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Abstract 

Palmeira, O. F. J.(2022). Evaluation of the genetic influence on the infant gut microbiome through 

16S rRNA sequence data analysis of triplets (Dissertation of Masters of Science). Institue of 

Mathematics and Statistics, interdepartmental graduate program in bioinformatics at 

University of São Paulo, SP 

Studies have shown that the human microbiome plays an important role in physiology, from food 

digestion to mental diseases. Since the gut microbiota composes the greatest amount of microbial cells 

and genes outnumbering even our own cell and gene counts, it is expected that the gut microbiome 

would affect many biological functions, thus becoming key to maintaining homeostasis in the various 

biological processes. The structure of the gut microbiota is shaped by many factors, including the 

environment and host genetics. Understanding how these factors determine the gut microbiome 

during its development and establishment at the early stages of human life is crucial to infer commensal 

and pathological microbiome composition. The purpose of this study is to investigate how much host 

genetics and the environment influence the development and establishment of the gut microbiota 

profiles. For this purpose, five sets of dichorionic triplet babies (two monozygotic twins and one 

dizygotic twin) are followed during their first 3 years of life. By using Next-Generation Sequencing 

data (NGS) and Bioinformatic tools, such as specific pipelines for 16S amplicons, we will compare the 

triplets’ gut microbiomes regarding presence and absence and relative abundances. We will also try to 

identify structure patterns, compare results with the literature and integrate the information on the 

genera associated or not with host genetics. All samples presented enough reads to identify all taxa up 

to the genus level. Phylogenetic alpha diversity increased in samples at later time points indicating time 

as a determinant factor. Monozygotic twins were significant more similar in beta diversity when 

compared to their dizygotic  co-twins (DZs). Consistent with the literature, Firmicutes, Bacteroidetes, 

Proteobacteria, Actinobacteria and Verrucomicrobia were the dominant phyla in all sets. Analysis of relative 

abundance of Amplicon Sequence Variants (ASVs) by Correspondence Analysis (CA) showed that 

monozygotic twins (MZs) are more similar at time points 9, 11 and 13 months. Heritability test and 

CA results, as well as shared ASVs, revealed that ASVs of the genera Veillonella and Bacteroides are more 

similar in MZs. 

 

Keywords: Microbiome, Microbiota, Host genetics, Heritability, Dichorionic triplet babies, 

Bioinformatic pipelines, 16S, ASVs, Veillonella and Bacteroides



 

Resumo 

Palmeira, O. F. J.(2022). Avaliação da influência genética no microbioma intestinal de crianças 

trigêmeas através da análise de dados de sequencias de rRNA 16S. (Dissertação de Mestrado). 

Instituto de Matemática e Estatísticas, Programa Interdisciplinar de graduação em 

Bioinformática, Universidade of São Paulo, SP. 

Alguns estudos têm demonstrado a importância do microbioma humano em processos fisiológicos 

envolvendo desde digestão até doenças mentais. Devido ao grande número de  e genes bacterianos no 

intestino superando até mesmo o número de células e genes humanos, é plausível que o microbioma 

intestinal afete muitas funções biológicas,  tornando-se assim  essencial para manutenção da 

homeostase. A estrutura da microbiota intestinal é modelada por vários fatores, inclusive o ambiente 

e a genética do hospedeiro. Entender como esses fatores determinam o microbioma durante o 

desenvolvimento e estabelecimento do mesmo nos primeiros anos da vida humana é crucial para se 

inferir a composição microbioma relacionada às patologias ou ao bem-estar. O objetivo deste estudo 

é investigar quanto da genética do hospedeiro e quanto do ambiente influencia o desenvolvimento e 

estabelecimento do perfil da microbiota intestinal. Para essa finalidade, cinco conjuntos de bebês 

trigêmeos dicoriônicos ( dois monozigóticos e um dizigótico) foram acompanhados durante seus três 

primeiros anos de vida. Utilizando a tecnologia de Next-Generation Sequencing (NGS) e  ferramentas da 

bioinformática, tais como pipeline específicos para tratamento e análise de amplicons de 16S, iremos 

comparar os microbiomas dos bebês verificando ausência e presença de bactérias e também suas 

respectivas abundâncias relativas. Esforços também serão dedicados para identificar padrões 

estruturais, comparar os resultados com dados da literatura e integrar as informações de bactérias 

associadas ou não à genética do hospedeiro. Todas as amostras apresentaram quantidade suficiente de 

reads para identificar todas as taxa até ao nível de gênero. A diversidade filogenética aumentou nas 

amostras nos pontos no tempo mais avançados, indicando que o tempo é um fator determinante. Os 

gêmeos monozigóticos (MZs) foram significantemente mais similares em beta diversidade quando 

comparados com seus gêmeos dizigóticos. Consistente com a literatura, Firmicutes, Bacteroidetes, 

Proteobacteria, Actinobacteria e Verrucomicrobia foram os filos dominantes em todos os sets. As avaliações 

de abundância relativa das Amplicon Sequence Variants (ASVs), por Análise de Correspondência (CA), 

mostraram que os MZs são mais similares nos pontos de tempo 9, 11 e 13 meses. Os resultados do 

teste de herdabilidade, da Análise de Correspondência, bem como das ASVs compartilhadas, 

revelaram que os gêneros Veillonella e Bacteroides são mais semelhantes nos MZs. 

Palavras-chave: Microbioma, Microbiota, Genética do hospedeiro, Herdabilidade, 

Bebês trigêmeos dicoriônicos, Pipelines de bioinformática, 16S, ASVs, Veillonella e Bacteroide  
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1. Introduction  

1.1 Human microbiome in health and diseases  

The human microbiome, which is the microbial genetic material extracted from samples, has 

been associated with a variety of biological processes such as the development and establishment 

of the immune system, metabolic pathways and interactions with the central nervous system(Cho 

& Blaser, 2012; Kim, Yun, Oh, & Choi, 2018; Lammert et al., 2018; Valdes, Walter, Segal, & 

Spector, 2018). These associations do not come as a surprise when we learn about human cell 

composition. Humans are composed of approximately 3.0 x 1013 human cells and 3.8x1013 bacterial 

cells(Sender, Fuchs, & Milo, 2016). Moreover, we carry 2  to ~10 million or more bacterial unique 

genes whereas we have about 20,000 human genes(Li et al., 2014; Ottman, Smidt, De Vos, & Belzer, 

2012; Yang, Xie, Li, & Wei, 2009; Zhu, Wang, & Li, 2010). Such a high number of bacterial cells 

and genes poses a lot of effects in many physiological processes. The long-lasting interactions 

between the biological processes and the microbiome require microbial adaptation and 

establishment in the microenvironment, thus different sites on the human body harbor different 

bacterial communities which, in turn, also differ from individual to individual (Figure 1). 

 

FIGURE 1: PRINCIPAL COORDINATES PLOT SHOWING VARIATION AMONG SAMPLES DEMONSTRATES THAT 

PRIMARY CLUSTERING IS BY BODY AREA, WITH THE ORAL, GASTROINTESTINAL, SKIN AND UROGENITAL 

HABITATS SEPARATE; THE NARES HABITAT BRIDGES ORAL AND SKIN HABITATS. (ADAPTED FROM 

HUTTENHOWER ET AL., 2012) 
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The main habitat variation of these communities is between the oral, skin, vaginal and 

gut(Huttenhower et al., 2012). In all these habitats the microbiota (community of microbes in an 

environment) plays important roles such as prevention of certain diseases and infections by 

pathogenic bacteria. For example, skin infection by the pathogen Staphylococcus aureus is prevented 

by Staphylococcus epidermidis that commensally inhabits the skin(Iwase et al., 2010). Furthermore, 

some bacteria can also increase the risk of acquiring diseases in the event of dysbiosis – disruption 

of the symbiotic relationship between microbes and their hosts(Cho & Blaser, 2012). For example, 

in the vaginal microbiota, enrichment in Atopobium and lower abundance in the Faecalibacterium 

genus was associated with human papilloma virus-positive (HPV+) persistence (Di Paola et al., 

2017). Although the microbiota of all habitats might be involved in determining the boundaries 

between health and disease, the gut microbiota is the one that is most often associated with 

influences on human health (Rojo et al., 2017).  

Despite the fact that the gut microbiota presents resilience, its structure can be highly affected 

by many factors such as maternal microbiome, environment and genetics(Drell et al., 2017; 

Goodrich et al., 2016; Murphy et al., 2015; Rojo et al., 2017). A healthy human gut microbiota 

presents Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria and Verrucomicrobia as the 

dominant/prevalent phyla with variation in their relative abundance between individuals 

(Huttenhower et al., 2012; King et al., 2018). Studies have shown that environmental factors and 

time are the main cause of interpersonal variation(Rothschild et al., 2018). For example, in the 

Global Gut Studies, healthy individuals whose age ranged from 0 to 17 years old and from different 

regions (Amazons of Venezuela, rural Malawi, and United States metropolitan areas) presented 

differences in their microbiota diversity regarding age, geography and individuality, i.e., microbiota 

phylogenetic composition of children around 3 years old become more similar to adult microbiota 

composition; there was a pronounced difference between the US and the Malawian and 

Amerindian; and finally individuals from the same region and age also presented differences among 

them (Figure 2) (Yatsunenko et al., 2012).  
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FIGURE 2: UNIFRAC DISTANCES BETWEEN CHILDREN AND ADULTS DECREASE WITH INCREASING AGE OF 

CHILDREN IN EACH POPULATION. EACH POINT SHOWS AN AVERAGE DISTANCE BETWEEN A CHILD AND ALL 

ADULTS UNRELATED TO THAT CHILD BUT FROM THE SAME COUNTRY. RESULTS ARE DERIVED FROM 

BACTERIAL V4-16S RRNA DATASETS. (ADAPTED FROM YATSUNENKO ET AL., 2012) 

Regardless of the great variation associated with the above-mentioned factors, it has been 

possible to identify and distinguish some gut microbial groups that are beneficial to health and 

others that are associated with certain diseases. For example, the genus Akkermansia was negatively 

correlated with human body weight gain and positively correlated with the protection of the 

intestinal mucus layer(Belzer & de Vos, 2012; Derrien, Vaughan, Plugge, & de Vos, 2004; Everard 

et al., 2013). The groups Faecalibacterium prausnitzii and bifidobacteria have also been regarded as 

beneficial. The former, which is in low abundance in Crohn’s disease patient’s microbiota, showed 

great anti-inflammatory potential in human cells(Sokol et al., 2008); the latter was shown to be 

involved in colorectal cancer treatment and prevention, treatment of diarrhea caused by rotavirus, 

protection against pathogenic bacteria such as Clostridium perfringens, remission from ulcerative 

colitis, and many other benefits (O'Callaghan & van Sinderen, 2016). Conversely, groups, such as 

Enterococcus and Clostridia, have been considered as indigenous pathobionts, which, upon a broad-

spectrum antibiotic treatment, can invade the bloodstream and generate pseudomembranous 

colitis, respectively(Chow, Tang, & Mazmanian, 2011).  

The associations of the gut microbiome with health and diseases go beyond the scope of gut 

health status. Disorders such as cardiovascular, autoimmune, chronic kidney disease, to name a 

few,  were all associated with the gut microbiome(Poesen et al., 2016; Rojo et al., 2015; Tang & 

Hazen, 2014). Furthermore, advanced researches have identified the gut-brain axis, which is bi-
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directional communication between the central and the enteric nervous system. Microbial 

molecules, such as dopamine, γ -aminobutyric acid (GABA) and cortisol present in the human gut 

are some of the neuronal molecules to which the human host responds, thus being affected by 

them (Kim et al., 2018; Mayer & Hsiao, 2017; Sharon, Sampson, Geschwind, & Mazmanian, 2016; 

Valles-Colomer et al., 2019). Taken this into account, it has been shown that the microbiome has 

a considerable influence on our neurophysiology. For example, neuropsychiatric conditions such 

as Alzheimer’s, Parkinson’s, schizophrenia and autism have been linked to the gut microbiome 

(Chrobak, Nowakowski, & Dudek, 2016; Rojo et al., 2017; Sharon et al., 2016), not to mention the 

associations with human behavior modulation (Aatsinki et al., 2019; Rogers et al., 2016). For 

instance, one recent study investigated the relationship between the gut microbiota composition 

and infant’s temperament. They could positively correlate surgency - high levels of activity and 

positive emotion - with a higher abundance of genera Bifidobacterium and Streptococcus, whereas 

negative emotionality and fear reactivity were associated positively with Erwinia, Rothia and Serratia 

genera (Aatsinki et al., 2019).  

