UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia) Área de Fisiopatologia

Análise farmacogenômica em indivíduos com hipercolesterolemia familial

Carolina Dagli Hernandez

Tese para obtenção do Título de DOUTOR Orientadora: Profa. Dra. Rosario Dominguez Crespo Hirata

> São Paulo 2021

UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia) Área de Fisiopatologia

Análise farmacogenômica em indivíduos com hipercolesterolemia familial

Carolina Dagli Hernandez

Versão Original

Tese para obtenção do Título de DOUTOR Orientadora: Profa. Dra. Rosario Dominguez Crespo Hirata

> São Paulo 2021

Carolina Dagli Hernandez

Análise farmacogenômica em indivíduos com hipercolesterolemia familial

Comissão Julgadora da

Tese para obtenção do Título de DOUTOR

Profa. Dra. Rosario Dominguez Crespo Hirata orientadora/presidente

10. examinador

20. examinador

30. examinador

40. examinador

São Paulo, _____ de _____ de 202__.

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha Catalográfica elaborada eletronicamente pelo autor, utilizando o programa desenvolvido pela Seção Técnica de Informática do ICMC/USP e adaptado para a Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP

> Bibliotecária responsável pela orientação de catalogação da publicação: Marlene Aparecida Vieira - CRB - 8/5562

Dagli-Hernandez, Carolina Análise farmacogenômica em indivíduos com hipercolesterolemia familial / Carolina Dagli-Hernandez. - São Paulo, 2021. 180 p.
Tese (doutorado) - Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Análises Clínicas e Toxicológicas -Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia). Orientador: Hirata, Rosario Dominguez Crespo
1. Farmacogenética. 2. Hipercolesterolemia Familial. 3. Estatina. 4. Eventos adversos a medicamentos. 5. Mialgia. I. T. II. Hirata, Rosario Dominguez Crespo, orientador.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor, prof. Rosario Dominguez Crespo Hirata, who believed in me and in the project since the beginning. You taught me to explore all the possibilities, to have a deep critical thinking, to express myself in a scientific way and to be rigorous in my work – i.e., to be a scientist. You were also very understanding with me in my hardest moments, for which I am very grateful. Doing a PhD is much more challenging than I ever imagined, especially during a pandemic, and I acknowledge every help you gave me during this process.

I also had the privilege of having another supervisor. The completion of my thesis would not have been possible without the help and support of prof. Mario Hiroyuki Hirata as well. Thanks for also believing in me and accepting me to be part of the familial hypercholesterolemia project. I also would like to thank FAPESP and CNPq for funding my project and for the scholarships I received during my PhD. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -Finance Code 001.

I extend my deepest appreciation to my colleague Dr. Jessica Bassani Borges, who played a decisive role in the writing of the project and in most of the development. Jessica was responsible for elaborating and coordinating the Familial Hypercholesterolemia thematic project. I cannot even estimate how much I learned from you, especially in the beginning of my PhD. Special thanks also to Dr. Gisele Medeiros Bastos, Hui-Tzu Lin Wang and Adriana Regina Garófalo, who were part of the team of the Laboratory of Molecular Investigation in Cardiology (LIMC) at the Institute Dante Pazzanese of Cardiology, for supporting me and the project.

I am also grateful to Dr. Andre Arpad Faludi and Dr. Rodrigo Marques Gonçalves for helping us to plan and execute the FH project and to recruit FH patients. Dr. Rodrigo also helped us with the special visits in the washout project, for which I am very grateful. Many thanks also to Dr. Daniel Branco de Araujo, Dra. Adriana Bertolami, Dr. Henri Zatz and all the Dyslipidemia Sector of the Institute Dante Pazzanese of Cardiology. My deepest thanks also to Lucia, for making our lives easier by helping in the blood collection of our patients, and to Sandra, Ailton, Thiago, and all the Pharmacy Sector, who helped us immensely in the washout project.

Thanks also go to my colleagues who participated in the FH project: Victor and Glaucio, for their contribution in the data analysis; Elisangela, Renata, Akira, and Raul, for helping in

the patient recruitment and data collection; Bruna Los, who became a great friend and always pushed me forward; and, more towards to the end, Vanessa, Kaue, Jessica Nayara, Tayanne and Fabi. All of them contributed with my thesis, either in the execution, in the analysis, in very enriching discussions, or even with chilling conversations in our free time. Special thanks to Cristina Fajardo, who supported me with lab experiments and always made herself available whenever I needed.

Thanks to the participating centers of the FH project: Dr. Cynthia Jannes and her team from Incor; Prof. Vivian Silbiger and prof. André Luchessi and their team from the UFRN; and Dr. Marcelo Nakazone and his team from FAMERP, also for his helpful contributions to my thesis. I am also immensely thankful for the constructive review of my analysis by prof Alvaro Cerda.

I cannot begin to express my gratitude to prof. Volker Lauschke and Yitian Zhou, from Karolinska Institutet for their belief in my work and invaluable contribution to my thesis, especially in the pharmacokinetics genes analysis. Their extensive knowledge and practical contributions definitely gave another level to my analysis and also my formation as a scientist. I also felt very welcome in Sweden during my one-year visit thanks to them and to my colleagues – Qingyang, Sonia, Joanne, Aurino, Reza, Despoina, Stefania, Nuria, and Shane. Being in KI for one year with them was a game changer for my career and my life. Thanks also to the friends I made in Sweden, especially Gustavo, Gabi, Rodrigo, Francesco, Federico, Luã, Marcos Felipe, and Ana, for making my days brighter. It would have been so much harder without you.

I am blessed with incredible people in my life that always push me forward and without them, writing this thesis would have been much more challenging. Thanks to my parents Maria Lucia and Francisco, who inspired me to be at least 1% of who they are; to my grandmother Vilma and my grandfather Paco; to my sisters Tati, Pipi and Nathalie, for pushing me forward and hearing me complain. My deepest gratitude also goes to Daniel, who saw me from very close most of the time during this PhD. Thanks for being there when I celebrated and when I cried, for believing in me, pushing me forward and supporting me so much in the hardest moments. And last but not least, thanks to Thiago, who met me in the worst period possible (in the final months of my PhD) and still managed to make my days much more beautiful and lighter. Thanks for making me smile and for believing in me so much.

Finally, I deeply thank the patients of the FH project. This thesis would not have been possible without you. Thank you for your patience and for believing in our project.

We must not forget that when radium was discovered no one knew that it would prove useful in hospitals. The work was one of pure science. And this is a proof that scientific work must not be considered from the point of view of the direct usefulness of it. It must be done for itself, for the beauty of science, and then there is always the chance that a scientific discovery may become, like the radium, a benefit for mankind.

(Marie Skłodowska-Curie)

RESUMO

DAGLI-HERNANDEZ, C. **Análise farmacogenômica em indivíduos com hipercolesterolemia familial**. 2021. 180f. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo.

Introdução: A hipercolesterolemia familiar (HF) é uma dislipidemia monogênica com alto risco de desenvolvimento de doença aterosclerótica precoce. As estatinas são o tratamento de primeira linha para pacientes com HF. As estatinas reduzem substancialmente o colesterol da lipoproteína de baixa densidade (LDL-c) e têm uma boa eficácia e perfil de segurança. No entanto, alguns pacientes não respondem adequadamente, enquanto outros apresentam eventos adversos relacionados às estatinas (SRAE). Fatores genéticos e não genéticos contribuem para a variabilidade na resposta às estatinas, mas existem poucos estudos sobre fatores farmacogenômicos na população brasileira.

Objetivo: Explorar a associação de variantes genéticas com a resposta aos hipolipemiantes e SRAE em pacientes brasileiros com HF.

Pacientes e Métodos: Pacientes adultos com HF (n=114) foram selecionados e dados clínicos e farmacoterapêuticos foram obtidos. A resposta ao tratamento com estatinas foi considerada como atingindo uma redução do LDL-c de 50%. Amostras de sangue foram obtidas para exames laboratoriais e extração de DNA genômico. Um painel de 84 genes (relacionados a HF e farmacogenes) foi analisado por sequenciamento de genes direcionados a exon (ETGS). Os dados de sequenciamento de DNA foram analisados usando um pipeline de descoberta de variantes. O impacto funcional das variantes em genes relacionados à farmacocinética (PK) e farmacodinâmica (PD) foi avaliado usando um escore de predição de funcionalidade (FPS) e outras ferramentas *in silico*. A resposta do LDL-c a estatinas e ao risco de SRAE foi analisada em portadores de variantes deletérias nos genes PK e PD, com frequência de alelo raro > 5,0% ou 10%, usando análises de regressão linear univariada e multivariada. A análise de modelagem molecular foi usada para explorar o efeito funcional *in silico* de variantes deletérias.

Resultados: Cinquenta e oito (50,8%) dos pacientes com HF responderam às estatinas e 24 (21,0) apresentam SRAE. Obesidade e consumo de álcool foram mais frequentes no grupo de não respondedores (NRE) (p<0.05), enquanto o uso concomitante de ezetimiba e SRAE foram mais prevalentes no grupo de respondedores (RE) (p<0,05). A redução do LDL-c foi maior no grupo RE e nos pacientes com SRAE (p < 0.05). ETGS revelou variantes patogênicas em genes relacionados a FH (19 LDLR, 1 APOB e 1 PCSK9), 402 variantes em 23 genes relacionados a PK (186 missense, 2 stopgain, 1 stop-loss, 10 frameshift indel, 5 deleções in-frame, 16 em sítios de splicing, 29 na região 5'UTR e 153 na região 3'UTR), e 752 variantes em 33 genes relacionados com PD (249 missense, 1 stop-gain, 9 start-loss, 5 frameshift indel, 9 inframe indel, 26 em sítios de splicing, 67 na região 5 UTR e 386 na região 3'UTR). A análise de predição funcional revelou que 21 variantes missense, 1 stop-loss, 7 splicesite e 10 frameshift / inframe em genes PK são deletérias. A análise de regressão multivariada de 16 variantes em transportadores ABC e SLC e enzimas que metabolizam CYP com MAF > 10,0% e ajuste para covariáveis não genéticas, revelou que as variantes ABCC1 rs45511401 (c.2012G>T, p.Gly671Val) e SLCO1B3 rs60140950 (c.683G>C) aumentam a redução do LDL-c ao tratamento com estatina (p<0,05). A análise de modelagem molecular revelou que Val671 aumenta a interação de ABCC1 com estatinas em comparação com a proteína de referência (Gly671). Em genes relacionados ao PD, 93 missense, 1 start-loss, 3 stop-gain, 10 splice-site and 4 frameshift foram considerados deletérios. A variante missense LPA rs76062330 (c.5468G>T) foi associada a maior redução do LDL-c, mesmo após as correções (p ajustado=0,001). A análise de regressão linear multivariada mostrou que a variante KIF6 rs20455 (c.2155T>C) reduziu a resposta do LDL-c à atorvastatina (p=0,014), enquanto a regressão logística multivariada revelou associação de LPA rs3124784 (c.6046C>T) com resposta aumentada às estatinas (p=0,022). Variantes deletérias em genes relacionados a PK e PD não foram associadas ao aumento do risco de SRAE em pacientes com FH.

Conclusões: As variantes deletérias *ABCC1* c.2012G>T, *SLCO1B3* c.683G>C, *LPA* c.5468G>T e *LPA* c.6046C>T aumentaram a redução do LDL-c. *KIF6* rs20455 (c.2155T>C), uma variante neutra, diminuiu a redução de LDL-c à atorvastatina. Variantes deletérias não foram associadas ao aumento de risco de SRAE.

Palavras-chave: Hipercolesterolemia Familial, estatina, farmacogenética, eventos adversos a medicamentos, mialgia.

ABSTRACT

DAGLI-HERNANDEZ, C. **Pharmacogenomic analysis in patients with familial hypercholesterolemia**. 2021. 180p. PhD Thesis – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo.

Introduction: Familial hypercholesterolemia (FH) is a monogenic dyslipidemia with a high risk of developing early atherosclerotic disease. Statins are the first-line treatment of FH patients. Statins substantially reduce low-density lipoprotein cholesterol (LDL-c) and have a good efficacy and safety profile. However, some patients do not respond adequately whereas others experience statin-related adverse events (SRAE). Genetic and non-genetic factors contribute to the variability in the response to statins, but there are few studies on pharmacogenomic factors in the Brazilian population.

Objective: To explore the association of genetic variants with the response to lipid-lowering drugs and SRAE in Brazilian FH patients

Patients and Methods: Adult FH patients (n=114) were selected and clinical and pharmacotherapeutic data were obtained. The response to statin treatment was considered as LDL-c reduction of at least 50%. Blood samples were obtained for laboratory testing and genomic DNA extraction. A panel of 84 genes (related to HF and pharmacogenes) was analyzed by exon-targeted gene sequencing (ETGS). The DNA sequencing data was analyzed using a variant discovery pipeline. The functional impact of variants in pharmacokinetics (PK)- and pharmacodynamics (PD)-related genes was assessed using a functionality prediction score (FPS) and other *in silico* tools. LDL-c response to statin and SRAE risk was in carriers of deleterious variants in PK and PD genes, with minor allele frequency (MAF) > 5.0% or 10%, using univariate and multivariate linear regression analyses. Molecular modeling analysis was used to explore the functional effect in silico of deleterious variants.

Results: Fifty-eight (50.8%) of the FH patients responded to statins and 24 (21.0) had SRAE. Obesity and alcohol consumption were more frequent in the non-responder (NRE) group (p<0.05), whereas the concomitant use of ezetimibe and SRAE were more prevalent in the responder (RE) group (p<0.05). LDL-c reduction was higher in RE group and in patients with SRAE (p<0.05). The ETGS revealed 21 pathogenic variants in FH-related genes (19 LDLR, 1 APOB and 1 PCSK9), 402 variants in 23 PKrelated genes (186 missense, 2 stop-gain, 1 stop-loss, 10 frameshift indel, 5 inframe deletions, 16 in splicing region, 29 in the 5'UTR region, and 153 in the 3'UTR region), and 752 variants in 33 PDrelated genes (249 missense, 1 stop-gain, 9 start-loss, 5 frameshift indel, 9 inframe indel, 26 in splicesites, 67 in the 5'UTR region, and 386 in the 3'UTR region). Functional prediction analysis revealed 21 missense, 1 stop-loss, 7 splice and 10 frameshift/inframe variants in PK genes are deleterious. Multivariate regression analysis of 16 variants in ABC and SLC transporters and CYP metabolizing enzymes with MAF > 10.0% and adjustment for non-genetic covariates, revealed that ABCC1rs45511401 (c.2012G>T, p.Gly671Val) and SLCO1B3 rs60140950 (c.683G>C) increased LDL-c reduction to statin treatment (p<0.05). Molecular modeling analysis revealed that Val671 enhance the interaction of ABCC1 with statins compared with reference protein (Gly671). In PD-related genes, 93 missense, 1 start-loss, 3 stop-gain, 10 splice-site and 4 frameshift variants were predicted to be deleterious. The missense variant LPA rs76062330 (c.5468G>T) was associated with higher LDL-c reduction, even after corrections (Adjusted p=0.001). Multivariate linear regression analysis showed that the variant KIF6 rs20455 (c.2155T>C) reduced the LDL-c response to atorvastatin (p=0.014), whereas multivariate logistic regression revealed association of LPA rs3124784 (c.6046C>T) with increased response to statins (p=0.022). Deleterious variants in PK- and PD- related genes were not associated with increased risk of SRAE in FH patients.

Conclusions: The deleterious variants *ABCC1* c.2012G>T, *SLCO1B3* c.683G>C, *LPA* c.5468G>T and *LPA* c.6046C>T enhanced LDL-c reduction in FH patients. *KIF6* rs20455 (c.2155T>C), a neutral variant, decreased LDL-c reduction to atorvastatin. Deleterious variants in PK and PD genes were not associated with increased risk of SRAE.

Keywords: Familial hypercholesterolemia, statin, pharmacogenetics, adverse drug events, myalgia.

LIST OF TABLES

Table 1 Biodemographic and clinical data of FH patients grouped according to statin response
Table 2 FH-related pathogenic variants in FH patients (n=114). 37
Table 3 Biodemographic characteristics of FH patients with SRAE (n=114)40
Table 4 Missense and stop-loss variants in PK-related genes (MAF > 1.0%) with deleterious
functionality prediction score (FPS>0.5)
Table 5 In silico functional prediction of splice-site variants in PK-related genes. 43
Table 6 In silico functional prediction of frameshift and inframe variants in PK-related genes. 44
Table 7 Influence of deleterious variants (MAF >10%) on LDL-c response to stating in FH
patients: Multivariate linear regression analysis46
Table 8 Association of deleterious variants (MAF> 1.0%) in PK-related genes with statin
response in FH patients: Multivariate logistic regression analysis47
Table 9 Association of deleterious variants (MAF > 1.0%) in PK-related genes with SRAE in
FH patients: Multivariate logistic regression analysis50
Table 10 Missense, start-loss and stop-gain variants (MAF > 1.0%) in PD-related genes
predicted as deleterious
Table 11 In silico functional prediction of splice-site variants in PD-related genes
Table 12 In silico functional prediction of frameshift and inframe variants in PD-related genes 53
Table 13 Influence of deleterious variants (MAF > 1.0%) in PD-related genes on LDL-c
reduction in FH patients on statin treatment55
Table 14 Influence of deleterious variants (MAF $> 1.0\%$) in PD-related genes on LDL-c
reduction in FH patients on atorvastatin treatment56
Table 15 Influence of deleterious variants (MAF $> 1.0\%$) in PD-related genes on all statins
response of FH patients. Multivariate linear regression analysis
Table 16 Influence of genetic variants (MAF > 1.0%) in PD-related genes on atorvastatin
response of FH patients. Multivariate linear regression analysis
Table 17 Association of deleterious variants ($MAF > 1.0\%$) in PD-related genes with all statin
response of FH patients. Multivariate logistic regression analysis60
Table 18 Association of variants (MAF > 1.0%) in PD-related genes with atorvastatin response
of FH patients. Multivariate logistic regression61

Table 19 Association of deleterious variants (MAF $> 1.0\%$) in PD-related genes with SRAE in
FH patients. Multivariate logistic regression analysis
Supplementary table 1 Panel of statin PK- and PD-related genes sequenced
Supplementary table 2 Clinical data of FH patients classified according to CAD risk86
Supplementary table 3 Influence of lipid-lowering treatment on serum lipids of FH patients.
Supplementary table 4 Concentration of laboratory variables on treatment in FH patients
grouped according to statin response
Supplementary table 5 Influence of the type of lipid-lowering treatments on lipid levels of FH
patients (n=114)
Supplementary table 6 Association between SRAE and serum lipids of FH patients (n=114).
Supplementary table 7 Variants in PK-related genes identified in FH patients (n=114)91
Supplementary table 8 FPS score of variants in PK-related genes identified in FH patients (n
= 114)
Supplementary table 9 Influence of deleterious variants in PK-related genes on LDL-c
reduction in FH patients on statin treatment104
Supplementary table 10 Influence of variants in PK-related genesgenetic and non-genetic
variables on LDL-c reduction in FH patients: Univariate linear regression analysis106
Supplementary table 11 Influence of deleterious variants (MAF $> 1.0\%$) on LDL-c response
to statins in FH patients: Multivariate linear regression analysis107
Supplementary table 12 Association of variants in PK-related genes and non-genetic variables
with statin response in FH patients: Univariate logistic regression analysis108
Supplementary table 13 Association of variants in PK-related genes and non-genetic variables
with SRAE in FH patients: Univariate logistic regression analysis
Supplementary table 14 Variants in PD-related genes identified in FH patients (n=114)110
Supplementary table 15 Influence of variants in PD-related genes and non-genetic factors on
LDL-c reduction of FH patients. Univariate linear regression analysis (MAF $> 1.0\%$)127
Supplementary table 16 Association of variants in PD-related genes with statin response in
FH patients. Univariate logistic regression analysis129
Supplementary table 17 Association of deleterious variants in PD-related genes with SRAE
in FH patients. Univariate logistic regression analysis131

LIST OF FIGURES

Figure 1 Serum lipid profile in FH patients treated with lipid-lowering drugs	
Figure 2 Serum lipid profile of FH patients with statin-related adverse events (SRA)	E)41
Figure 3 Mean LDL cholesterol response (% change) after lipid-lowering treatment	ent in FH
patients carrying deleterious- variants in PK genes (MAF>5.0%)	45
Figure 4 Molecular Modeling Analysis. Influence of ABCC1 rs45511401 (c.	2012G>T,
p.Gly671Val) on amino acid interaction with statins.	49

LIST OF ABBREVIATIONS

ABC	ATP-binding cassette
ACMG	American College of Medical Genetics and Genomics
ADME	Absorption, distribution, metabolism and excretion
ALT	Alanine aminotransferase
AMI	Acute myocardial infarction
Apo A	Apolipoprotein A
Apo B	Apolipoprotein B
APOE	Apolipoprotein E
AST	Aspartate aminotransferase
BCRP	Breast cancer resistance protein
BMI	Body mass index
CAD	Coronary artery disease
CVD	Cardiovascular disease
CI	Confidence interval
CK	Creatine kinase
CPIC	Clinical Pharmacogenetics Implementation Consortium
CVD	Cardiovascular disease
CYP	Cytochrome P450
DLCN	Dutch Lipid Clinic Network
EAS	European Atherosclerosis Society
ESC	European Society of Cardiology
ETGS	Exon-targeted gene sequencing
FH	Familial hypercholesterolemia
FHBGEP	Familial hypercholesterolemia genomics, epigenomics and pharmacogenomics
GFR	Glomerular filtration rate
GOF	Gain-of-function
HbA1c	Glycated hemoglobin
HDL-c	High-density lipoprotein cholesterol
HMG-CoA	3-hidroxi-3-methylglutaryl-CoA
HMGCR	HMG-CoA reductase gene
HMGR	HMG-CoA reductase
hsCRP	High-sensitivity C-reactive protein
HWE	Hardy-Weinberg equilibrium
IDPC	Institute Dante Pazzanese of Cardiology
KIF6	Kinesin Family Member 6 gene
LDL-c	Low-density lipoprotein cholesterol
LDLR	LDL receptor gene
LOF	Loss-of-function
LP(a)	Lipoprotein(a)
MAF	Minor allele frequency
MDR1	Multi-drug resistance protein 1
MRP2	Multi-drug resistance protein 2

NICE	National Institute for Health and Care Excellence
NRE	Non-responder
OATP	Organic anion transporting polypeptide
OR	Odds ratio
PCSK9	Proprotein convertase subtilisin/kexin type 9
PD	Pharmacodynamics
PFS	Prediction framework score
РК	Pharmacokinetics
RE	Responder
SAMS	Statin-associated muscle symptoms
SLC	Solute carrier
SLCO	Solute carrier organic anion transporter family
SNP	Single nucleotide polymorphism
SNV	Single nucleotide variation
SRAE	Statin-related adverse event
SUS	Unified Health System (<i>Sistema Único de Saúde</i>)
T4	Thyroxine
TG	Triglycerides
TSH	Thyroid-stimulating hormone
UFRN	Federal University of Rio Grande do Norte
UGT	Uridine 5'-diphospho-glucuronosyltransferase
USP	University of Sao Paulo
UTR	Untranslated region
VLDL-c	Very low-density lipoprotein cholesterol

INDEX

1 INTRODUCTION	17
1.1 Dyslipidemias	17
1.2 Familial hypercholesterolemia	
1.3 Pharmacological treatment of FH patients	20
1.4 Statin pharmacogenetics	23
1.4.1 Pharmacokinetics genes	23
1.4.2 Pharmacodynamics genes	25
1.4.3 Pharmacogenetics of statins in the Brazilian population	
2 OBJECTIVES	
2.1 General objective	
2.2 Specific objectives	
3 METHODS	29
3.1 Study design and patients	29
3.2 Ethical aspects	
3.3 Blood samples and laboratory testing	
3.4 Exon-targeted gene sequencing	
3.5 Clinical and pharmacotherapy data	
3.6 Pharmacogenetic analysis	
3.6.1 Pharmacokinetics genes	
3.6.2 Pharmacodynamics genes	
3.7 Molecular Modeling Analysis	
3.8 Statistical analyses	
4 RESULTS	35
4.1 Characteristics of the individuals and molecular diagnosis	
4.2 Statin response	
4.2.1 Therapy targets	
4.2.2 Statin-related adverse events	
4.3 Pharmacokinetics genes	41
4.3.1 Variants in PK-related genes	41
4.3.2 Functionality prediction of variants in PK genes	
	15

	4.3.3	Association study between variants in PK genes and response	
4	.4 Ph	armacodynamics genes	51
	4.4.1	Variants in PD-related genes	51
	4.4.2	Functionality prediction of variants in PD genes	51
	4.4.3	Association study between variants in PD genes and response to	statins.54
5	DISCU	JSSION	
6	CONC	LUSIONS	74
7	REFE	RENCES	75
8	SUPPI	LEMENTARY TABLES	
9	SCIEN	TIFIC PRODUCTION	
9	9.1 Pu	blished Articles	
	9.1.1	Articles as first author (related to the thesis)	
	9.1.2	Articles as co-author	
9	9.2 Aı	ticles under review	
	9.2.1	Articles as co-author	
9	9.3 Aı	ticles in preparation	
	9.3.1	Articles as first author	
AP	PENDE	X 1 – Articles as first author (related to the thesis)	134
AP	PENDE	X 2 – Articles as co-author	
AP	PENDE	X 3 - Ethical approval	166
AP	PENDE	X 4 – Educational history	177

1 INTRODUCTION

1.1 Dyslipidemias

Dyslipidemias are metabolic disorders that cause abnormal concentrations of circulating lipids and lipoproteins, such as increased total and low-density lipoprotein (LDL) cholesterol and/or triglycerides, and/or decreased high-density lipoprotein (HDL) cholesterol (NI et al., 2015). They can be caused by mutations in key genes involved in lipid homeostasis (i.e., familial hypercholesterolemia [FH]) or secondary to a poor lifestyle, medications or comorbidities (HEGELE, 2009).

Extensive evidence has shown that abnormal plasma concentrations of lipoproteins, especially LDL and other apolipoprotein B (apo B)-containing lipoproteins, are the major cause of atherosclerotic cardiovascular disease (CVD), increasing the risk of cardiovascular events, such as ischemic stroke and acute myocardial infarction (AMI) (KAMSTRUP et al., 2008; MACMAHON et al., 2007; YUSUF et al., 2004; ZHANG et al., 2003). Early detection and adequate treatment of dyslipidemias are essential for the correct prevention and control of progression. The CVD mortality rate in Brazil was 372 per 100,000 inhabitants in 2012, showing a downward trend in recent years (MANSUR; FAVARATO, 2016).

Dyslipidemias are classified as primary and secondary. Primary dyslipidemias are caused by mutations in genes involved in the synthesis, metabolism, or plasma removal of lipoproteins. Secondary dyslipidemias can be caused by the effects of other diseases, medications and some lifestyle habits, such as smoking and high-fat diets (XAVIER *et al.*, 2013).

Primary dyslipidemias can be diagnosed by phenotypic (clinical and laboratory parameters) or molecular (search for mutations in disease-causing genes) methods. Monogenic dyslipidemias result from mutations in a single gene, while polygenic ones are caused by associations of multiple mutations that alone do not have great repercussion (GARCÍA-GIUSTINIANI; STEIN, 2016; HEGELE et al., 2015).

1.2 Familial hypercholesterolemia

FH is a primary dyslipidemia with frequent monogenic inheritance and autosomal dominant transmission (GOLDSTEIN; BROWN, 2009). FH prevalence was estimated at 1:313 in the heterozygous form and 1:400,000 in the homozygous form, which implies in more than 30 million affected individuals worldwide. (BEHESHTI et al., 2020). The prevalence varies according to ethnicity, as in the case of South Africans (1:72) and Lebanese (1:85) (BRAUTBAR et al., 2015; TURGEON; BARRY; PEARSON, 2016; VALLEJO-VAZ et al., 2015).

One of the main characteristics of FH is elevated plasma concentrations of LDL cholesterol (LDL-c) and early coronary artery disease (CAD) (IZAR et al., 2021). Untreated heterozygous individuals have a higher risk of early CAD than unaffected individuals; in the case of homozygotes when untreated, usually survival does not exceed 30 years of age. (TURGEON; BARRY; PEARSON, 2016; VALLEJO-VAZ et al., 2015). Thus, the cumulative risk of a cardiovascular event at age 50 is up to 44% in men and 20% in women, being a much higher risk than estimated for patients with other dyslipidemias, which justifies not recommending traditional methods to estimate cardiovascular risk (TURGEON; BARRY; PEARSON, 2016).

Patients carrying homozygous mutations in the LDL receptor gene (*LDLR*) have extremely high plasma LDL-c concentrations, reaching values between 600 and 1,200 mg/dL. Heterozygotes have LDL-c values between 300 and 440 mg/dL (IZAR et al., 2021). This increase in plasma cholesterol results in accelerated cholesterol infiltration into some tissues, leading to clinical manifestations such as corneal arch, xanthelasmas, tuberous and tendinous xanthomas (BRAUTBAR *et al.*, 2015).

To diagnose FH, phenotypic criteria are used, evaluating the presence of xanthomas and corneal arch, early CAD and high LDL-c concentrations, as well as cascade screening according to family history (IZAR et al., 2021). Clinical signs are not always present in heterozygotes, which makes diagnosis challenging (IZAR et al., 2021). It has also been discussed that the increasingly frequent use of statins has reduced the incidence of CVD and delayed the appearance of typical clinical signs of FH in patients and their families, which in turn jeopardized FH diagnosis using only clinical signs. It is estimated that less than 5% of the affected population is diagnosed, and late diagnosis may be associated with a worse prognosis (VALLEJO-VAZ *et al.*, 2015).

In Brazil, the diagnostic criteria are based on the recommendations of the National Institute for Health and Care Excellence (NICE), a public agency of the United Kingdom Department of Health, and the Dutch Lipid Clinic Network (DLCN). These recommendations were incorporated in the Brazilian Guideline on Familial Hypercholesterolemia together with the analysis of mutations in genes encoding LDLR (*LDLR*), apolipoprotein B (*APOB*) and proprotein convertase subtilisin/kexin type 9 (*PCSK9*) genes for molecular diagnosis (IZAR et al., 2021).

FH has an autosomal dominant inheritance and results from functional mutations in *LDLR*, *APOB* and *PCSK9*, proteins that regulate cholesterol homeostasis. LDLRs are expressed in all cells, mainly in hepatocytes, and are responsible for the uptake of LDL by endocytosis. Apolipoprotein B (Apo B) is the constitutive apolipoprotein of LDL and is responsible for the interaction of LDL with the receptor, so that the uptake of LDL particles occurs. PCSK9 has the function of degrading the LDLR. Mutations in the genes of these proteins cause reduced plasma LDL uptake, its accumulation in plasma and, in the long term, in tissues (IZAR et al., 2021; TURGEON; BARRY; PEARSON, 2016).

There are also autosomal recessive forms of FH that are rare (estimated frequency 1:5,000,000). An example arises from mutations in the gene that encodes the LDLR adapter protein 1 (*LDLRAP1*), a protein responsible for associating LDL receptors with clathrins, in the lined clefts of the cell surface membrane. Mutations in *LDLRAP1* lead to loss of protein function, resulting in an increase in LDL (BRAUTBAR et al., 2015; IZAR et al., 2021; SANTOS; MARANHAO, 2014).

Molecular diagnosis of FH is based on the search for functional mutations in genes causing autosomal dominant FH. However, although several functional mutations associated with FH have already been described in the *LDLR*, *APOB* and *PCSK9* genes, in the last decade other genes involved in cholesterol metabolic pathways have also been associated, characterizing polygenic FH (HUBACEK et al., 2017; JANNES et al., 2015). A risk score for polygenic FH was tested, which could help in determining cardiovascular risk and choosing a personalized treatment (PAQUETTE et al., 2017).

The UK NICE guideline, published in 2008, recommends the diagnosis of FH by genetic testing and confirmation of the presence of mutations in up to third degree relatives (WIERZBICKI; HUMPHRIES; MINHAS, 2008). Similarly, the modified DLCN criteria recommend the inclusion of genetic tests for the diagnosis of FH (IZAR et al., 2021).

1.3 Pharmacological treatment of FH patients

Although lifestyle factors, such as diet and physical activity, play a role in plasma LDL balance, it is mostly affected by cholesterol *de novo* biosynthesis and metabolism (AFONSO et al., 2018). Cholesterol *de novo* biosynthesis occurs substantially in the liver and the ratelimiting step is the conversion of 3-hidroxi-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, a reaction catalyzed by HMG-CoA reductase (HMGR, encoded by *HMGCR*). Endogenous and exogenous cholesterol is transferred to very-low-density lipoprotein (VLDL), which in the bloodstream is converted to LDL. LDL clearance depends on the interaction between apo B, the structural protein of LDL and VLDL, and the LDLR, a transmembrane protein present in the cell surface (LUO; YANG; SONG, 2020).

High plasma LDL-c is associated with atherosclerosis due to LDL retention and plaque formation in the arterial intima. LDL modifications, especially oxidation, disturb vascular homeostasis and facilitating the infiltration of pro-inflammatory cells by multiple mechanisms (TALL; WESTERTERP, 2019). Macrophages recognize and internalize modified LDL particles, becoming foam cells that mark the process of plaque formation. The rupture of the atherosclerotic plaque in advanced stages may cause the formation of thrombi that can result in cardiovascular events, such as myocardial infarction and stroke (ZMYSŁOWSKI; SZTERK, 2017).

The pharmacological treatment of FH aims to reduce the concentration of LDL-c and therefore prevent the development of CAD. Due to the seriousness of the disease, treatment should be started as soon as possible and maintained for the long term, in order to reduce the time of exposure to high LDL-c concentrations and, consequently, the incidence of resulting cardiovascular events.

Currently, statins are the first-line treatment for FH, as they are highly effective in reducing plasma LDL-c. Statin treatment has shown to decrease the incidence of cardiovascular events in many clinical trials (AWAN et al., 2012; CANNON et al., 2004; LAROSA et al., 2005; PEDERSEN et al., 2004; RIDKER et al., 2008, 2009; SACKS et al., 1996; SHEPHERD et al., 1995). The 2019 European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) guidelines recommend statin treatment to reduce LDL-c in patients at high cardiovascular risk, such as FH patients (MACH et al., 2020).

Mechanistically, statins act via inhibition of HMGR, mainly in hepatocytes, decreasing cholesterol *de novo* biosynthesis and inducing sterol regulatory element-binding protein (SREBP) 2 activation. SREBP-2 is a transcription factor that regulates the expression of genes

involved in cholesterol metabolism, including *LDLR*. Elevated LDLR expression on the surface of hepatocytes increases LDL uptake by up to 55%, further enhancing the statin response (WARD; WATTS; ECKEL, 2019). The expression of other genes involved in cholesterol metabolism is also induced, including those encoding the proprotein convertase subtilisin/kexin type 9 (*PCSK9*), apo B (*APOB*) and apo E (*APOE*) (NOZUE, 2017).

The therapeutic goal for FH patients is a reduction of at least 50% of plasma LDL-c; however, patients with two or more risk factors (such as male gender, smoking, presence of premature CAD in family members, low concentrations of HDL-cholesterol) should have the regimen intensified (IZAR et al., 2021).

Despite the great advances in the treatment of hypercholesterolemia, FH is treated insufficiently or late. There is great inter-individual variability of response, with an estimate of only approximately 20% of patients achieving therapeutic goals (VALLEJO-VAZ *et al.*, 2015). To improve the response of these patients, other lipid-lowering drugs are being used, such as cholesterol absorption inhibitors (ezetimibe), bile acid sequestrant resins and microsomal triglyceride transfer protein inhibitor (MTP). Other classes are in development such as squalene synthase inhibitor, PCSK9 inhibitors, and thyroid hormone analogues. (HIRATA *et al.*, 2013).

Many non-genetic factors, including gender, age, smoking status, diabetes, ethnicity, have been reported as predictors of statin response. Male gender and younger age have been described as predictors of lower LDL-c reductions upon simvastatin, atorvastatin and rosuvastatin (KARLSON et al., 2017; ONI-ORISAN et al., 2018). Diabetes and smoking also worsen statin response, while East Asians showed better statin response (ONI-ORISAN et al., 2018).

In addition to non-genetic factors, genetic variants have shown to affect statin response and the risk of adverse drug events (MAXWELL et al., 2017; ONI-ORISAN et al., 2018). In the meta-analysis of total genome-wide association studies (GWAS) variants in *APOE* (rs445925), *SLCO1B1* (rs2900478), *LPA* (rs10455872) and *SORT1/CELSR2/PSRC1* (rs646776) contributed to up to 5.1% of the variability in LDL-c reduction resulting from the use of statins (POSTMUS et al., 2014).

Statin-related adverse events (SRAE) have also been widely studied. The SRAE most frequently reported are statin-associated muscular events (SAMS), with a frequency in nonblinded observational studies ranging from 7 to 29% (MACH et al., 2018; STROES et al., 2015). Other SRAE reported also include increased glucose levels, with the development of new-onset diabetes mellitus (1 per 1000 patients per year of exposure); mild proteinuria; and elevation of liver transaminases (MACH et al., 2018).

SAMS occur due to the blockage of mevalonate pathway caused by statins, which not only reduces cholesterol production, but also other final products, such as ubiquinone. Ubiquinone, also called coenzyme Q10 (CoQ10), is critical for mitochondrial production of energy in the muscle (KEE et al., 2020). The lack of these products leads to mitochondrial dysfunction and other intracellular events, leading to muscle pain, myotoxicity, or even muscle cell apoptosis (KEE et al., 2020).

SAMS are classified as four clinical presentations, according to the National Lipid Association: 1) Myalgia, that includes muscle aches, soreness, stiffness, tenderness and cramps with normal creatine kinase (CK) levels; 2) Myopathy, manifested by muscle weakness, not necessarily accompanied by pain or high CK levels; 3) Myositis, with muscle inflammation; 4) Myonecrosis, with hyperCKemia; and 5) Myonecrosis with myoglobinuria or acute renal failure, also named rhabdomyolysis (ROSENSON et al., 2014). The incidence tends to vary with the statin used and the dose, with simvastatin showing the highest rates of SAMS (TOTH et al., 2018).

SAMS have many predisposing factors, such as older age (over 75 years), female gender, hypothyroidism, abuse of alcohol, and drug interactions that inhibit enzymes responsible for statin metabolism, such as amiodarone, that inhibits CYP3A4. Genetic variants are also important contributors to the incidence of SAMS (TOTH et al., 2018).

Importantly, SRAE, especially SAMS, affect statin adherence. Myalgia has been reported as the main reason for treatment interruption (60%), followed by cost (16%) and lack of efficacy (13%) (WEI et al., 2013). Patient education is also fundamental for adherence. In one study, it was observed that 25% of FH patients were unaware of the risk of CAD resulting from the disease and 10% did not know the reason for using the medication, which could influence treatment adherence (HOLLMAN; OLSSON; EK, 2006). In the study by McGinnis et al., 2007, non-adherent patients were also shown to have less knowledge about the benefits of statins than adherent patients (MCGINNIS et al., 2007).

1.4 Statin pharmacogenetics

1.4.1 Pharmacokinetics genes

Genetic alterations can compromise pharmacokinetic parameters, by modifying the activity of enzymes responsible for drug metabolism, and pharmacodynamics, by modifying the affinity of a receptor for agonists and antagonists. In this way, the response to lipid-lowering drugs can be reduced or the risks of adverse effects can be increased (HIRATA et al., 2013; SANTOS et al., 2012b).

Most genetic associations with statin response have been found in genes involved in statin absorption, distribution, metabolism and excretion (ADME), such as drug-metabolizing enzymes of the cytochrome P450 (*CYP*) family or influx/efflux transporters that actively participate in its pharmacokinetics and variants in these genes can impact statin plasma levels and, consequently, its efficacy and safety. Statins are absorbed in the intestine by passive diffusion or active transport by the organic anion transporting polypeptide (OATP) 2B1 (OATB2B1, encoded by *SLCO2B1*), a member of solute carrier (*SLC*) transporter family. Statins are further carried through the portal vein to the liver and their hepatic uptake is mediated by OATP1B1 (*SLCO1B1*), with minor contributions of OATP1B3 (*SLCO1B3*) for rosuvastatin and fluvastatin (ROCHA; PEREIRA; RODRIGUES, 2018).

In the liver, atorvastatin and simvastatin undergo first-pass metabolism by CYP3A4 and to a lesser extent by CYP3A5, generating both active and inactive metabolites. Fluvastatin is metabolized by CYP2C9, which also plays minor roles in the hydrolysis of rosuvastatin. However, rosuvastatin pharmacokinetics depend mostly on influx and efflux transporters (HIROTA; FUJITA; IEIRI, 2020).

Statin excretion occurs via bile and depends on the activity of the efflux transporters of the ATP-binding cassette (ABC) superfamily that are present in the canalicular membrane of hepatocytes, namely multi-drug resistance protein 1 (MDR1, encoded by *ABCB1*), multi-drug resistance protein 2 (MRP2, encoded by *ABCC2*), and breast cancer resistance protein (BCRP, encoded by *ABCG2*). These transporters are also present in the apical membrane of enterocytes where they mediate the intestinal efflux of statins (ROCHA; PEREIRA; RODRIGUES, 2018). MRP1, encoded by *ABCC1*, is present in the basolateral membrane of hepatocytes and is involved in statin efflux to the bloodstream. MRP1, MOAT-B (*ABCC4*), MOAT-C (*ABCC5*) and OATP2B1 are also present in myocytes and the balance of their activities are suggested to be involved in statin myotoxicity (KNAUER et al., 2010).

Polymorphisms in key genes have been related to the presence of adverse events to statins. The concentration of statins in the blood, especially simvastatin and atorvastatin, may be related both to the response and to the presence of myalgia and other adverse events; therefore, variants in these transporters can also influence treatment.

SLCO1B1 is the most studied gene involved in statin pharmacokinetics. Variants of the *SLCO1B1* have been linked to lower doses of statins to reach the therapeutic goal and the development of myopathy (HIRATA *et al.*, 2013; PATEL *et al.*, 2014; REINER, 2014). *SLCO1B1*5* (rs4149056, c.521T>C) is a particularly well-described decreased function variant. Extensive evidence demonstrates an association between this variant and simvastatin-induced myopathy (HOU et al., 2015; THE SEARCH COLLABORATIVE GROUP, 2008). It was suggested that *SLCO1B1*5* interfered with plasma statin concentrations and increased the risk of myalgia, reaching a frequency 50% in homozygous individuals against 19% in those without the mutated allele (VOORA et al., 2009). Consequently, *SLCO1B1*5* was included in international guidelines as a risk allele for myopathy, together with two haplotypes containing *5 C allele, namely *SLCO1B1*15* (*5 C and rs2306283 G alleles) and *SLCO1B1*17* (*5 C, rs2306283 G, and rs4149015 A alleles) (RAMSEY et al., 2014).

*CYP3A5*3* polymorphism also showed an association with SAMS. Homozygous carriers of **3* allele showed greater muscle damage resulting from the use of atorvastatin compared to heterozygotes (WILKE; MOORE; BURMESTER, 2005). Another important gene in this mechanism is *ABCB1*, whose T allele of the c.3435C>T polymorphism was more frequent in patients with myalgia (GLUBA-BRZOZKA et al., 2016).

There are also studies that focus on understanding the impact of genetic variants in LDLc reduction. Drug transporters, such as *SLCO1B1* and *ABCB1*, have been widely studied. *SLCO1B1* rs2306283 (c.388A>G), for example, was associated with a more pronounced reduction in LDL-c after treatment with atorvastatin and may be a predictor of therapeutic response (RODRIGUES *et al.*, 2011). We recently suggested that *SLCO1B1*15* and variants in *SLCO1B3* and *ABCB11* delayed rosuvastatin response in an FH patient, without jeopardizing LDL-c reduction after 12 weeks of treatment (DAGLI-HERNANDEZ et al., 2020). *ABCB1* rs1045642 (c.3435C>T) was also associated with better statin response in some studies (HOENIG et al., 2011; SU et al., 2015). Two independent Brazilian cohorts also showed that *ABCB1* rs2032582 (c.2677T>G/A) GG genotype and A allele increased total cholesterol reduction and LDL-c reduction to simvastatin (REBECCHI et al., 2009) and atorvastatin (FIEGENBAUM et al., 2005a), respectively. In CYP enzymes, *CYP3A4*22*, for example, has been associated with higher LDL-c reduction in simvastatin users (ELENS et al., 2011), but this result was not observed in Brazilian hypercholesterolemic patients using simvastatin (FIEGENBAUM et al., 2005a) or atorvastatin (RODRIGUES et al., 2013; WILLRICH et al., 2013). Our group reported an association between *CYP3A5*3* (rs776746) and lower reduction of total cholesterol, LDL-c and HDL cholesterol (HDL-c) after atorvastatin treatment in non-African descendants (WILLRICH et al., 2008), but this result still remains controversial, since other studies did not find any association (ROSALES et al., 2012). We later observed that changes in cholesterolemia promoted by atorvastatin influence the regulation of mRNA expression in *CYP3A5*3* polymorphism (AGT haplotype) also contributes to the variability of *CYP3A5* mRNA expression (WILLRICH *et al.,* 2013).

1.4.2 Pharmacodynamics genes

The variability of the response to statins can be partly attributed to polymorphisms in more than 30 genes. Among these are several variants associated with LDL-c metabolism such as *LDLR*, *PCSK9*, *APOE* and *HMGCR* (HIRATA *et al.*, 2013).

Studies performed by our group evaluated the relationship of several genes with the response to statins and ezetimibe in individuals with hypercholesterolemia. Common polymorphisms of *LDLR*, *APOB*, *APOE*, *APOA1* and *SCARB1* genes were associated with variability in response to statins in Brazilian individuals with polygenic hypercholesterolemia (CERDA et al., 2010; GUZMÁN et al., 2000; HIRATA et al., 2013; SALAZAR et al., 2000a, 2000b).

Another study investigated the pharmacogenetics of simvastatin and/or ezetimibe and reported that the *LDLR* rs879255000 (p.Trp556Arg) variant, in homozygosis, is associated with failure to respond to statins and with lower response (15%) to ezetimibe (SCHAEFER *et al.*, 2012).

APOE has also shown to be associated with statin response. In a meta-analysis, it was shown that low frequency alleles APOE c.-2189G>A and SORT1/CELSR2/PSRC1 c.*1859C>T polymorphisms were associated with a higher statin response, while LPA rs10455872 (g.161010118A>G) and SLCO1B1 rs2900478 (c.1498-1256T>A) were associated with a lower response (POSTMUS et al., 2014). Additionally, APOE variants, especially the ε 2 and ε 4

alleles, have also been associated with increased and decreased LDL-c reduction, respectively, when treated with statin (GUAN et al., 2019).

HMGCR c.451-174A>T and other variants can also lead to resistance to statin treatment. One of the proposed mechanisms is an alternative processing of mRNA and production of an isoform less sensitive to inhibition by statins (HIRATA *et al.*, 2013). Another example is *HMGCR* rs17244841 (g.331648A>T), whose T allele decreased LDL-c response to simvastatin 40 mg/d in African-American hypercholesterolemic (HC) patients (KRAUSS et al., 2008; MANGRAVITE et al., 2010). *HMGCR* rs3846662 (c.1564-106A>G) A allele also decreased LDL-c response to statins in patients with dyslipidemia and FH (CANO-CORRES et al., 2018; LEDUC et al., 2016).

1.4.3 Pharmacogenetics of statins in the Brazilian population

Statin pharmacogenetics studies have been performed in Brazilian cohorts and have brought important contributions, as we discussed in a recent review (DAGLI-HERNANDEZ et al., 2021). Most studies were performed with simvastatin and atorvastatin, and several genes and outcomes – including statin anti-inflammatory effects – have been explored. The main focus of these studies was lipid changes after statin treatment, and most associations were found with genes involved in statin pharmacodynamics, such as *HMGCR*, *LDLR*, *APOB*, *SCARB1*, and others (DAGLI-HERNANDEZ et al., 2021).

However, some of the findings were not consistent with the literature. For example, only one study including Brazilian patients explored the association between SAMS and of *SLCO1B1*5* or **15* and no association was found (SANTOS et al., 2012a). Nevertheless, there is strong evidence in the literature that *SLCO1B1*5*, **15* and **17* cause SAMS, which is why those are the only variants present in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for increasing the risk simvastatin-induced myotoxicity (RAMSEY et al., 2014). Due to this lack of evidence, the Brazilian guidelines for dyslipidemia management have not included a recommendation of genotyping *SLCO1B1*5* and haplotypes in simvastatin users (FALUDI et al., 2017; IZAR et al., 2021).

These differences could be due to a series of factors related to the population of study (DAGLI-HERNANDEZ et al., 2021). Most international pharmacogenetic studies that found relevant associations were performed with non-admixed populations, such as Caucasians or Asians. The Brazilian population, on the other hand, is highly heterogeneous, with a very particular admixture between several ethnicities that include Caucasians, Africans, East Asians,

and Amerindians. The coexistence of variants that are frequent in different ethnicities can mask or potentialize the outcome to be observed, which therefore could bring more confounding factors to the pharmacogenetic studies. In this way, the sequencing of target genes could bring new associations by adjusting these confounding factors.

Additionally, there are few pharmacogenetic studies with Brazilian FH patients. Most studies focused mainly on hypercholesterolemic patients (DAGLI-HERNANDEZ et al., 2021). It is important to study the pharmacogenetics of Brazilian FH patients for multiple reasons. The presence of pathogenic FH-related variants can modify treatment response in these patients, and treatment response is crucial for these high-risk patients. Also, those patients are exposed to higher statin doses and therefore are more susceptible to SRAE. In order to fill this gap, we studied the influence of pharmacogenetic variants detected by exon-targeted gene sequencing in FH patients.

2 **OBJECTIVES**

2.1 General objective

This thesis aimed to explore the association of genetic variants with the response to lipid-lowering drugs in Brazilian FH patients.

2.2 Specific objectives

- 1) To identify variants in genes involved in statin pharmacokinetics (PK) and pharmacodynamics (PD) in a Brazilian cohort of FH patients.
- 2) To explore functional effect using *in silico* algorithms and molecular modeling analysis for deleterious variants.
- 3) To evaluate the influence of deleterious variants in PK and PD genes on lipid-lowering response in a Brazilian cohort in FH patients.
- 4) To explore the association of variants in PK and PD genes with the predisposition to SRAE in FH patients.

3 METHODS

3.1 Study design and patients

This study is a part of the FHBGEP project that aims to investigate genomic, epigenomic, and pharmacogenomic factors associated with FH in the Brazilian population (BORGES et al., 2021). Two-hundred unrelated adult FH patients were recruited at three Brazilian Medical Centers from October 2014 to January 2020. FH was clinically diagnosed as possible (3-5 points), probable (6-8 points) or definite (>8 points) according to Dutch Lipid Clinic Network (DLCN) modified criteria (IZAR et al., 2021; WORLD HEALTH ORGANIZATION, 1998).

Patients with the following comorbidities were excluded: liver failure, severe chronic kidney disease (estimated glomerular filtration rate, $GFR < 30 \text{ mL/min/1.73m}^2$) and/or nephrotic syndrome, clinically uncontrolled neoplasms, positive serology for human immunodeficiency virus (HIV), hypothyroidism, and/or Cushing's syndrome. Patients who withdrew from the study, aged less than 18 years old, without medical records available or with no history of statin treatment were also excluded from the pharmacogenetics analysis.

3.2 Ethical aspects

The study protocol was approved by the Ethics Committees of the Institute Dante Pazzanese of Cardiology (IDPC) (CAAE #24618713.0.1001.5462, #24618713.0.1001.5462) and #05234918.4.0000.5462, School of Pharmaceutical Sciences (CAAE #24618713.0.3001.0067) of the University of Sao Paulo (USP), and Federal University of Rio Grande do Norte (CAAE #24618713.0.2001.5292), Brazil. The study was conducted according to good clinical practices and the Declaration of Helsinki guidelines (as revised in 2013). All subjects signed an approved written informed consent before enrollment.

3.3 Blood samples and laboratory testing

Blood samples were obtained from fastened patients (at least 8 h) for DNA sequencing and laboratory testing: serum lipid profile (total cholesterol and fractions, triglycerides, apolipoproteins AI and B); glycemic profile (glucose, glycated hemoglobin and insulin); thyroid-related hormones (thyroid-stimulating hormone and thyroxine); liver (alanine and aspartate aminotransferases) and muscle (creatine kinase) enzymes; creatinine; and high sensitivity C-reactive protein (hsCRP).

Plasma glucose, triglycerides, total cholesterol, HDL-c were determined by colorimetric enzymatic methods. LDL-c and VLDL cholesterol levels were calculated using Friedwald's formula (FRIEDWALD; LEVY; FREDNICKSON, 1972). Urea, creatinine, CK, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined by kinetic methods. Uric acid was determined by the modified kinetic method of Bulger and Johns. Apolipoprotein A (apo A), apo B and hsCRP were determined by immunoturbidimetry. Glycated hemoglobin (HbA1c) was determined by high-throughput liquid chromatograpy (HPLC). These determinations described above were made by a Dimension RXL automatic analyzer (Siemens, Munich, Germany) following the manufacturer's instructions.

Thyroid-stimulating hormone (TSH), thyroxine (T4) and insulin were determined by sandwich-type enzymatic immunoassays, with detection by electrochemiluminescence, using a CENTAURO automatic analyzer (Siemens, Munique, Alemanha).

Laboratory external quality control was performed by the program of quality control of the Brazilian Society of Clinical Pathology.

3.4 Exon-targeted gene sequencing

Genetic analyses were performed as previously described (BORGES et al., 2021). Briefly, genomic DNA was extracted from whole blood samples using QIAamp® DNA Blood Maxi Kit (QIAGEN, Hilden, Germany). DNA quantification, purity (A260/A280 ratio), and integrity were analyzed using the QUBIT® 2.0 fluorometer (Life Technologies, Forest City, IA, USA), NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), and 2200 TapeStation® system (Agilent Technologies, Santa Clara, CA, USA).

FH- and pharmacogenetics-related genes were analyzed from a panel with 84 genes using an exon-targeted gene sequencing strategy (BORGES et al., 2021). Briefly, exons and regulatory regions were selected using Illumina's Design Studio tools (https://accounts.illumina.com/). Good-quality genomic DNA was used for library construction using the Nextera Rapid Capture Custom Enrichment Kit (Illumina, San Diego, CA, USA). Clustering and paired-end sequencing reactions were performed using MiSeq® Reagent kit V2 (300-cycles) in the MiSeq® system (Illumina, San Diego, CA, USA). PhiX (1%) was used as library clustering and diversity controls. Sequencing data was analyzed using a variant discovery pipeline previously described (BORGES et al., 2021).

The molecular diagnosis of FH was carried out by identifying variants previously associated with FH, such as gain-of-function variants in *PCSK9*, or variants classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines (RICHARDS et al., 2015).

3.5 Clinical and pharmacotherapy data

Clinical and biodemographic data, including patient medical history, lifestyle information, medications in use and adverse events, were obtained using a questionnaire and clinical examination, as previously described (Borges et al. 2020).

Information on pharmacotherapy and laboratory tests was also obtained from medical records. To mitigate information bias, the time between the medical visit and the corresponding laboratory test was set to a maximum of 30 days. Baseline LDL-c was considered the highest plasma level without statin treatment for at least 30 days when clearly indicated in the medical record. On-treatment LDL-c was defined as the lowest level with statin treatment.

Patients were considered responders (RE) if they reached an LDL-c reduction of at least 50% and non-responders (NRE) if they did not reach the therapy target (GOLDBERG et al., 2011; IZAR et al., 2021). Absolute LDL-c target was set according to the CAD risk stratification defined by the Update of the Brazilian Guideline for FH (IZAR et al., 2021): 1) Very high risk: patients carrying manifested CAD (history of AMI, angina *pectoris*, previous myocardial revascularization, or ischemic or transitory cerebrovascular event); 2) High risk: primary prevention with baseline LDL-c > 400 mg/dL, or baseline LDL-c > 310 mg/dL with one high-risk factor (tobacco smoking, male gender, or HDL-c < 40 mg/dL), or baseline LDL-c > 190 mg/dL with two high-risk factors; 3) Intermediate risk: Primary prevention without high-risk factors. The therapy target for each risk group was the following: 1) Very high risk: LDL-c reduction \geq 50% and on-treatment LDL-c < 70 mg/dL; 3) Intermediate risk: LDL-c reduction \geq 50% and on-treatment LDL-c < 70 mg/dL.

FH patients were grouped according to the type and intensity of the statin therapy and the clinical response. Treatment intensity was established according to the American College of Cardiology/American Heart Association and the Brazilian guideline criteria, where moderate intensity were the following doses: simvastatin 20-40 mg, atorvastatin 10-20 mg or rosuvastatin 5-10 mg; and high intensity: simvastatin 80 mg + ezetimibe 10 mg, atorvastatin 40-80 mg or rosuvastatin 20-40 mg (CHOU et al., 2016; IZAR et al., 2021). Drug-drug interactions were annotated when a concomitant medication could inhibit or induce enzymatic activity and affect statin response (BELLOSTA; CORSINI, 2018). SRAE were considered when clearly stated by the cardiologist as associated with statin therapy and were followed by dose reduction or change of statin (IZAR et al., 2021). Reduced adherence was considered for patients who reported at least one event of non-adherence to statin or ezetimibe (BORETZKI et al., 2017).

3.6 Pharmacogenetic analysis

3.6.1 Pharmacokinetics genes

A total of 23 genes involved in pharmacokinetics (PK) of statins, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, as well as ABC and SLC transporters, were analyzed (**Supplementary table 1**).

An optimized prediction model was used to evaluate functional impact of variants in PK-related genes (ZHOU et al., 2018). Briefly, missense, stop-gain, and stop-loss variants were analyzed using ANNOVAR (WANG; LI; HAKONARSON, 2010) to assess the pathogenicity scores of five algorithms (LRT, Mutation Assessor, PROVEAN, VEST3 and CADD). Next, the PK optimized prediction model was used and variants were classified according to the functionality prediction score (FPS) as neutral (FPS < 0.5), deleterious (FPS > 0.5) or loss-of-function (LOF) (FPS = 1.0). Splicing site and frameshift variants were considered deleterious when they were classified as pathogenic or with decreased or increased activity in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and PharmVar (https://www.pharmvar.org/). Also, the functional impact of variants in splice sites was performed using ANNOVAR's dbNSFP v4.2 *in silico* algorithm, followed by manual checking for the proximity to the branch point. Frameshift variants were considered deleterious.

3.6.2 Pharmacodynamics genes

A total of 34 genes involved in the pharmacodynamics (PD) of statins were included in the analysis (**Supplementary table 1**). Variants in genes associated with FH (*LDLR, APOB, PCSK9, LDLRAP1*), cholesterol homeostasis and metabolism (*HMGCR, MYLIP*, and others), reverse transport of cholesterol, apolipoproteins and other genes that were previously associated with statin response were analyzed.

The functionality of missense, stop gain and stop loss variants was assessed using the following *in silico* prediction algorithms: PolyPhen-2, Mutation Assessor, SIFT, PROVEAN, CADD, DANN, and FATHMM. If the majority of the algorithms predicted the variant as deleterious, it was annotated as deleterious. The functional impact of variants in splice sites was predicted using dbNSFP v4.2 *in silico* algorithm, followed by manual checking for the proximity to the branch point. Frameshift variants were considered deleterious.

3.7 Molecular Modeling Analysis

The impact of deleterious genetic variants on the interaction between the protein and the statin ligands (simvastatin, atorvastatin and rosuvastatin) was assessed using molecular modeling analysis as previously described (BORGES et al., 2021).

Briefly, amino acid sequences of reference proteins were downloaded from the Uniprot database (https://www.uniprot.org/help/uniprotkb) and tri-dimensional models were generated using AlphaFold2 pipeline (https://github.com/deepmind/alphafold). Protein models (reference and variants) were prepared by adding hydrogen atoms, fixing missing side chains, removing sulphate ions and other crystallization buffer molecules such as glycerol and minimizing by Biopolymer in Sybyl X suite (https://www.certara.com/). The molecular modeling analysis was was performed with the help of Dr. Glaucio Monteiro Ferreira.

3.8 Statistical analyses

Statistical analyses were performed using RStudio V 4.0.3 (RStudio, Inc, Boston, MA, USA) and GraphPad Prism V8 (Sigma, San Diego, CA, USA). A cut-off of p-value < 0.05 was used for statistical significance.

The distribution of the continuous variables was evaluated by the Kolmogorov-Smirnov test and those with normal distribution are shown as mean and SD and were compared using *t*-test. Continuous variables with skewed distribution are shown as median and interquartile range and were compared using Mann-Whitney. For comparisons of continuous variables, Benjamini-Hochberg correction was used to adjust p-values, considering a false discovery rate (FDR) of 10%. Categorical variables were compared by chi-square or Fisher's exact tests.

SNPassoc R package version 2.7 was used to analyze genotype and allele frequencies of the variants and Hardy-Weinberg equilibrium (HWE).

Univariate and multivariate linear and logistic regression analyses were performed to investigate the influence of deleterious genetic variants on statin response and SRAE in FH patients. In univariate regression analyses, p-values were corrected using Benjamini-Hochberg correction for multiple tests. In multivariate regression analyses models, BMI, baseline LDL- $c_{\overline{y}}$ treatment intensity, ezetimibe use, and SRAE (for analysis of statin response only) were used as covariates.

4 **RESULTS**

4.1 Characteristics of the individuals and molecular diagnosis

Of the 200 FH patients selected for this study, 86 were excluded due lack of information from medical records: 19 did not use lipid-lowering medication; 55 did not have baseline laboratory data; 6 did not have on-treatment data; and 6 did not have a medical record available.

Biodemographic and clinical characteristics of 114 FH patients are described in the **Table 1.** Most patients were white (53.5%) and women (71.9%), and clinically diagnosed FH as defined (41.2%), probable (27.2%) and possible (31.6%) according to the modified DCLN criteria. Most patients were at very high risk (56.1%) and high risk (9.7%) of CAD. The molecular diagnosis was confirmed for 35 (30.7%) patients, who carried pathogenic or likely pathogenic variants in *LDLR* (32) and *APOB* (1), according to ACMG classification, and a GOF variant in *PCSK9* (2) previously associated with FH. No pathogenic or likely pathogenic variants were found in *LDLRAP1* in this cohort (**Table 2**) (BORGES, 2019).

4.2 Statin response

4.2.1 Therapy targets

A total of 58 (50.8%) FH patients were considered RE and 56 (49.2%) were considered NRE to statin treatment. Clinical and molecular diagnosis of FH variables had similar results between RE and NRE groups, with exception of median BMI and frequency of obesity and alcohol consumption that were higher in the NRE group (p<0.05) (**Table 1**). No difference was observed in FH clinical diagnosis between NRE and RE groups. Most patients were of very high risk (56.1%), intermediate risk (34.2%) and high risk (9.7%). The risk was similarly distributed in RE and NRE groups.

Most patients were treated with atorvastatin (79.8%), followed by simvastatin (10.5%) and rosuvastatin (9.6%). The type and intensity of statin did not differ between RE and NRE groups (p>0.05), but association of statin with ezetimibe was more prescribed in RE group (p=0.046). Regarding drug interactions, total of 10 (8.8%) patients were taking amlodipine, an inhibitor of CYP3A4, but no difference was observed between RE and NRE (p>0.05). One patient was also taking carbamazepine, which is an inducer of CYP3A4. Reduced adherence to therapy was similar between RE and NRE patients (p>0.05). Myalgia and other SRAE were more frequent in RE than NRE patients (p=0.001).

