increase in the trend
component of daily temperature and in the rain patterns. In addition, the analysis for annual
temperature records and annual records of daily rainfall show support for the hypothesis of
permanent changes in observed climatic patterns. On the other hand, there is no significant
evidence of changes in the pattern of duration of dry days nor changes in the trend component
for the annual maximum of dry days, indicating the stability of this component.

Keywords: Climate change; extremes; metropolitan area of São Paulo ; trend-cycle decompo-
sition

VALENTE, Fernanda; LAURINI, Márcio. Urban climate change: A statistical analysis for São
Paulo. Urban Climate, v. 41, p. 101077, 2022.

6.1 Introduction

The climate change patterns, induced by human processes or natural activities, have led to
changes in the frequency and the intensity of extreme weather and climate events (ALLEN et
al., 2014), which have significant effects in the city dynamics and their citizen’s life. The effects
of climate-related disasters are often intensified in cities due to cultural, demographic and econo-
mic characteristics of urban residents, city governments, built environment, and human-induced
stresses, such as overexploitation of resources and environmental degradation (GENCER; FO-
LORUNCHO; LINKIN, 2018).

One way to verify the existence of changes in climate patterns is through the estimation of
permanent and transitory components (BLOOMFIELD, 1992; VELARDE; MIGON; PEREIRA,
2004; PROIETTI; HILLEBRAND, 2017; LAURINI, 2019). The main idea is to decompose the
temporal variability observed through statistical tools for extraction of trend, seasonality and
cycle components, which allows to identify possible climate change, since it allows the estimation
of variations in the long term behavior of time series. A survey on the use of trend analysis in
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climate research can be found in Mudelsee (2019), the use of stochastic trends in Kaufmann,
Kauppi and Stock (2010), and general methods of statistical analysis in climate research in
Storch and Zwiers (2002).

In the paper herein, we propose novel decompositions of climatic time series into trend,
seasonal and cycle components to analyze the existence of changes in rainfall and temperature
patterns in the Metropolitan Area of São Paulo (MASP). The main method contribution of
this article is to use the decomposition in a more general context than the traditionally used
form based on a Gaussian likelihood. The decomposition is applied to extreme value processes,
modeling annual maximum rainfall and temperature, Bernoulli-Gamma composite processes
for the occurrence of rain and the amount of rain observed, and in a dynamic model for the
duration of dry days. In addition, it is important to note that our proposed method contributes
to the literature by extending the trend-cycle decomposition for process in climate modeling
framework.

In our approach the persistent trend component is modeled as first and second order ran-
dom walk whereas the seasonality process is modeled by a stochastic process with restriction
that the effects must sum to zero, and the cyclic component is represented by a second-order
autoregressive process with possible complex roots, which allows to capture the cyclic patterns.
The proposed formulation allows to estimate permanent changes in the rainfall and temperature
over time and also to capture the impact of non-permanent shocks on temporal patterns. In
addition, this formulation also fits in the Bayesian framework which allows us to perform com-
putationally efficient inference procedures through Integrated Nested Laplace Approximations
(INLA) algorithm (RUE; MARTINO; CHOPIN, 2009).

We analyze daily series of temperature and precipitation between 1933 and 2019 from mete-
orological station located in the Institute of Astronomy, Geophysics and Atmospheric Sciences
of University of São Paulo (IAG-USP). In Brazil, natural disasters such as floods, which are
associated with extreme events like storms and heavy rainfall, have become recurrent in some
regions, mainly in large metropolis, where the major problem is the occupation of inappropriate
and risky areas such as slopes and banks of watercourses, which are subjected to inundation,
flooding and landslides (JACOBI et al., 2013). Between 1991 and 2012, there were almost 39,000
natural disasters in Brazil, in which flash foods were responsible for 58% of the total fatalities
and mudslide for 16%, according to The National Atlas of Natural Disasters of Brazil. Since
2010, natural disasters in Brazil have caused 31 floods and 2 intense mudslides. These events,
together, were responsible for 1559 deaths and affected almost 3 million people, with financial
damage in the order of $3,365,500 all over the country (MARENGO et al., 2020).

The intensity and the probability of extreme weather and climate event can be partly due
to urbanization process, as discussed by Lima, Lombardo and Magaña (2018), changes in land
use due to the process of urbanization growth over years may result changes in the temperature
and precipitation. Indeed, there is evidence that since 1970s, both precipitation and tempe-
rature data show a tendency to increase the frequency of days with extreme values (LIMA;
LOMBARDO; MAGAÑA, 2018). The increased growth in the urban population has generated
excessive demand for housing and a deficit in the supply of adequate shelter (JACOBI et al.,
2013). This scenario has led many people in Brazilian cities live in risky and inappropriate areas.
Once the urbanization process moves to more peripheral areas, the situation becomes worse due
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to the weaknesses of the state regarding land use and planning. In Brazil, according to the Ins-
tituto Brasileiro de Geografia e Estatística (IBGE), almost 85% of the population lives in urban
areas. The MASP, which encompasses 39 municipalities in the state of São Paulo with intense
process of conurbation, represents the largest urban concentration in South America, and one
of the 10th largest in the world (MARENGO et al., 2020). According to IBGE, the MASP has
more than 21 million of inhabitants, in which almost 60% live in the São Paulo city, which is
responsible for 12% of the national Brazilian GDP. However, in some cities in the MASP it is
possible to find one of the highest levels of poverty and inequality (MARENGO et al., 2020).

In MASP, floods and droughts are the most critical climate-related issues. In the variability
of rainfall across MASP, it can be observed the mean annual value varying between 1300mm
and 2500mm. Areas of maximum values (2400mm) are observed along the southern side of the
MASP which can be related to the southeastern slope of the Serra do Mar mountain range.
Also, the Serra do Mar, southeastern region of MASP, concentrate areas with high numbers of
wet days (more than 150 days) whereas in the rest of the domain are observed less than 120 wet
days (OBREGÓN; MARENGO; NOBRE, 2014).

Previous studies have identified a positive trend in both, annual and seasonal rainfall in
MASP (OBREGÓN; MARENGO; NOBRE, 2014; DIAS et al., 2013; MARENGO; VALVERDE;
OBREGON, 2013), which are related with local factors and climatic indices. At seasonal scale,
the rainfall variability over the MASP may be modulated by the Southern Annular Mode (SAM),
Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO), which alter the
normal progression of the seasonal rainfall cycle (MARENGO et al., 2020). In the interannual
and decadal scales, the frequency and intensity of precipitation in the south and southeast of
Brazil can be influenced by the surface temperatures of the Pacific Ocean (LIMA; LOMBARDO;
MAGAÑA, 2018).

Regarding the variation in the total amount of rainy-season precipitation, it can be analyzed
based on the number of wet days or heavy precipitations, or both (SONG; ACHBERGER; LIN-
DERHOLM, 2011). Recent works have identified an increase in both rainy days and extreme
daily precipitation (LIMA; LOMBARDO; MAGAÑA, 2018; MARENGO; VALVERDE; OBRE-
GON, 2013; NUNES et al., 2019; ZILLI et al., 2017) and decreases in light rain (MARENGO;
VALVERDE; OBREGON, 2013; ZILLI et al., 2017), probably due to natural climate variabi-
lity associated with some signals of the urbanization effect. Plus, these studies have also noted
that the number of consecutive dry days has increased, indicating that intense precipitation is
becoming concentrated on a few days with longer dry periods occurring in between.

However, as discussed by Marengo et al. (2020), from a statistical perspective, it is chal-
lenging to deal with databases as large as climate databases, and despite the great number of
studies, there is a lot of work to do. In this sense, our model provides a computationally feasible
way to improve our understanding of possible changes in transient and long-term patterns of
climate-related issues. In particular, from IAG station database, our proposed model allows us
to analyze the patterns of the rainfall and temperature in the MASP, which is a region of unique
socioeconomic complexity. Additionally, it is worth noting that our proposed model provides a
way to analyze the presence of trends in climatic time series, avoiding the common issues of the
Mann-Kendall non-parametric test, which is the most traditional way of testing the existence
of trends in this type of time series.
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This article is organized as follow. Section 2 contains a description of the statistical approach.
Section 3 presents the data. Section 4 shows the results with discussion. Section 5 concludes.

6.2 Material and Methods

6.2.1 Trend-Cycle Decomposition in Climatic Models

This section briefly describes the trend-cycle decomposition proposed in this work, whereas
the Generalized Extreme Value (GEV) distribution and Survival Models are described in the
Appendix of the paper. We can represent a climatic model by the hierarchical representation
using the follow dynamic formulation:

yt = µt + st + ct + ϵt

µt = µt−1 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc (6.1)

where yt represents the observation y in period t, µt is the long term trend, st represents the
seasonal component, ct is a cycle component represented by a second-order autoregressive process
with complex roots and, ϵt are innovations with ϵt ∼ N(0, σ2

ϵ ). One advantage of this formulation
is it fits naturally within the Bayesian hierarchical modeling framework and are latent Gaussian
models, therefore, it may be fitted using the Integrated Nested Laplace Approximations (INLA)
(RUE; MARTINO; CHOPIN, 2009). The prior structure used in the estimation is shown in the
Appendix.

The most traditional way of analyzing for the presence of trends in climatic time series is
the Mann-Kendall non-parametric test (MANN, 1945; KENDALL; STUART, 1967). This test
is based on the distribution of the sample ranks, and has the advantage of not explicitly de-
pending on the distribution of the data. However, this test has some important limitations in
detecting trends. The first is in the formulation of the null and alternative hypothesis. The null
hypothesis is that the data is an independent and identically distributed sequence, against an
alternative hypothesis of a monotonous trend. Assuming the presence of a monotonous trend in
the data under alternative hypothesis may be problematic since is not suitable if the trend has
non-linear patterns, a result predicted by several climatic models. Second, this formulation can
be problematic since the series under analysis may not have the presence of a trend, thought
of as a permanent component of the series, rather than some form of stochastic process with
persistence, but still stationary. In our formulation this dependency would be captured by the
cycle component. This cycle can capture transient climatic effects, which do not permanently
alter the series’ patterns. In the Mann-Kendall test, the presence of this structure would be
evidence against the null hypothesis of independence, even if the process is not a trend towards
a permanent component of the series. Some modifications have been proposed to modify the
Mann-Kendall test for robustness to contamination in this way, but with some important draw-
backs (BLAIN, 2013).

The decomposition proposed in this work circumvents these limitations existing in the Mann-
Kendall test, since it allows to directly structure the trend component and the possible com-
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ponents of stationary persistence, such as the cycle and seasonality components, and directly
analyze the changes in each component. The model is not limited to monotonous trends, and
can be adapted to different data distributions. For example, in the rainfall data we use a Gamma
distribution, which directly incorporates censorship in non-positive values, and in the analysis
of the maximum temperatures and rain, the distribution used is a Generalized Extreme Value
(GEV) distribution.

The proposed methodology is based on a decomposition into components of trend, cycle
and seasonality for the processes of interest, and thus it is at the same time quite generic,
as it can be applied to general processes that present persistent and transient components,
and as it is fundamentally a time-varying parameter model has high flexibility and a good fit
for general time series, as discussed in Harvey and Shepard (1993). In the form used in our
work the models can be placed in the general context of additive processes with random effects
structures based on Gaussian Markov Random Fields representations, and as discussed in Rue
and Held (2005b) and Rue, Martino and Chopin (2009) this representation allows to model a
wide range of latent processes, including time series for Gaussian and non-Gaussian variables,
which includes all specifications used in our article, with model for binary variables (rainfall
occurrence), positive variables (amount of observed rainfall) , duration (number of days without
rain) and extreme values (temperature and rain records). Good fit properties and flexibility of
the models based on this representation are discussed in Rue, Martino and Chopin (2009) and
Bakka et al. (2018). In the particular case of the structure used in our article, the identification
of trend, seasonality and cycle components fundamentally depends on two assumptions - the
first is that these components enter into the latent process in an additive way, and the second
is that these components are orthogonal, that is, there are no relevant interactions between
the components included in the model. To force this structure, we impose some additional
restrictions on the model parameterization, imposing that the cycle and seasonality components
have zero sum, the trend component variation is not restricted allowing to capture possible non-
stationarities in the long-term component, and we assume that the components are independent.
These restrictions allow the statistical identification of the decomposition used in our work,
and thus respecting the necessary restrictions for estimating unobserved component models, as
discussed in Harvey and Shepard (1993)

6.2.2 Data

We used in this work the data from the IAG-USP weather station, which contains observati-
ons since 1933, being the longest series of observations available for the São Paulo metropolitan
region, and widely used in other relevant works (e.g., Marengo et al. (2020), Dias et al. (2013),
Obregón, Marengo and Nobre (2014)). We used daily mean temperature and rainfall data from
01/01/1933 to 12/31/2019, corresponding to 31,776 observations. The temperature corresponds
to the daily mean temperature whereas the rainfall data is based on the daily total amount of
rainfall. Although there are another rainfall series available for MASP (e.g., data from Mirante
de Santana station) we decided to use only the data from the IAG-USP since it is the longest
time series available for MASP.

Figure 6.1 shows the temperature and rainfall series analyzed. It is possible to observe in the
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temperature series a gradual pattern of increase over time. When observing the series of daily
rainfall, we have evidence of an increase in the observed variability of rain, especially in the
greater number of extreme events observed, consistent with the results reported in the literature
(e.g., Marengo et al. (2020)). Figures showing seasonal and annual patterns of temperature and
rain can be seen in the Figures 6.11 and 6.12 in the Appendix.

(a) Daily temperature (b) Daily rainfall

Figure 6.1 – Average daily temperature and total daily rainfall - IAG Station 1933-2019. Tem-
perature measured in degrees Celsius and rainfall in millimeters.

Before moving to our findings, it is worth spending a few words on what we consider the
main limitation of our work. The IAG station database is one of the longest climatic time series
in Brazil and, despite the fact that it is great to analyze climatic issues, there is a possibility that
this dataset may have been affected by discontinuities and contaminated by some artifacts over
time. Regarding the equipment, there was a replacement of instruments that has affected the
observations in 1958, with no measurable consequences. Additionally, as discussed by Sugahara
et al. (2012), the maximum temperature quantities also present discontinuities around 1990,
which may have been caused by urbanization since the observed warming trend in the IAG
station was significantly greater than that corresponding to regional climate. On the other
hand, according to Sugahara et al. (2012), the precipitation time series does not exhibit any
inhomogeneity. Beyond the discontinuities related to the equipment, it is important to highlight
that were changes in the time of the day that the samples were collected, between 1933 and
1950. From 1950 until present, the samples are collected every day hourly between 7am and
12pm1. Despite the significant limitation, we believe that the problem addressed in our paper is
important and timely, and the proposed method can give some new insights to climatic analysis,
significantly contributing to the literature of statistical analysis of climate-related issues. In
particular, the obtained results provide important evidence about the changes in the pattern of
the temperature and rainfall in the MASP.
1 More details can be found at <http://www.estacao.iag.usp.br/instrumentos.php>

http://www.estacao.iag.usp.br/instrumentos.php
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6.3 Results

In this section we describe the application of the methods defined in the Section 6.2.1 based
on the data set presented in the Section 6.2.2, which is estimated within the INLA framework.
We present herein the obtained results which, in summary, indicate a significant increase in the
trend component of daily temperature. In terms of seasonality, the results indicate an increase
in the range of seasonal variation of temperature from 1980 onwards, more than doubling the
seasonal variability in relation to the beginning of the sample whereas the estimated cyclical
component seems to be more stable over time. The analysis for annual temperature records
support for the hypothesis of permanent changes in observed climatic patterns, indicating an
increase of about 2°C in the trend between the beginning and the end of the sample.

In addition, the results seem to indicate relevant changes in the rain patterns observed in
the analyzed sample, both in the probability of occurrence of rains and in the amount of daily
rain observed. There is a notable change in patterns regarding the probability of rain, although
they are not as straightforward in interpretation as the changes observed in the temperature
series. The seasonal pattern with the probability of rain also undergoes important changes, with
a reduction in the seasonal variance between 1968 and 1984 and after an increase in the variance
of the seasonal effect, also indicating possible changes in weather patterns. The analysis of
annual records of daily rainfall shows a pattern of growth over time, consistent with the increase
in observed maximum rainfall in the analyzed sample, and thus suggesting a process of climate
change consistent with the occurrence of more intense rainfall. On the other hand, from another
perspective, there is no ample evidence of changes in the pattern of duration of dry days. Plus,
the results indicate that there is no relevant pattern of change in the trend component for the
annual maximum of dry days, indicating the stability of this component.

It is worth noting that we believe that our results are quite relevant and helpful in order to
understand the dynamics of some climatic variables in the MASP since we provide important
analysis of different perspectives about the possible changes in the pattern of rainfall and tem-
perature, considering not only short-term variations, but also the permanent changes. However,
it is important to highlight that it is necessary to go further in order to make inference about
the relationship between the changes in the patterns of the rainfall and temperature and the
urbanization process.

6.3.1 Daily Temperature

We started the analysis with an application of the model described in Section 6.2.1 for daily
temperature data. We used a structure of mixed frequencies to perform statistical modeling of
the process. The data are observed on a daily frequency, but we formulated the components
of trend, seasonality and cycle on a monthly frequency. This formulation is important due
to the separation between short-term effects, related to the daily variation of weather, to the
patterns of climate change that is the main interest of our work. The use of a monthly fre-
quency allows to recover the patterns of climate change, without the contamination of weather
effects. Additionally, this structure allows a better visualization of long-term patterns of climate
change, without the noise introduced by possible daily variations related to weather effects. This
structure assumes a Gaussian likelihood for temperature observations.
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As they are easier to interpret, we focus our attention on the graphs of the estimated compo-
nents, but tables with the posterior distribution of the estimated parameters are available in the
Appendix of the article. The results for the daily average temperature data are shown in Table
6.1 (see Appendix), with the estimated parameters, and in Figure 6.2, which shows the trend,
cycle and seasonality components estimated by the model, and the associated 95% credibility
interval of the estimation. The precision parameter related to the Gaussian component captures
the precision of the unstructured component of our model, which can be thought as all the
variability not explained by the trend, cycle, and seasonal components. Thus, it can be inter-
preted as the daily variation of the temperature not explained by the systematic components of
climate variation, and thus capturing the short-term weather effects. The estimated accuracy is
relatively low, showing that there is an important variability related to daily weather variations.

