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ABSTRACT

GIDDALURU, J. Using location history data from cell phones of infectious
patients for disease surveillance. 2023. Thesis (Doctorate) - Faculty of

Pharmaceutical Sciences, University of São Paulo, São Paulo, 2023.

Infectious diseases significantly contribute to global morbidity and mortality,

highlighting the critical need for robust disease surveillance systems. The rapid and

accurate identification of infection hotspots is crucial for effective disease control and

eliminating vector reservoirs. Traditional methods, reliant on patient-reported data,

are vague, slow, and non-integrative, presenting substantial barriers to fully

understanding the underlying causes of infection transmission. The widespread

usage of smartphones presents a unique opportunity to access, analyze, and monitor

digital data. Particularly, location data can offer potential insights into infectious

disease dynamics, which has remained largely unexplored. Firstly, the present study

leverages location history data from smartphones of malaria patients in Manaus,

Amazonas region, to pinpoint mosquito-breeding sites. Upon quantifying the location

data, the primary transmission hotspots were identified to be concentrated on the

outskirts of the city of Manaus. Additionally, the quantification and hotspot validation

confirmed that newly visited locations during the exposure period were potential

sources of infection transmission. Secondly, the current study also employs a novel

digital contact investigation method for a human-to-human transmission infection

such as tuberculosis to measure the exposure risk between the active index cases

and their close contacts. The digital contact investigation revealed varied exposure

durations between the recruited paired index and close contact participants based on

the outcome of close contact. To summarize, the present study determines distinct

mobility patterns associated with both these infectious diseases, potentially aiding in

drafting targeted public health strategies and policies for digital epidemiological

surveillance.

Keywords: Disease surveillance. Digital epidemiology. Global positioning system.

Malaria. Tuberculosis.



RESUMO

GIDDALURU, J. Usando dados do histórico de localização de telefones
celulares de pacientes infecciosos para vigilância de doenças. 2023. Tese
(Doutorado) - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo,

São Paulo, 2023.

As doenças infecciosas são um dos principais contribuintes para a morbidade e a

mortalidade globais, enfatizando a necessidade crítica de sistemas robustos de

vigilância de doenças. A identificação rápida e precisa dos pontos críticos de

infecção é fundamental para o controle eficaz de doenças e a eliminação de

reservatórios de vetores. Os métodos tradicionais, que dependem de dados

relatados por pacientes, são vagos, lentos e não integrativos, apresentando

barreiras significativas para a compreensão total das causas subjacentes da

transmissão de infecções. O uso generalizado de dispositivos móveis apresenta uma

oportunidade única de acessar, analisar e monitorar dados digitais. Especialmente,

dados de localização podem oferecer informações úteis sobre a dinâmica de

doenças infecciosas, que permanecem em grande parte inexploradas.

Primeiramente, o presente estudo utiliza dados de histórico de localização de

smartphones de pacientes com malária em Manaus, na região do Amazonas, para

identificar locais de reprodução de mosquitos. Ao quantificar os dados de

localização, identificaram-se os principais pontos de transmissão concentrados nos

arredores da cidade de Manaus. Além do mais, a quantificação e a validação em

campo confirmaram que os locais recém-visitados durante o período de exposição

eram potenciais fontes de transmissão da infecção. Em segundo lugar, o estudo

atual também emprega um inovador método de investigação digital de contato para

uma infecção por transmissão de humano para humano, como a tuberculose, a fim

de medir o risco por exposição entre os casos índice ativos e seus contatos

próximos. A investigação digital de contato revelou períodos de exposição variados

entre os participantes recrutados em pares de casos índice e contatos próximos,

com base no resultado do contato próximo. Em resumo, o presente estudo identifica

padrões distintos de mobilidade associados a ambas essas doenças infecciosas,

auxiliando potencialmente na elaboração de estratégias e políticas de saúde pública

direcionadas para a vigilância epidemiológica digital.



Palavras-chave: Vigilância de doenças. Epidemiologia digital. Sistema de

Posicionamento Global. Malária. Tuberculose.



LIST OF FIGURES

Figure 1 - Stop locations of a malaria patient identified near a public place …........ 23

Figure 2 - Stop location clusters of a malaria patient near a commercial area ……. 24

Figure 3 - Stop point locations and moving points of the malaria patient

FMT-112 during the 90-day period ……………………………………………………… 25

Figure 4 - Frequency of top 10 unique locations visited by the malaria

patient FMT-112 …………………………………………...……………………………… 26

Figure 5 - Temporal segmentation of stop point location data of

malaria patients …………………………………………………………………………… 26

Figure 6 - Frequency of visits of all malaria patients ……………………………......... 27

Figure 7 - Stop locations identified during the exposure period and within

the infectious time ………………………………………...…………………………........ 29

Figure 8 - Overlapping stop location data with SIVEP-Malaria hotspot data …........ 30

Figure 9 - Density-based clustering of stop locations of all malaria patients …........ 32

Figure 10 - HDBSCAN clusters colored according to the cluster score …………….. 34

Figure 11 - HDBSCAN clusters and nearby validated Anopheles breeding

sites by field agents ………..……………………………………………………………... 35

Figure 12 - Spatial-temporal overlap algorithm …...………………...………………… 40

Figure 13 - Stop location data of example cohort pairs (pairs 18 and 5) .................. 42

