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Resumo

PRADA-MEDINA, C. A. Estudando a Artrite Idiopática Juvenil mediante uma abor-
dagem de medicina de redes. 2019. 68f. Tese (Doutorado) - Faculdade de Ciências Farmacêu-
ticas, Universidade de São Paulo, São Paulo, 2019.

A Artrite Idiopática Juvenil (AIJ) é um grupo de condições inflamatórias de etiologia descon-
hecida, cuja patofisiologia molecular subjacente ainda não está bem caracterizada. Vários estudos
tentaram preencher essa lacuna, caracterizando os perfis de expressão gênica de pacientes com
AIJ. No entanto, há uma falta de avaliação sistemática desses resultados transcriptômicos na
classificação, prescrição e monitoramento da doença. Além disso, apesar de esta doença ser mais
comum em mulheres, nenhum desses estudos tentou avaliar o impacto do sexo na fisiopatologia
da doença. Neste projeto, realizamos uma revisão sistemática abrangente e uma metanálise de
expressão gênica para revelar a fisiopatologia molecular da AIJ levando em consideração o sexo
do paciente. Reunimos e catalogamos mais de 60.000 entradas de características genômicas repor-
tadas como relacionadas à AIJ na literatura. Entre os estudos de transcriptoma, encontramos uma
disparidade dramática. Cerca de 15.000 genes foram reportados como perturbados nos leucócitos
da AIJ, sendo que menos de um por cento desses genes foram relatados em pelo menos um quarto
dos estudos revisados. Em seguida, re-analisamos mais de 700 transcriptomas pediátricos de nove
estudos usando uma abordagem analítica comum. Os resultados de expressão diferencial foram
combinados usando meta-análise de modelo de efeitos aleatórios. Implementamos esta abordagem
de meta-análise de expressão gênica diferencial no pacote MetaVolcanoR R que disponibilizamos
no Bioconductor. Usando este pacote, confirmamos várias assinaturas de expressão gênica previ-
amente associadas à AIJ e descobrimos novos genes cuja expressão está perturbada em pacientes
com AIJ. Os tamanhos dos efeitos dos genes mais reportados como perturbados coincidem com os
resultados da nossa meta-análise. Por meio de uma análise de meta-co-expressão, caracterizamos
as assinaturas dos tipos de leucócitos circulantes. Além disso, caracterizamos o dimorfismo sexual
da AIJ. Descobrimos que pacientes do sexo feminino com AIJ sistêmica super-ativam genes carac-
terísticos de mielócitos precoces e neutrófilos bastonetes. Esta assinatura está correlacionada com
o estado clínico da doença e à resposta ao tratamento por bloqueio do receptor de IL-1. Isto sugere
que a fisiopatologia da AIJs é caracterizada por uma neutrofilia sexualmente dimórfica que afeta
a progressão da doença e a resposta aos tratamentos anti-IL-1. Avaliamos ainda esta assinatura
neutrofílica em outros contextos. Descobrimos que essa assinatura apresenta uma expressão de-
pendente do sexo ao longo da vida humana, em outras doenças inflamatórias, e sua expressão
aumenta durante a gravidez.
Palavras-chave: Artrite Idiopática Juvenil, expressão gênica, medicina de redes, revisão sis-
temática, meta-análise, dimorfismo sexual, neutrofilo.
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Abstract

PRADA-MEDINA, C. A. Studying Juvenile Idiopathic Arthritis through a Network
Medicine Approach. 68p. Douctoral thesis - Faculty of Pharmaceutical Sciences, University of
São Paulo, São Paulo, 2019.

Juvenile Idiopathic Arthritis (JIA) is a group of inflammatory conditions of unknown etiology
whose underlying molecular pathophysiology is still not well characterized. Several studies have
attempted to fill this gap by characterizing the gene expression profiles of JIA patients. However,
there is a lack of systematic assessment of the reliability of these transcriptome results on the dis-
ease classification, prescription, and monitoring. In addition, despite this disease is more common
in females, none of these studies have tried to assess the impact of sex on disease pathophysi-
ology. In this project, we performed a comprehensive systematic review and a gene expression
meta-analysis to reveal the core molecular JIA pathophysiology taking into consideration the
patient sex. We gathered and cataloged more than 60,000 entries of genomic features reported
as JIA-related in the functional genomics literature, and found a dramatic disparity among the
JIA transcriptome studies. Near 15,000 genes have been reported as perturbed in JIA leukocytes.
Less than one percent of these genes were reported in at least a quarter of the reviewed studies.
We then removed the study-specific analytical bias by re-analyzing more than 700 unique pe-
diatric transcriptome profiles from nine JIA studies using a common analytical framework. The
differential expression results from different studies were combined using a random effect model
meta-analysis approach. We implemented this differential gene expression meta-analysis method-
ology in the MetaVolcanoR R package that we made available in Bioconductor. Using this package,
we confirmed several gene expression signatures previously associated with JIA and uncover new
genes whose expression was perturbed in JIA patients. The effect sizes of the topmost reported
perturbed genes coincide with our meta-analysis results. Through a meta-coexpression approach,
we characterized the cell type signatures of circulating leukocytes in the JIA affected children.
Additionally, we characterized the JIA sexual dimorphism. We found that systemic JIA female
patients over-activate a gene expression signature which comprises early myelocytes and band
neutrophil expression markers. This signature is correlated with the disease status and response
to IL-1 receptor blockade. This suggests that sJIA pathophysiology is characterized by a sexually
dimorphic neutrophilia that impacts disease progression and the response to anti-IL-1 treatments.
We further assessed this immature neutrophil and female-biased signature in other contexts. We
found that this signature presents a sex-dependent expression over human lifetime, in other in-
flammatory diseases, and its expression increases during pregnancy.
Keywords: Juvenile Idiopathic Arthritis, gene expression, systematic review, meta-analysis, sex-
ual dimorphism, neutrophil.
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Chapter 1

Juvenile Idiopathic Arthritis gene
expression systematic review and
meta-analysis: sexual dimorphism of an
immature neutrophil-related signature

1.1 Introduction

1.1.1 Juvenile idiopathic arthritis

Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatological disease world-
wide (Manners and Bower 2002). Up to four in one thousand children suffer from the disease, which
is more prevalent in females (Cattalini et al. 2019). This disease limits patient’s quality of life and
reduces their life expectancy (Anon 2015; Klatchoian et al. 2008; Foster et al. 2003; Davies et
al. 2014). After 10 years from diagnosis, less than 50% of JIA patients achieve clinical remission
under standard treatment (Shoop-Worrall et al. 2017). Therefore, it is fundamental to uncover the
immunological mechanisms of JIA to improve the ability of doctors to stratify patients, prescribe
effective medications and monitor the disease progression.

The JIA prevalence worldwide is reported as 0.07 to 4.01 per 1000 children and the annual
incidence as 0.008 to 0.226 per 1000 children (Manners and Bower 2002). In spite of the absence
of official data regarding the prevalence of JIA in Brazil, at least 464 children were diagnosed in
2010 in the city of São Paulo (Teresa Terreri et al. 2013), constituting the most common pediatric
rheumatologic condition in the city. Because of the tropical localization and the common occur-
rence of parasitic infections, Brazilian patients might have different disease courses in comparison
with the well documented cases from some countries at increasing latitudes (Braz et al. 2015; de
Sousa Studart et al. 2015; Oliveira et al. 2016). However, as in the rest of the world, the underlying
pathophysiological differences among different JIA disease courses are not well understood.

The clinical definition of JIA comprises a heterogeneous group of seven immuno-pathological
conditions commonly characterized by the chronic inflammation of joints in subjects under the
age of 16 (Prakken et al. 2011) (Figure1.1). Due to its idiopathic nature, JIA is classified mostly
based on the disease severity (Petty et al. 2004). The most common form of this condition, the

1
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oligoarticular JIA (oJIA) manifestation, is clinically characterized by the involvement of no more
than four joints during the first six months after onset of symptoms (Petty et al. 2004). If more than
four joints are involved, patients are classified as polyarticular JIA (pJIA), which is sub-classified
based on the presence of rheumatoid factor (RF). These mild manifestations, oJIA and pJIA are
mainly driven by adaptive immune mechanisms (Anon 2015; Klatchoian et al. 2008; Foster et al.
2003; Davies et al. 2014; Ombrello et al. 2017). Less prevalent and most severe, the systemic JIA
(sJIA) class exhibits fever and skin rashes alongside arthritis. It also resembles the characteristics
of an autoinflammatory syndrome (Klatchoian et al. 2008; Foster et al. 2003; Davies et al. 2014;
Ombrello et al. 2017). The presence of enthesis inflammation distinguishes the enthesitis-related
JIA (eJIA) class. In addition, the comorbidity of arthritis with psoriasis is classified as a separate
condition (Petty et al. 2004).

Figure 1.1: Juvenile Idiopathic Arthritis clinical classification. The JIA definition comprises
at least seven disease classes. This classification is mainly based on the disease severity (e.g. number of
affected joints), the co-occurrence with enthesitis and psoriasis, and the presence of the Rheumatoid Factor.
Following Petty et al., (2004) definitions, we proposed an update of the Experimental Factor Ontology on the
JIA classification (https:// github.com/EBISPOT/ efo/ issues/ 362). This was permanently incorporated
and can be consulted through http://www.ebi.ac.uk/ efo/EFO_0002609 .