Parameters and components associated with trend, cycle and seasonality show a behavior
consistent with the existence of long-term changes in weather patterns, especially for the com-
ponents of trend and seasonality. We can see in subfigure (a) of Figure 6.2 that the trend
component shows a pattern of statistically significant growth over time. In particular, the re-
sults related to the estimated trend component present an increase of more than 2°C in 2019,
when compared with the beginning of the observed sample. While in 1935 the daily mean tem-
perature was slightly above 17.5°C, in 2019 the same measure was almost 20°C. This pattern
can be associated with global patterns of climate change, but also more directly with the process
of population growth in the municipality of São Paulo. The Figure 6.13 in the Appendix shows
the number of inhabitants of the city of São Paulo as reported by the IBGE population census.
We can observe a strong growth pattern, which can be related to the movement of urbanization
and rural-urban migration observed in the period under analysis. This movement led to a major
change in the geography of the metropolitan region, impacting the observed climatic patterns, as
discussed by Lima, Lombardo and Magaña (2018). The average annual temperature in the inner
city is higher than in the surrounding, due to Urban Heat Island (UHI) Freitas et al. (2007).
Under UHI condition2, the relative heating of the MASP in comparison with surroundings can
promote relatively warm air above the urban center and colder convergent air of non-urbanized
areas (DRUMOND; AMBRIZZI, 2005).

Regarding the urban land cover, it is important noting that the MASP is characterized by
a strong urbanization with a heterogeneous urban structure caused mainly by the rapid growth
without proper planning, which can be observed through the contrast of high-rise office towers
side by side the poor settlements. Most of the vegetated areas are concentrated in the wealthier
neighborhoods while the peripheral areas lack of vegetation. Additionally, the denser vegetation
areas, which mitigate the effects of the urban climate, are mainly concentrated outside of urban
spot (LIMA; LOMBARDO; MAGAÑA, 2018). The urban area of the MASP is located in

2 The UHI is based on the definition used in other works (e.g., Memon, Leung and Liu (2009)) given by the
differences in the mean hourly temperature between urban/suburban areas and non-urban/vegetated areas. A
general characterization of the UHI in MASP can be found in Ferreira et al. (2011) which indicates that the
UHI has a predominant daytime character with the highest intensity between 2 pm - 16 pm and a minimum
between 7 am - 8 am, and the annual variability ranged from a maximum of 2.6°C in July (4 pm) to 5.5°C
in September (3 pm), and the minimum effect of -0.26°C in June (9 am) to 0.94°C in November. However,
within the MASP there is variability in the effects of UHI depending on local effects such as urbanization,
local circulation, vegetation cover and urban breeze circulation. A more detailed discussion of the spatial and
temporal variation of the UHI in MASP can be found in Silva et al. (2017).
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a plateau, divided in the crystalline edge and the sedimentary basin. Despite the fact that
the crystalline edge suffers from erosion processes without vegetation, this region has recorded
the highest population growth in the last decades. The sedimentary basin is characterized by
low topographic differences, favoring the human occupation (LIMA; LOMBARDO; MAGAÑA,
2018). Studies assessing the effects of the urbanization on climate in the MASP have provided
evidence that urbanization of areas previously covered with natural vegetation can lead to
increase the temperature (FREITAS; DIAS, 2005; FREITAS et al., 2007). The changes in the
land use reduce the evopotranspiration and increase the heat storage process, causing the UHI
phenomenon. This process of warming in the lower part of the atmosphere has impacts on
atmospheric humidity, increasing the incidence of days with heavy rain (MARENGO et al.,
2010; MARENGO; VALVERDE; OBREGON, 2013).

The change in temperature patterns not only affected the trend, but also the seasonal pattern
of temperatures. Figure 6.2 shows the estimated seasonal patterns, where we separate the results
into four sub-periods to facilitate visualization. We can see that the model captures important
variations in seasonal temperature patterns, not only in the intra-annual pattern, but also in the
amplitude of the seasonal effect. We can observe that from 1980 onward an increase in the range
of seasonal variation of temperature, more than doubling the seasonal variability in relation to
the beginning of the sample. The estimated cyclical component seems to be more stable over
time. The cycle period, calculated from the partial correlation coefficients presented in Table 6.1
(see Appendix), was estimated at 10.77 months, consistent with medium-term climatic effects.

6.3.2 Annual Temperature Records

The results obtained in the previous section show important changes in long-term trends and
seasonal patterns in the average temperature. The estimated trend shows a significant pattern of
growth for average temperatures. But a relevant question is whether the observed temperature
extremes follow a similar pattern. To analyze this issue, we used a modified version of the
decomposition of latent components to model the annual maximum temperatures observed in
the series. Thus, we used a time series of maximum daily temperatures, and extracted the
maximum of each year. The time series resulting from this process can be seen in Figure 6.3.

Since our interest were to model the maximums of each year, we made some changes in
the model used. The main one is the use of a distribution of Generalized Extreme Values
for the process, as described in the Appendix. This modification allows the estimation of the
maximum limit distribution in each block (block-maxima), a common procedure adopted to
estimate extreme values (COLES et al., 2001). In our case, the distribution is characterized
by a time-varying location parameter, given by the sum of the trend and cycle components,
a precision parameter and a shape parameter. Since we used the maximum of each year, the
seasonal component was eliminated from the model.

The second change was the dependency structure imposed on the trend component. We
used a second order random walk (RW2) formulation to represent the trend process. This
modification was important to be able to identify the trend component, imposing a smoothness
structure for this component. An RW2 structure can be related to a non-parametric spline
structure for the trend, and it allows to identify in a more adequate way the persistent patterns
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of long-term change in the annual maximums. The RW2 component is given by:

∆2ut = ut − 2 ut+1 + ut+2, µt ∼ N(0, ηµ). (6.2)

Another modification was to use an AR(1) component to capture the cyclic components,
replacing the AR(2) structure previously used to capture cycles. Our estimates show that this
formulation is more suitable for modeling the dependency structure for the observed annual
maximums. The results obtained with this formulation show that the estimation with the
RW2-AR(1) structure induces independent residues, which is essential for the GEV process
estimation structure used. The parameters estimated in this formulation are shown in Table 6.2
in the Appendix.

The precision parameters for the estimated trend and cycle are shown in Figure 6.4. We can
observe that the trend component is consistent with the increase in temperature records observed
in the historical series, indicating an increase of about 2°C in the trend between the beginning
and the end of the sample which is compatible with other finding previously reported in the
literature (e.g., Drumond and Ambrizzi (2005)). The AR(1) component is also very relevant,
being very persistent, with a posterior average of the estimated coefficient equals 0.76, and a
range of values between approximately -2 and 2 degrees. The analysis for annual temperature
records again provides evidence for the hypothesis of permanent changes in observed climatic
patterns.

6.3.3 Daily Pluviometry

To carry out the analysis of rainfall patterns, we built a model that allows the simultaneous
analysis of the probability of rain occurrence and the amount of rain on a certain day, given
that rain has occurred. This model is composed of two likelihood structures, the first being a
Bernoulli for the occurrence of rain, denoted by Bt, and a Gamma likelihood for the amount of
rain in the day, denoted by Qt, conditional on the occurrence of rain in the Bernoulli process.
This structure is also known as Hurdle model. Similar to the model used in subsection 6.3.1,
we used a latent factor structure of trend, seasonality and cycle to capture possible changes in
both the probability of rain and the rainfall intensity.

In this structure, we model the probability of rain occurring using a structure that allows the
probability parameter to vary over time. This probability is given by the logistic transformation
of the sum of latent factors of trend, seasonality and cycle, whose sum corresponds to a linear
predictor for the probability of rain. The second part of the model corresponds to a distribution
for the amount of rain observed on the day, conditional on the rain on that day. In this case
the average of the Gamma distribution is given by the exponential of the linear predictor given
by the sum of the components of trend, seasonality and cycle. The exponential transformation
ensures that the predictor is always positive for the amount of rain observed each day.

The model specification used is presented in Equation 6.3. We assume that the latent
components are independent between the specifications of the probability of rainfall and the
amount of rainfall. We tested other specifications by imposing restrictions and common factors,
but the specification assuming independence showed the best adjustment results.
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Prob(Bt = 1) = pBt (1 − pBt )

pBt =
exp(υBt )

1 + exp(υBt )

υBt = µB
t + sBt + cBt

µB
t = µB

t−1 + ηBµ

sBt = sBt−1 + sBt−2 + . . .+ sBt−m + ηBs

cBt = θB1 ct−1 + θB2 ct−2 + ηBc

f(Qt|Bt = 1) =
ba

Γ(a)
ya−1 exp−bQt

E(Qt|Bt = 1) = a/b = exp(υQt )

V ar(Qt|Bt = 1) = 1/τ = a/b2

υQt = µQ
t + sQt + cQt

µQ
t = µQ

t−1 + ηQµ

sQt = sQt−1 + sQt−2 + . . .+ sQt−m + ηQs

cQt = θQ1 ct−1 + θQ2 ct−2 + ηQc . (6.3)

The results obtained with this model are presented in Table 6.3 in the Appendix, and are
separated in two blocks, the first being the parameters associated with the probability of rain,
and the second block related with the parameters referring to the amount of rain. Note that
the parameters refer to the linear predictors of the Bernoulli and Gamma models. Since the
interpretation is more evident for the estimated latent components, we will focus on analyzing
these results.

Figure 6.5 shows the estimated trend, cycle and seasonal components for the rain probability
with the seasonal component separated into sub-periods to facilitate the visualization and inter-
pretation of the results. We can observe that there is a great variation in the trend component
associated with the probability of rain, and also a cyclical component with relevant variation
over time, which has an estimated period of 11.99 months. There is a notable change in the
patterns regarding the probability of rain, although they are not as straightforward interpreted
as the changes observed in the temperature series. Moreover, we can also observe in Figure
6.5 that the seasonal pattern with the probability of rain undergoes important changes, with a
decrease in the seasonal variance between 1968 and 1984 and after an increase in the variance
of the seasonal effect, also indicating possible changes in weather patterns. In order to facili-
tate the interpretation of the results, the Figure 6.14 (see Appendix) shows the reverse logistic
transformation that allows to directly interpret the trend, cycle and seasonal components in rain
probability.

The cyclical component captures the common effect of all events in the rainfall series that
are neither associated with the long-term trend component nor with seasonal effects. In this
aspect, it can estimate in an aggregated way the impact of weather events such as ENSO on
the rainfall pattern. Years with higher values observed in the cycle component for accumulated
rainfall may be associated with periods with higher El Niño–Southern Oscillation (ENSO) in-
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tensity, as discussed for example in Grimm and Tedeschi (2009) and Ropelewski and Bell (2008),
which indicate that years with higher El Niño intensity are associated with higher volumes of
accumulated daily rainfall, and years with higher La Niña intensity or neutral years with lower
accumulated daily volumes. As pointed out by Shifts seasons associated with El Niña years pre-
sents fewer days with rainfall less than 5 mm and more days with rainfall greater than 20 mm,
compared with the seasons during La Niña years. This pattern can be observed by the positive
values in the cycle component in the years 1957-1959, 1990-1995 and 2015-2016, associated with
more intense occurrences of El Nino, with accumulated values consistent with the results ob-
tained in Ropelewski and Bell (2008). However, it is important to note that this interpretation
needs further study, as our cyclical component aggregates all sources of systematic variation not
explained by trend and seasonality components, and thus the composition of various climate
effects.

The components estimated for the amount of rain are shown in Figure 6.6, with the trend,
cycle and seasonal components. Using the posterior average of the estimated component, the
trend component indicates an amount of rain of around exp(1.92) = 5.05mm of rain at the
beginning of the sample, reaching about exp(1.96) = 7.09mm of rain at the end of the sample,
which is a very relevant change in long-term patterns. The cyclical component is also quite
relevant, with a relatively high magnitude and an estimated period of 9.667 months. The
seasonal pattern shows some variation over time, but it seems to be more stable.

In agreement with previous studies, the results provide evidence of relevant changes in the
rain patterns observed in the analyzed sample, both in the probability of occurrence and in the
amount of daily rain observed (e.g., Nobre et al. (2010), Obregón, Marengo and Nobre (2014),
Raimundo, Sansigolo and Molion (2014), Lima and Rueda (2018), Lima, Lombardo and Magaña
(2018)).

6.3.4 Annual records - Daily rainfall

Similar to the analysis of annual temperature records performed in the subsection 6.3.2, we
built a GEV model with latent trend and cycle components to analyze possible changes in the
annual rainfall maximums observed in the sample. This analysis is particularly important since
large amounts of rainfall over short periods may cause serious social and economic problems,
such as floods, landslides and other related problems (MARENGO et al., 2020).

Figure 6.7 shows the annual maximum daily rainfall observed in the analyzed sample. We
can see that there is an apparent increase in the pattern of maximum rainfall until early 1970s,
a stabilization until mid-1990s and after an apparent growth in the trend, although this is quite
irregular.

To analyze this question, we used a model that is composed of a trend process using an
RW2 structure and a temporary shock process given by an AR(1) process in a GEV likelihood
structure. Similar to the results for the maximum temperatures, this specification obtained the
best results for the specification of the observed maximum. The estimated parameters for this
model are shown in Table 6.4 (see Appendix).

The shape parameter estimated for GEV was estimated with a posterior mean of -0.155,
which corresponds to the values in the attraction domain of a Weibull distribution of extremes.
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The parameter associated with the first order autoregressive coefficient was estimated with a
posterior mean of 0.344, which implies some persistence between annual rainfall maximums, but
less than the value observed for persistence in temperature maximums.

The results for the observed trend and cycle can be seen in Figure 6.8. The model estimates
a trend that shows a pattern of growth over time, consistent with the increase in observed
maximum rainfall in the analyzed sample, and thus indicating a process of climate change
consistent with the occurrence of more intense rainfall. The AR(1) component has a very large
variability, with values between approximately -40mm and 60mm, which indicate the importance
of this component in the rainfall structure. These results are consistent with previous studies
(DIAS et al., 2013; MARENGO; VALVERDE; OBREGON, 2013; DUFEK; AMBRIZZI, 2008)
which have found evidence of an increase in total precipitation from more intense rainfall and
daily rainfall extremes.

Our results for daily pluviometry and precipitation extremes are consistent with other works
that have analyzed the relationship between urbanization and changes in precipitation patterns,
such as Huff and Changnon (1973), Zhu et al. (2019), Zhang et al. (2019) and Singh et al.
(2020), and the effects of urban heat island (e.g., Lin et al. (2011), Gu and Li (2018)) in
these processes, indicating a sustained increase in the trend component and changes in patterns
seasonal variations for the daily amount of rainfall and a relevant increase in the trend component
for observed annual rainfall extremes. In particular, our statistical methodology indicates that
the growth in the trend component is a permanent effect of the urbanization process on the
rainfall pattern.

6.3.5 Dry days duration

In the previous two sections we analyzed the probability of rainfall, the amount observed
and the maximum rainfall for the data in our sample. It is possible to analyze this issue from
another perspective, analyzing the consecutive number of days without rain, which is a measure
associated with periods of drought. This is a very relevant point, since long periods without rain
are related to problems of water availability, water supply and also to health problems related
to low humidity.

For this analysis we defined a day without rain as a day when the accumulated precipitation
was less than 1mm. From this definition, we calculate the duration in days of absence of rain
following these definitions. Figure 6.9 shows the duration of days without rain observed in our
sample.

To perform the analysis, we performed a modification in the decomposition of trend, seaso-
nality and cycle using a modified survival analysis structure for a dynamic structure. The main
modification is to use an appropriate distribution for censored data. We report below the results
obtained using a lognormal distribution of survival, defined by:

f(yt) =
1

yt
√

2π

√
τ exp (−1

2
τ(log yt − υt)

2 (6.4)

The decomposition is applied to the linear predictor for the log duration, denoted by υt, in
the form:
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υt = µt + st + ct

µt = µt−1 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc (6.5)

Note that the duration is defined only on rainy days, and on the others, it is treated as not
observed. The duration is determined on the day of rain occurrence, which allows to use the
entire sample available in the estimation and thus the use of components in the frequency of
choice of analysis. The latent components µt, st and ct are defined on a monthly basis, in a
similar way to that used in the models in sections 4.1 and 4.3.

Specifying a lognormal distribution for the duration allows a more direct interpretation of
the effect of the υt linear predictor on the duration. An increase in the value of υt represents
an increase in the expected duration, whereas decreases in υt indicate reductions in the ex-
pected duration. We tested other specifications for the duration process, such as the Weibull
distribution, but the best results were obtained with the lognormal distribution.

The estimated parameters for the model of duration of days without rain are presented
in Table 6.5 in the Appendix. The precision for the lognormal distribution is relatively low,
consistent with the great variability observed in duration. The estimated seasonal component is
quite regular, indicating that there were no relevant changes in the seasonal effect on the pattern
of rainfall. The cyclic component has a low magnitude, which indicates that the model cannot
capture a relevant pattern in this component.

We can see in Figure 6.10 the components estimated by the model. The trend component
shows some variation over time, but this variation is not relevant. For example, looking at
the posterior average of this component, we have at the beginning of the sample an expected
duration given by the trend component of approximately exp(.86) = 2.32 days, while at its
lowest value in the early 1980s, the duration indicated by the trend would be approximately
exp(.775) = 2.17 days, indicating a minor variation, and so there is no empirical evidence of
changes in the regular patterns of dry days.

We present an analysis of extremes of dry days duration in the Appendix.

6.4 Conclusions

The changes in the likelihood of the occurrence and/or strength of extreme weather and
climate event can be partly due to natural climate variability, human-induced climate changes
and/or urbanization process. The effects of climate-related disasters are often intensified in
cities due to cultural, demographic and economic characteristics. In the metropolitan area of
São Paulo, which encompasses 39 municipalities in the state of São Paulo with intense process
of conurbation and represents the largest urban concentration in South America, floods and
droughts are the most critical climate-related issues. Previous studies have identified a positive
trend in both, annual and seasonal rainfall whereas other works have identified an increase in
both rainy days and extreme daily precipitation, decrease in light rain, and increase in the
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number of consecutive dry days, indicating that intense precipitation is becoming concentrated
on a few days with longer dry periods occurring in between.

This article contributes to this literature by proposing a novel statistical decomposition
of climatic time series into long-term trend, seasonal and cycle components to analyze the
existence of changes in rainfall and temperature patterns. We applied this method to analyze
the existence of changes in rainfall and temperature patterns in the MASP, which allows to
identify statistically permanent changes in the rainfall and temperature over time and also to
capture the impact of non-permanent shocks on temporal patterns. We analyze daily series
of temperature and rainfall between 1933 and 2019 from Institute of Astronomy, Geophysics
and Atmospheric Sciences of University of São Paulo (IAG-USP), being the longest series of
observations available for the MASP. The results indicate a significant increase in the trend
component of daily temperature. The seasonality also presents changes, in which the results
indicate an increase in the range of seasonal variation of temperature from 1980 onwards, more
than doubling the seasonal variability in relation to the beginning of the sample.

The results also suggest relevant changes in the rain patterns observed in the analyzed
sample, both in the probability of occurrence of rains and in the amount of daily rain observed.
There is a notable change in patterns regarding the probability of rain, although they are
not as straightforward in interpretation as the changes observed in the temperature series.
The seasonal pattern with the probability of rain also undergoes important changes, with a
reduction in the seasonal variance between 1968 and 1984 and after an increase in the variance
of the seasonal effect, also indicating possible changes in weather patterns. In addition, the
analysis for annual temperature records and annual records of daily rainfall show support for
the hypothesis of permanent changes in observed climatic patterns. However, there is no ample
evidence of changes in the pattern of duration of dry days. Plus, the results indicate that there
is no relevant pattern of change in the trend component for the annual maximum of dry days,
indicating the stability of this component.