Figure 14 - Weekly time spent and frequency of encounters of converter

cohorts ……………………………………………………………………………………... 44

Figure 15 - Weekly time spent and frequency of encounters of non-converter

cohorts …..…………………………………………………………………………………. 45

Figure 16 - Weekly time spent and frequency of encounters of already

IGRA-positive pair ………………………………………………………………………… 46

Figure 17 - Active TB patients with decrease in mobility measures after

active TB diagnosis ….…………………………………………………………………… 47

Figure 18 - Active TB patients with increased or no change in mobility

measures after active TB diagnosis …..………………………………………………... 48

Figure 19 - Mobility patterns of cohort B participants who progressed to

active TB …………………………………………………………………………………... 49

Figure 20 - Quantified location history data of all malaria patients in the

city of Manaus……………………………………………………………………………... 51



Figure 21 - Location clusters of malaria patients based on frequency of

visitation to the location…………………………………………………………………… 52

Figure 22 - Example use of OUTBREAK tool for disease surveillance……………… 52



LIST OF TABLES

Table 1 - Stop point location detection algorithm ……………………………………… 22

Table 2 - Tuberculosis cohorts …………………………………………………………... 39

Table 3 - Outcome of participants in Cohort B ……………………………………...…. 39

Table 4 - Pair ID with their corresponding Cohort B outcomes ………………………. 42



LIST OF ABBREVIATIONS AND ACRONYMS

An. darlingi - Anopheles darlingi

DBSCAN - Density-based spatial clustering of applications with noise

FMT-HVD - Fundação de Medicina Tropical Doutor Heitor Vieira Dourado

GIS - Geographic Information Systems

GLH - Google location history

GPS - Global positioning system

RACD - Reactive Case Detection

HDBSCAN - Hierarchical density-based spatial clustering of applications with

noise

IBIT - Instituto Brasileiro para Investigação da Tuberculose

IGRA - Interferon-gamma release assay

IRS - Indoor residual spraying

SiPoS - Sickness positioning system

SIVEP - Sistema de Informação de Vigilância Epidemiológica

SUS - Sistema Único de Saúde

TB - Tuberculosis



CONTENTS

CHAPTER I.............................................................................................................................17

1. BACKGROUND..................................................................................................................17

1.1 Global impact of infectious diseases...........................................................................17

1.2 Evolution of infectious disease surveillance................................................................17

1.3 Digital epidemiology....................................................................................................18

CHAPTER II............................................................................................................................20

2. DIGITAL SURVEILLANCE OF VECTOR-BORNE TRANSMISSION................................ 20

2.1 Introduction................................................................................................................. 20

2.2 Objective..................................................................................................................... 21

2.3 Methods...................................................................................................................... 21

2.3.1 Data collection....................................................................................................21

2.3.1.1 Data collection platform.............................................................................21

2.3.1.2 Data collection from malaria patients........................................................ 21

2.3.2 Data processing................................................................................................. 21

2.3.2.1 Filtering noise/outlier points.......................................................................21

2.3.2.2 Stop location detection..............................................................................22

2.3.2.3 Clustering stop locations........................................................................... 23

2.4 Results and discussion............................................................................................... 25

2.4.1 Exploring locations visited by malaria patients...................................................25

2.4.2 Overlapping patient visits with government-defined hotspots............................ 29

2.4.3 Implementing clustering on potential transmission locations............................. 30

2.4.4 Quantifying malaria hotspot clusters.................................................................. 32

2.5 Conclusion.................................................................................................................. 36

CHAPTER III...........................................................................................................................37

3. DIGITAL SURVEILLANCE OF HUMAN-TO-HUMAN TRANSMISSION........................... 37

3.1 Introduction................................................................................................................. 37

3.2 Objective..................................................................................................................... 38

3.3 Methods...................................................................................................................... 38

3.3.1 Data collection....................................................................................................38

3.3.1.1 Data collection platform.............................................................................38



16

3.3.1.2 Data collection from TB patients and their close contacts........................ 39

3.3.2 Data processing................................................................................................. 40

3.3.3 Quantifying spatial-temporal overlap between participants................................40

3.4 Results and discussion............................................................................................... 41

3.4.1 Evaluating TB exposure risk through spatial-temporal overlap analysis............41

3.4.2 Movement patterns associated with active TB patients and close contacts...... 46

3.5 Conclusion.................................................................................................................. 50

CHAPTER IV.......................................................................................................................... 51

4. SUMMARY..........................................................................................................................51

4.1 Overview..................................................................................................................... 51

4.2 Limitations...................................................................................................................53

4.2.1 Data privacy....................................................................................................... 53

4.2.2 Data size, parameter selection, and analysis.....................................................53

REFERENCES1...................................................................................................................... 55



17

CHAPTER I
1. BACKGROUND
1.1 Global impact of infectious diseases

Infectious diseases have long been the leading cause of morbidity and mortality

worldwide, accounting for over 25% of the global disease burden (HIGH, 2004;

HOTEZ et al., 2004). In 2019, infectious and parasitic diseases contributed to 5

million deaths worldwide (WHO, 2020a). Malaria, tuberculosis, and HIV/AIDS

dominate the primary causes of death in low-income countries (WHO, 2020b). While

the developed world has seen some success in mitigating the burden of infectious

diseases (PINHEIRO; MATHERS; KRÄMER, 2009), the COVID-19 pandemic alone

claimed 6.8 million lives by April 2023 (WHO, 2023), causing widespread health,

societal, and economic disruption in both developed and developing countries (BIN

ABDUL SATAR; HAKIMAH YAACOB, 2022; PADHAN; PRABHEESH, 2021). Many

strategies have been introduced in recent decades to address the challenges of

infectious diseases effectively. These strategies include accurate and affordable

diagnostic testing (PANG; PEELING, 2007), global vaccination coverage

(EDELSTEIN, 2017), proactive public health preventive measures, resilient health

infrastructure, and robust disease surveillance systems (PALAGYI et al., 2019).

1.2 Evolution of infectious disease surveillance
Historically, disease surveillance played a pivotal role in eradicating infections

such as smallpox (HEYMANN; BRILLIANT, 2011). In recent decades, disease

surveillance has relied heavily on manual data collection, with local laboratories and

hospitals reporting the data to public health agencies (M’IKANATHA et al., 2013).