1.1.2 JIA pathophysiology and treatment

The JIA pathophysiology is mainly characterized by the inflammation of the synovial mem-
brane (Prakken et al. 2011). The infiltration of reactive leukocytes and the increase of pro-
inflammatory cytokines in the synovial fluid have been associated with the synovium inflammation
(Hahn and Kim 2010). Reactive polymorphonuclear neutrophils are the most common infiltrated
leukocytes in the inflamed joints of all JIA classes. However, the lymphocyte infiltration is different

https://github.com/EBISPOT/efo/issues/362
http://www.ebi.ac.uk/efo/EFO_0002609
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among the mild manifestations, oJIA and pJIA, and the systemic class. In contrast to sJIA, oJIA
and pJIA patients display an infiltration of activated T and B cells and an unbalanced ratio of Th1
and Th2 cells (Hahn and Kim 2010). On the other hand, sJIA patients experience leukocytosis,
neutrophilia, and monocytosis observed in their peripheral blood (Cepika et al. 2017). This sJIA
monocytosis can lead to a Macrophague Activation Syndrome which can be fathal. In addition,
oJIA and pJIA distinguish from sJIA in their main circulating and synovium-infiltrated pro-
inflammatory cytokines (Prakken et al. 2011; Rosenkranz et al. 2010). Although, all JIA classes
present an increased concentration of TNFa and IL-6 in synovial fluid and plasma, sJIA patients
are less responsive to anti-TNFa treatment (Prakken et al. 2011). Less notorious, IL-1 has also
been observed increased in JIA, however, in sJIA patients is possible to observed a clear IL-1-
induced gene expression signature (Allantaz et al. 2007). All together these JIA pathophysiology
knowledge led to a improvement in the classical immuno-supressive treatment practices. Several
targeted biologics against TNFa, IL-6, IL-1, and other targets are now available. However, it is
still necessary effective strategies to stratify patients according to their potential response to the
blockade of these targets. For this is also crucial to gain more mechanistic detail on how these
drugs operate. For instance, although, anti-IL-1 drugs have been designed to block the IL-1 bind-
ing to its receptor by inhibiting either the IL-1 cytokine or its receptor, it is not fully understood
how these approaches mechanistically differ.

1.1.3 Peripheral leukocyte gene expression of JIA patients

Over the last two decades, several groups have described the leukocyte gene regulatory pro-
grams of several independent JIA cohorts around the world. These efforts have revealed several
aspects of the underlying immuno-molecular JIA pathophysiology. Fundamentally, the gene ex-
pression profile of circulating leukocytes in JIA patients shows significant perturbation compared
to healthy children (Jiang et al. 2016; Jarvis et al. 2009; Lamot et al. 2014; Fall et al. 2007;
Knowlton et al. 2009; Griffin et al. 2009; Jiang et al. 2016; Lamot et al. 2014; Gaur et al. 2017). In
accordance with the clinical characterization, the gene expression profiles of circulating leukocytes
in JIA patients vary among the main JIA classes – oJIA, eJIA, pJIA and sJIA (Barnes et al. 2009;
Ishikawa et al. 2009; Hinze et al. 2010). Additionally, the global gene expression of JIA leukocytes
changes concomitantly with the clinical status progression (Knowlton et al. 2009; Hinze et al.
2010; Gorelik et al. 2013; Jiang et al. 2013; Shenoi et al. 2015; Jiang et al. 2015; Cepika et al.
2017; Ogilvie et al. 2007; Hunter et al. 2010), and in response to treatment (Moncrieffe et al. 2010;
Moncrieffe et al. 2017; Quartier et al. 2011; Jiang et al. 2014; Cui et al. 2016; Omoyinmi et al. 2016;
Brachat et al. 2017; Jiang et al. 2013). In addition, peripheral blood mononuclear cells (PBMC)
gene expression profiles can be used to distinguish if the age at onset of the oJIA and pJIA symp-
toms occurred before or after the age of six (Barnes et al. 2010). Furthermore, it has been observed
that the expression of natural killer (NK) cells (Gorelik et al. 2013; Barnes et al. 2009; Put et
al. 2017; Fall et al. 2007) and mitochondrial-related genes (Omoyinmi et al. 2016; Ishikawa et al.
2009) is lower in the peripheral blood of sJIA patients compared to healthy individuals. Other
studies have shown that monocyte-, erythrocyte-, and neutrophil-related genes are overactivated
in peripheral blood transcriptomes of JIA patients. In particular, monocyte activation signatures
in PBMC transcriptome profiles of sJIA (Macaubas et al. 2012; Gorelik et al. 2013) and eJIA
patients (Gaur et al. 2017) have been observed. Immature erythroid- and platelet-related genes
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are also over-activated in sJIA (Hinze et al. 2010; Gorelik et al. 2013; Allantaz et al. 2007; Fall et
al. 2007; Barnes et al. 2009; Quartier et al. 2011). Likewise, a neutrophil signature has been found
to be highly expressed in the sJIA whole blood transcriptome profiles (Allantaz et al. 2007; Fall et
al. 2007; Quartier et al. 2011). This neutrophil signature is also present in PBMC transcriptomes
of JIA patients (Ramanathan et al. 2018; Fall et al. 2007). It has been found to correlate with an
increase in circulating mature and immature neutrophil populations (Ramanathan et al. 2018; Ter
Haar et al. 2018). The activity of immature neutrophil genes has been shown to correlate with the
counts of ‘low density neutrophils’ (LDNs) in PBMC preparations (Ramanathan et al. 2018; Ter
Haar et al. 2018) and to decline when sJIA remission is achieved by interleukin-1 (IL-1) blockade
(Ramanathan et al. 2018; Ter Haar et al. 2018). Correspondingly, the transcriptome profile of
isolated mature neutrophils is dependent on whether the patient is in remission and relapse state
(Jiang et al. 2015; Jarvis et al. 2009; Jiang et al. 2015; Omoyinmi et al. 2016; Hu et al. 2016).

1.1.4 Gene expression systematic review and meta-analysis

Since the sequencing of the human genome in the early 2000s, hundreds of groups around
the world have studied how this genetic information is deferentially activated in many disease
contexts. This has produced enormous amounts of functional genomics data (Banchereau et al.
2017). JIA has not been an exception. As shown in the previous section, during the last cou-
ple of decades, several JIA cohorts have been studied through functional genomics approaches.
This data availability offers a great opportunity to characterize the common immune molecu-
lar features of children who have developed arthritis across several cohorts. However, this is a
challenging quest. It requires to be systematic, reproducible, and the results easily accessible.
International initiatives like PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) (Moher et al. 2009) have appeared to set a scientifically rigorous workflow to
tackle the knowledge-synthesis problem. In the functional genomics context, a systematic review
is the qualitative synthesis of the reported genes that has been associated with a certain bio-
logical condition in a well defined literature compendium. It means to catalog all the instances
where genes were mentioned within a literature corpus. Meta-analysis, on the other hand, is the
quantitative synthesis of the gene expression levels. Given that is a common practice to make
transcriptome raw-data publicly available, this allows to uniformly pre-process and re-analyze the
transcriptome data of independent studies before meta-analyze the gene’s differential expression.
After the study identification phase, gene expression meta-analysis implies at least three steps:
data curation, data analysis, and results accessibility. Data curation refers to the uniform de-
scription of the available clinical and technical information associated to the raw-data. Usually,
ontologies like the Experimental Factor Ontology (https://www.ebi.ac.uk/efo/) are followed for
this purpose. This allows to combine results from independent studies by using the same restricted
vocabulary to characterize the clinical and technical variables. For instance, the GEO database
(Barrett et al. 2013) (http://www.ncbi.nlm.nih.gov/geo/) is one of the main global repositories
of gene expression data. It is organized in series accessions (GSE<number>) that are linked to
specific publications. Each GEO series comprises a set of samples (GSM<number>). Each sample
may have clinical or technical associated information called hereafter as metadata. Each study
might use specific jargon to name the metadata variables, that is why data curation is a crit-
ical primary step to allow the later meta-analysis. The data analysis phase implies the initial

https://www.ebi.ac.uk/efo/
http://www.ncbi.nlm.nih.gov/geo/
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data pre-processing, normalization, and differential expression analysis for each study indepen-
dently. Differential expression values (log2 (fold-change) or differential expression effect-sizes) are
then combined using statistical meta-analysis approaches (see Chapter 2). Finally, results must
be made accessible for a broad community. It implies results are easily searchable and visualized
in a way that allows an easy interpretation. In this work, we made an enormous effort to follow
the above mentioned steps to couple a comprehensive JIA gene expression systematic review and
meta-analysis.

1.1.5 Network medicine

Since interactions among cellular components (e.g. genes, RNAs, proteins, metabolites, etc.)
are responsible for cell physiology, the identification of the specific molecular interactions affected
by disease can provide mechanistical insight on its pathophysioly. All these known molecular inter-
actions in a cell can be represented as a network called interactome (Menche et al. 2015). Network
medicine is an emergent approach that aims to identify highly interconnected sub-interactome
regions associated with diseases (Cho et al. 2012; Vidal et al. 2011; Barabasi et al. 2011; Menche
et al. 2015). Proteins which are closer in the human interactome tend to have common biological
functions, such as participating in the same metabolic or signaling pathways, and tend to be in-
volved in similar diseases (Menche et al. 2015). Hence, the identification of specific interactome
modules associated with JIA can enhance the understanding regarding its molecular basis.

1.1.6 Justification

Although the aforementioned JIA transcriptome studies identified several pathways and cell
signatures as perturbed in JIA sufferers, there is not systematic assessment on the the repro-
ducibility of these previously identified signatures across several JIA cohorts. In addition, even
though the JIA prevalence is sexually dimorphic, the influence of the patient’s sex in the disease
progression has not been systematically assessed. We have addressed these limitations by perform-
ing a comprehensive functional genomics systematic review and characterizing the JIA immune
molecular features of several cohorts of children who have developed arthritis under a consistent
framework. Additionally, we characterized the JIA gene expression sexual dimorphism for the first
time.

1.2 Objectives

1.2.1 General

To synthesize all publicly available JIA gene expression data to unravel the transcriptional
programs underlying the JIA pathophysiology.

1.2.2 Specific objectives

• To systematically catalog the genomic features that have been associated with the JIA
pathophysiology.