Variable ^a		Total (114)	RE (58)	NRE (56)	p-value
Age, years		57.1 (37.9-76.3)	54.9 (34.7 - 75.1)	57.6 (41.9 - 73.3)	0.261
Gender (female), %		71.9 (82)	69.0 (40)	75.0 (42)	0.611
Ethnics, %	White	53.5 (54)	58.5 (31)	48.9 (23)	0.326
	Brown	31.7 (32)	24.5 (13)	38.3 (18)	
	Black	14.9 (15)	17.0 (9)	12.8 (6)	
Xanthomas, %		12.3 (14)	13.8 (8)	10.7 (6)	0.830
Arcus cornealis, %		17.9 (20)	14.0 (8)	21.8 (12)	0.407
FH clinical diagnosis ^b , %	Defined or Probable	68.4 (78)	75.9 (44)	60.7 (34)	0.124
	Possible	31.6 (36)	24.1 (14)	39.3 (22)	
FH molecular	FH-variants	30.7 (35)	34.5 (20)	26.8 (15)	0.491
diagnosis,%	APOB	0.9 (1)	0.0 (0)	1.8 (1)	0.166
	LDLR	28.3 (32)	34.5 (20)	21.4 (12)	
	PCSK9	1.8 (2)	0.0 (0)	3.6 (2)	
	LDLRAP1	0.0 (0)	0.0 (0)	0.0 (0)	
Hypertension, %		62.5 (70)	60.3 (35)	64.8 (35)	0.770
Type 2 diabetes, %		21.6 (24)	26.3 (15)	16.7 (9)	0.316
Obesity, %		28.6 (32)	17.2 (10)	40.7 (22)	0.011
BMI, kg/cm ²		27.7 (22.5-32.9)	26.3 (21.4 - 31.2)	28.2 (22.5 - 33.9)	0.011
Medical history, %	AMI	29.2 (33)	28.1 (16)	30.4 (17)	0.952
	CAD	40.0 (42)	44.0 (22)	36.4 (20)	0.550
	CVE	6.0 (6)	3.9 (2)	8.2 (4)	0.637
Alcohol consumption, %		25.0 (22)	14.6 (7)	37.5 (15)	0.007
Tobacco smoking, %		14.3 (16)	17.2 (10)	11.1 (6)	0.510
CAD risk, %	Very high risk	56.1 (64)	53.4 (31)	58.9 (33)	0.095
	High risk	9.7 (11)	15.5 (9)	3.6 (2)	
	Intermediate risk	34.2 (39)	31.0 (18)	37.5 (21)	
Lipid-lowering	Atorvastatin	79.8 (91)	77.6 (45)	82.1 (46)	0.275
treatment, %	Simvastatin	10.5 (12)	8.6 (5)	12.5 (7)	
	Rosuvastatin	9.6 (11)	13.8 (8)	5.4 (3)	
	Statins + Eze	36.8 (42)	46.6 (27)	26.8 (15)	0.046
Statin intensity, %	Moderate	14.0 (16)	6.9 (4)	21.4 (12)	0.050
	High	86.0 (98)	93.1 (54)	78.6 (44)	
Drug interactions, %	CYP3A4 inhibitors ^c	10 (8.8)	7 (12.1)	3 (5.3)	0.349
	CYP3A4 inhibitors + inducers ^d	1 (0.01)	0 (0.0)	1 (1.9)	-
Reduced adherence, %	Statins	15.9 (18)	17.2 (10)	14.5 (8)	0.893
	Ezetimibe	10.6 (12)	13.8 (8)	7.3 (4)	0.413
SRAE, %	Myalgia	16.8 (19)	29.3 (17)	3.6 (2)	0.001
	Others ^e	21.2 (24)	34.5 (20)	7.3 (4)	0.001

Table 1 Biodemographic and clinical data of FH patients grouped according to statin response

Number of patients in brackets. Patients \geq 50% LDL cholesterol reduction on statin treatment were classified as responders. Categorical variables were compared by chi-square test. Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney test. AMI: acute myocardial infarction; BMI: body mass index; CAD: coronary artery disease; CVE: cerebrovascular event; Eze: ezetimibe; NRE: non responder; RE: responder; SRAE: statin-related adverse events ^a Data were not available for ethnics (13 patients), arcus cornealis (2), hypertension (2), diabetes (3), BMI (4), obesity (2), history of infarction (1), CAD (9), CVE (14), tobacco smoking (2), alcohol consumption (26), age (2). ^b DCLN modified criteria. ^c All patients in this category used the CYP3A4 inhibitor amlodipine. ^d All patients in this category used the CYP3A4 inhibitor amlodipine and the CYP3A4 inducer carbamazepine. ^e Including also stomach pain (4), diarrhea (1), urinary tract infection (1), increased hepatic enzymes (1) and joint pain (1).
Gene	dbSNP code	Variant	Amino acid change	Туре	<i>In silico</i> analysis ^a	ACMG Classification	Number of patients (zigosity)
APOB	rs61744153	c.11477C>T	p.Thr3826Met	Missense	Р	LP	1 (He)
LDLR	rs112029328	c.313+1G>A	-	Splice- site	NA	Р	2 (He)
	rs121908026	c.530C>T	p.Ser177Leu	Missense	Р	Р	2 (He)
	rs875989902	c.533A>T	p.Asp178Val	Missense	Р	LP	1 (He)
	rs121908039	c.551G>A	p.Cys184Tyr	Missense	Р	Р	1 (He)
	rs879254797	c.1118G>A	p.Gly373Asp	Missense	Р	LP	2 (He)
	rs28942078	c.1285G>A	p.Val429Met	Missense	Р	Р	1 (He)
	rs28942079	c.1291G>A	p.Ala431Thr	Missense	Р	Р	1 (He)
	rs879254913	c.1463T>C	p.Ile488Thr	Missense	Р	LP	2 (He)
	rs373646964	c.1474G>A	p.Asp492Asn	Missense	Р	LP	1 (He)
	rs28941776	c.1646G>A	p.Gly549Asp	Missense	Р	Р	2 (He)
	rs137929307	c.1775G>A	p.Gly592Glu	Missense	Р	LP	2 (He)
	rs753707206	c.1801G>C	p.Asp601His	Missense	Р	LP	2 (He)
	rs879254687	c.818-2A>G	-	Splice- site	NA	Р	1 (He)
	rs1135402774	c.1474del	p.Asp492fs	InDel	NA	Р	1 (He)
	rs121908031	c.2043C>A	p.Cys681*	Stop-gain	Р	Р	6 (He)
	rs752596535	c.501C>G	p.Cys167*	Stop-gain	Р	Р	2 (He)
	rs1135402768	c.487C>T	p.Gln163*	Stop-gain	Р	Р	1 (He)
	rs875989887	c140C>A	-	5'UTR	NA	LP	1 (Ho)
	rs387906307	c138del-T	-	5'UTR	NA	LP	1 (He)
PCSK9*	rs141502002	c.1405C>T	p.Arg469Trp	Missense	LB	Conflict*	2 (He)

Table 2 FH-related pathogenic variants in FH patients (n=114).

^a The functionality of missense, stop-gain and stop-loss variants was assessed using the following in silico prediction algorithms: PolyPhen-2, Mutation Assessor, SIFT, PROVEAN, CADD, DANN, and FATHMM. ACMG: American College of Medical Genetics and Genomics; He: heterozygous; Ho: homozygous; LB: likely benign; LP: likely pathogenic; NA: not applicable; P: pathogenic; UTR: untranslated region.

Data obtained from BORGES, 2019.

When considering the absolute therapy target, 100 FH patients (87.7%) did not achieve optimum LDL-c levels after therapy. None of the patients of the CAD very high-risk group reached an on-treatment LDL-c < 50 mg/dL. Also, only two patients (18.2%) of the CAD high risk group reached an LDL-c < 70 mg/dL and 12 (30.8%) of the CAD intermediate risk group reached an LDL-c < 100 mg/dL (Supplementary table 2).

Baseline and post-treatment values of serum lipid profile in RE and NRE groups are shown in the Figure 1. RE group had higher baseline total cholesterol and LDL-c than the NRE patients, and lower on-treatment concentrations (p<0.05) (Supplementary table 3). As expected, RE patients had higher reduction of total cholesterol (absolute and % change), LDLc (absolute and % change) and triglycerides (% change) after treatment than NRE group (p<0.05) (Figure 1 and Supplementary table 3). Apo AI, apo B, glucose and insulin concentrations on treatment were higher in NRE than in RE groups (p<0.05), whereas other variables were not significantly different between the groups (Supplementary table 4).

Figure 1 Serum lipid profile in FH patients treated with lipid-lowering drugs. **A.** Baseline and post-treatment mean values and SD in responders (LDL-c reduction \geq 50%). **B.** Baseline and post-treatment 1 mean values and SD in non-responders (LDL-c reduction < 50%). **C.** Serum lipid response (mean values and SD of % change) in responder and non-responder groups. *p<0.05 (compared by *t*-test).

Individuals on high intensity treatment showed lower post-treatment total cholesterol (p=0.011) and triglycerides (p=0.004) than individuals on moderate intensity treatment, but no difference was observed in other lipid parameters (**Supplementary table 5**). As expected, the reductions (% change) in total cholesterol, LDL-c and triglycerides, and HDL-c increase, were markedly higher, in individuals receiving high intensity treatment. In patients taking ezetimibe in combination with statin, ezetimibe users had higher baseline total cholesterol and LDL-c concentrations (p<0.05) and higher total cholesterol and LDL-c reductions (p<0.05) than non-users (**Supplementary table 5**).

4.2.2 Statin-related adverse events

A total of 24 (21.0%) patients experienced SRAE, which included myalgia (19, 79.1%), stomach pain (4, 16.7%), diarrhea (1, 4.2%), urinary tract infection (1, 4.2%), increased hepatic enzymes (1, 4.2%) and joint pain (1, 4.2%). Biodemographic characteristics of these patients are shown in the **Table 3**. SRAE group had higher frequency of xanthomas, FH-related pathogenic variants, with a higher frequency of pathogenic variants in *LDLR*, and reduced adherence to statins and ezetimibe (p<0.05). Interestingly, the prevalence of NRE patients was lower in SRAE group compared to no-SRAE (p=0.001).

Differences were also observed in the lipid profile of FH patients who experience or not SRAE (**Figure 2** and **Supplementary table 6**). SRAE group showed higher total cholesterol and LDL-c reductions compared to the no SRAE group (p<0.05). Baseline total cholesterol and LDL-c were also higher in SRAE group, while the on-treatment total cholesterol was lower (**Supplementary table 6**).

Variable ^a		Total	No SRAE	SRAE	p-value
		(114)	(90)	(24)	
Age, years		57.1 (37.9-76.3)	57.3 (38.3 - 76.3)	56.9 (38.9 - 74.9)	0.830
Gender (female), %		71.9 (82)	72.2 (65)	70.8 (17)	1.000
Ethnics, %	White	53.5 (54)	53.2 (41)	54.2 (13)	0.538
	Brown	31.7 (31)	29.9 (23)	37.5 (9)	
	Black	14.9 (15)	16.9 (13)	8.3 (2)	
Xanthomas, %		12.3 (14)	6.7 (6)	33.3 (8)	0.002
Arcus cornealis, %		17.9 (20)	16.9 (15)	21.7 (5)	0.810
FH clinical diagnosis ^b , %	Definite or probable	68.4 (78)	64.4 (58)	83.3 (20)	0.128
	Possible	31.6 (36)	35.6 (32)	16.7 (4)	
FH molecular	FH variants	30.7 (35)	24.4 (22)	54.2 (13)	0.011
diagnosis, %	APOB	0.9 (1)	0.0 (0)	4.2 (1)	0.006
	LDLR	28.3 (32)	22.2 (20)	50.0 (12)	
	PCSK9	1.8 (2)	2.2 (2)	0.0 (0)	
	LDLRAP1	0.0 (0)	0.0 (0)	0.0 (0)	
Hypertension, %		62.5 (70)	61.4 (54)	66.7 (16)	0.812
Type 2 diabetes, %		21.6 (24)	18.4 (16)	33.3 (8)	0.196
Obesity, %		28.6 (32)	33.0 (29)	12.5 (3)	0.087
BMI, kg/cm ²		27.7 (22.5-32.9)	27.9 (22 - 33.8)	25.9 (22.1 - 29.7)	0.126
Medical history, %	AMI	29.2 (33)	28.9 (26)	30.4 (7)	1.000
	CAD	40.0 (42)	36.5 (31)	55.0 (11)	0.205
	CVE	6.0 (6)	6.4 (5)	4.5 (1)	1.000
Alcohol consumption, %		25.0 (22)	28.8 (19)	13.6 (3)	0.281
Tobacco smoking, %		14.3 (16)	14.8 (13)	12.5 (3)	0.918
Lipid-lowering	Atorvastatin	79.8 (91)	83.3 (75)	66.7 (16)	0.192
treatment, %	Simvastatin	10.5 (12)	8.9 (8)	16.7 (4)	
	Rosuvastatin	9.6 (11)	7.8 (7)	16.7 (4)	
	Statins + Eze	36.8 (42)	33.3 (30)	50.0 (12)	0.206
Statin intensity, %	Moderate	14.0 (16)	15.6 (14)	8.3 (2)	0.566
	High	86.0 (98)	84.4 (76)	91.7 (22)	
Statin response	RE	50.9 (58)	42.2 (38)	83.3 (20)	0.001
-	NRE	49.1 (56)	57.8 (52)	16.7 (4)	
Drug interactions	CYP3A4	10 (8.8)	5.6 (5)	20.8 (5)	0.052
	inhibitors ^c				
	CYP3A4	1 (0.01)	0 (0.0)	1.0 (1.9)	-
	inhibitors +				
	inducers ^d				
Reduced adherence, %	Statins	15.9 (18)	10.1 (9)	37.5 (9)	0.003
	Ezetimibe	10.6 (12)	5.6 (5)	29.2 (7)	0.003

Table 3 Biodemographic characteristics of FH patients with SRAE (n=114).

Number of patients in brackets. SRAE, group included patients that experienced all SRAE, including myalgia (19), stomach pain (4), diarrhea (1), urinary tract infection (1), increased hepatic enzymes (1) and joint pain (1). Categorical variables were compared by chi-square test. Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney test. AMI: acute myocardial infarction; BMI: body mass index; CAD: coronary artery disease; CVE: cerebrovascular event; Eze: ezetimibe; NRE: non responder; RE: responder; SRAE: statin-related adverse events

^a Data were not available for ethnics (13 patients), *arcus cornealis* (2), hypertension (2), diabetes (3), BMI (4), obesity (2), history of infarction (1), CAD (9), CVE (14), tobacco smoking (2), alcohol consumption (26), age (2). ^b DCLN modified criteria. ^c All patients in this category used the CYP3A4 inhibitor amlodipine. ^d All patients in this category used the CYP3A4 inhibitor amlodipine. and the CYP3A4 inhibitor amlodipine.

Figure 2 Serum lipid profile of FH patients with statin-related adverse events (SRAE). **A.** Mean values and SD in patients without SRAE. **B.** Mean values and SD in patients with SRAE. **C.** Serum lipid response (Mean values and SD of % change) in patients with and without SRAE. *p<0.05 (compared by *t*-test).

4.3 Pharmacokinetics genes

4.3.1 Variants in PK-related genes

ETGS analysis identified 402 variants in 23 PK-related genes: 186 missense, 2 stopgain, 1 stop-loss, 10 frameshift indel, 5 inframe deletions, 16 in splicing region, 29 in the 5 UTR region, and 153 in the 3'UTR region (Supplementary table 7). Of the total variants identified, 36 are novel, as they are not reported at dbSNP database (https://www.ncbi.nlm.nih.gov/snp/). Data on these novel variants submitted to the **NCBI** were (https://www.ncbi.nlm.nih.gov/sra/PRJNA662090). Most of the variants in PK genes were in Hardy-Weinberg equilibrium, except for 30 variants.

4.3.2 Functionality prediction of variants in PK genes

The FPS was calculated for missense and stop-loss variants in PK genes, and deleterious FPS (>0.5) of 61 variants with MAF > 1.0% are shown in **Table 4**. The most frequent variants were *SLCO1B3* rs60140950 (c.767G>C, LOF) (MAF: 14.7%); *SLCO1B1* rs4149056 (c.521T>C) (MAF: 11.0%), *CYP2C9*2* rs1799853 (c.430C>T, LOF) (MAF: 8.8%), *CYP2D6* rs1065852 (c.941G>A, LOF) (MAF: 6.0%), and *ABCC3* rs11568591 (c.3890G>A) (MAF: 6.5%). Five novel deleterious variants were detected, but their FPS score could not be calculated due to the lack of prediction by the functionality prediction algorithms used; therefore, they were considered deleterious, with a FPS score of 1.0 (**Supplementary table 8**).

A total of 16 splice-site variants in PK genes were considered deleterious according to the functional prediction algorithm (located at splice donor or splice acceptor regions) (**Table 5**). Two known deleterious splice variants, *CYP3A5*3* and *CYP3A5*6*, were detected in FH patients. *CYP3A5*3* (MAF: 49.6%) and *SLC22A1* rs35854239 (c.275_1276del) (MAF: 45.7%) were the most frequent variants.

In silico functional analysis of frameshift and inframe variants in PK-related genes, 3 inframe variants were considered as likely deleterious and 7 frameshift variants were considered deleterious, including the novel variant *ABCC1* c.66del (**Table 6**).

Gene	Variant	NT change	AA change	Туре	MAF (%)	FPS
CYP2C8	rs1058930	c.486C>G	p.Ile162Met	missense	4.9	0.6
CYP2C9	rs1799853 (CYP2C9*2)	c.430C>T	p.Arg144Cys	missense	8.8	1
	rs2256871 (CYP2C9*9)	c.752A>G	p.His251Arg	missense	2.2	0.8
CYP2C19	rs17884712 (CYP2C19*9)	c.431G>A	p.Arg144His	missense	2.2	0.8
CYP2D6	rs1065852	c.100C>T	p.Pro34Ser	missense	6.0	1
	rs28371703	c.271C>A	p.Leu91Met	missense	1.1	0.6
	rs1058172	c.941G>A	p.Arg314His	missense	4.9	1
CYP3A5	rs6977165	c.423A>G	p.X141Trp	stoploss	5.7	1
UGT1A3	rs45449995	c.808A>G	p.Met270Val	missense	2.2	0.75
ABCC1	rs45511401	c.2012G>T	p.Gly671Val	missense	3.8	0.8
ABCC2	rs8187692	c.3542G>T	p.Arg1181Leu	missense	2.7	0.8
	rs17216317	c.3872C>T	p.Pro1291Leu	missense	3.3	0.8
ABCC3	rs11568591	c.3890G>A	p.Arg1297His	missense	6.5	0.8
	rs141856639	c.3971G>A	p.Arg1324His	missense	1.1	1
SLC15A1	rs8187820	c.364G>A	p.Val122Met	missense	1.6	0.6
SLC22A1	rs2282143	c.1022C>T	p.Pro341Leu	missense	1.1	0.8
	rs35888596	c.113G>A	p.Gly38Asp	missense	2.2	1
	rs34059508	c.1393G>A	p.Gly465Arg	missense	1.1	0.8
	rs12208357	c.181C>T	p.Arg61Cys	missense	3.8	0.6
SLCO1B1	rs59502379	c.1463G>C	p.Gly488Ala	missense	1.8	0.8
	rs4149056 (SLCO1B1*5)	c.521T>C	p.Val174Ala	missense	11.0	0.8
SLCO1B3	rs60140950	c.767G>C	p.Gly228Ala	missense	14.7	1

Table 4 Missense and stop-loss variants in PK-related genes (MAF > 1.0%) with deleterious functionality prediction score (FPS>0.5).

AA: amino acid; FPS: functionality prediction score; MAF: minor allele frequency; NT: nucleotide; PK: pharmacokinetics. ^a Only variants with MAF> 1.0% were considered.

Table 5 In silico functional prediction of splice-site variants in PK-related genes.

Gene	Variant	NT change ^b	Туре	MAF (%)	Prediction ^a
ABCC1	rs8187856	g.16146576C>G	Splice region	1.1	В
ABCC2	rs533334893	g.101552117G>A	Splice donor	0.5	D
ABCC3	rs11568607	g.48745787G>A	Splice region	2.2	В
ABCG2	rs34124189	g.89053790G>A	Splice region	0.5	В
CYP1A2	rs1288558234	g.75041241del	Splice region	0.5	В
	rs913188841	g.75041242C>G	Splice region	0.5	В
CYP2C8	rs11572078	g.96827126dup	Splice region	17.4	В
	rs2071426	g.5932A>G	Splice donor	23.9	D
CYP2D6	rs3892097	g.6866G>A	Splice acceptor	2.2	D
CYP3A5	rs776746 (CYP3A5*3)	g.12083G>A	Splice acceptor	49.6	D
	rs10264272 (CYP3A5*6)	g.19787G>A	Splice defect	3.1	D
SLC15A1	rs8187827	g.99354731T>C	Splice region	0.5	В
SLC22A1	rs35854239	c.275_1276del	Splice acceptor	45.7	D
SLCO1B1	rs77271279	g.21329832G>T	Splice donor	0.9	D
SLCO1B3	rs3764009	g.21013948C>T	Splice region	16.3	В
	rs958332597	g.21032366C>T	Splice region	0.5	В

B: benign; D: deleterious; MAF: minor allele frequency; NT: nucleotide; PK: pharmacokinetics. ^a Functionality prediction was made using dbNSFP v4.2 *in silico* prediction algorithm. ^b Genomic placement is described using the GRCh37 (hg19) version of the reference genome.

Gene	Variant	NT change	Туре	MAF (%)	Prediction ^a
ABCC1	Novel	c.66del	Frameshift variant	0.5	D
CYP2D6	rs5030656	c.88_690del	Inframe deletion	0.5	LD
	rs5030655	c.54del	Frameshift truncation	1.1	D
CYP3A5	rs200579169	c.2dup	Frameshift truncation	0.4	D
	rs41303343	c.035dup	Frameshift variant	1.8	D
	rs547253411	c.372del	Frameshift truncation	0.4	D
SLC22A1	rs72552763	c.258_1260del	Disruptive inframe deletion	18.5	LD
SLCO1B3	rs780598056	c.333del	Frameshift truncation	0.5	D
	rs558592800	c.19 120insAATT	Frameshift elongation	0.5	D
SLCO2B1	rs60113013	c14del	Inframe insertion	1.6	LD

Table 6 In silico functional prediction of frameshift and inframe variants in PK-related genes.

D: deleterious; LD: likely deleterious; MAF: minor allele frequency.^a Functionality prediction was made using manually considering the region of the variant. Inframe variants were considered likely deleterious while frameshift variants were considered as deleterious.

4.3.3 Association study between variants in PK genes and response

4.3.3.1 LDL-c reduction

To assess the influence of variants in PK genes on statin response, 24 deleterious variants detected at least in three carriers were analyzed. FH patients carrying the homozygous form of the minor allele were grouped with the heterozygous carriers and compared with non-carriers (dominant inheritance model). **Figure 3** and **Supplementary table 9** show the results for deleterious variants in PK genes with MAF > 5%.

Carriers of the deleterious variant *ABCC1* rs45511401 (c.2012G>T) T allele had greater on-treatment LDL-c reduction with either all statins or atorvastatin treatment (p<0.001, adjusted p<0.10). One patient was considered an outlier because her LDL-c increased after statin treatment. *SLCO1B1* rs4146056 c.521C allele, a known deleterious variant, and *CYP3A5*3*, a non-functional splicing variant, were not associated with statin response (**Supplementary table 9**).

A. Variants in ABC and SLC transporters. **B.** Variants in CYP and UGT metabolizing enzymes. *p<0.05 (compared by *t*-test).

Univariate linear regression analysis showed that *ABCC1* c.2012T allele contributed for an additional reduction of 18.8% in LDL-c after statin therapy (p=0.016, adjusted p = 0.096) (**Supplementary table 10**). Baseline LDL-c and therapy intensity also enhanced LDL-c reduction, whereas BMI had an opposite effect (p-adjusted<0.05). Multivariate linear regression analysis of variants in PK-related genes with MAF > 1.0% was performed adjusting each model only with non-genetic covariates (body mass index, baseline LDL-c, therapy intensity, and presence of SRAE). This analysis showed no association between *ABCC1* c.2012G>T or other variants and enhanced LDL-c reduction (**Supplementary table 11**).

Next, we performed a multivariate linear regression analysis by including all deleterious variants with MAF >10% in the model and adjusting for non-genetic covariates using a dominant model (**Table 7**). In this model, *ABCC1* c.2012T allele enhanced LDL-c reduction by 13.8% after statin therapy (p=0.046) and *SLCO1B3* c.683C by 8.9% (p=0.047).

Table 7 Influence of deleterious variants (MAF >10%) on LDL-c response to statins in FH patients:Multivariate linear regression analysis.

Variant		n	β	SE	p-value
<i>CYP2C</i> 8 g.5932A>G	G allele	92	2.8	3.7	0.447
<i>CYP3A5*3</i> g.12083G>A	A allele	114	12.4	7.6	0.106
<i>ABCC1</i> c.2012G>T	T allele	92	-13.8	6.8	0.046
SLC22A1 c.1260_1262del	Deletion	92	-8.1	9.1	0.378
<i>SLCO1B1</i> c.521T>C	C allele	114	-3.4	4.5	0.449
<i>SLCO1B3</i> c.767G>C	C allele	92	-8.9	4.4	0.047

The model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: number of patients; β : linear coefficient; SE: standard error; LDL-c: low-density lipoprotein cholesterol; FH: familial hypercholesterolemia; SRAE: statin-related adverse events.

Univariate logistic regression analysis of with variants in PK-related genes and nongenetic variables showed that higher baseline LDL-c, ezetimibe use, manifestation of SRAE or myopathy and lower BMI were associated with higher likelihood of being responder to statin (p<0.05) (**Supplementary table 12**). However, the association with ezetimibe use and BMI was not sustained after correction (p>0.05).

Multivariate logistic regression analysis showed that variants in PK-related genes were not associated with the likelihood of being responder to statins, even after adjustment with nongenetic covariates (**Table 8**).

Table 8 Association of deleterious variants (MAF> 1.0%) in PK-related genes with statin response inFH patients: Multivariate logistic regression analysis.

Variable		RE, %	NRE, %	OR (95%CI)	p-value
		(58)	(56)		
Deleterious variants					
<i>CYP2C19</i> c.431G>A	A allele	2.2 (1)	6.4 (3)	2.58 (0.30 - 54.78)	0.428
<i>CYP2C8</i> c.486C>G	A allele	4.4 (2)	12.8 (6)	1.81 (0.33 - 14.3)	0.520
<i>CYP2C8</i> g.5932A>G	G allele	44.4 (20)	42.6 (20)	0.87 (0.33 - 2.26)	0.772
<i>CYP2C9</i> *2 c.430C>T	T allele	12.1 (7)	21.4 (12)	1.65 (0.48 - 6.14)	0.437
<i>CYP2C9*9</i> c.752A>G	G allele	5.2 (3)	3.6 (2)	4.49 (0.38 - 56.46)	0.225
<i>CYP2D6</i> c.941G>A	A allele	11.1 (5)	8.5 (4)	0.41 (0.07 - 2.1)	0.287
<i>CYP2D6</i> c.100C>T	T allele	11.1 (5)	10.6 (5)	0.4 (0.08 - 1.99)	0.260
<i>CYP2D6</i> g.6866G>A	A allele	2.2 (1)	6.4 (3)	1.09 (0.1 - 25.79)	0.948
<i>CYP3A5</i> c.624G>A	A allele	3.4 (2)	3.6 (2)	0.95 (0.08 - 12.82)	0.968
<i>CYP3A5</i> c.423A>G	G allele	10.3 (6)	12.5 (7)	0.99 (0.25 - 4.01)	0.986
<i>CYP3A5*3</i> g.12083G>A	A allele	93.1 (54)	94.6 (53)	0.86 (0.11 - 6.38)	0.881
<i>UGT1A3</i> c.808A>G	G allele	4.4 (2)	2.1 (1)	0.13 (0 - 1.95)	0.166
<i>ABCC1</i> c.2012G>T	T allele	15.6 (7)	0.0 (0)	NR	-
<i>ABCC2</i> c.3872C>T	T allele	2.2(1)	10.6 (5)	7.58 (0.81 - 199.03)	0.123
<i>ABCC2</i> c.3542G>T	T allele	4.4(2)	6.4 (3)	1.15 (0.13 - 12.74)	0.903
<i>ABCC3</i> c.3890G>A	A allele	13.3 (6)	12.8 (6)	0.95 (0.24 - 3.96)	0.946
<i>SLC15A1</i> c.364G>A	A allele	4.4 (2)	2.1 (1)	0.1 (0 - 1.33)	0.098
<i>SLC22A1</i> c.181C>T	T allele	4.4 (2)	8.5 (4)	1.34 (0.19 - 12.57)	0.776
<i>SLC22A1</i> c.113G>A	A allele	6.7 (3)	2.1 (1)	0.44 (0.02 - 4.02)	0.504
<i>SLC22A1</i> c.1260_1262del	Deletion	31.1 (14)	38.3 (18)	0.88 (0.31 - 2.5)	0.813
<i>SLCO1B1*5</i> c.521T>C	C allele	24.1 (14)	19.6 (11)	0.62 (0.2 - 1.84)	0.391
<i>SLCO1B1</i> c.1463G>C	C allele	3.4 (2)	3.6 (2)	1.75 (0.12 - 22.02)	0.657
<i>SLCO1B3</i> c.767G>C	C allele	26.7 (12)	23.4 (11)	0.62 (0.18 - 1.98)	0.418

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. Number of patients in round brackets. NRE: non-responder; RE: responder; OR: odds ratio; CI: confidence interval; FH: familial hypercholesterolemia; NR: not reported (no patients in NRE group); PK: pharmacokinetics; SRAE: statin-related adverse events.

4.3.3.2 Molecular modeling results

Molecular modeling analysis was performed to explore the influence of the missense variant *ABCC1* rs45511401 (c.2012G>T, p.Gly671Val) on amino acid interactions with statin ligands. In this way, the amino acid sequence of reference ABCC1 was downloaded from the Uniprot database (code: P33527) and the tri-dimensional model was generated by AlphaFold2 pipeline. ABCC1 reference (Gly671) and variant (Val671) models were prepared by adding hydrogen atoms, fixing missing side chains, removing sulphate ions and other crystallization buffer molecules such as glycerol and minimizing by Biopolymer in Sybyl X suite.

As shown in **Figure 4**, the variant Val671 resulted in shorter distances of ABCC1 interactions with atorvastatin (2.1 Å), rosuvastatin (1.1 Å) and simvastatin (1.7 Å) compared to the reference Gly671 (4.1 Å, 3.7 Å, 4.3 Å, respectively). These results indicate that the amino acid change from Glycine to Valine in position 671 enhance the interaction of ABCC1 with statins, possibly reducing the efflux rate in the basolateral membrane of the hepatocytes. In this way, the variant would cause more retention of statins within the liver increasing the LDL-c response.

Figure 4 Molecular Modeling Analysis. Influence of *ABCC1* rs45511401 (c.2012G>T, p.Gly671Val) on amino acid interaction with statins.

A. Representation of ABCC1 anchored in the basolateral membrane of a hepatocyte. The arrow indicates the sense of statin efflux. **B**, **C**, and **D**. Interactions between ABCC1 reference (Gly671) and atorvastatin, rosuvastatin and simvastatin, respectively. **E**, **F**, and **G**. Interactions between ABCC1 variant (Val671) and atorvastatin, rosuvastatin, rosuvastatin, and simvastatin, respectively.

4.3.3.3 Statin-related adverse events

The association of deleterious variants in PK genes with MAF > 1.0% and non-genetic variables with SRAE was also assessed by univariate logistic regression analysis. Higher baseline LDL-c increased the risk of SRAE (p<0.05). Reduced adherence, drug interaction with CYP3A4 inhibitor and FH-related variants were also predictors of SRAE, but these associations were not maintained after corrections (adjusted p>=0.05) (**Supplementary table 13**). Deleterious variants in PK genes were not associated with SRAE according to univariate logistic regression analysis (**Supplementary table 13**) or multivariate logistic regression analysis after adjustment with non-genetic covariates (p=0.067) (**Table 9**).

Table 9 Association of deleterious variants (MAF > 1.0%) in PK-related genes with SRAE in FH patients: Multivariate logistic regression analysis.

Variable		No SRAE , %	SRAE, %	OR (95%CI)	p-value
		(90)	(24)		
<i>CYP2C8</i> c.486C>G	A allele	45.5 (35)	35.7 (5)	0.70 (0.19 - 2.37)	0.574
<i>CYP2C9</i> c.430C>T	T allele	16.9 (15)	12.5 (3)	0.54 (0.1 - 2.2)	0.428
<i>CYP2C9</i> c.752A>G	G allele	2.2 (2)	12.5 (3)	3.03 (0.35 - 29.74)	0.309
<i>CYP3A5</i> c.624G>A	A allele	3.4 (3)	4.2 (1)	1.34 (0.06 - 13.48)	0.817
<i>CYP3A5</i> c.423A>G	G allele	11.2 (10)	12.5 (3)	1.11 (0.22 - 4.44)	0.886
<i>CYP3A5*3</i> g.12083G>A	A allele	93.3 (83)	95.8 (23)	2.7 (0.33 - 60.01)	0.418
<i>ABCC1</i> c.2012G>T	T allele	6.5 (5)	14.3 (2)	1.65 (0.2 - 9.46)	0.594
<i>ABCC2</i> c.3872C>T	T allele	5.2 (4)	14.3 (2)	6.12 (0.72 - 41.6)	0.067
<i>ABCC2</i> c.3542G>T	T allele	5.2 (4)	7.1 (1)	1.28 (0.06 - 11.08)	0.841
<i>ABCC3</i> c.3890G>A	A allele	13 (10)	14.3 (2)	0.72 (0.07 - 4.06)	0.734
<i>SLC22A1</i> c.113G>A	A allele	3.9 (3)	7.1 (1)	3.44 (0.16 - 32.63)	0.317
SLC22A1 c.1260_1262del	Deletion	37.7 (29)	14.3 (2)	0.27 (0.04 - 1.19)	0.122
<i>SLCO1B1</i> c.521T>C	C allele	21.3 (19)	25.0 (6)	1.23 (0.36 - 3.85)	0.727
<i>SLCO1B1</i> c.1463G>C	C allele	3.4 (3)	4.2 (1)	2.4 (0.11 - 22.59)	0.479
<i>SLCO1B3</i> c.767G>C	C allele	26 (20)	14.3 (2)	0.36 (0.05 - 1.68)	0.252

Each model was adjusted with the following covariates: baseline LDL-c, presence of FH-related variant and adherence to statin. Number of patients in round brackets. P-value was adjusted using the Benjamini-Hochberg correction. NRE: non-responder; RE: responder; OR: odds ratio; CI: confidence interval; BMI: body mass index; FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; PK: pharmacokinetics; SRAE: statin-related adverse events.

4.4 Pharmacodynamics genes

4.4.1 Variants in PD-related genes

ETGS analysis identified 752 variants in 33 PD-related genes, with 85 novel variants. The variants were of the following types: 249 missense, 1 stop-gain, 9 start-loss, 5 frameshift indel, 9 inframe indel, 26 in splicing region, 67 in the 5'UTR region, and 386 in the 3'UTR region (**Supplementary table 14**). Most of the variants were in Hardy-Weinberg equilibrium, except for 29 variants.

4.4.2 Functionality prediction of variants in PD genes

A total of 111 variants were predicted as deleterious, of which 97 were missense, start loss or stop -gain, 10 were splice-sites and 4 were frameshift (**Supplementary table 14**). Variants with MAF higher than 1% and their functionality predictions are shown in **Table 10** (missense, start loss and stop gain), **Table 11** (splice-site) and **Table 12** (frameshift and inframe).).

The most frequent deleterious variant was the missense variant *ABCA1* rs2230808 (c.4760G>A, p.Lys1587Arg), with a frequency of 36.4%, followed by *KIF6* rs20455 (c.2155T>C (rs20455, p.Trp719Arg), with a MAF of 44.3%, and *APOB* rs679899 (c.1853C>T (rs679899, p.Ala618Val), with a MAF of 37.3%. In FH-related genes, deleterious variants were found in *APOB*, *LDLR* and *LDLRAP1*, while only a likely deleterious splice-site variant was found in *PCSK9*. Two novel variants were predicted as deleterious, both frameshift variants: *LDLR* c.454del and c.103del (**Table 12**).

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction
FH-related genes	5					
APOB	rs1367117	c.293C>T	p.Thr98Ile	missense	32.0	D
	rs679899	c.1853C>T	p.Ala618Val	missense	37.3	D
	rs6752026	c.433C>T	p.Pro145Ser	missense	2.2	D
	rs676210	c.8216C>T	p.Pro2739Leu	missense	19.3	D
	rs12713675	c.7367C>A	p.Ala2456Asp	missense	2.2	D
	rs12720855	c.9880T>C	p.Ser3294Pro	missense	2.2	D
	rs1801699	c.5741A>G	p.Asn1914Ser	missense	4.4	D
	rs533617	c.5768A>G	p.His1923Arg	missense	1.3	D
LDLR	rs121908031	c.1539C>A	p.Cys513X	Stop-gain	1.8	D
	rs879254913	c.959T>C	p.Ile320Thr	missense	1.3	D
	rs121908031	c.1539C>A	p.Cys513X	Stop-gain	1.8	D
LDLRAP1	rs41291058	c.712C>T	p.Arg238Trp	missense	2.2	D
Cholesterol hom	eostasis and metabolis	sm				
ABCG4	rs12271907	c.1035C>G	p.Asn345Lys	missense	3.8	D
	rs35060365	c.1055C>T	p.Pro352Leu	missense	1.1	D
APOA4	rs12721041	c.37G>A	p.Val13Met	missense	2.2	D
APOE	rs7412	c.526C>T	p.Arg176Cys	missense	2.6	D
	rs429358	c.388T>C	p.Cys130Arg	missense	12.3	D^{b}
CYP7A1	rs8192875	c.1039G>A	p.Asp347Asn	missense	1.1	D
LPA	rs3124784	c.6046C>T	p.Arg2016Cys	missense	27.6	D
	rs139145675	c.5311C>T	p.Arg1771Cys	missense	2.2	D
	rs41267807	c.6068A>G	p.Tyr2023Cys	missense	1.3	D
	rs41272110	c.4195A>C	p.Thr1399Pro	missense	10.5	D
	rs76062330	c.5468G>T	p.Gly1823Val	missense	3.5	D
	rs3798220	c.5673A>G	p.Ile1891Met	missense	3.1	D
	rs41259144	c.2969G>A	p.Arg990Gln	missense	1.8	D
Reverse choleste	rol transport					
ABCA1	rs2230808	c.4760G>A	p.Lys1587Arg	missense	36.4	D
	rs9282541	c.688C>T	p.Arg230Cys	missense	1.8	D
CETP	rs5880	c.988G>C	p.Ala330Pro	missense	5.7	D
Cholesterol efflu	X					
ABCG5	rs6756629	c.148C>T	p.Arg50Cys	missense	6.1	D
ABCG8	rs11887534	c.55G>C	p.Asp19His	missense	6.1	D
	rs4148211	c.161A>G	p.Tyr54Cys	missense	30.3	D
	rs80025980	c.239G>A	p.Cys80Tyr	missense	1.3	D
Associated with	statin-related adverse	events				
COQ10A	rs60542959	c.3G>T	p.A2_Met44del	start-loss	2.2	D
LPL	rs1801177	c.106G>A	p.Asp36Asn	missense	2.2	D
	rs328	c.1421C>G	p.Ser474X	Stop-gain	7.4	D
Transcription re	gulators of cholestero	genic genes				
SREBF2	rs2229440	c.1867G>A	p.Val623Met	missense	3.1	D
Other genes						
CLMN	rs61750771	c.2698A>T	p.Ile900Phe	missense	1.8	D
KIF6	rs20455	c.2155T>C	p.Trp719Arg	missense	44.3	D ^b

Table 10 Missense, start-loss and stop-gain variants (MAF > 1.0%) in PD-related genes predicted as deleterious.

AA: amino acid; FPS: functionality prediction score; MAF: minor allele frequency; NT: nucleotide; PD: pharmacodynamics. ^aOnly variants with MAF> 1.0% were considered. ^b Although this variant was predicted as neutral, it was considered deleterious as it has already been associated with statin response in previous studies.

Gene	Variant	NT change ^b	Туре	MAF (%)	Prediction ^a
ABCA1	rs77663187	g.107556811del	splice region	16.1	Ν
	rs769705621	g.107556792_107556793insA	splice acceptor	9.3	D
	rs769705621	g.107556792_107556793insAA	splice acceptor	21.2	D
	rs769705621	g.107556792_107556793insAAA	splice acceptor	22.0	D
	rs769705621	g.107556792_107556793insAAAA	splice acceptor	7.9	D
	rs769705621	g.107556792_107556793insAAAA			D
	rs769705621	A g.107556792_107556793insAAAA	splice acceptor	3.5	
	15/ 02/ 02 021	AA	splice acceptor	3.5	D
	rs769705621	g.107556792_107556793insAAAA AAA	splice acceptor	3.5	D
ABCG1	rs77603571	g.43627101G>A	splice region	0.5	Ν
APOA2	rs6413453	g.161192316G>A	splice region	5.3	Ν
APOC2	rs74500990	g.45451954G>C	splice region	0.9	Ν
APOC3	rs138326449	g.116701354G>A	splice donor	16.7	D
CLMN	rs5810715	g.95670813del	splice region	0.9	Ν
LDLR	rs112029328	g.11213463G>A	splice donor	0.9	D
	rs116405216	g.11221324G>A	splice region	0.4	Ν
	rs879254687	g.11218066A>G	splice acceptor	13.6	D
LIPA	rs2297472	g.90984990G>A	splice region	0.4	Ν
LPA	rs143431368	g.160969693T>C	splice acceptor	0.5	D
	rs41272114	g.161006077C>T	splice donor	2.6	D
	rs756764319	g.160962134C>T	splice region	0.4	Ν
PCSK9	rs2495477	g.55518467A>G	splice region	18.4	Ν
SREBF1	rs45567732	g.17718146C>A	splice region	0.4	Ν

Table 11 In silico functional prediction of splice-site variants in PD-related genes

MAF: minor allele frequency; NT: nucleotide; PD: pharmacodynamics. ^a Functionality prediction was made using dbNSFP v4.2 *in silico* prediction algorithm. ^b Genomic placement is described using the GRCh37 (hg19) version of the reference genome.

Fable 12 In silico functional	prediction of frameshift and infram	e variants in PD-related genes
-------------------------------	-------------------------------------	--------------------------------

Gene	Variant	NT change	Туре	MAF (%)	Prediction ^a
APOA4	rs539176882	c.145_1146insACAGCAGCAGG	Disruptive inframe insertion	1.3	LD
APOB	rs17240441	c.5_43del	Disruptive inframe deletion	2.2	LD
	rs562574661	c.3480_13482del	Inframe deletion	0.4	LD
LDLR	Novel	c.454del	Frameshift variant	0.4	D
	rs879255131	c.573_1574del	Frameshift variant	0.4	D
	Novel	c.103del	Frameshift variant	0.4	D
	rs1135402774	c.70del	Frameshift variant	0.4	D
PCSK9	rs35574083	c.2_43insCTG	Disruptive inframe insertion	14.0	LD
SREBF2	rs143615881	c.03_205del	Disruptive inframe deletion	0.4	LD
	rs779626156	c.85_193del	Disruptive inframe deletion	0.4	LD

D: deleterious; LD: likely deleterious; MAF: minor allele frequency; NT: nucleotide; PD: pharmacodynamics. ^a Functionality prediction was made using manually considering the region of the variant. Inframe variants were considered likely deleterious while frameshift variants were considered as deleterious.

4.4.3 Association study between variants in PD genes and response to statins

4.4.3.1 LDL-c reduction

A total of 40 deleterious variants with MAF > 1.0% were selected for the association analysis with LDL-c reduction after statin (**Table 13**) and atorvastatin (**Table 14**) treatment.

For this analysis, we considered 5 possible variations of *ABCA1* rs769705621, with the insertion of one to seven adenines in splice-site region. Since the three last variations, g.107556792_107556793insAAAAA/AAAAAA/AAAAAAA, were in complete linkage disequilibrium ($R^2 = 0.998$), we only considered the insertion of five adenines as a marker of these indels.

ABCA1 rs769705621 (g.107556792_107556793insAAAA) was associated with lower LDL-c reduction in carriers (p<0.001, adjusted p=0.003) (**Table 13**). Interestingly, the insertion of one to four adenines in the same site did not result in any differences in LDL-c change between carriers and non-carriers (p>0.05).

The missense variants *KIF6* rs20455 (c.508T>C) and *LPA* rs41267807 (c.6068A>G) were also associated with lower LDL-c reduction (p<0.05), but these significances were dropped after adjustment (adjusted p>0.05). On the other hand, the missense variant *LPL* rs1801177 (c.106G>A) was associated with higher statin response (p=0.022), which was not maintained after multiple testing adjustment (adjusted p=0.296) (**Table 13**).

When only the response to atorvastatin was analyzed (**Table 14**), *ABCA1* g.107556792_107556793insAAAAA and *KIF6* rs20455 (c.508T>C) were associated with lower atorvastatin response (p<0.05), but these associations were not maintained after corrections (p>0.05). On the other hand, the missense variant *LPA* rs76062330 (c.5468G>T) was associated with higher LDL-c reduction, even after corrections (adjusted p=0.001).

Gene	rs code	NT change	Туре	LDL-c red	_	Adjusted	
				Non carriers	Carriers	p-value	p-value
All statins							
		g.107556792_107556793					
ABCAI	rs769705621	insA ~ 107556702 107556702	splice-site	-45.6 ± 19.6 (70)	-48.6 ± 17.6 (16)	0.555	0.910
	rs769705621	g.10/330/92_10/330/93 insAA	splice-site	-48.7 + 19.8(64)	-48.2 + 19.2 (40)	0.902	0.973
	15, 07, 00 021	g.107556792_107556793	spilee site		1012 _ 1712 (10)	0.702	01770
	rs769705621	insAAA	splice-site	-48 ± 20.3 (64)	-47.3 ± 18.5 (43)	0.848	1.000
	- (0 - 0 - (0)	g.107556792_107556793				0 7 40	0.000
	rs/69/05621	1nsAAAA ~ 107556702 107556702	splice-site	-48 ± 19.6 (79)	-46.2 ± 16.7 (10)	0.748	0.989
	rs769705621	insAAAAA	splice-site	-48.5 + 19.5(110)	-33.6 + 3.6(4)	<0.001	0.003
	rs9282541	c.688C>T	missense	$-48.5 \pm 19.5(110)$	-34 + 10.6(4)	0.065	0.534
	rs2230808	c.4760A>G	missense	-45.1 + 18.1 (16)	-48.4 + 19.6(98)	0.504	0.939
ABCG4	rs12271907	c 1035C>G	missense	-47.6 ± 20.2 (86)	-42.2 + 17.3 (6)	0 491	1.000
ABCG5	rs6756629	c.148C>T	missense	$-48.2 \pm 19.6(100)$	-46.6 + 18(14)	0.768	0.955
ABCG8	rs4148211	c.161A>G	missense	-50.7 ± 17.4 (54)	-45.6 + 20.9 (60)	0.157	0.717
112000	rs11887534	c.55G>C	missense	$-47.6 \pm 19.5(100)$	-50.4 + 18.8(14)	0.618	0.975
	rs80025980	c.239G>A	missense	$-47.9 \pm 19.5(111)$	-52.5 + 15.3 (3)	0.658	0.899
APOA4	rs12721041	c.37G>A	missense	-47.7 + 19.5 (109)	-53.5 + 18.4(5)	0.526	0.938
	rs12713675	c.7367C>A	missense	$-48.5 \pm 19(109)$	-37.1 + 26.2(5)	0.391	1.000
	rs12720855	c.9880T>C	missense	$-48.5 \pm 19(109)$	-37.1 + 26.2(5)	0.391	1.000
APOB	rs6752026	c.433C>T	missense	$-47.8 \pm 19.7(109)$	-52.8 + 6.7(5)	0.191	0.713
	rs1801699	c.5741A>G	missense	$-48.3 \pm 19.9(104)$	-44.5 + 12.6(10)	0.400	0.965
	rs1367117	c.293C>T	missense	-46.7 + 20.6 (50)	-48.9 + 18.5 (64)	0.552	0.943
	rs679899	c.1853C>T	missense	-46.9 ± 17.6 (43)	-48.7 ± 20.4 (71)	0.619	0.940
	rs533617	c.5768A>G	missense	-47.9 + 19.3(111)	-50.6 + 27.6 (3)	0.881	1.000
	rs676210	c.8216C>T	missense	-48.1 ± 18.1 (75)	-47.7 ± 21.8 (39)	0.929	0.977
APOE	rs7412	c.526C>T	missense	-47.4 ± 19.5 (108)	-57.8 ± 16 (6)	0.178	0.730
-	rs429358	c.388T>C	missense	-47 ± 19.7 (89)	-51.4 ± 18.1 (25)	0.307	0.820
CETP	rs5880	c.988G>C	missense	$-47.1 \pm 19.2 (101)$	-54.5 ± 19.9 (13)	0.226	0.773
CLMN	rs61750771	c.2698A>T	missense	$-48 \pm 19.6 (110)$	-47.2 ± 10.5 (4)	0.890	0.986
COO10A	rs60542959	c.3G>T	start-loss	$-48 \pm 19.7 (109)$	-47.5 ± 11.3 (5)	0.932	0.955
~ KIF6	rs20455	c.2155T>C	missense	-53.1 ± 18.7 (39)	-45.3 ± 19.3 (75)	0.038	0.391
LDLR	rs879254913	c.959T>C	missense	$-48 \pm 19.6 (111)$	$-47 \pm 4.0(3)$	0.749	0.942
	rs121908031	c.1539C>A	stop-gain	-48 ± 19.5 (110)	-47.4 ± 16.1 (4)	0.949	0.949
LDLRAP1	rs41291058	c.712C>T	missense	-47.9 ± 19.5 (109)	-49.6 ± 18.4 (5)	0.851	0.976
LPA	rs41267807	c.6068A>G	missense	-48.5 ± 19.4 (111)	-28.8 ± 5.9 (3)	0.012	0.239
	rs41272110	c.4195A>C	missense	-49.6 ± 18.9 (90)	-41.8 ± 20.3 (24)	0.100	0.649
	rs139145675	c.5311C>T	missense	-47.6 ± 19.7 (109)	$-55.7 \pm 8.6(5)$	0.106	0.591
	rs3124784	c.6046C>T	missense	-45.5 ± 21.2 (60)	-50.7 ± 16.9 (54)	0.148	0.768
	rs76062330	c.5468G>T	missense	$-47.5 \pm 19.4 (107)$	-55.5 ± 18.2 (7)	0.301	0.870
	rs3798220	c.5673A>G	missense	$-47.5 \pm 19.1 (108)$	-56.5 ± 24.3 (6)	0.410	0.970
	rs41259144	c.2969G>A	missense	-48.5 ± 18.6 (110)	-34.9 ± 35.5 (4)	0.502	0.978
	rs41272114	g.161006077C>T	splice-site	-48.1 ± 19.6 (108)	-44.9 ± 16 (6)	0.647	0.953
LPL	rs1801177	c.106G>A	missense	-47.2 ± 19.3 (109)	-65.4 ± 11.7 (5)	0.022	0.296
	rs328	c.1421C>G	stop-gain	-49 ± 18.7 (97)	-42.2 ± 22.5 (17)	0.256	0.907
SREBF2	rs2229440	c.1867G>A	missense	-47.7 ± 19.7 (107)	-52 ± 13.8 (7)	0.468	1.000

Table 13 Influence of deleterious variants (MAF > 1.0%) in PD-related genes on LDL-c reduction inFH patients on statin treatment.

Number of patients in round brackets. Data are shown as mean \pm SD and compared by t-test. FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; NT: nucleotide; PD: pharmacodynamics.

Gene	rs code	NT change	Туре	LDL-c re	_	Adjusted	
				Non carriers	Carriers	p-value	p-value
Atorvastati	n						
ABCA1	rs9282541	c.688C>T	missense	-48.5 ± 18.3 (94)	-32.4 ± 11.4 (4)	0.060	0.587
	rs2230808	c.4760A>G	missense	-44.6 ± 18.3 (16)	-48.5 ± 18.3 (82)	0.404	1.000
	rs769705621	g.107556792_107556793 insA	splice-site	-48.5 ± 17.8 (65)	-44.8 ± 13.4 (9)	0.472	0.995
	rs769705621	g.107556792_107556793 insAAAA g.107556792_107556793	splice-site	-49 ± 18.1 (52)	-46.2 ± 19.4 (39)	0.475	0.975
	rs769705621	g.107556792_107556793	splice-site	-49.5 ± 17.4 (52)	-46.9 ± 19.7 (36)	0.516	0.959
	rs769705621	insAA g.107556792 107556793	splice-site	-45.7 ± 18 (55)	-48 ± 17.3 (16)	0.641	0.961
	rs769705621	insAAAAA	splice-site	$-48.3 \pm 18.4 \ (95)$	-34 ± 4.3 (3)	0.006	0.106
ABCG4	rs12271907	c.1035C>G	missense	$-47.9 \pm 18.8 \ (74)$	-45.6 ± 13.3 (4)	0.754	0.933
ABCG5	rs6756629	c.148C>T	missense	-48.6 ± 18 (84)	-43.4 ± 20.1 (14)	0.371	0.999
ABCG8	rs4148211	c.161A>G	missense	-51.1 ± 16.7 (49)	-44.6 ± 19.4 (49)	0.079	0.619
	rs80025980	c.239G>A	missense	$-47.7 \pm 18.4 \ (95)$	-52.5 ± 15.3 (3)	0.649	0.921
	rs11887534	c.55G>C	missense	-48 ± 17.9 (84)	-47.1 ± 21.4 (14)	0.887	0.975
APOA4	rs12721041	c.37G>A	missense	-47.8 ± 18.3 (95)	-50.5 ± 24.1 (3)	0.865	0.978
APOB	rs6752026	c.433C>T	missense	-47.7 ± 18.6 (94)	-52.1 ± 7.5 (4)	0.347	0.967
	rs679899	c.1853C>T	missense	-46.1 ± 17.4 (38)	-49 ± 18.9 (60)	0.442	0.985
	rs1801699	c.5741A>G	missense	-48 ± 19 (90)	-46.4 ± 7.2 (8)	0.635	0.971
	rs12713675	c.7367C>A	missense	-48.1 ± 18 (94)	-42.6 ± 26.7 (4)	0.711	0.956
	rs12720855	c.9880T>C	missense	-48.1 ± 18 (94)	-42.6 ± 26.7 (4)	0.711	0.904
	rs676210	c.8216C>T	missense	-47.4 ± 18 (68)	-48.9 ± 19.2 (30)	0.732	0.951
	rs1367117	c.293C>T	missense	-47.3 ± 19.6 (45)	-48.3 ± 17.3 (53)	0.789	0.947
APOE	rs7412	c.526C>T	missense	-47.3 ± 18.3 (93)	-57.9 ± 17.9 (5)	0.260	0.882
	rs429358	c.388T>C	missense	47.1 ± 18.8 (77)	50.7 ± 16.3 (21)	0.398	0.887
CETP	rs5880	c.988G>C	missense	-47.1 ± 18.6 (87)	-54 ± 14.6 (11)	0.174	0.755
CLMN	rs61750771	c.2698A>T	missense	-47.9 ± 18.6 (94)	-47.2 ± 10.5 (4)	0.905	0.954
COQ10A	rs60542959	c.3G>T	missense	-48.2 ± 18.3 (93)	-41.8 ± 20.1 (5)	0.519	0.942
KIF6	rs20455	c.2155T>C	missense	-54.8 ± 16.5 (33)	-44.4 ± 18.3 (65)	0.006	0.073
LDLR	rs879254913	c.959T>C	missense	-48.2 ± 18.4 (95)	-38.6 ± 11.1 (3)	0.271	0.880
LDLRAP1	rs41291058	c.712C>T	missense	-47.6 ± 18.3 (94)	-53.3 ± 18.8 (4)	0.591	0.960
LPA	rs76062330	c.5468G>T	missense	-46.9 ± 18.5 (92)	-62.2 ± 4.7 (6)	<0.001	0.001
	rs139145675	c.5311C>T	missense	-47.4 ± 18.6 (93)	$-55.7 \pm 8.6 (5)$	0.101	0.603
	rs3124784	c.6046C>T	missense	-45.2 ± 19.1 (49)	-50.5 ± 17.3 (49)	0.155	0.758
	rs41272110	c.4195A>C	missense	-48.9 ± 18.2 (78)	-43.8 ± 18.8 (20)	0.287	0.861
	rs41259144	c.2969G>A	missense	-47.8 ± 18.4 (95)	-50.6 ± 20.2 (3)	0.832	0.983
	rs41272114	g.161006077C>T	splice-site	-47.9 ± 18.5 (93)	-47.2 ± 16.2 (5)	0.929	0.966
LPL	rs1801177	c.106G>A	missense	-47.2 ± 18.2 (94)	-63.7 ± 13 (4)	0.080	0.492
	rs328	c.1421C>G	Stop-gain	-48.3 ± 18.3 (84)	-45.2 ± 18.7 (14)	0.566	0.940
SREBF2	rs2229440	c.1867G>A	missense	-47.5 ± 18.5 (93)	-55.1 ± 13.1 (5)	0.272	0.848

Table 14 Influence of deleterious variants (MAF > 1.0%) in PD-related genes on LDL-c reduction in FH patients on atorvastatin treatment.

Number of patients in round brackets. Data are shown as mean \pm SD and compared by *t*-test. FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; NT: nucleotide; PD: pharmacodynamics.

Univariate linear regression analysis for LDL-c reduction after treatment with statins showed that *KIF6* rs20455 (c.2155T>C) reduced LDL-c change when considering the treatment with all statins and atorvastatin isolated, whereas *LPA* rs76062330 (c.5468G>T) was associated with higher LDL-c reduction after treatment with atorvastatin. However, these associations were not significant after multiple testing adjustment (adjusted p>0.05) (**Supplementary table 15**).

Results of multivariate linear regression analysis, after adjusting for covariates, showed that deleterious variants in PD-related genes did no influence the response to all statins (**Table 15**). Interestingly, *KIF6* c.2155T>C was associated with lower LDL-c reduction after atorvastatin treatment (p=0.014) (**Table 16**).

In univariate logistic regression analysis, only *LPA* rs3124784 (c.6046C>T) was associated with higher likelihood of being responder to all statins and to atorvastatin (**Supplementary table 16**), but this result was not maintained after multiple testing adjustment (adjusted p>0.05). Multivariate logistic regression analysis with adjustment for non-genetic covariates confirmed the association of *LPA* c.6046C>T with higher likelihood of being responder to all statins (p=0.022) (**Table 17**). Similar result was observed when considering only atorvastatin use (**Table 18**).

Gene	rs code	NT change	Allele	n	β	SE	p- <i>value</i>
All statins							
ABCA1	rs76970562 1	g.107556792_107556793 insA	A allele	86	1.9	4.8	0.689
	rs76970562 1	g.107556792_107556793 insAAAA	AA allele	104	-0.8	3.2	0.805
	rs76970562 1	g.107556792_107556793 insAAA	AAA allele	107	0.1	3.3	0.964
	rs76970562	g.107556792_107556793 insAA	AAAA allele	89	-0.6	5.2	0.915
	rs/69/0562 1	g.107556792_107556793 insAAAAA	AAAAA allele	114	2.9	8.3	0.724
ABCG4	rs12271907	c.1035C>G	G allele	92	2.7	7.4	0.713
ABCG5	rs6756629	c.148C>T	A allele	114	-1.1	4.7	0.813
ABCG8	rs4148211	c.161A>G	G allele	114	-0.2	3.1	0.959
	rs80025980	c.239G>A	A allele	114	0.3	9.5	0.974
APOB	rs12713675	c.7367C>A	T allele	114	8.4	7.3	0.253
	rs12720855	c.9880T>C	G allele	114	8.4	7.3	0.253
	rs1801699	c.5741A>G	C allele	114	-1.3	5.6	0.822
	rs533617	c.5768A>G	C allele	114	-2.3	9.3	0.806
	rs6752026	c.433C>T	A allele	114	0.1	7.3	0.992
	rs676210	c.8216C>T	A allele	114	2.6	3.2	0.418
APOE	rs7412	c.526C>T	T allele	114	-5.9	6.7	0.382
	rs429358	c.388T>C	C allele	114	-3.7	3.6	0.312
CETP	rs5880	c.988G>C	C allele	114	-6.4	4.9	0.193
CLMN	rs61750771	c.2698A>T	A allele	114	-2.3	9.3	0.808
COQ10A	rs60542959	c.3G>T	T allele	114	-3.5	7.4	0.641
KIF6	rs20455	c.2155T>C	G allele	114	6.2	3.2	0.059
LDLR	rs12190803 1	c.2043C>A	A allele	114	5.1	8.2	0.531
	rs87925491 3	c.1463T>C	C allele	114	1.2	9.3	0.895
LDLRAP1	rs41291058 rs13914567	c.712C>T	T allele	114	-7.7	7.3	0.291
LPA	5	c.5311C>T	A allele	114	-3.5	7.3	0.629
	rs3124784	c.6046C>T	A allele	114	-5.6	3.1	0.073
	rs41259144	c.2969G>A	T allele	114	12.7	8.0	0.118
	rs41267807	c.6068A>G	C allele	114	8.2	9.4	0.383
	rs41272114	g.161006077C>T	T allele	114	3	6.7	0.649
	rs76062330	c.5468G>T	A allele	114	-5.1	6.2	0.414
LPL	rs328	c.1421C>G	G allele	114	8	4.2	0.056
SREBF2	rs2229440	c.1867G>A	A allele	114	-6.5	6.2	0.294

Table 15 Influence of deleterious variants (MAF > 1.0%) in PD-related genes on all statins response ofFH patients. Multivariate linear regression analysis.

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: Number of patients. β : linear coefficient; SE: standard error; FH: familial hypercholesterolemia; NT: nucleotide; PD: pharmacodynamics.

Gene	rs code	NT change	Allele	n	β	SE	p-value
Atorvastatin							
ABCA1	rs769705621	g.107556792_107556793 insA	A allele	86	5 2.8	4.9	0.566
	rs769705621	g.107556792_107556793 insAAAA	AA allele	104	1.6	3.4	0.644
	rs769705621	g.107556792_107556793 insAAA	AAA allele	107	1.6	3.5	0.651
	rs769705621	g.107556792_107556793 insAA	AAAA allele	89) 1.3	5.3	0.811
	rs769705621	g.107556792_107556793 insAAAAA	AAAAA allele	114	-0.6	9.5	0.952
ABCG4	rs12271907	c.1035C>G	G allele	92	2. 4.5	8.9	0.617
ABCG5	rs6756629	c.148C>T	A allele	114	÷ 2	4.7	0.667
ABCG8	rs4148211	c.161A>G	G allele	114	0.7	3.3	0.844
	rs80025980	c.239G>A	A allele	114	-1.3	9.4	0.893
APOB	rs12713675	c.7367C>A	T allele	114	4 3	8	0.705
	rs12720855	c.9880T>C	G allele	114	4 3	8	0.705
	rs1801699	c.5741A>G	C allele	114	-4.3	6.3	0.495
	rs6752026	c.433C>T	A allele	114	3.3	8	0.608
	rs676210	c.8216C>T	A allele	114	0.8	3.5	0.815
APOE	rs7412	c.526C>T	T allele	114	-4.5	7.2	0.540
	rs429358	c.388T>C	C allele	114	-5.1	3.9	0.192
CETP	rs5880	c.988G>C	C allele	114	-8.1	5.2	0.124
CLMN	rs61750771	c.2698A>T	A allele	114	-2.4	9.1	0.792
COQ10A	rs60542959	c.3G>T	T allele	114	2.5	7.3	0.728
KIF6	rs20455	c.2155T>C	G allele	114	8.4	3.4	0.014
LDLR	rs879254913	c.1463T>C	C allele	114	9.1	9.1	0.319
LDLRAP1	rs41291058	c.712C>T	T allele	114	-9.5	8	0.236
LPA	rs139145675	c.5311C>T	A allele	114	-4.3	7.2	0.552
	rs3124784	c.6046C>T	A allele	114	-4.8	3.3	0.147
	rs41259144	c.2969G>A	T allele	114	-2.2	9.2	0.811
	rs41272114	g.161006077C>T	T allele	114	0.1	7.3	0.985
	rs76062330	c.5468G>T	A allele	114	-11	6.5	0.096
LPL	rs328	c.1421C>G	G allele	114	5.8	4.6	0.207
SREBF2	rs2229440	c.1867G>A	A allele	114	-8.4	7.2	0.243

Table 16 Influence of genetic variants (MAF > 1.0%) in PD-related genes on atorvastatin response ofFH patients. Multivariate linear regression analysis.

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: Number of patients. β : linear coefficient; SE: standard error; FH: familial hypercholesterolemia; NT: nucleotide; PD: pharmacodynamics.

Gene	rs code	NT change	Allele	RE	NRE	OR (95% CI)	p-value
All statins							
ABCA1	rs769705621	g.107556793insA	A allele	20.0 (8)	17.4 (8)	1.56 (0.42 - 6.23)	0.507
	rs769705621	g.107556793insAA	AA allele	34.5 (19)	42.9 (21)	1.81 (0.67 - 5.09)	0.245
	rs769705621	g.107556793insAAA	AAA allele	35.2 (19)	45.3 (24)	1.62 (0.63 - 4.24)	0.319
	rs769705621	g.107556793insAAAA	AAAA allele	8.7 (4)	14 (6)	3.52 (0.47 - 42.9)	0.260
ABCG4	rs12271907	c.1035C>G	G allele	4.4 (2)	8.5 (4)	1.84 (0.27 - 17.66)	0.548
ABCG5	rs6756629	c.148C>T	T allele	10.3 (6)	14.3 (8)	1.69 (0.42 - 7.37)	0.464
ABCG8	rs4148211	c.161A>G	G allele	44.8 (26)	60.7 (34)	1.23 (0.5 - 2.99)	0.649
	rs80025980	c.239G>A	A allele	1.7 (1)	3.6 (2)	3.95 (0.18 - 156.41)	0.410
APOB	rs12713675	c.7367C>A	A allele	3.4 (2)	5.4 (3)	1.62 (0.17 - 18.89)	0.675
	rs12720855	c.9880T>C	C allele	3.4 (2)	5.4 (3)	1.62 (0.17 - 18.89)	0.675
	rs1801699	c.5741A>G	G allele	5.2 (3)	12.5 (7)	1.63 (0.35 - 9.43)	0.551
	rs533617	c.5768A>G	G allele	1.7 (1)	3.6 (2)	1.92 (0.16 - 45.01)	0.612
	rs6752026	c.433C>T	T allele	5.2 (3)	3.6 (2)	0.84 (0.09 - 6.54)	0.871
	rs676210	c.8216C>T	T allele	31 (18)	37.5 (21)	2.39 (0.89 - 6.9)	0.093
APOE	rs7412	c.526C>T	T allele	8.6 (5)	1.8(1)	0.25 (0.01 - 2.14)	0.253
	rs429358	c.388T>C	C allele	20.7 (12)	23.2 (13)	1.2 (0.5 - 2.8)	0.745
CETP	rs5880	c.988G>C	C allele	13.8 (8)	8.9 (5)	0.43 (0.1 - 1.84)	0.258
CLMN	rs61750771	c.2698A>T	T allele	3.4 (2)	3.6(2)	0.65 (0.03 - 10.36)	0.756
COQ10A	rs60542959	c.3G>T	T allele	5.2 (3)	3.6 (2)	0.33 (0.04 - 2.36)	0.272
KIF6	rs20455	c.2155T>C	C allele	58.6 (34)	73.2 (41)	1.59 (0.6 - 4.26)	0.349
LDLR	rs121908031	c.2043C>A	A allele	3.4 (2)	3.6(2)	3.7 (0.25 - 80.77)	0.363
	rs879254913	c.1463T>C	C allele	1.7 (1)	3.6(2)	1.9 (0.16 - 43.93)	0.617
LDLRAP1	rs41291058	c.712C>T	T allele	5.2 (3)	3.6 (2)	0.27 (0.03 - 1.97)	0.201
LPA	rs139145675	c.5311C>T	T allele	6.9 (4)	1.8(1)	0.5 (0.02 - 4.55)	0.575
	rs3124784	c.6046C>T	T allele	56.9 (33)	37.5 (21)	0.33 (0.12 - 0.84)	0.022
	rs41259144	c.2969G>A	A allele	1.7 (1)	5.4 (3)	2.93 (0.3 - 66.9)	0.393
	rs41272114	g.161006077C>T	T allele	3.4 (2)	7.1 (4)	4.44 (0.57 - 58.27)	0.192
	rs76062330	c.5468G>T	T allele	10.3 (6)	1.8(1)	0.13 (0.01 - 1.01)	0.087
LPL	rs328	c.1421C>G	G allele	13.8 (8)	16.1 (9)	1.92 (0.55 - 7.45)	0.319
SREBF2	rs2229440	c.1867G>A	A allele	6.9 (4)	5.4 (3)	0.53 (0.08 - 3.37)	0.500

Table 17 Association of deleterious variants (MAF > 1.0%) in PD-related genes with all statin response

 of FH patients. Multivariate logistic regression analysis.