6.5 Appendix

6.5.1 Characteristics of Temperature and Rain

Figures 6.11 and 6.12 present boxplots representing the distributions of average daily tempe-
rature and accumulated rainfall, respectively. Each boxplot presents the first and third quartiles
and the median of the observed data. Points in the figure represent outliers, defined as obser-
vations greater than or less than 1.5 times the interquartile range between the first and third
quartiles. In Figure 6.11 one may observe the temperature series by year and months, in which
is possible to note the variability among the months and an increase in the daily temperature
from 1933 to 2018. Similarly, Figure 6.12 shows the rainfall series by month and year, which is
possible to note the heterogeneity among the months and years. In Figure 6.12 we can observe
that in the rainfall data there is a large number of outliers, and to facilitate visualization in
Figure 6.12, subfigures (c) and (d) show the boxplots without the points corresponding to the
outliers.
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6.5.2 Census population

Figure 6.13 shows the number of inhabitants of the city of São Paulo from 1920 to 2010,
reported by the Instituto Brasileiro de Geografia e Estatistica (IBGE) census.

6.5.3 Generalized Extreme Value (GEV) Distribution

This section briefly introduces the Generalized Extreme Value (GEV) distribution and for a
more detailed discussion see Coles et al. (2001). Define Mn = max(X1, . . . , Xn) as the maximum
over a block (block-maxima) of n values, where X1, . . . , Xn is a sequence of independent and
identically-distributed random variables. Under certain conditions, the extremal types theorem
states that Mn converges to a specific distribution, known as generalized extreme value (GEV)
distribution, which has the following form

G(z) = exp

{
−
[

1 + ξ(
z − µ

σ
)

]−1/ξ
}

(6.6)

where −∞ < µ < ∞ is a location parameter, σ > 0 represents a scale parameter and −∞ <

ξ < ∞ is a shape parameter.

6.5.4 Bernoulli-Gamma (Hurdle) model - Transformed probabilities

Figure 6.14 shows the reverse logistic transformation of the estimated trend, seasonality and
cycle components of Hurdle model, in which can be observed a quite irregular behavior of the
trend component.

6.5.5 Survival Models

Survival models (SM) are interesting in the context where the interest is to model the time
until a certain event happens (GÓMEZ-RUBIO, 2020). In this paper, we aim to model the
number of dry days in the MASP, adopting a SM using the trend-cycle decomposition for
climatic model (LAURINI, 2019).

Considering T as the random variable that measures time to event, the survival function
S(t) can be defined as

S(t) = P (T > t), (6.7)

considering the implicit assumptions that S(0) = 1 and limt→+∞ S(t) = 0. The survival function
is related to a distribution function

F (t) = P (T < t) = 1 − S(t) (6.8)

with density function f(t). In addition, the hazard function h(t) measures the instantaneous
risk that the event of interest occurs at a small instant of time and can be expressed as h(t) =

f(t)/S(t). The cumulative hazard H(t) can be defined as

H(t) =

∫ t

0
h(u)du. (6.9)

Hence, the survival function can be expressed in terms of the cumulative function as

S(t) = exp(−H(t)), (6.10)
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and the likelihood of this model can be expressed as
n∑

i=1

f(ti)
δiS(ti)

1−δi (6.11)

where ti is time of event i and δi indicates whether the event was observed or not.

6.5.6 Extremes of dry days duration

The decomposition of the components of trend, cycle and seasonality did not indicate relevant
changes in the pattern of duration of days without rain. However, a relevant issue is to verify
the possibility of changes in the behavior of extreme duration, i.e., long periods without rain. To
analyze this issue, we again use a Generalized Extreme Value distribution structure, similar to
that used in sections 4.2 and 4.4. Our variable under analysis is the maximum duration of days
without rain in each year (maximum annual block). Figure 6.15 shows the maximum duration
series of days without rain.

The best specification for the annual maximum process for days without rain is presented
in Table 6.6. The results obtained in the specification analysis indicate that there is no cyclic
component in this process, and the best specification for the trend is a RW1 model. The precision
of the GEV component is quite low, compatible with the high variability observed in the series of
maximum duration, and the shape parameter was estimated with mean equals 0.147, indicating
a distribution in the domain of attraction of a Frechet family, which suggests a distribution with
more extreme values.

The estimated trend component is shown in Figure 6.16, which indicates that there is no
relevant pattern of change in the long-term component, suggesting the stability of this compo-
nent.

6.5.7 Posterior distribution of estimated parameters

The posterior distribution of the latent components and parameters are obtained using Baye-
sian estimation methods through the use of integrated nested Laplace approximations, described
in Rue, Martino and Chopin (2009). We use the default prior structure of the r-inla package,
and the results are robust to this specification. In particular, we use Gamma priors for the
precision parameters for the Gaussian GEV and lognormal distributions, and Gaussian priors
for the GEV shape parameter and the autoregressive parameters of the cycle components. The
autoregressive parameters are represented by partial autocorrelations in the estimation process.
Specific values of the hyperparameters used are available under request from the authors.
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Table 6.1 – Posterior distribution of estimated parameters - Daily temperature. Table re-
ports the mean, standard deviation and the quantiles of posterior distribution of estimated
parameters using the INLA approximation.

Mean SD 0.025q 0.5q 0.975q Mode

Precision for Gaussian obs 0.187 0.002 0.184 0.187 0.190 0.187
Precision for trend 89.935 9.786 71.222 89.861 109.548 90.218
Precision for seasonal 7750.445 1201.137 5346.370 7802.845 9953.298 8054.902
Precision for cycle 0.156 0.010 0.138 0.155 0.178 0.154
PACF1 for cycle 0.810 0.010 0.789 0.811 0.828 0.813
PACF2 for cycle -0.614 0.022 -0.656 -0.614 -0.569 -0.615
log-Likelihood -73011.82

Table 6.2 – Posterior distribution of estimated parameters - Annual maximum temperatures.
Table reports the mean, standard deviation and the quantiles of posterior distribution of
estimated parameters using the INLA approximation.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for GEV obs. 5.46e+01 0.000 5.46e+01 5.46e+01 5.46e+01 5.46e+01
Shape for GEV obs. -2.56e-01 0.000 -2.56e-01 -2.56e-01 -2.56e-01 -2.56e-01
Precision for trend 1.67e+05 0.373 1.67e+05 1.67e+05 1.67e+05 1.67e+05
Precision for cycle 5.51e+01 0.015 5.51e+01 5.51e+01 5.52e+01 5.51e+01
AR(1) for cycle 7.61e-01 0.000 7.60e-01 7.61e-01 7.62e-01 7.62e-01

log-Likelihood -15488.63

Table 6.3 – Posterior distribution of estimated parameters - Bernoulli-Gamma (Hurdle) model
for probability and quantity of rainfall. Table reports the mean, standard deviation and the
quantiles of posterior distribution of estimated parameters using the INLA approximation.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Probility of Rain
Precision for trend 24.606 5.85e+00 16.230 23.505 3.89e+01 21.198
Precision for seasonal 10722.848 7.17e+03 3239.238 8764.001 2.96e+04 6250.269
Precision for cycle 2.993 1.62e+00 0.724 2.721 6.86e+00 1.961
PACF1 for cycle 0.866 1.00e-03 0.864 0.866 8.68e-01 0.866
PACF2 for cycle -0.999 1.00e-03 -1.000 -0.999 -9.97e-01 -0.999

Quantity Rain
Precision for the Gamma obs. 0.476 5.00e-03 0.465 0.476 4.85e-01 0.478
Precision for trend 12507.421 9.61e+03 3174.863 9784.494 3.78e+04 6521.456
Precision for seasonal 42016.481 3.23e+04 9897.723 32952.985 1.23e+05 21585.470
Precision for cycle 3.771 2.83e-01 3.186 3.787 4.29e+00 3.859
PACF1 for cycle 0.675 2.20e-02 0.631 0.675 7.17e-01 0.674
PACF2 for cycle -0.307 3.90e-02 -0.386 -0.306 -2.32e-01 -0.302

log-Likelihood -64549.85
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(a) Trend (b) Cycle

(c) Seasonal effect - 1933-1944 (d) Seasonal effect - 1955-1976

(e) Seasonal effect - 1977-1998 (f) Seasonal effect - 1999-2019

Figure 6.2 – Estimated Trend, Cycle and Seasonal Components for Average Daily Tempera-
tures at IAG Station - 1933-2019. The graphs show the posterior mean (solid
line) of the estimated component and the credibility interval of 95% (shaded
ribbon). Measurements in degrees Celsius.
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Figure 6.3 – Annual maximum temperatures at IAG Station - 1933-2019. The graph shows
the annual temperature record for each year (annual block maxima), measured
in degrees Celsius.

Table 6.4 – Posterior distribution of estimated parameters - Annual maximum daily rainfall.
Table reports the mean, standard deviation and the quantiles of posterior distribution of
estimated parameters using the INLA approximation.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for GEV obs. 219.575 57.380 109.743 220.916 323.915 225.333
Shape for GEV obs. -0.155 0.002 -0.159 -0.155 -0.152 -0.155
Precision for trend 2.882 0.467 1.983 2.886 3.792 2.927
Precision for cycle 0.002 0.000 0.001 0.002 0.002 0.002
AR(1) for cycle 0.344 0.055 0.237 0.344 0.452 0.341
log-Likelihood -434.73
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(a) Trend (b) Cycle

Figure 6.4 – Trend-Cycle decomposition for annual maximum temperatures at IAG Station
1933-2019. The graphs show the posterior mean (solid line) of the estimated
components and the credibility intervals of 95% (shaded ribbon). Measurements
in degrees Celsius.

Table 6.5 – Posterior distribution of estimated parameters - Dry days duration. Table re-
ports the mean, standard deviation and the quantiles of posterior distribution of estimated
parameters using the INLA approximation.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for the lognormsurv obs. 1.404 2.00e-02 1.365 1.404 1.45e+00 1.403
Precision for trend 42139.008 1.13e+04 22054.639 41680.366 6.55e+04 40743.639
Precision for seasonal 71231.197 5.42e+04 20124.558 55394.099 2.15e+05 37324.778
Precision for cycle 358.205 1.24e+02 143.796 352.438 6.10e+02 329.995
PACF1 for cycle 0.376 1.19e-01 0.153 0.372 6.11e-01 0.349
PACF2 for cycle -0.350 1.63e-01 -0.679 -0.339 -6.40e-02 -0.238
log-Likelihood -18845.15

Table 6.6 – Posterior distribution of estimated parameters - Annual maximum - Dry days du-
ration. Table reports the mean, standard deviation and the quantiles of posterior distribution
of estimated parameters using the INLA approximation.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for GEV obs. 0.005 0.000 0.005 0.005 0.006 0.005
Shape for GEV obs. 0.147 0.002 0.144 0.147 0.152 0.145
Precision for trend 51.097 6.872 36.426 51.816 62.059 55.141
log-Likelihood -365.59
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(a) Trend (b) Cycle

(c) Seasonal effect - 1933-1944 (d) Seasonal effect - 1955-1976

(e) Seasonal effect - 1977-1998 (f) Seasonal effect - 1999-2019

Figure 6.5 – Trend, Cycle and Seasonal decomposition for the Bernoulli-Gamma (Hurdle)
model. The graphs show the posterior mean (solid line) of the estimated com-
ponents and the credibility intervals of 95% (shaded ribbon) for the probability
of rain in each day.



169

(a) Trend (b) Cycle

(c) Seasonal effect - 1933-1944 (d) Seasonal effect - 1955-1976

(e) Seasonal effect - 1977-1998 (f) Seasonal effect - 1999-2019

Figure 6.6 – Trend, Cycle and Seasonal decomposition for the Bernoulli-Gamma (Hurdle) mo-
del. The graphs show the posterior mean (solid line) of the estimated components
and the credibility intervals of 95% (shaded ribbon) for the daily accumulated
rainfall quantity (measured in millimeters).
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Figure 6.7 – Annual maximum daily rainfall at IAG Station - 1933-2019. The graph shows
the annual rainfall record for each year (annual block maxima), measured in
millimeters.
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(a) Trend (b) Cycle

Figure 6.8 – Trend-Cycle decomposition for annual maximum daily rainfall at IAG Station
1933-2019. The graphs show the posterior mean (solid line) of the estimated
components and the credibility intervals of 95% (shaded ribbon). Measurements
in millimeters.
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Figure 6.9 – Dry days duration - IAG Station 1933-2019. The measure is defined as the
consecutive number of days without rain, defines as the days with observed
precipitation less than 1mm.
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(a) Trend (b) Cycle

(c) Seasonal

Figure 6.10 – Trend, Cycle and Seasonal decomposition for the dry days duration model.
The graphs show the posterior mean (solid line) of the estimated components
and the credibility intervals of 95% (shaded ribbon) for the duration model,
measured in days.
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(a) Average Daily Temperature - Boxplot by month (b) Average Daily Temperature - Boxplot by year

Figure 6.11 – Boxplots - Temperature (measured in degrees Celsius) by monthly and year at
IAG Station - 1933-2019
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(a) Daily Rainfall - Boxplot by month (b) Daily Rainfall - Boxplot by year

(c) Daily Rainfall - Boxplot by month without ou-
tliers (d) Daily Rainfall - Boxplot by year without outliers

Figure 6.12 – Boxplots - Daily Rainfall (measured in millimeters) by monthly and year at
IAG Station 1933-2019
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Figure 6.13 – Census population - Estimated number of inhabitants per year of the city of
São Paulo - Source - Instituto Brasileiro de Geografia e Estatistica (IBGE)
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(a) Trend (b) Cycle

(c) Seasonal effect - 1933-1944 (d) Seasonal effect - 1955-1976

(e) Seasonal effect - 1977-1998 (f) Seasonal effect - 1999-2019

Figure 6.14 – Inverse-logistic transformation of Trend, Cycle and Seasonal decomposition for
the Bernoulli-Gamma (Hurdle) model. The graphs show the posterior mean
(solid line) of the estimated components and the credibility intervals of 95%
(shaded ribbon) for the probability of rain in each day.
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Figure 6.15 – Annual maximum number of dry days at IAG Station - 1933-2019. The graph
shows the annual record for the number of dry days duration (annual block
maxima). The measure is defined as the consecutive number of days without
rain, defines as the days with observed precipitation less than 1mm.
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Figure 6.16 – Trend component for annual maximum of dry days duration at IAG Station
1933-2019. The graphs show the posterior mean (solid line) of the estimated
component and the credibility interval of 95% (shaded ribbon). Measurements
in days.
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7 ROBUST TREND ESTIMATION FOR COVID-19 DATA

Fernanda Valente Márcio Laurini

ABSTRACT

Estimating patterns of occurrence of cases and deaths related to the COVID-19 pandemic is a
complex problem. The incidence of cases presents a great spatial and temporal heterogeneity,
and the mechanisms of accounting for occurrences adopted by health departments induce a
process of measurement error that alters the dependence structure of the process. In this work
we propose methods to estimate the trend in the cases of COVID-19, controlling for the presence
of measurement error. This decomposition is presented in Bayesian time series and spatio-
temporal models for counting processes with latent components, and compared to the empirical
analysis based on moving averages. We applied time series decompositions for the total number
of deaths in Brazil and for the states of São Paulo and Amazonas, and a spatio-temporal analysis
for all occurrences of deaths at the state level in Brazil, using two alternative specifications with
global and regional components.

Keywords: Epidemic Model; Time Series Decomposition; Spatio-Temporal Count Process
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7.1 Introduction

On March 11th, 2020, the World Health Organization (WHO) declared the international
public health emergency caused by the novel coronavirus (SARS-CoV-2) as a global pande-
mic. By December 11th, 2020, there were 69,664,639 infected people and 1,583,242 deaths in
216 countries, according to Center for Systems Science and Engineering (CSSE) at Johns Hop-
kins University. As the disease propagates, healthcare systems are on the verge of collapse, and
despite the unprecedented global research effort, to the present date there is no effective pharma-
ceutical treatments available to deal with the coronavirus disease-19 (COVID-19) (DONG; HU;
GAO, 2020; SANDERS et al., 2020). In order to reduce the transmission, non-pharmaceutical
interventions have been proposed by many countries, e.g., social distancing, self-quarantine and
lockdown. However, preventing the transmission and management decisions depends on how
well we can assess the real number of infected people. World Health Organization has recom-
mended massively testing of the population (ORGANIZATION, 2020) and thus, has caused a
great demand for diagnostic test all over the world, but the limited availability and low number
of applications has increasing the number of underreporting cases (PEDERSEN; MENEGHINI,
2020; VAID; CAKAN; BHANDARI, 2020; LAU et al., 2020; PRADO et al., 2020; RUSSELL et
al., 2020).

In addition to the underreporting number of COVID-19 cases and deaths, it is worth noting
that there are other problems related to COVID-19 data. First, a delay between the onset of
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symptoms and accurate diagnosis is commonly observed, which varies from country to country,
depending on the local government’s strategy (CONTRERAS et al., 2020). Plus, there are also
days of delay in the report of new deaths which are counted on the day that are included in
the system, instead of the actual day of the death (RUSSELL et al., 2020). This creates a
relevant measurement error problem, changing the series’ dependency structure. The delays
are also related to the lack of personnel available to report cases on weekends, which creates
a seasonality structure in the cases and death reports, generating an additional aggregation
problem on the time series (SKIERA et al., 2020). Plus, the delays are related to problems in
the system of accounting for confirmed cases and deaths, which suffers from some instability
issues. In some days the system is not available, so deaths and cases are included late.

Given the aforementioned discussion, it is possible to note that estimating the trend in
COVID-19 cases and deaths it is not a trivial problem. The estimation of long-term movements
is of vital importance to draw effective strategies to reduce the transmission of COVID-19.
There are several different methods for trend estimation, which differ in their complexity and
interpretability, where the most prevalent trend estimation methods are model-based trend
extraction, nonparametric filtering, singular spectrum analysis and wavelets (ALEXANDROV
et al., 2012).

Although there are many studies in the literature to estimate the trend of COVID-19 for
different countries (e.g., Li, Feng and Quan (2020), Gupta and Pal (2020), Ceylan (2020), Pe-
rone (2020)), there are little understanding about the long-term movements of COVID-19 in
Brazil. Nowadays the country draws a lot of attention since it has the world’s second-most
cases and deaths of COVID-19 (behind just the United States), and with probably substantial
underestimates since the number of tested people are relatively low. For instance, up to Au-
gust 12th, about 62 thousand tests per million inhabitants have been applied in Brazil, while
the United States and United Kingdom has applied more than 200 thousand tests per million
inhabitants. The difficulties in estimating the amount of infected people in Brazil are related
to the absence of adequate laboratory infrastructure and qualified people, difficulty in buying
tests due to the high international demand, and logistical distribution of tests in a country of
continental dimensions such as Brazil (RIBEIRO; BERNARDES, 2020).