However, the era of advanced technology has uncovered a transformative phase in

disease surveillance. Enhanced computing power, data-storage capabilities, and

seamless data-sharing platforms have significantly improved the speed of information

dissemination between medical care facilities and public health agencies, thereby

enhancing the early detection capability (BANSAL et al., 2016). Concurrently, mobile

technologies have facilitated expedited communication to implement outbreak

intervention measures (NHAVOTO; GRÖNLUND, 2014).

Moreover, technological advancements in the Global Positioning System

(GPS) encouraged experts to employ Geographic Information Systems (GIS) for
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spatial epidemiological surveillance, replacing conventional geographical surveys

(HIGHTOWER et al., 1998; SEVILLA-CASAS, 1993). With GIS technology being

easily accessible, epidemiologists can delve deeper into the underlying geographical

factors influencing disease transmission and trends (EISEN; EISEN, 2014) and

subsequently support epidemiological modeling and prediction. This transition from

manual data reporting to technological-driven surveillance has become a powerful

tool for effectively monitoring and addressing infectious diseases.

1.3 Digital epidemiology
Though technological advancements enhanced the data acquisition methods,

the primary sources of disease surveillance have been mainly confined to diagnostic

and research laboratories, hospitals, and public agencies. However, the widespread

usage of communication devices and internet availability enabled novel digital data

sources that could provide real-time information on disease dynamics. This potential

epidemiological footprint encompasses multifaceted digital data streams captured

from smartphones, mobile applications, search engines, and wearable technologies

(SALATHÉ et al., 2012). A recent COVID-19 epidemiological surveillance system has

also incorporated unconventional data sources, such as financial transactions and

QR code engagements (KIM, 2023).

Applying this rapidly expanding digital data to gain insights into epidemiology

refers to Digital Epidemiology. Although relatively new, the first step towards digital

epidemiology can be traced back to the pre-internet revolution. For example,

rudimentary digital traces such as cell phone records, text messages, and mobile

tower locations have provided insights into the transmission of diseases such as

malaria and cholera (WESOLOWSKI et al., 2012; ZHOU et al., 2020). In the

contemporary era, however, there has been a marked enhancement in the

granularity of this data. Location data, in particular, is now being recorded with

increased resolution. The wide-spread accessibility of such fine-grained location

mobility data offers an understanding of human mobility patterns and their

implications on disease transmission, one of the main recorded factors (PROTHERO,

1977). An intricate understanding of human mobility helps epidemiologists and health

agencies pinpoint outbreak regions and implement targeted interventions. Although

some studies report employing such high-granulated location data, the major
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drawbacks were the limited number of participants and the high costs of distributing

GPS-logger devices (VAZQUEZ-PROKOPEC et al., 2010, 2013).

Most of the population, including middle and low-income groups, have access

to internet-enabled smartphones with an inbuilt GPS device (JAMES, 2020). Google

LLC stores Android smartphone users' location data for commercial purposes and

provides a personalized user experience (GOOGLE, [s.d.]). While some studies have

quantified and evaluated the utility of Google Location History (GLH) data (COOLS et

al., 2021; RUKTANONCHAI et al., 2018), a comprehensive exploration to understand

the extent of its usefulness in studying transmission of infectious diseases has not

yet been conducted. The present study investigates the potential application of GLH

data obtained from patients' smartphones in understanding vector-borne and

human-to-human disease transmission in a clinically monitored setting.
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CHAPTER II
2. DIGITAL SURVEILLANCE OF VECTOR-BORNE TRANSMISSION
2.1 Introduction

Vector-borne transmission has long been a major concern in public health.

Modern transport and globalization caused a resurgence in vector-borne infections

from the 20th century (GUBLER, 1998). Mosquito-borne diseases share a significant

contribution to the global vector-borne disease burden, causing over 627,000 deaths

in 2020 (FRANKLINOS et al., 2019; ORGANIZATION, 2021). Human malaria

remains the top vector-borne concern in tropical countries (SINGH et al., 2009). For

example, Brazil registers over 40% of malaria cases in Latin America, and 99.6% of

those are reported from the Amazonas region (OLIVEIRA-FERREIRA et al., 2010).

The prevalence of other mosquito-borne diseases, such as chikungunya and dengue,

has substantially increased (ARAÚJO et al., 2017, p. 200; COLLUCCI, 2016).

One of the most effective ways to reduce surging mosquito-borne transmission

is by identifying transmission hotspots and implementing targeted intervention

strategies (BOUSEMA et al., 2012). One strategy is "Reactive Case Detection

(RACD)", which screens households or people in the neighborhood where malaria

infection is confirmed. This case detection aims to identify additional infected

symptomatic and asymptomatic cases (PERERA; CALDERA; WICKREMASINGHE,

2020). This information is then used to pinpoint places infected individuals have

visited and locate potential mosquito breeding sites. Historically, such surveyed

information has been coupled with GIS systems to find possible hotspot locations

and interpret underlying spatial, environmental, and geographical factors

(HIGHTOWER et al., 1998; KENGLUECHA et al., 2005; SHAFFER et al., 2020;

WANJALA et al., 2011). However, this location information obtained through patient

interviews is often inaccurate and incomplete because it depends on patients'

memories, reducing the success rate of RACD. GLH data from the smartphones of

the infected individuals could offer a more detailed exploration of places visited by the

patients in the previous few days to several years. Moreover, the GLH data from

smartphones can help quantify infected users' mobility patterns, which have been

reported to correlate to mosquito-borne transmission (ABDUL-GHANI et al., 2020;

PROTHERO, 1977; RUKTANONCHAI et al., 2016, 2018; WESOLOWSKI et al.,

2012). Overall, the present chapter highlights the usability of this retrospective
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location data to detect mosquito breeding sites and explore mobility patterns

contributing to the infection.

2.2 Objective
To evaluate the efficacy of utilizing retrospective location data from

smartphones of malaria patients to pinpoint potential mosquito-breeding hotspots and

analyze relevant patient mobility patterns contributing to infection.