Awareness of the great significance of the gut microbiome, not only in the gut organ but also in 

many other physiological processes throughout the body, compels us to closely examine the human 

microbiome in all aspects, including influences of genetic variability of the host. 

 

1.2 Gut microbiome and host genetics  

It is widely known that the environment has a great impact on the gut microbiome composition 

(GMC), however, there is a growing number of studies indicating that there are also some host 

genetic influences. One of the first studies on humans associating host genetics with the gut 

microbiota was conducted by van de Merwe et al. (1983) who linked pieces of evidence of genetic 

predisposition of Crohn’s disease (CD) with gut microbiota composition associated with CD. By 

using the faecal culture of monozygotic (MZ) – identical twins – and dizygotic twins – fraternal 

twins -, and identifying anaerobes, aerobes, gram-positive and gram-negative bacteria, the authors 

found that the microbiota compositions of MZ co-twins were more similar than those of DZs co-

twins(van de Merwe, Stegeman, & Hazenberg, 1983). Later, Zoetendal et al. (2001), using a 

fingerprinting of bacterial gene approach, investigated the GMC of MZs and their marital partners. 

The authors found that MZs presented higher similarity indices between co-twins than those of 

unrelated individuals. In addition, the marital partners, despite sharing the same environment, did 

not show higher similarity when compared to unrelated individuals (Zoetendal, Akkermansia, Vliet, 

Visser, & Vos, 2001).  
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In addition to humans, some non-human models such as mice and chickens have also been used 

to examine GMC-host genetics associations(Benson et al., 2010; Zhao et al., 2013). One study with 

a murine model was able to identify 18 QTLs (Quantitative Trait Loci) associated with the relative 

abundance of some taxa. Two of these QTLs presented quite a significant linkage with taxa at the 

species level, Lactobacillus johnsonii and L.gasseri. The authors highlight the close physical association 

of these organisms to their host and suggest that genetic factors influence these interactions 

(Benson et al., 2010). Another study, also using QTL analysis, found 6 SNPs (Single Nucleotide 

Polymorphism) – a gene marker for QTL analysis – statistically significant associated with taxa 

abundance. Furthermore, the authors were able to replicate 4 SNP associations regarding genus 

relative abundance of the following genera: rs1394174 with Faecalibacterium, rs59846192 with 

Lachnospira, rs28473221 with Eubacterium, and rs62171178 with Rikenellaceae (Turpin et al., 2016).  

Davenport et al. (2015), using both QTL and heritability (a measure of the proportion of genetic 

variation that accounts for the variation of a trait or phenotype in a population) analysis, 

investigated the Hutterites population, whose members have quite similar living habits with little 

differences in their environments (Davenport, 2016; Goodrich et al., 2016). Davenport and 

collaborators identified 8 bacterial taxa that were significantly associated with SNPs. One of the 

associations was between the SNP rs3747113 and genus Lactococcus, a taxon that was already 

demonstrated to be associated with QTL in mice by Benson et al. (2010). They also found 

Akkermansia's relative abundance to be associated with SNPs that are involved in signal 

transduction and trafficking. Furthermore, using ‘chip heritability’ – the proportion of genetic 

markers variation that accounts for phenotypic variation -, the authors found a heritability around 

20% for the genera Coprococcus, Lachnobacterium, Barnesiella and Veillonella(Davenport et al., 2015). 

A more recent and remarkable study was conducted on 1,126 twin pairs (MZs and DZs) from 

the United Kingdom by Goodrich et al. (2016). With this large sample size, the authors decreased 

the confidence intervals of some host genetic-microbiome associations that had already been 

reported in a previous study (Goodrich et al., 2016). They identified high heritability (42%) for the 

Christensenellaceae taxon followed by Firmicutes, Actinobacteria, Tenericutes and Euryarchaeota. The most 

abundant archeon in the gut, Methanobrevibacter, was also included in the list with  37% heritability. 

Among the 20 heritable taxa they identified, Bifidobacterium revealed association with the LCT gene 

in the QTL analysis. This was a validation from a previous work by Blekhman et al. (2015) 

(Blekhman et al., 2015). Some other taxa-SNPs (around genes) associations they reported are: 

Bifidobacterium with RABGAP1 gene, Erysipelotrichaceae Cc 115 with OR6A2, Blautia with CD36 and 

Akkermansia with SIGLEC15. Moreover, they also showed that these heritable taxa are highly stable 

throughout time (Goodrich et al., 2016). All these observations argue strongly for the existence of 
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genetic factors that shape the human gut microbiome to some extent. Nevertheless, Rothschild et 

al. (2018), by applying multiple statistical analyses on a large human cohort (1,045 individuals), 

found that there were no significant associations between the microbiome and individual SNPs nor 

genetic ancestry. They also calculated the overall heritability in 2,252 twins (same dataset used in 

Goodrich et al. (2016)) to be only 1.9% when accounting for the relative abundance of estimated 

heritable taxa. Conversely, they could infer 20% of the variance in beta diversity attributable to 95 

environmental factors such as food frequency, self-reported median daily intake of calories, age and 

gender (Rothschild et al., 2018).  

These rather conflicting observations indicate that our knowledge about the microbiome is still 

limited and that further studies are needed to elucidate which and how factors structure the 

microbiome. It is important to note that there is a dearth of studies relating microbiome to 

genetic/environmental factors on infants; most of the studies have been conducted on adults. 

Towards this end, we propose to examine genetic/environmental variability roles in the 

development and establishment of the gut microbiota using triplet infants as models. To better 

contextualize this study, we give a short general introduction to the human gut microbiota 

development and then, we briefly discuss some aspects of twin studies.  

1.3 Gut microbiota development and establishment  

The human gut microbiota is shaped in early life and it is essential for a healthy individual’s 

development in a world full of microorganisms. The gut is the main site where the immune system 

and metabolic physiology are trained and modulated, hence how initial colonization takes place can 

affect the individual’s health throughout his/her life (Chong, Bloomfield, & O’Sullivan, 2018; 

Walker, 2017; Ximenez & Torres, 2017). When investigating the development and establishment 

of the gut microbiota, researchers have noticed that in the first 3 years of an individual’s life there 

are approximately 3 - 5 phases of the microbiome development in which each is marked by specific 

changes in the structure (Christopher J. Stewart et al., 2018; Walker, 2017).  

Phase 1: It was/is believed that the intrauterine environment was/is sterile, thus humans are 

born sterile. However, some studies have found bacteria in the placenta tissue. Particularly one 

study found intracellular bacteria in the placental basal plates (tissue layer adjacent to the 

myometrium) in 54% of spontaneous preterm and 26% of spontaneous term when investigating 

195 patients (Stout et al., 2013). Later, another study revealed a low abundance of nonpathogenic 

commensal bacteria such as Firmicutes, Tenericutes and Bacteroides in the placenta. The authors also 

associated the presence of these bacteria with infection prior to delivery and preterm birth. In 

parallel, another study showed the presence of enteric and lactic acid bacteria in the newborn’s 
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meconium (first intestinal discharge)(DiGiulio et al., 2008; Gosalbes et al., 2013) and commensal 

bacteria in the umbilical cord (Jiménez et al., 2005). In addition, non-pregnant woman’s uterus 

revealed the presence of a unique microbiota dominated by Bacteroides in a study with 19 women of 

various health and geographical backgrounds (Verstraelen et al., 2016). One of the speculations 

attempting to explain these findings is that bacteria are transferred through the maternal blood to 

the placenta and then to the umbilical cord and reach the fetus (Wassenaar & Panigrahi, 2014), 

however, there is not enough evidence for this hypothesis. In fact, two recent studies claimed that 

there is no microbiome in the placenta. One of the studies found the pathogenic Streptococcus 

agalactiae in two cohorts of a total of 478 women including those with pre-eclampsia (de Goffau et 

al., 2019). However, they suggested an association between the presence of this pathogenic with 

neonatal disease in the subjects studied. Another study investigated fecal meconium samples and 

concluded that there is no microbiome in the meconium before birth (Kennedy et al., 2021). 

Whether there is a placental microbiome or not, there are pieces of evidence that the infant can be 

exposed to bacteria even before birth, however, we still cannot maintain that these exposures 

influence the infant’s gut colonization.  

Phase 2: During birth, the newborn is highly exposed to a community of bacteria whose 

composition depends on the mode of delivery. In vaginal delivery, most of the exposure is to the 

mother’s vaginal and gut microbiota which starts with the rupture of the chorioamniotic membrane 

(Maria Gloria Dominguez-Bello, Godoy-Vitorino, Knight, & Blaser, 2019). Next, the passage 

through the birth canal promotes the infant’s swallowing of the microbes of the mother’s vaginal 

microbiota. In fact, studies have shown that the infant’s faeces in the first week of life are 

significantly similar to their mother’s vaginal and gut microbiota (Chong et al., 2018; Ferretti et al., 

2018; Tanaka & Nakayama, 2017). Interestingly, one study suggested that the fitness of the species 

seems to be more relevant to the infant’s gut colonization than the quantity since the mother-infant 

shared species were found in lower relative abundance in the mothers (Ferretti et al., 2018). In this 

same study, the researchers showed that the mother’s gut microbiota was the main source for the 

infant's gut colonization, which gradually differed from their mothers with time, thus indicating a 

niche-specific selection in the infant’s gut. Lactobacillus, Prevotella and Sneathia are some of the most 

abundant genus belonging to the vaginal microbiota that are transmitted to the newborn (Maria G 

Dominguez-Bello et al., 2010; Tanaka & Nakayama, 2017). In Brazilian infants from low-economic 

backgrounds, Lactobacillus was also detected from the second to the seventh days of newborns’ lives. 

In addition, Escherichia coli and Bifidobacterium spp. were also abundant in this period (Talarico, Santos, 

Brandt, Martinez, & Taddei, 2017). Lactobacillus, which is a vaginal microbiota member, is proved 

to be beneficial for the infant’s initial gut colonization because it binds to the epithelial cells 
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promoting mucin production. In addition, probiotics containing this organism is recommended for 

allergy treatment (Houghteling & Walker, 2015). Indeed, newborns delivered by Cesarean section 

(C-section) lack Lactobacillus (Chong et al., 2018) and they are more prone to dairy allergies (Sánchez-

Valverde et al., 2009). These c-section born children have a low relative abundance of Bacteroides 

fragilis and a high relative abundance of Clostridium difficile (Penders et al., 2006). Bacteroides promote 

increased levels of Th1 chemokines, an important molecule for the immune system modulation 

(Jakobsson et al., 2014), whereas C. difficile is a pathogenic bacteria that can cause intestinal 

inflammation and diarrhea (Fordtran, 2006). Changes in the microbiome during this phase will also 

happen according to the mode of feeding. Infants that are exclusively breast-fed present a quite 

different microbiome when compared to those who are formula-fed included (Azad et al., 2013; 

Penders et al., 2006). The human milk contains complex oligosaccharides, live Bifidobacteria, 

soluble CD14 (pathogen co-receptor) and Toll-like Receptors 2 (sTLR2 ); all essential elements for 

proper immune system development. Breast-fed infants have high relative abundances of 

Bacteroidetes, Bifidobacteria and a low relative abundance of Firmicutes (Houghteling & Walker, 2015).  

Phase 3 and 4: Another major change in the structure of the infant’s gut microbiota is the 

introduction of liquids and solid food around the 5th – 12th month of life. At this phase, alpha 

diversity increases dramatically due to not only the new diet but also potential exposures to other 

environmental factors such as day-care (Thompson, Monteagudo-Mera, Cadenas, Lampl, & 

Azcarate-Peril, 2015). Complex carbohydrates like starches and plant’s cell wall polysaccharides 

promote the establishment of fermenting bacteria, Ruminococcus, for instance. Faecalibacterium 

prausnitzii which is a butyrate producer that promotes anti-inflammatory responses increases in 

relative abundance during this phase(Koenig et al., 2011; Christopher J. Stewart et al., 2018). It is 

also noticed an increase of the relative abundance of adult-type microorganisms such as Bacteroides, 

Prevotella, Ruminococcus, Clostridium, and Veillonella (Koenig et al., 2011; Tanaka & Nakayama, 2017). 

In addition, it was detected genes in the infant’s microbiome that are involved with the breakdown 

of xenobiotic compounds and vitamin biosynthesis, indicating a more adult-like 

microbiome(Koenig et al., 2011).  