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: Number of patients. OR: odds ratio; CI: confidence interval; FH: familial hypercholesterolemia; NT: nucleotide; PD: pharmacodynamics; RE: responder; NRE: non-responder.

Table 18 Association of variants (MAF > 1.0%) in PD-related genes with atorvastatin response of FH patients. Multivariate logistic regression.

Gene	rs code	NT change	Allele	RE	NRE	OR (95% CI)	p- value
Atorvastatin							
ABCA1	rs769705621	g.107556793insA	A allele	22.2 (8)	22.9 (8)	1.61 (0.41 - 7.09)	0.502
	rs769705621	g.107556793insAA	AA allele	36 (18)	47.4 (18)	1.7 (0.56 - 5.24)	0.348
	rs769705621	g.107556793insAAA	AAA allele	38.8 (19)	47.6 (20)	1.59 (0.57 - 4.56)	0.379
	rs769705621	g.107556793insAAAA	AAAA allele	11.9 (5)	12.5 (4)	3.43 (0.28 - 113.8)	0.390
	rs769705621	g.107556793insAAAAA	AAAAA	1.9(1)	4.4 (2)	NR	-
			allele				
ABCG4	rs12271907	c.1035C>G	G allele	2.4 (1)	8.1 (3)	6.25 (0.53 - 241.38)	0.208
ABCG5	rs6756629	c.148C>T	T allele	11.3 (6)	17.8 (8)	1.62 (0.36 - 7.97)	0.532
ABCG8	rs4148211	c.161A>G	G allele	39.6 (21)	62.2 (28)	1.21 (0.45 - 3.23)	0.709
	rs80025980	c.239G>A	A allele	3.8 (2)	2.2(1)	3.2 (0.11 - 132.62)	0.496
APOB	rs12713675	c.7367C>A	A allele	3.8 (2)	4.4 (2)	1.11 (0.05 - 18.91)	0.939
	rs12720855	c.9880T>C	C allele	3.8 (2)	4.4 (2)	1.11 (0.05 - 18.91)	0.939
	rs1801699	c.5741A>G	G allele	3.8 (2)	13.3 (6)	1.68 (0.31 - 13.11)	0.569
	rs6752026	c.433C>T	T allele	3.8 (2)	4.4 (2)	1.94 (0.2 - 19.64)	0.548
	rs676210	c.8216C>T	T allele	28.3 (15)	33.3 (15)	2.34 (0.79 - 7.51)	0.135
APOE	rs7412	c.526C>T	T allele	7.5 (4)	2.2(1)	0.55 (0.02 - 5.96)	0.637
	rs429358	c.388T>C	C allele	20.8 (11)	22.2 (10)	0.98 (0.3 - 3.2)	0.977
CETP	rs5880	c.988G>C	C allele	15.1 (8)	6.7 (3)	0.3 (0.05 - 1.48)	0.151
CLMN	rs61750771	c.2698A>T	T allele	3.8 (2)	4.4 (2)	0.68 (0.03 - 12.72)	0.783
COQ10A	rs60542959	c.3G>T	T allele	5.7 (3)	4.4 (2)	0.33 (0.04 - 2.35)	0.271
KIF6	rs20455	c.2155T>C	C allele	58.5 (31)	75.6 (34)	1.79 (0.62 - 5.37)	0.283
LDLR	rs879254913	c.1463T>C	C allele	1.9(1)	4.4 (2)	1.82 (0.16 - 41.74)	0.638
LDLRAP1	rs41291058	c.712C>T	T allele	5.7 (3)	2.2(1)	0.16 (0.01 - 1.51)	0.144
LPA	rs139145675	c.5311C>T	T allele	7.5 (4)	2.2(1)	0.55 (0.02 - 5.48)	0.630
	rs3124784	c.6046C>T	T allele	62.3 (33)	35.6 (16)	0.26 (0.09 - 0.73)	0.012
	rs41259144	c.2969G>A	A allele	1.9 (1)	4.4 (2)	2.27 (0.18 - 55.4)	0.535
	rs41272114	g.161006077C>T	T allele	3.8 (2)	6.7 (3)	3.25 (0.31 - 85.24)	0.373
LPL	rs328	c.1421C>G	G allele	13.2 (7)	15.6 (7)	2.51 (0.59 - 13.45)	0.235
SREBF2	rs2229440	c.1867G>A	A allele	5.7 (3)	4.4 (2)	0.63 (0.06 - 6.26)	0.691

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: Number of patients. OR: odds ratio; CI: confidence interval; FH: familial hypercholesterolemia; NT: nucleotide; PD: pharmacodynamics; RE: responder; NRE: non-responder; NR: not reported.

4.4.3.2 Statin-related adverse events

Univariate logistic regression analysis of deleterious variants in PD-related genes and SRAE in FH patients showed that carriers of the variant *ABCA1* rs769705621 (g.107556793insA) have higher risk of SRAE (p=0.027), but this association was not maintained after corrections (p=0.648) (**Supplementary table 17**). No significant associations of variants in PD-related genes with SRAE were also found in the multivariate logistic regression analysis (**Table 19**).

				No			
Gene	rs code	NT change	Allele	SRAE	SRAE	OR (95% CI)	p-value
ABCA1	rs769705621	g.107556793insA	A allele	14.3 (10)	40.0 (6)	3.45 (0.77 - 15.39)	0.098
	rs769705621	g.107556793insAA	AA allele	35.8 (29)	50.0 (11)	2.24 (0.73 - 7.21)	0.162
	rs769705621	g.107556793insAAA	AAA allele	42.4 (36)	33.3 (7)	0.6 (0.19 - 1.72)	0.353
	rs769705621	g.107556793insAAAA	AAAA allele	8.8 (6)	20 (4)	2.8 (0.55 - 13.5)	0.198
ABCG4	rs12271907	c.1035C>G	G allele	5.2 (4)	14.3 (2)	5.92 (0.7 - 40.07)	0.072
ABCG5	rs6756629	c.148C>T	T allele	11.2 (10)	16.7 (4)	1.34 (0.29 - 5.2)	0.685
ABCG8	rs4148211	c.161A>G	G allele	56.2 (50)	37.5 (9)	0.44 (0.15 - 1.2)	0.115
	rs80025980	c.239G>A	A allele	1.1 (1)	8.3 (2)	12.5 (0.93 - 306.72)	0.060
APOB	rs12713675	c.7367C>A	A allele	4.5 (4)	4.2 (1)	2.07 (0.1 - 16.69)	0.540
	rs12720855	c.9880T>C	C allele	4.5 (4)	4.2 (1)	2.07 (0.1 - 16.69)	0.540
	rs1801699	c.5741A>G	G allele	10.1 (9)	4.2 (1)	0.56 (0.03 - 3.62)	0.608
	rs6752026	c.433C>T	T allele	4.5 (4)	4.2 (1)	1.12 (0.05 - 8.98)	0.923
	rs676210	c.8216C>T	T allele	31.5 (28)	41.7 (10)	1.24 (0.43 - 3.46)	0.681
APOE	rs7412	c.526C>T	T allele	4.5 (4)	8.3 (2)	1.87 (0.19 - 13.01)	0.545
	rs429358	c.388T>C	C allele	24.7 (22)	12.5 (3)	0.28 (0.05 - 1.09)	0.097
CETP	rs5880	c.988G>C	C allele	12.4 (11)	8.3 (2)	0.57 (0.07 - 2.88)	0.537
CLMN	rs61750771	c.2698A>T	T allele	3.4 (3)	4.2 (1)	1.24 (0.05 - 11.91)	0.865
KIF6	rs20455	c.2155T>C	C allele	69.7 (62)	54.2 (13)	0.42 (0.14 - 1.21)	0.108
LDLR	rs121908031	c.2043C>A	A allele	2.2 (2)	8.3 (2)	1.57 (0.14 - 16.87)	0.699
LPA	rs139145675	c.5311C>T	T allele	3.4 (3)	8.3 (2)	4.69 (0.53 - 34.51)	0.129
	rs3124784	c.6046C>T	T allele	49.4 (44)	37.5 (9)	0.43 (0.14 - 1.21)	0.123
	rs41272114	g.161006077C>T	T allele	4.5 (4)	8.3 (2)	2.53 (0.27 - 17.03)	0.359
	rs76062330	c.5468G>T	T allele	5.6 (5)	8.3 (2)	1.63 (0.19 - 9.67)	0.612
LPL	rs328	c.1421C>G	G allele	13.5 (12)	20.8 (5)	3.55 (0.86 - 14.18)	0.071
SREBF2	rs2229440	c.1867G>A	A allele	6.7 (6)	4.2 (1)	1.28 (0.06 - 9.01)	0.832

Table 19 Association of deleterious variants (MAF > 1.0%) in PD-related genes with SRAE in FH patients. Multivariate logistic regression analysis.

Each model was adjusted for the following covariates: baseline LDL-c, presence of FH-related variant, and adherence to statin. Number of patients in round brackets. OR: odds ratio; CI: confidence interval; FH: familial hypercholesterolemia; PD: pharmacodynamics; SRAE: statin-related adverse events.

5 DISCUSSION

In this study, very high percentage (49.2%) of FH patients did not achieve the therapy target of LDL-c reduction \geq 50%. This result is in line with previous studies, in which the percentage of FH individuals who did not achieve the same treatment goal ranged from 48% to 59% (DEGOMA et al., 2016; KORNEVA; KUZNETSOVA; JULIUS, 2019; PIJLMAN et al., 2010).

Only 30.7% of the FH patients carried a pathogenic or likely pathogenic variant in FHrelated genes. The association of pathogenic variants in *LDLR*, *APOB*, *PCSK9* and *LDLRAP1* with FH in this cohort has been previously discussed elsewhere (BORGES, 2019). However, the molecular diagnosis was performed only with variants considered pathogenic with ACMG criteria, which possibly excluded pathogenic variants that were not previously associated with FH. Still, most patients (68.4%) had a defined or probable clinical diagnosis of FH with DCLN modified criteria (IZAR et al., 2021). No difference was observed in FH diagnosis between RE and NRE groups, showing a balanced sample of FH patients. Importantly, the presence of FHrelated variants did not show to influence statin response.

When comparing the characteristics between RE and NRE group, NRE patients showed lower baseline total cholesterol and LDL-c levels and higher frequency alcohol consumption. Similar results were reported in the PROSPER study, that included elderly patients with CVD or with high risk of CVD (TROMPET et al., 2016). In this study, non-responders to pravastatin drank alcohol and smoked tobacco more often, were less likely to have hypertension, and had lower LDL-c levels. This, in turn, could indicate that these patients were more aware of their health and less aware of the disease status, which consequently increased the risk of nonadherence to therapy in non-responders (TROMPET et al., 2016).

Lack of adherence is an important barrier for the effective treatment of FH patients. A study has reported an adherence of 89% by FH patients (GALEMA-BOERS et al., 2014). However, a recent study showed worrying data: only 57% of FH patients with a definite diagnosis were fully adherent to therapy, while 16% were partially adherent and 27% were not adherent (KORNEVA; KUZNETSOVA; JULIUS, 2019).

Although the NRE group showed indicators of lack of adherence (higher alcohol consumption and lower baseline cholesterol level), NRE group probably had comparable adherence to RE group. First, statin or ezetimibe adherence were similar between RE and NRE groups. Although there is a possibility of lack of information about patient adherence from the medical charts, we considered "reduced adherence" as any event of lack of adherence in the

whole history of the medical chart – not only in the visit considered for data collection – to mitigate a possible lack of information about adherence. Second, FH patients tend to be aware of their disease and the possible outcomes resulting from it – more than 76% of FH patients in Japan and the US acknowledged their disease status (BUCHOLZ et al., 2018; TADA et al., 2020), which is an enabler for treatment adherence (KINNEAR et al., 2019). Hence, lack of adherence was not the main factor for classifying patients as NRE.

Many elements indicate that a contributing factor for reduced response in our cohort could be related to the lipid-lowering treatment prescribed to FH patients. Although treatment response was independent of the type of statin used, the addition of ezetimibe and possibly the use of a high intensity treatment showed to be associated with statin response. These results indicate that NRE patients are probably more undertreated compared to RE patients, which might reflect a reality of the Brazilian health system. Although simvastatin and atorvastatin, two extensively used statins, are provided for free by SUS, rosuvastatin and ezetimibe must be bought by the patient (DO NASCIMENTO et al., 2018).

Rosuvastatin 40 mg is currently the strongest statin dosage available. A meta-analysis showed rosuvastatin 40 mg led to a mean LDL-c reduction of -55%; atorvastatin 80 mg, in contrast, led to a mean LDL-c reduction of approximately -45% (KARLSON et al., 2016a). Ezetimibe 10 mg incremental reduction in LDL-c, when associated with a high-intensity statin treatment, was reported to be -14% in another meta-analysis (LEE et al., 2021). Despite these numbers, many patients, especially those treated by the public health system, do not have access to these medications because of their cost, which therefore would contribute to reducing the intensity of the treatment received (DAGLI-HERNANDEZ et al., 2021). Nevertheless, both the use of rosuvastatin 40 mg and/or the addition of ezetimibe 10 mg to statin treatment would be highly beneficial for FH patients, especially those who are unresponsive to treatment and at very high cardiovascular risk.

When considering the absolute LDL-c target level proposed by the Brazilian FH guideline (IZAR et al., 2021), ensuring the best treatment for FH patients is even more crucial. In our sample, the majority of patients, including all of the patients with very high risk of CAD, did not reach optimum LDL-c levels.

Most of FH patients have not achieved these targets in previous studies as well. In the SAFEHEART study, only 4.7% of patients achieved an on-treatment LDL-c < 70 mg/dL after 5 years on high-intensity statin treatment (PEREZ DE ISLA et al., 2016). In the CASCADE study, only 24% and 17% of primary and secondary prevention FH patients, respectively,

achieved the absolute LDL-c goals of <100 mg/dL or <70 mg/dL (DUELL et al., 2019). Therefore, it is important to increase the accessibility to the best lipid-lowering treatment to FH patients by providing ezetimibe 10 mg and rosuvastatin 40 mg through SUS to FH patients.

Besides having lower LDL-c reduction, NRE group also showed lower baseline total cholesterol and LDL-c levels, and higher on-treatment total cholesterol and LDL-c. Furthermore, their mean on-treatment LDL-c levels were higher than the least rigid absolute therapy target of LDL-c <100 mg/dL. These results are in line with previous studies, in which lower baseline LDL-c was a strong predictor of reduced therapy response (KARLSON et al., 2016b; MASSON et al., 2014). A recent study in Japanese patients with *de novo* AMI also observed that hypo-responders (patients with LDL-c reduction $\leq 15\%$) had a higher baseline LDL-c and this low response was a predictor of heart failure (TSUDA et al., 2020). Thus, it is essential to consider that lower baseline LDL-c does not necessarily mean lower risk or better lipid-lowering response in FH patients.

Despite treatment-related factors previously discussed, most patients in NRE group still received a high intensity treatment. Therefore, their insufficient response could also be due to the presence of pharmacogenetic variants.

In PK-related genes, most associations with statin response described in previous studies were observed with *ABCB1*, *SLCO1B1*, *CYP3A4*, *CYP2C9* and *CYP3A5* variants. For example, *ABCB1* rs2032582 (c.2677T>G/A) and *ABCB1* rs1045642 (c.3435C>T) were associated with better statin response in some studies (FIEGENBAUM et al., 2005a; HOENIG et al., 2011; REBECCHI et al., 2009; SU et al., 2015), as well as *SLCO1B1* rs2306283 (c.388A>G) (RODRIGUES et al., 2011), while *CYP3A5*3* showed to be associated with lower statin response (WILLRICH et al., 2008). However, there is still controversy about these associations and no variant shows strong evidence of influencing statin response.

In our study, ABCC1 c.2012G>T showed to improve statin response in FH patients.

ABCC1 (or MRP1) is an ABC membrane transporter highly expressed in the thymus, skeletal muscle tissue, kidney, urinary bladder, and gastrointestinal tract according to the Human Protein Atlas (https://www.proteinatlas.org). It promotes the efflux of drugs, including statins and its metabolites, from hepatocytes to the bloodstream (DAGLI-HERNANDEZ et al., 2021). ABCC1 is a highly conserved protein (WANG et al., 2006), but several variants, deleterious or not, have been identified worldwide (ROCHA; PEREIRA; RODRIGUES, 2018).

Previous studies have reported the importance of *ABCC1* c.2012G>T in pharmacogenetics. It has been previously associated with febrile neutropenia in breast cancer

patients undergoing treatment with 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy (VULSTEKE et al., 2013). Also, an *in vitro* study demonstrated that HEK293 overexpressing *ABCC1* c.2012T allele (p.671Val) retained approximately 20% more doxorubicin compared to the reference protein, indicating that it might be related to doxorubicin-associated acute cardiac toxicity (JUNGSUWADEE et al., 2012).

When considering statin response, however, there are conflicting results on the influence of *ABCC1* c.2012G>T. In our study, this variant showed to higher percent LDL-c reduction after treatment with all statins and atorvastatin. In contrast, a study with Iranian hypercholesterolemic patients showed that carriers of c.2012T allele had lower percent reduction of LDL-c and total cholesterol compared to GG carriers when on atorvastatin 10 mg/d treatment (p=0.02), but no difference was observed in patients using atorvastatin 20 or 40 mg (p=0.81) (BEHDAD et al., 2017). Similarly, a previous work from our group showed no association between this variant and LDL-c reduction in Brazilian hypercholesterolemic patients, but *ABCC1* mRNA levels were reduced in mononuclear cells of patients treated with atorvastatin 10 mg/day compared to baseline levels (REBECCHI et al., 2009).

The prediction framework score used in this study showed that ABCC1 c.2012G>T is potentially deleterious. We also observed a stronger interaction between ABCC1 Val671 and three statins by molecular docking. ABCC1 rs45511401 (c.2012G>T) causes a change from glycine to valine in position 671 (p.Gly671Val) in the protein. Although both amino acids are nonpolar, an in silico characterization study showed this change shifts the free energy of ABCC1, turning it into potentially deleterious (VOHRA et al., 2018). This is possibly due to the special properties of the reference amino acid, glycine. Glycine has a hydrogen in its side chain, differently from other amino acids, that carry a carbon. This confers unique flexibility to glycine, and allows it to be in tight regions of proteins, which is not accessible to other amino acids (BETTS; RUSSELL, 2003). The change to valine, that does not contain these properties, can cause conformational changes in the protein, making this region more accessible to substrates (BETTS; RUSSELL, 2003). This stronger protein-ligand interaction possibly leads to a less efficient statin efflux from hepatocytes by retaining the statins bound in position 671 in ABCC1. Since ABCC1 acts in statin efflux from the liver, a possible mechanism through which p.Gly671Val increased statin response would be that the lower function of this protein led to an increased intracellular statin concentration in hepatocytes. This, in turn, could enhance the inhibition of HMGCR and therefore potentialize the cholesterol-lowering effect.

A similar mechanism was proposed in a case report on a pharmacogenetic analysis of a female FH patient with late rosuvastatin response previously published (DAGLI-HERNANDEZ et al., 2020). The patient underwent a 6-week rosuvastatin wash-out period, after which rosuvastatin 20 mg was reintroduced. However, after 6 weeks of treatment, her lipid profile did not show any changes from baseline, which could only be observed after 12 weeks of rosuvastatin treatment. The patient was a carrier of the deleterious variants *SLCO1B1*15*, *SLCO1B3* rs4149117 and rs7311358, *ABCB11* rs2287622, and LOF variant *CYP3A5*3*. Possibly, the effect of the deleterious variants in the influx proteins SLCO1B1 and SLCO1B3 led to a slow internalization of rosuvastatin by hepatocytes, which led to a lower response in the first 6 weeks. However, the patient still responded to rosuvastatin treatment after 12 weeks. This could be due to an accumulation of rosuvastatin in hepatocytes resulting from the effect of the deleterious variant in the efflux protein ABCB11.

It is noteworthy that the previous studies were performed with lower doses of atorvastatin (10 mg to 40 mg) (BEHDAD et al., 2017; REBECCHI et al., 2009), while the majority of patients in our cohort were on high atorvastatin doses (atorvastatin 40 or 80 mg). It is possible that clearer effects of *ABCC1* c.2012G>T are observed in higher statin doses. However, *in vitro* and *in vivo* studies with larger samples are necessary to clarify these disparities.

Interestingly, the influence of *ABCC1* c.2012G>T on the percent LDL-c change was significant in the multiple regression linear analysis when considering deleterious variants in PK genes with MAF>10%. This result possibly shows that the influence of pharmacogenetic variants is not isolated but depends on the burden of deleterious variants carried by each patient. Therefore, similarly to the discussion presented in our case report (DAGLI-HERNANDEZ et al., 2020), the effect of each variant on statin response could be potentialized or annulated by the interaction with other variants, consequently leading to the phenotype observed. Since we had a limited number of patients, we could not analyze the effect of variants with lower MAF; however, this approach could be used for future pharmacogenetic studies with higher sample sizes in order to understand how these variants interact with each other.

The multivariate linear regression analysis also showed that *SLCO1B3* c.767G>C significantly enhanced statin response.

SLCO1B3 encodes the OATP1B3 influx transporter. It is present in the basal membrane of hepatocytes and has several drug substrates, including atorvastatin, fluvastatin, rosuvastatin and pitavastatin (MAEDA, 2015). Although OATP1B1 (encoded by *SLCO1B1*) has a major

contribution in statin uptake, OATP1B3 also plays an important role. In an *in vivo* study with OATP1B3 knockout mice, knocking in of *SLCO1B3* decreased atorvastatin and simvastatin plasma concentrations by 33% and 27%, respectively, due to their uptake by OATP1B3 (HIGGINS et al., 2014).

SLCO1B3 c.767G>C (p.Gly228Ala) causes a change from Glycine to Alanine in position 228, which is inside OATP1B3 channel in the transmembrane domain of the transporter. Similar to *ABCC1* c.2012G>T, the substitution of the flexible amino acid Glycine to Alanine possibly caused conformational changes to OATP1B3 protein structure. Moreover, Alanine is a hydrophobic amino acid whose side chain is relatively inert (BETTS; RUSSELL, 2003). Therefore, the substitution from Glycine to Alanine in the transmembrane domain could possibly affect any interaction between OATP1B3 p.228 Glycine and its substrates in this position.

To the best of our knowledge, this variant has not been approached in any pharmacokinetic study on statins. However, it was recently shown to increase telmisartan area under curve (AUC) by 22% per allele copy in healthy Finnish volunteers (HIRVENSALO et al., 2020). This evidence shows that this variant is possibly of low function. Moreover, similarly to the discussed in our case report, it is possible that *SLCO1B3* c.767G>C and *ABCC1* c.2012G>T only have significant effects on statin response when both are present and modulate the uptake and efflux of statins.

Other common variants on PK genes did not show to influence statin response in this study. In fact, the remaining variants did not consistently show to impact statin response in previous studies. *CYP3A5*3*, for example, has shown to decrease total cholesterol, LDL-c and HDL-c reduction after atorvastatin treatment in Brazilian hypercholesterolemic patients (WILLRICH et al., 2008), but no differences were observed in another study with Chilean hypercholesterolemic patients (ROSALES et al., 2012). Other variants, such as *SLCO1B1*5*, have shown to increase statin blood levels in previous studies, but did not show to impact statin response, which therefore is in agreement with the results in our study (DAGLI-HERNANDEZ et al., 2021).

In PD-related genes, most associations with statin response described in the literature were observed with genes associated to cholesterol metabolism. Many studies showed associations between statin response and *LDLR*, *PCSK9*, *APOB*, *APOE* variants and other genes (DAGLI-HERNANDEZ et al., 2021). In our study, we observed an association between *KIF6* rs20455 c.2155T>C and lower atorvastatin response.

Kinesin Family Member 6 (KIF6) belongs to the superfamily of kinesins and is involved in the microtubular-dependent intracellular transport of protein complexes, organelles and mRNA (MIKI et al., 2001). KIF6 contains two equal dimers, whose N-terminal domain is responsible for interacting and moving along microtubules. Its C-terminal domain interacts directly or indirectly with the molecules being transported, also called "cargo" (LI et al., 2010).

The *KIF6* c.2155T>C variant is frequent in many populations and C allele has been reported to increase up to 50% the risk of coronary heart disease (CHD) (BARE et al., 2007; IAKOUBOVA et al., 2008a; PENG et al., 2012; RUIZ-RAMOS et al., 2015). It causes an amino acid substitution from tryptophan to arginine in position 719 (p.Trp719Arg), which is close to the domain that interacts with the cargo. Tryptophan is nonpolar and aromatic, while Arginine is polar and positively charged (BETTS; RUSSELL, 2003). This polarity change could cause not only conformational changes in KIF6, but also changes in KIF6-cargo interaction, consequently affecting the transportation of molecules by KIF6.

The mechanism through which KIF6 affects lipid levels or cardiovascular events in response to statins is still unknown. Studies have shown conflicting results concerning the impact of *KIF6* c.2155T>C in LDL-c reduction due to statin treatment. Similarly to our results, a recent study showed that CC genotype carriers had attenuated LDL-c and c-non-HDL-c reduction in atorvastatin, simvastatin and rosuvastatin users; additionally, rosuvastatin users carrying this variant showed an increase in HDL-c (RUIZ-IRUELA et al., 2018). These differences, however, were not observed in other studies (IAKOUBOVA et al., 2008b; LI et al., 2010, 2011).

Paradoxically, previous studies have shown a decrease in the risk of CHD in C-allele carriers using high-dose atorvastatin or pravastatin compared to non-carriers (IAKOUBOVA et al., 2008b; LI et al., 2010). It has been hypothesized that the observed benefit of this variant on cardiovascular outcomes occurs mostly through statin pleiotropic effects, particularly the early plaque-stabilizing effect, rather than LDL-c reduction (IAKOUBOVA et al., 2008b; RUIZ-IRUELA et al., 2018). Moreover, a meta-analysis showed that *KIF6* c.2155T>C changes the influence of LDL-c on the risk of CHD, increasing the vulnerability to the deleterious effects of LDL-c in carriers of this variant. LDL-c reduction could, therefore, reduce CHD risk to C-allele carriers than to TT-carriers (FERENCE et al., 2017).

In this study, a surrogate outcome of LDL-c reduction was used to understand the impact of variants in PD genes on statin efficacy, but not on CAD risk. Also, the studies previously cited were performed with hypercholesterolemic patients, but not FH patients. Therefore, *KIF6* c.2155T>C possibly does have an impact on LDL-c reduction after atorvastatin treatment in FH patients, but its effect on the risk of CAD in FH patients still remains to be further studied in a prospective study.

LPA rs3124784 (c.6046C>T) and rs76062330 (c.5468G>T) were also associated with increased statin response in this study. LPA c.6046C>T increased the likelihood of being responder to all statins and atorvastatin, while LPA c.5468G>T influenced atorvastatin response by enhancing LDL-c reduction in T allele carriers.

LPA encodes the apolipoprotein(a) precursor. Apolipoprotein(a) is an apolipoprotein that is linked to apo B100 by disulfide bridge in lipoprotein(a) [Lp(a)], a type of plasma lipoprotein similar to LDL. LPA is responsible for >90% of the variance in circulating Lp(a) (ENAS et al., 2019). Lp(a) is synthetized mostly in the liver and binds to LDL receptors with lower affinity when compared to LDL (JANG et al., 2020). Lp(a) is also more susceptible to oxidation than LDL, which in turn facilitates its uptake by macrophages in the arterial wall. Consequently, high Lp(a) levels have been extensively associated with the risk of CAD (MARANHÃO et al., 2014).

Lp(a) levels tend to be constant in an individual's life, but have wide interindividual variability, ranging from <1 mg/dL to >1,000 mg/dL (MARANHÃO et al., 2014). Heterozygous FH patients have higher Lp(a) levels than the general population, which contributes to the higher risk of cardiovascular events (VUORIO et al., 2020). It is estimated that 8 to 20% of LDL-c quantified by Friedewald's formula is in Lp(a), depending on Lp(a) plasma concentration (LI; WILCKEN; DUDMAN, 1994). Statin treatment does not affect Lp(a) levels, but ezetimibe has shown to decrease it by 29% (NOZUE; MICHISHITA; MIZUGUCHI, 2010).

Variants in *LPA* have already been associated with statin response. A large metaanalysis of genome-wide association studies confirmed the association between *LPA* rs10455872 (g.161010118A>G), an intronic variant, and worse statin response, with each G allele attenuating LDL-c reduction by 5.9% (POSTMUS et al., 2014). Other studies have found the same result (CHASMAN et al., 2012; DESHMUKH et al., 2012). This variant is in high linkage disequilibrium with the *LPA* copy number variation kringle IV type 2 (KIV-2), which was shown to be responsible for 30% of Lp(a) level variation. Since Lp(a) levels are not affected by statins, it is possible that apparent non-responders to statins have high concentrations of LDL-c retained in Lp(a), which in turn are measured in Friedewald's formula (DESHMUKH et al., 2012). To the best of our knowledge, this is the first study to show an association between *LPA* c.6046C>T and c.5468G>T and statin response. Both variants are missense and located in the peptidase S1 domain, which contains an inactive serine protease (BATEMAN et al., 2021; MARANHÃO et al., 2014). We did not find any studies with other *LPA* variants located in this domain. It is likely that these variants, are associated with low plasma Lp(a) levels, which would therefore contribute to the differences in LDL-c response to statins. Therefore, LDL-c reduction would account mostly for the reduction in LDL particles. This could be due to a reduction in apo(a) expression or to increased interaction with receptors that act on the uptake of Lp(a), such as megalin receptors (MARANHÃO et al., 2014). However, this hypothesis has to be confirmed by large populational studies and *in vitro* studies as well.

Other important PD-related variants have been detected in FH patients and were not associated with statin response in our study. For example, variants in *APOE*, such as rs429358 (c.388T>C, ϵ 2) and rs7412 (c.526C>T, ϵ 4), have been associated with better and worse lipid lowering, respectively, to atorvastatin, pravastatin and simvastatin in previous studies (GUAN et al., 2019). Studies with Brazilian hypercholesterolemic patients, however, did not find these associations (CERDA et al., 2011; FIEGENBAUM et al., 2005b; ISSA et al., 2012). Variants in *HMGCR, LDLR, PCSK9*, and *APOB* also did not show any associations with statin response.

The lack of association of variants in most of PD genes with statin response could be due the small sample size of this study, which did not allow the analysis of rare variants. Also FH patients already carry deleterious variants in PD genes or genes involved in cholesterol homeostasis, which already jeopardizes the LDL-c response to statins. Most of our FH patients possibly had polygenic FH, with deleterious variants in more than one gene involved in cholesterol metabolism.

A total of 21% of FH patients experienced SRAE. There is little information about SRAE in FH patients (PANG; CHAN; WATTS, 2020), but a study has reported a frequency of statin intolerance as high as 15% in FH patients (DEGOMA et al., 2016).

Considering that the patients studied used mostly high intensity treatment, a high frequency of SRAE reports is expected in this population, since high statin dosage is a risk factor for SRAE (NGUYEN et al., 2018). In fact, most patients that experienced SRAE were of the RE group. It is known that SRAE, including the most frequent event, SAMS, are drug concentration-dependent (KEE et al., 2020). Therefore, a plausible explanation for the higher frequency of SRAE in responders is that these patients probably have higher plasma levels of statin, which led to a higher risk of SRAE. Importantly, the use of a CYP3A4 inhibitor, such as

amiodarone, could be a predictor of SRAE in this cohort. In fact, a meta-analysis showed that drug-drug interactions with statins are a risk factor for myopathy and rhabdomyolysis (NGUYEN et al., 2018) The inhibition of CYP3A4 by amiodarone is a drug interaction that possibly impacted simvastatin and atorvastatin metabolism, potentially increasing statin levels and consequently the susceptibility to SRAE (BUCSA et al., 2015).

Another interesting observation is that most patients in SRAE group carried an FHrelated variant and had xanthomas, a clinical manifestation of FH. Although we did not find any associations between SRAE and the statin used or the intensity of the treatment, one could hypothesize that patients with clinical manifestations of FH tend to follow a stricter statin regimen, which also could have raised the risk of SRAE. This in turn showed that SRAE affect therapy adherence negatively: SRAE group had episodes of reduced adherence to statins and ezetimibe more frequently than no SRAE group, which is in line to what has been observed by therapy adherence studies (WEI et al., 2013).

Other variables were described as risk factors for SAMS. A meta-analysis showed that female gender and age higher than 65 years old are risk factors for myopathy, which we did not observe in our study (NGUYEN et al., 2018). Clinical-related factors include having diabetes mellitus, renal and hepatic impairment, hypothyroidism, and cardiovascular disease. (NGUYEN et al., 2018; TOTH et al., 2018). Lifestyle factors, such as alcohol abuse and physical exercise, were also associated with myalgia risk (TOTH et al., 2018). However, we did not observe these associations in our study. Therefore, the SAMS observed in our study might rather be treatment-related than patient-related.

Importantly, we could not classify the type of myalgia experienced by the patients or evaluate if the SAMS was associated with CK elevations. This is because the FH patients that experienced SAMS usually interrupted their statin treatment on their own, before undergoing a laboratory testing and a medical visit. Therefore, it was only possible to collect the SAMS report from the medical recros, but we could not associate the events with any laboratory measures.

In this study, no deleterious PK- and PD-related variants were significantly associated with increased risk of SRAE. We have previously discussed the lack of association between SRAE and *SLCO1B1*5* and **15*, a well-described variant, in the Brazilian population in a recent review (DAGLI-HERNANDEZ et al., 2021). This is probably due to low sample sizes, which impaired the statistical power of the analysis in previous studies with Brazilian patients (DAGLI-HERNANDEZ et al., 2021). Although SRAE were very frequent in this study, the size of the SRAE group is still small, which therefore makes the association study difficult.
Therefore, it is necessary to increase the sample size in order to study the association between genetic variants and SRAE in FH patients.

Our study has some limitations. First, we have a low sample size, which impaired the association study of deleterious variants, especially those with lower frequency. Second, this is an observational, retrospective study, which is susceptible to some biases, such as information bias. However, we mitigate these biases by establishing a rigorous protocol of medical records review and data selection.

6 CONCLUSIONS

In this thesis, several deleterious variants in PK- and PD-related genes were detected by *in silico* analysis and some impacted statin response in Brazilian FH patients.

In PK-related genes, the deleterious variant *ABCC1* rs45511401 (c.2012G>T) was a major contributor on LDL-c response to statins, and enhanced LDL-c reduction after statin treatment. Molecular docking showed this variant causes stronger interaction between ABCC1 and the statin, impairing statin efflux. *SLCO1B3* rs60140950 (c.767G>C), a deleterious variant, also showed to enhance LDL-c reduction.

In PD-related genes, the neutral variant *KIF6* rs20455 (c.2155T>C), reduced atorvastatin response in FH patients, whereas The deleterious variants *LPA* rs3124784 (c.6046C>T) and rs76062330 (c.5468G>T) increased statin response.

PK- or PD-variants were not associated with increased risk of SRAE in Brazilian FH patients.

7 **REFERENCES**

AFONSO, M. et al. Molecular pathways underlying cholesterol homeostasis. **Nutrients**, v. 10, n. 6, p. 760, 13 jun. 2018.

AWAN, Z. et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. **Clinical chemistry**, v. 58, n. 1, p. 183–9, 1 jan. 2012.

BARE, L. A. et al. Five common gene variants identify elevated genetic risk for coronary heart disease. **Genetics in Medicine 2007 9:10**, v. 9, n. 10, p. 682–689, out. 2007.

BATEMAN, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, v. 49, n. D1, p. D480–D489, 8 jan. 2021.

BEHDAD, N. et al. Association of ABCB1 (C3435T) and ABCC1 (G2012T) polymorphisms with clinical response to atorvastatin in Iranian patients with primary hyperlipidemia. **Iranian Biomedical Journal**, v. 21, n. 2, p. 120–125, 1 mar. 2017.

BEHESHTI, S. O. et al. Worldwide Prevalence of Familial Hypercholesterolemia: Meta-Analyses of 11 Million Subjects. **Journal of the American College of Cardiology**, v. 75, n. 20, p. 2553–2566, 2020.

BELLOSTA, S.; CORSINI, A. Statin drug interactions and related adverse reactions: an update. **Expert Opinion on Drug Safety**, v. 17, n. 1, p. 25–37, 2 jan. 2018.

BETTS, M. J.; RUSSELL, R. B. Amino acid properties and consequences of substitutions. In: **Bioinformatics for geneticists**. [s.l.] Wiley, 2003.

BORETZKI, J. et al. Highly specific reasons for nonadherence to antiretroviral therapy: results from the German adherence study. **Patient Preference and Adherence**, v. Volume 11, p. 1897–1906, 8 nov. 2017.

BORGES, J. B. Ultrassequenciamento exômico dos principais genes relacionados com a hipercolesterolemia familial TT - Ultrasequensing exomic of the main genes related to familial hypercholesterolemia. São Paulo: Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 2019.

BORGES, J. B. et al. Genomics, epigenomics and pharmacogenomics of familial hypercholesterolemia (FHBGEP): A study protocol. **Research in Social and Administrative Pharmacy**, v. 17, n. 7, p. 1347–1355, 1 jul. 2021.

BRAUTBAR, A. et al. Genetics of familial hypercholesterolemia. Current atherosclerosis reports, v. 17, n. 4, p. 491, abr. 2015.

BUCHOLZ, E. M. et al. Prevalence and Predictors of Cholesterol Screening, Awareness, and Statin Treatment Among US Adults With Familial Hypercholesterolemia or Other Forms of Severe Dyslipidemia (1999–2014). **Circulation**, v. 137, n. 21, p. 2218–2230, 2018.

BUCSA, C. et al. Drug-drug Interactions of Statins Potentially Leading to Muscle-Related Side Effects in Hospitalized Patients. **Romanian journal of internal medicine = Revue roumaine de medecine interne**, v. 53, n. 4, p. 329–335, 2015.

CANNON, C. P. et al. Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes. **New England Journal of Medicine**, v. 350, n. 15, p. 1495–1504, 8 abr. 2004.

CANO-CORRES, R. et al. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. **Journal of Clinical Laboratory Analysis**, v. 32, n. 8, p. e22566, 1 out. 2018.

CERDA, A. et al. Apolipoprotein e mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin. **Lipids in Health and Disease**, v. 10, n. 1, p. 206, 10 nov. 2011.

CERDA, Á. et al. Influence of SCARB1 polymorphisms on serum lipids of hypercholesterolemic individuals treated with atorvastatin. **Clinica Chimica Acta**, v. 411, n. 9–10, p. 631–637, maio 2010.

CHASMAN, D. I. et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial. **Circulation: Cardiovascular Genetics**, v. 5, n. 2, p. 257–264, abr. 2012.

CHOU, R. et al. Statins for prevention of cardiovascular disease in adults: Evidence report and systematic review for the US preventive services task forceJAMA - Journal of the American Medical AssociationAmerican Medical Association, 15 nov. 2016.

DAGLI-HERNANDEZ, C. et al. Late response to rosuvastatin and statin-related myalgia due to SLCO1B1, SLCO1B3, ABCB11, and CYP3A5 variants in a patient with Familial Hypercholesterolemia: a case report. **Annals of Translational Medicine**, v. 9, n. 1, p. 76, 2020.

DAGLI-HERNANDEZ, C. et al. Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. **Pharmacological Reports**, 17 ago. 2021.

DEGOMA, E. M. et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States. **Circulation: Cardiovascular Genetics**, v. 9, n. 3, p. 240–249, 1 jun. 2016.

DESHMUKH, H. A. et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). **Journal of lipid research**, v. 53, n. 5, p. 1000–1011, maio 2012.

DO NASCIMENTO, R. C. R. M. et al. Statin use in Brazil: findings and implications. **Current** Medical Research and Opinion, v. 34, n. 10, p. 1809–1817, 3 out. 2018.

DUELL, P. et al. Longitudinal low density lipoprotein cholesterol goal achievement and cardiovascular outcomes among adult patients with familial hypercholesterolemia: The CASCADE FH registry. **Atherosclerosis**, v. 289, p. 85–93, 1 out. 2019.

ELENS, L. et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in The Rotterdam Study. **Pharmacogenetics and Genomics**, v. 21, n. 12, p. 861–866, dez. 2011.

ENAS, E. A. et al. Lipoprotein(a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. **Indian Heart Journal**, v. 71, n. 2, p. 99–112, 1 mar. 2019.

FALUDI, A. et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose - 2017. **Sociedade Brasileira de Cardiologia**, v. 109, n. 1, 2017.

FERENCE, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. **European Heart Journal**, v. 38, n. 32, p. 2459–2472, 21 ago. 2017. FIEGENBAUM, M. et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. **Clinical Pharmacology** & **Therapeutics**, v. 78, n. 5, p. 551–558, nov. 2005a.

FIEGENBAUM, M. et al. Pharmacogenetic study of apolipoprotein E, cholesteryl ester transfer protein and hepatic lipase genes and simvastatin therapy in Brazilian subjects. **Clinica Chimica Acta**, v. 362, n. 1–2, p. 182–188, dez. 2005b.

FRIEDWALD, W.; LEVY, R.; FREDNICKSON, D. Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultra centrifuge. **Clinical Chemistry**, v. 18, p. 499–502, 1972.

GALEMA-BOERS, J. M. H. et al. Predicting non-adherence in patients with familial hypercholesterolemia. **Eur J Clin Pharmacol**, v. 70, p. 391–397, 2014.

GARCÍA-GIUSTINIANI, D.; STEIN, R. Genetics of Dyslipidemia. Arquivos brasileiros de cardiologia, v. 106, n. 5, p. 434–8, maio 2016.

GLUBA-BRZOZKA, A. et al. Molecular mechanisms of statin intolerance. Archives of medical science : AMS, v. 12, n. 3, p. 645–58, 1 jun. 2016.

GOLDBERG, A. C. et al. Executive Summary Familial Hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients Clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia Background and rationale. **Journal of Clinical Lipidology**, v. 5, n. 3, p. 1–8, 2011.

GOLDSTEIN, J. L.; BROWN, M. S. The LDL receptor. Arteriosclerosis, thrombosis, and vascular biology, v. 29, n. 4, p. 431–8, abr. 2009.

GUAN, Z. W. et al. Pharmacogenetics of statins treatment: Efficacy and safety. **Journal of Clinical Pharmacy and Therapeutics**, v. 44, n. 6, p. 858–867, 1 dez. 2019.

GUZMÁN, E. C. R. et al. Association of the Apolipoprotein B Gene Polymorphisms with Cholesterol Levels and Response to Fluvastatin in Brazilian Individuals with High Risk for Coronary Heart Disease. **Clinical Chemistry and Laboratory Medicine**, v. 38, n. 8, 21 jan. 2000.

HEGELE, R. A. Plasma lipoproteins: Genetic influences and clinical implications. **Nature Reviews Genetics**, v. 10, n. 2, p. 109–121, fev. 2009.

HEGELE, R. A. et al. Targeted next-generation sequencing in monogenic dyslipidemias. **Current Opinion in Lipidology**, v. 26, n. 2, p. 103–113, abr. 2015.

HIGGINS, J. W. et al. Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. **Drug metabolism and disposition: the biological fate of chemicals**, v. 42, n. 1, p. 182–192, jan. 2014.

HIRATA, R. D. C. et al. Terapia personalizada: Contribuição da farmacogenômica cardiovascular. **Rev. Soc. Cardiol. Estado de São Paulo**, p. 41–52, 2013.

HIROTA, T.; FUJITA, Y.; IEIRI, I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. **Expert Opinion on Drug Metabolism & Toxicology**, v. 16, n. 9, p. 809–822, 1 set. 2020.

HIRVENSALO, P. et al. UGT1A3 and Sex Are Major Determinants of Telmisartan Pharmacokinetics—A Comprehensive Pharmacogenomic Study. **Clinical Pharmacology and Therapeutics**, v. 108, n. 4, p. 885–895, 1 out. 2020.

HOENIG, M. R. et al. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. **Journal of clinical lipidology**, v. 5, n. 2, p. 91–6, 1 mar. 2011.

HOLLMAN, G.; OLSSON, A. G.; EK, A.-C. Disease Knowledge and Adherence to Treatment in Patients With Familial Hypercholesterolemia. **Journal of Cardiovascular Nursing**, v. 21, n. 2, 2006.

HOU, Q. et al. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk: A Meta-Analysis of Case-Control Studies. **Medicine**, v. 94, n. 37, p. e1268, set. 2015.

HUBACEK, J. A. et al. Polygenic hypercholesterolemia: examples of GWAS results and their replication in the Czech-Slavonic population. **Physiological research**, v. 66, n. Supplementum 1, p. S101–S111, 5 abr. 2017.

IAKOUBOVA, O. A. et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. **Journal of the American College of Cardiology**, v. 51, n. 4, p. 435–43, 29 jan. 2008a.

IAKOUBOVA, O. A. et al. Polymorphism in KIF6 Gene and Benefit From Statins After Acute Coronary Syndromes. Results From the PROVE IT-TIMI 22 Study. Journal of the American College of Cardiology, v. 51, n. 4, p. 449–455, 29 jan. 2008b.

ISSA, M. H. et al. Atorvastatin and hormone therapy effects on APOE mRNA expression in hypercholesterolemic postmenopausal women. Journal of Steroid Biochemistry and Molecular Biology, v. 128, n. 3–5, p. 139–144, fev. 2012.

IZAR, M. et al. Update of the Brazilian Guideline for Familial Hypercholesterolemia - 2021. **Arquivos brasileiros de cardiologia**, v. 117, n. 4, 27 set. 2021.

JANG, A. Y. et al. Lipoprotein(a) and Cardiovascular Diseases — Revisited —. Circulation Journal, v. 84, n. 6, p. 867–874, 25 maio 2020.

JANNES, C. E. et al. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. **Atherosclerosis**, v. 238, n. 1, p. 101–7, jan. 2015.

JUNGSUWADEE, P. et al. The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans- nonenal. **Pharmacogenetics and Genomics**, v. 22, n. 4, p. 273–284, abr. 2012.

KAMSTRUP, P. R. et al. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: The Copenhagen City Heart Study. **Circulation**, v. 117, n. 2, p. 176–184, 15 jan. 2008.

KARLSON, B. W. et al. A VOYAGER Meta-Analysis of the Impact of Statin Therapy on Low-Density Lipoprotein Cholesterol and Triglyceride Levels in Patients with Hypertriglyceridemia. **American Journal of Cardiology**, v. 117, n. 9, p. 1444–1448, 1 maio 2016a.

KARLSON, B. W. et al. Variability of low-density lipoprotein cholesterol response with different doses of atorvastatin, rosuvastatin, and simvastatin: results from VOYAGER. **European Heart Journal - Cardiovascular Pharmacotherapy**, v. 2, n. 4, p. 212–217, 1 out. 2016b.

KARLSON, B. W. et al. Effects of age, gender and statin dose on lipid levels: Results from the VOYAGER meta-analysis database. **Atherosclerosis**, v. 265, p. 54–59, 1 out. 2017.

KEE, P. S. et al. Pharmacogenetics of Statin-Induced Myotoxicity. **Frontiers in Genetics**, v. 11, 16 out. 2020.

KINNEAR, F. J. et al. Enablers and barriers to treatment adherence in heterozygous familial hypercholesterolaemia: A qualitative evidence synthesis. **BMJ Open**, v. 9, n. 7, p. 30290, 1 jul. 2019.

KNAUER, M. J. et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. **Circulation Research**, v. 106, n. 2, p. 297–306, 5 fev. 2010.

KORNEVA, V.; KUZNETSOVA, T.; JULIUS, U. Efficiency and problems of statin therapy in patients with heterozygous familial hypercholesterolemia. **Atherosclerosis Supplements**, v. 40, p. 79–87, 1 dez. 2019.

KRAUSS, R. M. et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. **Circulation**, v. 117, n. 12, p. 1537–1544, mar. 2008.

LAROSA, J. C. et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. **New England Journal of Medicine**, v. 352, n. 14, p. 1425–1435, 7 abr. 2005.

LEDUC, V. et al. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. **Pharmacogenetics and genomics**, v. 26, n. 1, p. 1–11, jan. 2016.

LEE, J. et al. Effect of Ezetimibe Added to High-Intensity Statin Therapy on Low-Density Lipoprotein Cholesterol Levels: A Meta-Analysis. **Cardiology research**, v. 12, n. 2, p. 98–108, 1 abr. 2021.

LI, K. M.; WILCKEN, D. E.; DUDMAN, N. P. Effect of serum lipoprotein(a) on estimation of low-density lipoprotein cholesterol by the Friedewald formula. **Clin. Chem.**, v. 40, n. 4, p. 571–573, 1994.

LI, Y. et al. **KIF6 polymorphism as a predictor of risk of coronary events and of clinical event reduction by statin therapyAmerican Journal of Cardiology**, 1 out. 2010.

LI, Y. et al. Genetic variants in the KIF6 region and coronary event reduction from statin therapy. **Human genetics**, v. 129, n. 1, p. 17–23, jan. 2011.

LUO, J.; YANG, H.; SONG, B. L. Mechanisms and regulation of cholesterol homeostasisNature Reviews Molecular Cell Biology, 2020.

MACH, F. et al. Adverse effects of statin therapy: perception vs. the evidence - focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. **European heart journal**, v. 39, n. 27, p. 2526–2539, 14 jul. 2018.

MACH, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. **European Heart Journal**, v. 41, n. 1, p. 111–188, 2020.

MACMAHON, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. **The Lancet**, v. 370, n. 9602, p. 1829–1839, 1 dez. 2007.

MAEDA, K. Organic anion transporting polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugsBiological and Pharmaceutical BulletinBiol Pharm Bull, , 1 fev. 2015.

MANGRAVITE, L. M. et al. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arteriosclerosis, Thrombosis, and Vascular Biology, v. 30, n. 7, p. 1485–1492, jul. 2010.

MANSUR, A. DE P.; FAVARATO, D. Tendências da Taxa de Mortalidade por Doenças Cardiovasculares no Brasil, 1980-2012. Arq Bras Cardiol., p. PP. 0-0, 2016.

MARANHÃO, R. C. et al. Lipoprotein (a): Structure, Pathophysiology and Clinical Implications. **Arquivos Brasileiros de Cardiologia**, v. 103, n. 1, p. 76–84, 2014.

MASSON, W. et al. Response to Statins in Cardiovascular Prevention: Hypo-Responders´ Evaluation. **Revista Argentina de Cardiología**, v. 82, n. 1, p. 32–39, 2014.

MAXWELL, W. D. et al. Impact of Pharmacogenetics on Efficacy and Safety of Statin Therapy for Dyslipidemia. **Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy**, v. 37, n. 9, p. 1172–1190, 1 set. 2017.

MCGINNIS, B. et al. Factors Related to Adherence to Statin Therapy. Annals of Pharmacotherapy, v. 41, n. 11, p. 1805–1811, 25 set. 2007.

MIKI, H. et al. All kinesin superfamily protein, KIF, genes in mouse and human. **Proceedings** of the National Academy of Sciences, v. 98, n. 13, p. 7004–7011, 19 jun. 2001.

NGUYEN, K. A. et al. A comprehensive review and meta-analysis of risk factors for statininduced myopathy. **European Journal of Clinical Pharmacology 2018 74:9**, v. 74, n. 9, p. 1099–1109, 22 maio 2018.

NI, W. Q. et al. Serum lipids and associated factors of dyslipidemia in the adult population in Shenzhen. Lipids in Health and Disease, v. 14, n. 1, 14 jul. 2015.

NOZUE, T. Lipid lowering therapy and circulating PCSK9 concentrationJournal of Atherosclerosis and ThrombosisJapan Atherosclerosis Society, , 2017.

NOZUE, T.; MICHISHITA, I.; MIZUGUCHI, I. Effects of ezetimibe on remnant-like particle cholesterol, lipoprotein (a), and oxidized low-density lipoprotein in patients with dyslipidemia. **Journal of atherosclerosis and thrombosis**, v. 17, n. 1, p. 37–44, 2010.

ONI-ORISAN, A. et al. Characterization of Statin Low-Density Lipoprotein Cholesterol Dose-Response Using Electronic Health Records in a Large Population-Based Cohort. **Circulation. Genomic and precision medicine**, v. 11, n. 9, p. e002043, 1 set. 2018.

PANG, J.; CHAN, D. C.; WATTS, G. F. The Knowns and Unknowns of Contemporary Statin Therapy for Familial Hypercholesterolemia. **Current atherosclerosis reports**, v. 22, n. 11, 1 nov. 2020.

PAQUETTE, M. et al. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. **Journal of Clinical Lipidology**, v. 11, n. 3, p. 725-732.e5, 1 maio 2017.

PATEL, J. et al. Genetics and personalized medicine--a role in statin therapy? Current atherosclerosis reports, v. 16, p. 384, 2014.

PEDERSEN, T. R. et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. **Atherosclerosis. Supplements**, v. 5, n. 3, p. 81–87, 2004.

PENG, P. et al. Meta-analyses of KIF6 Trp719Arg in coronary heart disease and statin therapeutic effect. **PloS one**, v. 7, n. 12, 7 dez. 2012.

PEREZ DE ISLA, L. et al. Attainment of LDL-cholesterol treatment goals in patients with familial hypercholesterolemia: 5-year SAFEHEART registry follow-up. Journal of the American College of Cardiology, v. 67, n. 11, p. 1278–1285, 2016.

PIJLMAN, A. H. et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. **Atherosclerosis**, v. 209, n. 1, p. 189–194, 2010.

POSTMUS, I. et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. **Nature communications**, v. 5, p. 5068, 28 out. 2014.

RAMSEY, L. B. et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. **Clinical Pharmacology and Therapeutics**, v. 96, n. 4, p. 423–428, 2014.

REBECCHI, I. M. M. et al. ABCB1 and ABCC1 expression in peripheral mononuclear cells is influenced by gene polymorphisms and atorvastatin treatment. **Biochemical Pharmacology**, v. 77, n. 1, p. 66–75, jan. 2009.

REINER, Z. Resistance and intolerance to statins. Nutrition, Metabolism and Cardiovascular Diseases, v. 24, n. 10, p. 1057–1066, 2014.

RICHARDS, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. **Genetics in medicine : official journal of the American College of Medical Genetics**, v. 17, n. 5, p. 405–24, maio 2015.

RIDKER, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. **New England Journal of Medicine**, v. 359, n. 21, p. 2195–2207, 20 nov. 2008.

RIDKER, P. M. et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. **The Lancet**, v. 373, n. 9670, p. 1175–1182, 2009.

ROCHA, K. C.; PEREIRA, B. M. V.; RODRIGUES, A. C. An update on efflux and uptake transporters as determinants of statin response. **Expert Opinion on Drug Metabolism & Toxicology**, v. 14, n. 6, p. 613–624, 2018.

RODRIGUES, A. C. et al. Pharmacogenetics of OATP transporters reveals that SLCO1B1 c.388A>G variant is determinant of increased atorvastatin response. **International Journal of Molecular Sciences**, v. 12, n. 9, p. 5815–5827, set. 2011.

RODRIGUES, A. C. et al. Genetic variants in genes related to lipid metabolism and atherosclerosis, dyslipidemia and atorvastatin response. Clinica chimica acta; international journal of clinical chemistry, v. 417, p. 8–11, 18 fev. 2013.

ROSALES, A. et al. Identification of pharmacogenetic predictors of lipid-lowering response to atorvastatin in Chilean subjects with hypercholesterolemia. **Clinica Chimica Acta**, v. 413, n. 3–4, p. 495–501, 18 fev. 2012.

ROSENSON, R. S. et al. An assessment by the Statin Muscle Safety Task Force: 2014 update. 2014.

RUIZ-IRUELA, C. et al. KIF6 gene as a pharmacogenetic marker for lipid-lowering effect in statin treatment. **PLoS ONE**, v. 13, n. 10, 2018.

RUIZ-RAMOS, D. et al. The Trp719Arg polymorphism of the KIF6 gene and coronary heart disease risk: Systematic review and meta-analysis. **Hereditas**, v. 152, n. 1, 22 out. 2015.

SACKS, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. **New England Journal of Medicine**, v. 335, n. 14, p. 1001–1009, 3 out. 1996.

SALAZAR, L. A. et al. Lipid-lowering response of the HMG-CoA reductase inhibitor fluvastatin is influenced by polymorphisms in the low-density lipoprotein receptor gene in Brazilian patients with primary hypercholesterolemia. **Journal of clinical laboratory analysis**, v. 14, n. 3, p. 125–31, 2000a.

SALAZAR, L. A. et al. Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia. **Brazilian journal of medical and biological research**, v. 33, n. 11, p. 1301–4, nov. 2000b.

SANTOS, P. C. J. L. et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. **European Journal of Clinical Pharmacology**, v. 68, n. 3, p. 273–279, 18 mar. 2012a.

SANTOS, R. et al. I Diretriz Brasileira de Hipercolesterolemia Familiar (HF). Arquivos Brasileiros de Cardiologia, v. 99, n. 2, p. 1–28, 2012b.

SANTOS, R. D.; MARANHAO, R. C. What is new in familial hypercholesterolemia? **Current** opinion in lipidology, v. 25, n. 3, p. 183–8, jun. 2014.

SCHAEFER, J. R. et al. Pharmacogenetic aspects in familial hypercholesterolemia with the special focus on FHMarburg (FH p.W556R). **Clinical research in cardiology supplements**, v. 7, n. Suppl 1, p. 2–6, jun. 2012.

SHEPHERD, J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. **New England Journal of Medicine**, v. 333, n. 20, p. 1301–1308, 16 nov. 1995.

STROES, E. S. et al. Statin-associated muscle symptoms: impact on statin therapy--European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. **European Heart Journal**, v. 36, n. 17, p. 1012–1022, 1 maio 2015.

SU, J. et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: A meta-analysis. Lipids in Health and Disease, v. 14, n. 1, 2015.

TADA, H. et al. Prevalence, self-awareness, and LDL cholesterol levels among patients highly suspected as familial hypercholesterolemia in a Japanese community. **Practical Laboratory Medicine**, v. 22, 1 nov. 2020.

TALL, A. R.; WESTERTERP, M. Inflammasomes, neutrophil extracellular traps, and cholesterolJournal of Lipid ResearchAmerican Society for Biochemistry and Molecular Biology Inc., 2019.

THE SEARCH COLLABORATIVE GROUP. SLCO1B1 Variants and Statin-Induced Myopathy — A Genomewide Study. **New England Journal of Medicine**, v. 359, n. 8, p. 789–799, 21 ago. 2008.

TOTH, P. P. et al. Management of Statin Intolerance in 2018: Still More Questions Than Answers. American journal of cardiovascular drugs: drugs, devices, and other interventions, v. 18, n. 3, p. 157–173, jun. 2018.

TROMPET, S. et al. Non-response to (statin) therapy: the importance of distinguishing non-responders from non-adherers in pharmacogenetic studies. **Eur J Clin Pharmacol**, v. 72, p. 431–437, 2016.

TSUDA, K. et al. Diminished response to statins predicts the occurrence of heart failure after acute myocardial infarction. **Cardiovascular Diagnosis and Therapy**, v. 10, n. 4, p. 705, 1 ago. 2020.

TURGEON, R. D.; BARRY, A. R.; PEARSON, G. J. Familial hypercholesterolemia: Review of diagnosis, screening, and treatment. **Canadian family physician Medecin de famille canadien**, v. 62, n. 1, p. 32–7, jan. 2016.

VALLEJO-VAZ, A. J. et al. Familial hypercholesterolaemia: A global call to arms. **Atherosclerosis**, v. 243, n. 1, p. 257–9, nov. 2015.

VOHRA, M. et al. In silico characterization of functional single nucleotide polymorphisms of folate pathway genes. **Annals of Human Genetics**, v. 82, n. 4, p. 186–199, 1 jul. 2018.

VOORA, D. et al. The SLCO1B1*5Genetic Variant Is Associated With Statin-Induced Side Effects. **Journal of the American College of Cardiology**, v. 54, n. 17, p. 1609–1616, 20 out. 2009.

VULSTEKE, C. et al. Genetic variability in the multidrug resistance associated protein-1 (abcc1/mrp1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (fec). **Annals of Oncology**, v. 24, n. 6, p. 1513–1525, 1 jun. 2013.

VUORIO, A. et al. Familial hypercholesterolemia and elevated lipoprotein(a): double heritable risk and new therapeutic opportunities. **Journal of Internal Medicine**, v. 287, n. 1, p. 2–18, 1 jan. 2020.

WANG, K.; LI, M.; HAKONARSON, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. **Nucleic Acids Research**, v. 38, n. 16, jul. 2010.

WANG, Z. et al. Nucleotide sequence analyses of the MRP1 gene in four populations suggest negative selection on its coding region. **BMC Genomics**, v. 7, p. 111, 10 maio 2006.

WARD, N. C.; WATTS, G. F.; ECKEL, R. H. Statin Toxicity: Mechanistic Insights and Clinical Implications. **Circulation Research**, v. 124, n. 2, p. 328–350, 18 jan. 2019.

WEI, M. Y. et al. Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. **Journal of clinical lipidology**, v. 7, n. 5, p. 472–83, 1 set. 2013.

WIERZBICKI, A. S.; HUMPHRIES, S. E.; MINHAS, R. Familial hypercholesterolaemia: summary of NICE guidance. **BMJ**, v. 337, 2008.

WILLRICH, M. A. V et al. CYP3A5*3A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clinica chimica acta; international journal of clinical chemistry, v. 398, n. 1–2, p. 15–20, dez. 2008.

WILLRICH, M. A. V et al. Effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and CYP3A activity in hypercholeresterolemic patients. **Clinica chimica acta; international journal of clinical chemistry**, v. 421, p. 157–63, 5 jun. 2013.

WORLD HEALTH ORGANIZATION. **Human Genetics Programme. Familial Hypercholesterolaemia (FH). Report of a second WHO Consultation.** Geneva: [s.n.]. Disponível em: <apps.who.int/iris/handle/10665/64162>. XAVIER, H. T. et al. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. **Arquivos Brasileiros de Cardiologia**, v. 101, n. 4, supl.1, p. 1–20, 2013.

YUSUF, P. S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. **Lancet**, v. 364, n. 9438, p. 937–952, 11 set. 2004.

ZHANG, X. et al. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. **International Journal of Epidemiology**, v. 32, n. 4, p. 563–572, ago. 2003.

ZHOU, Y. et al. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. **The Pharmacogenomics Journal**, p. 1, 12 set. 2018.

ZMYSŁOWSKI, A.; SZTERK, A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. **Lipids in Health and Disease**, v. 16, n. 1, 2 out. 2017.

8 SUPPLEMENTARY TABLES

PD-related genes	PK-related genes
ABCA1	ABCB1
ABCG1	ABCB11
ABCG4	ABCC1
ABCG5	ABCC2
ABCG8	ABCC3
APOA1	ABCG2
APOA2	CYP1A2
APOA4	<i>CYP2C19</i>
APOA5	CYP2C8
APOB	СҮР2С9
APOC1	CYP2D6
APOC2	CYP3A4
APOC3	CYP3A5
APOC4	SLC15A1
APOE	SLC22A1
CETP	SLC22A6
CLMN	SLC22A8
COQ10A	SLCO1B1
CYP7A1	SLCO1B3
HMGCR	SLCO2B1
KIF6	UGT1A1
LDLR	UGT1A3
LDLRAP1	UGT2B7
LIPA	
LIPC	
LPA	
LPL	
MYLIP	
PCSK9	
PON1	
SCAP	

Supplementary table 1 Panel of statin PK- and PD-related genes sequenced.

				CAD risk ^a		
		Total	Very high	High	Intermediate	p value
		(n=114)	(n = 64)	(n = 11)	(n = 39)	
High risk factors						
Gender	Male	28.1 (32)	34.4% (22)	36.4% (4)	15.4% (6)	0.093
Medical history ^b , %	AMI	29.2 (33)	51.6 (33)	0.0 (0)	0.0 (0)	<0.001
	CAD	40.0 (42)	70.0 (42)	0.0 (0)	0.0 (0)	<0.001
	CVE	6.0 (6)	10.3 (6)	0.0 (0)	0.0 (0)	0.099
	Angina	40.6 (41)	69.5 (41)	0.0 (0)	0.0 (0)	<0.001
	MR	30.9 (34)	54.8 (34)	0.0 (0)	0.0 (0)	<0.001
Tobacco smoking ^b , %		14.3 (16)	19.4 (12)	27.3 (3)	2.6 (1)	0.027
Therapy factors						
LDL-c absolute target, %	<50 mg/dL	2.6 (3)	0.0 (0)	18.2 (2)	2.6 (1)	0.002
	<70 mg/dL	9.6 (11)	9.4 (6)	18.2 (2)	7.7 (3)	0.578
	< 100 mg/dL	34.2 (39)	31.2 (20)	27.3 (3)	41.0 (16)	0.525
LDL-c reduction $\geq 50\%$			81.8 (9)	48.4 (31)	46.2 (18)	0.095
TT reached ^c , %		12.3 (14)	0.0 (0)	18.2 (2)	30.8 (12)	<0.001

Supplementary table 2 Clinical data of FH patients classified according to CAD risk.

Number of patients in brackets. Categorical variables were compared by chi-square test. AMI: acute myocardial infarction; CAD: coronary artery disease; CVE: cerebrovascular event; LDL-c: low-density lipoprotein cholesterol; MR: myocardial revascularization; TT: therapy target.

^a The stratification of CAD risk was performed according to the Update of the Brazilian Guideline for FH (IZAR et al., 2021): 1) Very high risk: patients carrying manifested CAD (history of AMI, angina *pectoris*, previous myocardial revascularization or ischemic or transitory CVE);

2) High risk: primary prevention with baseline LDL-c > 400 mg/dL, or baseline LDL-c > 310 mg/dL with one high risk factor (tobacco smoking, male gender or HDL-c < 40 mg/dL), or baseline LDL-c > 190 mg/dL with two high risk factors;

3) Intermediate risk: Primary prevention without high risk factors.