• To comprehensively meta-analyze the peripheral leukocytes gene expression profiles of JIA.
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• To characterize gene expression differences between female and male JIA patients.

1.3 Results

1.3.1 Systematic review of JIA-functional genomics literature

We looked for studies that analyzed functional genomic data obtained from JIA patients’
primary samples following the PRISMA guidelines (Moher et al. 2009) (Figure 1.2A). Initially, we
identified nearly 6,200 JIA-related PubMed records available in May 2018. From those, we gathered
427 studies specifically related to either JIA genome association, transcriptome, or epigenome
studies by adding functional genomics-related query words (Figure1.2B). During the eligibility
phase, we screened their abstracts and discarded 340 studies. We read the resultant 87 studies
fully and from them, we kept 67 studies which we considered for the JIA systematic review
(Figure1.2B). Some of these 67 selected studies were integrative analyses. A total of 52 studies
included JIA transcriptomes, 17 with JIA genome association and 5 with epigenome analyses
(Figure1.2C).

Available raw data were almost exclusively found in the JIA transcriptome studies. We found
29 GEO series accessions published from 2004 to 2018 ranging from 6 to over 200 samples from
either healthy pediatric individuals or JIA patients (Figure1.3A). Microarray hybridization was the
most common technology. Only 5 recent JIA GEO series used sequencing platforms (Figure1.3A).

Re-using samples from primary GEO series was a common practice among the available JIA
transcriptome datasets. In some cases, the reuse of samples was explicitly done by gathering
previous samples accessions (Figure1.3B). In contrast, other authors created GEO series with pre-
viously published samples but with new sample accessions (Figure1.3C). Out of the 24 microarray
JIA accessions, nine contained more than three original samples of both JIA patients and healthy
pediatric individuals (Figure1.2D).

Several clinical designs have been used to assess the JIA leukocyte transcriptomes. Most of
the older works set a transversal study design while clinical trials are more common in recent
studies. Most of the transversal design works allowed the inclusion of patients that were under
the standard of care treatment at the date of the sample collection. We found three different JIA
diagnostic criteria among the selected nine studies; corresponding to the diagnostic revisions of
1986, 1997, and 2001. Also, in most cases, the authors utilized the disease activity criteria from
the year 2004.

Based on the clinical metadata of the selected nine GEO series, such as the presence of fever
and the treatment regime, we defined 21 pairwise contrasts. Each contrast contained a uniform
group of JIA patients and healthy pediatric controls from the same GEO series (Figure1.2D).

1.3.2 Most genes have been indicated as differentially expressed in JIA pa-
tients

We gathered and cataloged 68,348 entries of genomic features reported as JIA-related in the
functional genomic literature. Each entry corresponds to an instance where we found a genomic
feature within a paper. These 68,348 entries comprise over 16,000 unique genomic features. We
classified these features into five categories: genes containing variants associated with JIA, genes
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Figure 1.2: Study identification of the JIA-functional genomic systematic review and dataset
definition of the JIA transcriptome meta-analysis. A. PRISMA flow diagram of the JIA-functional
genomic systematic review. B. PubMed records distribution from 2000 to May 2018 on JIA and JIA-
functional genomics. C. Classification of the selected studies for the systematic review. D. Pair-wise (JIA
vs healthy control) contrasts defined from the nine selected JIA studies for the meta-analysis. Their available
metadata is also presented.

whose expression was perturbed in JIA patients, genes within JIA-associated epigenome marks,
genes reported as part of JIA-related gene networks, and the cited genes within the main written
part of the 67 included studies (Figure1.4A). The number of gene expression markers reported
drastically outperform other classes of JIA genomic features (Figure1.4A). More than 15,000 genes
have been indicated as perturbed at least once in the transcriptome JIA literature (Figure1.4A).
These gene expression markers mostly intersected with genes reported within JIA-associated epi-
genetic marks and with the in-paper cited genes. 21 genes have been associated with JIA in all
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Figure 1.3: Transcriptome raw-data availability of the selected studies for the JIA systematic
review. A. The number of available samples and employed technology of the JIA-related gene expression
GEO accessions. The number of JIA and pediatric healthy samples are shown in green. Other non-relevant
samples are shown in grey. B and C. Cross-study pattern of sample reusing. Arrow thickness is propor-
tional to the number of samples shared between the GEO accessions. B. Newer GEO accessions comprise
previously published samples. Sample GEO accessions were identical among GEO series. C. Some stud-
ies comprise samples whose raw data files are identical (md5sum hashes) to samples with different GEO
accessions and previously published.

of the five contexts studied. To explore their functional relationship, we reconstructed a JIA-
associated sub-interactome with the known physical interactions among the proteins coded by
these 21 JIA core genes (Figure1.4B). Most of these JIA core proteins physically interact with
each other and are constituents in some of the most well-known pathways involved in the JIA
pathophysiology. For instance, the JIA core genes include the interferon-induced genes – IRF1,
IRF8, IRF2, and IRF4 ; and genes that are involved in the IL6 and tumor necrosis factor (TNF)
pathways, as well as macrophage activation genes like MIF and CD74. The structure of the phys-
ical interaction network among the JIA core genes reveals the central role of STAT1 and STAT2
as signal transducers of the proinflammatory signals in the JIA context (Figure1.4B).
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Figure 1.4: Human sub-interactome core network associated with the JIA pathophysiology.
Previously identified JIA-related genes by functional genomics approaches are presented. Genes were classi-
fied according to the genomic approach and if they were or not cited in the main written part of the studies.
A. The number of genes that we found for each class. In addition, the intersection distribution among
the gene classes is presented. B. Physical interaction network among the gene products of the 21 genes
reported being associated with the JIA pathophysiology across all the functional genomics approaches. The
closest interactome neighbors of these core JIA genes are also included. Node size represents interactome
centrality and color stands for the intersection category.

The majority of the identified near 15k JIA differentially expressed genes were reported in a
few out of the total studies (Figure 1.5A). Out of the 27 transcriptome studies, only 85 genes were
reported as perturbed genes in at least seven studies (Figure 1.5B). This core of JIA gene expres-
sion markers enriches for neutrophil functions, anti-rheumatic drug signatures, and interestingly,
progesterone and retinoic acid signatures (Figure 1.5C).

1.3.3 JIA classes display specific gene expression signatures

We uniformly pre-processed and normalized the selected nine JIA transcriptome datasets, and
then performed a differential expression analysis for each of the 21 pairwise contrasts. The number
of identified perturbed genes per dataset varied (Figure 1.6A). A simple vote counting approach
revealed that 55 genes were differentially expressed in at least 15 contrasts (Figure 1.6B). From
those, 26 and 29 genes were consistently up- and down-regulated, respectively (Figure 1.6C).

We assessed if the level of transcriptome perturbation is different among the JIA classes. For
this, we compared the number of consistently perturbed genes among the JIA classes (Figure 1.6D).
We set the same gene perturbation criteria (REM p < 0.05 and summary log2 (fold-change) > 0.5)
to fairly estimate the transcriptome perturbation as the number of consistently perturbed genes in
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Figure 1.5: JIA transcriptome systematic review. A. Reverse cumulative distribution of the reported
perturbed genes among the studies that published supplementary tables. B. The 85 genes that were identified
as perturbed in at least seven studies. Gene size stands for the number of studies where the genes were
reported. C. Functional network enrichment of the 85 literature-based most consistently perturbed genes.
Node size represents the intersected number of genes between the reference gene-set term and the 85 genes.
The thickness of the edges represents the number of intersected genes between gene-set terms.

each JIA class. Given that the number of contrasts per JIA class were different, we gathered pairs of
contrasts to summarize the gene expression log2 (fold-change) in JIA patients using random effect
model (REM) meta-analysis. For each JIA class, we obtained the mean number of consistently
perturbed genes among all combinations of pair contrasts. We found that the gene expression
global perturbation, as shown by the number of consistently perturbed genes, corresponded to
the severity of the JIA class, being the highest in sJIA and the lowest in enthesitis-related JIA
(Figure 1.6D).

Next we compared the consistently differentially expressed genes among the JIA classes (Figure
1.6E). We summarized the gene expression log2 (fold-change) of all contrasts per JIA class using
REM meta-analysis, and found few genes that were shared by two or more JIA classes. (Figure
1.6E). The major intersection was between sJIA and pJIA. By contrast, eJIA and pJIA shared 5
perturbed genes. Notably, up-regulated genes tend to be more consistently perturbed in JIA. Our
meta-analysis revealed ELOVL7 as consistently up-regulated among all JIA classes (Figure 1.6F).
ELOVL7 was not part of the most commonly reported perturbed genes in the JIA transcriptome
literature (Figure 1.5B). In addition, both the vote-counting approach and the REM meta-analysis
revealed the down-regulation of RASSF1 across all JIA classes (Figure 1.6C and 1.6F). This gene,
again, was not part of the most reported expression markers in the JIA transcriptome literature
(Figure 1.5B). Moreover, the gene S100A12 is one of the most commonly reported JIA expression
markers (Figure 1.5B) and it was also identified by the vote-counting method (Figure 1.6C);
however, S100A12 up-regulation is more pronounced in sJIA compared to pJIA and eJIA classes
(Figure 1.6F).
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Figure 1.6: JIA gene expression meta-analysis results. A. The number of differentially expressed
genes per dataset (p < 0.05). B. Reverse cumulative distribution of differentially expressed genes across 21
JIA contrasts. C. The 55 genes identified as differentially expressed in at least 15 contrasts. Blue genes are
consistently down-regulated, whereas red genes are consistently up-regulated. The gene size represents the
number of datasets where the gene was identified as perturbed. D. Mean number of consistently perturbed
genes of the main JIA classes. The mean number of consistently differentially expressed genes (REM p <
0.05, summary log2(fold-change) > 0.5) of the combinatorial pairs of contrasts are presented per JIA class.
The standard error of the mean is also presented. E. The intersection among the consistently perturbed
genes (REM p < 0.05, summary log2(fold-change) > 0.5) of the sJIA, pJIA and eJIA conditions. The
number of down-regulated, up-regulated, and intersected genes are presented. F. REM summary log2(fold-
change) and its confidence intervals of the ELOVL7, S100A12, RASSF1, and TIA1 genes.