Phase 5: By age 1 – 3 years, the infant’s microbiome starts to become more stable after 

dramatically increasing its diversity in the previous phase. Here, the microbiome reaches 

approximately 1000 species and is very similar to an adult’s microbiome. The structure established 

here will probably remain in the individual’s whole life(Walker, 2017). Occasional events such as 

antibiotics and diseases may cause some variation and disbalance, but the microbiome tends to be 

resilient and reestablishes its structure once the challenges have passed.  
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In summary, a typical full-term vaginally delivered and healthy singlet infant from a developed 

country initiates gut colonization by facultative anaerobes, then as oxygen is being consumed, the 

gut environment is more favorable to strictly anaerobic bacteria such as Bifidobacterium, Bacteroides, 

and Clostridium (Cong et al., 2016). Many factors may influence the infant’s colonization such as 

mode of delivery, gestational age, mode of feeding in the first days, antibiotic treatment, 

socioeconomic status, geography, exposure to pets, maternal health and diet prior to and after 

delivery to name a few. All these factors can impact the microbiome composition during the critical 

period and may determine the development of diseases and conditions such as allergy, asthma, 

metabolic disorders and autoimmune diseases (Chong et al., 2018). The natural course of 

colonization is a gradual increase in diversity and richness promoting a balanced development of 

the immune system and homeostasis of the intestine and allowing proper response to stimuli during 

key events in the infant’s life (Ximenez & Torres, 2017).  

Here, we briefly introduced the main environmental factors studied so far that influence the 

development and establishment of the human gut microbiota. As mentioned in the previous 

section, little is known about whether or how genetic factors play any role in this process. However, 

there are a couple of studies with some interesting findings. A study showed that the diversity of 

genus Eubacteria in 4-month MZs was more similar when compared to non-twin siblings (J. A. 

Stewart, Chadwick, & Murray, 2005). Another study investigated a set of healthy triplets and found 

that the MZs had more similar microbiota profile between them than between their dizygotic co-

twin (Murphy et al., 2015). Due to this lack of pieces of evidence for genetic factors, this study 

attempts to investigate the issue and contribute to the little knowledge of the subject with a twin 

studies approach.  

1.4 Twin studies  

You have probably heard of the twin brothers NASA (National Aeronautics and Space 

Administration) astronauts Scott Kelly and Mark Kelly who participated in a Twin study, recently. 

Scott spent 340 days in space and at the same time, his twin brother remained on earth to serve as 

a control. The aim of the study was to investigate the impact of microgravity on molecular 

physiological, and behavioral aspects. By comparing the twin’s blood, urine, stool, cognitive and 

psychological test results, the research team could identify some significant differences during the 

inflight time points. Some of the changes observed were on gene expression and the microbiome 

composition which went back to baseline on post-flight time points. However, high frequencies of 

chromosomal translocations and inversions reported on inflight time points remained high on post-

flight time points (Garrett-Bakelman et al., 2019). This study, albeit its extremely small sample size, 
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is one of the examples of the usefulness of twin studies which have been conducted for more than 

a century to examine the environmental and genetic influences on a myriad of pathological or non-

pathological phenotypes (Garrett-Bakelman et al., 2019).  

Twins are two individuals born from the same pregnancy and they can be either identical or 

non-identical or fraternal twins. Identical twins originate from one zygote, which, for some 

unknown reason, split into two zygotes, i.e., they came from the same egg fertilized by the same 

sperm and thus their DNA is roughly 100% identical which leads to the same sex. These twins are 

called monozygotic twins (MZs). Fraternal or non-identical twins are originated from two different 

zygotes, i.e., two eggs were fertilized, at the same time by different sperms, thus their DNA is 

around 50% identical just like any other siblings born from different pregnancies. They can be of 

the same or different sex. These are called dizygotic twins (DZs).  

The fundamentals of using twins as models in study design are that they share the same 

environment and they have two levels of genetic relatedness – 100% or 50% similar. Therefore, 

the variation of the environment can be reduced while one can examine the differences between 

the twins. One of the premises of the twin studies is that if a pair of monozygotic twins respond 

(phenotypic variance) more similarly to a stimulus or variable in comparison to a pair of dizygotic 

twins, whose response differ from one another, then the response to the variable is more likely to 

be associated with genetic factors. In contrast, if MZs and DZs responses are all different, then 

genetics plays little or no role in the response which might be associated with environmental factors 

(Felson, 2014; Fisher, 1919; Liew, Elsner, Spector, & Hammond, 2005; Rende, Plomin, & 

Vandenberg, 1990; Sahu & Prasuna, 2016).  

Twin studies have been applied for more than a century now and in various fields such as 

behavioral genetics, intelligence, metagenome and pathological and physiological conditions 

(Goodrich et al., 2014; Haworth, Dale, & Plomin, 2008; Keller, Medland, & Duncan, 2010). 

Although the technology of molecular biology has greatly advanced, twin studies are sometimes 

preferable over DNA sequencing to investigate genetic associations, or twin studies have also been 

conducted as validation or complement of DNA sequencing. Some of the reasons that explain such 

facts are that twin studies yield a higher estimation of the proportion of the phenotypic variance 

than does molecular data since this is limited in capturing all the variation on the DNA, not to 

mention that molecular data collection is still more expensive (Coventry & Keller, 2005; Felson, 

2014; Keller et al., 2010; Lakhani et al., 2019). Nevertheless, DNA sequencing approach to study 

microbes captures much more information from the microbiomes than studying the microbes per 

se since some bacteria are difficult to be cultivated. We will develop this theme in more detail in 



22 

 

the next section. 

1.5 Next-generation sequencing (NGS) 

Microbial communities have long been studied by cultivating bacteria in the laboratory. Despite 

the many advances in the study, culture technique poses certain limitations such as providing and 

maintaining media composed of specific and essential Physico-chemical properties for certain 

bacteria growth making it difficult to cultivate them (Kallmeyer, Pockalny, Adhikari, Smith, & 

D’Hondt, 2012). Therefore, characterization of the entire community was not possible (Malla et 

al., 2019; Rosario & Breitbart, 2011). Nowadays, DNA/RNA sequencing approach has overcome 

some of the culture-dependent approach limitations. By collecting samples directly from the 

environment and been able to identify its microbiome composition, sequencing approach allows 

one to better characterize richness and diversity. However, identification of low abundant microbes 

and certain species or strains are still challenges in the DNA sequencing, thus culture-dependent 

methods should not be totally disregarded, but applied as a complement to sequencing techniques 

when appropriate(Hiergeist, Gläsner, Reischl, & Gessner, 2015; Malla et al., 2019).  

Sequencing was first developed by Sanger et al. (1975) and was widely used for many years 

helping in the development of the Human Genome Project in 2001(Collins & Fink, 1995; Sanger 

& Coulson, 1975). Today, the most performed sequencing technology is next-generation 

sequencing (NGS) which is a high throughput approach. Its fundamentals are to sequence, at once 

and parallel, millions of small fragments of the isolated DNA without prior knowledge of the gene 

or fragment under investigation, and therefore new microbes can be discovered. The technology is 

cost-effective, can generate higher sequencing depth and yields results in hours or days (Behjati & 

Tarpey, 2013; D’Argenio, 2018; Panek et al., 2018).  

From the many different NGS platforms, Illumina (GAIIx, MiSeq and HiSeq), Ion Torrent, 

Roche 454 GS FLX and Oxford Nanopore are some of the most used ones. The main differences 

between them are the generation of read length, sequencing depth and error rate(Behjati & Tarpey, 

2013; Forbes, Knox, Ronholm, Pagotto, & Reimer, 2017; Malla et al., 2019).  

We will briefly describe only Illumina MiSeq principles, since it was the platform used in this 

study. It is a sequencing-by-synthesis (SBS) approach where fragments of DNA bound to their 

primers are attached to a microscope slide-like flow cell by adapters and cycles of amplification 

occurs generating clusters of clones (amplicons) of the targeted fragments. Next, the amplicons 

serve as templates for the sequencing run where there is an addition of fluorescent reversible 

terminator nucleotides, images are captured, there is the removal of reversible terminator 
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nucleotides, the addition of regenerated 3’ hydroxyl group nucleotides, and addition of reversible 

terminator nucleotides again to repeat the cycle. For each image captured, there is a read 

(identification of the color-coded nucleotide) of the added nucleotides. With the sequential images, 

the sequence of the nucleotides is calculated. This platform generates 25 million of 300bp- length 

reads (D’Argenio, 2018; Malla et al., 2019; Pfeiffer et al., 2018).  

Because several copies of a single sequence are polymerized at the same time in a cluster, some 

unwanted events can occur such as incomplete wash out of the reversible terminator which can 

cause the polymerization to lag behind while others advance in the polymerization. This weakens 

the signal and can cause errors at the time of reading the nucleotide(base calling)(Ewing & Green, 

1998; Pfeiffer et al., 2018). For each base called, an error probability is calculated resulting in Phred 

33 scores that can range from 0 to 40. Score 20 means that 1 in 100 bases is incorrect, i.e. there is 

a certainty of 99% that the base is correct(Ewing & Green, 1998).  

In metagenomics, which is a technique of extracting genetic information from an environment, 

there are basically two approaches. One can sequence the whole genome of the organisms present 

in a sample (shotgun metagenomics) or sequence only marker genes such as 16S small subunit of 

RNA ribosomal gene (targeted metagenomics)(Malla et al., 2019; Panek et al., 2018).  

Shotgun approaches consist of deep sequencing of fragments of the sampled DNA and 

assembling by overlapping regions. Then, one can recover entire genomes or infer taxonomy or 

functions by analysis of long sequences called contigs (Malla et al., 2019; Quince, Walker, Simpson, 

Loman, & Segata, 2017). Since shotgun yields a great deal of genetic information, this approach 

brings some advantages and disadvantages over the target metagenomics. Some of the advantages 

are more reliable functional inferences, sequencing DNA of various organisms belonging to 

different kingdoms at the same time in a sample and better identification and characterization of 

the microbes present in a sample. Conversely, sequencing all DNA present in a sample may pose 

challenges to distinguish genomes, especially if they are at low abundance. Furthermore, it requires 

more powerful computational performance, thus leading to higher costs and more time consuming 

(Behjati & Tarpey, 2013; Forbes et al., 2017).  

Targeted amplicon metagenomics, small subunit of 16S ribosomal RNA gene marker, which is 

the approach applied in this study, will be discussed in more detail in the next section.  

1.6 Microbiome analysis through targeted 16S gene sequencing  

Targeted amplicons of 16S ribosomal RNA gene (16S) is the most widely used method of NGS 

to study microbiome composition. The marker 16S is highly conserved in all bacteria and archaea 
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since it is a housekeeping gene which is essential for bacterial protein expressions. This gene is 

comprised of approximately 1500 base pairs which are divided into 9 shorter regions from V1 to 

V9(Figure 3). These regions are called hypervariable because each one has certain variation 

between the different bacterial taxa, i.e., they can be species-specific(Bukin et al., 2019; D’Argenio, 

2018; Liu, DeSantis, Andersen, & Knight, 2008). The entire 16S can be studied, as well as just a 

fraction of it, by using primers specific to the regions of interest. The choice of regions will depend 

on the goal of the study, for example, studies suggest that the entire 16S would better represent the 

microbe community, while others argue that only one to three regions would suffice to address 

one’s question (Forbes et al., 2017; Yarza et al., 2014; Zhang et al., 2018). One study assessed 

selected microbes that had clinical relevance from the human gastrointestinal tract and they could 

accurately identify and quantify all of them with the 16S approach (Almonacid et al., 2016). 

Interestingly, in another study when evaluating PCR and qPCR positive Clostridium difficile samples, 

they could better identify this species with 16S than with shotgun approach(Zhou et al., 2016). A 

recent study indicated that the most reliable regions regarding community composition were V1 –

V2 and V1 - V3. On the other hand, bacterial diversity was underestimated by these regions, 

unlikely by V4 (Zhang et al., 2018). Another study suggested that phyla abundance detected with 

V2-V3 or V3-V4 did not differ, while at class and family levels differences were larger (Bukin et al., 

2019). In contrast, V2 and V3 were showed to be the most satisfactory regions to distinguish all 

bacterial organisms at the genus level (Chakravorty, Helb, Burday, Connell, & Alland, 2007). 