2.3 Methods
2.3.1 Data collection
2.3.1.1 Data collection platform

The participants in this study used the online platform Sickness Positioning

System (SiPoS), accessible at https://sipos.fcf.usp.br/, to submit the location history

data from their smartphones. This platform anonymously retrieves the GLH data from

Android devices. It does not store personal information such as name, email, or

phone number (CARDOZO, 2019).

2.3.1.2 Data collection from malaria patients
Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD) in

Manaus, who actively engages in malaria research and diagnostics, collaborated to

collect location history data from the smartphones of malaria patients. Those

individuals diagnosed with malaria at the FMT-HVD were invited to participate in this

research study. With the participants’ consent and agreement, they were guided to

submit the data. The medical collaborator assigned each participating individual a

unique code, allowing the data in the storage server to remain anonymous.

Considering the sensitivity of the data, ethical committee approval was

obtained (CAAE: 68428917.0.0000.0005, Parecer: 2.135.257).

2.3.2 Data processing
2.3.2.1 Filtering noise/outlier points

GPS trajectories often include coordinates that individuals have never actually

visited. The primary reason for this data discrepancy is attributed to residual errors

such as clock-related, signal propagation, and system errors (KARAIM; ELSHEIKH;
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NOURELDIN, 2018). One effective method to identify these erroneous coordinates

within a trajectory is to calculate the speed between the consecutive GPS points and

apply a speed threshold. Points exceeding this threshold are considered noise and

excluded from the trajectory. A 500 km/hr speed threshold was applied for the outlier

detection and exclusion.

Moreover, every GPS point within the trajectory is accompanied by an

estimated margin of error known as the accuracy radius error. This measurement

indicates a possible dispersion of the recorded coordinates from the actual location,

i.e., the actual coordinates are likely to be within the specified radius error

measurement. GPS points with more than 50 meters of accuracy radius error were

discarded from the trajectories.

2.3.2.2 Stop location detection
A stop location of an individual refers to a specific location where the individual

remained stationary for a particular duration before resuming the journey. Identifying

a stop location within a GPS trajectory requires a distance and time threshold.

The stop algorithm checks for two conditions: first, if a sequence of

consecutive points in a GPS trajectory falls within the specified distance threshold

(e.g., 100 meters), and second, if the time elapsed between the first and last points of

the same sequence exceeds the time threshold (e.g., 15 minutes) (ZHENG, 2015).

The sequence of points satisfying the above conditions represents a stop location.

The mean coordinates of these recorded points are considered as the stop location

coordinates. Coordinate points falling outside these stop sequence points are labeled

moving points captured between the stop locations. The stop location detection

process is repeated until the end of the trajectory (Table 1).

A distance threshold of 100 meters and a time threshold of 15 minutes was

applied.

Table 1 - Stop point location detection algorithm

Stop Point Algorithm:

1. Initialize an empty list of stop points 𝑆
2. For each anchor point in a chronologically ordered Trajectory𝑝

𝑖
𝑇

a. Find the successors of , i.e., , , ,...,𝑝
𝑖

𝑝
𝑖+1

𝑝
𝑖+2

𝑝
𝑖+3

𝑝
𝑛

b. Calculate the distance between and each successor point𝑝
𝑖

𝑝
𝑗
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c. If there exists a successor point (where i < k <= n) such that the𝑝
𝑘

distance between and is greater than𝑝
𝑖

𝑝
𝑘

𝑑
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

i. Calculate the time difference between and the last successor𝑝
𝑖

point (where i < l <= k) within the𝑝
𝑙

𝑑
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

ii. If the time difference is greater than , a stay point is𝑡
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

detected
iii. If the stay point is detected, assign the mean of coordinates ,𝑝

𝑖
, ,..., as the stop location coordinates. Add the mean𝑝

𝑖+1
𝑝

𝑖+2
𝑝

𝑙
coordinates to the list of stop points

iv. Set the next anchor point as 𝑝
𝑖+1

v. Continue the next iteration of stop detection from step 2a.
3. Return the list of stop points.

Source: Modified version of (ZHENG, 2015)

Figure 1 – Stop locations of a malaria patient identified near a public place.

Source: The author, 2023.

2.3.2.3 Clustering stop locations
The generated list of stop locations commonly includes revisiting locations. A

revisiting location corresponds to a visit to the same location but at a different time,

such as home and workplace. It is necessary to group and label such occurrences to

identify and analyze patterns associated with those places. A density-based

clustering algorithm, Density-based spatial clustering of applications with noise
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(DBSCAN), was utilized to categorize these places (PEDREGOSA, 2011). The

algorithm mainly uses two parameters, a clustering radius and a minimum number of

stop points, to be considered for cluster formation.

A clustering radius of 100 meters with a minimum stop point of one is used to

cluster and label the stop point locations.

Figure 2 – Stop location clusters of a malaria patient near a commercial area.

Source: The author, 2023.
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2.4 Results and discussion
Over two hundred and fifty malaria patients participated in the submission of

location history data for this study. First, participants with no GLH data (i.e. an absent

or empty JSON file) were excluded from the study. Second, location history recorded

only from the day of diagnosis to 90 days before the day of diagnosis was used for

further processing and the rest of the data was discarded. At last, only a hundred and

nine patients' GLH data had usable location data for further analysis.

2.4.1 Exploring locations visited by malaria patients
Each patient's data was processed separately. After filtering/deleting outlier

GPS points, locations visited by each patient where the patient stayed at least for 15

minutes were identified (refer to methods 2.3.2). Figure 3 shows locations the malaria

patient FMT-112 visited within the 90-day period in the municipality of Manaus.

Figure 3 – Stop point locations and moving points of the malaria patient FMT-112 during the
90-day period.

2D and 3D maps showing the identified stop points (red) and moving points (blue), i.e., GPS
points captured while moving from one place to another. Meaningful places marked on the
3D map represent the home and work location of the patient revisited during the 90 days.
Source: The author, 2023.