1.3.4 Novel gene expression features associated with systemic JIA

We meta-analysed the 13 sJIA contrasts results and compared these with the results of our
systematic review to identify new sJIA-associated genes (Figure 1.7). From the near 9,000 genes
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Figure 1.7: sJIA gene expression systematic review and meta-analysis. A. MetaVolcano of
the sJIA gene expression. The y-axis depicts the -log10(REM p), the x-axis shows the REM summary
and their confidence intervals, and color stands for the log2(fold-change) sign consistency, which is the
number of datasets where the gene presented positive log2(fold-change) minus the times it had negative.
The number of consistently perturbed genes is presented (REM p < 0.05 and an absolute sign consistency
score higher than six). B. The intersection between the consistently perturbed genes (meta-analysis) and the
previously reported genes in sJIA (systematic review). C. Reverse cumulative distribution of the number of
studies where genes have been reported. Top 55 genes most reported in the sJIA transcriptome literature. D.
Correlation among the REM summary log2(fold-change) and the mean reported log2(fold-change) of the top
55 genes most reported in the sJIA transcriptome literature. E. Correlation between manners of reporting
genes in the sJIA transcriptome literature. The number of times where a gene was cited in the main written
part of the paper is compared with the number of times it was reported in a supplementary table. F. The 978
consistently perturbed genes in our meta-analysis organized by the sign consistency score and the number
of times mentioned in the literature. G. Top 20 central genes in the sub-interactome containing the 209
genes whose expression has not been associated with sJIA.
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Figure 1.8: sJIA co-expression meta-analysis. A. Reverse cumulative distribution of co-expression
module co-membership. Pairs of genes which were part of the same co-expression module in at least 50% of
the datasets are included in the consensus meta-co-expression network. Node and edge intersections between
the healthy and sJIA consensus networks are presented. B. Both healthy and sJIA consensus network
modularity. C. Modularity comparison between the healthy and sJIA consensus networks by intersecting
the gene modules and assessing their intersecting significance through the Fisher exact test. D. Differential
meta-coexpression. The healthy and sJIA consensus networks are visualized together. Dark nodes and edges
represent intersected elements among both consensus networks; and, the red and blue elements stand for
the exclusively sJIA and healthy co-expressed genes respectively. E. Expression of the meta-co-expressed
genes across the 33 cell clusters of the scRNA-seq human hematopoietic dataset (GSE92274) (Lai et al.
2018). Z-score normalized expression of the meta-co-expressed genes is presented. Red and blue indicate
expression levels higher and lower than the mean expression per gene respectively.

that have been reported in the literature as perturbed in sJIA, we found 769 consistently perturbed
in our meta-analysis (Figure 1.7A-B). Most of these 9,000 genes were mentioned only in one
sJIA transcriptome study (Figure 1.7C). A total of 55 genes have been reported in at least five
sJIA studies (Figure 1.7C). The mean reported effect size of these consistently reported sJIA
genes positively correlates with the REM summary log2 (fold-change) of our meta-analysis (Figure
1.7D). Most of these 55 genes are cited more frequently in the supplementary materials rather than
discussed on the main written part of the sJIA transcriptome studies (Figure 1.7E). For instance,
the MMP9 gene was mentioned in the paper main written part half of the times it was identified
as perturbed according to the supplementary tables (Figure 1.7E). MMP9, however, is one of the
top most up-regulated genes in sJIA (Figure 1.7A, F). By contrast, the TIA1 gene, exclusively
and very down-regulated in sJIA patients (Figure 1.6F, 1.7A), was reported as perturbed in only
one study (Figure 1.7F). However, in our meta-analysis, it was of the most down-regulated genes
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Figure 1.9: Functional enrichment and activity of the consistently co-expressed gene mod-
ules. A. Module M14 gene composition and correlation structure. B. Module M14-functional enrichment.
C. Module M36-functional enrichment. D. Module M36 gene composition and correlation structure. E.
Functional enrichment and differential expression of the consistently co-expressed gene modules. The sJIA
log2(fold-change) of the 13 sJIA datasets was used as ranking criteria for gene set enrichment analysis
(GSEA) method (Subramanian et al. 2005) to quantify the module expression activity. The normalized
enriched score (NES) for each module in the 13 sJIA datasets is presented. Functional enrichment was
performed using the Enrichr method (Kuleshov et al. 2016). F-H. NES of the modules M14, M29, and M36
in the GSE80060, GSE17590, and GSE8650 datasets.
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(Figure 1.7A). In addition, we identified 209 genes consistently perturbed genes that were not
previously reported as differentially expressed in sJIA patients (Figure 1.7B, F). We reconstructed
a sub-interactome network among these newly sJIA expression features to prioritize them based
on its centrality. We considered the known physical interactions among the proteins encoded by
these 209 genes. PLCG1 (consistently down-regulated) and CDK1 (consistently up-regulated)
were the most central genes (Figure 1.7G).

1.3.5 Meta-co-expressed module activity characterizes the leukocyte popula-
tion composition of sJIA patient clinical statuses

The identification of gene sets whose expression is highly correlated allows the biological char-
acterization of genome-wide gene expression profiles (Russo et al. 2018). These co-expressed gene
modules have been shown to represent functionally related groups of genes. Therefore, to inves-
tigate the JIA transcriptome profiles in terms of the altered biological functions, we uncovered
modules of genes consistently co-expressed in the circulatory leukocytes of pediatric healthy indi-
viduals and sJIA patients. This was achieved by integrating co-expression results of independent
datasets using a co-membership network approach (see methods). The co-expression consensus
network contained nodes and edges representing genes and the number of datasets where a pair of
genes are members of the same co-expression module respectively. This co-membership weighted
network mostly comprises gene pairs which were members of the same co-expression module only
in one dataset (Figure 1.8A). Gene pairs were found to be more consistently correlated with
leukocytes from healthy pediatric individuals than sJIA patients (Figure 1.8A). Despite most of
the sJIA consistently co-expressed genes overlap with the co-expressed genes in healthy individu-
als, the correlation structure of the sJIA and healthy networks is different (Figure 1.8A). These
consensus networks of both healthy and sJIA were highly modular (Figure 1.8B). We defined 13
and nine consistently co-expressed modules in healthy and sJIA individuals, respectively (Fig-
ure 1.8B). Five of the healthy consensus modules were absent in sJIA, and one module were
exclusively found in sJIA (Figure 1.8C). To better understand the gene expression regulatory
rewiring in sJIA leukocytes, we integrated both healthy and sJIA consensus networks and found
13 co-expressed modules (Figure 1.8D). Modules M14, M21, M36, and M42 presented the most
extensive re-wiring (Figure 1.8D). These pediatric co-expression modules were associated with
known molecular functions and cell types (Figure 1.9, A-F).

To better understand the biological meaning of the co-expressed modules, we investigated its
expression in blood leukocytes at the single-cell level. Given that sJIA patients presents CD34+
leukocytosis, we gathered and clustered a publicly available scRNA-seq dataset of 50,000 CD34+
blood cells from adult healthy donors (GEO dataset GSE92274) (Lai et al. 2018). We defined 31
cell clusters. We found cell-cluster specific expression patterns for the consistently co-expressed
gene modules (Figure 1.8E). For instance, the M36 module contains genes whose expression is
characteristic of immature neutrophil subpopulations (Figure 1.8E and Figure 1.9). Likewise,
modules M21, M22, M29, M35, M40, and M42 comprise gene expression markers for specific
leukocyte subpopulations (Figure 1.8E). Notably, the small module M50, which corresponds to
the HC49 module that disappears in sJIA and that did not enrich to any known molecular functions
(Figure 1.9), comprises the genes HIST1H2BD, HIST1H4H, HIST1H2BG, and HIST1H2AE which
are cell markers of a specific subpopulation of B cells (Figure 1.8E). Therefore, this co-expression
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consensus-co-membership network approach constitutes an unsupervised approach to reveal the
cell type composition of tissue transcriptomes. The M21 module, marker of B cells, and the M27,
which comprises NK cell markers, are consistently down-regulated in sJIA patients. In addition,
M29, M14, M35, M22, and M36 were consistently up-regulated (Figure 1.9F). These modules
comprise markers for megakaryocytes, immature erythrocytes, monocytes, B-lymphocytes, and
immature neutrophils (Figure 1.9F). From these, M14, M29, and M36 expression levels correlate
with the disease status (Figure 1.9 F-H).