Furthermore, V2-V3 showed the highest resolution at genus and species levels when compared to 

V3-V4(Bukin et al., 2019). 
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FIGURE 3: SECONDARY STRUCTURE OF THE 16S RRNA OF ESCHERICHIA COLI, AS GENERATED USING THE XRNA 

PROGRAM. FOR OUR ANALYSIS, SIX R FRAGMENTS OF ∼250 NUCLEOTIDES WERE DESIGNED ACCORDING TO THE 

KNOWN V REGIONS. IN RED, FRAGMENT R1 INCLUDING REGIONS V1 AND V2; IN ORANGE, FRAGMENT R2 

INCLUDING REGION V3; IN YELLOW, FRAGMENT R3 INCLUDING REGION V4; IN GREEN, FRAGMENT R4 INCLUDING 

REGIONS V5 AND V6; IN BLUE, FRAGMENT R5 INCLUDING REGIONS V7 AND V8; AND IN PURPLE, FRAGMENT R6 

INCLUDING REGION V9. (ADAPTED FROM YARZA ET AL., 2014 ) 

All these observations suggest the difficulty to pinpoint which region would be a better 

representation for the microbiome composition and structure as a whole. While one can increase 

reliability regarding richness, one may lose true estimation of abundance. Moreover, different 

organisms are better identified by different regions, such is the case of V3 that showed to accurately 

distinguish species within Staphylococcus sp. and Haemophilus, but was limited at the family 

Enterobacteriaceae (Chakravorty et al., 2007). Nevertheless, V3 and V4 regions are widely sequenced, 

either in conjunction or separately. What is more, V4 was indicated to yield results similar to the 
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full-length 16S (Youssef et al., 2009). In fact, several studies on human gut microbiome associating 

host genetics used V3 or V4 on their investigations (Davenport et al., 2015; Goodrich et al., 2014; 

Knights et al., 2014; Murphy et al., 2015; Org et al., 2015; Rothschild et al., 2018; C. J. Stewart et 

al., 2013; Subramanian et al., 2014; Turpin et al., 2016; Zhao et al., 2013). As a means to compare 

our results with the literature, we chose to use V3-V4 in our investigation as well.  

Regardless of the chosen hypervariable region, taxonomic classification is usually performed by 

the alignment of the sequences to 16S-specific databases such as Ribosomal Database Project 

(RDP)(Cole et al., 2014), Greengenes(DeSantis et al., 2006), or Silva(Yilmaz et al., 2014) after 

processing the reads of the amplicons. Note that different databases can also contribute to the 

divergent above-mentioned results of 16S regions due to the database’s different limited 

annotations (D’Argenio, 2018).  

Despite the fact that 16S approach has yet many challenges, it still offers some advantages over 

shotgun sequencing. It can provide more sensibility to certain species; there are more accurate 16S 

specific databases; changes in relative abundance can be assessed and compared between different 

samples; if sequence depth is sufficient, it can provide reliable abundance of rare taxa; it can be 

performed on most sequencing platforms; it is cost-effective by requiring less computational 

manipulation and thus less time consuming (Donkor, 2013; Forbes et al., 2017; Hiergeist et al., 

2015). Manipulation and processing of the amplicons will be further explored in the next section. 

  

1.7 Bioinformatics pipelines for 16S data manipulation and analysis  

Amplicon sequences obtained from samples are computationally represented by reads generated 

during sequencing. In order to infer the microbiota composition in a sample with maximum 

confidence, those reads need to be accurate or almost accurate representations of the sequences 

present in a sample. Towards this end, one must perform gold-standard and rigorous processes on 

the pool of reads before attempting to infer which microorganisms were present in a sample. Such 

processes include trimming, filtering by quality score, alignment against a database, clusterization 

or feature assignment, generation of phylogenetic trees and taxonomic classification. Currently, 

there are several well designed and 16S specific pipelines and tools that perform all or part of those 

processes. To name a few, mothur (Schloss et al., 2009), Integrated Microbiome Analysis Pipeline 

(iMAP)(Buza et al., 2019), Phyloseq(McMurdie & Holmes, 2013), MetaAmp(Dong et al., 2017), 

MAPseq (Matias Rodrigues, Schmidt, Tackmann, & von Mering, 2017), Quantitative Insights into 

Microbial Ecology (QIIME)(Caporaso et al., 2010) and Quantitative Insights into Microbial 
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Ecology (QIIME 2) (Bolyen et al., 2019). Some of these and other tools and pipelines can be used 

as complements of one another as long as they share file formats, or one can convert output files 

to an appropriate format to input in another tool or pipeline.  

Here, we will focus on QIIME 2 (pronounced “chime”) since it is the main pipeline used in this 

study. Briefly, the advantages offered by this pipeline over the others are: its open-source property 

allows easy and constant improvements of the codes; it is developed by a community that could 

include anyone who can truly contribute to the software evolution; it is constantly updated; it has 

a forum where users and developers can interact and finally, it is free(Bolyen et al., 2019; Caporaso 

et al., 2010). QIIME 2 is the only Python-based software for microbiome analysis, which is also an 

advantage since Python is free and has user-friendly data structures that can be used and run in 

most operational systems. 

A study benchmarking mothur, MAPseq and QIIME 2 pipelines showed that the latter 

performed the best in recall and F-scores at family and genus levels (Almeida, Mitchell, Tarkowska, 

& Finn, 2018).  

Basically, QIIME 2 pipeline is composed of plugins that execute all those important above- 

mentioned processes on the reads. The pipeline also provides plugins for qualitative and 

quantitative analysis. Here, the plugins we used are mentioned in the Materials and Methods section. 

Yet, it is important to introduce some of the concepts and algorithms of the processes. In general, 

after quality control of the reads, the sequences are clustered by similarities. Clusterization reduces 

the number of reads to be analyzed, control for non-biological sequences, and control for recent 

divergent evolution. One way to cluster is to perform OTU picking. OTU stands for “operational 

taxonomic unit”. Essentially, sequences that are somewhat similar – usually >97% similarity – are 

cluster together making it a unit that represents a certain taxon(Nguyen, Warnow, Pop, & White, 

2016). Existing OTU picking approaches are closed, de novo and open reference. Closed-reference 

approach is database-dependent in which all sequences are aligned to a database and all the hits are 

kept, while sequences without a hit are discarded. De novo approach is database-independent in 

which sequences within the sample are aligned to each other and clustered according to their 

similarities. Open-reference approach is both a closed-reference and de novo approach in which all 

sequences without a hit on the database are clustered together according to their similarities (Edgar, 

2017). Many studies have shown some problems with the OTU picking process (Callahan, 

McMurdie, & Holmes, 2017; D’Argenio, 2018; Mysara et al., 2017; Nguyen et al., 2016). They argue 

that OTUs might bring bias by overestimating or underestimating phylogenetic diversity. One 

problem is the incorrect clusterization by applying a general cut-off to all sequences. This happens 
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because genes do not evolve at the same rate within different taxa. For example, on the one hand, 

some organisms might have more than 98% similarities in the entire 16S rRNA gene, yet they are 

completely different species. On the other hand, some families have great variability in certain 16S 

regions, yet they are from the same family (Edgar, 2017; Panek et al., 2018). Another problem is 

the reproducibility since the de novo OTU picking is a sample property, i.e., OTUs will differ from 

sample to sample. Moreover, closed OTU picking does not allow for the discovery of new 

organisms (Mysara et al., 2017).  

In an attempt to solve these issues, new algorithms have been developed such as DADA 2 

(Callahan et al., 2016) and Deblur (Amir et al., 2017). QIIME 2 provides both algorithms and they 

mainly differ on the run time of process as well as the percentage of sequence retention (Nearing, 

Douglas, Comeau, & Langille, 2018). Since Deblur was our algorithm of choice, we will focus only 

on it in this introduction. Considering that the human gut microbiome is widely studied and thus 

more curated databases are available, we chose to apply a more stringent algorithm in order to 

decrease false positives, i.e., at this stage of the study we are not interested in discovering new 

organisms, but characterizing the ones we have learned from the literature at early human life. 

Deblur algorithm takes one sample per time and generates error profiles by calculating the 

probability of indels and error rate based on upper error rate bound. With this, it predicts spurious 

sequences and subtracts all their Hamming distance neighboring reads from the sample. Reads 

whose frequency drops to zero is discarded. After chimeric removal and alignment with the 

Greengenes database, the remaining sequences are the representative sequences. This algorithm 

can differentiate sequences by a single nucleotide, termed amplicon sequence variants (ASVs) or 

sub-operational taxonomic unit (sOTUs), and predicts if they are the same taxon or if they are in 

fact different (Amir et al., 2017). Thus, the ASV assignment outperforms OTU methods by 

promoting sensitivity and specificity to infer microbes from 16S amplicons, and they can be 

considered as true biological sequences (Caruso, Song, Asquith, & Karstens, 2019). Recent studies 

have suggested and recommended that ASV should replace OTU methods because it is not only 

independent of a database but it can also be compared across samples and datasets (Callahan et al., 

2017; Caruso et al., 2019; Knight et al., 2018; Nearing et al., 2018).  

Lastly but not least, proper analysis of the microbiome requires an assessment of alpha and beta 

diversity besides taxonomic classification. Alpha diversity is a measure of richness (number of 

different organisms) and abundance of organism (frequency of each organism) within a sample, 

while beta diversity is a measure of richness and abundance between samples, i.e., measure the 

overall change (Wagner et al., 2018; Whittaker, 1972). There are several methods to measure alpha 

diversity. The evaluation might be quantitative or qualitative. Quantitative measures can be done 
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by applying Shannon index (H’) which is essentially a statistical measure based on probability 

distribution, i.e., 

𝐻′ =  − ∑ 𝑝𝑖  ln(𝑝𝑖) 

where i is the ith species, pi is the proportion of the ith species and ln is the
 
natural logarithm (Morris 

et al., 2014; Shannon, 1948). A qualitative measure of alpha diversity can be done simply by counting 

the number of different organisms present in a sample (community). These two above mentioned 

methods do not account for the relatedness between the organisms. Faith diversity is a qualitative 

method that considers this relatedness, thus is termed as phylogenetic diversity (PD). Faith PD is 

based on cladistic information (shared derived characteristics) between the taxa (Faith, 1992).  

To calculate beta diversity, one can apply Bray Curtis dissimilarity (BCij), which measures the 

presence and absence as well as abundance of each organism. This method takes the sum of the 

lowest value of all common taxa in each pair of sample and divides by the total count of taxa in the 

pair of sample, i.e.,  

𝐵𝐶𝑖𝑗 = 1 −  
2𝐶𝑖𝑗

𝑆𝑖 +  𝑆𝑗
 

 

where, i and j are two different samples and S is the sum of all species in sample i or j (Bray & 

Curtis, 1957; Primicerio, 2013). Another measure of beta diversity is Jaccard index (JX,Y), a 

coefficient of matching (similarity) between a pair of samples relative to the number of 

organisms present in at least one sample of the pair. It counts the co-presence ignoring the co-

absence (Jaccard, 1912): 

𝐽𝑥,𝑦 =  
𝑥 ∩ 𝑦

𝑥 ∪ 𝑦
 

This is a qualitative measure of diversity between samples. Again, these two methods
 
do not 

account for phylogenetic diversity. There is a relatively new method developed by Lozupone et 

Knight (2005) that takes phylogeny into consideration. It measures the fraction of the tree where 

there are organisms from a particular sample and it is unique to that sample. This measure is 

called the Unifrac distance. If two samples cover the same fraction of the tree, their unifrac 

distance is zero, that is, they are phylogenetically similar, whereas if they cover totally different 

fraction of the tree (their fraction is unique to one or another), then they are phylogenetically 

different. Unifrac can be applied taking into consideration only the presence and absence 
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(unweighted Unifrac), as well as the abundance (weighted Unifrac) of each bacterial lineage (C. 

Lozupone & Knight, 2005). Note that all beta diversity measures mentioned here result in a 

distance matrix which can be visualized with ordination technique such as PCoA (Principal 

Coordinate Analysis). PCoA is one of the techniques of dimensionality reduction that enables 

one to visualize how close (similar) or distant (dissimilarity) one sample is from another 

regarding the targeted multi variables (organisms)(Groenen, 2005). QIIME 2 pipeline provides 

plugins that not only calculate alpha and beta diversity but also provides a platform for 

visualizations of these results. For each diversity assessment, appropriate statistical tests should 

be applied to evaluate the power of the results, but at this stage of the study we applied minimal 

statistical tests and only descriptive statistics was performed due to the small sample size. The 

various methods applied for ecological and compositional data analysis will not be introduced 

or discussed here since it is beyond the scope of the study at the present moment.  
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2. Aims  
 

The aim of this study is to investigate what role host genetics plays in the establishment and 

development of the gut microbiota in infants based on longitudinal rRNA 16S data 

fromdichorionic triplets. 