^b Data were not available for history of AMI (1), CAD (9), CVE (14), tobacco smoking (2).

^c The therapy target for each risk group was the following:

1) Very high risk: LDL-c reduction $\geq 50\%$ + on-treatment LDL-c < 50 mg/dL;

2) High risk: LDL-c reduction $\geq 50\%$ + on-treatment LDL-c < 70 mg/dL;

3) Intermediate risk: LDL-c reduction $\ge 50\%$ + on-treatment LDL-c < 70 mg/dL.

Variable		Total	RE	NRE	p-value
		(n=114)	(n=58)	(n=56)	
Total cholesterol, mg/dL	Baseline	318 (216 - 420)	330 (173 - 487)	300 (247 - 353)	0.004
	On-treatment	197 (133 - 261)	176 (122 - 230)	230 (170 - 290)	<0.001
	% change	-36 (-6111)	-51 (-6537)	-25 (-4010)	<0.001
	p-value	<0.001	<0.001	<0.001	
LDL cholesterol, mg/dL	Baseline	226 (128 - 324)	239 (100 - 378)	222 (171 - 273)	0.005
	On-treatment	118 (51 - 185)	96 (60 - 132)	152 (104 - 200)	<0.001
	% change	-51 (-8121)	-62 (-7648)	-32 (-5013)	<0.001
	p-value	<0.001	<0.001	<0.001	
HDL cholesterol, mg/dL	Baseline	49 (35 - 63)	50 (34 - 66)	48 (35 - 61)	0.711
	On-treatment	47 (30 - 64)	44 (26 - 62)	48 (35 - 61)	0.473
	% change	0 (-26 - 26)	-6 (-31 - 19)	0 (-22 - 22)	0.230
	p-value	0.619	0.268	0.546	
Triglycerides, mg/dL	Baseline	154 (52 - 256)	150 (18 - 282)	154 (80 - 228)	0.511
	On-treatment	122 (43 - 201)	105 (12 - 198)	130 (53 - 207)	0.073
	% change	-24 (-72 - 24)	-31 (-68 - 6)	-13 (-57 - 31)	0.003
	p-value	<0.001	<0.001	0.010	

Supplementary table 3 Influence of lipid-lowering treatment on serum lipids of FH patients.

Patients with LDL-c reduction of at least 50% after statin treatment were classified as responders. Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney or Wilcoxon test. . n: number of patients; HDL: high-density lipoprotein; LDL: low-density lipoprotein; RE: responder; NRE non responder.

Variable	Total	RE	NRE	p-value
	(n=113)	(n =58)	(n =56)	
Apo AI, mg/dL	147 (112 - 182)	142 (105 - 178)	153 (121 - 185)	0.036
Apo B, mg/dL	125 (73 - 177)	119 (75 - 163)	150 (93 - 207)	0.007
Glucose, mg/dL	92 (73 - 111)	89 (76 - 102)	95 (74 - 116)	0.004
HbA1c, %	6 (5.3 - 6.7)	6.0 (5.2 - 6.8)	5.9 (5.2 - 6.6)	0.617
Insulin, µIU/mL	7.9 (1.9 - 13.9)	7.0 (2.1 - 11.9)	9.4 (4.4 - 14.4)	0.028
Creatinine, mg/dL	0.8 (0.6 - 1)	0.8 (0.6 - 1)	0.7 (0.4 - 1)	0.075
ALT, U/L	32 (11 - 53)	32 (12 - 52)	31.5 (11.3 - 51.7)	0.446
AST, U/L	26 (16 - 36)	28 (17 - 39)	24.5 (15.5 - 33.5)	0.221
CK, U/L	91.5 (12.3 - 170.7)	94.5 (34.5 - 154.5)	88.5 (6.3 - 170.7)	0.924
hsCRP, mg/dL	0.5 (0.2 - 0.8)	0.5 (0.3 - 0.7)	0.6 (0.3 - 0.9)	0.832
TSH, µIU/mL	1.6 (0.1 - 3.1)	1.5 (-0.2 - 3.2)	1.7 (0.5 - 2.9)	0.899
T4, ng/dL	1.0 (0.8 - 1.2)	1.0 (0.8 - 1.2)	0.9 (0.7 - 1.1)	0.680

Supplementary table 4 Concentration of laboratory variables on treatment in FH patients grouped according to statin response.

Patients with LDL-c reduction of at least 50% after statin treatment were classified as responders. Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney test. Information on laboratory data was missing for apo AI (33 patients), apo B (33), glucose (17), HbA1c (27), insulin (32), creatinine (27), ALT (25), AST (25), CK (24), hsCRP (31), TSH (23) and T4 (25). n: number of patients; ALT: alanine aminotransferase; Apo AI: apolipoprotein AI; Apo B: apolipoprotein B; AST: aspartate aminotransferase; CK: creatine kinase; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; LDL: low-density lipoprotein; T4: thyroxine; TSH: thyroid-stimulating hormone; hsCRP: high sensitivity C-reactive protein; RE: responder; NRE non responder.

Supplementary table 5 Influence of the type of lipid-lowering treatments on lipid levels of FH patients (n=114).

Variable		Statin intensity			Ezetimibe		
		Moderate (n=16)	High (n=98)	p-value	Non-users (n=72)	Users (n=42)	p-value
TC	Baseline	306 (253-359)	322 (213-431)	0.109	304 (239-369)	333 (204-462)	0.011
	On-treatment	232 (160-304)	192 (125-259)	0.011	203 (121-285)	188 (137-239)	0.362
	% change	-22 (-404)	-40 (-6515)	< 0.001	-34 (-53– -15)	-47 (-74– -20)	0.031
	p-value	<0.001	<0.001		<0.001	<0.001	
LDL-c	Baseline	222 (149-295)	230 (123-337)	0.071	221 (169-273)	244 (142-346)	0.001
	On-treatment	130 (68-192)	116 (58 - 174)	0.116	117 (49-185)	122 (65-179)	0.936
	% change	-32 (-568)	-53 (-7231)	0.002	-47 (-7321)	-61 (-8834)	0.009
	p-value	<0.001	<0.001		<0.001	<0.001	
HDL-c	Baseline	52 (44-60)	48 (33 - 63)	0.103	49 (34-64)	49 (34-64)	0.342
	On-treatment	53 (36-70)	46 (29-63)	0.086	45 (29-61)	48 (32-64)	0.374
	% change	-6 (-38 - 26)	0 (-23 - 23)	0.003	-1 (-26 - 24)	0 (-24 - 24)	0.764
	p-value	1.000	0.680		0.837	0.581	
TG	Baseline	162 (100-224)	154 (42 - 66)	0.831	157 (41-273)	142 (41-243)	0.464
	On-treatment	157 (73-241)	110 (34-186)	0.004	130 (30-230)	108 (38-178)	0.085
	% change	-4 (-39 - 31)	-27 (-75 - 21)	0.001	-24 (-68-20)	-24 (-75-27)	0.438
	p-value	0.391	<0.001		<0.001	<0.001	

Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney test. FH: familial hypercholesterolemia; HDL-c: high-density lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides.

Variable		No SRAE	SRAE	p-value
		(90)	(24)	
тс	Baseline	310 (245 - 376)	374 (239 - 509)	0.001
	On-treatment	192 (111 - 273)	204 (163 - 245)	0.001
	% change	-33.4 (-12.754.1)	-50.0 (-36.663.4)	0.001
	p-value	<0.001	<0.001	
LDL-c	Baseline	224 (169 - 279)	295 (140 - 449)	0.007
	On-treatment	117 (47 - 187)	121 (78 - 165)	0.784
	% change	-47.3 (-20.174.5)	-61.3 (-51.870.8)	0.002
	p-value	<0.001	<0.001	
HDL-c	Baseline	49 (35 - 63)	51 (30.5 - 71.5)	0.352
	On-treatment	47 (34 - 60)	46.5 (20.5 - 72.5)	0.833
	% change	0 (-26.3 - 26.3)	-6.6 (-20.9 – 7.7)	0.325
	p-value	0.824	0.523	
TG	Baseline	154 (60.8 - 247.2)	191 (41.5 - 340.5)	0.242
	On-treatment	119 (49 - 189)	142 (17 - 267)	0.385
	% change	-24.2 (-70.4 - 22.0)	-28.9 (- 91.3 - 33.5)	0.985
	p-value	<0.001	0.279	

Supplementary table 6 Association between SRAE and serum 1	pids of FH	patients (n=114).
--	------------	-------------------

Continuous variables are shown as median and interquartile range and were compared by Mann-Whitney test. FH: familial hypercholesterolemia; HDL-c: high-density lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides; SRAE: statin-related adverse events.

Cono	ra aada	NT abanga	A A change	Type	MAF	In sílico	HWE
	15 Coue		AA change	Type	50.2	prediction	0 247
ADCDI	182032382	c.20//1>0	p.Sel695Ala		39.2	IN N	1.000
	rs2229107	$c.^{3}/21T > A$	n Ser11/1Thr	missense	13	N	1.000
	rs2225107	c * 82 * 70 dalTT AC	p.501141111		1.5	N	1.000
	rs17064	c.*80A\T		3'UTR	7.0	N	1.000
	rs3842	c. 8)A>1		3'UTD	12.3	N	0.213
	rs0282564	c.614>G	n Asn21Asn	missense	3.0	IN N	1.000
	189202304	c.01A>0	p.Asii21Asp	5'11TD	1.9	IN N	0.224
	185215019	00931>C	n Sar 902Thr	missonso	4.0	IN N	1.000
	182032382	c.20771>A	p.3e1893111	5'IITD	5.1	IN N	1.000
	153747802	c1130601>C	n San400 Asn	JUIK	0.9	IN N	1.000
	rs2229109	C.1199G>A	p.Ser400Asn	211 JTD	3.3 1.9	IN N	1.000
	1828304275	c.*211>C		JUIK	1.8	IN N	1.000
	rs28364278	c.*1/2_*1/31nsGAGAGAGACA		3'UTK	1.8	N	1.000
	rs35023033	c.2005C>1	p.Arg669Cys	missense	0.4	N	1.000
	rs35730308	c.33221>C	p. 1rp1108Arg	missense	0.4	N	1.000
	rs28364274	c.3751G>A	p.val125111e	missense	0.9	N	1.000
	rs5/521326	c.3262G>A	p.Asp1088Asn	missense	0.9	N	1.000
	rs28364279	c.*252A>C		3'UIK	0.4	N	1.000
	rs28364280	C.*316G>A		3'UTK	0.4	N	1.000
	rs36008564	c./81A>G	p.lle261 Val	missense	0.4	N	1.000
ABCBII	rs2287622	c.13311>C	p.val444Ala	missense	58.7	N	<0.001
	rs4/3351	c.*236A>G		3 UTR	63.6	N	0.009
	rs495714	c.*368G>A		3'UTR	56.0	N	0.037
	rs496550	c.*420A>G		3'UTR	56.0	N	0.037
	rs2287622	c.1331T>C	p.Val444Ala	missense	58.7	N	<0.001
	rs11568364	c.2029A>G	p.Met677Val	missense	5.4	N	1.000
	rs1521808	c.3556G>A	p.Glu1186Lys	missense	0.5	Ν	1.000
	rs766285158	c.3691C>T	p.Arg1231Trp	missense	0.5	Ν	1.000
	Novel	c.*614G>A		3'UTR	0.5	Ν	1.000
	rs11568357	c.616A>G	p.Ile206Val	missense	0.5	Ν	1.000
	rs111482608	c.1636C>A	p.Gln546Lys	missense	0.5	Ν	1.000
	rs11568370	c.1774G>C	p.Glu592Gln	missense	0.5	Ν	1.000
ABCC1	rs129081	c.*801G>C		3'UTR	40.2	Ν	0.034
	rs3743527	c.*543C>T		3'UTR	21.2	Ν	0.093
	rs4148381	c.*1321_*1322insT		3'UTR	51.1	Ν	0.000
	rs8056298	c.*1385T>G		3'UTR	97.8	Ν	<0.001
	rs212090	c.*866T>A		3'UTR	40.2	Ν	0.011
	rs129081	c.*801G>C		3'UTR	40.2	Ν	0.034
	rs113264879	c.*883G>A		3'UTR	0.5	Ν	1.000
	rs16967632	c.*1645G>A		3'UTR	0.5	Ν	1.000
	rs142023064	c.*1293_*1297delGAAAA		3'UTR	2.2%	Ν	1.000
	rs150927043	c.*1759T>A		3'UTR	1.6	Ν	1.000
	rs4148381	c.*1321_*1322insTT		3'UTR	30.2	Ν	0.802
	rs212091	c.*1512T>C		3'UTR	11.4	Ν	0.006
	rs4148356	c.2168G>A	p.Arg723Gln	missense	0.5	Ν	1.000

Supplementary table	Variants in PK-related genes identified in FH	patients (n=114).
11 1	0	

Gene	rs code	NT change	AA change	Туре	MAF (%)	In sílico prediction	HWE p -value
	rs4148380	c.*1293G>A		3'UTR	4.9	N	0.151
	rs113328089	c.*228G>A		3'UTR	2.2	Ν	1.000
	Novel	c.*1293G>0		3'UTR	1.1	Ν	1.000
	Novel	c.66del5>C		deletion	0.5	D	1.000
	rs45511401	c.2012G>T	p.Gly671Val	missense	3.8	D	1.000
	rs139158420	c.*401C>T		3'UTR	0.5	Ν	1.000
	Novel	c.*1752_*1753insA		3'UTR	1.6	Ν	1.000
	rs111601005	c.*1752delA		3'UTR	2.2	Ν	1.000
	rs45492303	c.*1237G>C		3'UTR	2.2	Ν	1.000
	rs74009607	c.*443C>T		3'UTR	2.2	Ν	1.000
	rs80085493	c.*1604C>T		3'UTR	0.5	Ν	1.000
	Novel	c.*1015_*1016delGC		3'UTR	0.5	Ν	1.000
	rs8187856	g.16146576C>G		splicing	1.1	Ν	1.000
	rs146369277	c.*800C>G		3'UTR	0.5	Ν	1.000
	rs183032276	c.4154G>A	p.Arg1385Gln	missense	0.5	Ν	1.000
	rs112282109	c.1898G>A	p.Arg633Gln	missense	0.5	Ν	1.000
	rs557646879	c8875del-		5'UTR	0.5	Ν	1.000
	rs147785655	c.*1000G>A		3'UTR	0.5	Ν	1.000
	rs45569938	c.*546T>G		3'UTR	0.5	Ν	1.000
	rs13337489	c.3140G>C	p.Cys1047Ser	missense	1.1	Ν	1.000
	rs28706727	c.3436G>A	p.Val1146Ile	missense	0.5	Ν	1.000
	rs143805318	c.*1644C>T		3'UTR	0.5	Ν	1.000
	Novel	c.145T>G		missense	0.5	Ν	1.000
	rs182967563	c.*272G>A		3'UTR	0.5	Ν	1.000
	rs187769078	c.185G>A	p.Arg62Gln	missense	0.5	Ν	1.000
	rs188577026	c.*891A>G		3'UTR	0.5	Ν	1.000
	rs199815778	c.4441G>A	p.Val1481Ile	missense	0.5	Ν	1.000
ABCC2	rs2273697	c.1249G>A	p.Val417Ile	missense	16.8	Ν	0.429
	rs45441199	c.3107T>C	p.Ile1036Thr	missense	1.1	Ν	1.000
	rs927344	c.116A>T	p.Tyr39Phe	missense	98.9	Ν	< 0.001
	rs17222723	c.3563T>A	p.Val1188Glu	missense	7.6	Ν	0.051
	rs8187699	c.3817A>G	p.Thr1273Ala	missense	0.5	Ν	1.000
	rs8187710	c.4544G>A	p.Cys1515Tyr	missense	9.8	Ν	0.136
	rs17222617	c.2546T>G	p.Leu849Arg	missense	1.6	Ν	1.000
	rs717620	c24C>T		5'UTR	17.9	Ν	0.701
	rs2273697	c.1249G>A	p.Val417Ile	missense	16.8	Ν	0.429
	rs138578110	c.*259G>T		3'UTR	1.1	Ν	1.000
	rs8187692	c.3542G>T	p.Arg1181Leu	missense	2.7	D	1.000
	rs7080681	c.1058G>A	p.Arg353His	missense	2.7	Ν	1.000
	rs17216317	c.3872C>T	p.Pro1291Leu	missense	3.3	D	1.000
	rs72558199	c.3196C>T	p.Arg1066X	stopgain	0.5	Ν	1.000
	rs141413284	c.1860T>A	p.Asp620Glu	missense	0.5	Ν	1.000
	rs533334893	g.101552117G>A		splicing	0.5	D	1.000
ABCC3	rs34926034	c.202C>T	p.His68Tyr	missense	1.1	Ν	1.000
	rs141856639	c.3971G>A	p.Arg1324His	missense	1.1	D	1.000
ABCC2 ABCC3	rs35999272	c.2758C>T	p.Pro920Ser	missense	2.2	Ν	1.000

Cono	rs codo	NT change	A A change	Tuno	MAF	In sílico	HWE
Gene	r=2424(021		AA change		(70)	prediction	p-value
	1854540951	c.1225A>G	p.Giu408Giy	missense	0.5	IN N	1.000
	18130001092	c.4050A>0	p.Lys1344Glu	missense	0.5	N D	1.000
	rs11508591	C.3890G>A	p.Arg1297His		0.5	D	1.000
	rs2007/9271	c.9801>C	p.11e3271hr	missense	0.5	N	1.000
	rs201562834	c.8/1C>1	p.Arg2911rp	missense	0.5	N	1.000
	rs1003354	c.1580C>T	p.Thr52/Met	missense	0.5	N	1.000
	rs143608762	c.694C>T	p.Arg232Trp	missense	0.5	N	1.000
	rs35777968	c.296G>A	p.Arg99Gln	missense	0.5	N	1.000
	rs139106724	c.2377G>A	p.Val793Ile	missense	1.1	N	1.000
	rs200413276	c.2558C>A	p.Ala853Asp	missense	0.5	Ν	1.000
	rs372683132	c.922G>A	p.Gly308Ser	missense	1.1	Ν	1.000
	rs34926034	c.202C>T	p.His68Tyr	missense	1.1	Ν	1.000
	rs11568584	c.2153A>T	p.Lys718Met	missense	0.5	Ν	1.000
	rs11568607	g.48745787G>A		splicing	2.2	Ν	1.000
	rs11568590	c.4094A>G	p.Gln1365Arg	missense	0.5	Ν	1.000
	rs11568608	c.1820G>A	p.Ser607Asn	missense	1.1	Ν	1.000
	rs34291385	c.2293G>C	p.Val765Leu	missense	1.1	Ν	1.000
	rs200903266	c.3401G>A	p.Arg1134Gln	missense	0.5	Ν	1.000
	rs138342952	c.*258G>C		3'UTR	1.1	Ν	1.000
	rs11568588	c.4042C>T	p.Arg1348Cys	missense	1.1	Ν	1.000
	rs148804178	c.205C>G	p.Leu69Val	missense	0.5	Ν	1.000
	rs563802547	c.*140_*141insT		3'UTR	0.5	Ν	1.000
ABCG2	rs45605536	c.1582G>A	p.Ala528Thr	missense	1.1	Ν	1.000
	rs111766106	c18485C>T		5'UTR	0.5	Ν	1.000
	rs45605536	c.1582G>A	p.Ala528Thr	missense	1.1	Ν	1.000
	rs45510401	c.*1964T>C		3'UTR	2.2	Ν	0.026
	rs72554040	c91177C>T		5'UTR	8.2	Ν	0.389
	rs1448784	c.*1066T>C		3'UTR	1.1	Ν	1.000
	rs2231142	c.421C>A	p.Gln141Lys	missense	6.5	Ν	1.000
	rs2231137	c.34G>A	p.Val12Met	missense	6.0	Ν	1.000
	rs10030206	c.*1295A>T		3'UTR	1.1	Ν	1.000
	rs115770495	c.*1726G>A		3'UTR	2.2	Ν	1.000
	rs1337337886	c.131A>G	p.Tyr44Cys	missense	0.5	Ν	1.000
	rs35965584	c.1624A>G	p.Thr542Ala	missense	0.5	Ν	1.000
	rs45630471	c18400A>G	•	5'UTR	0.5	Ν	1.000
	rs2231135	c18847T>C		5'UTR	1.1	Ν	1.000
	Novel	c.1453C>A		missense	0.5	Ν	1.000
	rs138606116	c.1060G>A	p.Glv354Arg	missense	0.5	Ν	1.000
	rs55927234	c18436C>G	1 9 0	5'UTR	0.5	Ν	1.000
	rs34783571	c.1858G>A	p.Asp620Asn	missense	0.5	Ν	1.000
	rs34264773	c.1758A>T	n.Lvs586Asn	missense	0.5	N	1.000
	Novel	c.*1575T>C	p.11950001511	3'UTR	0.5	N	1.000
	rs34124189	g.89053790G>A		splicing	0.5	N	1.000
CYP1A2	rs33923017	c.*360 *361insT		3'UTR	11.4	N	0 595
JII 1/12	rs33923017	c.*360_*361insTT		3'UTR	22.8	N	0.012
	rs34002060	c *1034delT		3'UTR	15.2	N	0.213

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs33923017	c.*360_*361insT		3'UTR	11.4	Ν	0.595
	rs58661304	c.*270A>C		3'UTR	5.4	Ν	0.012
	Novel	c.*1033_*1034insT		3'UTR	6.0	Ν	1.000
	rs1288558234	g.75041241del		splicing	0.5	Ν	1.000
	rs17861157	c.894C>A	p.Ser298Arg	missense	3.3	Ν	0.065
	rs45540640	c.613T>G	p.Phe205Val	missense	0.5	Ν	1.000
	rs913188841	g.75041242C>G		splicing	0.5	Ν	1.000
	rs201763966	c.142T>G	p.Trp48Gly	missense	0.5	Ν	1.000
	Novel	c.*1035_*1036insT		3'UTR	18.5	Ν	0.127
	Novel	c.*1035delT		3'UTR	18.5	Ν	0.127
	Novel	c.*1034_*1035delTT		3'UTR	19.6	Ν	0.070
	Novel	c.*361_*362insT		3'UTR	12.5	Ν	0.600
	Novel	c.*361_*362insTT		3'UTR	12.5	Ν	0.600
	rs201977879	c.*361delT		3'UTR	17.9	Ν	0.211
	Novel	c.*274C>0		3'UTR	1.1	Ν	1.000
	rs11636419	c.*171A>G		3'UTR	6.5	Ν	1.000
	rs150722579	c.*292_*293insC		3'UTR	1.6	Ν	1.000
	rs17861162	c.*1324C>G		3'UTR	8.7	Ν	1.000
	rs201077484	c.*274delC		3'UTR	1.6	Ν	1.000
	rs57295890	c.*282delC		3'UTR	10.3	Ν	1.000
	rs200442208	c.*282C>A		3'UTR	2.2	Ν	1.000
	rs780737808	c.*304_*305insAT		3'UTR	1.6	Ν	1.000
	Novel	c.*1034_*1035insT		3'UTR	1.1%	Ν	1.000
	rs201443593	c.*292A>C		3'UTR	0.5	Ν	1.000
	rs56141902	c.*854G>A		3'UTR	0.5	Ν	1.000
	Novel	c.*271_*274delAAAC		3'UTR	2.7	Ν	0.044
	rs758124536	c.409C>T	p.Arg137Trp	missense	0.5	Ν	1.000
	Novel	c.*283_*284insA		3'UTR	1.1	Ν	1.000
	Novel	c.*282_*283delins0		3'UTR	1.1%	Ν	1.000
	Novel	c.*283delA		3'UTR	1.1	Ν	1.000
	Novel	c.*263_*264insA		3'UTR	0.5	Ν	1.000
	rs200675446	c.*263delA		3'UTR	4.9	Ν	1.000
	rs45564134	c.*974delG		3'UTR	0.5	Ν	1.000
	rs28465265	c.*274C>A		3'UTR	0.5	Ν	1.000
CYP2C19	rs3758581	c.991A>G	p.Ile331Val	missense	43.5	Ν	< 0.001
	rs3758581	c.991A>G	p.Ile331Val	missense	43.5	Ν	< 0.001
	rs17884712	c.431G>A	p.Arg144His	missense	2.2	D	1.000
	rs576823729	c.648C>G	p.Cys216Trp	missense	0.5	Ν	1.000
	rs17882687	c.55A>C	p.Ile19Leu	missense	0.5	Ν	1.000
	rs17878459	c.276G>C	p.Glu92Asp	missense	3.3	Ν	1.000
	rs58973490	c.449G>A	p.Arg150His	missense	1.1	Ν	1.000
CYP2C8	rs1058932	c.*24C>T		3'UTR	23.9	Ν	0.006
	rs11572078	g.96827126dup		splicing	17.4	Ν	<0.001
	rs2071426	g.5932A>G		splicing	23.9	D	1.000
	rs1058932	c.*24C>T		3'UTR	23.9	Ν	0.006
	rs11572103	c.499A>T	p.Ile167Phe	missense	3.3	Ν	0.065

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs10509681	c.890A>G	p.Lys297Arg	missense	4.9	N	1.000
	rs11572080	c.110G>A	p.Arg37Lys	missense	5.4	Ν	1.000
	rs77147096	c.787G>A	p.Gly263Ser	missense	0.5	Ν	1.000
	rs1058930	c.486C>G	p.Ile162Met	missense	4.9	D	0.151
	rs369591911	c.65G>A	p.Arg22Gln	missense	0.5	Ν	1.000
	rs11572066	c86A>C		5'UTR	0.5	Ν	1.000
	rs143386810	c.844G>A	p.Gly282Ser	missense	0.5	Ν	1.000
CYP2C9	rs1799853	c.430C>T	p.Arg144Cys	missense	8.8	D	1.000
	rs9332242	c.*108C>G		3'UTR	8.8	Ν	1.000
	rs1799853	c.430C>T	p.Arg144Cys	missense	8.8	D	1.000
	rs28371685	c.1003C>T	p.Arg335Trp	missense	0.9	Ν	1.000
	rs1057910	c.1075A>C	p.Ile359Leu	missense	7.5	Ν	0.475
	rs577147873	c.*60C>T		3'UTR	0.4	Ν	1.000
	rs7900194	c.449G>A	p.Arg150His	missense	1.3	Ν	1.000
	rs9332241	c.*88C>T		3'UTR	1.3	Ν	1.000
	rs2256871	c.752A>G	p.His251Arg	missense	2.2	D	1.000
	rs201055266	c.1034T>C	p.Met345Thr	missense	0.4	Ν	1.000
	rs28371686	c.1080C>G	p.Asp360Glu	missense	0.4	Ν	1.000
	rs9332239	c.1465C>T	p.Pro489Ser	missense	0.4	Ν	1.000
CYP2D6	rs16947	c.733C>T	p.Arg245Cys	missense	32.6	Ν	0.211
	rs769258	c.31G>A	p.Val11Met	missense	4.3	Ν	0.119
	rs16947	c.733C>T	p.Arg245Cys	missense	32.6	Ν	0.211
	rs1058172	c.941G>A	p.Arg314His	missense	4.9	D	1.000
	rs1065852	c.100C>T	p.Pro34Ser	missense	6.0	D	0.224
	Novel	c.551C>T	p.Lys230_C442d	missense nonframeshif	0.5	Ν	1.000
	rs5030656	c.88_690del	elins	t deletion	1.1	LD	1.000
	rs28371717	c.556G>T	p.Ala186Ser	missense	0.5	Ν	1.000
	rs28371704	c.281A>G	p.His94Arg	missense	1.6	Ν	1.000
	rs3892097			splicing	2.2	D	1.000
	rs28371706	c.320C>T	p.Thr107Ile	missense	2.2	Ν	1.000
	rs139779104	c.482G>A	p.Gly161Glu	missense frameshift	0.5	Ν	1.000
	rs5030655	c.54del4>T	p.Trp152Gfs*2	deletion	0.5	D	1.000
	rs140513104	c.821C>T	p.Pro274Leu	missense	0.5	Ν	1.000
	rs59421388	c.859G>A	p.Val287Met	missense	0.5	Ν	1.000
	rs61736512	c.406G>A	p.Val136Met	missense	0.5	Ν	1.000
	rs28371703	c.271C>A	p.Leu91Met	missense	1.1	D	1.000
CYP3A4	rs28969391	c.*767delT		3'UTR	18.0	Ν	0.757
	rs28969391	c.*767delT		3'UTR	18.0	Ν	0.757
	rs28988604	c.*683C>T		3'UTR	3.5	Ν	1.000
	rs12721631	c.*329C>T		3'UTR	1.3	Ν	1.000
	rs4986907	c.485G>A	p.Arg162Gln	missense	0.4	Ν	1.000
	rs28371763	c.*948A>T		3'UTR	1.3	Ν	1.000
	rs28988606	c.*1095C>T		3'UTR	0.9	Ν	1.000
CYP3A5	rs15524	c.*14T>C		3'UTR	21.1	Ν	0.576
	rs776746	g.12083G>A		splicing	77.6	D	0.431

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs41279857	c.299C>A	p.Ser100Tyr	missense	0.4	Ν	1.000
	rs10264272	c.624G>A	p.Lys208Lys	splicing	3.1	Ν	1.000
	rs149664815	c.1378C>T	p.Gln460X	stopgain	0.4	D	1.000
	rs15524	c.*14T>C		3'UTR	21.1	Ν	0.576
	rs28371765	c3554A>C		5'UTR	0.4	Ν	1.000
	rs28365095	c3625G>A		5'UTR	0.4	Ν	1.000
	rs6977165	c.423A>G	p.X141Trp	stoploss	5.7	D	1.000
	rs145774441	c.827T>C	p.Ile276Thr	missense	0.4	Ν	1.000
	rs28371764	c3613C>T		5'UTR frameshift	3.1	Ν	1.000
	rs200579169	c.92dupG	p.Gly31fs	insertion	0.4	D	1.000
	rs28383468	c.88C>T	p.His30Tyr	missense frameshift	0.4	Ν	1.000
	rs41303343	c.1035dupT	p.Thr346Yfs*2	insertion	1.8	D	1.000
	rs147489136	c.608T>G	p.Phe203Cys	missense	0.4	Ν	1.000
	rs547253411	c.1372delG	p.Val458Sfs*16	deletion frameshift	0.4	D	1.000
	rs41303343	c.1035dupT	p.Thr346fs	insertion	1.8	D	1.000
	rs6957030	c.419T>G	p.Leu140Arg	missense	0.4	Ν	1.000
SLC15A1	rs1289389	c.*688G>A		3'UTR	19.0	Ν	0.024
	rs759932207	c.*178_*177delTT		3'UTR	19.6	Ν	0.070
	rs779338904	c.*178_*176delTTT		3'UTR	2.8	Ν	1.000
	Novel	c.*178_*179insT		3'UTR	1.1	Ν	1.000
	rs1289389	c.*688G>A		3'UTR	19.0	Ν	0.024
	rs4646234	c.*598A>G		3'UTR	12.5	Ν	1.000
	rs2297322	c.350G>A	p.Ser117Asn	missense	18.5	Ν	0.003
	rs7331216	c.*59A>G		3'UTR	9.8	Ν	0.517
	rs113824127	c.*211G>T		3'UTR	1.1	Ν	1.000
	rs8187820	c.364G>A	p.Val122Met	missense	1.6	D	1.000
	rs8187838	c.1352C>A	p.Thr451Asn	missense	1.6	Ν	1.000
	Novel	c.*176_*177insT		3'UTR	3.8	Ν	1.000
	Novel	c.*174_*175insT		3'UTR	5.4	Ν	1.000
	Novel	c.*177delT		3'UTR	3.8	Ν	1.000
	Novel	c.*175delT		3'UTR	5.4	Ν	1.000
	Novel	c.*176_*175delTT		3'UTR	5.4	Ν	1.000
	Novel	c.*177_*175delTTT		3'UTR	5.4	Ν	1.000
	Novel	c.*178_*175delTTTT		3'UTR	5.4	Ν	1.000
	Novel	c.*178_*175delTTTT		3'UTR	2.2	Ν	1.000
	rs3783002	c.*224C>T		3'UTR	7.6	Ν	0.346
	rs4646227	c.1256G>C	p.Gly419Ala	missense	4.3	Ν	1.000
	rs2274828	c.1348G>A	p.Val450Ile	missense	0.5	Ν	1.000
	rs572627369	c.*160T>C		3'UTR	0.5	Ν	1.000
	rs578247729	c.*914C>T		3'UTR	0.5	Ν	1.000
	rs8187827	g.99354731T>C		splicing	0.5	Ν	1.000
	rs398037820	c.*178delT		3'UTR	3.9	Ν	1.000
	Novel	c.800A>T		missense	0.5	Ν	1.000
	rs114218227	c.*125G>A		3'UTR	1.1	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs8187821	c.351C>A	p.Ser117Arg	missense	0.5	N	1.000
	Novel	c.*451G>A		3'UTR	0.5	Ν	1.000
	rs79136019	c.*587T>C		3'UTR	1.6	Ν	1.000
	rs8187815	c73T>C		5'UTR	1.1	Ν	1.000
	rs146304164	c.1246G>C	p.Val416Leu	missense	0.5	Ν	1.000
	Novel	c.*150_*144delCTTTTTC		3'UTR	0.5	Ν	1.000
	rs4646206	c33C>T		5'UTR	0.5	Ν	1.000
	Novel	c.*178_*173delTTTTTT		3'UTR frameshift	0.6	Ν	1.000
SLC22A1	rs113569197	c.1275_1276del	p.Pro425fs	deletion	33.2	Ν	< 0.001
	rs628031	c.1222A>G	p.Met408Val	missense	66.8	Ν	0.004
	rs683369	c.480G>C	p.Leu160Phe	missense	85.9	Ν	<0.001
	rs776304541	c.1406G>A	p.Arg469His	missense	0.5	Ν	1.000
	rs35854239	c.275_1276del	p.Pro425fs	splicing nonframeshif	45.7	D	<0.001
	rs72552763	c.258_1260del	p.420_420del	t deletion	18.5	LD	1.000
	rs34205214	c.1025G>A	p.Arg342His	missense	2.2	Ν	1.000
	rs34447885	c.41C>T	p.Ser14Phe	missense	2.2	Ν	1.000
	rs41267797	c.1390G>A	p.Val464Ile	missense nonframeshif	4.9	Ν	0.151
	rs72552763	c.258_1260del	p.Met420del	t deletion	18.5	D	1.000
	rs35270274	c.1463G>T	p.Arg488Met	missense	1.6	Ν	1.000
	rs35888596	c.113G>A	p.Gly38Asp	missense	2.2	D	1.000
	rs34059508	c.1393G>A	p.Gly465Arg	missense	1.1	D	1.000
	rs2282143	c.1022C>T	p.Pro341Leu	missense	1.1	D	1.000
	rs12208357	c.181C>T	p.Arg61Cys	missense	3.8	D	0.090
	rs36103319	c.659G>T	p.Gly220Val	missense	0.5	Ν	1.000
	rs78899680	c.1442G>T	p.Gly481Val	missense	0.5	Ν	1.000
	rs34130495	c.1201G>A	p.Gly401Ser	missense	0.5	Ν	1.000
	rs774654623	c.1396C>A	p.Pro466Thr	missense	0.5	Ν	1.000
SLC22A6	rs4149170	c127G>A		5'UTR	12.0	Ν	0.009
	rs4149171	c20A>G		5'UTR	16.8	Ν	0.006
	rs4149170	c127G>A		5'UTR	12.0	Ν	0.009
	rs11568627	c.311C>T	p.Pro104Leu	missense	0.5	Ν	1.000
	rs150811286	c.*46T>C		3'UTR	0.5	Ν	1.000
	rs11568626	c.149G>A	p.Arg50His	missense	0.5	Ν	1.000
	rs181212822	c.*57G>A		3'UTR	0.5	Ν	1.000
SLC22A8	rs145493231	c857A>G		5'UTR	0.5	Ν	1.000
	Novel	c.*353C>T		3'UTR	0.5	Ν	1.000
	rs11568481	c.560C>T	p.Ala187Val	missense	0.5	Ν	1.000
	rs4149179	c16G>A		5'UTR	3.8	Ν	0.090
	rs45438191	c.473T>C	p.Val158Ala	missense	0.5	Ν	1.000
SLCO1B1	rs2306283	c.388A>G	p.Asn130Asp	missense	47.4	Ν	0.354
	rs4149056	c.521T>C	p.Val174Ala	missense	11.0	D	0.355
	rs4149087	c.*439T>G		3'UTR	38.2	Ν	0.691
	rs4149088	c.*463A>G		3'UTR	35.5	Ν	1.000
	rs2306283	c.388A>G	p.Asn130Asp	missense	47.4	Ν	0.354
	rs11045819	c.463C>A	p.Pro155Thr	missense	13.2	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs11045891	c.*449A>C		3'UTR	15.4	Ν	0.725
	rs11045852	c.733A>G	p.Ile245Val	missense	0.9	Ν	1.000
	rs74064213	c.1495A>G	p.Ile499Val	missense	0.9	Ν	1.000
	rs34671512	c.1929A>C	p.Leu643Phe	missense	5.3	Ν	0.263
	rs59502379	c.1463G>C	p.Gly488Ala	missense	1.8	D	1.000
	rs71581985	c.*46T>G		3'UTR	0.9	Ν	1.000
	rs77271279	g.21329832G>T		splicing	0.9	D	1.000
	rs61760249	c.*575G>A		3'UTR	0.4	Ν	1.000
	rs79135870	c.664A>G	p.Ile222Val	missense	0.4	Ν	1.000
	rs59113707	c.1200C>G	p.Phe400Leu	missense	0.4	Ν	1.000
	rs72655363	c.*82C>T		3'UTR	0.4	Ν	1.000
SLCO1B3	rs3764009	g.21013948C>T		splicing	16.3	Ν	<0.001
	rs4149117	c.250T>G	p.Ser84Ala	missense	76.1	Ν	<0.001
	rs4149158	c74del-		5'UTR	24.5	Ν	0.040
	rs527574443	c2811del-		5'UTR	24.5	Ν	0.040
	rs7305323	c2125C>T		5'UTR	64.1	Ν	<0.001
	rs7311358	c.615G>A	p.Met205Ile	missense	72.8	Ν	< 0.001
	rs397689574	c.*347_*348insA		3'UTR	32.6	Ν	0.629
	rs57585902	c.355A>G	p.Thr119Ala	missense	1.1	Ν	1.000
	rs60140950	c.767G>C	p.Gly228Ala	missense frameshift	14.7	D	0.048
	rs780598056	c.1333delG	p.Val445Sfs*6	deletion	0.5	D	1.000
	rs773176181	c.1247G>C	p.Gly416Ala	missense	0.5	Ν	1.000
	rs150007972	c.233C>A	p.Thr78Asn	missense	0.5	Ν	1.000
	rs61736817	c.1282C>T	p.Leu428Phe	missense	0.5	Ν	1.000
	rs76963574	c.1628C>G	p.Ala543Gly	missense	0.5	Ν	1.000
	rs115227445	c.592C>G	p.Leu198Val	missense	0.5	Ν	1.000
	rs77957556	c.*642G>A		3'UTR frameshift	1.1	Ν	1.000
	rs558592800	c.119_120insAATTG	p.Asp42Efs*12	insertion	0.5	D	1.000
	Novel	c.596G>T		missense	0.5	Ν	1.000
	Novel	c2107A>T		5'UTR	0.5	Ν	1.000
	rs12299012	c.1595T>C	p.Val532Ala	missense	1.1	Ν	1.000
	rs958332597	g.21032366C>T		splicing	0.5	Ν	1.000
SLCO2B1	rs11236359	c2866A>G		5'UTR	75.5	Ν	<0.001
	rs1944612	c36A>G		5'UTR	98.9	Ν	<0.001
	rs2851069	c71T>C		5'UTR	47.3	Ν	0.078
	rs11236359	c2866A>G		5'UTR	75.5	Ν	<0.001
	rs17133818	c.*1386C>T		3'UTR	6.0	Ν	1.000
	rs1801906	c.*1070T>C		3'UTR	9.2	Ν	1.000
	rs2306168	c.1025C>T	p.Ser342Phe	missense	6.5	Ν	0.263
	rs3781727	c.*396T>C		3'UTR	6.5	Ν	1.000
	rs41298121	c.*1222T>C		3'UTR	10.3	Ν	0.558
	rs12422149	c.503G>A	p.Arg168Gln	missense	12.0	Ν	0.595
	Novel	c.*956C>A		3'UTR	0.5	Ν	1.000
	rs41298117	c.*721C>G		3'UTR	3.8	Ν	1.000
	rs78825186	c.485G>A	p.Arg162His	missense	1.1	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	<i>In sílico</i> prediction	HWE p -value
	rs145875125	c.1206C>A	p.Asn402Lys	missense	0.5	Ν	1.000
	rs185838153	c.*1776T>C		3'UTR nonframeshif	0.5	Ν	1.000
	rs60113013	c614del	p.Glu4_T6del	t deletion	1.6	LD	1.000
	rs35199625	c.169G>A	p.Val57Met	missense	1.1	Ν	1.000
UGT1A3	rs6431625	c.140T>C	p.Val47Ala	missense	41.8	Ν	0.212
	rs28898619	c.342G>A	p.Met114Ile	missense	1.1	Ν	1.000
	rs3821242	c.31T>C	p.Trp11Arg	missense	45.7	Ν	0.027
	rs6431625	c.140T>C	p.Val47Ala	missense	41.8	Ν	0.212
	rs61764030	c.473C>T	p.Ala158Val	missense	1.1	Ν	1.000
	rs149324549	c.775G>C	p.Gly259Arg	missense	1.1	Ν	1.000
	rs45449995	c.808A>G	p.Met270Val	missense	2.2	D	0.026
	rs61764031	c.523A>T	p.Asn175Tyr	missense	0.5	Ν	1.000
	rs140541315	c.172G>A	p.Ala58Thr	missense	0.5	Ν	1.000
	rs13406898	c.431C>T	p.Thr144Ile	missense	0.5	Ν	1.000
	rs45595237	c.145C>T	p.Arg49Trp	missense	0.5	Ν	1.000
UGT2B7	rs57075995	c.*100_*101insA		3'UTR	17.9	Ν	0.122
	rs7439366	c.802T>C	p.Tyr268His	missense	62.0	Ν	<0.001
	rs57075995	c.*100_*101insA		3'UTR	17.9	Ν	0.122
	Novel	c.*101delA		3'UTR	29.1	Ν	<0.001
	rs111878373	c2G>A		5'UTR	1.1	Ν	1.000
	rs140153012	c.321A>T	p.Leu107Phe	missense	1.1	Ν	1.000
	rs57075995	c.*100_*101insAA		3'UTR	2.2	Ν	1.000
	Novel	c.*101_*102insA		3'UTR	22.8	Ν	0.012
	Novel	c.*101_*102insAA		3'UTR	22.8	Ν	0.012
	rs60103519	c.536C>T	p.Thr179Ile	missense	1.1	Ν	1.000
	rs78265585	c.*247C>A		3'UTR	1.6	Ν	1.000

In silico functionality prediction was performed either using the functionality prediction score (FPS) for missense variants or dbNSFP v4.2 *in silico* algorithm for splice variants. Frameshift variants were considered deleterious. Nonframeshift variants were considered potentially deleterious. AA: amino acid; NT nucleotide; D: deleterious; HWE: Hardy-Weinberg equilibrium; LD: likely deleterious;/ MAF: minor allele frequency; N: neutral; PK: pharmacokinetics; UTR: untranslated region.

Gene	rs code	NT change	AA change	Туре	MAF (%)	FPS
ABCB1	rs2032582	c.2677T>G	p.Ser893Ala	missense	59.2	0.2
	rs2229107	c.3421T>A	p.Ser1141Thr	missense	1.3	0.0
	rs9282564	c.61A>G	p.Asn21Asp	missense	3.9	0.0
	rs2032582	c.2677T>A	p.Ser893Thr	missense	3.1	0.4
	rs2229109	c.1199G>A	p.Ser400Asn	missense	3.5	0.2
	rs35023033	c.2005C>T	p.Arg669Cys	missense	0.4	0.6
	rs35730308	c.3322T>C	p.Trp1108Arg	missense	0.4	0.8
	rs28364274	c.3751G>A	p.Val1251Ile	missense	0.9	0.2
	rs57521326	c.3262G>A	p.Asp1088Asn	missense	0.9	0.6
	rs36008564	c.781A>G	p.Ile261Val	missense	0.4	0.2
ABCB11	rs2287622	c.1331T>C	p.Val444Ala	missense	58.7	0.0
	rs11568364	c.2029A>G	p.Met677Val	missense	5.4	0.2
	rs1521808	c.3556G>A	p.Glu1186Lys	missense	0.5	0.4
	rs766285158	c.3691C>T	p.Arg1231Trp	missense	0.5	1.0
	rs11568357	c.616A>G	p.Ile206Val	missense	0.5	0.0
	rs111482608	c.1636C>A	p.Gln546Lys	missense	0.5	0.2
	rs11568370	c.1774G>C	p.Glu592Gln	missense	0.5	0.6
ABCC1	rs4148356	c.2168G>A	p.Arg723Gln	missense	0.5	0.0
	rs45511401	c.2012G>T	p.Gly671Val	missense	3.8	0.8
	rs183032276	c.4154G>A	p.Arg1385Gln	missense	0.5	1.0
	rs112282109	c.1898G>A	p.Arg633Gln	missense	0.5	0.0
	rs13337489	c.3140G>C	p.Cys1047Ser	missense	1.1	0.0
	rs28706727	c.3436G>A	p.Val1146Ile	missense	0.5	0.4
	Novel	c.145T>G	p.Cys49Gly	missense	0.5	NR
	rs187769078	c.185G>A	p.Arg62Gln	missense	0.5	0.4
	rs199815778	c.4441G>A	p.Val148111e	missense	0.5	0.4
ABCC2	rs22/369/	c.1249G>A	p. Val41 / Ile	missense	16.8	0.0
	rs45441199	c.310/1>C	p.11e10361 hr	missense	1.1	0.2
	rs92/344	c.116A>1	p. Tyr 39Phe	missense	98.9	0.2
	rs1/222/23	C.33031>A	p. val1188Glu	missense	/.0	0.2
	188187099	c.581/A>0	p.11112/3Ala	missense	0.3	0.2
	180107710 rs17222617	0.43440>A	p.Cys13131y1	missonso	9.0	0.2
	rs8187607	c 3542G>T	p.Leuo49Aig	missense	1.0	0.4
	rs7080681	$c.1058G>\Delta$	p.Arg353His	missense	2.7	0.8
	rs17216317	c 3872C>T	n Pro12011 eu	missense	2.7	0.0
	rs72558199	c 3196C>T	n Arg1066X	stongain	0.5	0.0
	rs141413284	c.1860T > A	p Asp620Glu	missense	0.5	0.2
ABCC3	rs34926034	c.202C>T	p.His68Tvr	missense	1.1	0.0
	rs141856639	c.3971G>A	p.Arg1324His	missense	1.1	1.0
	rs35999272	c.2758C>T	p.Pro920Ser	missense	2.2	0.0
	rs34346931	c.1223A>G	p.Glu408Gly	missense	0.5	1.0
	rs150601692	c.4030A>G	p.Lys1344Glu	missense	0.5	0.0
	rs11568591	c.3890G>A	p.Arg1297His	missense	6.5	0.8
	rs200779271	c.980T>C	p.Ile327Thr	missense	0.5	0.0
	rs201562834	c.871C>T	p.Arg291Trp	missense	0.5	0.2
	rs1003354	c.1580C>T	p.Thr527Met	missense	0.5	0.4
	rs143608762	c.694C>T	p.Arg232Trp	missense	0.5	0.8
	rs35777968	c.296G>A	p.Arg99Gln	missense	0.5	0.0
	rs139106724	c.2377G>A	p.Val793Ile	missense	1.1	0.4
	rs200413276	c.2558C>A	p.Ala853Asp	missense	0.5	0.6
	rs372683132	c.922G>A	p.Gly308Ser	missense	1.1	0.4
	rs11568584	c.2153A>T	p.Lys718Met	missense	0.5	0.4
	rs11568590	c.4094A>G	p.Gln1365Arg	missense	0.5	0.0
	rs11568608	c.1820G>A	p.Ser607Asn	missense	1.1	0.0
	rs34291385	c.2293G>C	p.Val765Leu	missense	1.1	0.4
	rs200903266	c.3401G>A	p.Arg1134Gln	missense	0.5	1.0

Supplementary table 8 FPS score of variants in PK-related genes identified in FH patients (n = 114).

Gene	rs code	NT change	AA change	Туре	MAF (%)	FPS
	rs11568588	c.4042C>T	p.Arg1348Cys	missense	1.1	0.2
	rs148804178	c.205C>G	p.Leu69Val	missense	0.5	0.6
ABCG2	rs45605536	c.1582G>A	p.Ala528Thr	missense	1.1	0.4
	rs2231142	c.421C>A	p.Gln141Lys	missense	6.5	0.2
	rs2231137	c.34G>A	p.Val12Met	missense	6	0.2
	rs1337337886	c.131A>G	p.Tyr44Cys	missense	0.5	0.8
	rs35965584	c.1624A>G	p.Thr542Ala	missense	0.5	0.4
	Novel	c.1453C>A	p.Pro485Thr	missense	0.5	NR
	rs138606116	c.1060G>A	p.Gly354Arg	missense	0.5	0.0
	rs34783571	c.1858G>A	p.Asp620Asn	missense	0.5	0.4
	rs34264773	c.1758A>T	p.Lys586Asn	missense	0.5	0.3
CYP1A2	rs17861157	c.894C>A	p.Ser298Arg	missense	3.3	0.2
	rs45540640	c.613T>G	p.Phe205Val	missense	0.5	1.0
	rs201763966	c.142T>G	p.Trp48Gly	missense	0.5	0.8
	rs758124536	c.409C>T	p.Arg137Trp	missense	0.5	1.0
CYP2C19	rs3758581	c.991G>G	p.Val331Val	missense	43.5	NR
	rs17884712	c.431G>A	p.Arg144His	missense	2.2	0.8
	rs576823729	c.648C>G	p.Cys216Trp	missense	0.5	0.6
	rs17882687	c.55A>C	p.Ile19Leu	missense	0.5	0.0
	rs17878459	c.276G>C	p.Glu92Asp	missense	3.3	0.2
	rs58973490	c.449G>A	p.Arg150His	missense	1.1	0.0
CYP2C8	rs11572103	c.499A>T	p.Ile167Phe	missense	3.3	0.4
	rs10509681	c.890A>G	p.Lys297Arg	missense	4.9	0.2
	rs11572080	c.110G>A	p.Arg37Lys	missense	5.4	0.4
	rs77147096	c.787G>A	p.Gly263Ser	missense	0.5	0.0
	rs1058930	c.486C>G	p.Ile162Met	missense	4.9	0.6
	rs369591911	c.65G>A	p.Arg22Gln	missense	0.5	1.0
	rs143386810	c.844G>A	p.Gly282Ser	missense	0.5	0.8
CYP2C9	rs1799853	c.430C>T	p.Arg144Cys	missense	8.8	1.0
	rs28371685	c.1003C>T	p.Arg335Trp	missense	0.9	0.6
	rs1057910	c.1075A>C	p.Ile359Leu	missense	7.5	0.2
	rs7900194	c.449G>A	p.Arg150His	missense	1.3	0.0
	rs2256871	c.752A>G	p.His251Arg	missense	2.2	0.8
	rs201055266	c.1034T>C	p.Met345Thr	missense	0.4	1.0
	rs28371686	c.1080C>G	p.Asp360Glu	missense	0.4	0.8
	rs9332239	c.1465C>T	p.Pro489Ser	missense	0.4	0.8
CYP2D6	rs16947	c.733T>T	p.Cys245Cys	missense	32.6	NR
	rs769258	c.31G>A	p.Val11Met	missense	4.3	0.0
	rs1058172	c.941G>A	p.Arg314His	missense	4.9	1.0
	rs1065852	c.100C>T	p.Pro34Ser	missense	6	1.0
	Novel	c.551C>T	p.Ala184Val	missense	0.5	
	rs28371717	c.556G>T	p.Ala186Ser	missense	0.5	0.0
	rs28371704	c.281A>G	p.His94Arg	missense	1.6	0.0
	rs28371706	c.320C>T	p.Thr107lle	missense	2.2	0.0
	rs139779104	c.482G>A	p.Gly161Glu	missense	0.5	0.6
	rs140513104	c.821C>T	p.Pro2/4Leu	missense	0.5	1.0
	rs59421388	c.859G>A	p.val28/Met	missense	0.5	0.4
	rs61736512	c.406G>A	p.Val136Ile	missense	0.5	0.0
	rs283/1/03	c.2/1C>A	p.Leu91Met	missense	1.1	0.6
CYP3A4	rs4986907	c.485G>A	p.Arg162Gln	missense	0.4	0.0
CYP3A5	rs412/985/	c.299C>A	p.Ser1001yr	missense	0.4	0.8
	rs149664815	c.13/8C>T	p.Gln460X	stopgain	0.4	1.0
	rs09//105	c.423A>G	p.X1411rp	stopioss	5.7	1.0
	rs145774441	c.82/1>C	p.11e2/61 hr	missense	0.4	0.6
	rs28383468	c.88C>1	p.His301yr	missense	0.4	0.0
	rs14/489136	c.6081>G	p.Phe203Cys	missense	0.4	1.0
SICIENT	rs0957030	c.4191>G	p.Leu140Arg	missense	0.4	0.0
SLCISAI	rs229/322	0.550G>A	p.serii/Asn	missense	18.5	0.0
	18010/020	0.3040>A	p. v al i 22Met	missense	1.6	0.6
						101

Gene	rs code	NT change	AA change	Туре	MAF (%)	FPS
-	rs8187838	c.1352C>A	p.Thr451Asn	missense	1.6	0.0
	rs4646227	c.1256G>C	p.Gly419Ala	missense	4.3	0.0
	rs2274828	c.1348G>A	p.Val450Ile	missense	0.5	0.0
	Novel	c.800A>T	p.Glu267Val	missense	0.5	NR
	rs8187821	c.351C>A	p.Ser117Arg	missense	0.5	0.0
	rs146304164	c.1246G>C	p.Val416Leu	missense	0.5	0.0
SLC22A1	rs628031	c 1222A>G	n Met408Val	missense	66.8	0.0
02022/12	rs683369	c 480G>C	p.Ivici+00 v ai	missense	85.9	0.0
	rs776304541	c 1406G>A	p.Leu1001 lie n Arg469His	missense	0.5	0.0
	rs34205214	c = 1025G > A	n Arg342His	missense	2.2	0.0
	rs34447885	c 41C>T	n Ser14Phe	missense	2.2	0.0
	rs41267797	c 1390G > A	p.Sel 141 lle	missense	2.2 4 9	0.2
	rs35270274	c 1463G>T	n Arg488Met	missense	1.5	0.0
	rs35888596	c 113G > A	n Gly38Asn	missense	2.2	1.0
	rs34059508	c 1393G>A	n Gly465Arg	missense	1.1	0.8
	rs2282143	c 1022C>T	n Pro3411 eu	missense	1.1	0.8
	rs12202145	c 181C>T	n Arg61Cvs	missense	3.8	0.0
	rs36103319	c 659G>T	n Gly220Val	missense	0.5	0.8
	rs78899680	c 1442G>T	p.Gly220 Val	missense	0.5	0.0
	rs34130495	c 1201G > A	p.Gly401 Var	missense	0.5	0.5
	rs774654623	c.1396C>A	p.0194015cr	missense	0.5	0.0
SI C2246	rs11568627	c 311C\T	p.1104001111	missense	0.5	0.0
SLC22110	rs11568626	$c \frac{1}{9}G > \Delta$	p.110104Leu p.Arg50His	missense	0.5	0.0
SI C2248	rs11568/81	c 560C\T	p.AigJoins	missense	0.5	0.0
SLC22110	rs/5/38101	c.473T>C	p.Ma107 var	missense	0.5	0.0
SI CO1R1	rs2306283	$c_{388} \Delta G$	p. Vari Joria	missense	0.5 47.4	0.0
SLCOIDI	rs/1/9056	c.500A>C	p. $Asir150Asp$ p.Val174Ala	missense	11	0.0
	rs110/15810	c.3211>C	p.val174Ala	missense	11	0.8
	rs11045852	c.733A>G	p.1101551111 p.11e245Val	missense	13.2	0.2
	rs74064213	c 1/95A>G	p.1102+3 V at p.11e/199Val	missense	0.9	0.2
	rs3/671512	c.1929A>C	p.110+77 at $n L e = 16/13$ Phe	missense	5.3	0.0
	rs59507379	c 1463G>C	p.Leu 0451 lle $p.Glv/188 \Delta la$	missense	1.8	0.0
	rs79135870	c 66/A>G	p.Ory+00Ala n Ile222Val	missense	1.0	0.0
	rs50113707	$c.1200C \ G$	p. $\frac{10222}{100}$ v at	missense	0.4	0.0
SI CO1B3	rs/1/9117	c 250T\G	p.1 $nC+00Lcu$ p.Ser8/141a	missense	76.1	0.0
SLCOIDS	rs7311358	c.615G>A	n Met205Ile	missense	70.1	0.2
	rs57585902	$c_{355} \Delta G$	p. $Met205He$ p. $Thr119\Delta1a$	missense	1 1	0.0
	rs60140950	c 767G>C	p.111177Ala	missense	1.1	1.0
	rs773176181	c.1247G>C	p.Gly/16Ala	missense	0.5	0.8
	rs150007972	c 233C > A	n Thr78Asn	missense	0.5	0.0
	rs61736817	c 1282C>T	p.1 m / 0Asn	missense	0.5	0.4
	rs76963571	c.1628C>G	p.Leu = 201 lie	missense	0.5	0.0
	rs115227445	c 592C\G	p.I au 198Val	missense	0.5	0.0
	Novel	c 596G>T	p.Leu190Val	missense	0.5	NR
	rs12299012	c 1595T>C	n Val532Ala	missense	0.5	0.0
SI CO2B1	rs2306168	c 1025C>T	p. vai332Aia	missense	65	0.0
SECO2DI	rs12/221/9	c.503G>A	p.Set 3421 lie	missense	12	0.0
	rs78825186	c.3050>A	p.Arg162His	missense	12	0.2
	rs1/15875125	$c.1206C > \Delta$	p.Arg1021113	missense	0.5	0.0
	rs35100625	c 160G>A	p.Asii+02Lys	missense	0.5	0.0
UGT143	rs6/131625	c 140T>C	p. $va137$ Met	missense	1.1	0.4
001113	rs28898619	$c_{342}G > \Delta$	p. Val+771a	missense	11	0.0
	rs38212/17	c 31T\C	n Trn11 Arg	missense	1.1 /5 7	0.0
	rs61764030	c 473C>T	n Ala158Val	missense	+5.7	0.0
	rs14937/5/10	c 775G\C	p.710150 val $p.Glv750 \Delta ro$	missense	1.1	0.5
	rs/5//0005	c 808 A \ G	p.01y237A1g p.Met270Va1	missansa	1.1	0.5
	13737777777777777777777777777777777777	C.500A/U	p.m(1270) al	missense	2.2	0.0
	rs1/05/1315	c.323A>1	p.Asiii / Jiyf	missense	0.5	0.0
	rs13/06808	c /31C\T	p.7.10.001111	missansa	0.5	0.0
	1313400070	0.4010/1	h.111114411¢	1115501150	0.5	0.5
						102

Gene	rs code	NT change	AA change	Туре	MAF (%) FPS	5
	rs45595237	c.145C>T	p.Arg49Trp	missense	0.5	0.5
UGT2B7	rs7439366	c.802T>C	p.Tyr268His	missense	62	0.3
	rs140153012	c.321A>T	p.Leu107Phe	missense	1.1	0.0
	rs60103519	c.536C>T	p.Thr179Ile	missense	1.1	0.0

AA: amino acid; NT nucleotide; NR: not reported (for variants that did not show any prediction in the 5 algorithms used); FPS: functionality prediction score; MAF: minor allele frequency; PK: pharmacokinetics.

Gene	rs code	NT change	Туре	LDL-c red	uction (%)	_	Adjusted	Prediction
				Non carriers	Carriers	p-value	p-value	
All statins								
ABCC1	rs45511401	c.2012G>T	missense	$-45.9 \pm 20.1 \ (85)$	-64.7 ± 6.4 (7)	<0.0001	0.001	0.8
ABCC2	rs17216317	c.3872C>T	missense	-48.3 ± 18.9 (86)	-33.6 ± 30.7 (6)	0.297	1.000	0.8
	rs8187692	c.3542G>T	missense	-47.5 ± 19.9 (87)	-43 ± 23.5 (5)	0.693	0.912	0.8
ABCC3	rs11568591	c.3890G>A	missense	-47 ± 20.3 (80)	-49.5 ± 18.2 (12)	0.665	0.950	0.8
<i>CYP2C19</i>	rs17884712	c.431G>A	missense	$-47.9 \pm 19.8 \ (88)$	-33.5 ± 22.2 (4)	0.286	1.000	0.8
CYP2C8	rs1058930	c.486C>G	missense	$-47.7 \pm 20.2 \; (84)$	-43.4 ± 18.1 (8)	0.548	1.000	0.6
	rs2071426	g.96828323T>C	splicing	-47.7 ± 19.2 (52)	-46.7 ± 21.3 (40)	0.816	0.906	D
CYP2C9	rs1799853	c.430C>T	missense	$-48.8 \pm 19.3 \ (95)$	-43.6 ± 19.6 (19)	0.298	1.000	1.0
	rs2256871	c.752A>G	missense	$-47.7 \pm 19.4 \ (109)$	-53.4 ± 19.5 (5)	0.558	0.962	0.8
CYP2D6	rs3892097	g.42524947C>T	splicing	$-47.8 \pm 19.9 \ (88)$	-36.5 ± 22.3 (4)	0.387	1.000	D
	rs1058172	c.941G>A	missense	$-46.9 \pm 19.8 \ (83)$	-51.1 ± 22.9 (9)	0.608	1.000	1.0
	rs1065852	c.100C>T	missense	-47.2 ± 19.9 (82)	-48.3 ± 22 (10) -47.4 ± 19.4	0.875	0.931	1.0
CYP3A5	rs776746	g.99270539C>T	splicing frameshift	-57.5 ± 16.7 (7)	(107)	0.168	1.000	D
	rs41303343	c.035dup	insertion	$-47.8 \pm 19.5 \; (110)$	-51.9 ± 15 (4)	0.634	0.990	D
	rs6977165	c.423A>G	stoploss	$-47.8 \pm 19.5 \ (101)$	-49.1 ± 18.7 (13)	0.823	0.901	1.0
SLC15A1	rs8187820	c.364G>A	missense	$-47.3 \pm 20.2 \ (89)$	-47.1 ± 13.7 (3)	0.983	1.000	0.6
SLC22A1	rs35888596	c.113G>A	missense non- frameshift	-46.8 ± 20.1 (88)	-59.2 ± 12.9 (4)	0.147	1.000	1.0
	rs72552763	c.258_1260del	deletion	-48.4 ± 20.2 (60)	-45.3 ± 19.8 (32)	0.484	1.000	D
	rs12208357	c.181C>T	missense	-47.5 ± 19.9 (86)	-44.5 ± 23 (6)	0.768	0.937	0.6
SLCO1B1	rs4149056	c.521T>C	missense	$-47.5 \pm 19.6 \ (89)$	-49.6 ± 18.7 (25)	0.633	1.000	0.8
	rs59502379	c.1463G>C	missense	-48.1 ± 19.4 (110)	-45.4 ± 20.3 (4)	0.808	0.940	0.8
SLCO1B3	rs60140950	c.683G767G>C	missense	-46.3 ± 19.3 (69)	-50.4 ± 22.2 (23)	0.432	1.000	1.0
UGT1A3	rs45449995	c.808A>G	missense	$-47.2\pm20.2\;(89)$	-50.1 ± 13.5 (3)	0.753	0.942	0.8
Atorvasta	tin							
ABCC1	rs45511401	c.2012G>T	missense	-46.3 ± 18.4 (72)	$-65.8 \pm 6.2 \ (6)$	0.000	0.001	0.8
ABCC2	rs8187692	c.3542G>T	missense	-48.4 ± 18.1 (73)	-39.6 ± 24.1 (5)	0.467	1.000	0.8
	rs17216317	c.3872C>T	missense	-48.2 ± 18.3 (73)	-42.7 ± 23.4 (5)	0.637	0.965	0.8
ABCC3	rs11568591	c.3890G>A	missense	-47.8 ± 18.3 (69)	$-47.9 \pm 21.3 \ (9)$	0.988	0.988	0.8
<i>CYP2C19</i>	rs17884712	c.431G>A	missense	-48.6 ± 18.1 (74)	-33.5 ± 22.2 (4)	0.269	1.000	0.8
CYP2C8	rs2071426	g.96828323T>C	splicing	-46.5 ± 17 (43)	-49.4 ± 20.4 (35)	0.512	1.000	D
	rs1058930	c.486C>G	missense	$-48.1 \pm 18.6 \ (71)$	-44.7 ± 19.2 (7)	0.665	0.924	0.6
CYP2C9	rs1799853	c.430C>T	missense	$-48.9 \pm 17.8 \ (81)$	$-42.8 \pm 20.5 \; (17)$	0.264	1.000	1.0
	rs1799853	c.430C>T	missense	$-48.9 \pm 17.8 \ (81)$	$-42.8 \pm 20.5 \; (17)$	0.264	1.000	1.0
	rs2256871	c.752A>G	missense	-47.6 ± 18.3 (93)	-53.4 ± 19.5 (5)	0.547	1.000	0.8
CYP2D6	rs3892097	g.42524947C>T	splicing	-48.4 ± 18.3 (74)	-36.5 ± 22.3 (4)	0.364	1.000	D
	rs1065852	c.100C>T	missense	-48.4 ± 18.7 (69)	-43.6 ± 17.1 (9)	0.452	1.000	1.0
	rs1058172	c.941G>A	missense	-48.2 ± 18.6 (71)	-43.7 ± 18.5 (7)	0.553	0.988	1.0

Supplementary table 9 Influence of deleterious variants in PK-related genes on LDL-c reduction in FH patients on statin treatment.