1.3.6 Expression of immature neutrophil markers in sJIA is sexually dimor-
phic

The transcriptome perturbation found in the peripheral blood of sJIA patients indicates a
sexual dimorphism on its pathophysiology (Figure 1.10). We combined the differential expres-
sion results of the five whole-blood sJIA contrasts for male and female individuals separately.
We compared the REM summary log2 (fold-change) of the genes that we identified as perturbed
in either female or male sJIA patients, and found 104 differentially expressed genes displaying a
summary log2 (fold-change) difference higher than one among sexes. (Figure 1.10, A-B). A total
of 55 genes were highly perturbed in sJIA males. For instance, the up-regulation of the genes
CAPZA1 and ZNF699 is male-specific (Figure 1.10C). Other 49 genes presented a female-biased
perturbation. For instance, the RNASE3, ELANE, and LTF genes are exclusively up-regulated
in sJIA female patients (Figure 1.10C). Given that most of these female-biased genes are part
of the consistently co-expressed M36 gene module, which enriches for neutrophil activation (Fig-
ure 1.9, C-D), we explored the expression of these genes among the different CD34+ cell types
(Figure 1.10D). Among the sJIA patients, female-biased genes were expression markers of specific
immature sub-populations of neutrophils (Figure 1.10, D-E). We wanted to know which of the
hematopoietic neutrophil stage correspond to these sJIA female-related immature neutrophils.
Neutrophils maturation is characterized by five stages ranging from metamyelocytes in the bone
marrow to polymorphonuclear neutrophils in the peripheral blood (Figure 1.11A). We followed two
strategies to determine the neutrophil stages represented in the sJIA female-biased genes. First, we
looked at the expression of these genes in a study that isolated and characterized the bulk RNA-
seq transcriptome of each of the five main neutrophil stages (Figure 1.11 B-C). We found that the
sJIA female-biased and neutrophil-related genes displayed two expression patterns along with the
neutrophil maturation. One profile is characteristic of the early immature myelocytes whereas the
second pattern is characteristic of band neutrophils (Figure 1.11 B-C). Genes from each of the
two patterns corresponded to marker genes of different hematopoietic cell clusters (Figure 1.10,
D-E, 1.11B-C, F), which confirm these genes are markers of specific immature neutrophil popu-
lations. In the second strategy, we sub-settled the CD34+ hematopoietic cell clusters annotated
as neutrophil-like cells (Figure 1.11D) and estimated their developmental order by estimating its
pseudotime. This allowed us to reconstruct the expression dynamics of the sJIA female-biased
genes along with the neutrophil maturation process (Figure 1.11 E-F). We found that these sJIA
female-biased and neutrophil-related genes cluster in two types of expression dynamics along with
the neutrophil maturation (Figure 1.11E). This corroborates our findings on the independent bulk
RNA-seq data from the isolated neutrophil stages (Figure 1.11 B-C). Altogether, these results in-
dicate that female sJIA patients present a consistent over-expression of genes whose expression is
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Figure 1.10: Sex difference in sJIA whole blood gene expression. A. Genes whose REM p < 0.01
are ranked based on the REM summary log2(fold-change) difference between female and male patients.
Genes with a REM summary sex difference higher than one are highlighted. B. Sex-biased genes displayed
based on their female and male REM summary log2(fold-change); confidence intervals are also shown.
Color gradient as in legend of A. C. REM summary log2(fold-change) and confidence intervals of selected
sex-biased genes in sJIA patients. D. Gene expression of the female-biased genes represented across the 33
cell clusters of the scRNA-seq human hematopoietic dataset (GSE92274) (Lai et al. 2018). E. tSNE plots
highlighting in blue the expression of the LTF, MMP8, AZU1, ELANE and CNRIP1 genes across near
45,000 human hematopoietic cells.

characteristic of immature neutrophils, specifically, early myelocytes and band-neutrophils.
Given that this female-biased and neutrophil-related expression signatures overlap with the

meta-co-expressed gene module, M36, which correlates with sJIA patient clinical status, we as-
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Figure 1.11: The sJIA female-biased genes represent gene markers for two immature neu-
trophil populations, early myelocytes and band-neutrophils. A. Scheme of the five main stages of
neutrophil maturation. B and C. Cumulative expression of the sJIA female-biased and neutrophil-related
genes for each of the five main stages of neutrophil maturation. Expression values were obtained from
Grassi et al., (2018) supplementary tables. D and E. tSNE plots of the neutrophil maturation stages cell
clusters from the scRNA-seq human hematopoietic dataset (GSE92274) (Lai et al. 2018). D. Cells are
colored by the cluster they come from. E. Cells are colored based on their estimated pseudotime. F and G.
Expression of the sJIA female-biased genes along with the estimated pseudotime. F. Counts of the ELANE,
LTF, and ADM genes along with the pseudotime. Each dot represents a single cell. G. Z-score normalized
expression of the sJIA female-biased and neutrophil-related genes along with the pseudotime.

sessed the sexual dimorphism of this signature in response to IL-1 receptor blockade. We found
that the diminution of this neutrophil signature is sex-dependent (Figure 1.11G, 1.12B). Male
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Figure 1.12: Band neutrophil gene expression signature. A. Top 150 most expressed genes in
the band neutrophil cell cluster of the dataset GSE92274 (Lai et al. 2018). Gene size is proportional to
the mean raw counts across the cluster cells. B. Band neutrophil signature (LTF, PGLYRP1, HP, BPI,
TCN1, TFF3, CEACAM8, CRISP3, CAMP, MMP8, CLC, MS4A3) activation in blood transcriptomes of
sJIA patients. Mean expression of the band neutrophil genes is presented per patient. Patients are grouped
by their sex and clinical status. C. Band neutrophil signature activity in rheumatoid arhtritis patients
grouped by their ACR score (275 samples). The ACR score describes the relative improvement of the
rheumatoid arthritis symptoms (e.g. ACR0 means no improvement). D. Mean gene expression of the band
neutrophil signature along human life span. Over 1,000 samples were considered from 15 to 94 years old
individuals. Mean expression values per samples were used to fit a linear regression and its 95% confidence
interval. E-F. Band neutrophil gene expression signature in the context of asthma patients (498 samples)
and human pregnancy (512 samples). The Pairwise Wilcoxon Rank Sum Tests method implemented in the
pairwise.wilcox.test R function was utilized to assess the expression differences among groups in B, C, E,
and F. * p<0.1, ** p<0.05, *** p<0.001.

patients drastically diminish this signature after one month of Anakinra treatment. In contrast,
even after 6 months of Anakinra, females patients keep on over-expressing these genes (Figure
1.11G, 1.12B).

We investigated the expression of the band neutrophil signature in other biological conditions.
This signature displays a sexually dimorphic up-regulation in RA patients (GSE93272) (Tasaki et
al. 2018) (Figure 1.12C). Contrary to sJIA affected individuals, in RA patients the up-regulation
is higher in males compared to females. To account for the age, we examined the activity of this
band neutrophil signature in over 1,000 blood transcriptome samples from healthy individuals
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ranging between 15 and 94 years (Array Express dataset E-TABM-305) (Kent et al. 2012). Males
manifest a higher expression activity during adulthood compared to women (Figure 1.12D). Dur-
ing childhood and late old age the difference is less evident. In these phases, females tend to have
higher expression activity compared to men (Figure 1.12D). This baseline difference may account
for the contrasting activation of the band neutrophil signature in sJIA and RA. Given that a
similar signature was previously observed up-regulated in blood of adult asthma patients, we in-
vestigated its sex differences (GEO dataset GSE69683) (Bigler et al. 2017) (Figure 1.12E). The
asthma severity was positively correlated with the expression of the band neutrophil signature.
Males diagnosed with severe asthma present higher expression levels of this signature compared to
affected women (Figure 1.12E). These sexual differences suggests that the circulating band neu-
trophil counts might be influenced by the sex hormonal context. We investigated the whole blood
expression activity of the band neutrophil signature during pregnancy (GEO dataset GSE108497)
(Hong et al. 2019) (Figure 1.12F). It increases concomitantly with the gestation weeks in the
blood of healthy and systemic lupus erythematosus affected women (Figure 1.12F).

1.3.7 JIAexpDB: a JIA gene expression database

The meta-analysis results of this study have been made available in the online JIA expres-
sion database (JIAexpDB) (https://jiaexpdb.sysbio.tools). For all analyzed genes, the summary
log2 (fold-change) and its 95% confidence interval is presented for the main JIA classes and across
studies. In addition, for the sJIA studies, results are also presented for both sexes independently.

1.4 Discussion

In this study, we coupled a systematic review and a meta-analysis to assess the previously
reported gene expression signatures and identify new consistently perturbed genes in JIA patients.
We cataloged more than 60,000 mentions of more than 16,000 genes throughout the genomic JIA
pathophysiology literature. From them, nearly 15,000 were reported as differentially expressed
genes in the peripheral leukocytes of JIA patients. This large number of perturbed genes found
across studies is indicative of the complex heterogeneity of JIA pathophysiology as well as the
diversity of approaches that the scientific community use to determine if a gene expression profile
is associated with the JIA pathophysiology. Indeed, most of the literature reported genes have
been associated with JIA in only one study. We removed this effect of the study-specific analytical
approaches by meta-analyzing the available gene expression profiles of several JIA patient cohorts.
The meta-analysis results as well as the systematic review results were made available at https:
//jiaexpdb.sysbio.tools. This constitutes a valuable resource for future studies which will be able
to systematically compare their results in the light of previous studies. Moreover, our meta-analysis
results are the first line of assessment for new potential JIA gene expression biomarkers.

There have been few attempts to find out JIA consensus gene expression patterns among the
available literature (Tuller et al. 2013; Tu et al. 2017; Stevens et al. 2014; Ramanathan et al.
2018; Ter Haar et al. 2018). However, these studies lack of systematicity to gather the available
JIA-functional genomics studies as well as a proper meta-analysis approach. We tackled these
limitations by following the PRISMA guidelines (Moher et al. 2009) to extensively explore the JIA-
functional genomics literature, meta-analyze the available transcriptome data under a common

https://jiaexpdb.sysbio.tools
https://jiaexpdb.sysbio.tools
https://jiaexpdb.sysbio.tools
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analytical framework, and made the results accessible through the JIAexpDB online database.
We revealed that the peripheral leukocyte gene expression perturbation of the sJIA, pJIA,

and eJIA clinical classes are notably different. This supports the correspondence among the JIA
clinical features and the leukocyte molecular pathophysiology. We found that the level of tran-
scriptome perturbation correlates with the clinical severity of the JIA classes. Additionally, it
corroborates that the JIA peripheral leukocyte transcriptomes carry on clinical information. The
sJIA presented more perturbed genes than the pJIA and eJIA as previously reported (Barnes et al.
2009). This results support the hypothesis that sJIA, pJIA and eJIA represent distinct conditions
with different underlying molecular pathophysiology.