 

2.1 Specific aims 

Our aims were to answer the following questions: 

1. Do MZ twins differ significantly from their DZ sibling in terms of microbiota diversity?  

2. Do MZ twins differ significantly from their DZ sibling in terms of ASV composition? 

3. If there are significant differences, can they be explained by specific ASVs?  

4. Compare  results obtained from the present study with those in the literature for singleton, 

twin and triplet infants  
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3. Materials and methods  
3.1 Basic computational processing on the datasets 

3.1.1. Participants and sample collection  

Faecal samples were collected from 5 sets of infant triplets ranging from 1 to 37 months old 

by Dr. Larissa Matos. Some samples from the sets were collected at the same time points, but 

others were collected at different time points, thus the samples are unbalanced (Figure 4). 

There were a total of 111 samples, but 12 were discarded because one, two, or all three triplets 

in a triplet set were taking or took antibiotics within the previous 30 days. This resulted in 99 

accepted samples (Table 1). The children's parents authorized the collection and investigation 

by written informed consents. This project was approved by Plataforma Brazil with the 

number CAAE: 15291119.2.0000.5464. About 30g of all samples were collected by either the 

infants’ caregivers or the mothers from diapers in tubes universal DNA collectors and/or 

preservative tubes Omnigene-Gut OMR-200 GenoTeck® at their own homes. Samples were 

immediately stored at 4C or -20C for up to 24 hours, then transported in ice to the facility 

where they were stored at -20C or -80C until processing. For every collection, Dra Larissa 

applied questionnaires for clinical follow-up. Clinical data about the individuals is described in 

Table 1. In this document the sets were named as A, B, C, D and E.  In all sets there were 2 

monozygotic twins and 1 dizygotic twin who we identified as MZ1 (monozygotic twin 1) MZ2 

(monozygotic twin 2) and DZ (dizygotic twin). MZs are 100% genetically similar, while DZ 

have 50% genetically similarity with his/her siblings (Figure 5). 

 

FIGURE 4: TIME POINTS WHEN SAMPLES WERE COLLECTED PER SET 
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FIGURE 5: DICHORIONIC TRIPLETS WHERE TWO MZS ARE IN THE SAME CHORION AND THE SIBLING DZ IS IN 

A SEPARATE CHORION. MZS ARE GENETICALLY IDENTCAL AND DZ IS THE FRATERNAL SIBLING. 

 

3.1.2 Sample processing and 16S rRNA gene sequencing  

DNA extraction, PCR and sequencing were performed by Dr. Larissa Matos. For bacterial DNA 

extraction QIAmp DNA Stool MiniKit (QIAGEN ®, UK) was used. The extracted bacterial 

DNA were quantified by both fluorometric quantification using Qubit Assay (ThermoFisher 

Scientific, Ireland) or Quant-iT ™ PicoGreen ™ dsDNA (ThermoFisher Scientific, Ireland) 

and by absorbance in NanoDrop ND-1000 Visible UV Spectrophotometer (ThermoFisher 

Scientific, Ireland) Amplicons of the V3-V4 region of 16 ribosomal RNA gene were generated 

by Polymerase Chain reaction (PCR) with U341F primer, 5’-CCTACGGGRSGCAGCAG-3’ (17 

bases) and and 806R (GGACTACHVGGGTATCTAAT). The samples were normalized and 

pooled for 4nM following sequencing at 12pM with 20% PhiX as control with 500 cycles per 

run using the Illumina MiseqTM  2500. Instructions and reagents lists were obtained from the 

“16S Metagenomic Sequencing Library Preparation protocol (Part #15044223 Rev. B)” 

provided by Illumina Inc. 

3.1.3. Quality filtering and reads processing  

We processed the 16S reads with QIIME2 (Quantitative Insights Into Microbial Ecology) 

version 2019.10(Bolyen et al., 2019). Forward and Reverse read files were imported to Qiime2 

separately. First, we trimmed off primers from forward and reverse reads by applying the 

q2_cutadapt plugin(Martin, 2011) with the trim-single method and p-front/p-adapter option, which 

removes adapters at the 5’/3’ end and any preceding bases. Attempting to merge forward and 

reverse reads were performed with qiime vsearch join-pairs (Rognes T, 2016.) and  bbmerge 

(Bushnell, Rood, & Singer, 2017) before and after trimming, but the quality of the reverse reads 
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were so low that the merged reads could not reach our threshold of Phred quality scores of 20 

in more than 50% of the positions. Thus, we proceeded with our bioinformatics processing with 

the forward reads only. Reads that were retained after quality filtering with plugin quality-filter q-

score (parameters: q = 20, r = 3, p = 0.75 and n = 0)(Bokulich et al., 2013) were processed for 

ASVs (Amplicon Sequence Variants) assignment with Deblur(Amir et al., 2017). The reads were 

trimmed at position 230 base pair within the algorithm of Deblur. Generation of phylogenetic 

tree was performed  with plugin q2-phylogeny,  where the alignment was made with MAFFT 

program (Katoh, Misawa, Kuma, & Miyata, 2002) and  fasttree2 (Price MN, 2010) to build the 

tree.  

 

3.2. Standard analyses on each individual dataset  

3.2.1 Diversity analysis  

To evaluate alpha diversity - diversity within samples - , we first examine if the number of 

denoised reads was representative of the microbial richness in each sample. To this end, we 

ran ggrare  with step size = 10 from the ggplot2 R package to generate Alpha rarefaction curves. 

Then, we performed alpha diversity measures (Shannon index, Faith diversity(Faith, 1992) 

and Observed ASVs) within the pipeline QIIME2 (core-metrics-phylogenetic) with p-sampling-depth 

= 10,000 (normalization). Graphs of alpha diversities measures were plotted with 

geom_boxplot from ggplot2 R package. We used the R package phyloseq version 1.36.0 to 

normalize the data by rarefying to 10,000 reads sampling depth without replacement and to 

perform beta diversity analysis by Jaccard distance, Bray Curtis dissimilarity, weighted and 

unweighted UniFrac (C. Lozupone & Knight, 2005; C. A. Lozupone, Hamady, Kelley, & 

Knight, 2007). PCoA graphs were generated with  R package  phyloseq version 1.36.0 and 

ellipses were calculated by ggforce:: geom_mark_ellipse. Permutation tests on alpha and beta 

diversities were performed to check for statistical significance on mean difference, µ𝐷, based 

on alpha = 0.05.  We used as models 

µ𝐷 = (𝑦𝑚1
− 𝑦𝑚2

) −  
(𝑦𝑚1

− 𝑦𝑑) + (𝑦𝑚2
− 𝑦𝑑)

2
 

for alpha diversities and 

µ𝐷 = (y𝑚1𝑚2
) −  

(y𝑚1𝑑) + (y𝑚2𝑑)

2
 

for beta diversities, where y is the mean or the median of the values of the measures 
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(Shannon, Faith, Observed ASVs, Jaccard, Bray Curtis, weighted and unweighted UniFrac); 

m1 is the value of monozygotic twin 1; m2 is the value of the monozygotic twin 2; d is the 

value of the dizygotic twin; m1m2 is the distance/dissimilarity between monozygotic twin 1 

and monozygotic twin 2; m1d is the distance/dissimilarity between monozygotic twin 1 and 

dizygotic twin; m2d is the distance/dissimilarity between monozygotic twin 2 and dizygotic 

twin. The model calculates the mean or median differences between the groups considering 

the relationship between monozygotic-monozygotic twins and monozygotic-dizygotic twins. 

Since our sets are unbalanced, we calculated the mean difference per set as follows: 

µ𝐷 =
(y𝑚1

 +  y𝑚2
)

2
− y𝑑 

for alpha diversity and  

µ𝐷 = y𝑚1𝑚2
−

y𝑚1𝑑  +  y𝑚2𝑑

2
 

for beta diversity, taking into account the longitudinal profile by set. Then, we permuted 

10,000 times the original values of the groups m1, m2 and d (or m1m2, m1d, m2d) and sampled 

with replacement. P-values were obtained by calculating the number of times the mean or 

median from our models were present within the distribution generated by the permutations, 

i.e, if the values from the models which considered the different relationships between the 

groups (m1, m2, d) were rarely (0.05 or lower) present in a randomized distribution, we 

concluded that there was a significant difference between the monozygotic and dizygotic 

groups. We counted and identified the ASVs in each member of the sets and descriptively 

compared common ASVs between the groups of monozygotic twins and their dizygotic co-

twins using standard commands in R. Visualization of the common ASVs was made with 

Venn diagrams using the R package VennDiagram version 1.6.17. In order to check if the 

fractions of ASVs in the Venn Diagram were significant larger in MZs, we applied a statistical 

test, Z, for the comparison of two proportions in a multinomial model using R: 

𝑍 =
�̂�1  − �̂�2

√
(�̂�1  +  �̂�2) −  (�̂�1   −  �̂�2)2

∑ �̂�𝑖
𝑛
𝑖

 

 

where �̂� is the estimated probability of sharing ASVs between 1 = MZ1 and MZ2, 2 = MZ1 

and DZ, 3 = MZ2 and DZ in each set, and ∑ �̂�𝑖
𝑛
𝑖  is the sum of all estimated probabilities in 
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the Venn Diagram in the corresponding set. Overlapping of 95% confidence intervals – 

Goodman for the probabilities of occurrence were calculated with the function GM and p-

values calculated with the function pchisq; both functions from the CoinMinD R package. We 

adopted alpha = 0.05. 

 

3.2.2 Taxonomic classification  

We exported the ASVs and their abundance table produced by Deblur out of QIIME 

Environment and classified the ASVs with RDP(Ribosomal Database Project) classifier 

version 2.12(Wang, Garrity, Tiedje, & Cole, 2007) and SPINGO (SPecies level IdentificatioN 

of metaGenOmic amplicons) version 1.3(Allard, Ryan, Jeffery, & Claesson, 2015), using the 

databases RDP version 11.5(Cole et al., 2014), setting a minimum confidence score of 0.85 

in both classifiers. Output taxonomy files were merged (merge script in R created by Andrew 

Thomas (Personal communication)) followed by addition to the table BIOM (Biological 

Observation Matrix) file (McDonald et al., 2012). The resulting file was imported back to 

QIIME environment or to RStudio to proceed with the analysis. Histograms for both Phyla 

and Genus relative abundances were created with the R package ggplot2 version 3.3.3. 

 

3.2.3 CA analysis  

Correspondence analysis (CA) in each set was performed in the R studio. We used the 

absolute abundance of ASVs present in each set to check for associations between the ASVs 

and the samples. First, we performed the CA with the 50 most abundant ASVs in each set 

allowing for clear visualization on the graph and avoiding overlap of variables which would 

make it difficult to read. We applied the function fviz_ca_biplot from the R package factoextra 

(version 1.0.5) setting the map to rowprincipal which generates an asymmetric plot with rows 

(samples) in principal coordinates and columns (variables - ASVs) in standard coordinates, 

i.e, samples with similar abundance cluster together and the variables that contribute to the 

clustering are positioned in a low angle with the samples revealing their associations. Then, 

we calculated the Person´s chi square, 𝜒2 , test with simulated p-value based on 2,000 

replicates to overcome the problem of very low expected values or zeros on the dataset. 

Since the contingency tables of all sets had large sample size (N > 450 cells), we calculated 

the coefficient of contingency by: 
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𝐶 = √
𝜒2 

𝜒2  + 𝑁
 

We performed the CA again later with those 50 most abundant ASVs adding all the ASVs 

whose heritability (explained below) was significant, regardless of their abundance. We 

selected time points 9, 11 and 13, where we noticed clusterization from previous CA  and 

where the heritability tests were applied. Here, we calculated the log2 likelihood ratio 

𝑟𝑎𝑡𝑖𝑜 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

as an index to interpret the association between the samples and the ASVs. The ratio 

calculation serves to interpret the ASVs-samples significance of association. The calculation 

of similarity of ratios was done by subtracting the ratios of the pairs compared (MZ1 vs MZ2, 

MZ1 vs DZ, MZ2 vs DZ). 

Any process performed in R was done in R version 4.1.1, 4.1.0, 4.0.5, 4.0.4, 4.0.3, and 3.5.2,  

and RStudio version 1.4.1717.  