These identified visited locations generally include revisited locations, such as

home or work. Such locations were determined through clustering (refer to methods

3.2.3). The top ten unique visitations of the patient FMT-112 in the ninety-day period

are shown in Figure 4.
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Figure 4 – Frequency of top 10 unique locations visited by the malaria patient FMT-112.

Source: The author, 2023.

All the visited locations by the patients were temporally classified based on the

number of days relative to their diagnosis date. This temporal segmentation included

three periods: ‘symptomatic’ if the visited location was within three days before the

diagnosis date; ‘exposure’ if the visited location was between 3 and 30 days before

the diagnosis date; ‘pre-exposure’ if the visit was 60 and 90 days before diagnosis

date (Figure 5). This temporal segmentation was mainly determined by the reported

mean time between the exposure and the onset of symptoms (NISHIURA et al.,

2007).

Figure 5 – Temporal segmentation of stop point location data of malaria patients.

Source: The author, 2023.
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Since the study aimed to locate hotspot transmission locations, stop locations

visited only during the exposure period were used for further analysis. Also, female

anopheline mosquitoes have an active feeding time between 17:00 and 6:00 hours

(ROZENDAAL, 1989). A buffer hour was added to this range, and the stop locations

of the 109 patients that fell between 16:00 and 7:00 hours during the exposure period

were extracted. About 1/3rd of the stop locations recorded within the exposure period

were outside the above-defined time range (Figure 6a). It is important to note that

most of these potential infected stop locations belonged to only a small proportion of

overall patients, as shown in Figure 6b. This observation has been reported

previously (GONZÁLEZ; HIDALGO; BARABÁSI, 2008).

Figure 6 – Frequency of visits of all malaria patients.

(a) Frequency of visits of all patients separated by potential infection time. (b) Frequency of
visits by each patient. Source: The author, 2023.

Only the stop locations of the exposure period identified within the infectious

time range were used in the further analysis. More than 50% of these stop locations

included home visits. Home and work location coordinates were determined based

on the clustering, frequency, and time of visitation (22:00 - 7:00 hours for home and

7:00 - 22:00 hours for work). Figure 7a represents the percentage of total visits

categorized by stop location type. Figure 7b shows the Manaus map plotted with

these stop locations categorized based on the location type.
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Home and work location coordinates are the most used geographical data to

map mosquito-borne transmission hotspots. (HIGHTOWER et al., 1998) reported the

first implementation of GPS technology to record and spatially map locations such as

homes, hospitals, and known mosquito breeding sites for malaria transmission. Other

malaria studies have employed similar methods to identify the transmission clusters

(ALEMU et al., 2014; WANJALA et al., 2011). Disease control measures such as

indoor residual spraying (IRS) and other intervention methods are implemented upon

identifying the home and work clusters. Spatial mapping of home and workplaces is

also standard practice in chikungunya disease (NSOESIE et al., 2015), dengue

(CHANSANG; KITTAYAPONG, 2007), and other vector-borne disease surveillance

(WASHINGTON et al., 2004). This crucial epidemiological and surveillance

information was generated from the GLH data of the patients without the involvement

of manual data collection methods. Hence, utilizing GLH data could be cost-effective

instead of distributing handheld GPS devices for field agents to record patients’ home

and work locations.

In addition to home and work locations, GLH data consists of other visited

places by the patients, as shown in Figure 7b. These other visited locations also

represent potential zones where mosquito-breeding sites could exist. One way to

narrow down these additional visited locations for potential hotspots is to overlay this

visitation information with regions where malaria cases are frequently reported. This

overlayed information could be favorable in detecting new hotspot locations near the

previously reported infected zones with similar landscape characteristics (CARDO;

VEZZANI; CARBAJO, 2013).



29

Figure 7 – Stop locations identified during the exposure period and within the infectious time.

(a) Proportion of stop locations categorized by type of stop location (home, work, and other).
(b) Manaus map with stop locations visited by all 109 patients. The stop locations are colored
by the type. Source: The author, 2023.

2.4.2 Overlapping patient visits with government-defined hotspots
Sistema de Informação de Vigilância Epidemiológica (SIVEP) - Malaria is an

epidemiological surveillance database created by Sistema Único de Saúde (SUS), a

Brazilian government-run healthcare system, where diagnosis and surveyed

information of reported malaria patients is stored. The database includes the list of

approximate location coordinates where malaria cases were previously reported.

These SIVEP location coordinates were overlapped with the identified stop

locations (home, work, and others) of all patients. Figure 8a shows the overlapped

stop locations and SIVEP regions. Further, the distance from each stop location to all

the SIVEP hotspots was calculated, and the nearest SIVEP hotspot from each stop
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location was identified. Over half of the stop locations were within 0.5 km from a

SIVEP hotspot, while around 94% were under 1 km from a reported SIVEP hotspot.

Notably, all the stop locations were within 2 km from the nearest hotspot (Figure 8b).

The flight range of the Anopheles darlingi (An. darlingi) mosquito species, a major

malaria-causing species in the Amazonas region, generally flies up to 2 km in its

lifetime (CDC, [s.d.]), highlighting that all stop locations in the exposure period within

the infectious time-range fall under potential infection zones.

Figure 8 – Overlapping stop location data with SIVEP-Malaria hotspot data.

(a) Manaus map with SIVEP hotspots data (heatmap) overlapped with the identified stop
locations of patients (points). b) Density of distance measurements between stop locations to
the nearest SIVEP hotspot. Source: The author, 2023.

2.4.3 Implementing clustering on potential transmission locations
Another way to exploit the stop location information is by employing clustering

methods. Although spatial clustering has previously been employed to identify the

transmission hotspots, the location history information in such studies was primarily

determined through patient interviews (COLEMAN et al., 2009).