We demonstrated here that the consistently meta-co-expressed gene modules of tissue tran-
scriptomes reveal the tissue cellular composition. This approach allowed us to estimate the com-
position of the peripheral leukocytes in sJIA patients. Gene expression signatures of immature
neutrophils and erythrocytes, platelets, monocytes, and a sub-population of B-cell are consistently
over-expressed in sJIA patients. Interestingly, the immature neutrophil and early erythroid cells
as well as the platelet signatures are correlated with the clinical status of the patients and their
response to IL-1 blockade. The monocyte, platelet, and immature erythrocyte signatures have
been previously observed as over-expressed in sJIA patients (Macaubas et al. 2012; Hinze et al.
2010; Gorelik et al. 2013; Allantaz et al. 2007; Fall et al. 2007; Barnes et al. 2009; Quartier et al.
2011). However, the B-cell signature has not. Given that this meta-co-expressed modules comprise
gene markers for specific leukocyte subpopulations and that sJIA patients experience leukocytosis,
neutrophilia, and monocytosis in active untreated sJIA patients (Cepika et al. 2017), we argue that
this expression activity represents the cellular composition dynamics of sJIA patients. In addition,
we found that an NK cell and another B-cell signature are consistently down-regulated in sJIA
patients. This NK-cell dysfunction has been previously observed (Gorelik et al. 2013; Barnes et al.
2009; Put et al. 2017; Fall et al. 2007). Contrary to previous studies, our results did not confirm
the down-regulation of a mitochondria signature in sJIA patients. Our meta-co-expression results
have uncovered two B-cell gene expression signatures with opposite expression activity. The mod-
ule M21 that enriched for naive B cell-related genes was observed down-regulated. In contrast, the
module M27 that enriched for B-lymphoblasts-related genes, was up-regulated in sJIA patients.
This indicates that sJIA patients keep on activating B cells regardless of the time after the disease
onset. A previous study identified a gene expression signature, which distinguish the age at onset
of sJIA patients, whose genes intersect with the B-cell related meta-co-expressed module M21.
The study reported that this B cell-related signature is up-regulated in patients with disease onset
before 6 years (Barnes et al. 2010). We hypothesized that previously observed differences on the
JIA pathophysiology based on the age at onset are mainly driven by B-cells. This difference might
be related to the early hormonal event known as adrenarche.

We demonstrated in this study that sJIA transcriptome perturbation displays sexual dimor-
phism. A circulating immature neutrophil gene expression signature is more positively activated in
female than in male patients. This sJIA female-biased signature comprises 49 genes. These genes
enriched for neutrophil-related genes. Given that different populations of neutrophils have been
observed in higher frequencies in sJIA patients, we wanted to know if this female-biased signature
represents specific subsets of neutrophils. We investigated the expression of these female-biased
genes in two hematopoietic gene expression datasets; one of near 50,000 CD34+ single cells and



22 JUVENILE IDIOPATHIC ARTHRITIS GENE EXPRESSION SYSTEMATIC REVIEW AND
META-ANALYSIS: SEXUAL DIMORPHISM OF AN IMMATURE NEUTROPHIL-RELATED SIGNATURE

another containing the transcription profiles of the main five neutrophil maturation stages. The
female-biased genes presented similar expression patterns in these two independent datasets. This
signature comprises gene expression markers for the early neutrophil myelocytes and the band
neutrophils. Interestingly, as our systematic review reveals, these genes have been previously
observed up-regulated in sJIA patients; however, previous studies did not assess the sex con-
tribution to this perturbation. For instance, Ramanatham et al. (2018) found neutrophil-related
genes (MMP8, MMP9, CRISP3, CEACAM1, CEACAM8, CRISP3, BPI, LCN2, DEFA4, LTF,
RNASE3, CAMP, MPO, ELANE, CTSG, RNASE2, CLU, CTSA, and AZU1 ) being upregulated
in sJIA patients by re-analyzing the GSE13501 and GSE21521 GEO data series. They also iso-
lated the neutrophils from PBMC samples and demonstrated that they are more abundant in
sJIA patients. Because of neutrophils are supposed to precipitate during density-based PBMC
isolation protocols, these neutrophils in the PBMC fraction are called low density neutrophils.
These low density granulocytes have been also observed circulating in higher numbers in systemic
lupus erythematosus patients. For instance, Villanueva et al., (2011) compared the expression
profiles of low density neutrophils obtained from lupus patients and healthy individuals with nor-
mal density granulocytes. They identified differentially expressed genes that overlaps with our
female-biased neutrophilic signature. In addition, Bennett et al. (2003) and Denny et al. (2010)
showed that the low density neutrophils isolated from PBMC preparations obtained from lupus
patients comprises segmented and band neutrophils as well as myelocyte-like cells by microscopy
inspection, confirming that low density neutrophils comprise at least two neutrophil subpopula-
tions. Based on the foregoing, we hypothesized that the sJIA pathophysiology presents a sexual
dimorphism mostly driven by band neutrophils characterized by a low density and higher occur-
rence in female patients presenting systemic inflammation. Beyond the PBMC preparations, the
sJIA female-biased signature has also been found in normal density granulocytes but with less
intensity. For instance, using qPCR, Ramanatham et al., (2018) observed the upregulation of the
MPO and MMP8 genes in sJIA normal density neutrophils compared to healthy controls. How-
ever, they did not confirm up-regulation of the ELANE gene, which is highly expressed in PBMC
transcriptomes. In addition, Brown et al. (2018) characterized the transcriptome of normal density
neutrophils in sJIA patients. We observed in their reported dataset (GSE122552) that the genes
MMP8, LTF, and CEACAM8, which were lowly expressed compared to gene markers of mature
neutrophils, presented higher expression in active sJIA patients but they do not in inactive sJIA
patients and healthy controls. They also counted two populations of normal density neutrophil
cells using the CD16 and CD62 surface markers, and found that the CD16+CD62Llo population
have higher counts in active and lower numbers in inactive sJIA patients compared to healthy
pediatric individuals. Moreover, Jarvis et al. (2006) characterized two sub-populations of normal
density neutrophils based on the presence of the protein encoded by the MPO gene. They found
that MPO-positive normal density neutrophils isolated from pJIA samples displays a dysfunction
on the NAD(P)H fluctuations after LPS stimulation. Notably, our meta-analysis results indicated
the expression of the MPO as sexually dimorphic in sJIA patients. We also found it to have a
distinctive up-regulation in the early stages of neutrophil maturation. Therefore, we hypothesized
that the sJIA female-biased signature represents a non-polymorphonuclear neutrophil population
with broad density spectrum, which can get differentially activated while retaining transcriptome
features of early myelocytes and band neutrophil cells.
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The neutrophil-related gene expression signature that we identified through our meta-co-
expression approach correlates with the disease status and the response to IL-1 receptor blockade.
This meta-co-expressed module M36 also intersects the identified sJIA female-biased signature
and comprises marker genes of band neutrophils. We found that the genes S100A8, S100A9, and
S100A12 are the most highly expressed genes in the band neutrophil cell cluster (Figure 1.12A).
The protein products of these genes are clinical markers to monitor the inflammatory status of
sJIA patients. Serum concentrations of the S100A8, S100A9, and S100A12 proteins are higher
in relapse and decrease in remission (Ter Haar et al. 2018; Swart et al. 2016; Rothmund et al.
2014). This suggests that band-neutrophil signature correlates with symptom severity, relapse and
remission status, and the IL-1 receptor blockade progression. We hypothesize that the reduction
of band neutrophils contributes to the observed reduction of these gene products in the peripheral
blood. In addition, we showed that this M36 neutrophil signature is correlated with the response
to Anakinra in a sex-dependent manner. Gattorno et al. (2008) found that neutrophil counts in
sJIA patients are associated with the chances of responding to IL-1 blockade. We propose that
this neutrophil-related meta-co-expressed module M36 can be utilized as a tool to stratify and
monitor sJIA patient progression.

The transcriptome sexual dimorphism in peripheral leukocytes of sJIA patients indicates that
in this disease the neutrophil maturation and activation trajectories are sex-dependent. Similarly,
we showed that rheumatoid arthritis and adult asthma patients display a sexually dimorphic
activation of the band neutrophil signature. However, in adult arthritis, this signature is more
highly expressed in males compared to women. We showed this dimorphism is age dependant
and more evident during adulthood in the blood of healthy individuals. This sexual difference
suggests that sex hormones may modulate the release of immature neutrophils to the peripheral
blood. Blazkova et al., (2017) identified a gene expression signature in whole blood transcriptomes
that overlaps with the meta-co-expressed module M36 and displays sexual dimorphism in healthy
samples. They also showed that this signature increases during healthy pregnancy. In accordance,
Bigler et al. (2017) observed an expansion of immature neutrophil populations during pregnancy.
This supports the idea that sexual hormones may play an important role in the sJIA pathophysi-
ology through the modulation of the neutrophil maturation process. Similar immature neutrophil
populations have been characterized in cancer patients (Sagiv et al. 2015). These cells are related
to poor prognosis and have immunosuppressive profile, principally affecting lymphocytes (Sagiv
et al. 2015; Veglia et al. 2019). Given that this neutrophils population expansion have also been
observed in several inflammatory contexts (Carmona-Rivera and Kaplan 2013) and, as we showed,
it is positively correlated with the sJIA, asthma, and RA severity as well as during gestation. To-
gether, these suggest that instead of a pro-inflammatory profile, this circulating band neutrophils
might represent a homeostatic feedback to resolve inflammation through lymphocyte cytotoxicity.
Indeed, we showed that the NK cell and a B-lymphocyte expression signatures were consistently
down-regulated in sJIA. Additionally, this regulatory feedback might be influenced by the hor-
monal status. Therefore, we recomend future studies on JIA pathophysiology should consider the
diversity of neutrophil sub-populations and its sex-dependent differential activation during the
disease relapse.
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1.5 Methods

1.5.1 JIA-functional genomics systematic review

To systematically and rigorously review the functional genomics discoveries related to JIA, we
performed a systematic review following the PRISMA guidelines (Moher et al. 2009) (Figure 1.2A).
We systematically looked for PubMed records made available between 2000 and 2018 (May) related
to genomic, transcriptomic, and epigenomic studies on JIA using the rentrez R package (Winter
2017) . We identified 427 functional genomics-related records from the near 6.200 JIA- related
records (Figure 1.2B). We screened those records by reading their abstract in order to discard the
studies whose design does not include the analysis of JIA primary tissue-sourced data. We further
inspected the 87 filtered articles by reading articles completely, and found 67 articles analyzing
genomic, transcriptomic, or epigenomic data obtained from primary JIA patient samples (Figure
1.2A). We thoroughly explored the 67 selected studies to gather the reported JIA-related genes
and raw data when available. We classified the JIA reported genes into five categories, in-paper
cited, which includes the mentioned genes in the main written part of the studies; differentially
expressed genes; SNP-nearest genes; epigenetically marked genes; and network- related, when the
genes were reported in JIA-associated molecular networks. In addition, we collected information
regarding the JIA class, tissue, probe or SNP name, genomic region, effect size, and the JIA
association probability associated with each gene when such information was provided by the
authors.

