• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.95.2007.tde-14122007-130518
Document
Author
Full name
Nestor Walter Trepode
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Barrera, Junior (President)
Brentani, Helena Paula
Briones, Marcelo Ribeiro da Silva
Cesar Junior, Roberto Marcondes
Oliveira, Carla Columbano de
 
Title in Portuguese
Modelagem do controle gênico do ciclo celular por redes genéticas probabilísticas.
Keywords in Portuguese
controle do ciclo celular
modelagem
redes de regulação gênica
redes genéticas probabilísticas
simulação
sistema dinâmico
Abstract in Portuguese
O ciclo de divisão celular compreende uma seqüência de fenômenos controlados por una complexa rede de regulação gênica muito estável e robusta. Aplicamos as Redes Genéticas Probabilísticas (PGNs) para construir um modelo cuja dinâmica e robustez se assemelham às observadas no ciclo celular biológico. A estrutura de nosso modelo PGN foi inspirada em fatos biológicos bem estabelecidos tais como a existência de subsistemas integradores, realimentação negativa e positiva e caminhos de sinalização redundantes. Nosso modelo representa as interações entre genes como processos estocásticos e apresenta uma forte robustez na presença de ruido e variações moderadas dos parâmetros. Um modelo determinístico recentemente publicado do ciclo celular da levedura não resiste a condições de ruido que nosso modelo suporta bem. A adição de mecanismos de auto excitação, permite a nosso modelo apresentar uma atividade oscilatória similar à observada no ciclo celular embrionário. Nossa abordagem de modelar e simular o comportamento observado usando mecanismos de controle biológico conhecidos fornece hipóteses plausíveis de como a regulação subjacente pode ser realizada na célula. A pesquisa atualmente em curso procura identificar tais mecanismos de regulação no ciclo celular da levedura, usando dados de expressão gênica provenientes de medições seqüenciais de microarray.
 
Title in English
Cell-Cycle Genetic Control Modeling by Probabilistic Genetic Networks
Keywords in English
cell-cycle control
dinamical system
gene regulation networks
modeling
probabilistic genetic networks
simulation
Abstract in English
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a Probabilistic Genetic Network (PGN) to construct an hypothetical model with dynamical behaviour and robustness typical of the biological cell-cycle. The structure of our PGN model was inspired in well established biological facts such as the existence of integrator subsystems, negative and positive feedback loops and redundant signaling pathways. Our model represents genes' interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model collapses upon noise conditions that our PGN model supports well. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle. Our approach of modeling and simulating the observed behavior by known biological control mechanisms provides plausible hypotheses of how the underlying regulation may be performed in the cell. The ongoing research is lead to identify such regulation mechanisms in the yeast cell-cycle from time-series microarray gene expression data.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
nwt_phd_thesis.PDF (1.96 Mbytes)
Publishing Date
2008-11-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.