Notwithstanding the supposed underreporting of COVID-19 cases, the country also faces
problems caused by contradictory and inaccurate data presented by official public portals. This
occurs due to the polarized opposition between the federal government, and the state and mu-
nicipal governments. While Brazilian government and, especially the President Jair Bolsonaro,
are continually disqualify publicly both risks and the adoption of scientifically based prevention
measures, most state and municipal governments have imposed social distancing along with
other public health measures to control the spread of the virus (ORTEGA; ORSINI, 2020). Se-
veral Brazilian official control bodies (municipal, state and federal) have created official internet
portals to report the number of cases. However, there are many discrepancies in these sources,
presenting contradictory data on the impact of the disease (SILVA et al., 2020).

In a response to conflicting numbers provided by Brazilian Health Ministry, some data collec-
tion initiatives have collected the data by each municipality, providing more accurate information
to COVID-19 research, in a parallel work to the federal government. The most notable work is
provided by competing Brazilian mainstream media outlets, which have established a work in a
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collaborative way to gather and upload necessary COVID-19 information in the 26 states and
the Federal District. In addition to the daily data, the consortium also provides the so-called
moving average, in order to give a better view of the evolution of confirmed cases and deaths
of COVID-19 in Brazil since this is an understandable and easy to execute method to compute
trend values. The moving average filter is an example of low-pass filter because it eliminates the
lower or slower frequencies from the time series by means of moving average. However, this is a
limited tool for some reasons. First, it cannot be used to forecasting since the trend path does
not belong to any mathematical function. Second, the extent of moving average is determined
ad-hoc and may carry the effect of human judgement. Also, the method assumes that the trend
is always linear.

An alternative way to estimate the long-term movements is through structural decompo-
sition (e.g., Harvey (1990)). In this sense, we propose to decompose the temporal variability
observed in the time series into trend, seasonal and cycle components, which allows us to identify
long-term movements, and cyclical and seasonal effects, in the presence of measurement errors.
Since we are dealing with point process, we introduce a method that allows decomposition of
time series in a count data framework, based on the Poisson distribution. In particular, we
propose to use a Poisson process where the intensity function is decomposed into trend, sea-
sonal and cycle components. The inference is performed following a Bayesian approach, which
is able to capture the uncertainty associated with the latent factors via Bayesian credibility
interval. We also present a spatio-temporal generalization of this methodology, using a formula-
tion of Conditional Autoregressive (CAR) models with time varying spatial random effects. In
particular, the resulting Bayesian hierarchical model fits within the integrated nested Laplace
approximations (INLA) framework, providing an estimation in a computationally effective way
(RUE; MARTINO; CHOPIN, 2009).

Regarding this context, our main goal is to estimate the patterns of the deaths by COVID-19
in Brazil through the trend-cycle decomposition. The contribution of this paper is to explore
a Bayesian version of the structural decomposition in combination with count distributions, in
the task of estimating the trend of deaths of COVID-19 in Brazil, and compare it with averages
approach, which are not robust to the most common problems related to COVID-19 data. In
particular, we performed inference procedures for deaths reported in Brazil, and also for the
states of São Paulo and Amazonas. We choose to analyze these two states in different regions
(São Paulo in Southeast and Amazonas in North) since Brazil is a country with continental
dimensions and is characterized by a great heterogeneity in socioeconomic and cultural context
among regions. For instance, in the Southeast region, the social distance and hygiene measures
to reduce the transmission of COVID-19 are not feasible in subnormal agglomerates (also known
as “favelas”) and peripheries, where the problem is intensified by issues in sanitation and access
to water. However, it is important to highlight the difference of this problem among Brazilian
regions: while about 92% of the population in Southeast are supplied with treated water, in
the North, this number is just 57%. Furthermore, the North region faces a lack of heath
infrastructure. As an example, the state of Amazonas concentrates all the hospital structures
able to deal with COVID-19 in a single municipality, Manaus. It represents the lack of health
infrastructure for the other 61 municipalities within a state whose territorial extension is larger
than those of United Kingdom, Italy and France combined (FREITAS; CIDADE et al., 2020).
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Additionally, we also extend our proposed model by including spatial information in the
estimation process. The use of spatial information is important in estimating the trend and
cycle components, due to the nature of transmission in an epidemic process, with spatial spread
dynamics. Thus, the number of cases in a region has an important impact on neighboring regions,
and the incorporation of this information as a prior information for the number of cases allows
a more precise recovery of the trend of occurrences. We formulate two spatio-temporal models
through a conditional autoregressive structure with time-varying spatial effects. Allowing spatial
effects to change over time is essential in modeling an epidemic process, as this structure allows
to identify the spatial pattern of spread of the infection. The spatio-temporal models differ in
terms of the components of trend, seasonality and cycle. The first model assumes components
common to all regions of the country, while in the second model we introduce specific trends,
seasonality and cycles for each region of the country, allowing an identification of the regional
patterns of the COVID-19 epidemic.

This article is organized as follow. Section 2 contains a description of the temporal and
spatio-temporal models and presents the data. Section 3 shows the results with discussion.
Section 4 concludes.

7.2 Data and Methods

7.2.1 Data

To perform inference procedures in all analysis we use a data set provided by BRASIL.IO
(<https://brasil.io/dataset/covid19/caso_full/>), where the data collection is done by the re-
ports of the number of cases and deaths from the official epidemiological bulletins of each
municipality, by a task force of 40 volunteers. This daily data is available at municipal level,
containing the temporal evolution for the number of reported deaths for each municipality and
state. In this work, we analyze the sample of deaths from 02/25/2020 to 12/06/2020 for Brazil
and the states of São Paulo and Amazonas.

7.2.2 Univariate Time Series Models

The model used in this work is based on a structural decomposition suitable for modelling
counting series, using a Poisson distribution structure. In this distribution, the log intensity
varies over time, and is given by the sum of components of trend, seasonality and cycle. As
we are using a structure of Poisson processes with stochastic intensity, the characterization of
the process is given by a Cox process. In the spatio-temporal analyses, we use a structure
of a dynamic version of Besag-York-Mollié model (BESAG et al., 1991), where the log of the
intensity function is given by a Gaussian Markov Random Field (RUE; HELD, 2005c; ILLIAN;
SORBYE; RUE, 2012).

The trend component is formulated using a second order random walk structure (RUE;
HELD, 2005c), while the seasonal component is composed of stochastic effects in the order of
periodicity of the series, in this case since we use daily data. The cyclic component is based on a
structure of a second-order autoregressive process, which aims to capture the sum of stationary
effects with mean reversion, including the effects induced by measurement errors in the series

https://brasil.io/dataset/covid19/caso_full/
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of deaths. This component is essential for the correct identification of trend and seasonality
patterns, as we will discuss below. The time series model can be written as:

Yt = Poisson(exp(λt)),

λt = µt + st + ct

∆2µt = ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc (7.1)

where Yt is the number of occurrences in time t, µt is the long term trend, which can be seen
as the accumulation of all shocks that occurred in the past with non-transitory effects, and is
modeled as a second-order random walk (RW2). The st represents the seasonal components, ct
is a cycle component represented by a second-order autoregressive process with possibly complex
roots,ηµ, ηc, and ηs are nonspatial independent innovations with ηµ ∼ N(0, σ2

ηµ), ηc ∼ N(0, σ2
ηc),

and ηs ∼ N(0, σ2
ηs). The resulting Bayesian hierarchical structure allows us to perform inference

procedure within the INLA framework, which provides accurate and efficient approximations on
Bayesian hierarchical models that can be represented as latent Gaussian models. For reasons
of space, we do not detail the INLA method here, but we show the fundamental aspects of the
method in the Appendix.

The use of an RW2 structure for the modeling of COVID cases, replacing traditional local
level processes, can be justified in several aspects. The first one is the nature of extremely
fast case growth in an epidemic process, which generates a dependency structure that is best
approximated by an integrated second order process (I(2)). In the stages of accelerated growth
of cases, we have the presence of a trend component with a non-stationary growth rate, inducing
a process that needs at least two differences to induce stationarity. The RW2 process is a par-
simonious way of capturing processes with this dependency structure. A second characteristic
of this process is that in these situations it also imposes a smoothness structure in the process
trend, since this process can be related to formulations of smoothing splines models, as discussed
for example in Green and Silverman (1994) and Lindgren and Rue (2008). A similar discussion
in econometrics is in the relationship between the so-called Hodrick-Prescott filter and its for-
mulation in state space, which corresponds to a spline model with an estimated parameter of
ratio between the variances of the observation and state equations. Discussions between these
properties and problems using the HP filter can be found at Harvey and Trimbur (2008) and
Hamilton (2018).

7.2.3 Spatio-Temporal Analysis

The analyzes carried out so far used only local information to carry out the inference pro-
cedures on the trend and the other components. A possible extension is the use of information
on cases or deaths that occurred in some definition of neighborhood in the region. This in-
formation is important since the number of occurrences in the neighborhood can be used as
prior information for the estimation in the Bayesian inference procedure, which is particularly
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important in the estimation of a high speed epidemic process and whose specific characteristics
of transmission, latency and mortality are unknown.

In order to perform a spatio-temporal analysis of the patterns of occurrence of deaths related
to COVID-19, we formulated a generalization of the decomposition of trend, seasonality and
cycle components incorporating a time-varying spatial component, using a version of a model
of random spatial effects with a Conditional Autoregressive (CAR) (BESAG, 1974; BESAG
et al., 1991) structure with time dependence. This model allows to incorporate the existing
information in the number of cases of the neighbor as prior information for the number of cases
in the region of interest.

In relation to the model proposed in Equation (7.1), the spatio-temporal version adds two
modifications. The first is the use of an offset Ei to control the Exposure, which in this case
is the number of inhabitants of region i. This component allows to use common components of
trend, seasonality and cycle for regions with different population sizes. The second modification
is the ξ(i,t) spatial component, which adds an additional random effect for each region i , allowing
to incorporate spatial variability in the occurrence rate. The CAR structure used takes as prior
for the spatial effect in the region i a Normal distribution with mean given by the average of
the values of the spatial effects for regions j that are neighborhood to region i, and variance
controlled by a τ precision parameter multiplied by number of neighbors. We assume that this
pattern varies over time, reflecting the dynamics in the spatial distribution of the number of
occurrences of COVID-19. The dynamic formulation is built through an autoregressive structure
in time for this component, an additional parameter Φ controlling the time dependence for this
process. The model structure can be represented as:

Y(i,t) = Poisson(exp(λ(i,t)E),

λ(i,t) = µt + st + ct + ξ(i,t)

∆2µt = ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(i,t) | ξ(j,t),i ̸=j,τ ∼ N

 1
ni

∑
i∼j

ξ(j,t),
1
τni


ξ(j,t) = Φξ(j,t−1) (7.2)

To estimate the above spatio-temporal model, we used COVID-19 data at the state level
as a spatial unit definition. Although it is possible to work with data at the municipal level,
we note that there are important problems with the detailing of cases at this level. The data
are only reported in detail for the largest municipalities in each state, with data for small
municipalities being aggregated in terms of regions or else as a residue in the total sum of
cases within each state. Thus, the state aggregation offers greater reliability in the analysis of
spatial data patterns. We used the neighborhood definition as a neighborhood structure based
on queen-type contiguity using the territorial division of Brazilian states. As in the first model,
the spatio-temporal model is also estimated using Integrated Nested Laplace Approximations,
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where the prior structure for the time series components is the same used to estimate univariate
models, and we also adopted a prior log-gamma with values (1.5e-5) for the precision of this
component. The prior for the coefficient Φ is a penalized complexity prior (SIMPSON et al.,
2017) for the correlation parameter, with values (3,0.01).

7.2.4 Monte Carlo study for SEIR model

The seasonality and cycle components are introduced in order to control the effects related to
the case accounting mechanism, which, as discussed in the introduction, introduces a structure
of periodicity in the data, generating a seasonal pattern. It is also important to note that
the dependency pattern generated by the epidemic process and this form of measurement error
generates a complex contamination structure in the series of new cases or deaths, which reduces
the effectiveness of simple methods of eliminating seasonality or estimating trends, in particular
the use of simple methods such as a 7-day moving average in cases, which is the form used to
summarize the trend of COVID-19 cases in Brazil, provided by the Brazilian mainstream media
outlets.

To show the complexity of this contamination pattern and the limitation of simple trend
extraction methods, we will resort to simulations of an epidemic process with a contamination
structure similar to that existing for COVID-19 data, as well as some applications of simple
methods of trend extraction. We performed a Monte Carlo experiment with 10,000 replications,
simulating a deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic process,
with a stochastic structure for the number of new deaths resulting from this model. The general
details of this model are presented in Appendix.

The key idea is to obtain the solution of a SEIR process, which generates trajectories of the
number of Susceptible, Exposed, Infectious, Recovered and Deaths over time. In our simulation,
we replicated a mechanism for reporting new death cases similar to that used by health depart-
ments in Brazil. In particular, we define that each observation corresponds to a daily data in
a seven-day week, and if deaths occur on Saturday or Sunday, there is a proportion of deaths
that will not be counted on the same day, but only on the following Monday and Tuesday. Also,
we consider that all deaths are effectively accounted for, and set that the proportion of deaths
with delayed disclosure is given by a uniform distribution, with parameters (.5, .8). Indeed,
this structure is a very simplified and unrealistic version of the reality due to underreporting of
deaths, but it is useful to exemplify the effects of measurement error on the dynamic structure
of the time series of new deaths.

As a summary of the contamination effect, we show in Figure 7.1 the average values of the
autocorrelation and partial autocorrelation functions for the time series of new daily deaths. We
can see that the contamination mechanism induces a complex structure of temporal dependence
in the series of new deaths in the SEIR process. Although there is a seasonal pattern induced by
contamination, the dependency structure is more complex than a pure seasonal pattern, even
in this simple contamination experiment.

The structure used in our model uses a seasonal component to control for the periodic
pattern induced in the series, but also a second-order autoregressive component, to capture the
remaining dynamic effects of the measurement error structure in the series. The second-order
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component is a parsimonious way of capturing dependency patterns and cycles with reversion
to the mean, and in our analyzes it has been shown to be effective in allowing the recovery of
the trend component in the presence of seasonality and other dynamics in the series.
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Figure 7.1 – Simulated ACF and PACF functions of new daily deaths under the reporting
contamination mechanism. Mean values from 10,000 replications of the SEIR
model with measurement error.

Note that in the presence of these contamination mechanisms, simple seasonal filtering
methods, such as the use of 7-day moving averages, will not be sufficient to extract the trend
component in the series. To illustrate this problem, we will use an example with real data, in
particular, the same dataset provided by BRASIL.IO, which will be also used in this work for
the temporal and spatio-temporal analyzes.

We used as an example the extraction of a trend measure for COVID-related deaths for the
state of São Paulo. In this example, we compare the trend obtained by a simple 7-day moving
average, a moving average with the number of days determined using the modified Akaike
criterion with correction for small samples (AICc) (see Svetunkov and Petropoulos (2018) for
details in this procedure), and also the trend extraction using the trend filter proposed by
Hamilton (2018), assuming a periodicity of 7 days. We also used a version of the Hamilton filter
based on a generalized linear model assuming that the data follow a Poisson process.

Figure 7.2 shows the time series of COVID-related deaths and the trends extracted by afo-
rementioned methods. First, an important result is that the optimal criterion for the number
of lags in the moving averages procedure selected by the AICc criterion points out to 8 lags,
confirming that the dependence induced by the death accounting process generates a more com-
plex dependency structure than a seasonality of 7 days. Additionally, another interesting result
is that the Hamilton filter, a trend extraction tool based on regressions against past lags and
with optimally properties in general contexts, cannot effectively separate the trend component
from the seasonal pattern, probably due to the stochastic and non-stationary component of the
seasonality component induced by the measurement error process.

These results show that simple trend extraction methods, such as the use of simple moving
averages, may not be adequate in the presence of measurement error structures such as the
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Figure 7.2 – Trend extraction using Moving Average and Hamilton Filters - COVID-19 related
deaths for São Paulo State - 02/25/2020 to 12/06/2020.

COVID-19 data present here. In the following sections we show the results obtained with the
component extraction methods proposed in this work, using a formulation of time series applied
to univariate data (Section 7.3.1), and also a spatio-temporal version for data at the state level
in Brazil (Section 7.3.3). In this work we focus on the analysis of data on deaths related to
COVID-19 in Brazil, since these data are less affected by the underreporting problem. Data
from confirmed cases are difficult to analyze and especially to compare among regions, since
testing procedures and recommendations are quite heterogeneous, reducing the reliability of the
data and the resulting analyzes.

7.3 Results

In this section we report and discuss, first, the results based on the univariate analysis, and
the comparison between the estimated trend component and moving averages approach. After,
we present the results based on the spatio-temporal model. Our objective is to show what are
the advantages and limitations of each model used in the work, and how it can be useful to
understand the dynamics of evolution of deaths by COVID-19. The pure time series model has
the advantage of only depending on the data from the region itself, but it does not capture the
spatial dependence of the process. The two versions of the spatio-temporal models, with global
and regional components, illustrate the gains and limitations of the use of global and regional
components in spatio-temporal modeling.

7.3.1 Univariate Time Series Models

We performed inference procedures based on the model described in the Section 7.2, thus,
in this case, the estimated parameters for each location are the precision of the trend compo-
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nent (1/ηµ), seasonal component (1/ηs), and cycle component (1/ηc), and the parameters of
the second-order autoregressive process of the cycle, parameterized as first and second order
partial correlation coefficients (PACF1 and PACF2). The precision parameters represent the
variability associated with the trend, seasonal and cycle components, where high values indicate
low variability, and the parameters of the second-order autoregressive process of the cycle are
related to the autoregressive parameters in the AR(2) representation of the cycle.

We use a structure of log-gamma priors for the precision components, with values (1,5e-05)
for the trend and seasonal components. For the AR(2) component we use a penalized complexity
prior for the precision, with values (3,0.01), and for the first and second order autocorrelations
parameters penalized complexity priors with values (0.5, 0.5) and (0.5, 0.4). The motivations
for the use of penalized complexity priors is discussed in Simpson et al. (2017). These priors are
invariant to reparameterizations and have excellent robustness properties, and in the assumed
values they are not informative, which is adequate for a situation of a new epidemic with
unknown previous behavior. The tables with the estimated parameters for Brasil, São Paulo
and Amazonas states are presented in the Appendix of the article (respectively, Tables 7.3, 7.4
and 7.5).