1.5.2 Inclusion criteria of the JIA gene expression meta-analysis

We gathered the GEO (Barrett et al. 2013) available raw data of the 67 reviewed studies.
We compared the sample GEO accessions and the sample raw-data files 128-bit MD5 hashes
among the studies to filter out duplicate samples. When duplicated among studies, we retained
the foremost published sample. We included only the GEO datasets containing JIA patients and
healthy pediatric controls with more than three original samples per class. We curated the available
metadata of the included datasets in order to define clinically uniform groups of JIA patients. We
gathered the metadata from GEO and a review of the clinical inclusion criteria reported in the
original manuscripts. Based on the curated metadata, we defined pairwise contrasts. Each contrast
comprises a clinically homogeneous set of JIA patients and healthy pediatric samples from the
same GEO dataset (Figure 1.2E).

1.5.3 Gene expression data pre-processing

We performed background correction, data normalization, probe to gene collapsing, and quality
control independently for each GEO dataset with the R software environment (R Core Team 2015).
We similarly preprocessed all datasets, however, the background correction was different among
the Illumina and Affymetrix platforms. For the Illumina platforms we first discarded the oligos
whose fluorescence intensity was not significantly different from the background array fluorescence
in all samples p (detection) > 0.05; after this, the oligos whose intensity values are less than 10 were
replaced by a randomly sampled value from a distribution of mean 10 and standard deviation equal
to one. On the other hand, for the Affymetrix datasets, we applied the robust multi-array approach
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(RMA) implemented in the affy R package (Gautier et al. 2004). We performed normalization
by averaging the sample intensities distributions in each dataset through the quantile method
implemented in the affy R package. In order to allow cross-comparisons between platforms and
to consider non-coding regions, we assigned ENCODE (Davis et al. 2018), NONCODE (Zhao et
al. 2016), and LNCipedia (Volders et al. 2013) identifiers to the probe/oligos by aligning them
on the reference Hg19 genome and intersecting their coordinates with the mentioned reference
identifiers. For the further downstream analysis, we retained the probe/oligo with the highest
mean expression as representative of each gene symbol.

Patient sex metadata was corroborated by clustering samples based on the expression of XIST,
RPS4Y1, and KDM5D genes.

After data pre-processing, we used the principal variation component analysis (PVCA) method
implemented in the pvca R package (George and Chen 2009) in order to quantify how much of
the gene expression variation is explained by the available clinical and technical metadata in each
dataset. In the cases where the scanning date explained more than 30% of the observed variance,
we removed the batch effect using the ComBat method implemented in the sva R package (Johnson
et al. 2007).

1.5.4 JIA gene expression meta-analysis

We quantified the circulating leukocyte gene expression perturbation of JIA patients from
healthy pediatric individuals through the LIMMA method implemented in R (Ritchie et al. 2015).
In this way, we calculated the gene log2 (fold-change) and its confidence interval for each contrast.
We estimated the gene summary log2 (fold-change) of equivalent contrasts by fitting their effect
size and variation using the REM implemented in the metafor R package (Viechtbauer 2010).

1.5.5 JIA gene co-expression meta-analysis

To identify the set of genes consistently co-expressed in healthy and JIA blood leukocytes, we
integrated the co-expression module memberships of independent datasets. First, we defined gene
co-expression modules for each dataset with the CEMiTool R package (Russo et al. 2018). We set
CEMiTool to only consider the genes whose variation is out of a null inverse gamma distribution
(p < 0.1). Based on the gene module membership, we built weighted co-membership networks to
combine co-expression results from different datasets. Such consensus networks comprise nodes,
which stand for genes and are connected if they are part of the same module in any dataset. The
edge weight represents the number of datasets where the gene pair appears in the same module. We
analyzed the co-membership network structural modularity to define the consistently co-expressed
gene modules. For this purpose, we used the community detection algorithm implemented in the
Gephi 9-2.1 software (Bastian et al. 2009), which we also used for network visualization. We
assigned either a biological function or a cell type to the consistently co-expressed gene modules
through the enriching analysis method implemented in the Enrichr web tool (Kuleshov et al.
2016). We quantified the expression activity of the consistently co-expressed modules using the
GSEA method implemented in the fgsea R package (Sergushichev 2016). We used the expression
log2 (fold-change) of the JIA patients in relation to the healthy controls as the reference ranking
in the fgsea analysis.
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1.5.6 Single-cell gene expression analysis

We re-clustered the human leukocyte single-cell gene expression dataset available in the GEO
accession GSE92274 (Lai et al. 2018) with the Seurat R package suit of functions (Butler et al.
2018). Initially, we merged the available raw count batches into a single matrix. We filtered out
the cells with no more than 200 and more than 2500 detected genes. In addition, we removed the
cells whose mitochondrial-related gene counts represents more than 5% of the total raw counts.
We normalized the filtered expression matrix using the LogNormalize method. We scaled and
centered the genes in the datasets regressing the number of detected genes, the percentage of
mitochondrial raw-counts, and the experimental batch. Finally, clustered the hematopoietic cells
by using the 27 most exploratory principal components and setting the resolution equal to 3.5. For
visualization, we used the t-Distributed Stochastic Neighbor Embedding dimensionality reduction
using the same 27 principal components. For pseudotime estimation, we utilized the Monacle R
package (Trapnell et al. 2014).

1.5.7 Interactome reconstruction

In all sub-interactome reconstruction cases, we utilized the NetworkAnalyst resources (https:
//www.networkanalyst.ca) (Zhou et al. 2019). We used the interest gene list as query and the
InnateDB as reference interactome. In all cases, we presented the zero-order network obtained.

https://www.networkanalyst.ca
https://www.networkanalyst.ca


Chapter 2

MetaVolcano: making gene expression
meta-analysis easily accessible

During the last two decades, the amount of available transcriptome profiles of a great diversity
of biological conditions has increased exponentially. In parallel, several analytical methods have
been proposed to combine gene expression results from independent studies. However, the lack
of open source code, proper documentation and intuitive result visualizations are recurrent issues
among the available tools for gene expression meta-analysis. These have been limiting the acces-
sibility and exploitation of the great availability of gene expression data. In this work, we propose
MetaVolcano, a tool to perform and visualize gene expression meta-analysis in an easy manner.
MetaVolcano utilizes the reasoning of the volcano plot and implements three approaches to pro-
duce summary statistics, a random effects model, Fisher’s method of combining p-values, and a
vote-counting procedure. We have designed a MetaVolcano web tool which allows users to easily
meta-analyse more than 100,000 profiles from more than 3,000 studies and 60 species available
in the Expression Atlas database (https://metavolcano.sysbio.tools). The MetaVolcano imple-
mented methods have also been made available in the Bioconductor R package MetaVolcanoR
(https://bioconductor.org/packages/MetaVolcanoR). MetaVolcano is an accessible and easy to
interpret tool that allows the research community to easily obtain robust expression markers by
exploiting the publicly available transcriptome data.

2.1 Introduction

The measurement of how gene expression changes under different biological conditions is nec-
essary to reveal the gene regulatory programs that orchestrate the cellular phenotype. Comparing
the expression of genes under a given condition against a reference biological state is a common
practice to identify sets of differentially expressed genes. These perturbed genes point out the ge-
nomic regions functionally relevant under the biological condition of interest. Although individual
genome-wide expression studies have small signal to noise ratios, the huge volume of genomic data
available allows the combination of differential gene expression results from independent studies
to overcome this limitation.

Transcriptome data repositories such as the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/), the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra), ArrayExpress,
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(https://www.ebi.ac.uk/arrayexpress/), and the European Nucleotide Archive (https://www.ebi.
ac.uk/ena) offer programmatic access to vast amounts of transcriptome data. Despite this great
availability, these resources do not offer uniformly curated and preprocessed data. This imposes
data curation and analytical efforts to exploit these resources. On the contrary, the Expression
Atlas added value database (http://www.ebi.ac.uk/gxa) has gathered, consistently curated, pre-
processed, and made available hundreds of thousands of transcriptome profiles (Papatheodorou et
al. 2018). These features therefore make Expression Atlas appropriate to source gene expression
meta-analysis on-demand.