Density-based clustering methods help identify clusters based on proximity

and separation of points (BHADANE; SHAH, 2020). Unlike K-means clustering, the

density-based algorithms do not require defining the number of clusters and can

detect clusters of varying shapes. Implementing density-based clustering such as

DBSCAN for the stop locations of the patients requires two parameters. A minimum

number of points (stop locations) to form a cluster, and a specified distance within

which neighboring points must lie to be considered part of the same cluster. The
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DBSCAN algorithm was applied by establishing a minimum of 3 stop locations and a

cluster radius of 0.5 km (epsilon = cluster radius km / 6371.0088). Other parameters,

the 'haversine' distance metric and the 'ball_tree' Nearest Neighbors algorithm, were

utilized (PEDREGOSA, 2011).

Within the Manaus municipality, 71 clusters were identified, each exhibiting

various shapes. The areas of these clusters spanned between 0.1 sq. km and 25 sq.

km (Figure 9a). As expected, clusters with large sizes, i.e, high density of visits, were

found in the Manaus city center (Centro) and the highest population density areas,

such as Compensa and Cidade Nova (SEPLAN-CTI, 2015).

Although epidemiologically useful, in practice, finding mosquito-breeding sites

and implementing intervention strategies in large irregular areas could be resource

and time-intensive. Therefore, a modified version of the DBSCAN method called

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN)

(CAMPELLO; MOULAVI; SANDER, 2013; PEDREGOSA, 2011) was implemented on

the stop location information. In addition to the density and sparsity aspect,

HDBSCAN constructs a hierarchy of clusters, splits the clusters based on varying

point densities, and finds the most stable clusters. Using the same parameters as

applied to the DBSCAN method, HDBSCAN resulted in 382 clusters, with the largest

cluster covering an area of mere 0.6 sq. km (Figure 9b), thus identifying significantly

smaller clusters.
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Figure 9 – Density-based clustering of stop locations of all malaria patients.

Clusters generated by DBSCAN (a) and HDBSCAN (b) plotted on the Manaus map, along
with their respective distribution of areas (sq. km) Source: The author, 2023.

2.4.4 Quantifying malaria hotspot clusters
While the smaller clusters have been identified, it is necessary to determine

the importance of each cluster to prioritize them during the field survey to implement

mosquito-control intervention strategies. One factor that could ascertain a cluster's

importance is finding ground truth labels, such as SIVEP hotspots inside and

adjacent to the boundaries of these clusters. This distribution of SIVEP hotspots and

the number of previously reported malaria cases at these hotspots could provide
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robust ground truth knowledge. Further, the number of current reported patients that

visited these clusters could help understand the severity of existing disease spread

within the cluster.

Hence, incorporating these variables, a score was calculated for each cluster.

Based on the importance of the variable metric, weights , and were𝑤
1

𝑤
2

𝑤
3

assigned to SIVEP hotspot density ( ), average number of historical cases (𝑆𝐼𝑉𝐸𝑃
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

) and current patient density of cluster ( ), respectively. The𝐴𝑣𝑔
𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑎𝑠𝑒𝑠

𝑃𝑎𝑡𝑖𝑒𝑛𝑡
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

cluster score formula was defined as follows:

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 = (𝑤
1

×  𝑆𝐼𝑉𝐸𝑃
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

) + (𝑤
2

×  𝐴𝑣𝑔
𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑎𝑠𝑒𝑠

) +  (𝑤
3

×  𝑃𝑎𝑡𝑖𝑒𝑛𝑡
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

)

where, , ,𝑤
1

=  0. 5 𝑤
2

= 0. 3 𝑤
3

= 0. 2

𝑆𝐼𝑉𝐸𝑃
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

          =   𝑁𝑜. 𝑜𝑓 𝑆𝐼𝑉𝐸𝑃 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟   +   𝑁𝑜. 𝑜𝑓 𝑆𝐼𝑉𝐸𝑃 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 0.5 𝑘𝑚 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝐴𝑣𝑔
𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑎𝑠𝑒𝑠

 =   𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑆𝐼𝑉𝐸𝑃 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠
𝑁𝑜. 𝑜𝑓 𝑆𝐼𝑉𝐸𝑃 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟   +   𝑁𝑜. 𝑜𝑓 𝑆𝐼𝑉𝐸𝑃 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 0.5 𝑘𝑚 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑃𝑎𝑡𝑖𝑒𝑛𝑡
𝐷𝑒𝑛𝑠𝑖𝑡𝑦

       =   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

Almost all clusters in the city center and densely populated regions had the

lowest ranking score (Figure 10). Most clusters with the highest score were observed

in the outskirts of Manaus. This observation is apparent because Amazonas forests

border the city's outskirts, where larval breeding in the water collections at the forest

fringes is often reported (BARROS; HONÓRIO, 2015). Since Manaus has a sizable

irregular forest cover scattered inside the city, the bordering regions of these forest

patches within the Manaus city could also present potential mosquito-breeding sites.

Thus, the resulting clustering scores provide valuable insight for prioritizing certain

clusters and offer a strategic focus for targeting potential mosquito-breeding sites

within and around the city.
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Figure 10 – HDBSCAN clusters colored according to the cluster score.

High scored HDBSCAN clusters identified in the outskirts of Manaus, whereas low
scored clusters in the high population density regions. Source: The author, 2023.

It is also crucial to acknowledge that the clustering scores may not represent

the completed picture. For instance, SIVEP hotspots, rather than pinpointing the

exact location of each infected case, multiple cases are often grouped under a single

hotspot location, resulting in potential oversimplification of the actual distribution and

concentration of cases. Furthermore, ecological factors such as intermediate forest

cover (LAPORTA et al., 2021) and stagnant water bodies (CATRY et al., 2018)

around the clusters can be incorporated into the calculation of clustering score to

provide a more comprehensive assessment.