Gene	rs code	NT change	Туре	LDL-c red	luction (%)	_	Adjusted	Prediction
				Non carriers	Carriers	p- <i>value</i>	p-value	
CYP3A5	rs776746	NA	splicing frameshift	-57.5 ± 16.7 (7)	-47.1 ± 18.3 (91)	0.160	1.000	D
	rs41303343	c.035dup	insertion	-47.7 ± 18.3 (95)	-52 ± 20.4 (3)	0.751	0.963	D
SLC22A1	rs35888596	c.113G>A	missense	-47.2 ± 18.6 (74)	-59.2 ± 12.9 (4)	0.158	1.000	1.0
	rs12208357	c.181C>T	missense nonframeshift	-47.2 ± 18.5 (75)	-62.3 ± 15.4 (3)	0.228	1.000	0.6
	rs72552763	c.258_1260de1>l	deletion nonframeshift	-48.5 ± 19.2 (51)	-46.5 ± 17.4 (27)	0.649	0.954	D
	rs72552763	c.258_1260de1>l	deletion	-48.5 ± 19.2 (51)	-46.5 ± 17.4 (27)	0.649	0.954	D
SLCO1B1	rs4149056	c.521T>C	missense	-47.2 ± 18.5 (78)	-50.3 ± 17.7 (20)	0.502	1.000	0.8
	rs59502379	c.1463G>C	missense	-48 ± 18.3 (94)	-45.4 ± 20.3 (4)	0.815	0.927	0.8
SLCO1B3	rs60140950	c.683G767G>C	missense	-47 ± 17.7 (63)	$-51.4 \pm 21.8 \ (15)$	0.473	1.000	1.0
ABCC3	rs11568591	c.3890G>A	missense	-35.8 ± 16.7 (22)	-33.5 ± 23.6 (3)	0.884	0.921	0.8
CYP2C8	rs2071426	g.96828323T>C	splicing	-36.3 ± 15.2 (15)	-34.3 ± 20.3 (10)	0.790	0.941	D
CYP2C9	rs1799853	c.430C>T	missense	-37.9 ± 20.2 (30)	-31.2 ± 18.3 (9)	0.360	1.000	1.0
CYP3A5	rs776746	g.99270539C>T	splicing nonframeshift	-33.8 ± 26 (3)	-36.6 ± 19.6 (36)	0.870	0.946	D
SLC22A1	rs72552763	c.258_1260de1>l	deletion	-37.4 ± 15.6 (19)	-29.5 ± 21.4 (6)	0.432	1.000	D
	rs12208357	c.181C>T	missense	-36.4 ± 17.5 (22)	-29.5 ± 14.2 (3)	0.503	1.000	0.6
SLCO1B1	rs4149056	c.521T>C	missense	-35.4 ± 19.2 (27)	-38.6 ± 21.6 (12)	0.668	0.903	0.8
SLCO1B3	rs60140950	c.683G767G>C	missense	-37.1 ± 18.4 (20)	$-29.3 \pm 8.3 (5)$	0.178	1.000	1.0

FH patients carrying the homozygous form of the minor allele (AA) were grouped with the heterozygous carriers (RA) and compared with non-carriers (RR). Continuous variables are shown as mean \pm SD and were compared by *t*-test. The p-value was adjusted using the Benjamini-Hochberg correction. *In silico* functionality prediction was performed either using the functionality prediction score (FPS) for missense variants or dbNSFP v4.2 *in silico* algorithm for splice variants. Frameshift variants were considered deleterious. Nonframeshift variants were considered potentially deleterious. NT nucleotide; D: deleterious; FPS: Functionality prediction score; N: neutral.

Variant		β	SE	p-value	Adjusted p- value
Deleterious variants					
<i>CYP2C19*9</i> c.431G>A	A allele	14.4	10.2	0.159	0.520
<i>CYP2C8</i> c.486C>G	A allele	4.2	7.4	0.570	0.855
<i>CYP2C8</i> g.5932A>G	G allele	1	4.2	0.813	0.915
<i>CYP2C9</i> c.430C>T	T allele	4.2	7.4	0.570	0.606
<i>CYP2C9</i> c.752A>G	G allele	5.2	4.9	0.286	0.859
<i>CYP2D6</i> c.941G>A	A allele	-5.7	8.9	0.525	0.862
<i>CYP2D6</i> c.100C>T	T allele	-4.2	7.0	0.551	0.940
<i>CYP2D6</i> g.6866G>A	A allele	11.3	10.2	0.270	0.608
<i>CYP3A5</i> c.624G>A	A allele	-1.2	6.7	0.862	0.912
<i>CYP3A5</i> c.423A>G	G allele	-1.3	5.7	0.827	0.924
<i>CYP3A5*3</i> g.12083G>A	A allele	4.6	7.6	0.684	0.504
<i>UGT1A3</i> c.808A>G	G allele	-2.9	11.8	0.182	0.504
<i>ABCC1</i> c.2012G>T	T allele	-18.8	7.7	0.016	0.096
<i>ABCC2</i> c.3872C>T	T allele	14.7	8.3	0.082	0.328
<i>ABCC2</i> c.3542G>T	T allele	4.5	9.2	0.625	0.900
<i>ABCC3</i> c.3890G>A	A allele	-2.5	6.2	0.685	0.881
<i>SLC15A1</i> c.364G>A	A allele	0.2	11.8	0.987	0.987
<i>SLC22A1</i> c.181C>T	T allele	3	8.5	0.726	0.901
<i>SLC22A1</i> c.113G>A	A allele	-12.5	10.2	0.224	0.538
SLC22A1 c.1260_1262del	Deletion	3.1	4.4	0.485	0.831
<i>SLCO1B1*5</i> c.521T>C	C allele	-2.1	4.4	0.641	0.888
<i>SLCO1B1</i> c.1463G>C	C allele	2.7	9.9	0.784	0.941
<i>SLCO1B3</i> c.767G>C	C allele	-4.1	4.8	0.396	0.750
Treatment					
Baseline LDL-c		-0.1	0.02	<0.001	<0.001
High intensity treatment		-15.8	5.0	0.002	0.024
Atorvastatin		-7.3	5.9	0.218	0.561
Rosuvastatin		-16.4	8.0	0.043	0.193
Ezetimibe		-8.8	3.7	0.018	0.090
Drug interactions	CYP3A4				
	inhibitor	-8.9	6.4	0.164	0.590
SRAE	Presence	-11.8	4.3	0.007	0.063
	Myopathy	-11.8	4.7	0.014	0.101
Reduced adherence		14.4	10.2	0.159	0.919
Patient characteristics					
Age		0.11	0.1	0.391	0.834
Gender	Male	-3.3	4.0	0.413	0.834
Ethnics	Brown	7.2	4.3	0.099	0.317
	Black	-0.4	5.6	0.942	0.972
Type 2 diabetes		-2.8	4.5	0.525	0.859
BMI		1.44	0.4	<0.001	<0.001
FH-related variant	Carrier	-4.2	3.9	0.288	0.627

Supplementary table 10 Influence of variants in PK-related genesgenetic and non-genetic variables on LDL-c reduction in FH patients: Univariate linear regression analysis.

 β : linear coefficient; SE: standard error; BMI: body mass index; FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; SRAE: statin-related adverse events. P-value was adjusted using the Benjamini-Hochberg correction.

Variant		n	β	SE	p-value
<i>CYP2C19</i> c.431G>A	A allele	92	14.4	8.7	0.101
<i>CYP2C8</i> c.486C>G	A allele	92	-2.2	6.5	0.737
<i>CYP2C8</i> g.5932A>G	G allele	92	0.6	3.7	0.863
<i>CYP2C9*2</i> c.430C>T	T allele	114	2.3	4.2	0.595
<i>CYP2C9*9</i> c.752A>G	G allele	114	9	7.5	0.232
<i>CYP2D6</i> c.941G>A	A allele	92	-6.5	6.0	0.281
<i>CYP2D6</i> c.100C>T	T allele	92	-6.4	5.8	0.272
<i>CYP2D6</i> g.6866G>A	A allele	92	0.3	90.	0.974
<i>CYP3A5</i> c.624G>A	A allele	114	-1.3	8.1	0.873
<i>CYP3A5</i> c.423A>G	G allele	114	-2.1	4.9	0.669
<i>CYP3A5*3</i> g.12083G>A	A allele	114	4.7	6.4	0.463
<i>UGT1A3</i> c.808A>G	G allele	92	-11.3	10.3	0.274
<i>ABCC1</i> c.2012G>T	T allele	92	-11.5	6.7	0.092
<i>ABCC2</i> c.3872C>T	T allele	92	12.2	7.2	0.095
<i>ABCC2</i> c.3542G>T	T allele	92	3.6	8.0	0.656
<i>ABCC3</i> c.3890G>A	A allele	92	-2.0	5.3	0.710
<i>SLC15A1</i> c.364G>A	A allele	92	-11.8	10.3	0.253
<i>SLC22A1</i> c.181C>T	T allele	92	-2.3	7.3	0.757
<i>SLC22A1</i> c.113G>A	A allele	92	-10.3	8.8	0.247
<i>SLC22A1</i> c.1260_1262del	Deletion	92	-1.4	4.0	0.720
<i>SLCO1B1*5</i> c.521T>C	C allele	114	-3.3	3.7	0.365
<i>SLCO1B1</i> c.1463G>C	C allele	114	3.1	8.1	0.701
<i>SLCO1B3</i> c.767G>C	C allele	92	-6.3	4.3	0.150

Supplementary table 11 Influence of deleterious variants (MAF > 1.0%) on LDL-c response to statins in FH patients: Multivariate linear regression analysis

Each model was adjusted with the following covariates: body mass index, baseline LDL-c, therapy intensity, and presence of SRAE. n: number of patients; β : linear coefficient; SE: standard error; LDL-c: low-density lipoprotein cholesterol; FH: familial hypercholesterolemia; SRAE: statin-related adverse events.

Variable		RE, %	NRE, %	OR (95%CI)	p-value	Adjusted p-
		(58)	(56)			value
Deleterious variants						
<i>CYP2C19*9</i> c.431G>A	A allele	2.2 (1)	6.4 (3)	3.0 (0.4 - 61.9)	0.349	0.785
<i>CYP2C8</i> c.486C>G	A allele	4.4 (2)	12.8 (6)	3.1 (0.7 - 22.3)	0.175	0.700
<i>CYP2C8</i> g.5932A>G	G allele	44.4 (20)	42.6 (20)	0.9 (0.4 - 2.1)	0.855	0.993
<i>CYP2C9</i> c.430C>T	T allele	12.1 (7)	21.4 (12)	2.0 (0.7 - 5.8)	0.185	0.666
<i>CYP2C9</i> c.752A>G	G allele	5.2 (3)	3.6 (2)	0.7 (0.1 - 4.3)	0.678	0.939
<i>CYP2D6</i> c.941G>A	A allele	11.1 (5)	8.5 (4)	0.7 (0.2 - 3)	0.676	0.973
<i>CYP2D6</i> c.100C>T	T allele	11.1 (5)	10.6 (5)	1.0 (0.2 - 3.7)	0.942	1.000
<i>CYP2D6</i> g.6866G>A	A allele	2.2 (1)	6.4 (3)	3.0 (0.4 - 61.9)	0.349	0.739
<i>CYP3A5</i> c.624G>A	A allele	3.4 (2)	3.6 (2)	1.0 (0.1 - 8.9)	0.972	1.000
<i>CYP3A5</i> c.423A>G	G allele	10.3 (6)	12.5 (7)	1.2 (0.4 - 4.1)	0.718	0.909
<i>CYP3A5*3</i> g.12083G>A	A allele	93.1 (54)	94.6 (53)	1.3 (0.3 - 6.9)	0.733	0.880
UGT1A3 c.808A>G	G allele	4.4 (2)	2.1 (1)	0.5 (0.0 - 5)	0.541	0.885
ABCC1 c.2012G>T	T allele	15.6 (7)	0.0(0)	-	-	-
<i>ABCC2</i> c.3872C>T	T allele	2.2 (1)	10.6 (5)	5.2 (0.8 - 102.6)	0.138	0.475
ABCC2 c.3542G>T	T allele	4.4 (2)	6.4 (3)	1.5(0.2 - 11.5)	0.683	0.921
ABCC3 c 3890G>A	A allele	133(6)	12.8 (6)	10(03-33)	0.936	1 000
SLC15A1 c 364G>A	A allele	44(2)	21(1)	0.5(0-5)	0 541	0.927
$SLC22AI \subset 181C>T$	T allele	44(2)	$\frac{2.1}{85}$ (4)	2(04 - 15)	0.371	0.874
$SLC22AI \subset 113G>A$	A allele	67(3)	21(1)	0.3(0-2.5)	0311	0.746
SLC22A1	Deletion	0.7 (3)	2.1 (1)	0.5 (0 2.5)	0.011	0.770
c.1260 1262del	200000	31.1 (14)	38.3 (18)	1.4 (0.6 - 3.3)	0.470	0.891
SLCO1B1*5 c.521T>C	C allele	24.1 (14)	19.6 (11)	0.8 (0.3 - 1.9)	0.563	0.844
<i>SLCO1B1</i> c.1463G>C	C allele	3.4 (2)	3.6 (2)	1 (0.1 - 8.9)	0.972	1.000
<i>SLCO1B3</i> c.767G>C	C allele	26.7(12)	23.4 (11)	0.8(0.3 - 2.2)	0.718	0.891
Treatment		20.7 (12)	23.1 (11)	0.0 (0.3 2.2)	0.710	0.071
Baseline LDL-c (mg/dL)		275 ± 90	226 ± 61	0.99(0.98 - 0.99)	0.002	0.024
High intensity treatment		93 1 (54)	78 6 (44)	0.3(0.1-0.8)	0.033	0.198
Atorvastatin		77.6 (45)	82.1 (46)	1.3(0.5 - 3.4)	0.545	0.853
Rosuvastatin		13.8 (8)	54(3)	0.4(0.1-1.3)	0 141	0.634
Ezetimibe		46.6 (27)	26.8(15)	0.4(0.2-0.9)	0.030	0.216
Drug interaction	CYP3A4	10.0 (27)	20.0 (15)	0.1 (0.2 0.9)	0.050	0.210
	inhibitor	13.2 (7)	6.7 (3)	0.5 (0.1 - 1.8)	0.295	1.000
SRAE		29.3 (17)	3.6 (2)	0.1 (0 - 0.3)	0.002	0.036
Myopathy		34.5 (20)	7.3 (4)	0.1 (0 - 0.4)	0.001	0.036
Reduced adherence		17.2 (10)	14.5 (8)	0.8(0.3 - 2.2)	0.696	0.895
Patient characteristics		``´		,		
Age		53.3 ± 14.9	56.7 ± 13.9	1.0 (0.99 - 1.04)	0.215	0.645
Male gender		31.0 (18)	25.0 (14)	0.7 (0.3 - 1.7)	0.474	0.853
Ethnics	Brown +					
	black	46.6 (27)	58.9 (33)	1.5 (0.7 - 3.4)	0.288	0.741
BMI (kg/cm ²)		26.9 ± 3.5	29.2 ± 5.0	1.1 (1.04 - 1.26)	0.009	0.081
Type 2 diabetes		25.9 (15)	16.7 (9)	0.6 (0.2 - 1.4)	0.220	0.660
FH-related variant	Carrier	34.5 (20)	26.8 (15)	0.7 (0.3 - 1.5)	0.374	0.792

Supplementary table 12 Association of variants in PK-related genes and non-genetic variables with statin response in FH patients: Univariate logistic regression analysis

Number of patients in round brackets. Categorical variables are expressed as percentage and number between brackets. Continuous variables are expressed as mean and standard deviation. P-value was adjusted using the Benjamini-Hochberg correction with a FDR of 10%. NRE: non-responder; RE: responder; OR: odds ratio; CI: confidence interval; BMI: body mass index; FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; NR: not reported (No patients in NRE group); SRAE: statin-related adverse events.
Variant		No SRAE	SRAE	OR (95%CI)	p-value	Adjusted
		(n= 89)	(n =24)			p -value
Deleterious variants						
<i>CYP2C8</i> c.486C>G	A allele	45.5 (35)	35.7 (5)	0.7 (0.2 - 2.1)	0.501	0.895
<i>CYP2C9*2</i> c.430C>T	T allele	16.9 (15)	12.5 (3)	0.7 (0.2 - 2.4)	0.606	0.947
<i>CYP2C9*3</i> c.752A>G	G allele	2.2 (2)	12.5 (3)	6.2 (1 - 49.5)	0.053	0.331
<i>CYP3A5</i> c.624G>A	A allele	3.4 (3)	4.2 (1)	1.2 (0.1 - 10.3)	0.852	0.926
<i>CYP3A5</i> c.423A>G	G allele	11.2 (10)	12.5 (3)	1.1 (0.2 - 4.1)	0.863	0.932
<i>CYP3A5*3</i> g.12083G>A	A allele	93.3 (83)	95.8 (23)	1.7 (0.3 - 32.2)	0.646	0.950
<i>ABCC1</i> c.2012G>T	T allele	6.5 (5)	14.3 (2)	2.4 (0.3 - 12.6)	0.327	0.743
<i>ABCC2</i> c.3872C>T	T allele	5.2 (4)	14.3 (2)	3.0 (0.4 - 17.5)	0.227	0.568
<i>ABCC2</i> c.3542G>T	T allele	5.2 (4)	7.1 (1)	1.4 (0.1 - 10.5)	0.770	1.000
<i>ABCC3</i> c.3890G>A	A allele	13 (10)	14.3 (2)	1.1 (0.2 - 5)	0.895	0.932
<i>SLC22A1</i> c.113G>A	A allele	3.9 (3)	7.1 (1)	1.9 (0.1 - 16.2)	0.591	0.985
SLC22A1 c.1260_1262del	Deletion	37.7 (29)	14.3 (2)	0.3 (0 - 1.1)	0.107	0.446
<i>SLCO1B1*5</i> c.521T>C	C allele	21.3 (19)	25 (6)	1.2 (0.4 - 3.4)	0.702	0.975
<i>SLCO1B1</i> c.1463G>C	C allele	3.4 (3)	4.2 (1)	1.2 (0.1 - 10.3)	0.852	0.968
<i>SLCO1B3</i> c.767G>C	C allele	26 (20)	14.3 (2)	0.5 (0.1 - 1.9)	0.356	0.742
Treatment						
Baseline LDL-c (mg/dL)		$240~\pm~75$	$296~\pm~90$	1 (1.00 - 1.01)	0.004	0.033*
High intensity treatment		84.3 (75)	91.7 (22)	2.1 (0.5 - 13.7)	0.365	0.702
Atorvastatin		83.1 (74)	66.7 (16)	0.4 (0.1 - 1.2)	0.081	0.405
Rosuvastatin		7.9 (7)	16.7 (4)	2.3 (0.6 - 8.6)	0.207	0.575
Ezetimibe		32.6 (29)	50 (12)	2.1 (0.8 - 5.2)	0.119	0.425
Drug interaction	CYP3A4					
	inhibitor	5.6 (5)	20.8 (5)	4.4 (1.1 - 17.4)	0.029	0.196
Reduced adherence		10.1 (9)	37.5 (9)	5.3 (1.8 - 16)	0.002	0.050
Patient characteristics						
Age		55.1 ± 14.4	$55.9~\pm~13.6$	1 (0.97-1.03)	0.822	1.027
Gender	Male	27 (24)	29.2 (7)	1.1 (0.4 - 2.9)	0.830	0.988
Ethnics	Brown +		45.0 (11)		0.005	0.005
DIG	Black	46.1 (35)	45.8 (11)	1.0 (0.4 - 2.5)	0.985	0.985
BMI	a .	28.4 ± 4.7	26.8 ± 3.4	0.9 (0.81 - 1.02)	0.134	0.419
FH-related variant	Carrier	22.5 (20)	54.2 (13)	4.1 (1.6 - 10.7)	0.004	0.050

Supplementary table 13 Association of variants in PK-related genes and non-genetic variables with SRAE in FH patients: Univariate logistic regression analysis.

Number of patients in round brackets. P-value was adjusted using the Benjamini-Hochberg correction. NRE: non-responder; RE: responder; OR: odds ratio; CI: confidence interval; BMI: body mass index; FH: familial hypercholesterolemia; LDL-c: low-density lipoprotein cholesterol; NR: not reported (No patients in NRE group); SRAE: statin-related adverse events.

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
ABCA1	rs200463326	c.*1466delT		3'UTR	21.9	Ν	0.002
	rs2066718	c.2311G>A	p.Val771Met	missense	9.2	Ν	0.049
	rs2230806	c.656G>A	p.Arg219Lys	missense	35.1	Ν	0.684
	rs2230808	c.4760A>G	p.Lys1587Arg	missense	63.6	D	0.690
	rs363717	c.*1896G>A		3'UTR	80.7	Ν	0.006
	rs557492263	c.*321delT		3'UTR	43.9	Ν	<0.001
	rs769705621			splicing	21.2	D	1.000
	rs769705621			splicing	7.9	D	0.000
	rs1799777	c7675insG		5'UTR	16.2	Ν	0.733
	rs1800977	c24490C>T		5'UTR	37.7	Ν	0.549
	rs1800978	c18G>C		5'UTR	15.8	Ν	0.735
	rs73517870	c.*395T>A		3'UTR	7	Ν	0.432
	Novel			splicing	9.6	Ν	0.595
	rs115059464	c.*2213T>C		3'UTR	0.4	Ν	1.000
	rs200463326	c.*1466delT		3'UTR	21.9	Ν	0.002
	rs2066714	c.2649A>G	p.Ile883Met	missense	22.4	Ν	0.185
	rs41432545	c.*1653T>A		3'UTR	6.6	Ν	0.389
	rs77663187	g.107556811del		splicing	7.0	Ν	1.000
	rs142039624	c.*738G>T		3'UTR	0.4	Ν	1.000
	rs4149338	c.*693C>T		3'UTR	32	Ν	0.137
	rs4149339	c.*1440C>T		3'UTR	30.7	Ν	0.126
	rs4149340	c.*1911C>T		3'UTR	3.9	Ν	1.000
	rs769705621	g.107556792_10755679 3insA		splicing	9.3	D	0.779
	rs769705621	g.107556792_10755679		splicing		D	1.000
	rs769705621	3insAA g.107556792_10755679 3insAAA		splicing	21.2	D	1.000
	rs769705621	g.107556792_10755679		splicing	7.0	D	1.000
	rs769705621	31nsAAAA g.107556792_10755679		splicing	7.9	D	1.000
		3insAAAA			3.5	-	1 0 0 0
	rs769705621	g.107556792_10755679 3ins A A A A A A		splicing	35	D	1.000
	rs769705621	g.107556792_10755679 3insAAAAAA		splicing	3.5	D	1.000
	rs779989235	c.*1466_*1465delTT		3'UTR	11.7	Ν	0.355
	rs4149341	c.*2311A>G		3'UTR	11	Ν	0.355
	rs2066718	c.2311G>C	p.Val771Leu	missense	0.4	Ν	1.000
	rs75141626	c.*2705G>A		3'UTR	2.2	Ν	1.000
	rs763013834	c.*321_*322insT		3'UTR	1.8	Ν	1.000
	Novel	c.*320_*321insT		3'UTR	20.6	Ν	0.003
	Novel	c.*1464delT		3'UTR	18.9	Ν	0.012
	Novel	c.*1465_*1464delTT		3'UTR	18.9	Ν	0.012
	Novel	c.*1466_*1464delTTT		3'UTR	23	Ν	0.006
	rs373974758	c.*2899_*2897delGTT		3'UTR	6.6	Ν	0.389
	rs35207495	c.2602G>A	p.Glu868Lys	missense	0.4	D	1.000
	Novel	c.2673A>T		missense	0.4	Ν	1.000
	Novel	c.*1465_*1466insT		3'UTR	9.2	Ν	0.595

Supplementary table 14 Variants in PD-related genes identified in FH patients (n=114).

Gene	rs code	NT change	AA change	Туре	MAF	Prediction	HWE
	rc41474440	a *2900 *29074alCTT			<u>(%)</u>	N	p -value
	1541474449	c.*2699_*269/del011			7.5	IN N	1.000
	1874310240	c. 901×C			0.9	IN N	0.505
	18771290401	c. 14000e11	n Clu1172 Asn	missonso	9.2 5 7	IN N	0.393
	1855918808	0.55100×C	p.Olu11/2Asp	missonso	1.9	N D	1.000
	189202341 Noval	0.000C > 1	p.Aig250Cys		1.0	D N	1.000
	novel	$2.762 \text{ A} \times C$	n Sor1255 Arg	missonso	1.0	N D	1.000
	1541430749	2.24280A>C	p.sei1255Aig	5 IITD	0.4	D N	1.000
	rs10001377	c.=24380A>G		3 U I K 3'I I T P	0.4	N	1.000
	rs35819696	c 2320A>C	n Thr77/Pro	missense	2.0	D	1.000
	rs1033/391/0	c.2320A>C	p.1117/4110	missense	0.4	D	1.000
	rs02825/3	c.1196T>C	p.111311001yi	missense	0.4	D N	1.000
	rs115216814	c.11901>C	p. Vai333Aia	missense	0.9	N	1.000
	rs77877520	c.03412A	p.36121211		0.9	N	1.000
	rs111202742	2. 24442C>C		5 U I K	1.2	IN N	1.000
	18111292742	c24442C>G	n Val92511a	JUIK	1.5	IN N	1.000
	152000715	0.24/30>A	p. v alo2511e		5.5	IN N	1.000
	18146060369	c.*32311>C		JUIK	0.4	N	1.000
	novel	c.019/1>0	n Ala1192Thu	missense	0.4	D	1.000
	18143180998	c.5544G>A	p.Ata118211	missense	0.4	D	1.000
	1820200281/	c.2419G>A	p.Asp80/Asn	missense	0.4	IN N	1.000
	18348/9/08	C.0729C>A	p.Asp2243Glu	missense	0.4	IN N	1.000
	rs/80864/4	c24368G>1			0.9	IN N	1.000
	rs41437944	c.*1923A>C			0.4	IN N	1.000
	Novel	c.*321_*320de111	- A1241Th	501K	1.5	IN N	1.000
	rs14//43/82	c.4022G>C	p.Arg13411nr	missense	0.4	IN N	1.000
	rs940819544	c.*2/3/1>C			0.4	IN N	1.000
	INOVEI	C.*1/95_*1/92delTAC T		3'UIR	0.4	IN	1.000
ABCG1	rs1044317	c.*399A>G		3'UTR	50.5	Ν	0.053
	rs368753152	c4035del-		5'UTR	8.2	Ν	1.000
	rs55913235	c.*232_*233insT		3'UTR	13.7	Ν	0.355
	rs9975490	c16C>G		5'UTR	12	Ν	0.595
	rs1044317	c.*399A>G		3'UTR	50.5	Ν	0.053
	Novel	c.*786T>C		3'UTR	0.5	Ν	1.000
	rs55913235	c.*232_*233insTT		3'UTR	6.6	Ν	1.000
	rs765506549	c4038del-		5'UTR	2.7	Ν	1.000
	rs56292133	c.*81C>T		3'UTR	1.1	Ν	1.000
	rs765329833	c4140insCCGCCG		5'UTR	1.6	Ν	1.000
	rs79961376	c78G>A		5'UTR	2.2	Ν	1.000
	rs55913235	c.*232_*233insTTT		3'UTR	4.1	Ν	1.000
	rs547649704	c.*175G>A		3'UTR	1.1	Ν	1.000
	rs369739888	c.*233delT		3'UTR	11.2	Ν	1.000
	rs145032173	c.*56A>G		3'UTR	0.5	Ν	1.000
	rs115605747	c52C>T		5'UTR	1.1	Ν	1.000
	rs77603571	g.43627101G>A		splicing	0.5	Ν	1.000
	rs56337741	c.*52G>A		3'UTR	3.8	Ν	1.000
	Novel	c.*233_*234insT		3'UTR	9.8	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	Novel	c.*233_*234insTT		3'UTR	9.8	Ν	1.000
	Novel	c.*233_*234insTTT		3'UTR	9.8	Ν	1.000
	Novel	c.*233_*234insTTTT		3'UTR	9.8	Ν	1.000
	rs66675434	c.*232_*233insTT		3'UTR	7.1	Ν	1.000
	rs66675434	c.*232_*233insTTT		3'UTR	7.1	Ν	1.000
	Novel	c3735del-		5'UTR	1.1	Ν	1.000
	rs1569204516	c3534insCCGCCG		5'UTR	1.1	Ν	1.000
	rs145298932	c64G>A		5'UTR	0.5	Ν	1.000
	rs1220835545	c.34A>G	p.Lys12Glu	missense	0.5	Ν	1.000
	rs138797997	c62G>T		5'UTR	0.5	Ν	1.000
	rs144780823	c.71C>T	p.Thr24Met	missense	0.5	D	1.000
	rs541178113	c42C>T		5'UTR	0.5	Ν	1.000
	rs558008801	c91C>T		5'UTR	0.5	Ν	1.000
	rs115417708	c18732T>A		5'UTR	0.5	Ν	1.000
	rs142204098	c20C>T		5'UTR	0.5	Ν	1.000
ABCG4	rs71482170	c799G>A		5'UTR	34.2	Ν	0.347
	rs71482170	c799G>A		5'UTR	34.2	Ν	0.347
	rs398017754	c.*25_*26insC		3'UTR	42.4	Ν	0.040
	rs3802885	c.*874A>C		3'UTR	12	Ν	1.000
	rs796346631	c356355del-		5'UTR	5.4	Ν	0.186
	rs12271907	c.1035C>G	p.Asn345Lys	missense	3.8	D	0.090
	rs55659437	c356355del-		5'UTR	6	Ν	0.018
	rs1323608174	c785G>A		5'UTR	0.5	Ν	1.000
	rs73564404	c.*1495G>C		3'UTR	1.6	Ν	1.000
	rs35060365	c.1055C>T	p.Pro352Leu	missense	1.1	D	1.000
ABCG5	rs2278356	c.*380T>G		3'UTR	42.1	Ν	0.847
	rs2278357	c.*416G>A		3'UTR	20.2	Ν	0.239
	rs6720173	c.1810C>G	p.Gln604Glu	missense	19.3	Ν	0.239
	rs2278356	c.*380T>G		3'UTR	42.1	Ν	0.847
	rs4148195	c.*622C>T		3'UTR	22.8	Ν	0.595
	rs78070897	c.785A>G	p.Lys262Arg	missense	2.2	Ν	1.000
	rs77105521	c.*522G>A		3'UTR	16.2	Ν	0.490
	rs141828689	c.593G>A	p.Arg198Gln	missense	0.4	D	1.000
	rs6756629	c.148C>T	p.Arg50Cys	missense	6.1	D	1.000
	Novel	c.1390A>C		missense	0.4	Ν	1.000
	rs192476318	c.*540C>T		3'UTR	0.4	Ν	1.000
	rs55853083	c118A>C		5'UTR	0.9	Ν	1.000
	rs376797531	c.431T>C	p.Val144Ala	missense	0.4	D	1.000
	rs77265083	c.*72G>A		3'UTR	0.9	Ν	1.000
	rs79475203	c.*399C>T		3'UTR	1.3	Ν	0.013
	rs144452054	c.*219delT		3'UTR	0.4	Ν	1.000
	rs1014472511	c.*324A>G		3'UTR	0.4	Ν	1.000
	rs145241042	c.1304T>C	p.Met435Thr	missense	0.4	D	1.000
	rs140374206	c.1864A>G	p.Met622Val	missense	1.3	Ν	1.000
	rs17031672	c.1550C>G	p.Thr517Ser	missense	1.8	Ν	0.026
	rs72542426	c.139G>T	p.Val47Phe	missense	0.4	D	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE
	rs139045335	c.*219delT		3'UTR	0.4	Ν	1.000
	rs575195880	c.*367G>A		3'UTR	0.4	Ν	1.000
ABCG8	rs6544718	c.1895T>C	p.Val632Ala	missense	83.8	Ν	0.490
	rs11887534	c.55G>C	p.Asp19His	missense	6.1	D	1.000
	rs6544718	c.1895T>C	p.Val632Ala	missense	83.8	Ν	0.490
	rs3806471	c19T>G		5'UTR	28.5	Ν	1.000
	rs4148211	c.161A>G	p.Tyr54Cys	missense	30.3	D	0.658
	rs4148217	c.1199C>A	p.Thr400Lys	missense	23.2	Ν	0.792
	rs370422066	c.1476T>A	p.Tyr492X	stopgain	0.4	D	1.000
	rs80025980	c.239G>A	p.Cys80Tyr	missense	1.3	D	1.000
	rs9282574	c.628G>A	p.Val210Met	missense	0.9	D	1.000
	rs142250628	c.154C>G	p.Leu52Val	missense	0.4	D	1.000
	rs72647315	c15A>C		5'UTR	1.8	Ν	1.000
	rs9282573	c.1963A>G	p.Met655Val	missense	0.4	Ν	1.000
	rs144200355	c.1201A>T	p.Thr401Ser	missense	0.4	Ν	1.000
	rs137852991	c.1234C>T	p.Arg412X	stopgain	0.4	D	1.000
	rs148370122	c.94A>G	p.Ser32Gly	missense	0.4	Ν	1.000
APOA2	rs6413453	g.161192316G>A		splicing	5.3	Ν	1.000
APOA4	rs35211609	c.*71_*68delTGTC		3'UTR	21.5	Ν	0.000
	rs5104	c.440G>A	p.Ser147Asn	missense	74.1	Ν	0.231
	rs675	c.1099A>T	p.Thr367Ser	missense	17.5	Ν	0.518
	rs35211609	c.*71_*68delTGTC		3'UTR	21.5	Ν	0.000
	rs146353487	c.1057T>G	p.Ser353Ala	missense	0.4	Ν	1.000
	rs5091	c98G>A		5'UTR	2.2	Ν	1.000
	rs539176882	c.145_1146insACAGC AGCAGG1>A	p.Glu382delins EQQQGlu	nonframeshift insertion	1.3	LD	1.000
	rs675	c.1099A>G	p.Thr367Ala	missense	7	Ν	0.432
	rs9282602	c.*71_*68delTGTC		3'UTR	12.7	Ν	0.000
	rs5110	c.1140G>T	p.Gln380His	missense	3.5	Ν	0.119
	rs746344058	c.461G>A	p.Arg154Gln	missense	0.4	Ν	1.000
	rs775236625	c.689C>T	p.Thr230Met	missense	0.4	Ν	1.000
	rs142050734	c.598C>T	p.Arg200Cys	missense	0.4	D	1.000
	rs12721041	c.37G>A	p.Val13Met	missense	2.2	D	1.000
	rs12721043	c.481G>T	p.Ala161Ser	missense	0.9	Ν	1.000
	rs12721040	c.*103C>T		3'UTR	0.4	Ν	1.000
	rs755577773	c.334C>T	p.Arg112Trp	missense	0.4	D	1.000
	rs1181852696	c.533C>T	p.Ser178Leu	missense	0.4	Ν	1.000
APOA5	rs2266788	c.*158C>T		3'UTR	90.4	Ν	0.000
	rs651821	c3G>A		5'UTR	86	Ν	0.457
	rs2266788	c.*158C>T		3'UTR	90.4	Ν	0.000
	rs619054	c.*31C>T		3'UTR	19.3	Ν	0.562
	rs889100545	c.*418A>G		3'UTR	0.4	Ν	1.000
	rs148759216	c.*289_*290insAG		3'UTR	3.1	Ν	1.000
	rs3135507	c.457G>A	p.Val153Met	missense	4.4	Ν	1.000
	rs33984246	c.*394T>C		3'UTR	5.3	Ν	1.000
	rs34089864	c.*76C>T		3'UTR	3.9	Ν	1.000
	rs45596738	c.*289_*290insAG		3'UTR	2.2	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs3135506	c.56C>G	p.Ser19Trp	missense	11.8	Ν	0.652
	rs114627122	c.*172C>T		3'UTR	0.4	Ν	1.000
	rs34282181	c.111C>A	p.Asp37Glu	missense	0.4	Ν	1.000
	rs2075291	c.553G>T	p.Gly185Cys	missense	0.4	D	1.000
	rs186726407	c539C>T		5'UTR	0.9	Ν	1.000
	rs45611741	c552G>A		5'UTR	0.4	Ν	1.000
	rs143292359	c.944C>T	p.Ala315Val	missense	0.4	D	1.000
APOB	rs1042031	c.12541G>A	p.Glu4181Lys	missense	17.1	Ν	0.520
	rs1042034	c.13013G>A	p.Ser4338Asn	missense	76.8	Ν	0.016
	rs1367117	c.293C>T	p.Thr98Ile	missense	32	D	0.290
	rs584542	c.6937A>G	p.Ile2313Val	missense	94.3	Ν	0.000
	rs679899	c.1853C>T	p.Ala618Val	missense	37.3	D	0.550
	rs1801701	c.10913G>A	p.Arg3638Gln	missense	14.5	Ν	1.000
	rs61744153	c.11477C>T	p.Thr3826Met	missense	0.4	D	1.000
	rs12714192	c.2222C>A	p.Thr741Asn	missense	2.2	Ν	1.000
	rs61736761	c.3634C>A	p.Leu1212Met	missense	3.1	Ν	1.000
	rs6752026	c.433C>T	p.Pro145Ser	missense	2.2	D	1.000
	rs1042023	c.10294C>G	p.Gln3432Glu	missense	0.9	Ν	1.000
	rs1801702	c.12809G>C	p.Arg4270Thr	missense	6.6	Ν	1.000
	rs61742331	c.10061C>G	p.Ala3354Gly	missense	0.9	Ν	1.000
	rs61744288	c.10780T>C	p.Trp3594Arg	missense	0.9	D	1.000
	rs12714225	c.1223T>C	p.Ile408Thr	missense	0.4	Ν	1.000
	rs1800480	c115C>G		5'UTR	0.9	Ν	1.000
	rs676210	c.8216C>T	p.Pro2739Leu	missense	19.3	D	0.562
	rs977664488	c.4830G>T	p.Arg1610Ser	missense	0.4	D	1.000
	rs1801695	c.13441G>A	p.Ala4481Thr	missense	3.9	Ν	0.007
	rs12713675	c.7367C>A	p.Ala2456Asp	missense	2.2	D	1.000
	rs12720855	c.9880T>C	p.Ser3294Pro	missense	2.2	D	1.000
	rs61743299	c.12697T>A	p.Ser4233Thr	missense	2.2	Ν	1.000
	rs72654423	c.12940A>G	p.Ile4314Val	missense	0.4	Ν	1.000
	rs1801699	c.5741A>G	p.Asn1914Ser	missense	4.4	D	1.000
	rs181737266	c.434C>T	p.Pro145Leu	missense	0.4	D	1.000
	rs12713450	c.13451C>T	p.Thr4484Met	missense	1.8	Ν	1.000
	rs144034290	c.4187T>C	p.Val1396Ala	missense	0.4	Ν	1.000
	rs140877474	c.4375A>G	p.Ser1459Gly	missense	0.4	D	1.000
	rs17240441	c.5_43de3>l	p.12_15del	nonframeshift deletion	2.2	Ν	1.000
	rs12691202	c.2188G>A	p.Val730Ile	missense	1.8	Ν	1.000
	rs886055597	c71C>T		5'UTR	0.4	Ν	1.000
	rs61743502	c.12794T>C	p.Val4265Ala	missense	0.9	Ν	1.000
	rs12720854	c.9835A>G	p.Ser3279Gly	missense	0.9	Ν	1.000
	rs533617	c.5768A>G	p.His1923Arg	missense	1.3	D	1.000
	rs562574661	c.3480_13482de1>l	p.Gln4494del	nonframeshift deletion	0.4	Ν	1.000
	rs767810570	c.4274C>T	p.Ser1425Phe	missense	0.4	D	1.000
	rs761311695	c.5743G>A	p.Gly1915Arg	missense	0.4	D	1.000
	rs1801703	c.12382G>A	p.Val4128Met	missense	0.9	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs12714097	c.2630C>T	p.Pro877Leu	missense	0.4	D	1.000
	rs752149683	c.2950G>A	p.Ala984Thr	missense	0.4	D	1.000
	rs12713540	c.11401T>A	p.Ser3801Thr	missense	0.4	Ν	1.000
	rs766573431	c.1910A>G	p.Tyr637Cys	missense	0.4	D	1.000
	rs377429190	c.6223G>A	p.Glu2075Lys	missense	0.4	Ν	1.000
	rs72654430	c.*229A>G		3'UTR	0.4	Ν	1.000
	rs371224295	c.6125T>C	p.Met2042Thr	missense	0.4	Ν	1.000
APOC1	rs12721054	c.*100A>G		3'UTR	1.8	Ν	1.000
	rs72654453	c.48C>G	p.Ile16Met	missense	0.9	Ν	1.000
	rs1064725	c.*74T>G		3'UTR	1.8	Ν	0.026
	rs12721054	c.*100A>G		3'UTR	1.8	Ν	1.000
APOC2	rs148343756	c.8C>T	p.Thr3Ile	missense	0.4	D	1.000
	rs74500990	g.45451954G>C		splicing	0.4	Ν	1.000
	rs5126	c.229A>C	p.Lys77Gln	missense	0.9	D	1.000
APOC3	rs4225	c.*71G>T		3'UTR	45.2	Ν	0.708
	rs5128	c.*40G>C		3'UTR	83.8	Ν	0.000
	rs4225	c.*71G>T		3'UTR	45.2	Ν	0.708
	rs187628630	c.*139C>G		3'UTR	0.9	Ν	1.000
	rs897418559	c659A>T		5'UTR	0.4	Ν	1.000
	rs138326449	g.116701354G>A		splicing	0.9	D	1.000
APOC4	rs1132899	c.107T>C	p.Leu36Pro	missense	50	Ν	1.000
	rs5167	c.287T>G	p.Leu96Arg	missense	36.4	Ν	0.046
	rs1132899	c.107T>C	p.Leu36Pro	missense	50	Ν	1.000
	rs12691089	c.155G>A	p.Gly52Asp	missense	0.9	Ν	1.000
APOE	rs429358	c.388T>C	p.Cys130Arg	missense	12.3	Ν	0.370
	rs7412	c.526C>T	p.Arg176Cys	missense	2.6	D	1.000
	rs267606661	c.805C>G	p.Arg269Gly	missense	0.4	D	1.000
	rs121918396	c.683G>A	p.Trp228X	stopgain	0.4	D	1.000
CETP	rs1801706	c.*84G>A		3'UTR	12.3	Ν	1.000
	rs5882	c.1084G>A	p.Val362Ile	missense	61	Ν	1.000
	rs34065661	c.44C>G	p.Ala15Gly	missense	1.8	Ν	1.000
	rs1801706	c.*84G>A		3'UTR	12.3	Ν	1.000
	rs34716057	c.460C>T	p.Arg154Trp	missense	0.9	D	1.000
	rs770008221	c.1004A>G	p.Lys335Arg	missense	0.4	D	1.000
	rs5880	c.988G>C	p.Ala330Pro	missense	5.7	D	1.000
	rs1800777	c.1223G>A	p.Arg408Gln	missense	3.9	Ν	1.000
	rs34855278	c.973G>A	p.Val325Met	missense	0.4	Ν	1.000
	rs1331344801	c.*25G>A		3'UTR	0.9	Ν	1.000
CLMN	Novel	c.*2581_*2580delTT		3'UTR	3.5	Ν	1.000
	rs540351557	c.*157_*158insT		3'UTR	32	Ν	0.000
	rs1054195	c.*9244G>T		3'UTR	46.1	Ν	0.850
	rs3829946	c.*6312A>G		3'UTR	46.1	Ν	0.850
	rs8005908	c.*5776A>G		3'UTR	25.4	Ν	0.805
	rs1054196	c.*9477A>C		3'UTR	42.5	Ν	0.443
	rs142407833	c.*5989G>A		3'UTR	1.3	Ν	1.000
	rs45492302	c.*2125T>G		3'UTR	17.5	Ν	0.332

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs561763514	c.*2581_*2582insT		3'UTR	11.8	Ν	0.359
	rs779597760	c.*142_*143insG		3'UTR	16.2	Ν	0.041
	rs879180742	c.*2581delT		3'UTR	12.8	Ν	0.209
	rs5810715	g.95670813del		splicing	16.7	Ν	0.015
	rs116472671	c.*1773G>A		3'UTR	2.6	Ν	1.000
	rs12893595	c.*8498C>T		3'UTR	12.3	Ν	1.000
	rs57061680	c.*8856C>T		3'UTR	12.3	Ν	1.000
	rs66493670	c.*8111G>A		3'UTR	20.6	Ν	0.779
	rs8020060	c.*6283G>A		3'UTR	7	Ν	1.000
	rs75541050	c.*3810C>G		3'UTR	2.6	Ν	1.000
	Novel	c.*2580_*2581insT		3'UTR	12.7	Ν	0.209
	Novel	c.*157_*158insTT		3'UTR	17.1	Ν	0.040
	Novel	c.*2581delT		3'UTR	12.7	Ν	0.209
	Novel	c.*9401delA		3'UTR	0.4	Ν	1.000
	rs148497172	c.735A>C	p.Glu245Asp	missense	0.4	D	1.000
	rs11844624	c.*4973G>C		3'UTR	23.2	Ν	0.792
	rs17091868	c.*9118C>T		3'UTR	6.6	Ν	0.389
	rs3814816	c.*6136C>T		3'UTR	6.6	Ν	0.389
	rs61217816	c.*6854A>G		3'UTR	6.6	Ν	0.389
	rs779597760	c.*143T>G		3'UTR	6.6	Ν	1.000
	rs114567749	c.*5635T>C		3'UTR	1.8	Ν	1.000
	rs116779805	c.*3047A>G		3'UTR	1.8	Ν	1.000
	rs116794212	c.*4201A>C		3'UTR	2.2	Ν	1.000
	rs61750771	c.2698A>T	p.Ile900Phe	missense	1.8	D	1.000
	rs7155470	c.*2956T>C		3'UTR	6.1	Ν	0.346
	rs7156866	c.*2992A>G		3'UTR	6.1	Ν	0.346
	rs111596735	c.*9128T>C		3'UTR	4.8	Ν	0.224
	rs112366105	c.*5194C>A		3'UTR	3.5	Ν	0.119
	rs7155222	c.*3121T>C		3'UTR	3.9	Ν	0.151
	rs149843418	c.*1330A>G		3'UTR	1.8	Ν	1.000
	rs768809029	c.2882A>G	p.His961Arg	missense	0.4	Ν	1.000
	Novel	c.*2581_*2580delTT		3'UTR	3.5	Ν	1.000
	rs75063901	c.*5035G>A		3'UTR	2.6	Ν	1.000
	rs779597760	c.*142_*143insGT		3'UTR	1.8	Ν	1.000
	rs954588181	c.*3408G>T		3'UTR	0.4	Ν	1.000
	rs61976556	c.*5174C>G		3'UTR	2.6	Ν	1.000
	rs1032856681	c.*50T>G		3'UTR	0.4	Ν	1.000
	rs1896559413	c.*70T>G		3'UTR	0.4	Ν	1.000
	rs10149705	c.2888C>T	p.Pro963Leu	missense	0.9	D	1.000
	rs13379182	c.*3160T>C		3'UTR	2.6	Ν	1.000
	rs28707051	c.*1405A>G		3'UTR	3.1	Ν	1.000
	rs55869249	c.*8832C>T		3'UTR	3.5	Ν	1.000
	rs56817762	c.*9223G>C		3'UTR	3.5	Ν	1.000
	rs59940917	c.*7946G>A		3'UTR	0.9	Ν	1.000
	rs7157746	c.*8516A>C		3'UTR	3.5	Ν	1.000
	rs73333229	c.*1025C>G		3'UTR	0.9	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs74079240	c.*5293C>T		3'UTR	0.4	Ν	1.000
	Novel	c.*648_*649insT		3'UTR	0.4	Ν	1.000
	rs547591026	c.*5470C>T		3'UTR	0.4	Ν	1.000
	rs35010297	c.1069G>A	p.Glu357Lys	missense	0.9	D	1.000
	rs56119341	c.*985A>G		3'UTR	1.8	Ν	1.000
	rs58411401	c.*2581_*2582insT		3'UTR	0.4	Ν	1.000
	rs143029831	c.*505G>A		3'UTR	0.4	Ν	1.000
	rs143612295	c.*3226C>T		3'UTR	0.9	Ν	1.000
	rs144692084	c.*7537C>A		3'UTR	0.9	Ν	1.000
	rs199567429	c.*7234_*7235insT		3'UTR	0.4	Ν	1.000
	rs537343229	c.*3270G>A		3'UTR	0.4	Ν	1.000
	rs551337617	c.*3767C>T		3'UTR	0.4	Ν	1.000
	Novel	c.*157delT		3'UTR	0.4	Ν	1.000
	rs115304392	c.*9145G>A		3'UTR	0.4	Ν	1.000
	rs148831726	c.2783A>G	p.Tyr928Cys	missense	0.9	D	1.000
	rs767493473	c.*977_*975delAGG		3'UTR	0.4	Ν	1.000
	rs558763349	c.*6989G>C		3'UTR	0.4	Ν	1.000
	rs116654567	c.1465G>T	p.Val489Phe	missense	0.9	D	1.000
	rs1031568855	c.*5151C>A		3'UTR	0.4	Ν	1.000
	rs114588605	c.*90C>T		3'UTR	0.4	Ν	1.000
	rs149311951	c.*3846C>T		3'UTR	0.4	Ν	1.000
	rs531898727	c.*6460A>T		3'UTR	0.4	Ν	1.000
	rs560028865	c.*6514C>A		3'UTR	0.4	Ν	1.000
	rs531221357	c.*4716T>C		3'UTR	0.4	Ν	1.000
	rs545900155	c.*8901_*8902insACT CAAAAAGGCTTCTG AAATTCTACTCAGA ATCG		3'UTR	0.4	N	1.000
	rs139780666	c.*7659A>G		3'UTR	0.4	Ν	1.000
	rs183284283	c.*1060C>T		3'UTR	0.4	Ν	1.000
	rs573108459	c.*5030_*5027delAAC A		3'UTR	0.4	Ν	1.000
	rs531876967	c.*6421G>T		3'UTR	0.4	Ν	1.000
COQ10A	rs77131854	c.*130C>T		3'UTR	4.8	Ν	0.224
	rs1274498	c210A>G		5'UTR	2.6	Ν	1.000
	rs60542959	c.3G>T	p.Met1Ile	missense	2.2	D	1.000
	rs77131854	c.*130C>T		3'UTR	4.8	Ν	0.224
	rs60542959	c.3G>T	p.Ala2_M44de l	startloss	2.2	D	1.000
	rs74603322	c.*332T>C		3'UTR	0.4	Ν	1.000
CYP7A1	rs8192879	c.*458G>A		3'UTR	31.5	Ν	0.083
	rs8192879	c.*458G>A		3'UTR	31.5	Ν	0.083
	rs561226849	c.*539A>C		3'UTR	0.5	Ν	1.000
	rs1004963084	c29C>A		5'UTR	0.5	Ν	1.000
	rs142956490	c.*330A>G		3'UTR	0.5	Ν	1.000
	rs8192875	c.1039G>A	p.Asp347Asn	missense	1.1	D	1.000
	rs117214002	c.*451C>T		3'UTR	2.2	Ν	1.000
	rs567109509	c.*1001_*1000delAT		3'UTR	0.5	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE n -value
HMGCR	rs12916	c.*372T>C		3'UTR	36.8	N	0.687
	rs5909	c.*8G>A		3'UTR	10.5	Ν	1.000
	rs12916	c.*372T>C		3'UTR	36.8	Ν	0.687
	rs17238554	c.*1485C>G		3'UTR	0.9	Ν	1.000
	rs17244932	c.*497T>C		3'UTR	1.8	Ν	1.000
	rs150429867	c.*385_*401delAAATG GATTTTTAAATT		3'UTR	0.9	Ν	1.000
	rs6805	c.*1117T>A		3'UTR	1.3	Ν	1.000
	rs5908	c.1753A>G	p.Ile585Val	missense	0.9	Ν	1.000
	rs17883498	c.*385_*401delAAATG GATTTTTTAAATT		3'UTR	1.3	N	1.000
	rs377093901	c.*34T>C		3'UTR	0.4	Ν	1.000
	rs189370032	c.*1282G>A		3'UTR	1.3	Ν	1.000
	rs906837651	c.*165T>C		3'UTR	0.4	Ν	1.000
	rs17244722	c5350T>C		5'UTR	0.9	Ν	1.000
	rs10474435	c.*1113T>C		3'UTR	0.9	Ν	1.000
	rs151001406	c.*424T>C		3'UTR	0.4	Ν	1.000
	rs142563098	c5417T>C		5'UTR	1.3	Ν	1.000
	rs112915543	c.*1146C>T		3'UTR	0.4	Ν	1.000
	rs113929238	c.*238A>G		3'UTR	0.4	Ν	1.000
	rs112757256	c.*678C>T		3'UTR	0.4	Ν	1.000
KIF6	rs139304973	c.*968delA		3'UTR	10.5	Ν	0.019
	rs1887716	c.*1476G>A		3'UTR	6.1	Ν	0.004
	rs20455	c.508T>C	p.Trp170Arg	missense	44.3	D	0.185
	rs6904582	c.*553C>T		3'UTR	39	Ν	0.169
	rs9462531	c.*714C>T		3'UTR	33.3	Ν	0.673
	rs10947807	c.*501G>A		3'UTR	20.2	Ν	0.041
	rs11756686	c.*342C>T		3'UTR	5.7	Ν	0.304
	rs11758639	c.*468A>G		3'UTR	2.6	Ν	1.000
	rs3823213	c.*438G>A		3'UTR	20.2	Ν	0.041
	rs61748649	c.5G>A	p.Arg2Lys	missense	1.8	Ν	1.000
	rs72858468	c.*1432G>A		3'UTR	2.6	Ν	1.000
	rs72858469	c.*1142T>A		3'UTR	2.6	Ν	1.000
	rs72858477	c.*205A>G		3'UTR	2.6	Ν	1.000
	rs113412831	c107T>A		5'UTR	14	Ν	0.693
	rs3734621	c.*97T>G		3'UTR	9.2	Ν	0.049
	rs114269617	c.103A>G	p.Ser35Gly	missense	0.9	Ν	1.000
	rs139304973	c.*968delA		3'UTR	10.5	Ν	0.019
	rs144747535	c.*1169C>T		3'UTR	0.4	Ν	1.000
	rs2273063	c.1535G>A	p.Arg512His	missense	1.8	Ν	1.000
	rs115025619	c.*1001G>A		3'UTR	1.8	Ν	1.000
	rs116706958	c.*430C>T		3'UTR	1.8	Ν	1.000
	rs74659777	c.*296T>A		3'UTR	1.8	Ν	1.000
	rs114951361	c.1564A>T	p.Met522Leu	missense	0.9	Ν	1.000
	rs34059104	c.187A>G	p.Ile63Val	missense	0.9	Ν	1.000
	rs114582772	c.*1370G>A		3'UTR	0.9	Ν	1.000
	rs139767998	c.*160G>T		3'UTR	0.9	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF	Prediction	HWE
	rs142944273	c.1087C>T	p.Arg363Cys	missense	0.4	D	<u>1.000</u>
	rs918723940	c.*940G>A		3'UTR	0.4	Ν	1.000
	rs190137715	c.*1081T>G		3'UTR	0.4	Ν	1.000
	rs927108958	c.1181A>C	p.Gln394Pro	missense	0.4	D	1.000
	Novel	c.*182G>T	I	3'UTR	0.4	Ν	1.000
	Novel	c.433C>A		missense	0.4	D	1.000
	rs564418655	c.*668A>G		3'UTR	0.4	Ν	1.000
	rs897242351	c.*1205T>C		3'UTR	0.4	Ν	1.000
LDLR	rs121908031	c.1539C>A	p.Cvs513X	stopgain	1.8	D	1.000
	rs1433099	c.*666T>C	r	3'UTR	71.9	Ν	0.487
	rs17243011	c.*223G>A		3'UTR	1.8	N	1.000
	rs2738464	c.*315G>C		3'UTR	85.1	Ν	1.000
	rs2738467	c.*1743C>T		3'UTR	36	Ν	0.546
	rs397844005	c.*2196 *2197delTA		3'UTR	29.8	N	0.261
	rs5742911	c.*1453A>G		3'UTR	31.6	N	1.000
	rs11669576	c.667G>A	n Ala223Thr	missense	4.8	N	1.000
	rs752596535	c.378C>A	p.Cvs126X	stopgain	0.9	D	1.000
	Novel	c.514T>C	p.09012011	missense	0.4	D	1.000
	rs14158	c.*52G>A		3'UTR	28.1	N	0.817
	rs17242683	c *1168G>A		3'UTR	23.2	N	0.607
	rs17249057	c.*1510T>C		3'UTR	28.9	N	0.649
	rs17249064	c *1600G>T		3'UTR	28.9	N	0.649
	rs2738465	c *504G>A		3'UTR	33.8	N	0.834
	rs2738466	c *773A>G		3'UTR	28.9	N	0.649
	rs35921663	c *1406 *1407insA		3'UTR	<u>-</u> 0.9	N	1.000
	rs875989902	c 410A>T	n Asn137Val	missense	0.1	D	1.000
	rs28941776	c 1142G>A	n Gly381Asn	missense	0.9	D	1.000
	rs7254521	c *1430C>T	p.ory50111sp	3'UTR	83	N	1.000
	rs397762834	c *2195 *2196insTAT		3'UTR	7.6	N	1.000
	13377702034	A		5011	7.0		1.000
	rs72658879	c.*2016G>A		3'UTR	5.3	Ν	0.027
	rs753707206	c.1297G>C	p.Asp433His	missense	0.9	D	1.000
	rs10409044	c.*982G>C		3'UTR	2.2	Ν	1.000
	rs28398082	c.*2054G>A		3'UTR	2.2	Ν	1.000
	Novel	c.*2199_*2200insTA		3'UTR	27.2	Ν	0.000
	Novel	c.*2197_*2198insTAT		3'UTR	8.3	Ν	1.000
	Novel	c.*2199_*2200insTAT A		3'UTR	27.2	Ν	0.000
	Novel	c.*2198_*2199delTA		3'UTR	27.2	Ν	0.000
	Novel	c.*2196_*2199delTAT A		3'UTR	34.9	Ν	0.000
	rs137853964	c.1975G>A	p.Val659Ile	missense	0.4	D	1.000
	rs137929307	c.1271G>A	p.Gly424Glu	missense	0.9	D	1.000
	rs112029328	g.11213463G>A		splicing	0.9	D	1.000
	rs376207800	c.185C>T	p.Thr62Met	missense	0.4	D	1.000
	rs3826810	c.*141G>A		3'UTR	5.7	Ν	1.000
	rs28942079	c.787G>A	p.Ala263Thr	missense	0.4	D	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs121908026	c.407C>T	p.Ser136Leu	missense	0.9	D	1.000
	Novel	c.*2195_*2196insTA		3'UTR	2.9	Ν	1.000
	rs121908039	c.428G>A	p.Cys143Tyr	missense	0.4	D	1.000
	rs373371572	c.1279C>T	p.Arg427Trp	missense	0.4	D	1.000
	Novel	c.454del1>T		frameshift deletion	0.4	D	1.000
	rs142697277	c.*2126G>A		3'UTR	0.4	Ν	1.000
	rs5928	c.1937G>A	p.Arg646Gln	missense	0.4	D	1.000
	rs72658874	c.*965C>T		3'UTR	0.9	Ν	1.000
	rs869054445	c.*2210_*2211insAC		3'UTR	0.4	Ν	1.000
	rs1042897688	c.*1491G>A		3'UTR	0.4	Ν	1.000
	rs113972139	c.1808C>T	p.Ala603Val	missense	0.4	Ν	1.000
	rs879255131	c.573_1574de1>l	p.Lys525Vfs*2 2	frameshift deletion	0.4	D	1.000
	rs879254797	c.614G>A	p.Gly205Asp	missense	0.9	D	1.000
	rs879254913	c.959T>C	p.Ile320Thr	missense	1.3	D	1.000
	rs148054434	c.*2111G>A		3'UTR	0.4	Ν	1.000
	rs545860269	c.*2069_*2070insC		3'UTR	0.4	Ν	1.000
	rs72658880	c.*2319C>G		3'UTR	0.9	Ν	1.000
	rs931426690	c.*1401C>T		3'UTR	0.4	Ν	1.000
	rs121908031	c.1539C>A	p.Cys513X	stopgain	1.8	D	1.000
	rs7258146	c.*1354T>C		3'UTR	0.9	Ν	1.000
	rs143587805	c.*1550A>T		3'UTR	1.8	Ν	1.000
	rs750649426	c.672C>A	p.Cys224X	stopgain	0.4	D	1.000
	rs116405216	g 11221324G>A		splicing	0.9	Ν	1.000
	rs869054445	c.*2210T>0		3'UTR	1.8	Ν	0.026
	rs1035917105	c.*1123C>T		3'UTR	0.4	Ν	1.000
	Novel	c.103del1>G		frameshift deletion	0.4	D	1.000
	rs72658860	c.466G>A	p.Gly156Ser	missense	0.4	D	1.000
	Novel	c.*2195_*2196insTAT ATA		3'UTR	1.5	Ν	1.000
	rs28942078	c.781G>A	p.Val261Met	missense	0.4	D	1.000
	rs993011316	c.*1912C>T		3'UTR	0.4	Ν	1.000
	rs1135402774	c.970G>A	p.Asp324Asn	missense	0.4	D	1.000
	rs387906307	c138del-		5'UTR	0.4	Ν	1.000
	rs375312185	c.*1477G>A		3'UTR	0.4	Ν	1.000
	rs879254687	c.818-2A>G		splicing	0.4	D	1.000
	rs875989887	c140C>A		5'UTR	0.9	Ν	1.000
	rs1135402768	c.364C>T	p.Gln122X	stopgain	0.4	D	1.000
	rs3180023	c.*1217C>G		3'UTR	0.4	Ν	1.000
	rs34113544	c.*1215_*1216insA		3'UTR	0.4	Ν	1.000
	rs1266961929	c.*1128G>A		3'UTR	0.4	Ν	1.000
	rs56270417	c.*19G>A		3'UTR	0.9	Ν	1.000
	rs1135402774	c.70delG	p.Asp324fs	frameshift deletion	0.4	D	1.000
LDLRAP1	rs10635955	c.*985_*986insTG		3'UTR	99.6	Ν	0.000
	rs11563	c.*1370G>T		3'UTR	54.4	Ν	0.130
	rs397860393	c.*445delT		3'UTR	46.1	Ν	0.345