The dissemination of the COVID-19 among Brazilian states vary due to the heterogeneity
in socioeconomic and cultural context among regions. In order to assess the strong regional
differences in the spread of infections, we performed inference procedures for the states of São
Paulo, localized in the Southeast region of Brazil, and for the state of Amazonas, in the North
region. The Southeast region includes the three largest metropolitan areas in Brazil, São Paulo,
Rio de Janeiro, and Belo Horizonte. Also, it is the main industrialized area and concentrates
the biggest population of the five Brazilian regions, with a high population density. It is not
surprising that the Southeast region presents the highest number of cases and deaths by COVID-
19 in Brazil, and were the first region to diagnoses COVID-19 cases and to step up social
distancing policies to slow down the spread of coronavirus. On the other hand, the North region
is the largest region of Brazil, and concentrates a large number of indigenous people and their
descendants, who are part of the COVID-19 risk group, which makes the region particularly
sensitive to coronavirus disease (FERRANTE; FEARNSIDE, 2020).

A primary motivation for the present study was to estimate the long-term movements for
COVID-19 data in Brazil. Thus, to better understanding and discuss the results, we plotted the
estimated trend, seasonal and cycle components for death cases registered in Brazil (posterior
mean and 95% Bayesian credibility interval; see Figure 7.3). The first case of COVID-19 in
Brazil was diagnosed on February 26th, in the state of São Paulo. On March 17th, the first
death in Brazil was registered in the state of Rio de Janeiro, and on March 20th the commu-
nity transmission of the disease was announced by the Brazilian government. Thus, the most
important result is related to the trend component, where it can be seen that since registering
the first case of death by COVID-19 in Brazil, it took a steep movement upwards until the first
week of April, where the death trend slowly reveals a turning point, i.e., the pace of the trend
has slowed down, reaching the peak in the last week of April.

Despite the evidence of the effectiveness of the measures implemented by many countries to
slow down the transmission of the COVID-19 (KRAEMER et al., 2020; GATTO et al., 2020;
SAEZ et al., 2020), the persistence in a peak plateau stage varies across countries, depending on
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how quickly the policies were implemented and another factors such as population density, and
health systems structure (HSIANG et al., 2020; DEB et al., 2020). In particular, the persistence
in the high plateau stage can be explained by the containment measures introduced late, during
the evolution of the new cases and deaths, which requires a long time to revert the death trend
into a decreasing one.

In the case of Brazil, the trend component remained relatively stable in a high peak plateau
from May to August, with a slight decrease just around mid-August. In particular, the sustained
high plateau observed in the estimated trend component of deaths by COVID-19 in Brazil may
be related to the absence of political actions at federal level and the early relaxation of the
isolation measures (CANABARRO et al., 2020). In addition, Figure 7.4 shows the observed
number of death cases by COVID-19 and the growth rate for Brazil, where it is possible to see
that the days with the highest rates occurred until mid-May.

A more accelerated downward trend is observed from the end of August, with a significant
reduction in the trend until the beginning of November. From this point on, we observed a
further acceleration of the trend, going to the end of the analyzed sample. This acceleration
was interpreted as a reflection of the accelerated reduction in social distance measures taken in
various locations, and may also be related to agglomerations caused by the electoral campaign
for the election of mayors and councilors in this period. This acceleration is being called a
"second wave", although there was in fact no control over the pandemic in the period before
this acceleration in the number of deaths. The estimated parameters for Brazil are shown in
Table 7.3 in Appendix, where it is possible to note a high precision associated with the trend,
seasonality and cycle components.

Figure 7.5 presents the posterior mean of the estimated trend, seasonality and cycle com-
ponents, and the associated 95% Bayesian credibility interval for deaths by COVID-19 in the
state of São Paulo, and Table 7.4, in the Appendix, reports the estimated parameters. The
first case of COVID-19 in the state of São Paulo was on February 26th and the first death was
registered on March 18th. The state government imposed the first isolation measures between
March 17th and March 22th (Decree 64.881), which established the mandatory closure of non-
emergency services, as well as educational institutions. The estimated trend of death (see Figure
7.5) presents a rapidly increase from the beginning of the sample until the end of March, where
a turning point is slowly revealed. This change in the rising trend can be attributed to the
first isolation measures adopted by the state of São Paulo authorities, as previously discussed
in the literature (e.g., Cruz (2020)). However, the abrupt change in the evolution of the death
trend observed in the mid-April suggests that the level of adherence of the citizens to isolation
measures dropped down over time, or the measures taken by state government were not enough
to cope with the outbreak. After reaching the peak on mid-May, the death trend remained in
a long persistence peak plateau stage. Also, Figure 7.6 shows that the highest growth rate of
deaths occurred around mid-April, whereas the lowest growth rate was registered around mid-
August, suggesting a decreasing trend from mid-August. Similar to the pattern observed in the
data from Brazil, in the state of São Paulo we observed a significant drop in the trend from
June onwards, and a strong acceleration in the cases from November.

The estimated trend, seasonality and cycle components, and the associated 95% Bayesian
credibility interval for the state of Amazonas are presented in Figure 7.7, and Table 7.5, in
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Figure 7.3 – Posterior mean and 95% credibility intervals of Trend, Seasonal and Cycle de-
composition of deaths in Brazil - 02/25/2020 to 12/06/2020.

the Appendix, reports the estimated parameters. In the state of Amazonas, the first death by
COVID-19 was recorded on March 24th, on same day that isolation measures were imposed by
local authorities. Despite the North region being the last Brazilian region to register the first
case of COVID-19, the state of Amazonas was one of the first to collapse the health system.
Indeed, through the Figure 7.7 it is possible to see that the death trend in the state of Amazonas
reached the peak faster than the state of São Paulo, where the social measures were able at least
in part to flatten the epidemic curve and postpone the peak of death cases. This result may
be explained by some reasons. First, the state capital, Manaus, concentrates all the intensive
care units able to deal with the coronavirus disease in the state. With few roads and transport
mainly by rivers, many patients were not able to access proper health care, especially indigenous
people, who are particularly sensitive to COVID-19 and usually live in isolated areas, far from
doctors and access to medicines. In addition, the state of Amazonas presents a high social
vulnerability index, and one of the worst rates of hospital beds per population over country
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Figure 7.4 – Number of reported deaths and the estimated growth rate of the Trend in Brazil
- 02/25/2020 to 12/06/2020.

(GUERRA-SHINOHARA et al., 2020). Since the beginning of June, the state capital, and most
populous city in the state, established some relaxation strategies in the containment measures,
including reopening schools, which could have led to the observed increasing pattern in the
estimated trend component in the end of July (FERRANTE et al., 2020). A second local peak
is observed in August, followed by a reduction in the trend until mid-October, and thereafter
a further acceleration that persists until the end of October, and after that period a further
reduction in the trend, showing a behavior different from the pattern observed for Brazil.

The state of Amazonas is particularly interesting as it shows the difficulty in controlling the
covid epidemic. According to the estimates presented in Buss et al. (2020), about 76% of the
population of Manaus, the capital of Amazonas, had already been infected until October 2020,
and even so the epidemic had not been fully controlled, showing that the proportion number
of infected people required the existence of a herd immunity is quite high. The general trend
of declines observed since November may indicate the start of herd immunity, since the trend
contrasts with the acceleration pattern in the rest of Brazil. In addition, in Figure 7.8, it is
possible to observe the great heterogeneity in the rates of infection growth in this state, showing
the complexity in the transmission patterns of COVID-19.

In order to show the model’s ability to fit the death cases, we plotted the observed number
of deaths by COVID-19 and the predicted value of death count in each day given by the sum
of the estimated trend, seasonal, and cycle components, along with the 95% credibility interval
of this sum (see Figure 7.9), for Brazil and the states of São Paulo and Amazonas. The results
visually suggest that the model has a good fit.

7.3.2 Comparison between moving averages approach and the proposed model

We compared the performance of our proposed model in monitoring the long-term movements
of mortality of COVID-19 with the so-called moving average filter. The importance of the results
interpretation is evident, and this is why we need to properly highlight an important point about
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Figure 7.5 – Posterior mean and 95% credibility intervals of Trend, Seasonal and Cycle de-
composition of deaths in the state of São Paulo - 02/25/2020 to 12/06/2020.

the estimated values for the trend component. It is worth noting that the moving average filter is
a way to extract a trend from time series count data. On the other hand, in our model the trend
component can be interpreted as the mean of the log-transformed count data or the mean of the
log intensity. Due to the non-linearity of our model, the anti-log (exponential) transformation
is not suitable to obtain the original data. Therefore, in order to provide comparable results, we
plotted (see Figure 7.10) the moving average of the log-transformed data (green line) along with
the estimated trend component (red line; posterior mean and 95% Bayesian credibility interval)
and the observed log-transformed count data (blue line).

As discussed above, one of the most advantages of our proposed model is the ability to
extract a smoother trend component with reduced residual autocorrelations due to the inclusion
of the seasonal and cycle components. Based on the comparison between the moving average
filter and the estimated trend component from our proposed model, it is possible to see why is
important to add the seasonality and cycle components in estimating a trend that really reflects
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Figure 7.6 – Number of reported deaths and the estimated growth rate of the Trend in the
state of São Paulo - 02/25/2020 to 12/06/2020.

the permanent patterns in COVID-related deaths. The cycle component, which corresponds to a
second-order autogressive structure, is a parsimonious way of incorporating the transient effects
induced by the contamination mechanism generated by the case accounting structure. Also, it
is useful to capture local, non-persistent patterns in the data, isolating long-term effects. These
two components allow a more robust estimation of the trend component, avoiding the greatest
fluctuation observed in the trend estimation given by the moving average.

Additionally, it is important to note that the cycle and seasonal components play important
roles by adding additional robustness to days with large atypical patterns in the reported data,
which normally correspond to the date when adjustments are made for unreported deaths in past
periods. For example, looking at Figure 7.8 containing deaths for the state of Amazonas, we can
see two dates with aberrant numbers of deaths (09/02/2020 with 158 deaths and 01/10/2020
with 117 deaths). These dates correspond to adjustments where all unreported deaths in the
previous months were added, and thus are observations from much earlier periods that do not
correspond to current death patterns. The model captures these atypical days through the
cycle component, without changing the trend estimation, as opposed to what happens with the
moving average estimator, which is quite sensitive to this form of contamination, as seen in
subfigure (c) of Figure 7.10. This highlights the robustness properties of the model proposed in
this work to recover the trend in death patterns related to COVID-19.

7.3.3 Spatio-Temporal Analysis

For the spatio-temporal analysis we used the same data source and the same sample period
as Section 7.3.1, using a state level aggregation of the death data related to COVID-19. The
results of the estimation of this model are shown in Table 7.6 in the Appendix, and the estimated
trend, seasonality and cycle components are shown in Figure 7.11. Note that the components
are now estimated estimated with an adjustment for the size of the population in each region,
which corresponds to exposure in the Poisson process. To recover the specific effect of the
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Figure 7.7 – osterior mean and 95% credibility intervals of Trend, Seasonal and Cycle decom-
position of deaths in the state of Amazonas - 02/25/2020 to 12/06/2020.

component for each state, it is necessary to multiply by the size of the population. We can
observe that the spatio-temporal model allows to recover a smoother trend component compared
to those obtained in univariate models, indicating that the spatial component captures part of
the irregularity observed in the data on death by COVID-19. The trend estimated by this
model indicate a general peak about the end of July, and also indicates the existence of a new
acceleration (the "second wave") from the second week of November. The seasonality and cycle
components are consistent with the patterns observed in the aggregated data for the whole
country.

Although the spatio-temporal model presented above allows a useful recovery of the general
patterns in the dynamics of deaths related to COVID-19 in Brazil, the assumption of common
components for all Brazilian states is a very restricted assumption. The Brazilian regions have
different dates of onset of contagion, and also very different dynamics over time. To avoid these
restrictions, and still maintain a relatively parsimonious model, we performed a new estimation
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Figure 7.8 – Number of reported deaths and the estimated growth rate of the Trend in the
state of Amazonas - 02/25/2020 to 12/06/2020.

of the spatial model allowing individual components of trend, seasonality and cycle for each
region of the country, that is, components for the North, Northeast, Midwest regions, Southeast
and South, using the regional division of the country used by Instituto Brasileiro de Geografia
e Estatística (IBGE).

The parameters estimated in this version with individual components for the Brazilian re-
gions are shown in Table 7.1. Figures 7.12, 7.14 and 7.15 show the components of trend,
seasonality and estimated cycles for each region of Brazil in this model. In Figure 7.16 in the
Appendix we also show the posterior mean of the spatial effects for two different dates in the
sample, illustrating the evolution of the spatial dynamics in deaths related to COVID. Again, the
spatio-temporal model makes it possible to recover trend components with greater smoothness
than univariate models, indicating the importance of the process of spatial dependence in the
dynamics of COVID-19. The regional components of trend also seem to confirm the patterns
observed for the number of deaths in Brazil. There seems to be a reduction in the trend of
deaths for the Southeast, South and Northeast regions from the end of July, and also a new
acceleration from November.

As the latent components in this formulation are formulated in terms of exposure, that is,
the number of inhabitants in each region, it is not so easy to directly interpret the estimated
trend value. For a more direct interpretation, we carried out a transformation of the trend
towards the number of daily deaths per million inhabitants, that is, assuming an exposure of
1,000,000 for each trend. The trend in daily deaths per million inhabitants per region is shown
in the Figure 7.13. We can observe the rapid peak that was reached in the North, which reflects
the high number of deaths observed in Amazonas in May, and then the rapid reduction and
the new acceleration observed at the end of the analyzed sample. Another notable pattern is
the high rate of deaths in the Center-West region, which reflects the number and acceleration
of cases and deaths in the Federal District, a region with a higher population density. For the
Southeast, South and Northeast regions, the pattern is more similar, indicating a acceleration



198

0

500

1000

1500

2000

20/02 12/03 02/04 23/04 14/05 04/06 25/06 16/07 06/08 27/08 17/09 08/10 29/10 19/11 10/12

D
e

a
th

s

Fitted and Obs Fitted Obs

(a) Brazil

0

500

1000

20/02 12/03 02/04 23/04 14/05 04/06 25/06 16/07 06/08 27/08 17/09 08/10 29/10 19/11 10/12

D
e

a
th

s

Fitted and Obs Fitted Obs

(b) São Paulo

0

100

200

300

400

12/03 02/04 23/04 14/05 04/06 25/06 16/07 06/08 27/08 17/09 08/10 29/10 19/11 10/12

D
e

a
th

s

Fitted and Obs Fitted Obs

(c) Amazonas

Figure 7.9 – Predicted values and observed deaths - Brazil, São Paulo and Amazonas -
02/25/2020 to 12/06/2020.

in the death rate at the end of the analyzed sample.
The seasonal components (Figure 7.14) are quite different across regions, which is probably

reflecting different patterns of occurrence and also methods of accounting for cases and deaths.
The cycle (Figure 7.15) components show a little present cycle at the beginning of the sample,
which is expected due to a limited number of cases, but a greater relative importance at the
end of the sample, after the acceleration in the cases. We can also analyze these components by
the estimated autoregressive coefficients. In Table 7.1 we have the first and second order partial
correlation coefficients for each region, and we can observe a variety of patterns in these estimated
coefficients. The second-order autoregressive component seems to have a clear interpretation
of the cyclical component for the Southeast, North and Northeast regions, while in terms of
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Figure 7.10 – Predicted Values - Estimated trend and moving average filter for the log-
transformed count data - - 02/25/2020 to 12/06/2020.

magnitude it seems less important for the South and Midwest regions.
We can compare the models with common components and regional components using infor-

mation criteria. In Tables 7.6 and 7.1 we report two common information criteria for Bayesian
estimates. Deviance Information Criterion (DIC) and Widely Applicable Information Criterion
(WAIC), which is a generalized version of AIC. By the two criteria the model with regional com-
ponents is selected as the most suitable model. This result indicates the existence of a relevant
heterogeneity in covid-19 standards in Brazil.

We compared some model fit measures for all models analyzed in this work, which allows
to analyze especially the importance of the spatial component in the parameterization of the
models, as well as the effects in the adoption of specific components of trend, seasonality and
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Figure 7.11 – Posterior mean and 95% credibility interval of Trend, Seasonal and Cycle de-
composition - Spatio-Temporal model with common trends, seasonal and cycle
components - 02/25/2020 to 12/06/2020. Note: Components estimated with
the adjustment for the size of the population in each region (exposure).

cycle for each region. Table 7.2 shows the mean error (ME), root mean squared error (RMSE)
and the mean absolute error (MAE) of univariate models and space-time models, using the pos-
terior median as the point measure of model fit. We also built the specific adjustment measures
for the states of São Paulo and Amazonas, obtained by the models with spatial components, for
comparison with the adjustment of the time series models.

An important first result is that the fit of spatio-temporal models is clearly superior to that
of univariate models of time series in all metrics. Note that this gain reflects the importance
of inter-state transmission patterns in the COVID-19 dynamics. Regarding the inclusion of
specific components for regions, we can see that in general these specific components lead to a
general reduction in the mean error term, but are slightly worse in terms of RMSE and MAE
for some regions, which indicates a possible overparameterization of the model and the presence
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Table 7.1 – Estimated parameters of deaths reported in Brazil - Spatio-temporal model with
region specific trend, seasonal and cycle components.

Mean SD 0.025quant 0.5quant 0.975quant Mode
Precision for trend southeast 1.68e4 1257.446 1.46e4 1.67e4 1.95e4 1.65e4
Precision for trend south 4.94e3 336.875 4.29e3 4.94e3 5.61e3 4.95e3
Precision for trend north 1.65e4 1186.588 1.41e4 1.65e4 1.88e4 1.66e4
Precision for trend northeast 4.80e4 4829.782 4.10e4 4.72e4 5.95e4 4.46e4
Precision for trend center-west 3.05e4 3986.805 2.45e4 2.98e4 3.99e4 2.80e4
Precision for seas southeast 2.43e2 18.723 2.09e2 2.42e2 2.82e2 2.39e2
Precision for seas south 2.28e3 163.394 1.96e3 2.28e3 2.60e3 2.29e3
Precision for seas north 1.11e4 1284.404 8.37e3 1.12e4 1.32e4 1.18e4
Precision for seas northeast 1.27e5 9207.029 1.12e5 1.26e5 1.48e5 1.24e5
Precision for seas center-west 5.62e3 421.451 4.92e3 5.58e3 6.56e3 5.45e3
Precision for cycle southeast 3.21e1 2.927 2.65e1 3.20e1 3.80e1 3.20e1
PACF1 for cycle southeast 1.47e−1 0.037 7.30e−2 1.47e−1 2.20e−1 1.47e−1
PACF2 for cycle southeast −1.24e−1 0.034 −1.92e−1 −1.23e−1 −6.00e−2 −1.20e−1
Precision for cycle south 3.45e1 2.481 3.02e1 3.43e1 3.99e1 3.36e1
PACF1 for cycle south 1.16e−1 0.034 5.10e−2 1.16e−1 1.84e−1 1.13e−1
PACF2 for cycle south 4.50e−2 0.036 −2.00e−2 4.30e−2 1.19e−1 3.60e−2
Precision for cycle north 1.54e1 1.449 1.31e1 1.52e1 1.88e1 1.47e1
PACF1 for cycle north 4.83e−1 0.034 4.23e−1 4.80e−1 5.55e−1 4.69e−1
PACF2 for cycle north −3.30e−1 0.030 −3.91e−1 −3.29e−1 −2.72e−1 −3.25e−1
Precision for cycle northeast 4.07e2 28.659 3.57e2 4.05e2 4.69e2 3.99e2
PACF1 for cycle northeast 7.49e−1 0.027 7.06e−1 7.45e−1 8.07e−1 7.31e−1
PACF2 for cycle northeast −2.70e−2 0.098 −2.32e−1 −2.00e−2 1.51e−1 5.00e−3
Precision for cycle center-west 2.37e1 2.481 1.99e1 2.33e1 2.95e1 2.22e1
PACF1 for cycle center-west 6.10e−2 0.042 −2.90e−2 6.40e−2 1.34e−1 7.60e−2
PACF2 for cycle center-west −2.41e−1 0.035 −3.04e−1 −2.43e−1 −1.69e−1 −2.50e−1
Precision for CAR 4.81e−1 0.013 4.57e−1 4.81e−1 5.08e−1 4.79e−1
Group Φ 8.00e−1 0.006 7.88e−1 8.00e−1 8.12e−1 8.00e−1
Deviance Information Criterion (DIC) 40003.80
Watanabe-Akaike information criterion (WAIC) 40265.38

of possible common trends.