 

3.2.4 Heritability 

Heritability tests were applied to sets A, B, D and E at time points 9, 11 and 13, and it was 

made by testing H0: 𝜎𝑔
2= 0 against H1: 𝜎𝑔

2>0 through the likelihood ratio statistic, which is 

asymptotically distributed as a 1/2:1/2 mixture of Chi-square with 0 and 1 degree of 

freedom. SOLAR(Sequential Oligogenic Linkage Analysis Routines) Eclipse version 

software package version 8.5.1 (beta)(Kochunov et al., 2015) (http://www.solar-eclipse-

genetics.org/) was used for the test with default settings. SOLAR software applies variance 

component models under maximum likelihood estimation approach using the following 

matrix to take into account family dependence among individuals: 

Ω = 2Φ𝜎𝑔
2 + 𝐼𝜎𝑒

2 

  

 

where, Ω  is the covariance matrix for a pedigree of individuals, Φ is the kinship matrix of 

pair-wise kinship coefficient among all individuals, 𝜎𝑔
2 is the genetic variance component due 

to additive genetic factors, 𝐼 is the identity matrix, and 𝜎𝑒
2 is the variance component due to 

http://www.solar-eclipse-genetics.org/
http://www.solar-eclipse-genetics.org/
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specific environmental effects of each individual, such that 

𝐻2𝑟 =
𝜎𝑔

2

𝜎𝑝
2 

 is the narrow sense heritability and  

𝜎𝑝
2 = 𝜎𝑔

2 + 𝜎𝑒
2 

 is the total phenotypic variance (Kochunov et al., 2015). 

First, we  excluded from our analysis the ASVs that were not present in 50% of  the samples 

of the sets following criteria in the literature (Goodrich et al., 2016; Goodrich et al., 2014; 

Xie et al., 2016). Then, we filtered in, per time point, ASVs that were present in at least 3 sets 

and at least in one monozygotic and dizygotic co-twin in each set. The phenotype file 

containing relative abundance responses was input into the software and normalized with 

inorm before the heritability test. Environmental factors such as diet, antibiotic intake, 

diseases and milestones (crawling and walking) were registered for each set of triplets, 

however, those variables could not be tested for heritability because there were very few 

variabilities, that is, the babies presented very similar profiles within the sets and between the 

sets. The phenotype sex was modeled as covariate in the adjusted models. Graph comparing 

heritability estimates was generated in R package ggplot2. 

.  
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4. Results  

4.1. Triplets data sets and read quality  

The collection of fecal samples of five sets of triplet infants, named A through E, aging from 

1 to 37 months in a longitudinal manner was performed by Dr. Larissa Matos. All five sets 

of triplets lived in the city of São Paulo. We obtained 111 samples, but 12 were removed 

from the study because they were collected at the time of the infant antibiotics intake within 

the previous 30 days. Thus, 99 samples were considered valid for this study. Information 

about the zygosity of the triplets was obtained by their mother´s declaration. No DNA test 

was performed to confirm zygosity. Clinical data of the sets are described in Table 1. See also 

Figure 4.  

 

Bacterial 16S amplicon sequencing was performed by Dr. Larissa Matos to obtain forward 

and reverse reads, however, the latter were falling below our threshold of quality (20) in 

more than 50% of the base pair positions, thus we only consider the forward reads for 

this study.  They resulted in 22,101,869 reads and after pre-processing, we obtained 

6,672,051 forward reads with a length of 230 bp with a minimum quality value of 20 for 

each base, resulting in an average of 61,394 reads per sample (Table 2).  
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4.2. ASV assignment and distribution  

The reads were assigned to 4,168 Amplicon Sequence Variants (ASVs) with a length of 230 

bp. The mean number of ASVs per set was 1,232 with a mean of 1,075 reads per ASVs. The 

ASVs were identified by number from 1 to 4,168. The most abundant ASV throughout the 

sets was the ASV-18 followed by ASV-1.   

In order to ascertain that the samples reached enough sequencing depth, i.e., sampling 

captured all or most species from the population, we rarefied them at the level of ASVs. All 

samples in all sets reached a plateau suggesting that we have obtained enough species to be 

analyzed. We also observed a trend of increasing number of ASV as time goes by (Figure 4) 
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FIGURE 6: ALL SAMPLES IN ALL SETS REACHED A PLATEAU 

A) SET A, (B) SET B, (C) SET C, (D) SET D AND E SET E.  SAMPLES REACHED A PLATEAU INDICATING 

SUFFICIENT SEQUENCE DEPTH. EACH CURVE IS A SAMPLE THAT ARE COLOR-CODED BY TIME POINT AT THE 

FAR RIGHT OF EACH GRAPH. MZ1 = MONOZYGOTIC 1, MZ2 = MONOZYGOTIC 2, DZ = DIZYGOTIC, NUMBERS 

ARE THE TIME POINTS IN MONTHS 

 

4.3 Diversity analysis  

The ASV tables (each ASVs and their corresponding frequency) were normalized by 

rarefaction to 10,000 reads in all sets in order to account for the inter-sample variation in read 

number before diversity analysis was performed. Next, we calculated alpha and beta diversity 

with QIIME core-metrics-phylogenetic pipeline and R packages. 

 

4.3.1 Alpha diversity  

Although MZs appear to be more similar in almost all sets in Faith diversity analysis (Figure 

5), the mean and median difference between MZs and DZ are not statistically significant as 
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shown by  permutation tests (p > 0.05) based on 10,000 permuted results (Table 3). Likewise, 

observed ASVs and Shannon diversity are not significantly different between the triplets in 

all sets (Table 3 and Figure 5). 

 

FIGURE 7: ALPHA DIVERSITY OF THE TRIPLETS ARE NOT SIGNIFICANTLY DIFFERENT 

SETS A – E ARE REPRESENTED BY THE LETTERS ABOVE THE FIGURES. THE THICK MIDDLE LINE OF BOX PLOT 

REPRESENTS THE MEDIAN OF EACH TRIPLET IN ALL TIME POINTS. 
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4.3.2 Beta diversity  

For beta diversity analysis we applied four measures: Jaccard distance, Bray Curtis dissimilarities, 

Weighted and Unweighted Unifrac distance. Permutation tests on the mean and median 

difference of the distances between MZ1 and MZ2, MZ1 and DZ, and MZ2 and DZ in all sets 
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resulted in significantly higher similarities between the MZ1 and MZ2 in all measures when 

compared to the other two pairs, except for Weighted Unifrac distance where p values > 0.05 

(Table 3). However, MZs clustered together on PCoA  in this measure (Figure 6). Bray Curtis 

PCoA also presented clusterization of MZs, except in set A (Figure 7). PCoA of Jaccard 

distance showed clusterization of MZs in at least two coordinates in all sets (Figure 8) . 

Unweighted Unifrac PCoA was the only measure that presented clusterization of MZs in all first 

coordinates in all sets (Figure 9), and MZs similarities were significantly greater than between 

MZ1 and DZ, and between MZ2 and DZ. 
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FIGURE 8: WEIGHTED UNIFRAC DISTANCE ON PCOA 

SETS A-E ARE PRESENTED BY THE LETTERS ABOVE THE GRAPHS. FIRST PRINCIPAL COORDINATE WAS 

ENOUGH TO EXPLAIN MORE THAN 50% OF VARIANCE ON THE SAMPLES IN ALL SETS. MZS ARE CLUSTERED IN 

TIME POINTS 6, 7, 11, 12 AND 13 MONTHS (SET A),  IN 6, 13 AND 18 (SET B), IN 21 MONTHS (SET C), IN 

9, 11, 13 AND 18 MONTHS (SET D) AND IN 1 MONTHS IN SET E. 
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FIGURE 9: PCOA OF BRAY CURTIS DISSIMILARITY 

SETS A-E ARE PRESENTED BY THE LETTERS ABOVE THE GRAPHS. MORE THAN 2 COORDINATES WERE 

NECESSARY TO EXPLAIN MORE THAN 50% OF VARIANCE IN ALL SAMPLES. THERE WAS NO CLUSTERIZATION 

OF MZS IN SET A, BUT WE NOTICED CLUSTERIZATION OF TIME POINTS (2 – 7 MONTHS, THEN 9 -13 MONTHS 

AND 36 MONTHS ). MZS CLUSTERED AT  6 AND 12(SET B), AT 16, 21 AN 22 MONTHS ( SET C), AT 9, 11, 
13 AND 18 MONTHS (SET D), AT 2 AND 6 (SET E). 
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FIGURE 10: PCOA OF JACCARD DISTANCE. 

SETS A, B AND E DID NOT PRESENT CLUSTERIZATION IN AXIS 1 OR 2 AND IT WAS NECESSARY MORE THAN 3 

COORDINATES TO EXPLAIN 50% OF VARIANCE. IN SET A, MZS CLUSTERED AT TIME POINTS 2 AND 7. IN SET 

B, MZS CLUSTERED AT 6, 12, 18 MONTHS. IN SET C, MZS CLUSTERED IN ALL TIME POINTS. IN SET D, MZS 

CLUSTERED AT 9, 11 AND 18 MONTHS. IN SET E, MZS CLUSTERED AT 1 AND 2 MONTHS 
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FIGURE 11: UNWEIGHTED UNIFRAC DISTANCE ON PCOA 

IT WAS NECESSARY MORE THAN 2 PRINCIPAL COORDINATES TO EXPLAIN MORE THAN 50% VARIANCE OF 

THE SAMPLES, OVERALL. MZS CLUSTERED IN ALL SETS ON THE FIRST COORDINATE. IN SET A, MZS 

CLUSTERED AT TIME POINT 36. IN SET B, THEY CLUSTERED AT 9, 13, 14 AND 18 MONTHS. IN SET C, MZS 

CLUSTERED AT 19, 21 AND 22. IN SET D, THEY CLUSTERED AT 13. IN SET E, MZS CLUSTERED AT 1 AND 11 

MONTHS. 
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4.4 Taxonomic classification  

Taxonomic classification was performed in each set separately. In set A,  1,364 ASVs were 

classified into 11 phyla. The phylum Bacteroidetes and the genus Bacteroides had the highest 

abundance, while Fusobacteria and Hydrogenoanaerobacterium had the lowest abundance of 

all in the set. In set B, there were 1,343 ASVs classified into 9 phyla. The highest abundant 

phylum and genus were Firmicutes and Bacteroides, respectively. There were 1,178 ASVs in set 

C that were classified into 9 phyla. Firmicutes and Bacteroides had the highest abundance, 

whereas Fusobacteria and Clostridium XI had the lowest. Set D had 992 ASVs that were 

classified into 9 phyla. Proteobacteria and Escherichia/Shigella had the highest abundance 

whereas Fusobacteria and Novosphingobium had the lowest.  Finally, in set E we obtained 1,285 

that were classified into 12 phyla. Firmicutes and Bacteroides were the highest abundant phylum 

and genus, respectively. Planctomycetes and unclassified Oxalobacteraceae had the lowest 

abundance in this set (Table 4).  

 

 

Overall, Firmicutes and Bacteroidetes had the highest abundance in all time points together. 

Bacteroides were the most abundant genus and Bifidobacterium represented most of the 

phylum Actinobacteria (Figure 10). In a timely manner, Firmicutes did not vary substantially 

while Proteobacteria decreased and Bacteroidetes increased. At the genus level, it is more 

difficult to discern trends in relative abundance, but it does seem that the increase in 

abundance for the Bacteroidetes phylum is driven by increase in Bacteroides. In addition, 

Bifidobacterium, Clostridium XIVa and Veillonella seemed to be stable over time (Figure 

11). 



50 

 

 

FIGURE 12: RELATIVE ABUNDANCE OF PHYLA (A) AND GENUS(B) WITH ALL TIME POINTS COMBINED PER SET 

PHYLA AND GENERA ARE PLOTTED IN INCREASING ORDER OF RELATIVE ABUNDANCE FROM BOTTOM TO TOP. 
(A) ONLY THE SEVEN MOST ABUNDANT PHYLA ARE SHOWN AND THE REMAINING SIX ARE GROUPED IN THE 

“OTHERS” CATEGORY. THE ORDERS OF RELATIVE ABUNDANCE ARE SIMILAR IN ALL SETS WITH SLIGHT 

VARIATION IN THE PHYLA WITH LOW ABUNDANCES. (B) ONLY THE TEN MOST ABUNDANT GENERA ARE SHOWN 

AND THE REMAINING GENERA ARE GROUPED IN THE “OTHERS” CATEGORY. THE MOST ABUNDANT GENUS IS 

BACTEROIDES FOLLOWED BY OTHERS. VARIATION OF RELATIVE ABUNDANCE DISTRIBUTION IS HIGHER IN 

LOW ABUNDANT GENERA. EACH BAR REPRESENTS A SET WITH ALL TIME POINTS WHEN SAMPLES WERE 

COLLECTED IN THE SET. 