Finally, the potential mosquito-breeding sites previously validated by the field

agents using only the patients' stop location information were overlapped with the

identified HDBSCAN clusters to validate the clustering findings. Figure 11 shows the

presence of suspected and confirmed An. darlingi larvae breeding sites at the

marked locations on the Manaus satellite maps. Suspected locations signify vast

locations that could not be fully assessed but had a history of larvae presence. All the

clusters near the suspected breeding sites have the highest cluster score. The

validated positive larvae breeding site near cluster 8 and the microscopic image of

collected An. darlingi larvae are shown in Figure 11.
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Moreover, the stop locations of the patients inside these clusters near the

suspected and positive breeding sites were checked for the frequency of visitation to

these locations by the patients, i.e., how frequently the patients visited these

locations during the exposure period and within the infectious time range. Notably,

the majority of these stop locations had minimal visitation frequency, as depicted in

the violin plot of Figure 11. This implies that these visits were not part of the patients'

regular visits and were likely visited for the first time during the exposure period,

highlighting the potential role of newly visited places in infection before the onset of

symptoms. This quantification of critical mobility patterns associated with the infection

showcases potential utility of location history data from smartphones of the patients.

Figure 11 – HDBSCAN clusters and nearby validated Anopheles breeding sites by field
agents.

Zoomed satellite maps showing suspected and confirmed positive Anopheles breeding sites
identified near HDBSCAN clusters derived from stop locations of patients. The violin plot
shows visitation frequency of stop locations at each of these clusters. Source: The author,
2023.
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2.5 Conclusion
In summary, this study has successfully leveraged the location history data

from the smartphones of malaria patients to uncover potential transmission hotspots

within the Manaus municipality. The step-by-step processing and analysis of the GPS

history data of the patients helped identify key locations visited by the patients before

the onset of symptoms where the patients potentially were infected. These potential

transmission visits significantly overlap with government-defined (SIVEP) hotspots,

validating the reliability of using GLH data. Furthermore, implementing density-based

clustering methods on this data facilitated identifying and isolating smaller and more

specific potential transmission zones within the Manaus region. The study employed

a scoring system to rank the identified clusters, revealing those in the outskirts of

Manaus, bordered by the Amazonas forests, as high-priority regions for further

investigation and intervention. The study additionally emphasized the significance of

certain visited locations based on their visitation frequency. Locations less frequently

visited, i.e., non-regular visits of the patients, were pinpointed near the validated

suspected and confirmed An. darlingi larvae breeding sites, thus underscoring the

potential role of such locations in malaria transmission. This innovative use of GLH

data presents an efficient and cost-effective approach for enhancing malaria

surveillance, aiding in the timely implementation of control and intervention

measures.
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CHAPTER III
3. DIGITAL SURVEILLANCE OF HUMAN-TO-HUMAN TRANSMISSION
3.1 Introduction

Infectious diseases that spread from one individual to another represent a

considerable portion of the worldwide disease prevalence. In 2019, tuberculosis was

responsible for 1.2 million fatalities (WHO, 2020a), making up 20% of all deaths from

infectious diseases. Besides, emerging communicable infections such as COVID-19

surpassed it in the number of deaths between 2020 and 2023 (WHO, 2023).

Respiratory tract infections such as influenza also cause substantial yearly

hospitalizations worldwide (LAFOND et al., 2021). Despite the eradication attempts

of other respiratory diseases, such as measles (DE QUADROS et al., 2004), which

transmits through airborne droplets, it has seen a resurgence in Manaus, the

Amazonas region of Brazil, in 2018 (ELIDIO et al., 2019). Urbanization, human

density, and global mobility have been the contributing factors in amplifying the risk of

this human-to-human transmission and emerging infections (ALAM, 2021;

NEIDERUD, 2015; SANTIAGO-ALARCON; MACGREGOR-FORS, 2020;

TARWATER; MARTIN, 2001).

Contact tracing and contact investigation evolved as crucial strategies in

mitigating the spread of human-to-human transmission. The primary objective of

contact tracing involves identifying and monitoring individuals who have been in close

proximity to a network of potentially infected contacts (EAMES; KEELING, 2003). The

history of contact tracing traces back to the 1600s during the Great Plague

(NAKAYAMA, 2022) and in 18th-century Europe, where potentially infected people

such as travelers were identified and quarantined to stop the spread of the infection

(TOGNOTTI, 2013). On the other hand, contact investigation focuses on identifying

possible infection sources and understanding the conditions under which the

transmission occurred. In the contemporary era, contact tracing and contact

investigation effectively reduce the spread of infections like tuberculosis (ERKENS et

al., 2010; SHRIVASTAVA; SHRIVASTAVA; RAMASAMY, 2014). These methods were

also crucial in successfully containing the MERS outbreak 2013 (MAILLES et al.,

2013).

In the recent COVID-19 pandemic, digital contact tracing systems have been

introduced to identify potential transmission risks, offering an efficient alternative to
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traditional manual contact tracing techniques (ELMESALAWY; SALAMA; ANANY,

2020; HEO et al., 2020; RAHMAN et al., 2020; SINGAPORE, [s.d.]). These digital

systems are primarily based on bluetooth and location technologies, which notify

potential exposure risks and facilitate health bodies to craft disease surveillance and

health policies dynamically. Furthermore, human mobility datasets from private

enterprises enabled us to understand the impact of population movement patterns

preceding, during, and post-pandemic (HUANG et al., 2020; LEE et al., 2020).

However, it is essential to note that these digital disease surveillance systems and

human mobility reports were rapidly deployed in response to the urgency of the

pandemic, leading to potential oversights of disease dynamics. To date, there has

been a lack of studies conducted in a clinically monitored environment to quantify

and explore this crucial digital data gathered from patients for monitoring and

investigating the underlying causes of transmission.

The present chapter explores the usability of location history data from the

smartphones of index cases and their close contacts exposed to a human-to-human

transmissible infection such as tuberculosis (TB).