7.4 Conclusions

The methods proposed in this work are based on hierarchical formulations using Bayesian
inference methods for time series and spatio-temporal processes. In particular, we proposed
methods to estimate the trend in the deaths by COVID-19, through trend-cycle decomposition
for counting processes with latent components, which were applied for the total number of
deaths in Brazil and for the states of São Paulo and Amazonas. In addition, the estimated
trend component was compared to the empirical analysis based on moving averages. In order
to achieve the main goal, we used the BRASIL.IO daily data series on deaths by COVID-19 in
Brazil and in the states of São Paulo and Amazonas, from 02/25/2020 to 12/06/2020.

The use of Bayesian inference methods is especially useful in situations such as the spreading
a new epidemic with transmission, latency and mortality characteristics that are not well known.
The hierarchical formulation reflects the process of information accumulation in time and space,
where the posterior distribution in a period t serves as a prior for the next period, and also the
use of information from neighbors as a prior structure to make inference about the parameters
in a certain region. In a situation where there is little prior information on essential aspects
of the problem, the incorporation of learning in time and space through a Bayesian mechanism
allows for the efficient use of the new information available, which is essential for the emergency
formulation of health and prevention policies, in a general environment of information of dubious
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Figure 7.12 – Posterior mean and 95% credibility interval of Trend - Spatio-temporal model
with region specific trends, seasonal and cycle components - 02/25/2020 to
12/06/2020. Note: Components estimated with the adjustment for the size of
the population in each region (exposure).

quality or propagation of false information or without a scientific basis. Bayesian learning is
essential in this context as a basis for evidence and data-based policies.
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Figure 7.13 – Region-specific Trends in Deaths by day by Million inhabitants - 02/25/2020
to 12/06/2020.

The results for Brazil showed that our proposed models were able to capture the long-term
movements in death cases, showing an accelerated growth pattern until early April, where the
pace of the trend has slowed down, reaching the peak in July, suggesting that the isolation
measures taken by authorities might have been partly effective to change the growth of the
death trend and postpone the peak. However, the observed sustainable high peak between May
and August provided evidence that the social distancing measures might have not been enough
to slow down the spread of the COVID-19, which can be related to the absence of political
actions at federal level. The model also captured a negative trend in the number of new deaths
until the beginning of November 2020, and a possible “second wave” after this period, with a new
accelerated growth in the trend, which may be related to the electoral period and an excessive
relaxation of social distance measures by local authorities. The results of the estimated trend
component for the states of São Paulo are similar to those observed for Brazil. For the state
of Amazonas, the estimated trend reached the peak faster than the previous analyzed states,
which may be due to the lack of health care infrastructure and the difficult of some patients to
access proper heath care, concentrated in the state capital, Manaus.

Additionally, the results obtained indicate that the trend component estimated by the uni-
variate and spatio-temporal models is a more robust indication of the general patterns in the
occurrence of deaths related to COVID-19, overcoming the existing limitations in simple smo-
othing measures such as the use of moving averages, which are not robust to the measurement
errors introduced by the case accounting mechanisms. The models also obtained a very precise
adjustment for the number of occurrences, especially in spatio-temporal models with the incor-
poration of spatial propagation patterns. These models also provided a smoother component of
trend, when compared to univariate models, which can be explained by the greater information
available in the estimation process, using all the information available to Brazilian states, which
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(c) Seasonal Northeast
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(d) Seasonal North
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(e) Seasonal Center-West

Figure 7.14 – Posterior mean and 95% credibility interval of Seasonal - Spatio-temporal model
with region specific trends, seasonal and cycle components - 02/25/2020 to
12/06/2020. Note:Components estimated with the adjustment for the size of
the population in each region (exposure).

helps to mitigate the measurement error problem.
We believe that our work contributes to the enormous effort of studying and analyzing
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Figure 7.15 – Posterior mean and 95% credibility interval of Cycle - Spatio-temporal model
with region specific trends, seasonal and cycle components - 02/25/2020 to
12/06/2020. Note: Components estimated with the adjustment for the size of
the population in each region (exposure).

the impacts of COVID-19 in Brazil, complementing several other initiatives of epidemiological,
statistical and computational modeling, such as projects Brasil.IO (<https://brasil.io/dataset/

https://brasil.io/dataset/covid19/caso_full/
https://brasil.io/dataset/covid19/caso_full/
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Table 7.2 – Model Fit Statistics

ME RMSE MAE
Univariate Models
Brazil -0.5236 5.7872 4.0368
SP -0.6094 1.9461 1.4112
AM -0.2586 1.7920 1.2175
Spatio-temporal Model Common Components
Brazil −1.18e−6 2.3204 1.4613
Southeast -0.0004 3.5379 2.3078
South 0.0124 1.5199 1.0590
Northeast 0.0008 2.0400 1.3224
North 0.0026 1.8968 1.2172
Center-West -0.0152 2.4802 1.6213
SP 0.0040 2.2366 1.4146
AM 0.0044 2.2926 1.4384
Spatio-temporal Region-Specific Components
Brazil −9.79e−7 2.4051 1.5297
Southeast 1.48e−7 3.5985 2.4151
South −2.03e−6 1.5589 1.1067
Northeast −1.41e−6 2.2406 1.4285
North −6.09e−7 2.0050 1.2895
Center-West −1.00e−6 2.3820 1.5754
SP 0.0036 2.3341 1.4881
AM 0.0047 2.3669 1.5019

covid19/caso_full/>), Covid 19 Analytics (<https://covid19analytics.com.br/>), COVID-19
Brasil (<https://ciis.fmrp.usp.br/covid19/>), MonitoraCovid-19 (<https://bigdata-covid19.icict.
fiocruz.br/>) and several other initiatives of great value for Brazilian society.

7.5 Appendix

7.5.1 Estimated Posterior Distribution of Parameters

Table 7.3 – Estimated parameters of deaths reported in Brazil

Mean SD 0.025quant 0.5quant 0.975quant Mode
Precision for trend 10147.060 3996.089 4447.125 9454.153 19872.796 8201.470
Precision for seasonality 2017.824 803.563 881.916 1874.032 3987.542 1618.580
Precision for cycle 38.444 4.970 29.407 38.212 48.877 37.840
PACF1 for cycle 0.290 0.067 0.156 0.291 0.421 0.290
PACF2 for cycle -0.204 0.078 -0.351 -0.206 -0.047 -0.210

https://brasil.io/dataset/covid19/caso_full/
https://brasil.io/dataset/covid19/caso_full/
https://brasil.io/dataset/covid19/caso_full/
https://covid19analytics.com.br/
https://ciis.fmrp.usp.br/covid19/
https://bigdata-covid19.icict.fiocruz.br/
https://bigdata-covid19.icict.fiocruz.br/
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Table 7.4 – Estimated parameters of deaths reported in the state of São Paulo

Mean SD 0.025quant 0.5quant 0.975quant Mode
Precision for trend 10959.712 4710.471 4245.146 10164.461 2.24e4 8622.798
Precision for seasonality 6.625 30.858 15.651 37.878 1.28e2 27.062
Precision for cycle 5.058 1.085 3.119 5.007 7.350 4.933
PACF1 for cycle -0.002 0.086 -0.170 -0.003 1.67e−1 -0.004
PACF2 for cycle -0.126 0.085 -0.292 -0.127 4.20e−2 -0.126

Table 7.5 – Estimated parameters of deaths reported in the state of Amazonas

Mean SD 0.025quant 0.5quant 0.975quant Mode
Precision for trend 18777.970 2.28e4 3222.621 11039.803 8.43e4 5523.388
Precision for seasonality 590.342 5.47e2 150.322 421.364 2.04e3 259.600
Precision for cycle 4.812 6.52e−1 3.655 4.771 6.210 4.692
PACF1 for cycle -0.069 1.05e−1 -0.269 -0.071 1.41e−1 -0.076
PACF2 for cycle 0.020 8.70e−2 -0.146 0.018 1.94e−1 0.010

Table 7.6 – Estimated parameters of deaths reported in Brazil - spatio-temporal model with
common trend, seasonal and cycle components.

Mean SD 0.025quant 0.5quant 0.975quant Mode
Precision for trend 30562.848 8148.802 16735.991 29929.161 48350.874 28689.914
Precision for seasonality 12034.725 3292.864 7366.350 11413.624 20093.088 10209.154
Precision for cycle 67.156 9.515 51.093 66.207 88.328 64.095
PACF1 for cycle 0.4308 0.052 0.334 0.439 0.537 0.440
PACF2 for cycle -0.559 0.057 -0.657 -0.563 -0.436 -0.575
Precision for CAR 0.439 0.019 0.405 0.437 0.481 0.431
Group Φ 0.785 0.010 0.763 0.785 0.803 0.787
Deviance Information Criterion (DIC) 40015.16
Watanabe-Akaike information criterion (WAIC) 40188.55

7.5.2 Spatial random effects

As an illustration of the dynamics of spatial random effects, we show in Figure ?? the effects
estimated by the model with the regions specific components for the days 04/26/2020 and
08/14/2020. The variation observed in the two dates shows the importance of using a dynamic
structure for the spatial effects in the modeling of epidemic processes.

7.5.3 SEIR Model with measurement error

We use a Susceptible-Exposed-Infective-Resistant (SEIR) model to generate realizations of
an epidemic model calibrated to reproduce some essential aspects of the COVID-19 epidemic.
We use the following structure, based on Liu et al. (2020), to generate a solution for the SEIR
model:
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Figure 7.16 – Posterior mean of Spatial Random Effects - Spatio-temporal model with region
specific trends, seasonal and cycle components - 26/04/2020 and 26/04/2020

dS(t)/dt = −βI(t)S(t)/N

dE(t)/dt = βS(t)I(t)/N − δ(t)E(t− 7)

dI(t)/dt = δ(t)E(t− 7)− γ(t)I(t− 10)− η(t)I(t− 10)

dR(t)/dt = γ(t)I(t− 10)

dF (t)/dt = η(t)I(t− 10)

(7.3)

S(t) is the number of susceptible individuals in the population in period t, E(t) is the
number of exposed individuals, I(t) the number of infected, R(t) the resistant individuals and
F (t) the number of fatalities. The total number of individuals is N , given by the sum of the
individuals in all states. β is a parameter which controls the average number of exposed cases
that are generated by one infected person. The parameter δ is the probability of an exposed
individual migrate to the infected state. γ is the parameter for the probability of transition
of a infected individual to the recovered state, and η the probability of the infected individual
to migrate to fatality state. We assume the values 1.3629, 0.0262,0.01,0.004 for β, γ, δ, η, and
a total population size of 10 million of inhabitants. The model assumes a period of 7 days
between exposure and infection, and 10 days between recovery or fatality after infection. The
model is simulated for 180 periods, and we focus on the number of fatalities generated by the
model. As commented in the main text, we generated a measurement error process assuming
that fatalities on Saturday and Monday has a proportion, drawn from a uniform distribution
with parameters (.5, .8), of data with delayed disclosure, on the following Monday and Tuesday.
We generated 10,000 replications of the measurement error process, and calculated the ACF and
PACF functions for the difference between the true number of fatalities and the reported daily
number of fatalities, which is the seasonal effect induced by the measurement error process. For
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the simulations of the SEIR model we use the deSolve package from the r-project.org software.
In particular, we use the dede function, which is a solver for differential equations with delay.

7.5.4 Integrated Nested Laplace Approximations

The INLA method proposed by Rue, Martino and Chopin (2009) is a methodology based on
deterministic Laplace approximations to perform accurate and efficient approximations on the
class of Bayesian hierarchical models that can be represented as Gaussian Markov random fields
(GMRF). See Rue and Held (2005c) for a detailed discussion on this class of models.

A latent GMRF model is a hierarchical model with the first stage/level defining a conditional
distribution for the observed variable y, usually assumed to be conditionally independent given
the latent factors x and some additional (hyper)-parameter θ, in the form:

π(y|x, θ) =
∏
j

π(yj |xj , θ), j ∈ J (7.4)

with yj for j ∈ J observed values and J a subset of the latent factors; and π(y|x, θ) defining the
likelihood function of observed variables. The latent (hyper)-parameters constitutes the second
stage in the hierarchical formulation:

xi = Offseti +
ηf−1∑
k=0

ωkifk(cki) + zTi β + ϵi, i = 0, . . . , ηx − 1 (7.5)

The offset term is a prior known component to be included in the linear prediction; for
example, in the Poisson likelihoods the offset is the exposure effect. ωk are known weights for
each observed data point in the sample, and fk(cki) represents the effect of covariates with value
cki for each observation i; β are the regression parameters of linear covariates zi. Finally, the
third and last stage of the model consists of the prior distribution for the hyperparameters θ.

The INLA approach obtains accurate approximations using sequential Laplace approxima-
tions in the mode of the posterior distributions of the latent factors, written as:

π(xi|Y ) =

∫
π(xi|θ, Y )π(Θ, Y )dθ (7.6)

and for the the marginal posterior distribution of (hyper)parameters:

π(θj |Y ) =

∫
π(θ|Y )dθ_j (7.7)

The element θ_j denotes the vector θ with its jth element omitted. The INLA method is
realized in three main steps. The first is an approximation to the full posterior distribution
π(θ|y) by a Laplace approximation in the mode of the distribution, where the mode is found
using a numerical optimization algorithm. The second step is an approximation to the full
conditional distributions π(xi|θ, y) for specific values of θ. The last step of the approximation
gets an approximation for the marginal posterior distributions in (7.6) and (7.7) by combining
the two approximations in the previous steps and integrating out the irrelevant factors. This
method was introduced in Rue, Martino and Chopin (2009), and extended to several classes
of models. Surveys of recent developments in this methodology for spatial modelling can be
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found at Bakka et al. (2018), a discussion on the use on log Gaussian Cox processes for discrete
domains in Illian, Sorbye and Rue (2012), and textbook references in Blangiardo and Cameletti
(2015) and Gomez-Rubio (2020).
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8 ESTIMATING SPATIOTEMPORAL PATTERNS OF DEATHS BY COVID-
19 OUTBREAK ON A GLOBAL SCALE

Fernanda Valente Márcio Laurini

ABSTRACT

Our main objective is to estimate the trend of deaths by COVID-19 on a global scale, considering
the six continents. The study design was a retrospective observational study conducted using
the secondary data provided by the Our World in Data project on a public domain. This study
was conducted based on worldwide deaths by COVID-19 recorded for the Our World in Data
project from February 29th, 2020 to February 17th, 2021. Estimating the trend in COVID-19
deaths is not a trivial task due to the problems associated with the COVID-19 data, such as
the spatial and temporal heterogeneity, observed seasonality, and the delay between the onset
of symptoms and diagnosis, indicating a relevant measurement error problem and changing the
series’ dependency structure. To bypass the aforementioned problems, we propose a method to
estimate the components of trend, seasonality, and cycle in COVID-19 data, controlling for the
presence of measurement error and considering the spatial heterogeneity. We used the proposed
model to estimate the trend component of deaths by COVID-19 on a global scale. The model
was able to capture the patterns in the occurrence of deaths related to COVID-19, overcoming
the problems observed in COVID-19 data. We found compelling evidence that spatio-temporal
models are more accurate than univariate models to estimate the patterns of the occurrence of
deaths. Based on the measures of dispersion of the models’ prediction in relation to observed
deaths, it is possible to note that the models with spatial component are significantly superior
to the univariate model. The findings suggested that the spatial dynamics have an important
role in the COVID-19 epidemic process since the results provided evidence that spatio-temporal
models are more accurate to estimate the general patterns of the occurrence of deaths related
to COVID-19.

Keywords: Time Series Decomposition; Spatio-temporal Point Process; COVID-19

VALENTE, Fernanda; LAURINI, Marcio Poletti. Estimating spatiotemporal patterns of deaths
by COVID-19 outbreak on a global scale. BMJ open, v. 11, n. 8, p. e047002, 2021.

8.1 Introduction

On March 11, 2020, the World Health Organization (WHO) declared the coronavirus disease
(COVID-19) outbreak as a pandemic, which is currently a public health threat in more than
200 countries. Since there is no effective pharmaceutical treatments available to deal with the
COVID-19 (DONG; HU; GAO, 2020; SANDERS et al., 2020), some public health measures
have been proposed by countries to cope with the rapid spread of the COVID-19, such as social
distancing, self-quarantine and lockdown. However, preventing the transmission depends on
how well we can assess the number of infected people. Statistical modeling is helpful to obtain
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the trend component and better understand the evolution of the confirmed cases and deaths of
COVID-19, and also provide key information about the effects of non-pharmaceutical measures
to control the transmission. Regarding on the methods for trend estimation, there are several
different methods reported in the literature, which differ in their complexity and interpretability.
The most prevalent trend estimation methods are model-based trend extraction, nonparametric
filtering, singular spectrum analysis and wavelets (ALEXANDROV et al., 2012).

To estimate COVID-19 trends, some of aforementioned approaches have been applied to the
current outbreak (LI; FENG; QUAN, 2020; GUPTA; PAL, 2020; CEYLAN, 2020; PERONE,
2020). However, it should be noted that despite the great variety of papers dedicated to study
the long-movements of COVID-19, there is little understanding about the spread pattern of
COVID-19 in a global scale. In addition, it is worth noting some problems related to COVID-19
data. First, is observed a delay between the onset of symptoms and accurate diagnosis, which
may vary from country to country, depending on the local government’s strategy (CONTRERAS
et al., 2020). Also, there are unconformities in the report of new deaths which are counted on
the day that are included in the system, instead of the actual day of the death (RUSSELL et
al., 2020). These problems create a relevant measurement error problem, changing the series’
dependency structure. In addition, the delays are also related to the lack of personnel available
to report cases on weekends, which creates a seasonality structure in the cases and death reports,
generating an additional aggregation problem on the time series (SKIERA et al., 2020).