 

 

 

FIGURE 13: RELATIVE ABUNDANCE OF PHYLA(A) AND GENUS (B) WITH ALL SETS COMBINED PER TIME POINTS 

 PHYLA AND GENERA ARE PLOTTED IN INCREASING ORDER OF RELATIVE ABUNDANCE FROM BOTTOM TO TOP.  
(A) ONLY THE SIX MOST ABUNDANT PHYLA ARE SHOWN AND THE REMAINING SEVEN ARE GROUPED IN THE 

“OTHERS” CATEGORY. FIRMUTES IS THE MOST ABUNDANT PHYLA FOLLOWED BY PROTEOBACTERIA AND 

BACTEROIDES WHICH PRESENT INVERSE TREND OVER TIME. (B) ONLY THE TEN MOST ABUNDANT GENERA 

ARE SHOWN AND THE REMAINING GENERA ARE GROUPED IN THE “OTHERS” CATEGORY. THE MOST 

ABUNDANT GENERA IS IN THE OTHERS CATEGORY FOLLOWED BY BACTEROIDES WHOSE RELATIVE 

ABUNDANCE INCREASE WITH TIME. VARIATION OF RELATIVE ABUNDANCE DISTRIBUTION IS HIGHER IN LOW 

ABUNDANT GENERA. EACH BAR REPRESENTS A TIME POINT WHEN SAMPLES OF ALL SETS AND ALL TRIPLETS 

WERE COLLECTED. NUMBERS ON THE TOP OF EACH BAR REPRESENT THE QUANTITY OF SETS IN THE 

RESPECTIVE TIME POINT. TIME POINT IN MONTHS IS NOT CONTINUOUS. THE DOTS REPRESENT THE GAP 

BETWEEN TWO TIME POINTS.  
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4.5 ASVs Analysis 

4.5.1 Shared ASVs 

In order to evaluate ASVs shared by the triplets, we generated a Venn diagram in each set 

separately (Figure 12). In all sets, the estimated probabilities of MZ1 and MZ2 sharing the same 

ASVs were bigger than the ones sharing between MZ1 and DZ, and between MZ2 and DZ. 

However, only in set A these estimated probabilities were significantly bigger when analyzed by 

a multinomial model (p = 0.044 when compared to MZ1 and DZ, and p = 0.018  when 

compared to MZ2 and DZ).  In addition, MZ1 and MZ2 significantly shared more ASVs when 

compared to MZ2 and DZ in set C (p = 0.028), and in set  D there was a trend for significance 

(p = 0.052), but not when compared to MZ1 and DZ (p = 0.1860 in C and p = 0.1278 in D). 

In sets B and E, MZ1 and MZ2 did not significantly share more ASVs than MZ1 and DZ or 

MZ2 and DZ (Table 3). Most ASVs shared exclusively between MZs throughout the sets were 

classified as Bifidobacterium (60 ASVs – 7%), Bacteroides (52 ASVs – 6%) and Veillonella (50 

ASVs – 6%) (Table 5). 

 

FIGURE 14: AMOUNT OF SHARED ASVS BETWEEN TRIPLETS IN EACH SET 

SETS ARE REPRESENTED BY THE LETTERS A-E ABOVE THE GRAPHS. MZS APPEARED TO SHARED MORE ASVS 

BETWEEN THEM THAN BETWEEN THEIR DZ CO-TWINS IN ALL SETS. PERCENTAGE VALUES IS THE SHARED 

ASVS BETWEEN THE MZS OVER THE TOTAL NUMBER OF ASVS IN THE SET. MZ1 = MONOZYGOTIC TWIN 1, 
MZ2 = MONOZYGOTIC TWIN 2 AND DZ = DIZYGOTIC TWIN 
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4.5.2 Correspondence Analysis (CA) 

We performed CA in the 50 most abundant ASVs in each set and observed that samples of the 

same time points tended to group together on the graph, specifically in set A and E in which 

there was clusterization of time points 9, 11 and 13 months (Figure 13). Then, CA was 

performed again on those time points only, however, we added ASVs that also showed 

significant heritability regardless of their abundance (results of heritability test are in the next 

section) making it 53 ASVs in set A, 59 in set B, 57 in set D and 53 ASVs in set E (Figure 14). 

Set C was not included in this analysis due to the lack of samples on the three time points, 

however, there was clusterization of MZs in 2 (16 and 21 months) out of 4 time points in this 

set (Figure 13C). Chi square test in all CAs returned p < 0.05. To account for the large sample 

size of the contingency tables, we calculated the coefficients of contingency and they were all 

greater than 0.99 in all sets showing that there are strong relationships between the samples and 

the ASVs. We also observed twenty-two ASVs ( 1, 3, 8, 18, 19, 21, 31, 43, 44, 60, 63, 64, 80, 107, 

116, 130, 150, 204, 213, 714, 758, 860) common to all sets associated with the samples from 

those time points (Figure 15). In order to interpret the contribution of sample-ASVs for the 

significance of the association, we calculated the observed values divided by the expected values 

obtained from the Chi square test, i.e., the log2 of the likelihood ratio (for simplicity, we will call 

it “ratio” in this document) We compared the ratios of relative abundance of  ASVs in all sets 

combined (total of 111 ASVs) between the MZ1, MZ2 and DZ from all three time points, 

making it three pairs of comparisons. We observed that the ratios of 34 out of 111 ASVs  were 

more similar between MZ1 and MZ2, and between MZ1 and DZ, whereas MZ2 and DZ had 

more similar ratios in 20 ASVs. Ratios of 23 ASVs were equally similar between two or the three 

pairs compared. Eleven ASVs (3, 8, 18, 19, 31, 43, 44, 63, 64, 80 and 714) were present in all 

samples of each set. Ratios of ASVs 43 and 63 were more similar between the MZs, ASVs 8, 18, 

44 and 80 showed more similar ratios between MZ1 and DZ, while ASVs 3 and 714 ratios were 

more similar between MZ2 and DZ. Between MZs and between MZ2 and DZ ASV 19 

presented similar ratios, and ASV 31 were equally similar in all three pairs compared. 
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FIGURE 15: CORRESPONDENCE ANALYSIS IN EACH SET SHOWS CLUSTERIZATION OF TIME POINTS 

SETS ARE REPRESENTED BY THE LETTERS ABOVE THE GRAPHS. SAMPLES OF THE SAME TIME POINTS TEND 

TO CLUSTER. TIME POINTS 9, 11 AND 13 IN BOTH SETS A AND E CLUSTERED IN THE LOW QUADRANTS. MZS 

CLUSTERED IN ALL TIME POINTS IN SET D. SAMPLES ARE IN BLUE AND ASV, HERE AS S#, ARE COLORED BY 

CONTRIBUTION TO THE COORDINATES. ASVS IN WINE COLOR ARE OUTLIERS. M1: MZ1 (MONOZYGOTIC 

TWIN 1); M2:MZ2 (MONOZYGOTIC TWIN 2) AND D:DZ (DIZYGOTIC TWIN). P VALUES OF THE CHI-SQUARE 

ARE ABOVE THE GRAPH. 
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FIGURE 16: CORRESPONDENCE ANALYSIS IN EACH SET AT TIME POINTS 9, 11 AND 13 MONTHS 

SET A IS PRESENTED BY A, SET B IS REPRESENTED BY B, SET D IS REPRESENTED BY C AND SET E IS 

REPRESENTED BY D. SAMPLES ARE IN BLUE AND  ASVS (HERE CODED WITH S#) IN A GRADIENT COLOR 

REPRESENTING THEIR CONTRIBUTION TO THE PRINCIPAL COMPONENTS OF THE SAMPLES. SAMPLES 

GROUPED TOGETHER ARE MORE SIMILAR TO ONE ANOTHER THAN SAMPLES FURTHER AWAY. SAMPLES ON 

THE OPPOSITE QUADRANT ARE MORE DIFFERENT THAN THE ONES IN THE SAME QUADRANT. ASSOCIATIONS 

BETWEEN ASVS AND THE  SAMPLES CAN BE EVALUATED BY THE ANGLE BETWEEN THEM FORMED FROM THE 

ORIGIN AND THE DISTANCE OF THE ASVS FROM THE ORIGIN. THE FURTHER FROM THE ORIGIN AND THE 

SMALLER THE ANGLE, THE STRONGER THE ASSOCIATION. IN SET A (A), MZS ARE ALL IN THE LOWER 

QUADRANTS AND DZS ARE IN THE UPPER QUADRANTS. IN SET B (B), SAMPLES ARE SEPARATED BY TIME 

POINTS AND MZS ARE NOT CLUSTERED; EACH TIME POINT IS IN DIFFERENT QUADRANTS. IN SET D(C), ALL 

MZS ARE MORE SIMILAR WHEN COMPARED TO THEIR DZ CO-TWINS. IN SET E(D), THERE WAS NO 

CLUSTERIZATION OF MZS. SET C CA IS IN FIGURE S3. M1: MZ1; M2:MZ2 AND D: DZ 
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FIGURE 17: CORRELATION PLOT OF ASSOCIATIONS BETWEEN SAMPLES AND ASVS. 

ASVS ARE IDENTIFIED AS S#. A) SET A; B) SET B; C) SET D AND D) SET E. M1 IS THE MONOZYGOTIC TWIN 

1, M2 IS THE MONOZYGOTIC TWIN 2, AND D IS THE DIZYGOTIC TWIN AT TIME POINTS 9, 11 AND 13. 
ASSOCIATIONS ARE GRADED BY COLORS. BLUE COLOR REPRESENTS ASSOCIATION OF ATTRACTION, RED 

COLOR REPRESENTS ASSOCIATION OF REPULSION. NUMBERS NEXT TO THE COLOR GRADIENT BAR ARE THE 

VALUES OF LOG2 OF LIKELIHOOD RATIOS (OBSERVED VALUE/EXPECTED VALUE) AS INDEX OF ASSOCIATION. 
VALUES NEXT TO ZERO INDICATE NO ASSOCIATION, POSITIVE VALUES INDICATE ASSOCIATION OF 

ATTRACTION AND NEGATIVE VALUES INDICATE ASSOCIATION OF REPULSION. BLACK BAR ON THE TOP OF 

EACH GRAPH INDICATES THE TWENTY-TWO ASVS THAT ARE COMMON TO ALL FOUR SETS. ASVS THAT ARE 

NOT PRESENT IN ALL SETS ARE INDICATED BY THE BLACK ARROW.   

 

 

4.5.3 Heritability 

We performed heritability tests of ASVs abundances on sets A, B, D and E in which samples of 

time points 9, 11 and 13 were present, and these are the only time points where we had a large 

enough sample size to obtain convergence in the analysis performed (n = 4: sets A, B, D, and 

E). There was no collection of samples in those time points in set C, so we did not consider this 

set for this test. Criteria of filtering ASVs is explained in the Methods section. After filtering, we 

obtained 20, 28 and 32 ASVs at time points 9, 11 and 13 months, respectively. Heritability test 
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with the phenotype sex modeled as covariate was applied at each time point separately, resulting 

in nineteen distinct ASVs with significant (p<0.05) heritability, five at time point 9, seven ASVs 

at time point 11 and ten ASVs at time point 13 months (Figure 16 and Table 6). ASV-1 

presented significant heritability at all three time points and ASV-63 at time points 9 and 11. 

The average value of heritability throughout the time points was 75%. The highest value was 

90% for ASV-31 at 11 months and ASV-1 at 13 months, and the lowest value was 57% for 

ASV-1 at time point 13.  

 

 

FIGURE 18: HERITABILITY ESTIMATES (H2R) OF ASVS RELATIVE ABUNDANCE AT TIME POINTS 9, 11 AND 13 

MONTHS 

ASVS OF BACTEROIDES AND VEILLONELLA HAVE SIGNIFICANT HERITABILITIES AT TIME POINTS 9, 11 AND 

13 MONTHS. DOTS REPRESENT THE HERITABILITY ESTIMATES AND BARS ARE THE STANDARD ERRORS OF 

THE ESTIMATES. SHOWN HERE ARE ONLY ASVS WHOSE HERITABILITY WAS STATISTICALLY SIGNIFICANT (P 

≤ 0.05).  NUMBERS ABOVE THE DOTS ARE THE P-VALUES OF THE TEST. VERTICAL DOTTED LINE IS THE MEAN 

OF H2R OF ALL ASVS REPRESENTED HERE. 
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4.6 Shared ASVs, CA and Heritability results comparison 

By comparing the results of the tests Shared ASVs, CA and Heritability, we found that ASV-

1, which was classified as Bacteroides, was shared between the MZs, had a more similar ratio 

in CA between the MZs when compared to the ratios of their co-twin DZ and presented 

highly significant heritability at time point 9 months. At time point 11 the ASV-21, ASV-31, 

ASV-60, ASV-63 and ASV-80 (classified as Clostridium_XlVa, Clostridium_XlVa, Blautia, 

Veillonella, Clostridium_sensu_stricto, respectively) were shared between the MZs, 

presented similar ratios in MZs and had significant heritabilities. ASV-1, ASV-18, ASV-860 

(Bacteroides, Proteobacteria_Escherichia/Shigella, Bacteroides, respectively) at time point 

13 were shared between the MZs, showed to have more similar ratios between the MZs and 

also presented significant heritabilities (Figure 17).  