There exist three main approaches to combine differential gene expression results from in-
dependent studies: combining effect sizes, p-values, and rank statistics (Tseng et al. 2012). The
random effects model (REM) combines effect sizes by a linear model with an underlying true effect
size plus a random error in each study and random effects for the inter-study heterogeneity (Chang
et al. 2013). Among the methods that combine effect sizes, REM is the most stable and robust at
identifying perturbed genes regardless of intra-study partition and study selection (Chang et al.
2013). Despite this, REM has a limited detection capability in comparison to combining p-values
methods. Harrison et al. (2019) proposed the Topconfects methodology to improve the detection
capability and biological association of effect size based methods. The Fisher’s approach is one
of the most used methods to combine p-values in the gene expression meta-analysis literature
(Tseng et al. 2012). This method sums the natural logarithm of the K independent pvalues as a
X2 statistics of 2K degrees of freedom (Tseng et al. 2012). Rank-based approaches assess if the
position of a certain gene in a effect-size or p-value based rank is consistent across several indepen-
dent studies (Chang et al. 2013). The underlying assumption of these methods is that genes that
consistently appear at the top or bottom of a rank are associated with the biological condition.
Finally, vote-counting meta-analysis approaches consist of counting the number of studies where
a given gene had a pvalue and fold-change under certain arbitrary threshold (Tseng et al. 2012).
Although this strategy lacks statistical assessment, it is useful to account for the available evidence
of a given gene in a group of studies. This is especially relevant given that transcriptome techno-
logical platforms do not measure the same genes. Consequently, in most expression meta-analysis,
there are several genes partially represented across the combined studies.

In this work, we adjusted the widely used volcano plot, which displays genes in a 2D space
comprising the effect size and p-value, to explore three meta-analysis approaches. This tool has
been made available to easily exploit the enormous Expression Atlas resource. MetaVolcano is
also available as a Bioconductor R package.

2.2 Results

2.2.1 Random effect model MetaVolcano

The REM MetaVolcano allows users to explore and identify consistently perturbed genes in
a volcano plot whose x -axis encodes the summarized fold change and the y-axis the probability
that the summary fold-change is not different than zero (Figure 2.1A). We utilized the maximum
likelihood REM algorithm implemented in the metafor R package (Viechtbauer 2010). To improve
the detection capabilities of this method, REM MetaVolcano ranks genes based on the Topconfects
method which takes into account the gene summary fold change and its variance (Harrison et al.

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/gxa
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2019). Additionally, to account for the gene representation in the combined studies, we included
the gene sign consistency variable as a color-based axis (Figure 2.1A). The sign consistency rep-
resent the number of studies where a given gene has the same fold change sign. For instance, a
gene detected in five studies, from which in three of them it was down-regulated, will get a sign
consistency score of 2 + (−3) = −1. This score tend to zero when either a gene is poorly repre-
sented across the combined studies or it presents contradictory perturbation. Therefore users can
combine the summary effect size and the content of consistent evidence to define the consistently
perturbed genes. Furthermore, MetaVolcano allows users to explore the forest plot of any given
gene based on the summary fold change and the gene effect size across the combined studies
(Figure 2.1F-G).

2.2.2 Combining p-value MetaVolcano

The combining p-value MetaVolcano applies Fisher’s method to combine differential gene ex-
pression p-values from independent studies. Such combination is possible due to the implementa-
tion of the metap R package (Viechtbauer 2010). Besides this summary pvalue, this MetaVolcano
visualizes the mean or median fold change across studies (Figure 2.1B). Additionally, the expres-
sion sign consistency axis is also visualized (Figure 2.1B).

2.2.3 Vote-counting MetaVolcano

The vote-counting MetaVolcano ranks genes based on the number of studies where genes were
defined as differentially expressed based on the user-defined p-value and fold change thresholds.
It displays the number of differentially expressed and unperturbed genes per study (Figure 2.1C).
It visualizes genes based on the number of studies where genes were identified as differentially
expressed and the gene fold change sign consistency (Figure 2.1D).

2.2.4 Discussion

Despite the great availability of gene expression data repositories and gene expression meta-
analysis methods, there are few available tools to easily get robust expression markers by ex-
ploiting the publicly available transcriptome data. In this work, we introduced MetaVolcano, an
open source and well documented tool to easily conduct gene expression meta-analysis. The web
tool allows users to meta-analyse the vast Expression Atlas resource. Therefore, the entire meta-
analysis workflow, data gathering, curation, differential expression analysis and the combination
of independent study results, are all included in the MetaVolcano web tool. Users only need to
query a given biological condition and pick up the contrasts they want to meta-analyse.

There are few available web tools that cover the whole gene expression meta-analysis work-
flow. Recently, Toro-Domínguez et al. (2019) deployed the ImaGEO web tool, which offer gene
expression meta-analysis on demand of GEO series. It combines independent study results using
the meta-analysis methods implemented in the metaDE package (Toro-Domínguez et al. 2019).
metaDE is an R package from the metaOmics suit that implements several methods for the three
main meta-analysis strategies (Ma et al. 2019). This ImaGEO on-demand meta-analysis tool is
study centric and besides the study GEO accession, it requires that the user carries out the cura-
tion and study design definition. It utilizes the heatmap visualization to present the fold change
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across studies for only the identified perturbed genes. This heatmap approach to explore meta-
analysis results make it difficult to prioritize genes based on their effect size since they display
normalized values by gene. It also limits users to explore their gene of interest under a given con-
dition if it is not considered as perturbed. Similarly, the NetowrkAnalyst web tool, which utilizes
the INMEX meta-analysis approach (Xia et al. 2013), visualizes gene expression meta-analysis
results as interactive heatmaps (Zhou et al. 2019). By contrast, the MetaVolcano uses an intuitive
volcano plot visualization to present three different meta-analysis approaches which account for
the effect sizes and the available gene evidence across the combined studies.

Another recent attempt to make gene expression meta-analysis more accessible involved the
implementation of the metaMA and metaRNAseq R packages into a Galaxy platform (Blanck
and Marot 2019). Users are required to gather and curate the data as well as define the study
design. The implemented meta-analysis methods of this tool rely on the combination of p-values.
Therefore, they cannot account for the effect size and do not consider the consistency of the gene
perturbation.

Although the MetaVolcano tool includes the whole gene expression meta-analysis workflow by
utilising the curated resources of the Expression Atlas database and applying three meta-analysis
approaches, the tool is limited in that it does not include a broader collection of meta-analysis
methodologies and it is restricted to the scope of the Expression Atlas resources. Nevertheless, the
MetaVolcano presents a powerful tool to perform meta-analysis. The REM approach combines
effect sizes, which represent fold changes, considering the unaccountable sources of variability
among independent studies. Therefore, its summary results quantitatively encodes gene pertur-
bation, which have a clearer biological meaning than p-values and rank statistics. To complement
the sensitivity of this approach, we implemented the Topconfects approach to rank the perturbed
genes and included the combining p-values Fisher’s method so that results from the REM ap-
proach can be compared to this traditional method. Additionally, the vote-counting approach
complements the above approaches by summarising the consistency in gene regulation among the
available studies. Moreover, the Expression Atlas resources are continually growing which guaran-
tees an ever increasing gene expression curated resource which is explorable through the querying
of biological conditions.

The implemented MetaVolcano methods for gene expression meta-analysis are complementary.
The REM offer the robustness and stability on the summary calculation while the Topconfects and
Fisher’s methods improve the detection power. Additionally, the vote-counting approach permits
to account for the available evidence. Collectively, this offers flexibility for users defining the genes
whose expression is consistently perturbed in a given biological condition.

2.3 Methods

The gene expression meta-analysis methods included in MetaVolcano were implemented in the
MetaVolcanoR R package. The source code, documentation and tutorials are publically available at
https://github.com/csbl-usp/MetaVolcanoR and https://bioconductor.org/packages/MetaVolcanoR.
The suit of MetaVolcanoR functions allow users to combine differential gene expression results
from independent studies and visualizes the results on interactive plots.

https://github.com/csbl-usp/MetaVolcanoR
https://bioconductor.org/packages/MetaVolcanoR
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Figure 2.1: MetaVolcano implemented visualizations of gene expression meta-analysis re-
sults. Differential expression results from five demo studies are combined. This data and tutorial to
reproduce the figures are available in the MetaVolcanoR R package vignette (https:// bioconductor.org/
packages/MetaVolcanoR). A. REM MetaVolcano. Top 1% most perturbed genes according to the Topcon-
fects ranking are coloured and the 95% confidence intervals are depicted. Color scale represent the sign
consistency of each gene. B. Combining p-values MetaVolcano. Top 1% most perturbed genes are coloured
in red or blue. C. Number of perturbed genes by study. Users can set the fold-change and p-value thresholds
to define the differentially expressed genes. D. Vote-counting meta-volcano. Top 1% of the consistently
perturbed genes are coloured. E. Intersection of the 1% top perturbed genes of the three MetaVolcano ap-
proaches. The red and blue numbers indicate up-regulated and down-regulated genes respectively. F and G.
Forest plot of two genes that were identified as part of the 1% top consistently perturbed genes by the three
MetaVolcano approaches.

https://bioconductor.org/packages/MetaVolcanoR
https://bioconductor.org/packages/MetaVolcanoR
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Conclusions

• Approximately 15,000 genes have been associated with juvenile idiopathic arthritis (JIA) in
the transcriptome literature. Most of which were reported in only one study.

• The peripheral leukocyte gene expression perturbation in JIA is consistent with its clinical
classification.

• The systemic JIA pathophysiology presents sexual dimorphism, which is characterized by an
increase in the circulating immature neutrophil gene expression signature in female patients.

• sJIA pathophysiology is partially driven by a diversity of neutrophil sub-populations that
display a sex-dependent differential activation during the disease relapse and in response to
anti-IL-1 treatment.

• The circulating band neutrophil signature manifest a sexual dimorphic activation in inflam-
matory diseases like sJIA, RA, and asthma. Likewise along human lifespan and increases
during pregnancy.

• The JIAexpDB (https://jiaexpdb.sysbio.tools) is a comprehensive resource to consult the
expression perturbation of any gene in the peripheral leukocytes of JIA patients.

• MetaVolcano constitutes an easily accessible tool to exploit the enormous publicly available
gene expression data through statistical meta-analysis (https://metavolcano.sysbio.tools,
https://github.com/csbl-usp/MetaVolcanoR).
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