To bypass these problems, we propose to estimate the long-term movements of deaths by
COVID-19 in a global scale through a structural decomposition (HARVEY, 1990). The main
idea is to decompose the temporal variability observed in the data into trend, seasonal and cycle
components, which allows to identify permanent movements, and cyclical and seasonal effects,
in the presence of measurement errors. In addition, since we are interested to assess the spread
pattern of COVID-19 in a global scale, the importance of a spatial component is undeniable,
since the use of this information is important in estimating the trend and cycle components, due
to the nature of transmission in an epidemic process, with spatial spread dynamics. In the light
of this, we include a component that considers the spatial heterogeneity among different areal
unities in the study of COVID-19 evolution. We propose two different spatial formulation which
relies on the definition of neighborhoods. The first is based on regions that present common
borders, while the second includes information of air transport network. Regarding this context,
the contribution of this paper is to explore a Bayesian version of a trend-cycle decomposition in
combination with count distributions, taking into account the spatial heterogeneity (VALENTE;
LAURINI, 2020), in the task of estimating the permanent movements of deaths by COVID-19
outbreak in a global scale.

8.2 Material and Methods

In this paper, we present the results of estimating the proposed model for COVID-19-
related death data for countries collected by the Our World in Data project (available at
https://ourworldindata.org/covid-deaths), using daily information on new deaths for the pe-
riod from February 29th, 2020, until February 17th, 2021. Therefore, the study design was a
retrospective observational study conducted using secondary data on a public domain. Patients
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and/or the public were not involved in the design, or conduct, or reporting, or dissemination
plans of this research. We use the countries on that basis that contained information on the total
population, corresponding to a total of 205 countries. Also, we use the continental division of
countries as a region definition, and thus k=6, corresponding to the continents of Asia, Europe,
South America, North America, Africa, and Oceania.

8.2.1 Patient and Public Involvement Statement

No patient involved.

8.2.2 Statistical Model

The proposed model is a generalization of the Bayesian model introduced by Valente and
Laurini (2020) for estimating the COVID-19 trend for data in Brazil, controlling for problems of
measurement error in the construction of death statistics. The model is based on a generalized
decomposition of trend, seasonality and cycle components incorporating a time-varying spatial
component. The spatial component is based on the Conditional Autoregressive (CAR) struture
(BESAG, 1974), based on the information of occurrences in some definition of neighborhood
to formulate prior information for the number of occurrences in the region of interest. The
structure of the model can be summarized by the equations:

Y(i,t) = Poisson(exp(λ(i,t)E),

λ(i,t) = µ(k,t) + s(k,t) + c(k,t) + ξ(i,t)

∆2µ(k,t) = ηµ(k,t)

s(k,t) = s(k,t−1) + s(k,t−2) + . . .+ s(k,t−m) + ηs(k,t)

c(k,t) = θ1c(k,t−1) + θ2c(k,t−2) + ηc(k,t)

ξ(i,t) | ξ(j,t),i ̸=j,τ ∼ N

 1
ni

∑
i∼j

ξ(j,t),
1
τni


ξ(j,t) = Φξ(j,t−1) (8.1)

where Y(i,t) is the total number of occurrences (deaths) in region i and time t. E is the exposure
offset, controlling for the total population regarding the cases in Y(i,t). This offset allows to
use common components for regions with different population size. It is important to highlight
that the used database contains daily information on deaths by COVID-19 of 205 countries,
thus the region i corresponds to the country level. However, to estimate the latent factors, we
define the region k, which contains a certain group of individuals i. In particular, we define
k corresponding to each of the six continents, namely, Asia, Europe, Oceania, Africa, North
America, and South America, where each continent k contains a certain group of countries i.
In this sense, the µ(k,t) component captures the general trend of the process for a region k for
some definition of region, containing a group of individuals i, and representing the average level
of occurrences in period t for the region k. We assume a second-order random walk (RW2)
structure for the trend component. The RW2 is a flexible structure suitable for epidemics with
rapid spread, which is able to model the evolution of the average number of cases in fast-growing
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processes, since it assumes that both the average level and the rate of growth of the level are
non-stationary processes (VALENTE; LAURINI, 2020). Also, it is worth noting that this model
has a non-parametric nature, since it can be formulated as a spline model, and thus suitable for
a new epidemic whose parametric case structure is unknown.

The model also contains region specific seasonal (s(k,t)) and cycle (c(k,t)) components. These
two components are used to capture periodic components in the series of deaths related to
COVID-19, where we assume that these components are transient, i.e., have a sum equal to
zero. As discussed by Valente and Laurini (2020), these components are a way of controlling
the effects of measurement errors introduced by the mechanism for disclosing the number of
cases and deaths related to COVID-19, where the total number of cases reported on a certain
day corresponds to the total recorded in the day, instead of the exact date of the diagnosis
confirmation or death. Using simulations of a SEIR model, the authors show that this accounting
mechanism introduces patterns similar to seasonality and cycle effects in the series of cases and
deaths. The s(k,t) component represents a sum of stochastic components, with the number of
components given by the periodicity of the series and with a sum-to-zero restriction. The c(k,t)

component is represented by a second-order autoregressive process with possibly complex roots,
which permits to capture cyclical components, also assuming a restriction of zero sum. It is
worth noting that the cyclic component also allows us to capture other patterns of periodic
dependency in the series, such as transmission waves without permanent effects in the series.

The ηµ(k,t), ηc(k,t), and ηs(k,t) components are nonspatial independent innovations with zero
mean Gaussian distributions with estimated precision (inverse of variances). ξ(i,t) is the spatial
random effect component, allowing to incorporate spatial variability in the occurrence rate, ni

is the number of neighbors of region i, and i ∼ j indicates that the two regions i and j are
neighbors. The CAR structure used defines a prior for the spatial effect in the region i given by
a Gaussian distribution with mean given by the average of the values of the spatial effects for
regions j that are neighborhood to region i, and variance controlled by a τ precision parameter
multiplied by number of neighbors. As the spatial variability in an epidemic process varies over
time, we assume that this component is also time varying. The dynamic formulation for the
spatial CAR is parameterized through an autoregressive structure, via a parameter Φ controlling
for the time dependence for this process.

The spatial formulation adopted in this paper depends on the definition of the neighborhood
structure. We use two definitions of neighborhood. The first is the spatial contiguity, i.e., two
regions are considered neighbors if there is a common border. The second formulation considers
not only the spatial contiguity but also an air transport network, which allows to incorporate
into the model the transmission mechanism given by the contact among passengers and air
transport crew between two countries. We detail the structure used in the air transport network
in the Supplementary Material.

The prior structure assumes log-gamma distribution for all precision components, with values
(1,5e-05) for the trend and seasonal components, and the spatial random effect. For the cycle
(AR(2) structure) component we use a penalized complexity prior (SIMPSON et al., 2017) for
the precision, with values (3,0.01), and for the first and second order partial autocorrelation
parameters we use penalized complexity priors with values (0.5, 0.5) and (0.5, 0.4). The prior
for the coefficient Φ is also a penalized complexity prior for the correlation parameter, with
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values defined as (3,0.01).
The resulting additive hierarchical structure allows us to perform a Bayesian inference proce-

dure within the Integrated Nested Laplace Approximations (INLA) approach (RUE; MARTINO;
CHOPIN, 2009), which provides accurate and efficient approximations on additive hierarchical
models that can be represented as Gaussian Markov Random Fields (RUE; HELD, 2005c). For
reasons of space we do not detail the INLA method here, which is widely discussed Rue, Martino
and Chopin (2009) and Valente and Laurini (2020).

8.3 Results

To estimate the trend of deaths by COVID-19 outbreak in a global scale, we performed
inference procedures based on the model described in Equation (8.1), considering three different
formulations. First, we estimated the parameters without the effects of the spatial component
(model M1, hereafter), where the estimated parameters are the precision of the trend (1/ηµ(k,t)),
seasonal (1/ηs(k,t)) and cycle (1/ηc(k,t)) parameters for Asia, Africa, Europe, North America,
South America, and Oceania, and the parameters of the second order autoregressive process of
the cycle (PACF1 and PACF2) for each continent. In the second and third formulation (M2 and
M3, respectively), we consider a time-varying spatial component, modelled as a spatial random
effect with a CAR structure with time dependency, where the estimated values at any given
region are conditional of neighboring values. The difference between models M2 and M3 is how
the neighborhood structure was defined. While in the model M2, the neighborhood structure
was constructed based on contiguity, using the territorial division, in the model M3 not only
contiguity was considered to define, but also information of an air transport network. In the
case of models M2 and M3, the estimated parameters also include the log precision parameter
τ , and parameter Φ of time dependency.

It is worth noting that the precision coefficients are not directly interpretable due to the
different scales of the latent components, but a higher precision indicates less variability of the
estimated latent component. A higher precision parameter indicates a smoother component or
with less temporal variability. In this case, the most direct interpretation is for the estimated
path of the latent component. The PACF1 and PACF2 components are the representations of the
first and second order autoregressive coefficients in terms of partial correlation coefficients, which
have some advantages in terms of computational representation, especially for the imposition of
the stationarity of the component that is important in the definition of the cyclic component.
The cycle components can be interpreted as the correlation between component in the period t

and t1 (PACF1) and t2 (PACF2), controlling for the other correlation placed in this specification.
We emphasize that the cycle component serves to capture the structures of transient dependence
in the series of deaths, which are generated by the component of measurement error or by the
composition of other non-permanent patterns in the series of observed deaths.

The results of the estimation of models M1, M2, and M3 are shown in Table 8.1. In order
to provide a better interpretation of the results, we plotted the estimated trend (see Figure
8.1), seasonality (see Figure 8.2) and cycle (see Figure 8.3) components for all six considered
continents, individually, considering the model M2. For reason of space only the estimated
components obtained with model M2 are shown in this paper, and the other results are available
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Figure 8.1 – Estimated Trends - Spatio-temporal model with region specific trends, seasonal
and cycle components (Model M2)

upon request from the authors.

Table 8.1 – Estimated parameters of deaths reported in worldwide – Models M1, M2, and
M3

Mean SD 0.025quant 0.5quant 0.975quant Mode
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Model without spatial component (M1)
Precision trend (Asia) 47065.94 1.71 × 104 22255.2 44171.67 8.86 × 104 38965.84
Precision trend (Europe) 18244.38 5.04 × 103 10229.5 17617.95 2.99 × 104 16431.35
Precision trend (Africa) 25340.83 9.38 × 103 11735.8 23766.84 4.80 × 104 20918.04
Precision trend (North America) 8287.84 2.39 × 103 4505.76 7995.11 1.38 × 104 7439.04
Precision trend (South America) 31740.07 1.24 × 104 13512.9 29788.63 6.14 × 104 26043.59
Precision trend (Oceania) 3631.98 1.67 × 103 1285.36 3340.43 7.72 × 103 2758.72
Precision seasonality (Asia) 37041.63 2.47 × 104 8771.08 31026.05 1.01 × 105 21071.69
Precision seasonality (Europe) 1480.08 5.50 × 102 695.52 1383.10 2.83 × 103 1211.25
Precision seasonality (Africa) 14441.12 1.08 × 104 3037.37 11564.34 4.29 × 104 7337.34
Precision seasonality (North America) 1904.25 6.96 × 102 889.36 1789.01 3.58 × 103 1579.57
Precision seasonality (South America) 2935.31 1.37 × 103 1126.92 2651.20 6.40 × 103 2174.77
Precision seasonality (Oceania) 16849.83 1.94 × 104 1802.66 11049.72 6.73 × 104 4780.55
Precision cycle (Asia) 61.37 5.57 51.09 61.14 7.30 × 101 60.71
PACF1 cycle (Asia) 0.04 7.00 × 10−2 -0.08 0.04 1.84 × 10−1 0.03
PACF2 cycle (Asia) -0.00 6.10 × 10−2 -0.12 -0.00 1.20 × 10−1 -0.00
Precision cycle (Europe) 74.31 8.67 58.55 73.88 9.26 × 101 73.10
PACF1 cycle (Europe) 0.116 7.60 × 10−2 -0.03 0.11 2.64 × 10−1 0.11
PACF2 cycle (Europe) -0.01 6.80 × 10−2 -0.14 -0.01 1.20 × 10−1 -0.00
Precision (Africa) 32.36 3.32 26.23 32.23 3.93 × 101 32.01
PACF1 cycle (Africa) 0.01 7.10 × 10−2 -0.12 0.01 1.56 × 10−1 0.01
PACF2 cycle (Africa) 0.04 7.20 × 10−2 -0.09 0.04 1.92 × 10−1 0.04
Precision cycle (North America) 43.92 4.60 35.43 43.74 5.35 × 101 43.45
PACF1 cycle (North America) 0.20 6.80 × 10−2 0.07 0.20 3.37 × 10−1 0.20
PACF2 cycle (North America) -0.03 6.70 × 10−2 -0.16 -0.03 1.02 × 10−1 -0.03
Precision cycle (South America) 20.57 1.89 17.05 20.51 2.45 × 101 20.41
PACF1 cycle (South America) -0.17 7.20 × 10−2 -0.31 -0.17 −3.30 × 10−2 -0.18
PACF2 cycle (South America) 0.12 6.50 × 10−2 -0.00 0.12 2.54 × 10−1 0.12
Precision cycle (Oceania) 6.37 1.75 3.53 6.18 1.04 × 101 5.81
PACF1 cycle (Oceania) 0.10 1.32 × 10−1 -0.16 0.10 3.55 × 10−1 0.11
PACF2 cycle (Oceania) -0.36 1.84 × 10−1 -0.68 -0.37 3.50 × 10−2 -0.41

Spatial model with Continent-specific trend, seasonal and cycle components (M2)
Precision trend (Asia) 1915.71 188.69 1601.40 1894.92 2337.89 1839.90
Precision trend (Europe) 2656.69 333.92 2066.33 2633.71 3375.65 2586.41
Precision trend (Africa) 6258.31 1048.8 4712.68 6076.86 8763.29 5635.08
Precision trend (North America) 2466.70 332.46 1857.12 2453.74 3160.46 2436.04
Precision trend (South America) 4711.42 698.15 3365.21 4716.52 6076.10 4777.84
Precision trend (Oceania) 2331.84 409.06 1748.52 2255.16 3321.72 2066.04
Precision seasonality (Asia) 1903.49 257.95 1460.44 1880.72 2470.37 1831.02
Precision seasonality (Europe) 1215.00 184.48 924.43 1189.27 1641.53 1128.18
Precision seasonality (Africa) 1898.14 265.92 1441.20 1874.79 2482.77 1824.65
Precision seasonality (North America) 2130.87 308.40 1566.84 2118.77 2773.61 2103.00
Precision seasonality (South America) 2463.52 466.22 1803.15 2374.75 3596.30 2162.72
Precision seasonality (Oceania) 2637.86 942.55 1603.34 2379.59 5126.21 1864.64
Precision cycle (Asia) 96.18 14.71 71.99 94.49 129.39 90.73
PACF1 cycle (Asia) 0.17 0.074 0.02 0.18 0.30 0.19
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PACF2 cycle (Asia) 0.027 0.07 -0.11 0.02 0.15 0.03
Precision cycle (Europe) 78.77 11.98 57.88 77.87 104.81 76.1
PACF1 cycle (Europe) 0.052 0.09 -0.13 0.05 0.23 0.06
PACF2 cycle (Europe) -0.23 0.10 -0.43 -0.22 -0.03 -0.21
Precision cycle (Africa) 65.88 9.91 48.99 64.97 87.78 63.03
PACF1 cycle (Africa) 0.024 0.08 -0.14 0.02 0.18 0.03
PACF2 cycle (Africa) -0.03 0.07 -0.17 -0.02 0.11 -0.02
Precision cycle (North America) 57.17 9.50 41.70 56.03 78.82 53.53
PACF1 cycle (North America) 0.08 0.08 -0.09 0.09 0.22 0.11
PACF2 cycle (North America) 0.14 0.08 -0.00 0.13 0.33 0.10
Precision cycle (South America) 47.60 9.04 32.82 46.56 68.15 44.41
PACF1 cycle (South America) -0.09 0.07 -0.24 -0.08 0.05 -0.07
PACF2 cycle (South America) 0.34 0.06 0.2 0.34 0.46 0.35
Precision cycle (Oceania) 45.55 6.95 32.58 45.40 59.72 45.40
PACF1 cycle (Oceania) 0.22 0.08 0.07 0.21 0.40 0.17
PACF2 cycle (Oceania) 0.00 0.08 -0.13 -0.00 0.17 -0.03
log τ 0.06 0.003 0.062 0.067 0.072 0.06
Group ϕ 0.96 0.002 0.957 0.96 0.963 0.96

Spatial model with Continent-specific trend, seasonal and cycle components - Air transport network (M3)
Precision trend (Asia) 4225.73 229.88 3747.12 4240.22 4640.09 4301.89
Precision trend (Europe) 2464.55 112.49 2249.92 2462.48 2691.35 2459.06
Precision trend (Africa) 5411.90 318.02 4733.93 5439.88 5957.38 5559.36
Precision trend (North America) 2287.83 110.09 2067.37 2290.43 2498.60 2303.33
Precision trend (South America) 4521.49 309.20 3851.89 4554.24 5031.37 4697.28
Precision trend (Oceania) 2484.95 119.96 2271.99 2476.21 2741.47 2450.54
Precision seasonality (Asia) 1963.97 93.72 1769.15 1969.62 2133.86 1993.57
Precision seasonality (Europe) 1356.31 63.77 1235.08 1355.02 1485.31 1352.74
Precision seasonality (Africa) 2401.57 124.52 2191.46 2388.59 2676.46 2348.16
Precision seasonality (North America) 2462.17 135.86 2173.94 2473.27 2698.28 2520.30
Precision seasonality (South America) 2238.56 110.55 2043.07 2230.27 2475.86 2205.89
Precision seasonality (Oceania) 1781.24 118.39 1526.03 1793.13 1978.95 1844.69
Precision cycle (Asia) 136.51 5.60 126.18 136.25 148.16 135.54
PACF1 cycle (Asia) 0.20 0.02 0.16 0.20 0.25 0.20
PACF2 cycle (Asia) 0.07 0.02 0.03 0.07 0.12 0.07
Precision cycle (Europe) 124.94 5.53 114.67 124.71 136.40 124.11
PACF1 cycle (Europe) 0.01 0.02 -0.03 0.01 0.05 0.01
PACF2 cycle (Europe) -0.06 0.02 -0.11 -0.06 -0.02 -0.06
Precision cycle (Africa) 104.27 4.74 94.81 104.36 113.40 104.81
PACF1 cycle (Africa) 0.09 0.02 0.04 0.09 0.14 0.08
PACF2 cycle (Africa) 0.03 0.02 -0.01 0.03 0.08 0.02
Precision cycle (North America) 95.80 4.49 86.84 95.89 104.45 96.36
PACF1 cycle (North America) 0.30 0.02 0.24 0.30 0.34 0.31
PACF2 cycle (North America) 0.02 0.02 -0.02 0.02 0.06 0.03
Precision cycle (South America) 73.15 3.72 65.43 73.35 79.95 74.24
PACF1 cycle (South America) 0.12 0.02 0.08 0.12 0.17 0.12
PACF2 cycle (South America) 0.18 0.02 0.14 0.18 0.24 0.18
Precision cycle (Oceania) 48.14 2.44 43.90 47.92 53.47 47.27
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PACF1 cycle (Oceania) 0.19 0.02 0.14 0.19 0.23 0.18
PACF2 cycle (Oceania) -0.06 0.02 -0.11 -0.06 -0.02 -0.06
log τ 0.01 0.00 0.01 0.01 0.01 0.01
Group ϕ 0.96 0.00 0.95 0.96 0.96 0.96

To provide goodness-of-fit measures to compare how well the models fit the data, we calculate
the fit statistics of all the models, such as the Mean Error (ME), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE), reported in Table 8.2. These measures serve as
general parameters of model adequacy. The mean error is important to verify the presence of
relevant biases in the model’s predictions. In the presence of high mean errors, the model may be
underestimating or overestimating the number of deaths observed. The root mean squared errors
(RMSE) and mean absolute errors (MAE) are measures of dispersion of the model’s predictions
in relation to the observed cases, and serve as a measure of the model’s accuracy, using different
weighting metrics (squared error for the RMSE and absolute error in the MAE). Quadratic
loss is a traditional measure of predictive accuracy, linked for example to estimation by ordinary
least squares, penalizing squared error and avoiding the cancellation of errors with distinct signs.
The MAE has a similar interpretation, since absolute errors also avoid cancellation of positive
and negative errors but has the advantage of being less sensitive to some deviant observation.
In general, the results indicate an adequate adjustment for the models estimated in the article,
such as almost zero mean errors indicating the absence of predictive bias, and very low RMSE
and MAE measures indicating great precision in fitting the observed deaths.