 

FIGURE 19: AMOUNT OF ASVS THAT RESULTED MZS MORE SIMILAR IN THREE TESTS. 

COMPARISON OF THE RESULTS OBTAINED IN CORRESPONDENCE ANALYSIS (CA) WHERE MZS WERE MORE 

SIMILAR, NON EXCLUSIVELY SHARED ASVS BETWEEN THE MZS (SHARED) AND HERITABILITY (H2R) PER 

TIME POINTS. 251, 349, 359 ASVS WERE ANALYZED AT TIME POINTS 9, 11 AND 13, RESPECTIVELY. 
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5. Discussion  

In this study, we investigated the microbiome of five sets of triplets and compared the 

composition of microbiota between triplets within a set. This triplet model, which is composed of 

two monozygotic and one dizygotic infant, allows us to investigate genetic factors while 

environmental factors variation is reduced to the minimum, i.e., the environment to which the 

triplets are exposed is quite similar. We hypothesized that genetics plays a part in developing and 

establishing the microbiome composition, thus we predicted that monozygotic twins would present 

a more similar composition between them than between their dizygotic co-twins. To this end, we 

analyzed bacterial sequences of the V3-V4 region of 16S small subunit ribosomal RNA gene 

extracted from the triplets faeces. 

It is important to note the limitations of this study before the discussion of the results. The two 

major limitations are: (1)small sample size; although the number of multiple gestations is increasing 

in western populations due to later maternity and in vitro fertilization techniques, the number was 

still approximately 0.0005% of all births in Brazil between 2015-2019(DATASUS). For this reason, 

finding volunteers to participate in this study is one of the major limitations. (2)16S rRNA gene 

sequences; amplicons from 16S rRNA gene have widely been used to study bacterial and archaea  

diversity due to their evolutionary highly conservative character in the bacteria and archaea 

kingdom and regions different enough to distinguish between bacteria and archaea. However, 

resolution decreases in lower taxonomic levels such as species and strains(Poretsky, Rodriguez-R, 

Luo, Tsementzi, & Konstantinidis, 2014; Turnbaugh et al., 2010). Thus, we will carefully interpret 

our results here, even though sequence analysis was done based on ASVs, which are more precise 

than OTUs (Callahan et al., 2017). The results of this study should be used to observe and perhaps 

infer certain population trends based on these five particular sets investigated here.  

The quality of the forward reads generated by sequencing was considerably high. The total 

number of reads per sample enabled us to reach enough sequence depth where all or almost all 

species could be captured from the population.  We attempted to maintain the high quality of the 

sequences by applying a clustering process different from that of “OTU ” (operational taxonomic 

unit). The algorithm used here maximizes the biological meaning of the sequences regardless of the 

reference database used. Moreover, since ASVs assignment does not involve centroid methods, 

these sequences can be compared to those of other datasets. Any two ASVs may be differed by as 

few as one base pair, thus improving resolution during classification(Callahan et al., 2017; Caruso 

et al., 2019).  

Before we attempt to answer the questions on our specific aims section, we compared the 
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microbiome structure found on our samples to that of the literature as a validation proposal of our 

findings. 

Taxonomic classification revealed a microbiome structure in infants similar to those reported in 

the literature. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomocrobia 

were the most abundant in all sets. Previous studies have also showed these  phyla as the most 

abundant in infants whose ages ranged from 1 to 3 years old(Azad et al., 2013; Bokulich et al., 2016; 

Chew et al., 2020; Hill et al., 2017; Yassour et al., 2016). By combining samples of all sets per time 

point, we found that relative abundance of Firmicutes showed less variation along the time. On the 

other hand, the relative abundance of Proteobacteria decreases, while Bacteroidetes increases with 

time starting around 6 months of age. Earlier reports showed similar results in European children 

born by cesarean(Hill et al., 2017; McGeachie et al., 2016; Christopher J. Stewart et al., 2018; 

Yassour et al., 2016). Previously, it has been shown that species belonging to Proteobacteria and 

Bacteroidetes have important roles in human health in early ages. Bacteroidetes species prepare the 

gut for colonization by the strict anaerobes, helping develop the initial microbiome development 

into a healthy and mature one(Moon, Young, Maclean, Cookson, & Bermingham, 2018). 

Proteobacteria species metabolize polysaccharides and oligosaccharides that provide nutrition and 

vitamins to the host(Zafar & Saier, 2021). We noted that Escherichia/Shigella´s abundance was 

high in the first months of life, but presented a small decrease as time went by. Studies on Brazilian 

newborns showed similar patterns(Brandt et al., 2012; Taddei et al., 2014), despite the fact that 

these babies were born vaginally and belonged to low socioeconomic backgrounds. Bifidobacterium 

was among the most abundant genus with little variation throughout the time points, and weaning 

did not seem to affect this pattern as it was reported previously (Mancabelli et al., 2020). Similarly, 

in c-section preterm European infants, bifidobacteria presented low relative abundance in the first 

week of life, increased in week 4 and presented little variation in the subsequent weeks (Hill et al., 

2017). The abundance of this genus has long been associated with breastfeeding and aging, 

(Blekhman et al., 2015; Davenport et al., 2015). Our subjects were breastfed in the first months of 

life, but formula milk was introduced in the very beginning and continued until after weaning which 

might explain the little variation of this genus. Some studies also showed the early introduction of 

formula was associated with higher bifidobacterial carriage when compared to exclusively breast-

fed babies(Harmsen et al., 2000; Nagpal et al., 2017). These results and comparisons to the literature 

suggest that the microbiome composition and its variation in our sets of triplets replicate the 

findings for similar profile children from western countries. This may be explained at least in part 

by the fact that the diet of people inhabiting large urban centers in Brazil (such as São Paulo) is 

generally similar to that of people in European cities(Santos & Conde, 2020). One alternative 
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explanation is that the establishment of the microbiota in infants is primarily determined by the 

human genome, with the environment being a secondary factor, but further analysis on the level 

of transcriptome is necessary to test this hypothesis. 

 

5.1. Do MZ twins differ significantly from their DZ sibling in terms of 

microbiota diversity? 

In this study, there was no significant difference between the MZs and their DZ co-twins in the 

alpha diversity permutation tests. On the other hand, a longitudinal study of Irish dichorionic 

triplets showed that DZ had higher alpha diversity than their MZs co-twins (Murphy et al., 2015), 

however, no statistical test results were provided by the authors. In beta diversity analysis, MZs 

were significantly more similar than their co-twin DZs in the measures Bray Curtis, Jaccard and 

Unweighted Unifrac, but not in Weighted Unifrac distance (Table 3). Similar results of weighted 

and unweighted unifrac were found previously in a study with 2,731 individuals whose mean age 

was 60 years old (Goodrich et al., 2016; Goodrich et al., 2014) and in another study of one set of 

dichorionic infant triplets (Murphy et al., 2015). PCoA on these beta diversity measures revealed 

some clusterization of MZs, and up to 4 principal coordinates were necessary to account for more 

than 50% variance of all samples.  

 

5.2. Do MZ twins differ significantly from their DZ sibling in terms of 

ASV composition? 

In order to answer this question we decided to give special attention to the ASVs due to the 

advantages explained above, thus we performed two main analyses on the ASV level: Estimated 

probability of shared ASVs by a multinomial model and Correspondence Analysis (CA) with log2 

of the likelihood ratio. Venn Diagram graphs of shared ASVs showed that the estimated probability 

of shared ASVs between the MZs were bigger than between the MZs1/2 and their DZ co-twins in 

all sets, however these differences were not statistically significant as shown by the multinomial 

test, overall. We speculate that the sample size might have caused the divergent results between the 

graphs and the multinomial tests. Nevertheless, we considered specific (those ASVs that yielded 

positive results for similarities between the MZs) shared ASVs for further comparison with the 

results of the other two analyses. Initial CA revealed specific time points (9, 11 and 13 months) 

when the abundance of ASVs are more similar between the MZs. Thus, we focused our analysis 
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on these three time points and performed the CA on them only, and we also added all ASVs 

(explored below) that yielded significant heritability results to this analysis. It is known that time is 

a key factor that influences microbiome abundance, especially in early life (Hill et al., 2017; La Rosa 

et al., 2014; Martinez et al., 2018; Turroni, Milani, Ventura, & van Sinderen, 2022; Yassour et al., 

2016) so we hypothesized that genetic factors influencing the development of the microbiome 

might be more evident in a time window. Although we identified twenty-two ASVs common to all 

sets at time points 9, 11 and 13 months,  only two ASVs had the ratios of abundance more similar 

between the MZs when considering these specific time points.  

 

5.3. If there are significant differences, can they be explained by specific 

ASVs?  

After running heritability tests on the ASVs, we compared the results with the ones we obtained 

from the tests above. Three ASVs (1, 8 and 63) were especially noteworthy as their relative 

abundance/presence/absence were more similar between the MZs throughout the time points. 

These ASVs belonged to the genus Bacteroides (ASV-1) and Veillonella (ASV-8 and 63), and 

although Bifidobacteria was among the most abundant genus, its ASVs did not show positive 

results on the analysis regarding distribution among the triplets.  Previous reports (Goodrich et al., 

2016; Goodrich et al., 2014; Singh et al., 2017; Turnbaugh et al., 2009) have shown that gut bacteria 

of the genus Bacteroides are particularly sensitive to environmental factors. The evidence presented 

here suggests that bacteria of this genus may also be susceptible to host genetics. Veillonella was 

on the top three most abundant genera that had the most number (50) of ASVs that were 

exclusively shared between the MZs in all sets of triplets (Table 5). Previous reports on heritability 

of the human gut microbiome showed that the genus Veillonella had high heritability in an adult 

population of Hutterites (Davenport et al., 2015). In another gut microbiome study of adult 

Chinese (40–75 years old), the family Veillonellaceae was reported to have high heritability and its 

abundance to be negatively associated with some diseases predictable by host genetics (Xu et al., 

2020). In a study of the oral microbiome of 485 Australian dizygotic and monozygotic twins aged 

five to eleven (Gomez et al., 2017), it was reported that Veillonella was one of the most heritable 

taxa as well as one of the most dominant. A recent longitudinal study on baboons demonstrated 

significant heritability in a large list of phenotypes based on 16S rRNA sequences, including the 

genus Veillonella as a whole and some ASVs classified as belonging to this genus(Grieneisen et al., 

2021). The authors showed correlation between the heritability of traits in baboons and humans. 

This body of literature and our own results suggest that members of the genus Veillonella in the 
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gut may be susceptible to host genetic influence, especially early in life. Recent studies demonstrated 

some health benefits provided by Veillonella. V. atypica improves athletes performance by turning 

lactate into short-chain fatty acid propionate which counteracts inflammation and provides energy 

for the body (Scheiman, 2019). V. parvula was identified as a co-participant of the innate immune 

system modulation by increasing IL-8, IL-6, IL-10, and TNF-α responses which are involved in the 

regulation of inflammation process(van den Bogert B, 2014).  

Taken together, these findings suggest that the host genetic-gut microbiome interaction can be 

very dynamic, especially in early life, when the microbiota is developing. Here we could analyze 

only three time points when host genetics revealed to be influenced by two genus, but we believe 

that there might be other time windows during infancy/childhood when these same or different 

genus are associated with host genetics.   
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6. Conclusion  

As far as we know, our study is the first to conduct a descriptive analysis of the gut microbiome 

on five sets of triplets and test heritability on four of them. Overall, our findings are consistent with 

previous studies regarding the main phyla and genera and some patterns of abundance in the 

development of the human gut microbiota during the first months of life. As it was found in the 

literature, our individuals also showed shifts of the microbiota displaying higher diversity as time 

passed by. Although the sample size was one of the limitations for inferential statistical analysis  in 

this study, we could describe some patterns of similarities between monozygotic twins. Our 

findings revealed that there are some bacteria that, at least at the sequence level, seem to be affected 

by genetics such as Veillonella and Bacteroides. We have shown that there is a time window when this 

effect occurs, thus capturing it is very challenging. Since signals of genetic effects on the gut 

microbiome might be subtle and temporary, we believe further studies using the experimental  

design described here should have as a priority an increase in the number of triplet sets, as well as 

increase in the number of shared time points between the triplet sets and the number of samples 

during the first six months of sampled babies’ lives.  

A manuscript describing the results of this dissertation has been publised by the journal 

iScience on January 28th, 2022. 
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