Gene	rs code	NT change	AA change	Туре	MAF	Prediction	HWE
	*:7401	a *1755C>T		2'11'TD	<u>(%)</u> 54.8	N	p -value
	187491	c. 1/35C>1			00.6	IN N	0.165
	1810033933	- *1704C> A			99.0 7.0	IN	0.000
	rs4557542	c.*1/94G>A		3 U I K	1.9	IN N	0.150
	rs02019/01	c.*03G>A		3 U I K	1.5	IN N	1.000
	rs105/515539	c.*/65_*/66ins1		SUIR	1.3	N	1.000
	rs/6969561	c.*12221>C		3'UTR	2.6	N	1.000
	rs114583297	c.653C>1	p.1hr21811e	missense	2.6	N	1.000
	rs528624038	c.*16//G>A		3'UTR	0.9	N	1.000
	rs41291058	c./12C>T	p.Arg2381rp	missense	2.2	D	1.000
	rs186747548	c.*430G>T		3'UTR	0.9	N	1.000
	rs529005321	c.397G>A	p.Ala133Thr	missense	0.4	D	1.000
	rs149951294	c.*765_*766insT		3'UTR	1.8	Ν	1.000
	rs148579379	c.713G>A	p.Arg238Gln	missense	0.9	D	1.000
	rs10062	c.*1793C>T		3'UTR	1.8	Ν	1.000
	rs41307931	c.*1115C>T		3'UTR	0.4	Ν	1.000
	rs768454420	c.796C>T	p.Arg266Trp	missense	0.4	D	1.000
LIPA	rs13500	c.*1093C>T		3'UTR	11.8	Ν	0.048
	rs1051338	c.46A>C	p.Thr16Pro	missense	33.3	Ν	1.000
	rs1051339	c.67G>A	p.Gly23Arg	missense	13.6	Ν	0.123
	rs1332326	c23656A>C		5'UTR	39.9	Ν	0.000
	rs1332327	c23645G>A		5'UTR	19.7	Ν	0.374
	rs2297472	g.90984990G>A		splicing	13.6	Ν	0.123
	rs1131706	c.*909T>A		3'UTR	21.5	Ν	0.401
	rs78931290	c.*1187C>A		3'UTR	2.2	Ν	1.000
	rs13500	c.*1093C>T		3'UTR	11.8	Ν	0.048
	rs41284116	c.*744C>G		3'UTR	0.4	Ν	1.000
	rs571012707	c.*647G>A		3'UTR	0.4	Ν	1.000
	rs116074523	c.*841C>T		3'UTR	0.4	Ν	1.000
	rs1211198607	c23594A>G		5'UTR	0.4	Ν	1.000
	rs543830356	c23579G>A		5'UTR	0.4	Ν	1.000
	rs2228159	c.335T>C	p.Phe112Ser	missense	0.4	D	1.000
	rs9664201	c.*608C>T		3'UTR	0.4	Ν	1.000
	rs1589558414	c.254A>G	p.Gln85Arg	missense	0.4	D	1.000
	rs1044857442	c4065 4072delCGCGGCGC		5'UTR	0.4	Ν	1.000
LIPC	rs3829462	c.1068C>A	p.Phe356Leu	missense	94.3	Ν	0.304
	rs3829462	c.1068C>A	p.Phe356Leu	missense	94.3	Ν	0.304
	rs6083	c.644A>G	p.Asn215Ser	missense	41.7	Ν	0.700
	rs6078	c.283G>A	p.Val95Met	missense	5.7	Ν	1.000
	rs148828229	c.1430G>A	p.Arg477His	missense	0.4	Ν	1.000
	rs182603751	c.317C>T	p.Ala106Val	missense	0.4	D	1.000
LPA	rs1801693	c.5036T>C	p.Met1679Thr	missense	69.3	Ν	0.659
	rs1853021	g.11213463A>G		splicing	20.6	Ν	0.000
	rs3124784	c.6046C>T	p.Arg2016Cys	missense	27.6	D	1.000
	rs143431368	g.160969693T>C		splicing	0.4	D	1.000
	rs1801693	c.5036T>C	p.Met1679Thr	missense	69.3	Ν	0.659
	rs139145675	c.5311C>T	p.Arg1771Cys	missense	2.2	D	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs41267807	c.6068A>G	p.Tyr2023Cys	missense	1.3	D	1.000
	rs41267809	c.5882T>C	p.Leu1961Pro	missense	2.2	Ν	1.000
	rs41272110	c.4195A>C	p.Thr1399Pro	missense	10.5	D	0.608
	rs7765781	c.4114C>G	p.Leu1372Val	missense	36	Ν	0.841
	rs7765803	c.4072C>G	p.Leu1358Val	missense	35.5	Ν	1.000
	rs1800769	c21G>A		5'UTR	18.4	Ν	0.530
	rs76062330	c.5468G>T	p.Gly1823Val	missense	3.5	D	0.119
	rs201200716	c.4046C>T	p.Thr1349Met	missense	0.4	Ν	1.000
	rs41267817	c.3917A>G	p.His1306Arg	missense	0.4	Ν	1.000
	rs41272114	g.161006077C>T		splicing	2.6	D	1.000
	rs41264308	c.4793T>C	p.Met1598Thr	missense	1.3	Ν	1.000
	rs41272112	c.4262G>A	p.Arg1421Gln	missense	3.1	Ν	1.000
	rs113020022	c.3178C>A	p.Gln1060Lys	missense	0.4	Ν	1.000
	rs140720828	c.4522C>T	p.Arg1508Trp	missense	0.4	D	1.000
	rs3798220	c.5673A>G	p.Ile1891Met	missense	3.1	D	0.090
	rs41259144	c.2969G>A	p.Arg990Gln	missense	1.8	D	1.000
	rs142720914	c.3428C>T	p.Thr1143Met	missense	0.4	D	1.000
	rs59566810	c.4971T>G	p.Asn1657Lys	missense	1.3	Ν	1.000
	rs201013584	c.4607G>A	p.Arg1536Lys	missense	0.4	Ν	1.000
	rs41265936	c.5465G>C	p.Gly1822Ala	missense	1.3	Ν	1.000
	rs200802664	c.2782C>G	p.Gln928Glu	missense	0.4	Ν	1.000
	rs191762721	c.182A>G	p.Asn61Ser	missense	0.4	Ν	1.000
	rs144281871	c.5236G>T	p.Ala1746Ser	missense	0.4	Ν	1.000
	rs756764319	g.160962134C>T		splicing	0.4	Ν	1.000
	rs147235826	c.4523G>A	p.Arg1508Gln	missense	0.4	Ν	1.000
	rs62621433	c.3296C>G	p.Thr1099Ser	missense	0.4	Ν	1.000
	rs114322360	c.6092C>A	p.Thr2031Asn	missense	0.4	Ν	1.000
	rs577363233	c2118G>A		5'UTR	0.4	Ν	1.000
	rs76144756	c.4283C>T	p.Pro1428Leu	missense	0.4	D	1.000
	rs981155235	c.3889T>C	p.Ser1297Pro	missense	0.4	Ν	1.000
	rs889335800	c.4918T>C	p.Trp1640Arg	missense	0.4	D	1.000
LPL	rs1059507	c.*1142C>T		3'UTR	13.2	Ν	1.000
	rs11570892	c.*796A>G		3'UTR	16.2	Ν	0.490
	rs13702	c.*1671T>C		3'UTR	32.5	Ν	0.831
	rs15285	c.*1846C>T		3'UTR	32.5	Ν	0.831
	rs3200218	c.*1250A>G		3'UTR	18	Ν	0.757
	rs3208305	c.*827A>T		3'UTR	32.5	Ν	0.831
	rs3866471	c.*1848C>A		3'UTR	16.7	Ν	0.510
	rs4922115	c.*9G>A		3'UTR	14.5	Ν	0.701
	rs1059507	c.*1142C>T		3'UTR	13.2	Ν	1.000
	rs1800590	c281T>G		5'UTR	7.9	Ν	1.000
	rs17091815	c.*1783A>T		3'UTR	1.8	Ν	1.000
	rs5934	c.1279G>A	p.Ala427Thr	missense	0.9	Ν	1.000
	rs1801177	c.106G>A	p.Asp36Asn	missense	2.2	D	1.000
	rs3289	c.*371T>C		3'UTR	3.9	Ν	1.000
	rs1059611	c.*1742T>C		3'UTR	9.6	Ν	0.595

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs10645926	c.*1805_*1806insTT		3'UTR	9.6	Ν	0.595
	rs1803924	c.*853C>T		3'UTR	7.5	Ν	1.000
	rs328	c.1421C>G	p.Ser474X	stopgain	7.5	D	1.000
	rs3735964	c.*1224C>A		3'UTR	7.9	Ν	1.000
	rs146978295	c176175insCC		5'UTR	1.3	Ν	1.000
	rs147116359	c.*1886G>A		3'UTR	0.4	Ν	1.000
	rs1803923	c.*1387T>C		3'UTR	1.8	Ν	1.000
	rs139240067	c.*1291G>A		3'UTR	1.3	Ν	1.000
	rs80351041	c283G>T		5'UTR	0.4	Ν	1.000
	rs300	c.1135A>G	p.Thr379Ala	missense	0.4	Ν	1.000
	rs7818177	c.*29G>A		3'UTR	0.4	Ν	1.000
	rs58998793	c.*1416T>C		3'UTR	1.8	Ν	1.000
	rs150960886	c.*1106G>A		3'UTR	0.4	Ν	1.000
	rs540525285	c241G>C		5'UTR	0.4	Ν	1.000
	rs79756214	c.*1928T>C		3'UTR	0.4	Ν	1.000
	rs1365389587	c.*1643C>G		3'UTR	0.4	Ν	1.000
	rs190991033	c.*30G>A		3'UTR	0.4	Ν	1.000
	rs572077788	c.*1877G>A		3'UTR	0.4	Ν	1.000
	rs374509929	c.*412_*416delTACTC		3'UTR	0.4	Ν	1.000
	rs915452684	c.*1217T>A		3'UTR	0.4	Ν	1.000
	rs268	c.953A>G	p.Asn318Ser	missense	0.4	D	1.000
	rs1464971282	c.*1038C>T		3'UTR	0.4	Ν	1.000
MYLIP	rs185701087	c.*995G>C		3'UTR	1.3	Ν	0.013
	rs2205794	c.*1194G>A		3'UTR	4.4	Ν	0.186
	rs2205795	c.*1076G>T		3'UTR	21.1	Ν	1.000
	rs35112615	c.*116_*117insA		3'UTR	11	Ν	0.355
	rs3765234	c56G>T		5'UTR	8.3	Ν	0.558
	rs9370867	c.1025A>G	p.Asn342Ser	missense	58.8	Ν	0.177
	rs185701087	c.*995G>C		3'UTR	1.3	Ν	0.013
	Novel	c.*117delA		3'UTR	25.9	Ν	0.000
	rs574992262	c.*665delT		3'UTR	0.4	Ν	1.000
	rs2072781	c.*367T>C		3'UTR	7.9	Ν	1.000
	rs35112615	c.*116_*117insAA		3'UTR	0.9	Ν	1.000
	rs560855721	c.*97C>T		3'UTR	0.9	Ν	1.000
	Novel	c.*117_*118insA		3'UTR	9.2	Ν	0.595
	Novel	c.*117_*118insAA		3'UTR	9.2	Ν	0.595
	Novel	c.*117_*118insAAAA A		3'UTR	9.2	Ν	0.595
	rs397971095	c.*116_*117insAA		3'UTR	1.8	Ν	1.000
	rs144304196	c.*627C>G		3'UTR	0.4	Ν	1.000
	rs142596337	c.*248_*249insT		3'UTR	1.8	Ν	1.000
	rs113117363	c.*220G>T		3'UTR	0.9	Ν	1.000
	rs114004922	c.*858A>G		3'UTR	1.8	Ν	1.000
	rs73724995	c.*871A>G		3'UTR	0.9	Ν	1.000
	rs79714658	c.*687C>T		3'UTR	0.4	Ν	1.000
	rs79992066	c.604A>C	p.Ile202Leu	missense	0.9	Ν	1.000
	rs148485764	c.*993_*994insG		3'UTR	2.2	Ν	0.044

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs541642474	c.*1170T>C		3'UTR	0.4	Ν	1.000
PCSK9	rs505151	c.2009G>A	p.Gly670Glu	missense	85.5	Ν	0.000
	rs562556	c.1420G>A	p.Val474Ile	missense	76.3	Ν	0.000
	rs662145	c.*571C>T		3'UTR	71.9	Ν	0.021
	rs2495477	g.55518467A>G		splicing	18.4	Ν	0.208
	rs28362201	c245G>T		5'UTR	2.6	Ν	0.065
	rs557622245	c.*171C>T		3'UTR	2.6	Ν	1.000
	rs11583680	c.158C>T	p.Ala53Val	missense	10.1	Ν	1.000
	rs45448095	c64C>T		5'UTR	9.2	Ν	1.000
	rs145886902	c.169G>A	p.Glu57Lys	missense	0.4	Ν	1.000
	rs28362288	c.*444G>C		3'UTR	2.2	Ν	1.000
	rs182138201	c.*234C>T		3'UTR	0.9	Ν	1.000
	rs17111557	c.*614C>T		3'UTR	3.9	Ν	1.000
	rs35574083	c.2_43insCTG		nonframeshift insertion	14.0	LD	0.346
	rs775707869	c.884G>A	p.Arg295His	missense	0.4	D	1.000
	rs28362202	c26G>A		5'UTR	0.4	Ν	1.000
	rs141502002	c.1405C>T	p.Arg469Trp	missense	0.4	D	1.000
	rs72646509	c.835C>A	p.Pro279Thr	missense	0.4	D	1.000
	rs13376071	c.*414C>T		3'UTR	2.2	Ν	1.000
	rs28362270	c.1658A>G	p.His553Arg	missense	0.9	Ν	1.000
	rs72646533	c.*442_*443insG		3'UTR	0.9	Ν	1.000
	rs756500786	c.*887C>T		3'UTR	0.4	Ν	1.000
	rs17111555	c.*345C>T		3'UTR	1.3	Ν	1.000
	rs28362287	c.*75C>T		3'UTR	1.3	Ν	1.000
	rs72646535	c.*537delT		3'UTR	1.3	Ν	1.000
	rs1557510084	c.*225T>C		3'UTR	0.4	Ν	1.000
	rs28362201	c245G>C		5'UTR	1.8	Ν	0.026
	rs149837083	c.*1052C>T		3'UTR	0.4	Ν	1.000
	rs28362263	c.1327G>A	p.Ala443Thr	missense	0.9	Ν	1.000
	rs181453	c.*413G>T		3'UTR	0.4	Ν	1.000
	rs917249802	c112A>G		5'UTR	0.9	Ν	1.000
	rs772677312	c.1399C>G	p.Pro467Ala	missense	0.4	Ν	1.000
	rs1346795665	c.2039G>A	p.Arg680Gln	missense	0.4	Ν	1.000
	rs28362292	c.*849T>C		3'UTR	0.4	Ν	1.000
	rs868163847	c117C>T		5'UTR	0.4	Ν	1.000
	rs148195424	c.709C>T	p.Arg237Trp	missense	0.4	D	1.000
	rs1277652244	c.*1148T>C		3'UTR	0.4	Ν	1.000
SCAP	rs12487736	c.1627G>A	p.Val543Ile	missense	40.4	Ν	0.083
	rs12487736	c.1627G>A	p.Val543Ile	missense	40.4	Ν	0.083
	rs111762817	c49785A>G		5'UTR	14.5	Ν	1.000
	rs45453398	c.*83C>T		3'UTR	3.5	Ν	1.000
	rs150166851	c.*49_*50insGGGGC		3'UTR	0.4	Ν	1.000
SCARB1	rs5891	c.403G>A	p.Val135Ile	missense	2.2	Ν	1.000
	rs4238001	c.4G>A	p.Gly2Ser	missense	7.5	Ν	0.475
	rs10396211	c.*688G>C		3'UTR	2.6	Ν	1.000
	rs58032386	c.*504C>T		3'UTR	4.8	Ν	0.018

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs5891	c.403G>A	p.Val135Ile	missense	2.2	Ν	1.000
	rs901958835	c.*332C>T		3'UTR	0.4	Ν	1.000
	rs184715678	c.*497C>A		3'UTR	1.3	Ν	1.000
	rs701103	c.1495G>A	p.Gly499Arg	missense	3.1	Ν	1.000
	rs150512235	c.*759T>C		3'UTR	0.9	Ν	1.000
	rs150222965	c.386C>T	p.Ser129Leu	missense	0.9	Ν	1.000
	rs546100832	c.*234C>A		3'UTR	0.4	Ν	1.000
	rs539157321	c206205insC		5'UTR	0.4	Ν	1.000
	rs943358614	c.*93T>C		3'UTR	0.4	Ν	1.000
SREBF1	rs2297508	c.*619G>C		3'UTR	60.5	Ν	0.173
	rs60282872	c34delG		5'UTR	19.7	Ν	0.000
	rs11868035	c.*835C>T		3'UTR	30.3	Ν	0.375
	rs13306736	c150G>A		5'UTR	42.1	Ν	0.704
	rs2297508	c.*619G>C		3'UTR	60.5	Ν	0.173
	rs11304210	c.*1085delC		3'UTR	13.2	Ν	1.000
	rs141503556	c.*159G>C		3'UTR	0.4	Ν	1.000
	rs143430327	c.*736C>G		3'UTR	0.4	Ν	1.000
	rs73981076	c.*521G>T		3'UTR	1.3	Ν	1.000
	Novel	c.*1084delC		3'UTR	14.5	Ν	0.247
	rs1022633114	c.*1086A>C		3'UTR	14.5	Ν	0.247
	rs747735223	c.*1085_*1084delCC		3'UTR	14.5	Ν	0.247
	rs796641934	c34delG		5'UTR	17.5	Ν	0.006
	rs74520623	c.820G>A	p.Val274Ile	missense	0.9	Ν	1.000
	rs879617029	c.353G>A	p.Gly118Glu	missense	0.4	Ν	1.000
	rs764217259	c.2594G>A	p.Arg865Gln	missense	0.4	Ν	1.000
	rs73981075	c.*870T>G		3'UTR	1.3	Ν	1.000
	rs554897947	c147G>C		5'UTR	1.8	Ν	1.000
	rs36215896	c.1666G>A	p.Val556Met	missense	0.9	D	1.000
	rs7214136	c.1757G>A	p.Arg586Gln	missense	2.2	Ν	1.000
	rs8064706	c.*267C>A		3'UTR	2.6	Ν	1.000
	rs114001633	c.518C>T	p.Pro173Leu	missense	1.3	Ν	0.013
	rs768028319	c.*1085delC		3'UTR	0.9	Ν	1.000
	rs2229590	c.1177G>A	p.Val393Met	missense	0.9	Ν	1.000
	rs73981078	c.*255C>T		3'UTR	0.4	Ν	1.000
	rs539120019	c.*446C>T		3'UTR	0.4	Ν	1.000
	rs903846087	c.*974A>C		3'UTR	0.4	Ν	1.000
	rs115855236	c.260C>T	p.Pro87Leu	missense	0.9	D	1.000
	rs192087293	c.*337A>G		3'UTR	1.8	Ν	1.000
	rs59995125	c.*559T>C		3'UTR	0.4	Ν	1.000
	rs45567732	g.17718146C>A		splicing	0.4	Ν	1.000
	Novel	c.2483C>T		missense	0.4	Ν	1.000
	rs137899785	c.*937C>T		3'UTR	0.4	Ν	1.000
SREBF2	rs2228314	c.1784G>C	p.Gly595Ala	missense	36	Ν	0.221
	rs2229442	c.*84A>G		3'UTR	14.9	Ν	0.459
	rs569655423	c.3418G>A	p.Ala1140Thr	missense	0.4	D	1.000
	rs2157590	c.*48T>C		3'UTR	14	Ν	1.000

Gene	rs code	NT change	AA change	Туре	MAF (%)	Prediction	HWE p -value
	rs2228314	c.1784G>C	p.Gly595Ala	missense	36	Ν	0.221
	rs4822067	c.*647G>A		3'UTR	14	Ν	1.000
	rs2228313	c.2580G>C	p.Arg860Ser	missense	7.5	Ν	1.000
	rs2269664	c.*279C>T		3'UTR	8.8	Ν	1.000
	rs376482369	c.1991G>T	p.Arg664Leu	missense	0.4	D	1.000
	rs2229440	c.1867G>A	p.Val623Met	missense	3.1	D	1.000
	rs183045818	c.*206G>A		3'UTR	0.9	Ν	1.000
	rs191835473	c.*579A>G		3'UTR	0.9	Ν	1.000
	rs537096033	c.*686T>A		3'UTR	1.3	Ν	1.000
	rs182758758	c.*669A>G		3'UTR	2.2	Ν	1.000
	rs576372173	c.*205C>T		3'UTR	0.4	Ν	1.000
	rs143615881	c.03_205de2>l	p.Ser74del	nonframeshift deletion	0.4	LD	1.000
	rs2229439	c.1112G>A	p.Arg371Lys	missense	0.9	D	1.000
	rs1018819294	c.*527G>A		3'UTR	0.9	Ν	1.000
	rs73431000	c.*333C>T		3'UTR	0.9	Ν	1.000
	rs779626156	c.85_193de1>l	p.62_65del	nonframeshift deletion	0.4	LD	1.000
	rs568275502	c.*621_*622insGGTGG		3'UTR	1.8	Ν	1.000
	rs199735149	c.3239G>A	p.Arg1080Gln	missense	0.4	D	1.000

^a*In silico* functionality prediction was performed either using PolyPhen-2, Mutation Assessor, SIFT, PROVEAN, CADD, DANN, and FATHMM for missense, stop gain and stop loss variants or dbNSFP v4.2 *in silico* algorithm for splice variants. Frameshift variants were considered deleterious and inframe variants were considered likely deleterious. AA: amino acid; NT nucleotide; D: deleterious; HWE: Hardy-Weinberg equilibrium; MAF: minor allele frequency; N: neutral; PD: pharmacodynamics.

Cono		NT shares	Allala	o	SE		Adjusted
Gene All statins	rs code	N1 change	Allele	р	SE	p-value	p-value
ABCA1	rs769705621	o 107556793insA	A allele	-30	53	0 578	1.000
in cin	rs769705621	g 107556793insAA	A A allele	0.5	3.9	0.903	1.000
	rs769705621	g 107556793insAAA	AAA allele	0.7	3.9	0.851	1.000
	rs769705621	g 107556793insAAAA	AAAA allele	19	6.5	0.772	1.000
	rs769705621	g 107556793insAAAAA	AAAAA /	14.9	9.8	0 131	1.000
	15707705021	5.107000790m51111111	AAAAAA / AAAAAAA allele	1 1.9	2.0	0.101	1.000
ABCG4	rs12271907	c.1035C>G	G allele	5.4	8.5	0.524	1.000
ABCG5	rs6756629	c.148C>T	T allele	1.6	5.5	0.780	1.000
ABCG8	rs4148211	c.161A>G	G allele	5.1	3.6	0.161	1.000
	rs80025980	c.239G>A	A allele	-4.6	11.4	0.687	1.000
APOB	rs12713675	c.7367C>A	A allele	11.3	8.8	0.202	1.000
	rs12720855	c.9880T>C	C allele	11.3	8.8	0.202	1.000
	rs1801699	c.5741A>G	G allele	3.8	6.4	0.551	1.000
	rs533617	c.5768A>G	G allele	-2.7	11.4	0.812	1.000
	rs6752026	c.433C>T	T allele	-5.1	8.9	0.569	1.000
	rs676210	c.8216C>T	T allele	0.4	3.8	0.925	1.000
APOE	rs7412	c.526C>T	T allele	-10.4	8.1	0.202	1.000
	rs429358	c.388T>C	C allele	-10.4	8.1	0.202	1.000
CETP	rs5880	c.988G>C	C allele	-7.4	5.7	0.198	1.000
CLMN	rs61750771	c.2698A>T	T allele	0.8	9.9	0.934	1.000
COQ10A	rs60542959	c.3G>T	T allele	0.5	8.9	0.957	1.000
KIF6	rs20455	c.2155T>C	C allele	7.9	3.8	0.039	1.000
LDLR	rs121908031	c.2043C>A	A allele	0.6	9.9	0.955	1.000
	rs879254913	c.1463T>C	C allele	1.0	11.4	0.930	1.000
LDLRAP1	rs41291058	c.712C>T	T allele	-1.7	8.9	0.851	1.000
LPA	rs139145675	c.5311C>T	T allele	-8.1	8.9	0.363	1.000
	rs3124784	c.6046C>T	T allele	-5.2	3.6	0.152	1.000
	rs41259144	c.2969G>A	A allele	13.6	9.8	0.170	1.000
	rs41267807	c.6068A>G	G allele	19.7	11.2	0.082	1.000
	rs41272114	g.161006077C>T	T allele	3.3	8.2	0.689	1.000
	rs76062330	c.5468G>T	T allele	-8.0	7.6	0.293	1.000
LPL	rs328	c.1421C>G	G allele	6.8	5.1	0.185	1.000
SREBF2	rs2229440	c.1867G>A	A allele	-4.2	7.6	0.577	1.000
Atorvastatin							
ABCA1	rs769705621	g.107556793insA	A allele	-2.3	5.1	0.646	1.000
	rs769705621	g.107556793insAA	AA allele	2.7	4	0.506	1.000
	rs769705621	g.107556793insAAA	AAA allele	2.9	4	0.470	1.000
	rs769705621	g.107556793insAAAA	AAAA allele	3.7	6.2	0.551	1.000
	rs769705621	g.107556793insAAAAA /AAAAAA	AAAAA allele or AAAAAA allele	14.3	10.7	0.185	1.000
ABCG4	rs12271907	c.1035C>G	G allele	2.4	9.6	0.805	1.000

Supplementary table 15 Influence of variants in PD-related genes and non-genetic factors on LDL-c reduction of FH patients. Univariate linear regression analysis (MAF > 1.0%)

Gene	rs code	NT change	Allele	в	SE	p-value	Adjusted p-value
ABCG5	rs6756629	c.148C>T	T allele	5.3	5.3	0.322	0.466
ABCG8	rs4148211	c.161A>G	G allele	6.5	3.7	0.079	0.737
	rs80025980	c.239G>A	A allele	-4.7	10.8	0.661	1.000
APOB	rs12713675	c.7367C>A	A allele	5.5	9.4	0.560	1.000
	rs12720855	c.9880T>C	C allele	5.5	9.4	0.560	1.000
	rs1801699	c.5741A>G	G allele	1.6	6.8	0.819	1.000
	rs6752026	c.433C>T	T allele	-4.4	9.4	0.641	1.000
	rs676210	c.8216C>T	T allele	-1.4	4	0.724	1.000
APOE	rs7412	c.526C>T	T allele	-10.6	8.4	0.209	1.000
	rs429358	c.388T>C	C allele	-3.6	4.5	0.433	1.000
CETP	rs5880	c.988G>C	C allele	-6.9	5.8	0.241	1.000
CLMN	rs61750771	c.2698A>T	T allele	0.7	9.4	0.940	1.000
COQ10A	rs60542959	c.3G>T	T allele	6.4	8.4	0.447	1.000
KIF6	rs20455	c.2155T>C	C allele	10.4	3.8	0.007	0.196
LDLR	rs879254913	c.1463T>C	C allele	9.5	10.7	0.377	1.000
LDLRAP1	rs41291058	c.712C>T	T allele	-5.7	9.4	0.544	1.000
LPA	rs139145675	c.5311C>T	T allele	-8.3	8.4	0.327	1.000
	rs3124784	c.6046C>T	T allele	-5.3	3.7	0.155	1.000
	rs41259144	c.2969G>A	G allele	-2.8	10.8	0.793	1.000
	rs41272114	g.161006077C>T	T allele	0.7	8.4	0.933	1.000
	rs76062330	c.5468G>T	T allele	-15.2	7.6	0.048	0.672
LPL	rs328	c.1421C>G	G allele	3.1	5.3	0.555	1.000
SREBF2	rs2229440	c.1867G>A	A allele	-7.6	8.4	0.366	1.000

AA: amino acid; NT nucleotide; FH: familial hypercholesterolemia; PD: pharmacodynamics; β : linear coefficient; SE: standard error.

Gene	rs code	NT change	Allele	RE	NRE	OR (CI 95%)	p-value	Adjusted p-value
All statins								
ABCA1	rs769705621	g.107556793insA	A allele	20 (8)	17.4 (8)	0.8 (0.3 - 2.5)	0.757	1.000
	rs769705621	g.107556793insAA	AA allele	34.5 (19)	42.9 (21)	1.4 (0.6 - 3.2)	0.385	1.000
	rs769705621	g.107556793insAAA	AAA allele	35.2 (19)	45.3 (24)	1.5 (0.7 - 3.3)	0.288	1.000
	rs769705621	g.107556793insAAAA	AAAA allele	8.7 (4)	14 (6)	1.7 (0.5 - 7.1)	0.436	1.000
ABCG4	rs12271907	c.1035C>G	G allele	4.4 (2)	8.5 (4)	2 (0.4 - 15)	0.437	1.000
ABCG5	rs6756629	c.148C>T	T allele	10.3 (6)	14.3 (8)	1.4 (0.5 - 4.7)	0.523	1.000
ABCG8	rs4148211	c.161A>G	G allele	44.8 (26)	60.7 (34)	1.9 (0.9 - 4)	0.091	1.000
	rs80025980	c.239G>A	A allele	1.7 (1)	3.6 (2)	2.1 (0.2 - 46.2)	0.547	1.000
APOB	rs12713675	c.7367C>A	A allele	3.4 (2)	5.4 (3)	1.6 (0.3 - 12.4)	0.621	1.000
	rs12720855	c.9880T>C	C allele	3.4 (2)	5.4 (3)	1.6 (0.3 - 12.4)	0.621	1.000
	rs1801699	c.5741A>G	G allele	5.2 (3)	12.5 (7)	2.6 (0.7 - 12.7)	0.180	1.000
	rs533617	c.5768A>G	G allele	1.7 (1)	3.6 (2)	2.1 (0.2 - 46.2)	0.547	1.000
	rs6752026	c.433C>T	T allele	5.2 (3)	3.6 (2)	0.7 (0.1 - 4.3)	0.678	1.000
	rs676210	c.8216C>T	T allele	31 (18)	37.5 (21)	1.3 (0.6 - 2.9)	0.467	1.000
APOE	rs7412	c.526C>T	T allele	8.6 (5)	1.8 (1)	0.2 (0 - 1.2)	0.139	1.000
	rs429358	c.388T>C	C allele	20.7 (12)	23.2 (13)	1.2 (0.5 - 2.8)	0.745	0.828
CETP	rs5880	c.988G>C	C allele	13.8 (8)	8.9 (5)	0.6 (0.2 - 2)	0.417	1.000
CLMN	rs61750771	c.2698A>T	T allele	3.4 (2)	3.6 (2)	1 (0.1 - 8.9)	0.972	1.000
COQ10A	rs60542959	c.3G>T	T allele	5.2 (3)	3.6 (2)	0.7 (0.1 - 4.3)	0.678	1.000
KIF6	rs20455	c.2155T>C	C allele	58.6 (34)	73.2 (41)	1.9 (0.9 - 4.3)	0.103	1.000
LDLR	rs121908031	c.2043C>A	A allele	3.4 (2)	3.6 (2)	1 (0.1 - 8.9)	0.972	1.000
	rs879254913	c.1463T>C	C allele	1.7 (1)	3.6 (2)	2.1 (0.2 - 46.2)	0.547	1.000
LDLRAP1	rs41291058	c.712C>T	T allele	5.2 (3)	3.6 (2)	0.7 (0.1 - 4.3)	0.678	1.000
LPA	rs139145675	c.5311C>T	T allele	6.9 (4)	1.8 (1)	0.2 (0 - 1.7)	0.216	1.000
	rs3124784	c.6046C>T	T allele	56.9 (33)	37.5 (21)	0.5 (0.2 - 1)	0.039	1.000
	rs41259144	c.2969G>A	A allele	1.7 (1)	5.4 (3)	3.2 (0.4 - 66.3)	0.317	1.000
	rs41272114	g.161006077C>T	T allele	3.4 (2)	7.1 (4)	2.2 (0.4 - 16)	0.387	1.000
	rs76062330	c.5468G>T	T allele	10.3 (6)	1.8 (1)	0.2 (0 - 1)	0.092	1.000
LPL	rs328	c.1421C>G	G allele	13.8 (8)	16.1 (9)	1.2 (0.4 - 3.4)	0.733	1.000
SREBF2	rs2229440	c.1867G>A	A allele	6.9 (4)	5.4 (3)	0.8 (0.1 - 3.6)	0.733	1.000
Atorvastatin	l							
ABCA1	rs769705621	g.107556793insA	A allele	22.2 (8)	22.9 (8)	1.0 (0.3 - 3.2)	0.949	0.949
	rs769705621	g.107556793insAA	AA allele	36 (18)	47.4 (18)	1.6 (0.7 - 3.8)	0.284	0.852
	rs769705621	g.107556793insAAA	AAA allele	38.8 (19)	47.6 (20)	1.4 (0.6 - 3.3)	0.396	0.972
	rs769705621	g.107556793insAAAA	AAAA allele	11.9 (5)	12.5 (4)	1.1 (0.2 - 4.4)	0.938	0.974
	rs769705621	g.107556793insAAAA A / AAAAAA	AAAAA / AAAAAA allele	1.9 (1)	4.4 (2)	2.4 (0.2 - 53.1)	0.477	0.859
ABCG4	rs12271907	c.1035C>G	G allele	2.4 (1)	8.1 (3)	3.5 (0.4 - 73.2)	0.284	0.958
ABCG5	rs6756629	c.148C>T	T allele	11.3 (6)	17.8 (8)	1.7 (0.5 - 5.6)	0.366	0.988
ABCG8	rs4148211	c.161A>G	G allele	39.6 (21)	62.2 (28)	2.5 (1.1 - 5.8)	0.027	0.364
	rs80025980	c.239G>A	A allele	3.8 (2)	2.2 (1)	0.6 (0 - 6.2)	0.660	0.990

Supplementary table 16 Association of variants in PD-related genes with statin response in FH patients. Univariate logistic regression analysis.

Gene	rs code	NT change	Allele	RE	NRE	OR (CI 95%)	p-value	Adjusted p-value
APOB	rs12713675	c.7367C>A	A allele	3.8 (2)	4.4 (2)	1.2 (0.1 - 10.2)	0.867	1.000
	rs12720855	c.9880T>C	C allele	3.8 (2)	4.4 (2)	1.2 (0.1 - 10.2)	0.867	1.000
	rs1801699	c.5741A>G	G allele	3.8 (2)	13.3 (6)	3.9 (0.9 - 27.8)	0.105	0.709
	rs6752026	c.433C>T	T allele	3.8 (2)	4.4 (2)	1.2 (0.1 - 10.2)	0.867	0.975
	rs676210	c.8216C>T	T allele	28.3 (15)	33.3 (15)	1.3 (0.5 - 3)	0.591	0.939
APOE	rs7412	c.526C>T	T allele	7.5 (4)	2.2 (1)	0.3 (0 - 2)	0.261	1.000
	rs429358	c.388T>C	C allele	20.8 (11)	22.2 (10)	1.1 (0.4 - 2.9)	0.860	1.000
CETP	rs5880	c.988G>C	C allele	15.1 (8)	6.7 (3)	0.4 (0.1 - 1.5)	0.199	1.000
CLMN	rs61750771	c.2698A>T	T allele	3.8 (2)	4.4 (2)	1.2 (0.1 - 10.2)	0.867	0.936
COQ10A	rs60542959	c.3G>T	T allele	5.7 (3)	4.4 (2)	0.8 (0.1 - 4.9)	0.786	1.000
KIF6	rs20455	c.2155T>C	C allele	58.5 (31)	75.6 (34)	2.2 (0.9 - 5.4)	0.078	0.702
LDLR	rs879254913	c.1463T>C	C allele	1.9 (1)	4.4 (2)	2.4 (0.2 - 53.1)	0.477	0.991
LDLRAP1	rs41291058	c.712C>T	T allele	5.7 (3)	2.2 (1)	0.4 (0 - 3.1)	0.408	0.918
LPA	rs139145675	c.5311C>T	T allele	7.5 (4)	2.2 (1)	0.3 (0 - 2)	0.261	1.000
	rs3124784	c.6046C>T	T allele	62.3 (33)	35.6 (16)	0.3 (0.1 - 0.8)	0.009	0.243
	rs41259144	c.2969G>A	A allele	1.9 (1)	4.4 (2)	2.4 (0.2 - 53.1)	0.477	0.920
	rs41272114	g.161006077C>T	T allele	3.8 (2)	6.7 (3)	1.8 (0.3 - 14.3)	0.522	0.881
LPL	rs328	c.1421C>G	G allele	13.2 (7)	15.6 (7)	1.2 (0.4 - 3.8)	0.741	1.000
SREBF2	rs2229440	c.1867G>A	A allele	5.7 (3)	4.4 (2)	0.8 (0.1 - 4.9)	0.786	1.000

AA: amino acid; NT nucleotide; FH: familial hypercholesterolemia; PD: pharmacodynamics; RE: responder; NRE: non-responder; OR: odds ratio; CI: confidende interval.

Variable		NT shows	A 11-1-	Na CDAE	CDAE	OD (050/ CI)		Adjusted
variable	rs code	NI change	Allele	NO SKAŁ	SKAE	OR (95% CI)	p-value	p-value
ABCA1	rs769705621	g.10/556/93insA	A allele	14.3 (10)	40 (6)	4 (1.1 - 13.8)	0.027	0.648
	rs769705621	g.107556793insAA	AA allele	35.8 (29)	50 (11)	1.8 (0.7 - 4.7)	0.229	0.687
	rs769705621	g.107556793insAAA	AAA allele	42.4 (36)	33.3 (7)	0.7 (0.2 - 1.8)	0.453	0.777
	rs769705621	g.107556793insAAAA	AAAA allele	8.8 (6)	20 (4)	2.6 (0.6 - 10.2)	0.177	0.850
ABCG4	rs12271907	c.1035C>G	G allele	5.2 (4)	14.3 (2)	3 (0.4 - 17.5)	0.227	0.778
ABCG5	rs6756629	c.148C>T	T allele	11.2 (10)	16.7 (4)	1.6 (0.4 - 5.3)	0.476	0.672
ABCG8	rs4148211	c.161A>G	G allele	56.2 (50)	37.5 (9)	0.5 (0.2 - 1.2)	0.108	0.864
	rs80025980	c.239G>A	A allele	1.1 (1)	8.3 (2)	8 (0.7 - 176.8)	0.096	1.000
APOB	rs12713675	c.7367C>A	A allele	4.5 (4)	4.2(1)	0.9 (0 - 6.6)	0.945	1.000
	rs12720855	c.9880T>C	C allele	4.5 (4)	4.2(1)	0.9 (0 - 6.6)	0.945	0.986
	rs1801699	c.5741A>G	G allele	10.1 (9)	4.2(1)	0.4 (0 - 2.2)	0.379	0.700
	rs6752026	c.433C>T	T allele	4.5 (4)	4.2(1)	0.9 (0 - 6.6)	0.945	0.945
	rs676210	c.8216C>T	T allele	31.5 (28)	41.7 (10)	1.6 (0.6 - 3.9)	0.350	0.764
APOE	rs7412	c.526C>T	T allele	4.5 (4)	8.3 (2)	1.9 (0.3 - 10.6)	0.464	0.742
	rs429358	c.388T>C	C allele	24.7 (22)	12.5 (3)	0.4 (0.1 - 1.4)	0.210	00.75
CETP	rs5880	c.988G>C	C allele	12.4 (11)	8.3 (2)	0.6 (0.1 - 2.6)	0.586	0.781
CLMN	rs61750771	c.2698A>T	T allele	3.4 (3)	4.2(1)	1.2 (0.1 - 10.3)	0.852	0.974
KIF6	rs20455	c.2155T>C	C allele	69.7 (62)	54.2 (13)	0.5 (0.2 - 1.3)	0.158	0.948
LDLR	rs121908031	c.2043C>A	A allele	2.2 (2)	8.3 (2)	4 (0.5 - 34.5)	0.181	0.724
LPA	rs139145675	c.5311C>T	T allele	3.4 (3)	8.3 (2)	2.6 (0.3 - 16.7)	0.310	0.744
	rs3124784	c.6046C>T	T allele	49.4 (44)	37.5 (9)	0.6 (0.2 - 1.5)	0.301	0.803
	rs41272114	g.161006077C>T	T allele	4.5 (4)	8.3 (2)	1.9 (0.3 - 10.6)	0.464	0.696
	rs76062330	c.5468G>T	T allele	5.6 (5)	8.3 (2)	1.5 (0.2 - 7.6)	0.627	0.792
LPL	rs328	c.1421C>G	G allele	13.5 (12)	20.8 (5)	1.7 (0.5 - 5.2)	0.375	0.750
SREBF2	rs2229440	c.1867G>A	A allele	6.7 (6)	4.2(1)	0.6(0 - 3.8)	0.646	0.775

Supplementary table 17 Association of deleterious variants in PD-related genes with SRAE in FH patients. Univariate logistic regression analysis.

AA: amino acid; NT nucleotide; FH: familial hypercholesterolemia; PD: pharmacodynamics; SRAE: statin-related adverse events; OR: odds ratio; CI: confidende interval.

9 SCIENTIFIC PRODUCTION

9.1 Published Articles

9.1.1 Articles as first author (related to the thesis)

Dagli-Hernandez C, de Freitas RCC, Marçal EDSR, Gonçalves RM, Faludi AA, Borges JB, Bastos GM, Los B, Mori AA, Bortolin RH, Ferreira GM, de Oliveira VF, Hirata TDC, Hirata MH, Hirata RDC. Late response to rosuvastatin and statin-related myalgia due to *SLCO1B1*, *SLCO1B3*, *ABCB11*, and *CYP3A5* variants in a patient with Familial Hypercholesterolemia: a case report. Ann Transl Med. 2021 Jan;9(1):76. doi: 10.21037/atm-20-5540 (Appendix 1)

Dagli-Hernandez C, Zhou Y, Lauschke VM, Genvigir FDV, Hirata TDC, Hirata MH, Hirata RDC. Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep. 2021 Aug 17. doi: 10.1007/s43440-021-00319-y. Epub ahead of print. (Appendix 1)

9.1.2 Articles as co-author

Borges JB, Oliveira VF, Ferreira GM, Los B, Barbosa TKAA, Marçal EDSR, **Dagli-Hernandez C**, de Freitas RCC, Bortolin RH, Mori AA, Hirata TDC, Nakaya HTI, Bastos GM, Thurow HS, Gonçalves RM, Araujo DB, Zatz HP, Bertolami A, Faludi AA, Bertolami MC, Sousa AGMR, França JÍD, Jannes CE, Pereira ADC, Nakazone MA, Souza DRS, Carmo TS, Sampaio MF, Gorjão R, Pithon-Curi TC, Moriel P, Silbiger VN, Luchessi AD, de Araújo JNG, Naslavsky MS, Wang JYT, Kronenberger T, Cerda A, Lin-Wang HT, Garofalo AR, Fajardo CM, Hirata RDC, Hirata MH. Genomics, epigenomics and pharmacogenomics of Familial Hypercholesterolemia (FHBGEP): A study protocol. Res Social Adm Pharm. 2021 Jul;17(7):1347-1355. doi: 10.1016/j.sapharm.2020.10.007.

Zhou Y, **Dagli Hernandez C**, Lauschke VM. Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer. 2020 Dec;123(12):1782-1789. doi: 10.1038/s41416-020-01084-0.

Hirata TDC, **Dagli-Hernandez C**, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, Hirata RDC. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther. 2021 Aug 6. doi: 10.1007/s40291-021-00549-z. Epub ahead of print.

Los B, Borges JB, Oliveira VF, Freitas RC, **Dagli-Hernandez C**, Bortolin RH, Gonçalves RM, Faludi AA, Rodrigues AC, Bastos GM, Jannes CE, Pereira AC, Hirata RD, Hirata MH. Functional analysis of *PCSK9* 3'UTR variants and mRNA-miRNA interactions in patients with familial hypercholesterolemia. Epigenomics. 2021 May;13(10):779-791. doi: 10.2217/epi-2020-0462.

9.2 Articles under review

9.2.1 Articles as co-author

Genvigir FDC, **Carolina Dagli-Hernandez**, Hirata TDC, Lauschke VM, Zhou Y, Hirata MH, Hirata RDC Pharmacogenomics of Antihypertensive Drugs in Brazil: recent progress and clinical implications.

Bruna Los, Glaucio Monteiro Ferreira, Jéssica Bassani Borges, Thales Kronenberger, Victor Fernandes de Oliveira, **Carolina Dagli-Hernandez**, Rodrigo Marques Gonçalves, Andre Arpad Faludi, Raul Hernandes Bortolin, Renata Caroline Costa de Freitas, Thais Kristini Almendros Afonso Barbosa, Cinthia Elim Jannes, Alexandre da Costa Pereira, Gisele Medeiros Bastos, Rosario Dominguez Crespo Hirata, Mario Hiroyuki Hirata. *In silico* and *in vitro* functional studies of *PCSK9* missense variants in patients with Familial Hypercholesterolemia.

Jéssica Bassani Borges, Victor Fernandes Oliveira, **Carolina Dagli-Hernandez**, Glaucio Monteiro Ferreira, Thais Kristini Almendros Afonso Barbosa, et al. Exon targeted gene sequencing and identification of pathogenic variants in the FHBGEP Brazilian cohort.

9.3 Articles in preparation

9.3.1 Articles as first author

Carolina Dagli-Hernandez, Jéssica Bassani Borges, Elisangela de Oliveira Rodrigues Marçal, Renata Caroline Costa de Freitas, Victor Fernandes de Oliveira, Bruna Los, Rodrigo Marques Gonçalves, Andre Arpad Faludi, Gisele Medeiros Bastos, Yitian Zhou, Volker M. Lauschke, Mario Hiroyuki Hirata, Rosario Dominguez Crespo Hirata. Genetic variants in ABC transporters are associated with increased response to statins in patients with Familial Hypercholesterolemia.

This article reports the results obtained during the BEPE internship in Karolinska Institutet and is expected to be submitted by December 2021.

APPENDIX 1 – Articles as first author (related to the thesis)

Case Report

Late response to rosuvastatin and statin-related myalgia due to *SLCO1B1*, *SLCO1B3*, *ABCB11*, and *CYP3A5* variants in a patient with Familial Hypercholesterolemia: a case report

Carolina Dagli-Hernandez¹, Renata Caroline Costa de Freitas¹, Elisangela da Silva Rodrigues Marçal¹, Rodrigo Marques Gonçalves², Andre Arpad Faludi², Jéssica Bassani Borges², Gisele Medeiros Bastos², Bruna Los¹, Augusto Akira Mori¹, Raul Hernandes Bortolin¹, Glaucio Monteiro Ferreira¹, Victor Fernandes de Oliveira¹, Thiago Dominguez Crespo Hirata¹, Mario Hiroyuki Hirata¹, Rosario Dominguez Crespo Hirata¹

¹Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; ²Institute Dante Pazzanese of Cardiology, Sao Paulo, Brazil

Correspondence to: Carolina Dagli-Hernandez. Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, 05508-000 Sao Paulo, Brazil. Email: carolina.hernandez@usp.br.

Abstract: Statins are the most widely used cholesterol-lowering drugs for cardiovascular diseases prevention. However, some patients are refractory to treatment, whereas others experience statin-related adverse events (SRAE). It has been increasingly important to identify pharmacogenetic biomarkers for predicting statin response and adverse events. This case report describes a female patient with familial hypercholesterolemia (FH) who showed late response to rosuvastatin and experienced myalgia on statin treatment. In the first visit (V1), the patient reported myalgia to rosuvastatin 40 mg, which was interrupted for a 6-week wash-out period. In V2, rosuvastatin 20 mg was reintroduced, but her lipid profile did not show any changes after 6 weeks (V3) (LDL-c: 402 vs. 407 mg/dL). Her lipid profile markedly improved after 12 weeks of treatment (V4) (LDL-c: 208 mg/dL), suggesting a late rosuvastatin response. Her adherence to treatment was similar in V1 and V3 and no drug interactions were detected. Pharmacogenetic analysis revealed that the patient carries low-activity variants in *SLCO1B1*1B and*5*, *SLCO1B3* (rs4149117 and rs7311358), and *ABCB11* rs2287622, and the non-functional variant in *CYP3A5*3*. The combined effect of variants in pharmacokinetics-related genes may have contributed to the late response to rosuvastatin and statin-related myalgia. Therefore, they should be considered when assessing a patient's response to statin treatment. To the best of our knowledge, this is the first report of a pharmacogenetic analysis on a case of late rosuvastatin response.

Keywords: Pharmacogenetics; precision medicine; familial hypercholesterolemia (FH); statins; myalgia

Submitted Jul 27, 2020. Accepted for publication Oct 26, 2020. doi: 10.21037/atm-20-5540 View this article at: http://dx.doi.org/10.21037/atm-20-5540

Introduction

Familial hypercholesterolemia (FH) is a genetic metabolic disease that leads to increased high low-density lipoprotein (LDL) cholesterol, which is a risk factor for early atherosclerosis and cardiovascular diseases (1). FH is usually treated with high-dose statins, which are inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), a key enzyme in cholesterol biosynthesis pathway. Rosuvastatin is one of the most effective statins, probably due its hydrophilicity, that confers selectivity to hepatic cells, higher affinity to HMGR, and lower rates of statin-related adverse events (SRAE) compared to other statins. It is poorly metabolized by CYP2C9 and CYP2C19, while 72% of the non-metabolized molecules are excreted via biliary system. Therefore, rosuvastatin blood levels rely on the activity of membrane transporters, mainly of solute

© Annals of Translational Medicine. All rights reserved.

Page 2 of 8

carrier (SLC) and ATP-binding cassette (ABC) families, highly expressed in intestine, liver, and kidney (2).

Pharmacogenetic studies have shown that lossof-function variants in genes encoding OATPs, such as SLCO1B1, SLCO2B1, and SLCO1B3, and ABCs have been associated with variability in low-density lipoprotein cholesterol (LDL-c) reduction and higher risk of SRAE (3). The importance of considering the combined effect of variants in key genes for pharmacogenetic analyses has been increasingly evident (4). In this case report, we discuss how variants in genes participating in different stages of statin pharmacokinetics pathway possibly affected the time to response to rosuvastatin and the risk of SRAE in a female FH patient. To the best of our knowledge, this is the first report of a pharmacogenetic analysis on a case of late rosuvastatin response. This case is reported in accordance with the CARE reporting checklist (available at http://dx.doi. org/10.21037/atm-20-5540).

Case presentation

A 26-year-old Caucasian female patient with definite diagnosis of FH according to Dutch Lipid Clinic Network MEDPED criteria (5) was invited to participate in an intervention study in June 2019. She was previously included in a FH sequencing study (May 2018), in which a panel of 84 genes involved in lipid homeostasis and drug metabolism was sequenced using exon-targeted gene sequencing (NGS). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committees and with the Helsinki Declaration (as revised in 2013). Written informed consent was obtained from the patient for both studies.

The patient carries the variant *LDLR* rs28941776 (c.1646G>A, p.Gly549Asp), which has been associated with FH and is classified as pathogenic according to the American College of Medical Genetics (ACMG) guidelines (6).

Her clinical history included high levels of total cholesterol and LDL-c since childhood. In 2008, at the age of 15 years, she had an abnormal lipid profile even under a daily treatment with simvastatin 10 mg and ezetimibe 10 mg. Laboratory analyses showed a total cholesterol of 324 mg/dL, LDL-c 264 mg/dL, high-density lipoprotein cholesterol (HDL-c) 46 mg/dL, and triglycerides 71 mg/dL. In 2014, she was diagnosed with hypothyroidism and treated with levothyroxine 25 µg/day,

which was gradually increased to 100 µg/day in 2019. She also had a pregnancy history in January 2017.

Her therapy history included simvastatin, which led to severe myopathy in 2008, with marked increase in serum creatine kinase (CK) to 1,080 U/L (4.7-fold the upper reference value). The cholesterol-lowering therapy was changed to pravastatin 20 mg and ezetimibe 10 mg daily until May 2011, when she reported another episode of myalgia. Pravastatin was withdrawn and atorvastatin 20 mg was introduced, also associated with ezetimibe 10 mg. Three months later, in August 2011, she reported interrupting atorvastatin treatment due to myalgia. Rosuvastatin 10 mg was then introduced, also associated with ezetimibe 10 mg, after which she showed an LDL-c level of 125 mg/dL and never reported myalgia again. However, her lipid profile worsened throughout the years even under rosuvastatin treatment, with her LDL-c reaching 194 mg/dL with rosuvastatin 20 mg.

The patient had no history of liver or kidney impartment, HIV, coronary artery disease (CAD), diabetes, obesity, cardiovascular events, and did not smoke or drink. Her mother and grandmother had a history of FH, but not CAD or cardiovascular events, while her father had hypertension and type 2 diabetes.

In the intervention study, the patient was seen four times (V1 to V4) in 5 months, and clinical history and therapy data were obtained. The protocol consisted of a 6-week rosuvastatin wash-out period, after which rosuvastatin was reintroduced for additional 6 weeks, when treatment response was evaluated. Adherence to treatment was assessed in each timepoint using the translated and validated version of the Brief Medication Questionnaire (BMQ) (7) and blood samples were taken in each visit for laboratory testing.

The lipid profile during the follow-up is shown in *Figure 1*. In April 2019 (V1), the patient was taking rosuvastatin 40 mg, ezetimibe 10 mg, and levothyroxine 88 µg daily. She reported experiencing muscle pain after recently increasing rosuvastatin dose from 20 to 40 mg/day. Her lipid profile was altered (total cholesterol 376 mg/dL, LDL-c 263 mg/dL, HDL-c 67 mg/dL, triglycerides 234 mg/dL) without increase in CK levels. She reported being active, running 2 km 2–3 times a week, and had a healthy diet, eating more than five portions of vegetables daily. Her TSH and T4 levels were normal. Rosuvastatin 40 mg was then discontinued for wash-out, ezetimibe was maintained, and levothyroxine dose was increased to 100 µg/day.

In June 2019 (V2), after undergoing a 6-week

© Annals of Translational Medicine. All rights reserved.

Annals of Translational Medicine, Vol 9, No 1 January 2021

Figure 1 Plasma lipid profile and pharmacotherapy of the FH patient throughout the study period. EZT, ezetimibe; LVT, levothyroxine; RSV, rosuvastatin; SRAE, statin-related adverse events.

rosuvastatin wash-out period between V1 and V2, her lipid profile worsened (total cholesterol 512 mg/dL, LDL-c 405 mg/dL, HDL-c 65 mg/dL, triglycerides 213 mg/dL). Because the patient reported myalgia in V1 (rosuvastatin 40 mg), the physician prescribed rosuvastatin 20 mg/day for six weeks. Surprisingly, in August 2019 (V3), the lipid profile (total cholesterol 531 mg/dL, LDL-c 407 mg/dL, HDL-c 67 mg/dL, triglycerides 286 mg/dL) did not change compared to V2. The patient reported experiencing no myalgia to rosuvastatin 20 mg. In September 2019 (V4), her lipid profile improved (total cholesterol 299 mg/dL, LDL-c 208 mg/dL, HDL-c 59 mg/dL, triglycerides 158 mg/dL) and she continued not experiencing myalgia to rosuvastatin.

During the follow-up period, serum TSH and T4 levels remained unchanged, suggesting that her hypothyroidism was controlled and did not influence the lipid profile. Moreover, serum CK did not show any abnormality, which indicates no muscle damage due to statin treatment.

The patient also reported being adherent to treatment. In the BMQ adherence questionnaire, she reported forgetting the lipid-lowering medications 2 days in the week before V1 (71.4% adherence) and 1 day in the week before V3 (85.7% adherence).

The genetic profile of the patient is shown in *Table 1*. She carries five missense variants in *SLCO1B1*, *SLCO1B3*, and *ABCB11*. She is also homozygote for the *CYP3A5*3* (rs776746) splicing variant. No other missense variants Page 3 of 8

described as impacting rosuvastatin response were found in *CYP3A4*, *CYP2C9*, *CYP2C19*, or other drug transporters, such as *ABCG2* (data not shown).

Discussion

In heterozygous FH patients, LDL-c level reductions of 47.1% have been observed after a 6-week treatment with rosuvastatin 20 mg (8). The patient, however, did not experience any changes in LDL-c levels at week 6 (V3) of rosuvastatin 20 mg treatment, with a 48.9% LDL-c reduction only at week 12 (V4) of therapy.

The delayed rosuvastatin response could be explained by modifications in the therapy scheme during the follow-up period. However, the only change was in levothyroxine dose, that was increased from 88 to 100 µg in V1. It is unlikely that the late response is due to an adaptation to the new levothyroxine dose. The patient was already on treatment with levothyroxine 88 µg before V1; moreover, changes in cholesterol due to an adaptation period should be reflected in her lipid profile in V3, not only in V4. Another possible explanation is a lack of adherence from V2 to V3; however, the patient showed a similar treatment adherence in V3 and V1, which should lead to a similar lipid profile between visits. Furthermore, drug interactions between rosuvastatin, levothyroxine, and ezetimibe that could affect treatment response were not detected, excluding this possibility.

Pharmacokinetics-related genes may have contributed to the late response to rosuvastatin (Figure 2). The patient carries two variants in SLCO1B1, c.388A>G (SLCO1B1*1B) and c.521T>C (SLCO1B1*5), that are important determinants of rosuvastatin response. SLCO1B1*5 is a lossof-function variant that decreases the hepatic uptake and increases blood levels of statins (9) (Table 1). SLCO1B1*1B has shown comparable activity to the functional *1A variant in in vitro functional studies (10). SLCO1B1*1B and *5 variants are in linkage disequilibrium (LD) and form the SLCO1B1*15 haplotype, that also reduced rosuvastatin uptake in functional studies with HEK293 and HeLa cells (11). The decreased liver uptake caused by these SLCO1B1 variants has been associated with increased plasma levels of rosuvastatin in pharmacokinetics studies (9) (Table 1).

SLCO1B3 is also an important gene that encodes an influx transporter for rosuvastatin. The patient was homozygous for both *SLCO1B3* c.334T>G and c.699G>A, which are in strong LD (12). In an *in vitro* study, HeLa cells transfected with *SLCO1B3* c.334G and c.699A haplotype showed a 13% decrease in rosuvastatin uptake, while for

© Annals of Translational Medicine. All rights reserved.

Dagli-Hernandez et al. Late statin response due to genetic variants: case report

Page 4 of 8

Gene	Variant code	Variant type	Nucleotide change (Amino acid change)	Patient genotype	Allele frequency (1,000 genomes, %)	Functional impact	Effects on rosuvastatin pharmacokinetics	References
SLCO1B1	rs2306283 (SLCO1B1*1B)	Missense	c.388A>G (p.Asn130Asp)	AG	*1B: 54.4	Comparable to *1A	No effect on plasma rosuvastatin levels	Ho <i>et al.</i> , 2006; Lee <i>et al.</i> , 2013
SLCO1B1	rs4149056 (SLCO1B1*5)	Missense	c.521T>C p.(Val174Ala)	TC	*5: 8.8	Reduced activity	Increased rosuvastatin plasma levels; Reduced hepatic uptake	Kameyama <i>et al.</i> , 2005; Lee <i>et al.</i> , 2013
SLCO1B1	rs2306283, rs4149056 (SLCO1B1*15)	Missense	c.388A>G, c.521T>C (p.Asn130Asp, p.Val174Ala)	AG, TC	*15: 7.8	Reduced activity	Increased rosuvastatin plasma levels; reduced hepatic uptake	Kameyama et al., 2005; Birmingham et al., 2015
SLCO1B3	rs4149117	Missense	c.334T>G (p.Ser112Ala)	GG	G: 70.2	Reduced activity	Reduced hepatic uptake	Schwarz et al. 2011
SLCO1B3	rs7311358	Missense	c.699G>A (p.Met233IIe)	AA	A: 70.2	Reduced activity	Reduced hepatic uptake	Schwarz et al. 2011
ABCB11	rs2287622	Missense	c.1331T>C (p.Val444Ala)	TC	C: 58.9	Reduced activity	r Increased rosuvastatin plasma levels	Soko <i>et al.</i> 2019
CYP3A5	rs776746 (CYP3A5*3)	Splicing	c. 6986A>G	GG	*3: 62.1	No activity	No rosuvastatin metabolism; Reduced LDL-c response	Bailey <i>et al.</i> 2010

Table 1 Variants in pharmacokinetic-related genes of the FH patient with late response to rosuvastatin

FH, familial hypercholesterolemia; LDL-c, low-density lipoprotein cholesterol.

other substrates, such as cholecystokinin-8, an even more marked decrease of 57% was observed (13) (*Table 1*).

Although the effect of *SLCO1B3* c.334G and c.699A haplotype in rosuvastatin uptake is not sufficient to explain the delayed response, it might be significant when combined with the effect of the decreased function haplotype *SLCO1B1*15*. While *SLCO1B1*5* and *SLCO1B1*15* are associated with higher plasma levels of rosuvastatin, previous studies failed to find an association between these variants and LDL-c reduction in response to short- and long-term rosuvastatin treatments (9). Therefore, the simultaneous presence of decreased function *SLCO1B1* and *SLCO1B3* haplotypes possibly caused a marked reduction of rosuvastatin intrahepatic concentration, resulting in the lack of response observed in V3.

ABCB11 encodes the efflux protein ABCB11, which plays an important role in rosuvastatin bile excretion. In a recent study, ABCB11 c.1331C allele has been associated to increased plasma rosuvastatin levels in healthy subjects (14) (Table 1). This variant possibly causes lower rosuvastatin excretion via bile, which in turn would increase intrahepatic rosuvastatin concentrations. Therefore, this mechanism could explain why even in the presence of low function SLC variants, the patient showed a late but evident LDL-c reduction after 12 weeks of rosuvastatin treatment.

The patient also carries the homozygous form of $CYP3A5^{*3}$, an intronic variant that results in undetectable expression of CYP3A5 (15). The GEOSTAT-1 study reported that dyslipidemic patients carrying $CYP3A5^{*3/*3}$ had lower LDL-c reduction after three-month rosuvastatin 10 mg treatment compared to carriers of *1/*1 or *1/*3 (Table 1). It was suggested that the metabolite produced by CYP3A5 also plays a role in HMGR inhibition, potentiating the response to rosuvastatin, which is why CYP3A5 non-expressors have reduced LDL-c response to rosuvastatin (16). $CYP3A5^{*3}$ possibly impaired the patient's response time to rosuvastatin, but in lower extent, as CYP3A5 does not participate markedly in rosuvastatin metabolism.

In addition to the delayed response to rosuvastatin, the patient experienced myalgia associated with rosuvastatin 40 mg/day and other statins, as previously commented. This SRAE may be due to *SLCO1B1* variants. *SLCO1B1*5* and *SLCO1B1*15* have been extensively associated with myopathy to simvastatin. A systematic review and metaanalysis reported that carriers of the C allele of *SLCO1B1*5* (c.521T>C) showed a higher risk of myotoxicity (17). Additionally, *SLCO1B1*5* has been associated to rosuvastatin myotoxicity in previous studies (18,19). It has been

© Annals of Translational Medicine. All rights reserved.

Annals of Translational Medicine, Vol 9, No 1 January 2021

Figure 2 Proposed mechanism for patient's late rosuvastatin response and myalgia. 1. The hepatic uptake of rosuvastatin occurs through SLCO1B1 and SLCO1B3 influx transporters, while atorvastatin and simvastatin are internalized through SLCO1B1. The presence of deleterious variants in these transporters (*SLCO1B1*15* and *SLCO1B3* c.334T>G and c.699G>A) decreases statin uptake, therefore decreasing their concentration inside the hepatocyte and increasing statin plasma levels. 2. The lack of expression of CYP3A5 due to *CYP3A5*3* also decreases atorvastatin metabolization, which contributes to increasing their plasma levels. This enzyme does not participate markedly in rosuvastatin metabolism. 3. The resulting higher blood statin levels increased the patient's muscular exposure to statins, that are internalized through SLCO2B1 transporter into the skeletal muscle cell. The high concentrations in the skeletal muscle cell possibly caused patient's myalgia. 4. Rosuvastatin's bile excretion occurs through ABCB11 efflux protein. *ABCB11* c.1331T>C variant results in a reduced activity ABCB11, which decreases rosuvastatin efflux; this increases rosuvastatin absorbed in the beginning of the treatment accumulated due to the loss of function of the *ABCB11* variant. This, together with rosuvastatin active metabolites generated by the normal function CYP2C9, allowed HMGR inhibition and therefore cholesterol lowering in the last visit.

suggested that it causes higher efflux of statins, increasing statin exposure and, therefore, the risk of myalgia (20). Also, a recent case report showed that variants in *SLCO1B3* (c.334T>G and c.699G>A) and *ABCB11* (c.1331T>C) and the interaction between rosuvastatin and ticagrelor led to rhabdomyolysis in a patient with chronic kidney disease and other chronic conditions (21), but no other reports were found.

*CYP3A5*3* may also have contributed to statin myotoxicity, since it has been associated with increased risk to atorvastatin and rosuvastatin-related myalgia in South-Indian dyslipidemic patients (22). However, this variant was not associated to statin intolerance in another study (23). Most studies have evaluated the effect of individual variants in SRAE, and not the interaction between a group of variants in key genes in statin pharmacokinetics pathway. Therefore, we suggest that the combined effect of the lowactivity variants in *SLCO1B1* and *SLCO1B3*, the highactivity variant in *ABCB11*, and the lack of activity of *CYP3A5*3* predisposed the patient to low hepatic uptake, metabolization and efflux, respectively. The resulting higher rosuvastatin plasma concentration increased its systemic exposure, which may have caused myalgia (*Figure 2*).

Importantly, the patient carries *LDLR* rs28941776 (c.1646G>A, p.Gly549Asp), a disruptive-missense variant that showed reduced LDL uptake in an *in vitro* study (24). *LDLR* variants have been associated with variability in statin response in FH patients (25), but we did not find studies that investigated the association between *LDLR* variants and time to statin response or myalgia. Nevertheless, this variant could have played a role in patient's rosuvastatin time to response and it should be considered for further

© Annals of Translational Medicine. All rights reserved.

Page 6 of 8

studies.

A limitation of this study is that plasma concentrations of rosuvastatin and its metabolites were not measured. However, the adherence of the patient to the prescribed treatment was ensured using a validated adherence questionnaire and regular follow-up calls.

In summary, the combination of four low-activity variants in *SLC* genes, a high-activity variant in *ABCB11*, and a nonfunctional variant in *CYP3A5* may explain the observed late response to rosuvastatin and the statin-related myalgia. With this case report, we have shown the importance of considering a combination of variants in a pharmacogenetic analysis to predict individual responses to statin treatment and prevent adverse drug events. We believe this study contributes to precision medicine in future clinical settings.

Patient perspective

"I bave bad bigb cholesterol since I was a child and it has been an issue because of the delayed response to treatments and of many adverse reactions to medications, especially simvastatin. The authors have been very attentive towards me throughout the whole study and discovered possible variants that may delay my response to rosuvastatin and influence the pain that I have felt when using statins. I am very happy for knowing the cause of my problem and I would like to thank the authors for this possible diagnosis. This has improved my perspectives of cholesterol treatment."

Acknowledgments

The authors thank Adriana Garofalo, Dr. Hui Tzu Lin Wang, colleagues from the Laboratory of Molecular Investigation in Cardiology, and the Divisions of Dyslipidemia and Pharmacy of the Institute Dante Pazzanese of Cardiology. Their immeasurable technical and logistic support in patient selection and data collection made this study possible.

Funding: This work was supported by Sao Paulo Research Foundation (FAPESP), Brazil [Research grant: #2016/12899-6 to MHH]; and National Council for Scientific and Technological Development [CNPq, grant: #447120/2014-0 to MHH], Brazil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CDH is a recipient of a fellowship of the São Paulo Research Foundation (FAPESP), grant #2016/25637-0. RCCF, RHB, GMF and VFO are recipients of fellowships from

© Annals of Translational Medicine. All rights reserved.

FAPESP, Brazil. AAM is a recipient of fellowship from CAPES, Brazil. ESRM, MHH and RDCH are recipients of fellowships from CNPq, Brazil. BL was a recipient of fellowship from FAPESP, Brazil.

Footnote

Reporting Checklist: The authors have completed the CARE reporting checklist. Available at http://dx.doi.org/10.21037/ atm-20-5540

Peer Review File: Available at http://dx.doi.org/10.21037/atm-20-5540

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/atm-20-5540). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The intervention study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The DNA sequencing study was approved by the Ethics Committees of the Institute Dante Pazzanese of Cardiology (CAAE #4618713.0.1001.5462) and the School of Pharmaceutical Sciences of the University of Sao Paulo (CAAE #24618713.0.3001.0067), Sao Paulo, Brazil. The intervention study was approved by the Ethics Committee of the Institute Dante Pazzanese of Cardiology (CAAE #05234918.4.0000.5462). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committees. The patient signed the written informed consents before her enrollment in the studies. In the written informed consent of the DNA sequencing study, the patient was informed that clinical data and blood samples would be collected for laboratory tests and genetic analyses. As for the intervention study, the patient was informed on the intervention protocol and sample collections throughout the visits, and that this data would be used for genetic and epigenetic analyses.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International

Annals of Translational Medicine, Vol 9, No 1 January 2021

License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Zhang Y, Cong H, Man C, et al. Risk factors for cardiovascular disease from a population-based screening study in Tianjin, China: a cohort study of 36,215 residents. Ann Transl Med 2020;8:444.
- Luvai A, Mbagaya W, Hall AS, et al. Rosuvastatin: A Review of the pharmacology and clinical effectiveness in cardiovascular Disease. Clin Med Insights Cardiol 2012;6:17-33.
- Rocha KC, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018;14:613-24.
- Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet 2019;394:521-32.
- Defesche JC, Lansberg PJ, Umans-Eckenhausen MA, et al. Advanced method for the identification of patients with inherited hypercholesterolemia. Semin Vasc Med 2004;4:59-65.
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.
- Ben AJ, Neumann CR, Mengue SS. The Brief Medication Questionnaire and Morisky-Green test to evaluate medication adherence. Rev Saude Publica 2012;46:279-89.
- Stein EA, Strutt K, Southworth H, et al. Comparison of rosuvastatin versus atorvastatin in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2003;92:1287-93.
- Lee HK, Hu M, Lui SSh, et al. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 2013;14:1283-94.
- Ho RH, Tirona RG, Leake BF, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130:1793-806.
- 11. Kameyama Y, Yamashita K, Kobayashi K, et al. Functional

© Annals of Translational Medicine. All rights reserved.

characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005;15:513-22.

- Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015;31:3555-7.
- Schwarz UI, Meyer zu Schwabedissen HE, Tirona RG, et al. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet Genomics 2011;21:103-14.
- Soko ND, Chimusa E, Masimirembwa C, et al. An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: limited role for SLCO1B1 c.521T>C and ABCG2 c.421A>C. Pharmacogenomics J 2019;19:240-8.
- Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001;11:773-9.
- Bailey KM, Romaine SP, Jackson BM, et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010;3:276-85.
- Lee YS, Chun P. Effect of SLCO1B1 T521C on Statininduced Myotoxicity: A Systematic Review and Metaanalysis. Korean J Clin Pharm 2018;28:320-30.
- Liu DJ, Peloso GM, Yu H, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017;49:1758-66.
- Bai X, Zhang B, Wang P, et al. Effects of SLCO1B1 and GATM gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol Sin 2019;40:492-9.
- Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomicand Muscle Components. J Clin Med 2019;9:22.
- Calderon-Ospina CA, Hernández-Sómerson M, García AM, et al. A pharmacogenomic dissection of a rosuvastatininduced rhabdomyolysis case evokes the polygenic nature of adverse drug reactions. Pharmgenomics Pers Med 2020;13:59-70.
- Ramakumari N, Indumathi B, Katkam SK, et al. Impact of pharmacogenetics on statin-induced myopathy in South-Indian subjects. Indian Heart J 2018;70:S120-5.

Page 8 of 8

Dagli-Hernandez et al. Late statin response due to genetic variants: case report

- 23. Fiegenbaum M, da Silveira FR, Van der Sand CR, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005;78:551-8.
- 24. Thormachlen AS, Schuberth C, Won HH, et al. Systematic cell-based phenotyping of missense alleles

Cite this article as: Dagli-Hernandez C, de Freitas RCC, Marçal EDSR, Gonçalves RM, Faludi AA, Borges JB, Bastos GM, Los B, Mori AA, Bortolin RH, Ferreira GM, de Oliveira VF, Hirata TDC, Hirata MH, Hirata RDC. Late response to rosuvastatin and statin-related myalgia due to *SLCO1B1*, *SLCO1B3*, *ABCB11*, and *CYP3A5* variants in a patient with Familial Hypercholesterolemia: a case report. Ann Transl Med 2021;9(1):76. doi: 10.21037/atm-20-5540 empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet 2015;11:e1004855.

 Choumerianou DM, Dedoussis GV. Familial hypercholesterolemia and response to statin therapy according to LDLR genetic background. Clin Chem Lab Med 2005;43:793-801.

© Annals of Translational Medicine. All rights reserved.

REVIEW

Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts

Carolina Dagli-Hernandez^{1,2} · Yitian Zhou² · Volker Martin Lauschke^{2,3} · Fabiana Dalla Vecchia Genvigir¹ · Thiago Dominguez Crespo Hirata¹ · Mario Hiroyuki Hirata¹ · Rosario Dominguez Crespo Hirata¹ ©

Received: 9 June 2021 / Revised: 21 July 2021 / Accepted: 30 July 2021 © Maj Institute of Pharmacology Polish Academy of Sciences 2021

Abstract

Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in cholesterol biosynthesis, that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol and decreasing the risk of cardiovascular events. In recent years, a multitude of variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been suggested to influence the cholesterol-lowering response. However, the vast majority of studies have analyzed the pharmacogenetic associations in populations in Europe and the USA, whereas data in other populations, including Brazil, are mostly lacking. This narrative review provides an update of clinical studies on statin pharmacogenomics in Brazilian cohorts exploring lipid-lowering response, adverse events and pleiotropic effects. We find that variants in drug transporter genes (*SLCO1B1* and *ABCB1*) positively impacted atorvastatin and simvastatin response, whereas variants in genes (*HMGCR, LDLR* and *APOB*) with statin response were identified. Few studies have explored statin-related adverse events, and only *ABCB1* but not *SLCO1B1* variants were robustly associated with increased risk in Brazil. Statin-related pleiotropic effects were shown to be influenced by variants in PD (*LDLR, NR1H2*) and antioxidant enzyme (*NOS3, SOD2, MTHFR, SELENOP*) genes. The findings of these studies indicate that statin pharmacogenomic associations are distinctly different in Brazil compared to other populations. This review also discusses the clinical implications of pharmacogenetic studies and the rising importance of investigating rare variants to explore their association with statin response.

Keywords Pharmacogenomics · Statins · Brazil · Lipid response · Adverse events · Pleiotropic effects · Rare variants

Abbreviations

AD	Alzheimer disease	CK
ADR	Adverse drug reactions	CoQ1
Аро	Apolipoprotein	CPIC
ASCVD	Atherosclerotic cardiovascular disease	
AUC	Area under the curve	CVD
CAC	Coronary artery calcium	eNOS
CAR	Constitutive androstane receptor	ERα
CD36	Scavenger receptor Class B2	GPX
		HC

Carolina Dagli-Hernandez carolina.hernandez@usp.br

¹ Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo 05508-000, Brazil

² Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Solna, Sweden

³ Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany

CETP	Cholesteryl ester transfer protein
CK	Creatine kinase
CoQ10	Ubiquinone
CPIC	Clinical Pharmacogenetics Implementation
	Consortium
CVD	Cardiovascular disease
eNOS	Endothelial nitric oxide synthase
ERα	Estrogen receptor α
GPX	Glutathione peroxidase
HC	Hypercholesterolemia
FH	Familial hypercholesterolemia
HDL	High-density lipoprotein
HL	Hepatic lipase
HMGR	3-Hydroxy-3-methylglutaryl-CoA reductase
GRS	Genetic risk score
LCAT	Lecithin: cholesterol acyltransferase
LDL	Low-density lipoprotein
LDLR	LDL receptor
MACE	Major atherosclerotic cardiovascular events

Published online: 17 August 2021

D Springer

A CONTRACTOR	
MTHFR	Methylenetetrahydrofolate reductase
MYLIP	Myosin regulatory light chain interacting
	protein
PCSK9	Proprotein convertase subtilisin/kexin type 9
PD	Pharmacodynamics
PK	Pharmacokinetics
PON1	Paraoxonase 1
PPARα	Peroxisome proliferator-activated receptor
PXR	Pregnane X receptor
RXRα	Retinoid X receptor alpha
SAMS	Statin-associated muscle symptoms
SCAP	SREBP cleavage-activating protein
Se	Selenium
SNVs	Single nucleotide variations
SOD2	Manganese-dependent superoxide dismutase
SRAE	Statin-related adverse events
SR-B1	Scavenger receptor class B1
SREBP	Sterol regulatory element-binding proteins
VLDL	Very low-density lipoprotein

Introduction

Statins are potent 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitors that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol, delay the progression of atherosclerosis and prevent life-threatening cardiovascular events [1]. The response to statins, however, is considerably variable among individuals and a multitude of genetic and non-genetic factors, such sex, age, smoking status, diabetes and ethnics, have been reported as predictors of LDL cholesterol-lowering response to statins [2].

Variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been studied for their impact on statin response and the risk of statin-related adverse events (SRAE) [3]. Most genetic associations with statin response have been found in PK genes, such as drug metabolizing enzymes and transporters, which can alter statins plasma concentrations with impact on their efficacy and safety.

The influence of genetic variants on statin response has been assessed primarily in populations in Europe and the USA for which recent reviews summarized variants in PK (Fig. 1) and PD (Fig. 2) genes associated with statin efficacy and safety, particularly *SLCO1B1* and other drug transporter genes with higher effects [4–6]. However, clinical studies on statin pharmacogenomics in Brazilian patients are generally underrepresented [7, 8].

This narrative review provides an update of pharmacogenomic studies of statins performed in Brazilian cohorts. Original articles that explored genetic variants associated with response to statins were searched in the PubMed database, using the key words: (1) statins, pharmacogenetics (or gene polymorphism) and Brazil; (2) statins, gene polymorphism, lipids, adverse events or pleotropic effects, and Brazil. Thirty-nine clinical studies published from 2005 to 2021 were selected and information on gene, variant, allele frequency, study design, Brazilian cohort, statin regimen, and effects and outcomes (drug response, SRAE risk and others) were extracted. Data on significant associations of genetic variants with statin response and other outcomes

Fig. 1 Genes involved in statin pharmacokinetics. In bold, genes studied in Brazilian cohorts

Fig. 2 Genes involved in statin pharmacodynamics and cholesterol metabolism. In bold, genes studied in Brazilian cohorts

are provided in Tables 1 and 2, while variants without significant association are shown in Tables S1 to S3. Clinical implications of the pharmacogenomic studies and the relevance of rare variants in pharmacogenetic studies are also discussed in this review.

Pharmacokinetics genes and statin response

SLC transporters

OATP1B1 and OATP2B1 (encoded by *SLCO1B1* and *SLCO2B1*, respectively) are influx transporters with a critical role in statin uptake by liver cells (Fig. 1) and have important contributions in statin PK and response [4, 9]. The effects of *SLCO1B1* variants, mainly *SLCO1B1*1B* (rs2306283, c.388A>G, p.Asn130Asp) and *5 (rs4149056, c.521T>C, p.Val174Ala) and *15 haplotype (rs2306283 and rs4149056) have been extensively studied.

*SLCO1B1*5* and **15* are low function variants that result in reduced uptake of pravastatin, atorvastatin, and cerivastatin in vitro, whereas **1B* did not alter transporter function [10]. Although *SLCO1B1*5* did not affect simvastatin uptake in vitro [10], healthy volunteers carrying the **5* allele had up to twice the simvastatin exposure compared to non-carriers [11]. *SLCO1B1*15* has also been shown to impact atorvastatin, pitavastatin, and rosuvastatin plasma levels in homozygous carriers [12]. However, *SLCO1B1*5* and **15* had low effect in statin response (LDL cholesterol reduction < 5%) [13]. Other studies reported no impact of *SLCO1B1*5* on LDL cholesterol response to statins in patients with hyper-cholesterolemia (HC) [14, 15].

The influence of *SLCO1B1*1B* on statin pharmacokinetics is still controversial. *SLCO1B1*1B* carriers showed a reduction of pravastatin plasma area under the curve (AUC) by 65% compared to **1A/*1A* carriers, suggesting **1B* allele as a determinant of pravastatin pharmacokinetics [16]. Another study observed an association between *SLCO1B1*1B* and higher plasma atorvastatin AUC, which was probably due to a higher hepatic *SLCO1B1* activity [17]. Conversely, *SLCO1B1*1B* did not impact the LDL cholesterol response to atorvastatin or simvastatin response in HC patients [14, 15].

Variants in *SLCO1B1* and *SLCO2B1* were explored in three Brazilian HC cohorts (Table 1). *SLCO1B1*1B* (G allele) was associated with increased total and LDL cholesterol response to atorvastatin (10 mg/day) [18], as well as LDL cholesterol reduction in response to simvastatin (20 mg/day) [19].

*SLCO1B1*5* and *SLCO1B1*15*, as well as *SLCO1B1*4* (rs11045819, c.463C>A) and *SLCO1B1*14* (*1*B/*4*) haplotype were also investigated in Brazilian HC patients, but no association was found with the response to atorvastatin or simvastatin [18–20] (Table S1). Although similar results were observed in other populations [14, 15], the low frequency of *5 or *15 in the Brazilian studies

🙆 Springer
C. Dagli-Hernandez et al.

Gene	Variant	NT change	Cohort	Statin	Allele, genotype or haplotype associated	Effect on statin response	References
Drug transpo	orters and metabolizing	enzymes					
SLCO1B1	rs2306283 (*1B)	c.388A>G	136 HC	Atorvastatin	*1B allele	↑ TC and LDL-c reduction	[18]
			216 HC ^a	Simvastatin	*1B allele	↑ LDL-c reduction	[19]
ABCB1	rs1128503	c.1236C>T	116 HC ^a	Simvastatin	T allele	↑ TC and LDL-c reduction	[27]
	rs2032582	c.2677T>G/A	116 HC ^a	Simvastatin	GG genotype	↑ TC reduction	[27]
			136 HC	Atorvastatin	A allele	↑ LDL-c reduction	[25]
CYP3A5	rs776746 (*3) rs15524 (*1D)	c.6986A>G c.31611C>T	139 HC	Atorvastatin	*3/*1D haplotype	↓ TC, LDL-c, and HDL-c reduc- tion (non-African descent)	[42]
Cholesterol	homeostasis and metab	olism					
HMGCR	rs17244841	g.14863A>T	157 HC	Atorvastatin	AT genotype	↑ apo AI/apo B ratio	[20]
					TT genotype	↑ CK levels	[20]
	rs2303151	g.27459C>T	157 HC	Atorvastatin	CT genotype	↑ apo AI and apo AI/ apo B ratio	[20]
LDLR	rs5925	c.1959T>C	55 HC	Fluvastatin	CC genotype	↓ TC, LDL-c, and apo B reduction	[57]
			157 HC	Atorvastatin	CC genotype	↑ HDL-c increase	[20]
	rs2569542	g.24716A>G	55 HC	Fluvastatin	GG genotype	↓ TC, LDL-c, and apo B reduction	[57]
	Null/defective muta- tions	-	156 FH	Atorvasta- tin+ezetimibe	Null/defective muta- tion	\downarrow LDL-c reduction	[59]
	Null/defective muta- tions	-	206 FH	Statins + ezetimibe	Null mutation	↑ CAC score	[60]
APOB	rs17240441(Indel)	-	54 CHD	Fluvastatin	Del allele	\downarrow LDL-c reduction	[62]
MYLIP	rs9370867	c.1025G>A	156 FH	Atorvasta- tin+ezetimibe	G allele	\downarrow LDL-c reduction	[71]
Transcriptio	n regulators of choleste	rogenic genes					
SCAP	rs12487736	c.2392G>A	99 HC ^a	Simvastatin	G allele	↑ TC and TG reduc- tion	[74]
NR113	rs2501873	g.8463A>G	240 HC ^a	Simvastatin/ator- vastatin	G allele	↑ LDL-c reduction	[80]
ESR1	rs2234693	g.190510T>C	495 HC ^a	Simvastatin/ator– vastatin	CC genotype	↑ HDL-c increase (women)	[82]
	rs3798577	g.448305T>C	495 HC ^a	Simvastatin/ator– vastatin	T allele	↑ TC and TG reduc- tion (women)	[82]
HDL and rev	verse cholesterol transp	ort					
APOA1	rs1799837 rs5069	c21+68G>A c21+67C>T	150 HC ^a	Atorvastatin	rs1799837GG/ rs5069CC haplo- type	↓ TG and VLDL-c levels (women)	[86]
CETP	rs708272	g.5454G>A	99 HC ^a	Simvastatin	AA genotype	↑ HDL-c increase	[65]
LIPC	rs1800588	c514C>T	157 HC	Atorvastatin	C allele	↑ LDL-c reduction	[20]
					TT genotype	↑ apo AI and apo AI/ apo B ratio	
SCARB1	rs5888	c.1050C>T	147 HC	Atorvastatin	C allele	↓ TC, LDL-c and apo B reduction	[88]
	rs61932577	c.726+54C>T	147 HC	Atorvastatin	T allele	↑ LDL-c and apo B levels	[88]
PON1	rs662	c.575A>G	433 HC	Simvastatin/ator- vastatin	A allele (192Gln)	↑ likelihood of reaching HDL-c goal	[89]

D Springer

Pharmacogenomics of	statins: lipid	response and of	ther outcomes in	Brazilian cohorts
· · · · · · · · · · · · · · · · · · ·				

Table 1 (cor	ntinued)						
Gene	Variant	NT change	Cohort	Statin	Allele, genotype or haplotype associated	Effect on statin response	References
	rs854560	c.163T>A	433 HC	Simvastatin/ator– vastatin	A allele (55Met)	↑ likelihood of reaching HDL-c goal	[89]
Antioxidant	proteins						
NOS3	rs2070744	g.6933C>T	30 HM	Atorvastatin	CC genotype	↓ lower TG levels	[92]
SOD2	rs4880	c.47T>C	122 HC	Rosuvastatin	CC genotype	↓ TC and TG reduc- tion ↓ HDL-c increase	[94]
SELENOP	rs3877899	C>T	32 HC	Simvastatin/atorv- astatin	CC genotype	↑ LDL-c and TG reduction	[95]
				Se suppl (Brazil nut)			

ADR adverse drug reaction, Apo AI apolipoprotein AI, Apo B apolipoprotein B, CHD coronary heart disease, FH familial hypercholesterolemia patients, HC hypercholesterolemic patients, HM healthy males, HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, NT nucleotide, TC total cholesterol, TG triglycerides, VLDL-c very low-density lipoprotein cholesterol

^aStudies with patients of European ancestry only

possibly prevented a clear assessment of their effects on statin response. We recently discussed the possible role of SLCO1B1*15 on lipid response to rosuvastatin in a case report of a Brazilian FH patient. SLCO1B1*15, combined with other variants in SLCO1B3 and ABCB11, was suggested to delay the response to rosuvastatin (20 mg/day), but did not impact LDL cholesterol reduction in the long term [21].

SLCO2B1 rs2851069 (c.-71T>C), a 5'-untranslated region (UTR) variant, was investigated in two Brazilian studies, which showed no significant association with atorvastatin response in HC patients [18, 20] (Table S1).

ABC transporters

MDR1 (encoded by ABCB1) is an efflux transporter with an important role in biliary and urinary elimination of statins and metabolites (Fig. 1). The missense variant ABCB1 rs2032582 (c.2677T>G/A, p.Ser893Ala/Thr) and two synonymous variants rs1045642 (c.3435T>C, p.Ile1145=) and rs1128503 (c.1236C>T, p.Gly412=), which are in linkage disequilibrium, have been extensively studied [9], ABCB1 rs1045642 was associated with increased LDL cholesterol response to atorvastatin in high-risk vascular patients from Australia [22]. A meta-analysis also reported the association of ABCB1 rs1045642 with lipid-lowering response in hypercholesterolemic patients on statins [23]. Haplotypes of ABCB1 rs2032582, rs1045642 and rs1128503 also influence statin response. In the Rotterdam study, Dutch males carrying the reference haplotype rs1128503C/rs2032582G/ rs1045642C showed lower total and LDL cholesterol reductions to simvastatin treatment [24].

The effects of ABCB1 variants on statin response were studied in three Brazilian studies with HC patients. ABCB1

rs2032582 A allele carriers had higher LDL cholesterol reduction after atorvastatin treatment [25] (Table 1). Conversely, ABCB1 rs2032582 and rs1045642 did not influence the cholesterol response to atorvastatin, although carriers of the ABCB1 rs1045642T/rs2032582T haplotype showed higher baseline total and LDL cholesterol [26] (Table S1). In another cohort of HC patients, ABCB1 rs1128503 T allele and ABCB1 rs2032582 GG genotype were associated with higher total or LDL cholesterol reduction after simvastatin treatment [27] (Table 1), suggesting a positive impact of these variants on response to simvastatin.

MRP1 (encoded by ABCC1) promotes the efflux of statin metabolites from hepatocytes to the bloodstream. The association of ABCC1 variants with response to statins has been less studied. The missense variant ABCC1 rs45511401 (c.2012G>T, p.Gly671Val) was previously associated with lower LDL cholesterol reduction after atorvastatin treatment in Iranian dyslipidemic patients [28]. However, in Brazilian HC patients, ABCC1 rs45511401 did not influence cholesterol-lowering response to atorvastatin [25] (Table S1).

Drug metabolizing enzymes

CYP3A4 and CYP3A5 are the main metabolizing enzymes of statins in liver cells (Fig. 1). Variants in genes encoding these enzymes have been implicated in the variability of statin PK and response [4, 29].

The variants CYP3A4*1B (rs2740574, g.4713G>A, -290A>G) and CYP3A4*22 (rs35599367, g.20493C>T) have been mostly assessed in pharmacogenetic studies. CYP3A4*1B was associated with low risk of atorvastatin or simvastatin dose decrease or withdrawal, particularly in women, showing that *1B did not influence significantly

D Springer

Gene	Variant	NT change	Cohort	Statin	Allele, genotype or haplotype associated	Effect and outcomes	References
Adverse even	ts						
ABCB1	rs1128503 rs2032582 rs1045642	c.1236C>T, c.2677T>G/A, c.3435T>C	116 HC ^a	Simvastatin	rs1128503C/ rs2032582G/ rs1045642C haplotype	↑ Myalgia and other ADR	[27]
HMGCR	rs17244841	g.14863A>T	157 HC	Atorvastatin	TT genotype	↑ CK levels	[20]
NR113	rs2307424	c.540C>T	$240 \ \mathrm{HC}^{\mathrm{a}}$	Simvastatin/atorvastatin	TT genotype	↓ Risk of ADR	[80]
SELENOP	rs3877899	C>T	32 HC	Simvastatin/atorvastatin Se suppl (Brazil nut)	CC genotype	↓ Plasma CK reduction	[95]
	rs7579	G>A	32 HC	Simvastatin/atorvastatin Se suppl (Brazil nut)	GG genotype	↓ Plasma CK reduction	[95]
Pleiotropic eff	fects						
SOD2	rs4880	c.47T>C	122 HC	Rosuvastatin	CC genotype	↓ Inflammatory and fibrinolytic biomarkers	[94]
NOS3	rs2070744	g.6933C>T	30 HM	Atorvastatin	CC genotype	↓ Plasma malondialde- hyde ↑ Blood nitrite	[92]
	rs2070744	g.6933C>T	30 HM	Atorvastatin	CC genotype	↓ sCD40L, sVCAM- 1, sP-selectin and MMP-9	[109]
	rs2070744	g.6933C>T	30 HM	Atorvastatin	CC genotype	↓ Erythrocyte membrane fluidity ↑ Erythrocyte choles- terol	[110]
	rs2070744	g.6933C>T	25 OW	Simvastatin	C allele	↑ Plasma nitrite	[111]
MTHFR	rs1801133	c.665C>T, 677C>T	25 OW	Simvastatin	T allele	↑ Plasma nitrite ↓ Plasma homocysteine	[113]
SELENOP	rs3877899	C>T	32 HC	Simvastatin/atorvastatin	CC genotype	↑ Erythrocyte GPX activity increase	[95]
				Se suppl (Brazil nut)			
	rs7579 G>A		32 HC	Simvastatin/atorvastatin	GG genotype	↑ Erythrocyte GPX activity increase	[95]
				Se suppl (Brazil nut)			
LDLR	rs5930	c.1413A>G	193 AD	Antihypertensives/statins	rs5930 GA	↓ Blood pressure reduc- tion	[11 <mark>4</mark>]
	rs11669576 rs5930	c.1171G>A c.1413A>G	193 AD	Antihypertensives/statins	rs11669576GG/ rs5930GA haplotype	\$\] Systolic blood pressure reduction	[114]
	rs11669576		179 AD	Atorvastatin/sim– vastatin	rs11669576GA	↓ Worsening of func- tional decline	[115]
	rs5930		179 AD	Atorvastatin/sim- vastatin	rs5930 AA	↑ Caregiver burden (APOE-ɛ4 carriers)	[115]
	rs5925	c.1959T>C	179 AD	Atorvastatin/sim- vastatin	rs5925 TT	↓ Cognitive decline (APOE-ε4 non- carriers)	[115]
NR1H2	rs2695121	g.50880741T>C	193 AD	Antihypertensives/statins	CT genotype	↑ Creatinine clearance reduction	[114]

TILO	a		.1	1	1 . 1 1		· · · · · · ·	D '1' 1 +
lable 2	(renefic v	ariants signifi	cantiv associate	d with statu	n-related adver	se events and pla	Profronce effects in	Brazilian conoris

AD Alzheimer disease patients, ADR adverse drug reaction, CAC coronary artery calcium, CK creatine kinase, FH familial hypercholesterolemia patients, GPX glutathione peroxidase, HC hypercholesterolemic patients, HM healthy males, NT nucleotide, OW obese women, Se selenium, Suppl supplementation

^aStudies with patients of European ancestry only

statin pharmacokinetics [30]. *CYP3A4*1B* was also associated with higher LDL cholesterol levels after atorvastatin treatment in patients with primary hypercholesterolemia, but no association was found with statin response [31]. *CYP3A4*22* was reported to reduce *CYP3A4* expression [32] and, consequently, *CYP3A4*22* has been associated

with higher LDL cholesterol reduction in simvastatin users [33].

*CYP3A4*1B* and *CYP3A4*22* variants were studied in three Brazilian cohorts, and both variants did not influence the lipid-lowering response to simvastatin [27] or atorvastatin [20, 34] in HC patients (Table S1).

Variants in *CYP3A5*, such as *3 (rs776746, c.6986A>G, c.219-237A>G), *6 (rs10264272, c.14690G>A) and *1D (rs15524, c.31611T>C), have been explored in pharmacogenomic studies of statins [35–37]. *CYP3A5*3* and *CYP3A5*6* are located within splicing regions and impair gene expression [38].

The effect of *CYP3A5* variants on statin response remains controversial. Carriers of the *CYP3A5*3/*3* genotype (non-expressor) showed enhanced LDL cholesterol response to lovastatin, simvastatin and atorvastatin [39] and higher plasma simvastatin levels compared to *CYP3A5*1* allele (expressor) carriers [40]. In contrast, *CYP3A5*3* showed no effect in atorvastatin response in Chilean dyslipidemic patients [41]. Since CYP3A5 does not participate expressively in the metabolism of statins, it is likely that *CYP3A5* variants have a minor effect on statin pharmacokinetics and response.

CYP3A5 variants were assessed in four Brazilian studies with HC patients taking statins. *CYP3A5*3/*3* genotype was associated with lower reduction in total and LDL cholesterol in patients of non-African descent, but not of African descent [42] probably due to the low frequency of *CYP3A5*3* in African populations [43]. *CYP3A5*3/*3* genotype was also negatively correlated with LDL cholesterol response to atorvastatin treatment in admixed HC patients, suggesting a potential effect of *CYP3A5*3* allele on atorvastatin response [34]. Conversely, *CYP3A5*3* did not influence simvastatin or atorvastatin response in HC patients [20, 27] (Table S1). *CYP3A5*6* was also explored in a Brazilian study, but no associations were found with lipid-lowering response to atorvastatin [42] (Table S1).

Until now, the genetic variability of *CYP2C9* was not investigated in Brazilian individuals treated with statins. In other populations, *CYP2C9*2* (rs1799853, p.Arg144Cys) and *CYP2C9*3* (rs1057910, p.Ile359Leu) variants have been associated with increased plasma concentrations of both fluvastatin enantiomers, 3R,5S- and 3S,5R-fluvastatin [44]. However, contradictory to expectations, these variants do not seem to influence the lipid-lowering response to fluvastatin [45].

Pharmacodynamics genes and statin response

Cholesterol homeostasis and metabolism

HMGCR encodes the target of statins HMGR (Fig. 2) and, therefore, has a relevant role in statin PD. The intronic variants *HMGCR* rs17244841 (g.14863A>T) and rs3846662 (c.1564-106A>G) have been associated with reduced lipid response to statins in patients with HC and familial hypercholesterolemia (FH) [46–48].

In an HC Brazilian study, *HMGCR* rs17244841 AT and rs2303151 AG genotypes were associated with increased apolipoprotein (apo) AI or apo AI/apo B ratio after atorvastatin treatment, suggesting a beneficial effect of these variants on statin response [20] (Table 1). However, *HMGCR* rs17244841, rs2303151 and rs5908 did not influence LDL cholesterol response (Table S2).

Other proteins involved in cholesterol intracellular homeostasis, such as LDL receptor (LDLR), apo B and proprotein convertase subtilisin/kexin type 9 (PCSK9) (Fig. 2), have been also proposed as important biomarkers of statin response. LDLR has high affinity for apo B (structural protein of LDL) and interaction of LDLR with apo B-LDL is responsible for removal of LDL particles from blood circulation [49, 50]. PCSK9 is a serine protease that interacts and directs LDLR to lysosomes to be cleaved instead of returning to the cell surface and consequently reduces LDLR intracellular levels and increases plasma LDL cholesterol [49].

Variants in *LDLR*, *APOB* and *PCSK9* have been associated with variability in response to statins [51–55]. A genome-wide association study with European patients found that the *LDLR* rs688 (c.1773C>T, p.Asn591=) variant was associated with lower LDL cholesterol reduction [56]. In *PCSK9*, loss-of-function variants have been associated with higher LDL reduction [52], whereas gain-of-function variants had the opposite effect [55].

The association of LDLR variants with response to statins was assessed in four Brazilian cohorts. A prospective study explored the LDLR synonymous variants rs688 and rs5925 (c.1959T>C, p.Val653=) and the intronic variant rs2569542 (g.24716A>G) in 55 HC patients treated with fluvastatin for 16 weeks [57]. Carriers of LDLR rs5925 CC and rs2569542 GG genotypes showed lower reduction of total and cholesterol and apo B compared to non-carriers (Table 1), but this effect was not observed for rs688. Moreover, all variants were associated with high baseline total and LDL cholesterol and apo B levels. Another study investigated LDLR rs688 and rs5925 in HC patients treated with atorvastatin, and rs5925 CC genotype was associated with increase of high-density lipoprotein (HDL) cholesterol after treatment (Table 1), but no association with LDL cholesterol response was found [20]. LDLR rs14158 (c.*52G>A) was also assessed in HC patients, but no association with response to atorvastatin was found [58] (Table S2).

One study investigated *LDLR* null (large deletions or frameshift mutations) and defective mutations Brazilian heterozygous FH patients treated with atorvastatin. Carriers of *LDLR* null and defective mutations showed reduced LDL cholesterol after treatment (Table 1) and increased risk of not reaching LDL cholesterol target levels (OR: 9.07, 95% CI 1.41–58.16, p = 0.02) [59]. Patients carrying null mutations also showed higher baseline and post-treatment total

Springer

and LDL cholesterol compared to carriers of defective mutations and non-carriers.

The impact of *LDLR* null and defective mutations on cardiovascular outcomes was also explored in Brazilian FH patients on long-term statin therapy. *LDLR* null mutations were associated with high coronary artery calcium (CAC) score (Table 1), but not with major atherosclerotic cardiovascular events (MACE) [60]. *LDLR* null or defective mutations were not major determinants of atherosclerotic cardiovascular disease (ASCVD) in older FH patients [61] (Table S2).

APOB variants rs693 (c.7545C>T), rs1042031 (c.12541G>T, p.Glu4181*) and rs17240441 (*Indel*) were also studied in Brazilian HC patients. Lower LDL cholesterol reduction was observed in carriers of *APOB* rs17240441 *Del* allele after treatment with fluvastatin for 16 weeks [62] (Table 1). Conversely, *APOB* rs693 and rs1042031 did not influence the response to atorvastatin or fluvastatin in two independent cohorts [20, 62] (Table S2).

Two studies explored *PCSK9* variants in Brazilian HC patients. The missense variants rs505151 (c.2009A>G, p.Gly670Glu), rs562556 (c.1420A>G, p.Val474Ile) and rs11591147 (c.137G>T, p.Arg46Leu) did not influence the lipid response to atorvastatin, even though rs505151 G allele was associated with high baseline LDL cholesterol [63]. The *PCSK9* 3'UTR variant rs17111557 (c.*614C>T) was also assessed, but no association was found with atorvastatin response [58] (Table S2).

Apo E is a glycoprotein produced mainly by the liver that is present mostly in triglyceride-rich lipoproteins, such as chylomicrons and very low-density lipoprotein (VLDL) (Fig. 2). LDLR has high affinity by apo E, which has a key role in the clearance of apo B-containing lipoproteins from bloodstream [4, 64]. The variants *APOE* rs7412 (c.526C>T) and rs429358 (c.388T>C) give rise to three haplotypes: ϵ^2 (rs7412 T, rs429358 T), ϵ^3 (rs7412 C, rs429358 T), and ϵ^4 (rs7412 C, rs429358 C), which have been extensively studied for their impact on LDL cholesterol levels and statin response [4, 64].

In three independent cohorts of Brazilian HC patients, *APOE* variants did not influence the cholesterol-lowering response to simvastatin [65] or atorvastatin [66, 67] (Table S2). In postmenopausal women, $\varepsilon 3/\varepsilon 3$ genotype was associated with higher reduction of *APOE* mRNA expression in peripheral blood mononuclear cells (PBMC) after atorvastatin treatment, suggesting that atorvastatin modulates *APOE* mRNA expression in a genotype-dependent manner [67].

The myosin regulatory light chain interacting protein (MYLIP, also named IDOL) is an E3 ubiquitin ligase, which mediates ubiquitination of the LDLR at the cell membrane, leading to its destruction in lysosomes and indirectly affecting LDL uptake and cholesterol homeostasis [68]. The missense variant MYLIP rs9370867 (c.1025G>A, p.Asn342Ser)

Springer

has been associated with dyslipidemia in different populations [69, 70]. Further functional characterization in vitro showed that rs9370867 increased LDLR degradation, which was consistent with the increased lipid levels [69].

MYLIP rs9370867 was assessed in Brazilian heterozygous FH patients taking atorvastatin plus ezetimibe. Carriers of rs9370867 G allele showed lower LDL cholesterol reduction and higher post-treatment LDL cholesterol levels [71] (Table 1).

Transcription regulators of cholesterogenic genes

Sterol regulatory element-binding proteins (SREBPs) are a small family of transcription factors that regulate the expression of more than 30 genes involved in the uptake and synthesis of cholesterol, fatty acids, and triglycerides. There are three isoforms of SREBPs: SREBP-1a and SREBP-1c, encoded by *SREBF1*; and SREBP-2, encoded by *SREBP1*; and SREBP-2, encoded by *SREBP1*. After synthesis, SREBPs are bound to the endoplasmic reticulum in an inactive state. Their activation depends on the complexation with SREBP cleavage-activating protein (SCAP). The SREBP–SCAP complex is translocated from the endoplasmic reticulum to the Golgi apparatus, where the terminal region of SREBP is cleaved by Golgi proteases and translocated to the nucleus, activating the transcription of *LDLR*, *HMGCR* and other cholesterogenic genes [72, 73].

Two studies also explored the effects of *SREBF1* and *SREBF2* variants on statin response in Brazilian cohorts. *SREBF1* rs60282872 (g.5161delC), an *indel* in the promoter region, and the missense variant *SREBF2* rs2228314 (c.1784G>C, p.Gly595Ala) were not associated with lipid changes after simvastatin treatment in HC patients [74]. Similar results were observed for *SREBF1* rs60282872 in HC patients treated with atorvastatin [75] (Table S2).

The missense variant *SCAP* rs12487736 (c.2392G>A, p.Val798IIe) was also assessed in Brazilian HC patients and G allele carriers showed higher total cholesterol and triglycerides reduction after treatment with simvastatin [74] (Table 1). Another study did not find an association of rs12487736 with lipid response to atorvastatin; however, rs12487736 AA carriers had lower *SCAP* mRNA expression in PBMC after treatment [75] (Table S2).

Nuclear receptors are a superfamily of transcription factors that activate the expression of genes involved in many metabolic pathways. *NR113*, *NR112*, and *PPARA* encode constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator-activated receptor α (PPAR α), respectively. These molecules regulate the expression of genes in drug metabolism and transport, as well as in lipid metabolism [76–78]. Their activation depends on the dimerization with the retinoid X receptor alpha (RXR α), encoded by *RXRA* [79].

A prospective cohort study investigated variants in *NR112*, *NR113*, *PPARA*, and *RXRA* and statin response in HC patients [80]. *NR113* rs2501873 G allele carriers had a higher LDL cholesterol reduction after treatment with simvastatin or atorvastatin (Table 1). CAR (*NR113*) regulates the expression of *CYP3A4* and *ABCB1*, which are involved in statin pharmacokinetics; therefore variants in *NR113* may impact statin bioavailability and, consequently, the therapeutic response. *NR112* rs1523130 (c.-1663T>C), *PPARA* rs1800206 (c.484C>G) and *RXRA* rs11381416 (-/A indel) did not influence statin response in this cohort (Table S2).

ESR1 encodes the estrogen receptor α (ER α), a transcription factor that activates the expression of genes associated with estrogen response, including those involved in lipid metabolism. Variants in *ESR1* have been shown to increase the risk of cardiovascular disease (CVD) [81]. The association between 13 *ESR1* variants and simvastatin or atorvastatin response was studied in Brazilians [82]. In women, *ESR1* rs2234693 (g.190510T>C) CC genotype was associated with higher HDL cholesterol increase and rs3798577 (g.448305T>C) T allele with higher total cholesterol and triglycerides reduction after treatment (Table 1).

HDL and reverse cholesterol transport

APOA1, ABCA1, CETP, and SCARB1 are genes encoding proteins involved in different steps of the reverse cholesterol transport, in which cholesterol is removed from peripheral tissues, transported to the liver through HDL particles, and excreted via bile [83]. Briefly, plasma apo AI (structural protein of the HDL) interacts with ABCA1, which promotes free cholesterol and phospholipids efflux from the cell membrane to the nascent HDL. Further HDL cholesterol is esterified by lecithin:cholesterol acyltransferase (LCAT) and lipids are exchanged with other lipoproteins by cholesteryl ester transfer protein (CETP). Cholesterol is also transferred to mature HDL via interaction with ABCG1. After removing the cholesterol from peripheral tissues, HDL returns to the liver and the contents of triglycerides and phospholipids are hydrolyzed by hepatic lipase (HL), resulting in the assembly of small HDL which is taken up by the hepatic scavenger receptor class B1 (SR-B1, encoded by SCARB1) [83, 84]. Paraoxonase1 (PON1) is a plasma enzyme that prevents HDL and LDL oxidation. Increased PON1 levels have been associated with higher HDL cholesterol levels [85].

The association of variants in genes involved in reverse cholesterol transport with statin response was investigated in Brazilian cohorts. The variants rs1799837 (c.-21+68G>A) and rs5069 (c.-21+67C>T) in *APOA1* were assessed in HC patients, and women carrying rs1799837GG/rs5069CC

haplotype had lower reduction of plasma triglycerides and VLDL cholesterol after atorvastatin treatment [86] (Table 1). *ABCA1* rs2230806 (c.656G>A, p.Arg219Lys), rs56064613 (c.-418C>T) and rs1800977 (c.-390C>T) were investigated in another HC cohort, but these variants did not influence the LDL cholesterol response to atorvastatin [87] (Table S2). In HC patients, *CETP* rs708272 (g.5454G>A, *Taq* IB) was associated (AA genotype) with high HDL cholesterol increase after simvastatin treatment [65] (Table 1).

Variants in *LIPC*, which encodes HL, were also explored in Brazilian cohorts. *LIPC* rs1800588 C allele predicted a lower LDL cholesterol reduction after atorvastatin treatment, and TT genotype was associated with post-treatment levels of apo AI and apo AI/apo B ratio in admixed HC patients [20] (Table 1). Conversely, *LIPC* rs2070895, rs690 (c.465G>A) and rs3829462 (c.1104C>A) were not associated with lipid changes in Brazilian HC patients treated with simvastatin [65] or atorvastatin [20] (Table S2).

The variants rs5888 (c.1050C>T), rs4238001 (c.4G>A) and rs61932577 (c.726+54C>T) in *SCARB1*, which encodes SR-B1, were also assessed in HC patients taking atorvastatin [88]. *SCARB1* rs5888 C allele was associated with lower reduction of total and LDL cholesterol and apo B after treatment, whereas the rs61932577 T allele was associated with higher post-treatment LDL cholesterol and apo B levels (Table 1). *SCARB1* rs4238001 did not influence baseline and post-treatment plasma lipids (Table S2).

In Brazilian HC patients, *PON1* rs662 (c.575A>G, p.Gln192Arg) and rs854560 (c.163T>A, p.Leu55Met) missense variants were associated with lower HDL cholesterol after statin treatment [89]. *PON1* rs662A (192Gln) and rs854560A (55Met) carriers had high likelihood of reaching HDL cholesterol post-treatment goal (OR: 2.81, 95% CI 1.35–5.85, p = 0.006) (Table 1).

The scavenger receptor class B2 (CD36) is a transmembrane protein expressed in macrophages and other cells. Its extracellular domain can recognize multiple molecules, including fatty acids, LDL and HDL. Variants in *CD36* have been associated with many processes such as endothelial dysfunction, foam cell formation and atherosclerosis [90]. In Brazilian HC patients, *CD36* rs1984112 (g.16417A>G) was associated with a higher risk of dyslipidemia (OR: 3.55, 95% CI 1.88–6.70, p = 0.0002), but not with lipid response to atorvastatin treatment [20] (Table S2).

Antioxidant enzymes

Endothelial nitric oxide synthase (eNOS) produces nitric oxide, an important molecule that increases vasodilation and reduces platelet aggregation, leukocyte adhesion to the endothelium and smooth muscle proliferation [91]. The rs2070744 (g.6933C>T) variant in *NOS3*, which encodes

🖉 Springer

eNOS, was explored in Brazilian healthy males, and rs2070744 CC genotype was associated with reduction of triglycerides in response to short-term atorvastatin treatment [92] (Table 1).

The manganese-dependent superoxide dismutase (SOD2) is an antioxidant enzyme that converts the superoxide anion into hydrogen peroxide, inactivating this highly damaging anion. Variants in SOD2 have been associated with CVD and other diseases [93]. The effects of *SOD2* rs4880 (c.47T>C) was studied in Brazilian HC patients, and rs4880 CC genotype carriers had lower total and LDL cholesterol reduction and lower HDL cholesterol increase after rosuvastatin treatment [94] (Table 1).

Selenoprotein P is a selenium (Se)-enriched plasma protein with antioxidant activity. A recent study investigated *SELENOP* rs3877899 C>T and rs7579 G>A variants in HC patients taking statins and Se supplementation (Brazilian nuts) [95]. *SELENOP* rs3877899 CC carriers showed higher reduction of triglycerides and LDL cholesterol, after Se supplementation for 3 months (Table 1).

Statin-related adverse events

Adverse drug reactions (ADR) result in significant cost and morbidity and can lead to non-adherence and discontinuation of therapy. Statin-associated muscle symptoms (SAMS) are the most commonly reported ADR associated with statin therapy, whereas statin-induced toxicity in the liver and central nervous system is less frequent [13].

SAMS are one of the major causes of statin discontinuation/non-adherence, which increases the risk of cardiovascular events in dyslipidemic patients [96, 97]. The prevalence of SAMS ranges from 7 to 33% in registries and observational studies [96–98]. In Brazil, a cross-sectional study with national representative sample (8803 patients from 272 cities) reported 0.7% of SAMS in 9.3% of patients taking statins (90.3% simvastatin) [99]. The prevalence of SAMS was significantly higher (50.4%) in a cohort of Brazilian patients on statin therapy with increased serum creatine kinase (CK), a biomarker of muscle damage [100].

Statins block the mevalonate downstream pathway, which results in decreased production of cholesterol, isoprenoids and ubiquinone (CoQ10). CoQ10 is important for mitochondrial function and energy production in muscle cells [101]. Increased exposure of skeletal muscle to statins leads to cell depletion of the mevalonate pathway end products causing a series of intracellular events, including mitochondrial dysfunction, disruption calcium and pro-apoptotic signaling, and reduction of prenylation, which have been proposed as important mechanisms of statin-related myotoxicity [101].

Genetic and non-genetic factors that increase systemic and muscle exposure to statins, and muscle dysfunction have been implicated in statin-related myotoxicity [97, 98, 101]. Variants in PK-related genes, such as *SLCO1B1*, *SLCO2B1*, *ABCB1*, *ABCC2*, *ABCG2* and *CYP3A4*, were shown to increase statin systemic and muscle exposure and SAMS [4, 22, 97, 101]. Variants in genes involved in CoQ10 biosynthesis and mevalonate pathway have been also associated with statin intolerance and SAMS [4, 101].

Extensive evidence demonstrates the association between *SLCO1B1*5* and simvastatin-induced myopathy [97, 102, 103]. Consequently, *SLCO1B1*5* was included in international guidelines as a risk allele for myopathy, together with two haplotypes containing *5 C allele, *SLCO1B1*15* (*1B and *5 alleles) and *SLCO1B1*17* (*1B, *5 and rs4149015 A alleles) [104].

The association of variants in PK and PD genes with SRAE was explored to a lesser extent in Brazilian cohorts. Only one Brazilian study investigated SLCO1B1*1B and *5 and statin-induced myopathy in FH patients treated with atorvastatin (20-80 mg/day), but these variants were not associated with risk of myalgia or increased plasma CK [105] (Table S1). However, the group of patients with myalgia was small, which possibly reduced the statistical power of the analysis. Also, there was no stratification according to atorvastatin doses; this is important because the risk of SRAE in carriers of SLCO1B1*5 is substantially greater in patients treated with high-intensive statin treatment [97]. We recently reported a case of a Brazilian FH patient who experienced severe myalgia to simvastatin and atorvastatin, and discussed the possible role of SLCO1B1*15 haplotype, which contains *5 allele, on this SRAE [21].

The *ABCB1* rs1045642 was previously associated with increased risk of myalgia upon atorvastatin in high-risk vascular patients [22]. A meta-analysis also reported that *ABCB1* rs1045642 increased the risk of myopathy for short-term statin therapy, suggesting this variant as a potential pharmacogenomic biomarker for statin-induced myotoxicity [23].

In Brazilian HC patients on simvastatin therapy, *ABCB1* rs1128503 C, rs2032582 G and rs1045642 C alleles and C-G-C haplotype were associated with myalgia and other SRAE, such as abdominal pain and allergy [27] (Table 2). This study also reported lack of association between *CYP3A4*1B* and *CYP3A4*22* alleles and SRAE and other ADR (Table S1).

The influence of variants in PD and other genes on statininduced myotoxicity in Brazilian cohorts was also explored. *HMGCR* rs17244841 TT genotype was associated with increased CK levels (Table 1), but not with SRAE in HC patients treated with atorvastatin [20]. On the other hand, *LDLR* null or defective mutations did not increase the risk of myalgia in Brazilian patients with heterozygous FH treated with atorvastatin [59] (Table S2). Another study reported that *NR113* rs2307424 TT genotype reduced the risk of SRAE (myalgia, increased CK or hepatic dysfunction) in Brazilian HC patients on simvastatin or atorvastatin therapy [80] (Table 2), whereas variants in *NR112* (rs1523130 and rs2472677), *PPARA* (rs1800206), and *RXRA* (rs11381416) lacked association with SRAE (Table S3).

SELENOP rs3877899 C>T and rs7579 G>A were also assessed in HC patients taking statins and Se supplementation (Brazilian nuts) [95]. The rs3877899 CC and rs7579GG genotypes were associated with lower reduction of plasma CK after Se supplementation, suggesting that these genotypes confer a less protective effect on myopathy (Table 1).

Statin-related pleiotropic effects

Statins have been proposed to exert cardiovascular protective effects through cholesterol-independent pleiotropic effects that are important to prevent cardiovascular events [91, 106]. The inhibition of the HMGR by statins reduces the production of isoprenoid intermediates in the mevalonate downstream pathway. These intermediates are essential for prenylation of small GTP-binding proteins and their effectors, which are involved in endothelial and platelet dysfunction, inflammatory process, atherosclerosis, fibrosis and other pathophysiological mechanisms of CVD [91].

Ten studies explored genetic variants and statin-related pleiotropic effects in Brazilian cohorts. A cross-sectional study evaluated *HMGCR* rs17238540, *APOE* rs405509, *CETP* rs708272 and *PON1* rs662 variants in statin-treated HC patients, but no association was found with oxidative stress biomarkers, namely plasma malondialdehyde, oxidized LDL, and total antioxidant activity and plasma tocopherol [107] (Table S3).

SOD2 rs4880 (c.47T>C) was also studied in Brazilian HC patients, and CC genotype was associated with pronounced reduction of pro-inflammatory cytokines (IL-1, IL-6, TNF α and IFN γ) and fibrinolytic markers (α -acid glycoprotein, d-dimer and fibrinogen), as well as marked increase in IL-10, in response to rosuvastatin therapy [94] (Table 2).

Variants in *NOS3* have been associated with statin-related pleiotropic or LDL cholesterol-independent effects that prevent cardiovascular risk [108]. Brazilian healthy males carrying rs2070744 CC genotype had pronounced increase in blood nitrite and decrease in plasma malondialdehyde, sCD40L, sVCAM-1, sP-selectin and MMP-9, and erythrocyte membrane fluidity after treatment [92, 109, 110] (Table 2). In obese women, *NOS3* rs2070744 CC was also associated with higher increase in plasma nitrite after short-term treatment with simvastatin [111] (Table 2).

Methylenetetrahydrofolate reductase (MTHFR) converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine re-methylation to methionine. Polymorphisms in genes of the homocysteine pathway, such as *MTHFR*, were suggested to interact with pravastatin in reducing risk of cardiovascular events [112]. *MTHFR* rs1801133 (677C>T) was investigated in Brazilian obese women, and T allele carriers showed increased plasma nitrite and decreased plasma homocysteine, after simvastatin treatment [113] (Table 2).

Recently, *SELENOP* rs3877899 CC and rs7579 GG genotypes were found to be associated with higher increase in erythrocyte glutathione peroxidase (GPX) activity after Se supplementation in HC Brazilian patients taking statins [95] (Table 2). This study also analyzed the rs1050450 C>T in *GPX1*, which encodes glutathione peroxidase 1, but no influence was found in erythrocyte PGX or plasma or erythrocyte Se (Table S3).

Recent Brazilian studies also explored the influence of common variants in LDLR, APOE and NR1H2 on hypertension control and cognitive function in patients with Alzheimer disease (AD) treated with statins. LDLR rs5930 GA genotype and rs11669576GG/rs5930GA haplotype were associated with lower reduction of blood pressure in AD patients taking antihypertensives and statins. In these AD patients, NR1H2 rs2695121 CT genotype was associated with higher reduction of creatinine clearance [114] (Table 2). In AD patients taking lipophilic statins, LDLR rs11669576 GA carriers had slower worsening of cognitive function independently of APOE-e4. LDLR rs5930 AA and GA genotypes were associated, respectively, with higher caregiver burden (APOE-e4 carriers) and worse prognosis of clinical dementia (APOE-E4 non-carriers). In addition, LDLR rs5925 TT was associated with slower cognitive decline in APOE-e4 non-carriers [115] (Table 2).

Clinical implications of statin pharmacogenomics

In Brazil, statins are prescribed according to the cardiovascular risk stratification, varying in statin type and dosage (Fig. 3). Simvastatin, atorvastatin, fluvastatin, lovastatin, and pravastatin are provided by the Brazilian Unified Health System since 2002. At least in part due to the lower cost and bureaucratic administrative burden, simvastatin is the most prescribed statin in Brazil [99].

Both simvastatin and atorvastatin were explored in pharmacogenetic studies in Brazilian cohorts. Variants in *SLCO1B1* and *ABCB1* had a positive impact in LDL cholesterol response to short- and long-term statin treatments, whereas *CYP3A5* variants had a negative effect (Table 1). Most of the studies investigated variants in PD genes, such

Fig. 3 Statin prescription according to the Brazilian guidelines for the management of dyslipidemia [118]. *Not provided free of cost by the Brazilian Health System. AA aorta aneurism, ALT: alanine aminotransferase, AST aspartate aminotransferase, Atorva atorvastatin, CK creatine kinase, CKD chronic kidney disease, DLCN Dutch Lipid Clinic Network, Eze ezetimibe, FH familial hypercholesterolemia,

Fluva fluvastatin, *GR* global risk in 10 years, *HDL-c* high-density lipoprotein cholesterol, *LDL-c* low-density lipoprotein cholesterol, *Lova* lovastatin, *Pita* pitavastatin, *Prava* pravastatin, *Rosu* rosuvastatin, *SAC* subclinical atherosclerosis, *Simva* simvastatin, *T2D* type 2 diabetes, *URL* upper reference level

as *HMGCR* and *LDLR*, and significant associations with the lipid response to statins were found (Table 1).

Few studies explored the SRAE in Brazilian cohorts, and only *ABCB1*, *HMGCR* and *NR113* variants were associated with increased CK levels, high risk of myalgia or other ADR (Table 2). These studies are observational, so findings by chance and multiple testing problems might exist leading to false associations.

The effect of genetic variants in statin-induced myopathy is well described. Although many variants have been associated with SAMS, to date, *SLCO1B1* is the only gene included in pharmacogenetic guidelines for statins. In 2014,

Deringer

the Clinical Pharmacogenetics Implementation Consortium (CPIC) included an updated guideline for simvastatin, recommending dose adjustments for carriers of *SLCO1B1*5*, **15* or **17* haplotypes. These haplotypes contain the reduced function variant rs4149056 (p.Val174Ala), which confers elevated risk of simvastatin-induced myotoxicity [104]. Only one Brazilian study explored *SLCO1B1*5* and **15* in FH patients, but no association with atorvastatin-induced myotoxicity was found (Table S1), and the contribution of this variant on simvastatin-related myotoxicity is yet to be investigated. As such, the Brazilian guidelines for dyslipidemia management neither clearly contraindicate simvastatin at high doses (80 mg/day) nor include recommendations for *SLCO1B1* genotyping to predict the risk of simvastatininduced myopathy [116].

Nevertheless, statin resistance is still an issue for patients and clinicians. EAS/ESC [117] and Brazilian [116, 118] (Fig. 3) guidelines rely on LDL cholesterol treatment targets that are set according to the cardiovascular risk, and for FH patients, the goal is an LDL cholesterol reduction of at least 50%. Still, this is not achieved by 26% of rosuvastatin 40 mg users and up to 42% of atorvastatin 80 mg users, the highest doses for these statins [119].

Although several variants have been associated with lower statin efficacy, there are still no clear conclusions on a biomarker for statin response. This could be due to many factors. First, cholesterol metabolism is extremely complex. Punctual variations of any of the numerous genes involved in cholesterol metabolism may individually have a low-magnitude effect on statin response, as shown by previous studies [56, 120]. Therefore, it is challenging to find key genes-or a combination of genes-that could harbor strong biomarkers of statin response. Second, statin efficacy studies must consider a series of confounding factors that often are difficult to control. Statin response is challenging to evaluate due to the fluctuation of cholesterol levels caused by external factors, such as diet and comorbidities [49]. Also, the adherence to statins should be considered, as adherence was shown to be relatively low in statin users [121]. SRAE, particularly muscle symptoms, was reported as the reason for 65% of cases of low adherence [122]. FH and high CVD risk patients often are prescribed high-dose statins, which are associated with higher myopathy risk [97]. Finally, sample size issues possibly cause discrepant associations between variants and statin response between studies and populations.

Besides *SLCO1B1* variants, PharmGKB also reports an impact of *APOE* rs7412 (c.526C>T, ε 2) on atorvastatin response, with ε 2 carriers showing higher LDL cholesterol lowering (Level 2B of evidence). This finding was not observed in Brazilian patients on simvastatin or atorvastatin [65–67], as shown in Table S2. A possible solution for this gap is considering the burden of deleterious variants in pharmacogenes that could impair statin response. An approach should be studying also if rare, deleterious variants impact statin response.

Another important aspect is that Brazilian population is very diverse and heterogeneous due to its historical admixture between hundreds of Amerindian groups, Europeans (mainly Portuguese, Italians, Spanish, Dutch, and Germans), sub-Saharan Africans from the slave trade, and East Asians (mainly Japanese). The ethnicity in Brazil is mostly defined by self-declared skin color [123], which does not necessarily reflect genetic ancestry. Also, self-declared color in Brazil does not align well with global ethnic groups. For instance, Brazilian blacks have only 51% African ancestry, whereas Africans and African-Americans have at least 80% and "pardo" or "brown" does not correspond to any of the major superpopulations [124]. As a further complicating factor, variant frequencies vary according to the geographical region within Brazil even within each self-reported color [125, 126]. This genetic complexity results in unique challenges when studying population-scale pharmacogenetics in Brazil.

The benefit of statin therapy on primary and secondary prevention of CVD have been explored in large clinical trials. Patients at high CVD-associated genetic risk score (GRS) showed greater benefit from statin therapy to prevent a cardiovascular event, despite similar LDL cholesterol lowering [127, 128]. Few studies explored the impact of genetic variants on cardiovascular events in HC patients on statin therapy, limited to *LDLR* null or defective variants. Considering that CVD-GRS were derived from a population of European ancestry, similar studies should be performed in Brazilian cohorts to explore their influence on statin CVD preventive effects.

Rare and population-specific variability

With the advent of large-scale sequencing projects, such as Exome Sequencing Project [129] and 1000 Genomes Project [130], it became clear that human genomes harbor a plethora of rare genetic variants. For CYP genes, analysis of the exomes of >6500 individuals of European and African ethnicity in the USA indicated that the vast majority of all identified variants were rare with allele frequency < 1% [29, 131]. Analyses of even larger data sets (>130,000 individuals) corroborated these findings and showed that similar genetic complexity was also observed in polymorphic transporter families of relevance for the treatment of dyslipidemias, such as ABCs, SLCs and SLCOs [132-134], as well as in human apolipoprotein genes [135]. Across 208 PK genes, over 69,000 single nucleotide variations (SNVs) have been described, of which 98.5% were rare [136], and 175 out of these genes harbored partial or full gene deletions or duplications [137]. Furthermore, these studies found that

Springer

approximately 75% of all SNVs and copy number variations were identified only in a single population.

While these results unequivocally demonstrate the presence of a multitude of rare variants, the functional relevance of these findings remained unclear. Early estimates suggested that rare variants account for approximately 18% of the functional variability in SLCO1B1 [138] and 30-40% across PK genes [139]. In recent years, there has been increasing interest in the functional interpretation of rare pharmacogenetic variants. Nevertheless, such low-throughput methods are not applicable for rare variant assessments. Thus, current strategies for rare variant evaluations are based on computational tools or high-throughput-compatible deep mutational scanning strategies [140]. Importantly however, conventional in silico methods mostly base their functionality predictions on the evolutionary conservation of the respective nucleotide or amino acid sequence and are trained on pathogenic variant sets. However, since evolutionary conservation in pharmacogenes encoding gene products without important endogenous functions is overall low, and PK genes are only rarely associated with disease, the predictive power of computational methods for pharmacogenetic variants is generally much lower than for pathogenic variation [141].

To overcome such limitations, we have previously developed an algorithm specifically trained on PK genes and found that it achieved high sensitivity and specificity (>90%) for variants in *CYP* and other polymorphic drug-metabolizing enzymes [142, 143], whereas its predictive power was somewhat lower (78–87%) for rare variants in the bile acid transporter SLC10A1 [144].

In recent years, pharmacogenetic studies using different sequencing technologies have identified rare variants with significant impact on dyslipidemia treatment response. Rare genetic variants contribute to altered lipid traits in founder populations, providing insight into the etiology of dyslipidemias and facilitating development of therapies for metabolic disorders [145, 146]. Thus, rare variants may also have a contribution on statin response. When considering SRAE, whole-exome sequencing of individuals having statin-related myopathy revealed that rare variants in CYP3A5 and other genes were associated with higher risk of mylagia [147], but a later meta-analysis did not find any associations [148]. While the common alleles SLCO1B1*5 and *15 that are included in CPIC guidelines as markers of statin toxicity do not show significant effects in the Brazilian population, more research is necessary to investigate whether rare variants with small effect sizes might contribute to statin risk.

So far, only few studies have evaluated the cost-effectiveness of preemptive genotyping for statin use. These studies analyzed the value of testing genotypes of ACE [149], CETP [150] and KIF6 [151] in Dutch, Australian and American patients. However, the results remain inconclusive [152] and none of the assessed variations have been shown to be

D Springer

robustly linked to statin response in Brazilians. In addition to biomarkers for the efficacy of hypercholesterolemia treatment, the established reduced function variant rs4149056 in SLCO1B1 might identify individuals at risk for severe statin myotoxicity. While associations of this polymorphism with myotoxicity risk are well established, patient outcomes were not significantly improved by preemptive genotyping [153] and clinical utility of SLCO1B1 testing was not demonstrated [154]. Given the substantial cost of genotyping and the lack of genetic variants with a high effect size in the Brazilian population, preemptive genotyping to guide statin treatment is thus not likely to be cost-effective in such an admixed and heterogeneous population. With rapid improvements in genotyping technology, it can be expected that test costs will continue to decline. However, as we and others previously showed, the predictive power of testing and the cost differences between first-line and alternative treatments rather than test costs per se are the main parameters governing the cost-effectiveness of preemptive genotyping [155-157]. In the absence of further quantitative information, such as the number of patients needed to test to prevent one case of toxicity or non-response (NNT_{tox} and NNT_{non-res}, respectively), test positive and negative predictive value, effects on quality-adjusted life years, country specific average costs per myotoxicity event and costs as well as efficacy of treatment alternatives, precise estimates about statin costeffectiveness in Brazil and its dependency on genotyping costs can currently not be provided.

Final remarks and conclusions

Brazilian studies have brought an extensive contribution of pharmacogenomics of statin response, focusing mainly on LDL cholesterol reduction. However, few studies have explored genetic variants associated with SRAE or pleiotropic effects in Brazilian cohorts. SLCO1B1*5 and *15 variants were not associated with myopathy in atorvastatin users, problably due to small sample size and SRAE self-reports. No Brazilian pharmacogenetic studies of simvastatin-induced myopathy were found, even though simvastatin is the most prescribed statin. Thus, inclusion of SLCO1B1*5, *15 and *17 genotyping, as recommended by CPIC, into the Brazilian guidelines seems not warranted at this stage. However, given the strength of the association in other populations, further sufficiently powered studies should explore SLCO1B1 genotyping to predict the risk of myotoxicity in statin users. Clinical studies should also explore further association of genetic variants with statinrelated pleiotropic effects to identify patients who could benefit from these effects.

In conclusion, Brazilian studies have focused mainly on LDL cholesterol reduction; however clinical applications Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts

of pharmacogenetic testing to predict statin efficacy is still far from achieving a consensus. Especially in Brazilians, none of the assessed genetic variants have been shown to be robustly linked to statin response. Therefore, preemptive genotyping is currently not a cost-effective strategy to optimize statin response in Brazilian patients. A possible strategy is to explore the contribution of rare genetic variants to cholesterol reduction in a global manner rather than punctual, frequent genetic variants.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s43440-021-00319-y.

Acknowledgements CDH is a recipient of a fellowship from FAPESP, Brazil. MHH and RDCH are recipients of fellowships from CNPq, Brazil. FDVG and TDCH were recipients of fellowships from FAPESP, Brazil.

Author contributions CDH contributed to the conception, design, data collection, analysis and interpretation, and drafting of the article. YZ and VML contributed to the sections that evaluate the cost-effectiveness of genotyping and describe the effects of rare variants and their clinical implications. FDVG and TDCH contributed to data collection, figure preparation, drafting and critical revision of the article. MHH and RDCH contributed to the conception, design, data interpretation and critical revision of the article.

Declarations

Conflict of interest CDH, FDVG, TDCH, MHH, and RDCH declare no conflict of interest. YZ is co-founder and CEO of PersoMedix AB. VML is CEO and shareholder of HepaPredict AB, co-founder and chairman of the board of PersoMedix AB, and consultant for Enginzyme AB.

References

- Gencer B, Marston NA, Im K, Cannon CP, Sever P, Keech A, et al. Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2020;396(10263):1637–43.
- Karlson BW, Palmer MK, Nicholls SJ, Barter PJ, Lundman P. Effects of age, gender and statin dose on lipid levels: results from the VOYAGER meta-analysis database. Atherosclerosis. 2017;265:54–9.
- Maxwell WD, Ramsey LB, Johnson SG, Moore KG, Shtutman M, Schoonover JH, et al. Impact of pharmacogenetics on efficacy and safety of statin therapy for dyslipidemia. Pharmacotherapy. 2017;37(9):1172–90.
- Guan ZW, Wu KR, Li R, Yin Y, Li XL, Zhang SF, et al. Pharmacogenetics of statins treatment: efficacy and safety. J Clin Pharm Ther. 2019;44(6):858–67.
- Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol. 2020;16(9):809–22.
- Chora JR, Bourbon M. Pharmacogenomics of statins and familial hypercholesterolemia. Curr Opin Lipidol. 2021;32(2):96–102.
- Cerda A, Hirata MH, Hirata RD. Pharmacogenetics of drug metabolizing enzymes in Brazilian populations. Drug Metabol

Drug Interact. 2014;29(3):153-77. https://doi.org/10.1515/ dmdi-2013-0067.

- Hirata RDC, Cerda A, Genvigir FDV, Hirata MH. Pharmacogenetic implications in the management of metabolic diseases in Brazilian populations. Braz J Pharm Sci. 2018;54(spe):e01005.
- Rocha KCE, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol. 2018;14(6):613–24.
- Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005;15(7):513–22.
- Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–9.
- Mori D, Kashihara Y, Yoshikado T, Kimura M, Hirota T, Matsuki S, et al. Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers. Drug Metab Pharmacokinet. 2019;34(1):78–86.
- Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016;9:97–106.
- Fu Q, Li YP, Gao Y, Yang SH, Lu PQ, Jia M, et al. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals. Eur J Clin Pharmacol. 2013;69(6):1269–74.
- Giannakopoulou E, Ragia G, Kolovou V, Tavridou A, Tselepis AD, Elisaf M, et al. No impact of SLCO1B1 521T>C, 388A>G and 411G>A polymorphisms on response to statin therapy in the Greek population. Mol Biol Rep. 2014;41(7):4631–8.
- Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K, et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther. 2006;79(5):427–39.
- Nies AT, Niemi M, Burk O, Winter S, Zanger UM, Stieger B, et al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 2013;5(1):1.
- Rodrigues AC, Perin PM, Purim SG, Silbiger VN, Genvigir FD, Willrich MA, et al. Pharmacogenetics of OATP transporters reveals that SLCO1B1 c.388A>G variant is determinant of increased atorvastatin response. Int J Mol Sci. 2011;12(9):5815–27.
- Sortica VA, Fiegenbaum M, Lima LO, Van der Sand CR, Van der Sand LC, Ferreira ME, et al. SLCO1B1 gene variability influences lipid-lowering efficacy on simvastatin therapy in Southern Brazilians. Clin Chem Lab Med. 2012;50(3):441–8.
- Rodrigues AC, Sobrino B, Genvigir FD, Willrich MA, Arazi SS, Dorea EL, Bernik MM, Bertolami M, Faludi AA, Brion MJ, Carracedo A, Hirata MH, Hirata RD. Genetic variants in genes related to lipid metabolism and atherosclerosis, dyslipidemia and atorvastatin response. Clin Chim Acta. 2013;417:8–11.
- Dagli-Hernandez C, de Freitas RCC, Marçal EDSR, Gonçalves RM, Faludi AA, Borges JB, et al. Late response to rosuvastatin and statin-related myalgia due to SLCO1B1, SLCO1B3, ABCB11, and CYP3A5 variants in a patient with familial hypercholesterolemia: a case report. Ann Transl Med. 2021;9(1):76.
- Hoenig MR, Walker PJ, Gurnsey C, Beadle K, Johnson L. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J Clin Lipidol. 2011;5(2):91–6.
- Su J, Xu H, Yang J, Yu Q, Yang S, Zhang J, et al. ABCB1 C3435T polymorphism and the lipid-lowering response in

🖄 Springer

hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis. 2015;14:122.

- Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics. 2009;10(11):1743–51.
- Rebecchi IM, Rodrigues AC, Arazi SS, Genvigir FD, Willrich MA, Hirata MH, et al. ABCB1 and ABCC1 expression in peripheral mononuclear cells is influenced by gene polymorphisms and atorvastatin treatment. Biochem Pharmacol. 2009;77(1):66–75.
- Rodrigues AC, Rebecchi IM, Bertolami MC, Faludi AA, Hirata MH, Hirata RD. High baseline serum total and LDL cholesterol levels are associated with MDR1 haplotypes in Brazilian hypercholesterolemic individuals of European descent. Braz J Med Biol Res. 2005;38(9):1389–97.
- Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther. 2005;78(5):551–8.
- Behdad N, Kojuri J, Azarpira N, Masoomi A, Namazi S. Association of ABCB1 (C3435T) and ABCC1 (G2012T) polymorphisms with clinical response to atorvastatin in Iranian patients with primary hyperlipidemia. Iran Biomed J. 2017;21(2):120–5.
- Fujikura K, Ingelman-Sundberg M, Lauschke VM. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet Genomics. 2015;25(12):584–94.
- Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf. 2010;19(1):75–81.
- Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol. 2004;93(1):104–7.
- Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.
- Elens L, Becker ML, Haufroid V, Hofman A, Visser LE, Uitterlinden AG, et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet Genomics. 2011;21(12):861–6.
- 34. Willrich MA, Rodrigues AC, Cerda A, Genvigir FD, Arazi SS, Dorea EL, et al. Effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and CYP3A activity in hypercholeresterolemic patients. Clin Chim Acta. 2013;421:157–63.
- Bailey KM, Romaine SP, Jackson BM, Farrin AJ, Efthymiou M, Barth JH, et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 study. Circ Cardiovasc Genet. 2010;3(3):276–85.
- Kitzmiller JP, Luzum JA, Baldassarre D, Krauss RM, Medina MW. CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics. 2014;24(10):486–91.
- Kolovou G, Kolovou V, Ragia G, Mihas C, Diakoumakou O, Vasiliadis I, et al. CYP3A5 genotyping for assessing the efficacy of treatment with simvastatin and atorvastatin. Genet Mol Biol. 2015;38(2):129–37.
- Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of

the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91.

- Kivistö KT, Niemi M, Schaeffeler E, Pitkälä K, Tilvis R, Fromm MF, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004;14(8):523–5.
- Kim KA, Park PW, Lee OJ, Kang DK, Park JY. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007;47(1):87–93.
- Rosales A, Alvear M, Cuevas A, Saavedra N, Zambrano T, Salazar LA. Identification of pharmacogenetic predictors of lipid-lowering response to atorvastatin in Chilean subjects with hypercholesterolemia. Clin Chim Acta. 2012;413(3-4):495-501.
- Willrich MA, Hirata MH, Genvigir FD, Arazi SS, Rebecchi IM, Rodrigues AC, et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta. 2008;398(1–2):15–20.
- Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev. 2013;45(2):253–75.
- Hirvensalo P, Tornio A, Neuvonen M, Kiander W, Kidron H, Paile-Hyvärinen M, et al. Enantiospecific pharmacogenomics of fluvastatin. Clin Pharmacol Ther. 2019;106(3):668–80.
- Xiang Q, Zhang X, Ma L, Hu K, Zhang Z, Mu G, et al. The association between the SLCO1B1, apolipoprotein E, and CYP2C9 genes and lipid response to fluvastatin: a meta-analysis. Pharmacogenet Genomics. 2018;28(12):261–7.
- Mangravite LM, Medina MW, Cui J, Pressman S, Smith JD, Rieder MJ, Guo X, Nickerson DA, Rotter JI, Krauss RM. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol. 2010;30(7):1485–92.
- Leduc V, Bourque L, Poirier J, Dufour R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics. 2016;26(1):1–11.
- Cano-Corres R, Candás-Estébanez B, Padró-Miquel A, Fanlo-Maresma M, Pintó X, Alía-Ramos P. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. J Clin Lab Anal. 2018;32(8):e22566.
- Afonso MS, Machado RM, Lavrador MS, Quintao ECR, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis. Nutrients. 2018;10(6):760.
- Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.
- Miltiadous G, Xenophontos S, Bairaktari E, Ganotakis M, Cariolou M, Elisaf M. Genetic and environmental factors affecting the response to statin therapy in patients with molecularly defined familial hypercholesterolaemia. Pharmacogenet Genomics. 2005;15(4):219–25.
- Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26(5):1094–100.
- Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43(12):943–9.
- Polisecki E, Muallem H, Maeda N, Peter I, Robertson M, McMahon AD, et al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis. 2008;200(1):109–14.
- Thompson JF, Hyde CL, Wood LS, Paciga SA, Hinds DA, Cox DR, et al. Comprehensive whole-genome and candidate gene

🙆 Springer

analysis for response to statin therapy in the treating to new targets (TNT) cohort. Circ Cardiovasc Genet. 2009;2(2):173-81.

- 56. Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the use of statins in prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5(2):257–64.
- Salazar LA, Hirata MH, Quintão EC, Hirata RD. Lipid-lowering response of the HMG-CoA reductase inhibitor fluvastatin is influenced by polymorphisms in the low-density lipoprotein receptor gene in Brazilian patients with primary hypercholesterolemia. J Clin Lab Anal. 2000;14(3):125–31.
- Zambrano T, Hirata MH, Cerda A, Dorea EL, Pinto GA, Gusukuma MC, et al. Impact of 3'UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in Brazilian subjects: a pilot study. Int J Clin Exp Med. 2015;8(4):5978–88.
- 59. Santos PC, Morgan AC, Jannes CE, Turolla L, Krieger JE, Santos RD, et al. Presence and type of low density lipoprotein receptor (LDLR) mutation influences the lipid profile and response to lipid-lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 2014;233(1):206–10.
- Miname MH, Bittencourt MS, Moraes SR, Alves RIM, Silva PRS, Jannes CE, et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. JACC Cardiovasc Imaging. 2019;12(9):1797–804.
- Coutinho ER, Miname MH, Rocha VZ, Bittencourt MS, Jannes CE, Tada MT, et al. Familial hypercholesterolemia and cardiovascular disease in older individuals. Atherosclerosis. 2021;318:32–7.
- Guzmán EC, Hirata MH, Quintão EC, Hirata RD. Association of the apolipoprotein B gene polymorphisms with cholesterol levels and response to fluvastatin in Brazilian individuals with high risk for coronary heart disease. Clin Chem Lab Med. 2000;38(8):731-6.
- Anderson JM, Cerda A, Hirata MH, Rodrigues AC, Dorea EL, Bernik MM, et al. Influence of PCSK9 polymorphisms on plasma lipids and response to atorvastatin treatment in Brazilian subjects. J Clin Lipidol. 2014;8(3):256–64.
- Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51(2):165–76.
- 65. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, et al. Pharmacogenetic study of apolipoprotein E, cholesteryl ester transfer protein and hepatic lipase genes and simvastatin therapy in Brazilian subjects. Clin Chim Acta. 2005;362(1–2):182–8.
- 66. Cerda A, Genvigir FD, Willrich MA, Arazi SS, Bernik MM, Dorea EL, et al. Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin. Lipids Health Dis. 2011;10:206.
- Issa MH, Cerda A, Genvigir FD, Cavalli SA, Bertolami MC, Faludi AA, et al. Atorvastatin and hormone therapy effects on APOE mRNA expression in hypercholesterolemic postmenopausal women. J Steroid Biochem Mol Biol. 2012;128(3–5):139–44.
- Brown AJ, Hsieh J. Foiling IDOL to help control cholesterol. Circ Res. 2016;118(3):371–3.
- Weissglas-Volkov D, Calkin AC, Tusie-Luna T, Sinsheimer JS, Zelcer N, Riba L, et al. The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans. J Clin Invest. 2011;121(8):3062–71.
- Adi D, Abuzhalihan J, Wang YH, Baituola G, Wu Y, Xie X, et al. IDOL gene variant is associated with hyperlipidemia in Han population in Xinjiang, China. Sci Rep. 2020;10(1):14280.

- Santos PC, Morgan AC, Jannes CE, Krieger JE, Santos RD, Pereira AC. The MYLIP p.N342S polymorphism is associated with response to lipid-lowering therapy in Brazilian patients with familial hypercholesterolemia. Pharmacogenet Genomics. 2014;24(11):548–55.
- Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008;8(6):512–21.
- Lee SH, Lee JH, Im SS. The cellular function of SCAP in metabolic signaling. Exp Mol Med. 2020;52(5):724–9.
- Fiegenbaum M, Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, et al. Determinants of variable response to simvastatin treatment: the role of common variants of SCAP, SREBF-1a and SREBF-2 genes. Pharmacogenomics J. 2005;5(6):359–64.
- Arazi SS, Genvigir FD, Willrich MA, Hirata MH, Dorea EL, Bernik M, et al. Atorvastatin effects on SREBF1a and SCAP gene expression in mononuclear cells and its relation with lowering-lipids response. Clin Chim Acta. 2008;393(2):119–24.
- Gao J, Xie W. Pregnane X receptor and constitutive androstane receptor at the crossroads of drug metabolism and energy metabolism. Drug Metab Dispos. 2010;38(12):2091–5.
- Xiao L, Wang J, Jiang M, Xie W, Zhai Y. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. Vitam Horm. 2013;91:243–58.
- Yu XH, Zheng XL, Tang CK. Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Adv Clin Chem. 2015;71:171–203.
- Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120(Suppl 1):S49–75.
- Lima LO, Bruxel EM, Hutz MH, Van der Sand CR, Van der Sand LC, Ferreira ME, et al. Influence of PPARA, RXRA, NR112 and NR113 gene polymorphisms on the lipid-lowering efficacy and safety of statin therapy. Arq Bras Endocrinol Metabol. 2013;57(7):513–9.
- Casazza K, Page GP, Fernandez JR. The association between the rs2234693 and rs9340799 estrogen receptor alpha gene polymorphisms and risk factors for cardiovascular disease: a review. Biol Res Nurs. 2010;12(1):84–97.
- Smiderle L, Fiegenbaum M, Hutz MH, Van Der Sand CR, Van Der Sand LC, Ferreira ME, et al. ESR1 polymorphisms and statin therapy: a sex-specific approach. Pharmacogenomics J. 2016;16(6):507–13.
- Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18.
- Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, et al. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 2018;9:526.
- González FEM, Ponce-Ruíz N, Rojas-García AE, Bernal-Hernández YY, Mackness M, Ponce-Gallegos J, et al. PON1 concentration and high-density lipoprotein characteristics as cardiovascular biomarkers. Arch Med Sci Atheroscler Dis. 2019;4:e47–54.
- Sorkin SC, Forestiero FJ, Hirata MH, Guzmán EC, Cavalli SA, Bertolami MC, et al. APOA1 polymorphisms are associated with variations in serum triglyceride concentrations in hypercholesterolemic individuals. Clin Chem Lab Med. 2005;43(12):1339–45.
- Genvigir FD, Soares SA, Hirata MH, Willrich MA, Arazi SS, Rebecchi IM, et al. Effects of ABCA1 SNPs, including the

D Springer

C-105T novel variant, on serum lipids of Brazilian individuals. Clin Chim Acta. 2008;389(1-2):79-86.

- Cerda A, Genvigir FD, Arazi SS, Hirata MH, Dorea EL, Bernik MM, et al. Influence of SCARB1 polymorphisms on serum lipids of hypercholesterolemic individuals treated with atorvastatin. Clin Chim Acta. 2010;411(9–10):631–7.
- de Souza JA, Menin A, Lima LO, Smiderle L, Hutz MH, Van Der Sand CR, et al. PON1 polymorphisms are predictors of ability to attain HDL-C goals in statin-treated patients. Clin Biochem. 2015;48(16–17):1039–44.
- Zhao L, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull. 2018;126(1):101–12.
- Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120(1):229–43.
- Nagassaki S, Sertório JT, Metzger IF, Bem AF, Rocha JB, Tanus-Santos JE. eNOS gene T-786C polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic Biol Med. 2006;41(7):1044–9.
- Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, et al. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene. 2012;501(2):89–103.
- Duarte T, da Cruz IB, Barbisan F, Capelleto D, Moresco RN, Duarte MM. The effects of rosuvastatin on lipid-lowering, inflammatory, antioxidant and fibrinolytics blood biomarkers are influenced by Val16Ala superoxide dismutase manganese-dependent gene polymorphism. Pharmacogenomics J. 2016;16(6):501-6.
- 95. Moriguchi Watanabe L, Bueno AC, de Lima LF, Ferraz-Bannitz R, Dessordi R, Guimarães MP, et al. Genetically determined variations of *selenoprotein P* are associated with antioxidant, muscular, and lipid biomarkers in response to Brazil nut consumption by patients using statins. Br J Nutr. 2021. https://doi.org/10.1017/ S000711452100146X (Epub ahead of print).
- Sposito AC, Faria Neto JR, Carvalho LS, Lorenzatti A, Cafferata A, Elikir G, et al. Statin-associated muscle symptoms: position paper from the Luso-Latin American Consortium. Curr Med Res Opin. 2017;33(2):239–51.
- Turner RM, Pirmohamed M. Statin-related myotoxicity: a comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J Clin Med. 2019;9(1):22.
- Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36(17):1012–22.
- Do Nascimento RCRM, Guerra Jr AA, Alvares J, Gomes IC, Godman B, Bennie M, et al. Statin use in Brazil: findings and implications. Curr Med Res Opin. 2018;34(10):1809–17.
- Nogueira AA, Strunz CM, Takada JY, Mansur AP. Biochemical markers of muscle damage and high serum concentration of creatine kinase in patients on statin therapy. Biomark Med. 2019;13(8):619–26.
- Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of statin-induced myotoxicity. Front Genet. 2020;11:575678.
- SEARCH Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statininduced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99.
- Hou Q, Li S, Li L, Li Y, Sun X, Tian H. Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: a meta-analysis of case-control studies. Medicine (Baltimore). 2015;94(37):e1268.
- Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation

consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423-8.

- 105. Santos PC, Gagliardi AC, Miname MH, Chacra AP, Santos RD, Krieger JE, et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol. 2012;68(3):273–9.
- Mohammad S, Nguyen H, Nguyen M, Abdel-Rasoul M, Nguyen V, Nguyen CD, et al. Pleiotropic effects of statins: untapped potential for statin pharmacotherapy. Curr Vasc Pharmacol. 2019;17(3):239–61.
- 107. Botelho PB, Fioratti CO, Rogero MM, Barroso LP, Bertolami MC, Castro IA. Association between diet and polymorphisms in individuals with statin-controlled dyslipidaemia grouped according to oxidative stress biomarkers. Braz J Pharm Sci. 2012;48:39–49.
- Cozma A, Fodor A, Orasan OH, Vulturar R, Samplelean D, Negrean V, Muresan C, Suharoschi R, Sitar-Taut A. Pharmacogenetic implications of eNOS polymorphisms (*Glu298Asp*, *T786C*, 4b/4a) in cardiovascular drug therapy. In Vivo. 2019;33(4):1051–8.
- 109. Souza-Costa DC, Sandrim VC, Lopes LF, Gerlach RF, Rego EM, Tanus-Santos JE. Anti-inflammatory effects of atorvastatin: modulation by the T-786C polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis. 2007;193(2):438–44.
- Nagassaki S, Herculano RD, Graeff CF, Tanus-Santos JE. eNOS T-786C polymorphism affects atorvastatin-induced changes in erythrocyte membrane fluidity. Eur J Clin Pharmacol. 2009;65(4):385–92.
- 111. Andrade VL, Sertório JT, Eleuterio NM, Tanus-Santos JE, Fernandes KS, Sandrim VC. Simvastatin treatment increases nitrite levels in obese women: modulation by T(-786)C polymorphism of eNOS. Nitric Oxide. 2013;33:83–7.
- 112. Maitland-van der Zee AH, Lynch A, Boerwinkle E, Arnett DK, Davis BR, Leiendecker-Foster C, et al. Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C>T, MTHFR 1298 A>C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics. 2008;18(8):651–6.
- 113. Villela MP, Andrade VL, Eccard B, Jordão AA, Sertório JT, Tanus-Santos JE, et al. Homocysteine and nitrite levels are modulated by MTHFR 677C>T polymorphism in obese women treated with simvastatin. Clin Exp Pharmacol Physiol. 2014;41(10):744-7.
- 114. de Oliveira FF, Berretta JM, de Almeida Junior GV, de Almeida SS, Chen ES, Smith MC, et al. Pharmacogenetic analyses of variations of measures of cardiovascular risk in Alzheimer's dementia. Indian J Med Res. 2019;150(3):261–71.
- 115. de Oliveira FF, Chen ES, Smith MC, Bertolucci PHF. Selected LDLR and APOE polymorphisms affect cognitive and functional response to lipophilic statins in Alzheimer's disease. J Mol Neurosci. 2020;70(10):1574–88.
- 116. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune AN, et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose—2017. Arq Bras Cardiol. 2017;109(2 Suppl 1):1–76.
- 117. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88.
- 118. Brasil. Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas da Dislipidemia: prevenção de eventos cardiovasculares e pancreatite. Brasil. 2019. Available at: https://www.in.gov.br/ web/dou/-/portaria-conjunta-n-8-de-30-de-julho-de-2019-20927 2888. Accessed 15 Apr 2021.

Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts

- 119. Karlson BW, Wiklund O, Palmer MK, Nicholls SJ, Lundman P, Barter PJ. Variability of low-density lipoprotein cholesterol response with different doses of atorvastatin, rosuvastatin, and simvastatin: results from VOYAGER. Eur Heart J Cardiovasc Pharmacother. 2016;2(4):212–7.
- Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.
- 121. Guglielmi V, Bellia A, Pecchioli S, Della-Morte D, Parretti D, Cricelli I, et al. Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: a real-world evidence study in primary care. Atherosclerosis. 2017;263:36–41.
- 122. Cohen JD, Brinton EA, Ito MK, Jacobson TA. Understanding Statin Use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J Clin Lipidol. 2012;6(3):208–15.
- 123. Travassos C, Laguardia J, Marques PM, Mota JC, Szwarcwald CL. Comparison between two race/skin color classifications in relation to health-related outcomes in Brazil. Int J Equity Health. 2011;10:35.
- Suarez-Kurtz G. Pharmacogenetics in the Brazilian population. Front Pharmacol. 2010;1:118.
- Suarez-Kurtz G, Pena SD, Struchiner CJ, Hutz MH. Pharmacogenomic diversity among Brazilians: influence of ancestry, self-reported color, and geographical origin. Front Pharmacol. 2012;3:191.
- 126. Rodrigues-Soares F, Kehdy FSG, Sampaio-Coelho J, Andrade PXC, Céspedes-Garro C, Zolini C, et al. Genetic structure of pharmacogenetic biomarkers in Brazil inferred from a systematic review and population-based cohorts: a RIBEF/EPIGEN-Brazil initiative. Pharmacogenomics J. 2018;18(6):749–59.
- 127. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385(9984):2264–71.
- 128. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135(22):2091–101.
- Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9.
- 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
- 131. Gordon AS, Tabor HK, Johnson AD, Snively BM, Assimes TL, Auer PL, et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a largescale exome dataset. Hum Mol Genet. 2014;23(8):1957–63.
- Schaller L, Lauschke VM. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet. 2019;138(11–12):1359–77.
- Zhang B, Lauschke VM. Genetic variability and population diversity of the human SLCO (OATP) transporter family. Pharmacol Res. 2019;139:550–9.
- Xiao Q, Zhou Y, Lauschke VM. Ethnogeographic and interindividual variability of human ABC transporters. Hum Genet. 2020;139(5):623–46.
- Zhou Y, Mägi R, Milani L, Lauschke VM. Global genetic diversity of human apolipoproteins and effects on cardiovascular disease risk. J Lipid Res. 2018;59(10):1987–2000.

- Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018;12(1):26.
- 137. Santos M, Niemi M, Hiratsuka M, Kumondai M, Ingelman-Sundberg M, Lauschke VM, et al. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics. Genet Med. 2018;20(6):622-9.
- Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22(1):1–8.
- Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med. 2017;19(1):20–9.
- Lauschke VM, Ingelman-Sundberg M. Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genomic Med. 2020;5:9.
- Zhou Y, Fujikura K, Mkrtchian S, Lauschke VM. Computational methods for the pharmacogenetic interpretation of next generation sequencing data. Front Pharmacol. 2018;9:1437.
- Zhou Y, Mkrtchian S, Kumondai M, Hiratsuka M, Lauschke VM. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J. 2019;19(2):115–26.
- Zhou Y, Dagli-Hernandez C, Lauschke VM. Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer. 2020;123(12):1782–9.
- 144. Russell LE, Zhou Y, Lauschke VM, Kim RB. In vitro functional characterization and in silico prediction of rare genetic variation in the bile acid and drug transporter, Na⁺-taurocholate cotransporting polypeptide (NTCP, *SLC10A1*). Mol Pharm. 2020;17(4):1170–81.
- 145. Davis JP, Huyghe JR, Locke AE, Jackson AU, Sim X, Stringham HM, et al. Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet. 2017;13(10):e1007079.
- Igartua C, Mozaffari SV, Nicolae DL, Ober C. Rare non-coding variants are associated with plasma lipid traits in a founder population. Sci Rep. 2017;7(1):16415.
- 147. Neřoldová M, Stránccký V, Hodaňová K, Hartmannová H, Piherová L, Přistoupilová A, et al. Rare variants in known and novel candidate genes predisposing to statin-associated myopathy. Pharmacogenomics. 2016;17(13):1405–14.
- 148. Floyd JS, Bloch KM, Brody JA, Maroteau C, Siddiqui MK, Gregory R, et al. Pharmacogenomics of statin-related myopathy: meta-analysis of rare variants from whole-exome sequencing. PLoS ONE. 2019;14(6):e0218115.
- 149. Maitland-van der Zee AH, Klungel OH, Stricker BH, Veenstra DL, Kastelein JJ, Hofman A, et al. Pharmacoeconomic evaluation of testing for angiotensin-converting enzyme genotype before starting beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitor therapy in men. Pharmacogenetics. 2004;14(1):53–60.
- Kemp LK, Doran CM, Vos T, Hall W. Cost-effectiveness analysis of genetic screening for the Taq1B polymorphism in the secondary prevention of coronary heart disease. Expert Rev Pharmacoecon Outcomes Res. 2007;7(2):119–28.
- 151. Parthan A, Leahy KJ, O'Sullivan AK, Iakoubova OA, Bare LA, Devlin JJ, et al. Cost effectiveness of targeted high-dose atorvastatin therapy following genotype testing in patients with acute coronary syndrome. Pharmacoeconomics. 2013;31(6):519–31.
- 152. Sorich MJ, Wiese MD, O'Shea RL, Pekarsky B. Review of the cost effectiveness of pharmacogenetic-guided

Deringer

treatment of hypercholesterolaemia. Pharmacoeconomics. 2013;31(5):377-91.

- Vassy JL, Chun S, Advani S, Ludin SA, Smith JG, Alligood EC. Impact of SLCO1B1 pharmacogenetic testing on patient and healthcare outcomes: a systematic review. Clin Pharmacol Ther. 2019;106(2):360–73.
- Jansen ME, Rigter T, Rodenburg W, Fleur TMC, Houwink EJF, Weda M, et al. Review of the reported measures of clinical validity and clinical utility as arguments for the implementation of pharmacogenetic testing: a case study of statin-induced muscle toxicity. Front Pharmacol. 2017;8:555.
 Zhou Y, Krebs K, Milani L, Lauschke VM. Global frequencies
- Zhou Y, Krebs K, Milani L, Lauschke VM. Global frequencies of clinically important HLA alleles and their implications for the cost-effectiveness of preemptive pharmacogenetic testing. Clin Pharmacol Ther. 2021;109(1):160–74.
- 156. Dong OM, Wheeler SB, Cruden G, Lee CR, Voora D, Dusetzina SB, et al. Cost-effectiveness of multigene pharmacogenetic testing in patients with acute coronary syndrome after percutaneous coronary intervention. Value Health. 2020;23(1):61–73.
- 157. Zhu Y, Moriarty JP, Swanson KM, Takahashi PY, Bielinski SJ, Weinshilboum R, et al. A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet Med. 2021;23(3):461–70.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX 2 – Articles as co-author

Genomics, epigenomics and pharmacogenomics of Familial Hypercholesterolemia (FHBGEP): A study protocol

Jéssica Bassani Borges, PhD^{a,b}, Victor Fernandes de Oliveira, PhD^a, Glaucio Monteiro Ferreira, PhD^{a,b}, Bruna Los, MSc^a, Thais Kristini Almendros Afonso Barbosa, MSc^a, Elisangela da Silva Rodrigues Marcal, Biomedical^a, Carolina Dagli-Hernandez, Pharmacist^a, Renata Caroline Costa de Freitas, MSc^a, Raul Hernandes Bortolin, PhD^a, Augusto Akira Mori, Pharmacist^a, Thiago Dominguez Crespo Hirata, PhD^a, Helder Takashi Imoto Nakaya, PhD^a, Gisele Medeiros Bastos, PhD^{b,c}, Helena Strelow Thurow, PhD^a, Rodrigo Marques Gonçalves, MD^b, Daniel Branco de Araujo, MD, PhD^b, Henry Paulo Zatz, MD^b, Adriana Bertolami, MD, PhD^b, André Arpad Faludi, MD, PhD^b, Marcelo Chiara Bertolami, MD, PhD^b, Amanda Guerra de Moraes Rego Sousa, MD, PhD^b, João Ítalo Dias França, MSc^b Cinthia Elim Jannes, PhD^d, Alexandre da Costa Pereira, PhD^d, Marcelo Arruda Nakazone, MD, PhD^e, Dorotéia Rossi Silva Souza, PhD^e, Tayanne Silva Carmo, MSc^e, Marcelo Ferraz Sampaio, MD, PhD^c, Renata Gorjão, PhD^f, Tania Cristina Pithon-Curi, PhD^f, Patricia Moriel, PhD^g, Vivian Nogueira Silbiger, PhD^h, André Ducati Luchessi, PhD^h, Jéssica Nayara Góes de Araújo, MSc¹, Michel Satya Naslavsky, PhD^j, Jaqueline Yu Ting Wang, MSc¹, Thales Kronenberger, PhD^k, Alvaro Cerda, PhD¹, Hui Tzu Lin-Wang, PhD^b, Adriana Regina Garofalo, Biomedical^b, Cristina Moreno Fajardo, MSc^a, Rosario Dominguez Crespo Hirata, PhD^a, Mario Hiroyuki Hirata, PhD^{a,}

* Corresponding author. University of Sao Paulo, School of Pharmaceutical Sciences, Av Professor Lineu Prestes 580, 05508-000, Sao Paulo, Brazil

E-mail addresses: jessica.bassani.borges@gmail.com (J.B. Borges), fo.victor@hotmail.com (V.F. Oliveira), glauciom.ferreira@gmail.com (G.M. Ferreira), brunalos17@gmail.com (B. Los), thais.almendros@gmail.com (T.K.A.A. Barbosa), elisangela.idpc@gmail.com (E.S.R. Marçal), carolina.dagli@gmail.com (C. Dagli-Hernandez), renata_karoline@hotmail.com (R.C. de Freitas), raulhbortolin@yahoo.com.br (R.H. Bortolin), augusto.akira.mori@usp.br (A.A. Mori), thiagodch@gmail.com (T.D.C. Hirata), hnakaya@usp.br (H.T.I. Nakaya), gimebastos@gmail.com (G.M. Bastos), thurow.hs@gmail.com (H.S. Thurow), rodrigong@gmail.com (R.M. Gonçalves), dbaraujo@gmail.com (D.B. Araujo), hpzatz@gmail.com (H.P. Zatz), adriana@cardiologiabertolami.com (A. Bertolami), aaf.2312@gmail.com (A.A. Faludi), bertolami@uol.com.br (M.C. Bertolami), amandars@cardiol.br (A.G.M.R. Sousa), jitalo@lee.dante.br (J.Í.D. França), cejannes@hotmail.com (C.E. Jannes), acplbmpereira@gmail.com (A.C. Pereira), naka med@yahoo.com (M.A. Nakazone), doroteiasouza@yahoo.com (D.R.S. Souza), tay.scarmo@gmail.com (T.S. Carmo), msampaio@cardiol.br (M.F. Sampaio), renata.gotjao@cruzeirodosul.edu.br (R. Gotjão), tania.pithon-curi@ (D.K.S. Souza), day Scarmologinalicom (1.S. Gamo), insampalo@cardiol.of (u.F. Sampado), rentata.goglad@cruzerodosul.edu.br (R. Gotao), tanta.ptinon-curi@ cruzeirodosul.edu.br (T.G. Pithon-Curi), morielpatricia@gmail.com (P. Moriel), viviansilbiger@hotmail.com (V.N. Silbiger), andre.luchessi@outlook.com (A.D. Luchessi), jessnaysub@hotmail.com (J.N.G. de Araŭjo), innaslavsky@gmail.com (M.S. Naslavsky), jaqueytw@gmail.com (J.V.T. Wang), kronenberger?@ gmail.com (T. Kronenberger), alvaro.cerda@ufrontera.cl (A. Cerda), pesquisalin@yahoo.com.br (H.T. Lin-Wang), adrianaregarofalo@gmail.com (A.R. Garofalo), cris.mf01@gmail.com (G.M. Fajardo), rosariohirata@usp.br (R.D.C. Hirata), mhhirata@usp.br (M.H. Hirata).

https://doi.org/10.1016/j.sapharm.2020.10.007 Received 7 October 2020; Accepted 8 October 2020 1551-7411/© 2020 Elsevier Inc. All rights reserved.

Please cite this article as: Jéssica Bassani Borges, Research in Social and Administrative Pharmacy, https://doi.org/10.1016/j.sapharm.2020.10.007

^{*} School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil

 ^b Institute Dante Pazzanese of Carliology, Sao Paulo, Brazil
 ^c Real e Benemerita Associação Portuguesa de Beneficiência, Sao Paulo, Brazil
 ^d Heart Institute, University of Sao Paulo, Sao Paulo, Brazil

Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto, Brazil

 ⁶ Oruzeiro O Sul University, Sao Paulo, Brazil
 ⁸ Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil

^h Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
¹ Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil Human Genome and Stem-Cell Research Center, Biosciences Institute, University of Sao Paulo, Sao Paulo, Brazil

^k Department of Internal Medicine VIII, University Hospital Tibingen, Tibingen, Germany
² Center of Excellence in Translational Medicine, BIOREN, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile

BJC British Journal of Cancer

ARTICLE

Genetics and Genomics

Check for

Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier

Yitian Zhou¹, Carolina Dagli Hernandez^{1,2} and Volker M. Lauschke¹

BACKGROUND: Inter-individual differences in dihydropyrimidine dehydrogenase (*DPYD* encoding DPD) and thiopurine Smethyltransferase (TPMT) activity are important predictors for fluoropyrimidine and thiopurine toxicity. While several variants in these genes are known to decrease enzyme activities, many additional genetic variations with unclear functional consequences have been identified, complicating informed clinical decision-making in the respective carriers.

METHODS: We used a novel pharmacogenetically trained ensemble classifier to analyse *DPYD* and *TPMT* genetic variability based on sequencing data from 138,842 individuals across eight populations.

RESULTS: The algorithm accurately predicted in vivo consequences of *DPYD* and *TPMT* variants (accuracy 91.4% compared to 95.3% in vitro). Further analysis showed high genetic complexity of DPD deficiency, advocating for sequencing-based *DPYD* profiling, whereas genotyping of four variants in *TPMT* was sufficient to explain >95% of phenotypic TPMT variability. Lastly, we provided population-scale profiles of ethnogeographic variability in DPD and TPMT phenotypes, and revealed striking interethnic differences in frequency and genetic constitution of DPD and TPMT deficiency.

CONCLUSION: These results provide the most comprehensive data set of *DPYD* and *TPMT* variability published to date with important implications for population-adjusted genetic profiling strategies of fluoropyrimidine and thiopurine risk factors and precision public health.

British Journal of Cancer https://doi.org/10.1038/s41416-020-01084-0

BACKGROUND

Adverse drug reactions (ADRs) are a common phenomenon in cancer therapy, and the identification of patients at increased risk thus constitutes an important goal of precision oncology. In the last decade, genetic profiling has identified a multitude of variations that can guide selection and dosing of chemotherapeutic drugs.¹ Two of the most important examples of such pharmacogenetic biomarkers that have transitioned from research into clinical practice are germline variations in the dihydropyr-imidine dehydrogenase (*DPYD* encoding DPD) and thiopurine S-methyltransferase (*TPMT*) genes.^{2–4}

Fluoropyrimidines are cornerstones of oncological therapy used for the treatment of a wide range of solid tumours. Importantly, DPD deficiency is strongly associated with dose-limiting and sometimes life-threatening toxicity with 60–80% of DPD-deficient individuals experiencing severe ADRs compared to 10–20% of patients with normal enzyme function.^{5,6} The most extensively studied variation associated with DPD deficiency is *DPYD**2A (rs3918290), a splice donor variant that results in truncated protein without catalytic activity.⁷ Recent meta-analyses moreover confirmed robust associations of *DPYD* 15605, D949V as well as of the intronic splice variant rs75017182 and the associated haplotype HapB3 with fluoropyrimidine toxicity,^{8–10} and prospective testing for these variants followed by genotype-guided upfront dose adjustments significantly increased patient safety.^{11–13} Analogously to *DPYD*, individuals deficient in TPMT are more susceptible to life-threatening toxicity of thiopurines.¹⁴ The most important decreased function alleles are *TPMT*2* (rs1800462), **3A* (rs1800460 and rs1142345) and **3C* (rs1142345).¹⁵

In addition to the well-characterised variants illustrated above, DPYD and TPMT harbour hundreds of additional rare genetic variations with unclear effects on enzyme function.^{16,17} Recent advances in large-scale mutagenesis screens unlock exciting opportunities for the parallel experimental interrogation of the effect of thousands of variants,¹⁸ as exemplified by the simultaneous characterisation of the effects of thousands of *TPMT* variants on intracellular abundance.¹⁹ However, without experimental assessments of variant effects on enzyme activity, their interpretation has to rely on computational tools. In the last two decades, a multitude of computational prediction tools have been developed that consider sequence conservation as an indicator of variant deleteriousness, as well as various mechanistic parameters, such as impacts on physiochemical properties, post-translational modifications and structural features, such as protein stability and the disruption of binding interfaces. These algorithms are mostly trained on pathogenic variants for which evolutionary conservation constitutes a suitable proxy. However, evolutionary constraints for DPYD and TPMT are limited, and conservation scores are thus not the ideal metric to predict variant function. To overcome these problems,

Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden and ²Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, 05508-000 Sao Paulo, Brazil Correspondence: Volker M. Lauschke (volker.lauschke@ki.se)

Received: 25 June 2020 Revised: 26 August 2020 Accepted: 2 September 2020 Published online: 25 September 2020

© The Author(s), under exclusive licence to Cancer Research UK 2020

Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients

Thiago Dominguez Crespo Hirata ¹, Carolina Dagli-Hernandez ¹, Fabiana Dalla Vecchia Genvigir ¹, Volker Martin Lauschke ² ³, Yitian Zhou ², Mario Hiroyuki Hirata ¹, Rosario Dominguez Crespo Hirata ⁴

Affiliations + expand PMID: 34357562 DOI: 10.1007/s40291-021-00549-z

Abstract

Anticoagulant and antiplatelet drugs effectively prevent thrombotic events in patients with cardiovascular diseases, ischemic stroke, peripheral vascular diseases, and other thromboembolic diseases. However, genetic and non-genetic factors affect the response to antithrombotic therapy and can increase the risk of adverse events. This narrative review discusses pharmacogenomic studies on antithrombotic drugs commonly prescribed in Brazil. Multiple Brazilian studies assessed the impact of pharmacokinetic (PK) and pharmacodynamic (PD) gene variants on warfarin response. The reduced function alleles CYP2C9*2 and CYP2C9*3, and VKORC1 rs9923231 (c.-1639G>A) are associated with increased sensitivity to warfarin and a low dose requirement to prevent bleeding episodes, whereas CYP4F2 rs2108622 (p.Val433Met) carriers have higher dose requirements (warfarin resistance). These deleterious variants and non-genetic factors (age, gender, body weight, co-administered drugs, food interactions, and others) account for up to 63% of the warfarin dose variability. Few pharmacogenomics studies have explored antiplatelet drugs in Brazilian cohorts, finding associations between CYP2C19*2, PON1 rs662 and ABCC3 rs757421 genotypes and platelet responsiveness or clopidogrel PK in subjects with coronary artery disease (CAD) or acute coronary syndrome (ACS), whereas ITGB3 contributes to aspirin PK but not platelet responsiveness in diabetic patients. Brazilian quidelines on anticoagulants and antiplatelets recommend the use of a platelet aggregation test or genotyping only in selected cases of ACS subjects without ST-segment elevation taking clopidogrel, and also suggest CYP2C9 and VKORC1 genotyping before starting warfarin therapy to assess the risk of bleeding episodes or warfarin resistance.

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

> Epigenomics. 2021 May;13(10):779-791. doi: 10.2217/epi-2020-0462. Epub 2021 Apr 26.

Functional analysis of *PCSK9* 3'UTR variants and mRNA-miRNA interactions in patients with familial hypercholesterolemia

Bruna Los ¹, Jéssica B Borges ¹ ², Victor F Oliveira ¹, Renata Cc Freitas ¹, Carolina Dagli-Hernandez ¹, Raul H Bortolin ¹, Rodrigo M Gonçalves ³, André A Faludi ³, Alice C Rodrigues ⁴, Gisele M Bastos ² ⁵, Cinthia E Jannes ⁶, Alexandre C Pereira ⁶, Rosario Dc Hirata ¹, Mario H Hirata ¹

Affiliations + expand PMID: 33899508 DOI: 10.2217/epi-2020-0462

Abstract

Aim: Functional analysis of *PCSK9* 3'UTR variants and mRNA-miRNA interactions were explored in patients with familial hypercholesterolemia (FH). **Materials & methods:** *PCSK9* 3'UTR variants were identified by exon-targeted gene sequencing. Functional effects of 3'UTR variants and mRNA-miRNA interactions were analyzed using *in silico* and *in vitro* studies in HEK293FT and HepG2 cells. **Results:** Twelve *PCSK9* 3'UTR variants were detected in 88 FH patients. c.*75C >T and c.*345C >T disrupted interactions with miR-6875, miR-4721 and miR-564. Transient transfection of the c.*345C >T decreased luciferase activity in HEK293FT cells. miR-4721 and miR-564 mimics reduced *PCSK9* expression in HepG2 cells. **Conclusion:** *PCSK9* c.*345C >T has a possible role as loss-of-function variant. miR-4721 and miR-564 downregulate *PCSK9* and may be useful to improve lipid profile in FH patients.

Keywords: 3'UTR variants; PCSK9; epigenomics; familial hypercholesterolemia; functional analysis; microRNAs.

APPENDIX 3 - Ethical approval

PARECER CONSUBSTANCIADO DO CEP

DADOS DA EMENDA

Título da Pesquisa: Ultrassequenciamento exômico dos principais genes relacionados com a hipercolesterolemia familiar

Pesquisador: Jéssica Bassani Borges

Área Temática: Genética Humana:

(Trata-se de pesquisa envolvendo Genética Humana que não necessita de análise ética por parte da CONEP;);

Versão: 8

CAAE: 24618713.0.1001.5462

Instituição Proponente: Instituto Dante Pazzanese de Cardiologia - SP

Patrocinador Principal: Financiamento Próprio

CNPQ

FUNDACAO DE AMPARO A PESQUISA DO ESTADO DE SAO PAULO

DADOS DO PARECER

Número do Parecer: 2.587.235

Apresentação do Projeto:

Nº DO PROTOCOLO DO CEP:4398/ 2013

A hipercolesterolemia familial (HF) é uma doença autossômica dominante com bases genéticas ainda não totalmente esclarecidas. O presente

estudo propõe a análise genômica, epigenômica e farmacogenômica de portadores de HF monogênica e poligênica. Serão recrutados pacientes

com HF diagnosticada fenotipicamente, em seis centros de pesquisa de diferentes regiões do Brasil. Os métodos utilizados incluem: (i)

ultrassequenciamento dos principais genes relacionados à HF e outras dislipidemias primárias utilizando o equipamento MiSeq (Illumina); (ii) análise

funcional de novas variantes nos genes LDLR, APOB e PCSK9 por citometria de fluxo, com estudo de interação com receptores de LDL em

linfócitos primários e com estudo de mutagênese dirigida utilizando CRISPR/Cas9 em células HepG2 e HUVEC; (iii) perfil de expressão diferencial

de miRNAs circulantes em amostras de plasma por PCR array; (iv) perfil de metilação dos genes LDLR, APOB e PCSK9 em leucócitos por

Endereço:	Endereço: Av. Dr. Dante Pazzanese N.º 500, Torre 6º andar					
Bairro: Ib	irapuera	CEP:	04.012-909			
UF: SP	Município:	SAO PAULO				
Telefone:	(11)5085-6040	Fax: (11)5085-6040	E-mail:	cep@dantepazzanese.org.br		

Página 01 de 05

Continuação do Parecer: 2.587.235

pirossequenciamento; (v) análise farmacogenômica incluindo genes envolvidos no metabolismo e na resposta a hipolipemiantes. As análises de

bioinformática serão realizadas utilizando-se os programas MiSeq Reporter e CLC Genomic Workbench. Este estudo é pioneiro no país e a sua

realização na população brasileira, altamente miscigenada, é inovadora e desafiadora. Os resultados deste estudo visam contribuir para o

conhecimento das bases moleculares da HF, fornecer elementos para direcionamento no diagnóstico genético e na terapia personalizada de

pacientes afetados, e possibilitar a criação de um banco nacional de dados genômicos que auxilie na orientação da conduta diagnóstica molecular

para pacientes com fenótipo HF e seus familiares. Contribuirá para a formação de recursos humanos, consolidação da pesquisa e integração das

instituições envolvidas.

Objetivo da Pesquisa:

Objetivo Primário:

Identificar as causas genéticas das dislipidemias primárias dos pacientes diagnosticados fenotipicamente no Instituto Dante Pazzanese de

Cardiologia.

Objetivo Secundário:

• Sequenciar os exomas dos genes relacionados a dislipidemias de origem genética e verificar o perfil das novas variantes polimórficas em pacientes

com diagnóstico de hipercolesterolemia familiar.

· Identificar novas variantes nos genes relacionados com alteração do metabolismo do colesterol.

· Avaliar as correlações entre as mutações e as alterações fenotípicas.

• Caracterizar a funcionalidade de variantes do gene LDLR in vitro pelo perfil de captação de LDL, em cultura primária de linfócitos oriundos de

portadores de HF;

• Caracterizar a funcionalidade de variantes do gene APOB in vitro pelo perfil de captação de LDL oriunda de portadores de HF, em células HepG2 e

HUVEC;

• Realizar a mutagênese de variantes dos genes LDLR e PCSK9, encontradas no sequenciamento, em células HepG2 e HUVEC para avaliar sua

funcionalidade independente da presença de outras variantes.

Endereço	Endereço: Av. Dr. Dante Pazzanese N.º 500, Torre 6º andar					
Bairro: I	birapuera	CEP:	04.012-909			
UF: SP	Município:	SAO PAULO				
Telefone:	(11)5085-6040	Fax: (11)5085-6040	E-mail:	cep@dantepazzanese.org.br		

Página 02 de 05

Continuação do Parecer: 2.587.235

 Avaliar o perfil de expressão diferencial de miRNAs circulantes entre os diferentes padrões fenotípicos de HF encontrados em nossa população;

• Avaliar o perfil de metilação das ilhas CpG dos genes LDLR, APOB e PCSK9 de portadores de HF com diferentes padrões fenotípicos;

• Avaliar a associação de variantes em genes envolvidos no metabolismo e na resposta a medicamentos hipolipemiantes, em pacientes HF.

Avaliação dos Riscos e Benefícios:

Riscos:

Os participantes deste estudo não se submeterão a procedimentos adicionais, exceto a coleta de material biológico para dosagem dos

biomarcadores, que em alguns serviços fazem parte da rotina do atendimento desses pacientes. Os riscos físicos referentes à coleta de amostra de

sangue para o estudo são: hematoma, flebite, breve dor. Algumas pessoas têm vertigens quando coletam sangue, mas os sintomas desaparecem

quando a pessoa se deita.

Benefícios:

Os participantes deste estudo não poderão receber nenhum benefício direto por fazer parte do Estudo. As informações obtidas deste estudo serão

importantes para melhorar o diagnóstico, prognóstico e a prevenção dos eventos cardiovasculares em pacientes com dislipidemias primárias.

Comentários e Considerações sobre a Pesquisa:

Sem restrições do ponto de vista de ética em pesquisa

Considerações sobre os Termos de apresentação obrigatória:

1_Inclusão de 4 centros participantes; USP HC de porto alegre UNICAMP Cruzeiro do sul educacional s.a

Conclusões ou Pendências e Lista de Inadequações:

Sem restrições do ponto de vista de ética em pesquisa

Endereç	o: Av. Dr. Dante Pazza	nese N.º 500, Torre 6º anda		
Bairro:	Ibirapuera	CEP:	04.012-909	
UF: SP	Município:	SAO PAULO		
Telefone	(11)5085-6040	Fax: (11)5085-6040	E-mail: cep@dant	epazzanese.org.br

Página 03 de 05

Continuação do Parecer: 2.587.235

Considerações Finais a critério do CEP:

Diante do exposto, O Comitê de Ética em Pesquisa do Instituto Dante Pazzanese de Cardiologia, de acordo com as atribuições definidas na Resolução CNS nº 466 de 2012, resolução 510/96 e da Norma Operacional nº 001 de 2013 do CNS, em reunião ordinária de 27/03/2018 manifesta-se pela aprovação da emenda.

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento	Arquivo	Postagem	Autor	Situação
Outros	emenda_inclusaocentors.pdf	20/03/2018	Pedro Silvio Farsky	Aceito
		09:50:50		
Informações Básicas	PB_INFORMAÇÕES_BÁSICAS_107240	16/03/2018		Aceito
do Projeto	4_E6.pdf	14:26:04		
Outros	Carta_Emenda.pdf	30/06/2016	Jéssica Bassani	Aceito
		16:01:00	Borges	
Projeto Detalhado /	HF_CEP_ultima_versao.pdf	30/06/2016	Jéssica Bassani	Aceito
Brochura		16:00:32	Borges	
Investigador			_	
TCLE / Termos de	HF_TCLE2.pdf	30/06/2016	Jéssica Bassani	Aceito
Assentimento /		15:59:44	Borges	
Justificativa de			-	
Ausência				
Declaração de	Justificativa_CEPIDPC_vinculo_Instituci	11/12/2015	Jéssica Bassani	Aceito
Pesquisadores	onal.pdf	16:40:04	Borges	
Folha de Rosto	PLATAFORMA BRASIL - JESSICA.pdf	06/03/2015		Aceito
		11:01:08		
Outros	Troca de Pesquisador.pdf	08/12/2014		Aceito
		10:17:29		
Outros	Troca pesquisador.pdf	08/12/2014		Aceito
		10:17:29		
Outros	Carta de mudança de pesquisador.pdf	14/11/2014		Aceito
	<u> </u>	12:20:49		
Outros	DECLARAÇÕES CEP Thiago D C	12/11/2013		Aceito
	Hirata.pdf	14:32:38		

Situação do Parecer: Aprovado Necessita Apreciação da CONEP: Não

Endereço:	Endereço: Av. Dr. Dante Pazzanese N.º 500, Torre 6º andar				
Bairro: Ib	irapuera	CEP:	04.012-909		
UF: SP	Município:	SAO PAULO			
Telefone:	(11)5085-6040	Fax: (11)5085-6040	E-mail: cep@dantepazzanese.org.br		

Página 04 de 05

Plataforma

Continuação do Parecer: 2.587.235

SAO PAULO, 09 de Abril de 2018

Assinado por: Pedro Silvio Farsky (Coordenador)

Endereç	o: Av. Dr. Dante Pazza	nese N.º 500, Torre 6º anda	ır		
Bairro:	Ibirapuera	CEP:	04.012-909		
UF: SP	Município:	SAO PAULO			
Telefone	(11)5085-6040	Fax: (11)5085-6040	E-mail:	cep@dantepazzanese.org.br	

Página 05 de 05

USP - FACULDADE DE CIÊNCIAS FARMACÊUTICAS DA UNIVERSIDADE DE SÃO

PARECER CONSUBSTANCIADO DO CEP

Elaborado pela Instituição Coparticipante

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: Ultrassequenciamento exômico dos principais genes relacionados com a hipercolesterolemia familiar

Pesquisador: Jéssica Bassani Borges

Área Temática: Genética Humana:

(Trata-se de pesquisa envolvendo Genética Humana que não necessita de análise ética por parte da CONEP;);

Versão: 2

CAAE: 24618713.0.3001.0067

Instituição Proponente: Faculdade de Ciências Farmacêuticas da Universidade de São Paulo

Patrocinador Principal: Financiamento Próprio CNPQ

FUNDACAO DE AMPARO A PESQUISA DO ESTADO DE SAO PAULO

DADOS DO PARECER

Número do Parecer: 2.708.638

Apresentação do Projeto:

Trata-se de um projeto destinado à avaliação de genes relacionados à hipercolesterolemia familiar. Serão recrutados 150 indivíduos adultos acompanhados no Instituto Dante Pazzanese de Cardiologia, em São Paulo, sendo 100 indivíduos com dosagem elevada de colesterol e 50 indivíduos controle. Serão coletados 20 ml de sangue dos participantes e amostra de sangue poderá ser armazenada por um período de 5 anos.

Objetivo da Pesquisa:

O objetivo principal é avaliar a presença de genes relacionados com a hipercolesterolemia familiar em pacientes que já receberam o diagnóstico clínico da doença e determinar o perfil genético nesta população.

Avaliação dos Riscos e Benefícios:

Não há benefícios diretos aos participantes e os riscos são os inerentes à coleta de sangue e à punção venosa. Como os pacientes são indivíduos adultos, o volume de sangue a ser coletado é considerado adequado.

Endereço:	Endereço: Av. Prof. Lineu Prestes, 580, Bloco 13A, sala 112					
Bairro: B	utantã	CEP:	05.508-000			
UF: SP	Município:	SAO PAULO				
Telefone:	(11)3091-3622	Fax: (11)3031-8986	E-mail: cepfcf@usp.br			

Página 01 de 03

USP - FACULDADE DE CIÊNCIAS FARMACÊUTICAS DA UNIVERSIDADE DE SÃO

Continuação do Parecer: 2.708.638

Comentários e Considerações sobre a Pesquisa:

A pesquisa é importante, pois busca trazer mais conhecimentos sobre as causas da hipercolesterolemia.

Considerações sobre os Termos de apresentação obrigatória:

Trata-se de emenda de projeto de pesquisa já aprovado pelo CEP da Instituição Proponente (Instituto Dante Pazzanese de Cardiologia-SP) e do Centro Colaborador (Faculdade de Ciências Farmacêuticas da USP). A pesquisadora principal solicita a inclusão de 4 outros centros colaboradores:

-Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da USP,

-Hospital de Clínicas de Porto Alegre,

-Faculdade de Ciências Médicas da UNICAMP,

-Cruzeiro do Sul Educacional SA.

Recomendações:

As cartas de anuência das Instituições co-participadoras foram anexadas.

Conclusões ou Pendências e Lista de Inadequações:

Nenhuma

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento	Arquivo	Postagem	Autor	Situação
Informações Básicas	PB_INFORMAÇÕES_BÁSICAS_DO_P	04/06/2018		Aceito
do Projeto	ROJETO 1109917.pdf	15:03:35		
Outros	Carta_de_Anuencia_UNICSUL.pdf	04/06/2018	Jéssica Bassani	Aceito
		14:59:34	Borges	
Outros	Carta_de_Anuencia_UNICAMP.pdf	04/06/2018	Jéssica Bassani	Aceito
		14:58:59	Borges	
Outros	Carta_de_Anuencia_UFRGS.pdf	04/06/2018	Jéssica Bassani	Aceito
		14:58:28	Borges	
Outros	Carta_de_anuencia_INCOR.pdf	04/06/2018	Jéssica Bassani	Aceito
		14:58:01	Borges	
Outros	Carta_resposta_Pendencia_CEP_FCF_	04/06/2018	Jéssica Bassani	Aceito
	USP.pdf	14:57:23	Borges	
Outros	emenda_inclusaocentors.pdf	20/03/2018	Pedro Silvio Farsky	Aceito
		09:50:50		

Endereço: Av. Prof. Lineu Prestes, 580, Bloco 13A, sala 112							
Bairro: Buta	antã	CEP: 0	05.508-000				
UF: SP	Município:	SAO PAULO					
Telefone: (11)3091-3622	Fax: (11)3031-8986	E-mail: cepfcf@usp.br				

Página 02 de 03

USP - FACULDADE DE CIÊNCIAS FARMACÊUTICAS DA UNIVERSIDADE DE SÃO

Continuação do Parecer: 2.708.638

Outros	Carta_Emenda.pdf	30/06/2016	Jéssica Bassani	Aceito
		16:01:00	Borges	
Projeto Detalhado /	HF CEP ultima versao.pdf	30/06/2016	Jéssica Bassani	Aceito
Brochura		16:00:32	Borges	
Investigador				
TCLE / Termos de	HF_TCLE2.pdf	30/06/2016	Jéssica Bassani	Aceito
Assentimento /		15:59:44	Borges	
Justificativa de			, i i i i i i i i i i i i i i i i i i i	
Ausência				
Outros	Troca de Pesquisador.pdf	08/12/2014		Aceito
		10:17:29		
Outros	Troca pesquisador.pdf	08/12/2014		Aceito
		10:17:29		
Outros	Carta de mudança de pesquisador.pdf	14/11/2014		Aceito
		12:20:49		
Outros	DECLARAÇÕES CEP Thiago D C	12/11/2013		Aceito
	Hirata.pdf	14:32:38		

Situação do Parecer: Aprovado Necessita Apreciação da CONEP: Não

SAO PAULO, 12 de Junho de 2018

Assinado por: Elvira Maria Guerra Shinohara (Coordenador)

Endereço: Av. Prof. Lineu Prestes, 580, Bloco 13A, sala 112							
Bairro:	Butantã	CEP:	05.508-000				
UF: SP	Município:	SAO PAULO					
Telefone	: (11)3091-3622	Fax: (11)3031-8986	E-mail:	cepfcf@usp.br			

Página 03 de 03

HOSPITAL UNIVERSITÁRIO ONOFRE LOPES-HUOL/UFRN

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: AVALIAÇÃO EXÔMICA DOS PRINCIPAIS GENES RELACIONADOS COM A HIPERCOLESTEROLEMIA FAMILIAR

Pesquisador: Vivian Nogueira Silbiger

Área Temática: Genética Humana:

(Trata-se de pesquisa envolvendo Genética Humana que não necessita de análise ética por parte da CONEP;);

Versão: 1 CAAE: 24618713.0.2001.5292 Instituição Proponente: Departamento de Análises Clínicas e Toxicológicas Patrocinador Principal: Financiamento Próprio

DADOS DO PARECER

Número do Parecer: 1.144.318 Data da Relatoria: 26/06/2015

Apresentação do Projeto:

Trata-se de um projeto de Doutorado com o titulo AVALIAÇÃO EXÔMICA DOS PRINCIPAIS GENES RELACIONADOS COM A HIPERCOLESTEROLEMIA FAMILIAR,onde será realizada a coleta de sangue, extração de DNA genômico e ultrasequenciamento por MiSeq (illumina)dos genes relacionados à dislipidemias

Objetivo da Pesquisa:

Identificar as causas genéticas das dislipidemias primárias dos pacientes diagnosticados fenotipicamente no Instituto Dante Pazzanese de Cardiologia.

Avaliação dos Riscos e Benefícios:

Os riscos físicos referentes à coleta de amostra de sangue para o estudo são: hematoma, flebite, breve dor. Algumas pessoas têm vertigens quando coletam sangue, mas os sintomas desaparecem quando a pessoa se deita. As informações obtidas deste estudo serão importantes para melhorar o diagnóstico, prognóstico e a prevenção dos eventos cardiovasculares em pacientes com dislipidemias primárias.

Comentários e Considerações sobre a Pesquisa:

O projeto preenche os requisitos fundamentais da Resolução CNS 466 de 12 de Dezembro de

Endereço: Avenida Nilo Peçanha, 620 - 3º subsolo						
Bairro: Petróp	olis		CEP:	59.012-300		
UF: RN	Município:	NATAL				
Telefone: (84))3342-5003	Fax:	(84)3202-3941	E-mail:	cep_huol@yahoo.com.br	

Página 01 de 02

HOSPITAL UNIVERSITÁRIO ONOFRE LOPES-HUOL/UFRN

Continuação do Parecer: 1.144.318

2012, sobre as Diretrizes e Normas Regulamentadoras de Pesquisa Envolvendo Seres Humanos, do Conselho Nacional de Saúde / Agência Nacional de Vigilância Sanitária.

Considerações sobre os Termos de apresentação obrigatória:

Apresentou toda documentação exigida

Recomendações:

Conclusões ou Pendências e Lista de Inadequações:

O trabalho por ser Multicêntrico já foi aprovado pelo CEP DO INSTITUTO DANTE PAZZANESE DE CARDIOLOGIA

Situação do Parecer:

Aprovado

Necessita Apreciação da CONEP:

Não

Considerações Finais a critério do CEP:

Trata-se de um projeto Multicêntrico aprovado pelo CEP DO INSTITUTO DANTE PAZZANESE DE CARDIOLOGIA com parecer favorável

NATAL, 09 de Julho de 2015

Assinado por: HELIO ROBERTO HEKIS (Coordenador)

 Endereço:
 Avenida Nilo Peçanha, 620 - 3º subsolo

 Bairro:
 Petrópolis
 CEP:
 59.012-300

 UF: RN
 Município:
 NATAL

 Telefone:
 (84)3342-5003
 Fax:
 (84)3202-3941
 E-mail:
 cep_huol@yahoo.com.br

Página 02 de 02

FICHA DO ALUNO

Janus

9142 - 4316757 / 1 - Carolina Dagli Hernandez

Email:	carolina.hernandez@usp.br
Data de Nascimento:	12/05/1991
Cédula de Identidade:	RG - 38.219.402-0 - SP
Local de Nascimento:	Estado de São Paulo
Nacionalidade:	Brasileira
Graduação:	Farmacêutica-Bioquímica - Faculdade de Ciências Farmacêuticas - Universidade de São Paulo - São Paulo - Brasil - 2015
Curso:	Doutorado Direto
Programa:	Farmácia (Fisiopatologia e Toxicologia)
Área:	Fisiopatologia
Data de Matrícula:	06/12/2016
Início da Contagem de Prazo:	06/12/2016
Data Limite para o Depósito:	01/12/2021
Orientador:	Prof(a). Dr(a). Rosario Dominguez Crespo Hirata - 06/12/2016 até o presente Email: rosariohirata@usp.br
Proficiência em Línguas	
Inglês, Aprovado em 06/1	2/2016
Data de Aprovação no Exame de Qualificação:	Aprovado em 19/12/2018
Estágio no Exterior:	Karolinska Institutet, Suécia - Período de 03/01/2020 até 17/12/2020
	A A Y

Data do Depósito do Trabalho: Título do Trabalho: Data Máxima para Aprovação da Banca: Data de Aprovação da

Banca: Data Máxima para

Defesa:

Data da Defesa:

Resultado da Defesa:

Acorrências: Aluno matriculado no Regimento da Pós-Graduação USP (Resolução nº 6542 em vigor de 20/04/2013 até 28/03/2018).

Ø

THE

Última ocorrência:

Histórico de

Matrícula de Acompanhamento em 09/07/2021

-

		SP		11 324	2				
Sigla	Nome da Disciplina	Início	Término	Carga Horária	Cred.	Freq.	Conc.	Exc.	Situação
MCP 5835- 3/6	Princípios de Análise de Dados e de Bioestatística (Faculdade de Medicina - Universidade de São Paulo)	06/03/2017	19/03/2017			7	-	Ν	Matrícula cancelada
F BF 5820- 1/2	Segurança do Paciente no Uso de Medicamentos	06/03/2017	19/03/2017	60	-	-	-	Ν	Matrícula cancelada
PSP5121- 1/4	Bioestatística (Faculdade de Saúde Pública - Universidade de São Paulo)	07/03/2017	23/05/2017	90	6	95	A	Ν	Concluída
FBC5792- 4/1	Tópicos em Fisiopatologia e Toxicologia III	07/03/2017	19/06/2017	15	0	-	-	Ν	Matrícula cancelada
BMF 5881- 1/1	Medicina Personalizada: Contribuições da Farmacogenômica e da Nanotecnologia (Instituto de Ciências Biomédicas - Universidade de São Paulo)	01/06/2017	12/07/2017	90	6	100	A	Ν	Concluída
MCP 5871- 1/4	Tratamento de Dados em Estudo Científico (Faculdade de Medicina - Universidade de São Paulo)	26/06/2017	02/07/2017	30	0	-	-	Ν	Matrícula cancelada
FBC5780- 2/4	Análise de Dados Aplicados às Pesquisas Biológicas	07/08/2017	17/09/2017	90	6	95	А	Ν	Concluída
FBC5708- 7/1	Farmacogenômica Cardiovascular	07/08/2017	17/09/2017	90	0	-	-	Ν	Turma cancelada

FICHA DO ALUNO

Janus

Sigla	Nome da Disciplina	Início	Término	Carga Horária	Cred.	Freq.	Conc.	Exc.	Situação
MAG 5001- 1/3	Genética Humana (Instituto de Biociências - Universidade de São Paulo)	10/08/2017	22/11/2017	120	0	-	-	Ν	Matrícula cancelada
FBC5766-	Tópicos em Fisiopatologia e	15/08/2017	27/11/2017	15	1	85	А	Ν	Concluída
FBC5792- 5/1	Tópicos em Fisiopatologia e Toxicologia III	05/03/2018	19/06/2018	15	1	75	А	Ν	Concluída
VPS5717- 7/2	Preparação Pedagógica (Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo)	12/03/2018	25/03/2018	30	2	100	A	Ν	Concluída
FBA5728- 4/6	A primoramento Pedagógico	03/04/2018	30/04/2018	E 60	0	-	-	Ν	Matrícula cancelada
BIE5782- 4/3	Uso da Linguagem R para Análise de Dados em Ecologia (Instituto de Biociências - Universidade de São Paulo)	09/04/2018	29/04/2018	60	0° P	-	-	Ν	Matrícula cancelada
TIC5021- 1/1	Genética em Cardiologia (Instituto Dante Pazzanese de Cardiologia - Universidade de São Paulo)	16/04/2018	06/05/2018		6	100	A	Ν	Concluída
EPI5713- 2/1	Introdução ao R para a Análise de Dados (Faculdade de Saúde Pública - Universidade de São Paulo)	04/06/2018	09/07/2018	30		-	-	Ν	Pré- matrícula indeferida
FBC5757-	Tópicos em Fisiopatologia e	02/08/2018	14/11/2018	15	Th	75	А	Ν	Concluída
FLS6397- 3/1	Introdução à Programação e Ferramentas Computacionais para as Ciências Sociais (Faculdade de Filosofia, Letras e Ciências Humanas -	22/03/2019	13/06/2019	120	A	91	A	Ν	Concluída
VPS5741- 1/3	Universidade de Sao Paulo) Manipulação e Visualização de Dados no R (Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo)	01/04/2019	14/04/2019	160	0	-	-	Ν	Matrícula cancelada
EPI5713- 2/2	Introdução ao R para a Análise de Dados (Faculdade de Saúde Pública - Universidade de São Paulo)	03/06/2019	07/07/2019	30	0	-	-	Ν	Pré- matrícula indeferida
FBC5957- 1/1	Farmacogenômica e Epigenômica	09/09/2019	07/10/2019	60	4	100	А	Ν	Concluída

FICHA DO ALUNO

Fanus

	Créditos míni	Créditos obtidos	
	Para exame de qualificação	Para depósito de tese	
Disciplinas:	0	25	41
E stágio s:			
Total:	0	25	41
Créditos Atribuídos à Tese	: 167		
	Conceito a partir d	e 02/01/1997:	
A - Excelente, com direito a Transferência.	crédito; B - Bom, com direito a crédi	to; C - Regular, com direito a crédi	to; R - Reprovado; T -
Um(1) crédito equivale a 15	horas de atividade programada.	DESA	
91	2	0'	3
	INN CONTRACTOR	ALIO ALIO	

Este documento eletrônico dispensa carimbo e assinatura. Sua autenticidade pode ser comprovada fornecendo-se o código de controle na seguinte página da Universidade de São Paulo: https://uspdigital.usp.br/iddigital

Documento emitido às 18:23:31 horas do dia 22/11/2021 (hora e data de Brasília) Código de controle: HWN5-P43Z-DW6C-QKF2 Código de controle válido até: 22/12/2021