In summary, we present the results of analyzing data for COVID-19 in 205 countries from
February 29th, 2020, to February 17th, 2021, divided according to the following six continents:
Asia, Europe, North America, South America, Africa, and Oceania. It is worth noting that we
did not consider the Antarctica continent since the continent was only affected by the coronavirus
pandemic in December 2020. The results show that our model was able to capture the long-term
movements in cases that resulted in death cases for the six continents, showing an accelerated
growth pattern until mid-April in Asia, and a second wave driven by the spread of the disease in
the Middle East, South Asia, and Southeast Asia. The estimated trend component for Europe
shows that the continent has experienced the peak of the first wave at the end of April, and a
new accelerated growth phase at the end of the analyzed sample, mostly due to the relaxation
of the isolation measures taken by the governments. For North and South America, the trend
shows that the former presents a sustainable high peak plateau since mid-May, whereas the
latter still shows a pattern of rising. For Africa, the results show that the acceleration phase is
over after a relatively low number of reported deaths, despite the experts’ prediction of millions
of COVID-19 deaths in the continent. For Oceania, the results show that the number of deaths
by COVID-19 was small and well-controlled by the measures taken by the local governments.
Additionally, our results were able to show the importance of the use of spatial information
in the task of estimating the trend and mean-reverting components, which are related to the
spatial transmission dynamics in an epidemic process.
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(f) Seasonality in Oceania

Figure 8.2 – Estimated Seasonality - Spatio-temporal model with region specific trend, sea-
sonal and cycle components (Model M2)

8.4 Discussion

The first epicenter of the disease was in East Asia, mostly in China and South Korea, which
reached the epidemic peak around mid-April. The observed second peak of the COVID-19 in
Asia was mostly due to the spread of the disease in the Middle East, South Asia and South East
Asia. As of December 2020, deaths by COVID-19 have risen in Iraq, Indonesia, and India, which
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Figure 8.3 – Estimated Cycle - Spatio-temporal model with region specific trend, seasonal
and cycle components (Model M2)

the latter has the world’s third-most deaths per 100,000 people and are driving the numbers
in Asia. After reaching the peak of the second wave in December, the number of deaths by
COVID-19 in the continent has slowly decreased.

The second outbreak epicenter was in Western Europe, especially in Spain, Italy, France
and the United Kingdom. The continent has experienced the peak of the first wave in the end
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Table 8.2 – Model Fit Statistics

ME RMSE MAE
Model without spatial component (model M1)
World -6.7495e-07 90.4915 28.1972
Asia -3.1729e-08 86.3027 29.1699
Europe -6.8675e-07 97.3253 34.6779
South America -1.3301e-06 156.1249 55.9166
North America -3.2541e-06 126.8047 47.4272
Africa -9.1082e-08 32.2776 8.7439
Oceania -6.9796e-08 1.6949 0.6356
Spatio-Temporal Model (model M2)
World -2.0870e-08 1.9503 0.8978
Asia -2.1111e-07 1.3780 0.6438
Europe -6.1200e-07 2.3485 1.2610
South America -3.5786e-06 4.0655 2.0413
North America 4.8557e-06 1.2455 0.6629
Africa -2.9075e-07 1.3234 0.6380
Oceania -9.7523e-08 0.07023 0.01209
Spatio-Temporal Model - Air transport network (model M3)
World -1.8349e-06 1.8429 0.8790
Asia -1.2525e-06 1.5854 0.7988
Europe -1.8629e-06 2.7506 1.4923
South America -3.8558e-06 2.4099 1.2811
North America -6.1345e-06 0.9105 0.4961
Africa -2.5206e-07 0.9226 0.4686
Oceania -7.8468e-08 0.4489 0.1707

of April. However, after consistent drops in the number of daily recorded deaths, the trend in
Europe have presented a pattern of rising since the beginning of September, mostly due to the
loosening of lockdown and social distance measures. Due to the increased number of deaths most
European countries induced new restriction measures to control the new peak in deaths. As of
the end of February, daily deaths by COVID-19 has been failing in most European countries, but
in some others, like France, Italy, and the Czech Republic, highest numbers of deaths have been
recorded in February, helping to maintain the European trend in a high level. The last epicenter
occurred in South and North America, mostly driven by Brazil and the United States, which
have, up to October 5th, the second and first highest numbers of recorded deaths by 100,000
people in the world, respectively. While North America presents a sustainable high peak plateau
since around mid-May, the South America still shows a pattern of rising. Between October and
December 2020, the trend for North America showed a slight decrease, however, returning to
the previous level in January 2021, when the United States has recorded the highest levels of
daily deaths, and Canada has experienced a winter surge. In the of the analyzed sample, the
trend component for North America gives signals that the component has fallen, which may be
associated with the advancement of vaccination campaigns. The estimated trend component for
South America reached the peak in early January, and gives signals of decreasing at low rates. In
this continent, there is a particular concern with Brazil, which has recorded more than 265,000
deaths, the world’s second highest number of death by COVID-19, and due to the circulation
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of the new Brazilian variant of the virus (known as P.1 or VOC202101/02).
It is possible to note that the initial acceleration phases of the Africa and Oceania COVID-

19 outbreak grew at a lower rate than those observed in Asia, Europe and Americas. Africa
and the most affected by COVID-19 countries have significant differences in reliable reporting,
demography, and sociocultural aspects. However, despite the experts’ prediction of millions of
COVID-19 deaths in Africa (MARTINEZ-ALVAREZ et al., 2020), the prevalence and mortality
are low after two peaks of the disease, in mid-August 2020, and December 2020. The reason
for this outcome is still unclear, however, it may be related to the limited number of tests
available and the lack of high-quality data (MBOW et al., 2020). However, it is worth noting
that in the end of the analyzed sample, the trend component shows a slight growth pattern. The
Oceania has a natural geographical advantage, associated with effective measures, making the
cumulative number of cases and deaths small and controllable (BECK; HENSHER; WEI, 2020).
In particular, Australia and New Zealand have been praised for the effective lockdown measures
taken in both countries, and their relative low number of deaths by COVID-19. Additionally,
the estimated seasonal components (see Figure 8.2) are significantly different among continents,
reflecting different patterns of the spreading of the COVID-19, and the government’s strategy
to reduce the transmission of the disease, which varies from country to country. In particular,
it is possible to see the estimated seasonality components for Asia, Europe, South America, and
Africa with an increasing amplitude over time, while in North America the increasing amplitude
in the seasonality component was followed by a decrease in the end of the analyzed sample. For
the Oceania, the estimated seasonality component is roughly constant over time. Regarding the
cycle components, for the Oceania, it was significantly less noisy than the estimated components
for the other continents.

It is worth noting that the latent components of our proposed model are formulated in
terms of the exposure offset for the number of populations observed in each region, allowing
the counts of COVID-19 death to be comparable. However, it is not an easy task to directly
interpret the estimated trend component. Therefore, to provide better understandable results,
we carried out a transformation of the estimated trend component towards the number of daily
deaths per million inhabitants per region (see Figure 8.4; Supplemental Material), where it is
possible to note that Europe reached the peak faster than the other continents until the end
of April 2020, where the death trend reveals a turning point to a decreasing pattern, followed
by a new acceleration phase in September. Also, it is possible to see that the trend in South
America reached the relative highest peak in early January 2021, followed by a decreasing
pattern. Despite the Asia has been the first epicenter of the COVID-19 outbreaks in early 2020,
Europe and South America have had more deadly COVID-19 outbreaks. For the North America
continent, the trend remains stable with a slight decrease in the end of the analyzed sample,
whereas for the Asia, Oceania and Africa not too much details can be discerned, given the scale
of the graph.

Regarding on the fit of the three different formulations, it is possible to observe that M2
and M3 models presented a similar adjustment result, with few gains in the use of air transport
information in defining the model’s neighborhood structure. Also, it is important to note that
the similarity in model fit of models M2 and M3 can be related to massive travel restrictions
and border control to mitigate the outbreak of the COVID-19 pandemic. As discussed in the
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literature, a larger reduction in the passenger air flow led to a gradual decrease the spread of
COVID-19 (LINKA et al., 2020), which makes this transmission channel less important. In
addition, it is worth noting that both models with spatial component (M2 and M3) are clearly
superior to the univariate model (M1) in terms of RMSE and MAE, showing the importance of
spatial transmission patterns in the COVID-19 dynamics.

Within the limitations of this study, there are some concerns on the reliability of the data
used. It is well known that the reporting number of the COVID-19 cases and deaths do not
reflect the reality, varying these underreporting rates from country to country, depending on
the number of available tests and the measures taken by the authorities. In particular, the
number of available tests has changed over time and space. Despite the limitations, this study
provides evidence of the effectiveness of public health measures taken and vaccines and may be
used as a tool to guide the authorities to propose new restrictions to control the transmission
and to assess the effects of the restrictions loosening. Previous methods to estimate the trend
of COVID-19 have been useful in this context, e.g., Yang et al. (2020) which found evidence
of the effectiveness of the control measures on January 2020 to reduce the COVID-19 epidemic
size in China, and Post et al. (2020) which developed dynamic metrics to inform public health
surveillance and to identify where and when corrective measures are necessary to cope with the
spread of the COVID-19. Based on our outlined spatio-temporal analysis methodology, it is
possible to estimate the trends related to COVID-19 in a more reliable way since the proposed
model can control for the measurement errors induced by the case accounting processes, making
it a useful tool to design strategy for preventing the spread of the disease, targeting vaccines,
and to for the planning of measures of economic reopening.

8.5 Supplementary Material

8.5.1 Transformation of the estimated trend component

8.5.2 Air Transport Network

To build a definition of spatial neighborhood that controls for possible transmission routes
linked to air transport, we carry out a network analysis using the air transport routes provided
by the OpenSky network project (<https://opensky-network.org/>), compiled in the project
Crowdsourced air traffic data from The OpenSky Network 2020 (<https://zenodo.org/record/
4088202>). This dataset contains the cleaned information on all transport routes observed
by the OpenSky project since January 2019. Table 8.3 shows the list of the current officially
assigned ISO 3166-1 alpha-3 codes for the 205 countries considered in our analysis, using the
English short country names officially used by the ISO 3166 Maintenance Agency. We used the
air transport network of April 2020, which reflects the average conditions of the air network
after the pandemic was decreed.

To construct the air transport network, we used the concept of hierarchical clustering used
in data analysis (KOLACZYK; CSÁRDI, 2014), and the fast greedy algorithm (CLAUSET;
NEWMAN; MOORE, 2004). In hierarchical methods, the candidate partition is modified in a
way that minimizes a specified measure of weighted cost. In particular, we considered herein the
modularity as a cost measure, which is used for detecting community structure in networks. Let

https://opensky-network.org/
https://zenodo.org/record/4088202
https://zenodo.org/record/4088202
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Figure 8.4 – Trends in Deaths by day by Million inhabitants

C = {C1, . . . , CK} be a given candidate partition and define fij = fij(C to be a fraction of edges
in the original network that connect vertices in Ci with vertices in Cj , thus, the modularity of
C is defined as

mod (C) =
K∑
k=1

[fkk(C)− f∗
kk]

2, (8.2)

where f∗
kk is the expected value of fkk under some model of random edge assignment. We use

weighted cost measure, using the number of flights between countries as the weight function
in the analysis. Table 8.4 show the eight selected communities found by the aforementioned
method and used in this work. Also, the visual representation of the partitioning of the air
transport network can be seen in Figure 8.5, with countries in the same color representing the
same community based on air transport routes. The final result of this analysis is used in the
construction of a generalized version of the spatial neighborhood matrix. Thus two countries
are considered neighbors if they have a common border or if they are in the same community
derived from the analysis of hierarchical clustering in a network.
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AFG ALB DZA AND AGO AIA ATG ARG ARM ABW AUS AUT
AZE BHS BHR BGD BRB BLR BEL BLZ BEN BMU BTN BOL
BIH BWA BRA VGB BRN BGR BFA BDI KHM CMR CAN CPV
CYM CAF TCD CHL CHN COL COM COG CRI CIV HRV CUB
CYP CZE COD DNK DJI DMA DOM ECU EGY SLV GNQ ERI
EST ETH FRO FLK FJI FIN FRA PYF GAB GMB GEO DEU
GHA GIB GRC GRL GRD GUM GTM GGY GIN GNB GUY HTI
HND HKG HUN ISL IND IDN IRN IRQ IRL IMN ISR ITA
JAM JPN JEY JOR KAZ KEN KWT KGZ LAO LVA LBN LSO
LBR LBY LIE LTU LUX MKD MDG MWI MYS MDV MLI MLT
MRT MUS MEX MDA MCO MNG MNE MSR MAR MOZ MMR NAM
NPL NLD NCL NZL NIC NER NGA MNP NOR OMN PAK PSE
PAN PNG PRY PER PHL POL PRT PRI QAT ROU RUS RWA
KNA LCA VCT SMR STP SAU SEN SRB SYC SLE SGP SVK
SVN SOM ZAF KOR ESP LKA SDN SUR SWZ SWE CHE SYR
TWN TJK TZA THA TLS TGO TTO TUN TUR TCA UGA UKR
ARE GBR USA VIR URY UZB VAT VEN VNM ESH YEM ZMB
ZWE

Table 8.3 – Country Codes

1 GBR IRL SWE ARE ITA ROU SEN PRT DNK GNB PRY UKR
HUN LTU SRB LVA SVK BGR MKD MDA SVN BIH EST HRV
ALB MNE GMB MRT MCO LBN ISR EGY CYP SYR JOR

2 FRA POL IND FIN NOR QAT GRC KWT
3 NLD ZAF AUT MAR TUN BWA LSO
4 JPN ESP CAN THA HKG RUS SAU PHL CZE BRN LUX ISL

KOR BMU BHR UZB LKA NZL MMR OMN IMN GEO ARM VNM
5 ARG USA MEX BOL BEL URY DZA BRB CHL PER GIN BHS

CPV JEY GUY GGY VEN LCA VCT ECU COL
6 AUS DEU TWN IDN PYF SGP PSE AZE
7 BRA TUR PAK IRN TJK KGZ BLR MLT TTO LBY KHM
8 CHN CHE MYS KAZ NPL LAO

Table 8.4 – Network Analysis - Selected Communities
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Figure 8.5 – Communities
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CONCLUSIONS

This thesis comprises a collection of eight self-contained papers in the field of spatial statis-
tics, with applications in diverse contexts, ranging from climate events to deaths by COVID-19.
The first five papers focus on the application of structural decomposition for spatio-temporal
analysis of climate-related events, such as fires and tornadoes. These studies yielded valuable in-
sights, including the confirmation of constant trends in tornado occurrences in the United States
and the effectiveness of regulatory changes in reducing pre-harvest sugarcane burning in the São
Paulo state of Brazil. Additionally, they shed light on the relationship between climate factors
and fire patterns in Australia and the Legal Amazon, as well as variations in fire occurrence
trends in the Brazilian Pantanal.

Moving beyond climate-related events, the sixth paper extended the decomposition approach
to analyze changes in rainfall and temperature patterns in the metropolitan area of São Paulo.
While omitting the spatial dimension, this paper introduced the same decomposition structure
to examine various climatic aspects, revealing increases in daily temperature trends and rainfall
patterns. Furthermore, the examination of annual temperature records and annual records of
daily rainfall provides additional support for the hypothesis of long term alterations in observed
climatic patterns.

The seventh paper addressed the COVID-19 pandemic by proposing a method to estimate
trends in death cases while accounting for measurement error. This research applied time
series decomposition analysis to examine COVID-19-related deaths in Brazil, São Paulo, and
Amazonas, and spatio-temporal analysis for occurrences of deaths by COVID-19 at the state
level in Brazil. This approach provided valuable insights into the pandemic’s dynamics at
different regions.

Finally, the eighth paper extended the previous analysis to a global scale, offering a com-
pelling demonstration of the importance of spatio-temporal models in accurately estimating
COVID-19-related deaths. These models outperformed univariate models, highlighting the cru-
cial role of spatial dynamics in understanding the pandemic’s progression.

In summary, this thesis contributes significantly to the field of spatial-temporal statistics
by introducing a modeling framework that incorporates the extraction of trend, cycle, and
seasonality components through a structural decomposition structure, within the context of
models for spatial point pattern data, extreme values, probaility of rain, and the duration of
dry days. The findings presented in these papers enhance our understanding of long term and
mean-reverting components in the context of climate-related events, climatic changes, and the
dynamics of the COVID-19 pandemic, taking into accouting the spatial aspect.
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