• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.95.2007.tde-07032007-121126
Document
Author
Full name
Florencia Graciela Leonardi
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2006
Supervisor
Committee
Galves, Jefferson Antonio (President)
Farah, Shaker Chuck
Fernandez, Roberto
Fraiman, Jacob Ricardo
Garcia, Nancy Lopes
Title in Portuguese
Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas.
Keywords in Portuguese
análise filogenética de proteínas
cadeias estocásticas parcimoniosas
classificação de proteínas
velocidade de convergência de algoritmos
Abstract in Portuguese
Nesta tese apresentamos alguns resultados teóricos e práticos da modelagem de seqüências simbólicas com cadeias estocásticas parcimoniosas. As cadeias estocásticas parcimoniosas, que incluem as cadeias estocásticas de memória variável, constituem uma generalização das cadeias de Markov de alcance fixo. As seqüências simbólicas às quais foram aplicadas as ferramentas desenvolvidas são as cadeias de aminoácidos. Primeiramente, introduzimos um novo algoritmo, chamado de SPST, para selecionar o modelo de cadeia estocástica parcimoniosa mais ajustado a uma amostra de seqüências. Em seguida, utilizamos esse algoritmo para estudar dois importantes problemas da genômica; a saber, a classificação de proteínas em famílias e o estudo da evolução das seqüências biológicas. Finalmente, estudamos a velocidade de convergência de algoritmos relacionados com a estimação de uma subclasse das cadeias estocásticas parcimoniosas, as cadeias estocásticas de memória variável. Assim, generalizamos um resultado prévio de velocidade exponencial de convergência para o algoritmo PST, no caso de cadeias de memória ilimitada. Além disso, obtemos um resultado de velocidade de convergência para uma versão generalizada do Critério da Informação Bayesiana (BIC), também conhecido como Critério de Schwarz.
Title in English
Parsimonious stochastic chains with applications to classification and phylogeny of protein sequences.
Keywords in English
parsimonious stochastic chains
phylogenetic analysis of proteins
protein classification
rate of convergence of algorithms
Abstract in English
In this thesis we present some theoretical and practical results, concerning symbolic sequence modeling with parsimonious stochastic chains. Parsimonious stochastic chains, which include variable memory stochastic chains, constitute a generalization of fixed order Markov chains. The symbolic sequences modeled with parsimonious stochastic chains were the sequences of amino acids. First, we introduce a new algorithm, called SPST, to select the model of parsimonious stochastic chain that fits better to a sample of sequences. Then, we use the SPST algorithm to study two important problems of genomics. These problems are the classification of proteins into families and the study of the evolution of biological sequences. Finally, we find upper bounds for the rate of convergence of some algorithms related with the estimation of a subclass of parsimonious stochastic chains; namely, the variable memory stochastic chains. In consequence, we generalize a previous result about the exponential rate of convergence of the PST algorithm, in the case of unbounded variable memory stochastic chains. On the other hand, we prove a result about the rate of convergence of a generalized version of the Bayesian Information Criterion (BIC), also known as Schwarz' Criterion.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2007-08-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.