3.2 Objective
To assess the effectiveness of employing location data from smartphones of

tuberculosis patients and their close contacts for contact investigation and discerning

critical mobility patterns related to infection transmission.

3.3 Methods
3.3.1 Data collection
3.3.1.1 Data collection platform

The study participants provided their location history (GLH) data from their

Android smartphones via the SiPoS platform, accessed at https://sipos.fcf.usp.br/

(CARDOZO, 2019) or through the REDCap platform. The GLH obtained through the

REDCap platform was made anonymous before undergoing data storage and

processing. The anonymizing process involved removing metadata from the acquired

Google Takeout location history file.
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3.3.1.2 Data collection from TB patients and their close contacts
Instituto Brasileiro para Investigação da Tuberculose (IBIT), specializing in

international TB monitoring, collaborated to collect location data from the individuals

presenting TB symptoms at the Fundação José Silveira Hospital in Salvador, Bahia.

Once diagnosed with TB, the patients and their immediate close contacts were

invited to join the study. Participants were categorized into two cohorts: Cohort A,

which included diagnosed active TB patients, and Cohort B, which comprised their

close contacts (Table 2). Every participant underwent an Interferon-Gamma Release

Assay (IGRA) test on the day of enrollment and at the end of the month six after

enrollment. IGRA test checks for a person's immune reactivity to M. Tuberculosis and

aids in the detection of previous infection to TB and latent TB infection. Based on

Cohort B participants' IGRA test results on the enrollment day and six months after

enrollment, Cohort B participants were categorized into four groups (Table 3).

Considering the sensitivity of the data, ethical committee approval was

obtained (CAAE number 87022618.4.0000.5543, Parecer: 2.614.181).

Table 2 - Tuberculosis cohorts

Cohort Description

A Patients diagnosed with active tuberculosis (index cases)
B Participants in close contact with Cohort A patients

Source: The author, 2023.

Table 3 - Outcome of participants in Cohort B

Outcome of Cohort B

1. IGRA-Negative at Baseline and IGRA-Positive at Month 6

2. IGRA-Negative at Baseline and at Month 6

3. IGRA-Positive at Baseline

4. IGRA-Negative at Baseline and progressed to active TB at month 6
Source: The author, 2023.
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3.3.2 Data processing
The processing of the acquired location history data from the participants was

carried out as detailed in the methods section of chapter one (2.3.2), and the steps

include:

1. Filtering noise/outlier points (section 2.3.2.1)

2. Stop location detection (section 2.3.2.2)

3. Clustering stop locations (section 2.3.2.3)

3.3.3 Quantifying spatial-temporal overlap between participants
The criteria for establishing a spatial-temporal overlap between an index case

and a close contact i.e, if the index case and close contact were in the same place at

the same time, was determined by two specific conditions, as outlined below:

1. If a stop location exists where both the index case and the corresponding

close contact are within a maximum distance of 30 meters from each other

(Figure 12a).

2. If there is a time interval during which both index case and close contact are

present at the above-mentioned overlapping stop location (Figure 12b).

When criteria mentioned above are satisfied, the number of times the index

case and the close contact have encountered each other, and the duration of time

spent together at these encounters are retrieved.

Figure 12 - Spatial-temporal overlap algorithm

Source: The author, 2023.
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3.4 Results and discussion
In this pilot study, one hundred participants were enrolled at IBIT. Of these,

forty-six were part of Cohort A (active TB), while the remaining participants belonged

to Cohort B (close contacts). Some Cohort A participants had more than one

corresponding close contact participating in Cohort B. Any participants from either

cohort with missing GLH data, i.e., either having no GLH JSON file or an empty GLH

file, were excluded from the study.

The primary objective of this study was to evaluate the feasibility of employing

contact investigation using GPS data to identify and quantify the exposure between

individuals in Cohort A and Cohort B. Considering the TB incubation occurs within

ten weeks after the initial exposure (BEHR; EDELSTEIN; RAMAKRISHNAN, 2018),

the study timeline encompassed location data from six months before, and two

months after the participants’ enrollment in the study. Since post-enrollment data was

needed, data was retrieved at the end of the study, thereby GLH file consisting of

location history data both before and after enrollment date.

3.4.1 Evaluating TB exposure risk through spatial-temporal overlap analysis
Given that TB transmission occurs through inhalation of respiratory droplets

from an infected person (DONALD et al., 2018), the exposure from the index case to

close contact can potentially be determined by examining their GPS data for the

availability of spatial-temporal overlaps. In other words, exposure is likely if both

individuals are simultaneously found at the same location.

Initially, out of forty-three recruited cohort pairs, only thirteen had requisite

location history data available during the study period. At first, each participant's data

was processed separately to detect stop locations (refer to methods 3.3.2). Once the

data is processed, each cohort pair, i.e., an index case from Cohort A and the

corresponding close contact from Cohort B, was accessed for availability of stop

locations during the study period. To accurately quantify the spatial-temporal overlap

between paired participants, the stop location data for a specific day must be

available for both individuals. Finally, only six pairs had intersecting stop location data

among the aforementioned thirteen cohort pairs. Figure 13 illustrates intersecting

stop location data availability for two example cohort pairs.
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Figure 13 - Stop location data of example cohort pairs (pairs 18 and 5)

A timeline graph shows the presence (red) and absence (white) of stop location information
between the cohorts each day before and after enrollment during the study period. Cohort
pair 18 (a) shows the availability of necessary stop location information to perform a
spatial-temporal overlap analysis, whereas pair 5 (b) shows almost no intersecting stop
location data between the participants. Source: The author, 2023.

The final six cohort pairs included two pairs with the Cohort B participants

converting to IGRA-positive status at the six-month mark, while one of these Cohort

B participants also progressed to active TB. Cohort B participants of three other pairs

remained IGRA-negative at the end of the six months, whereas the last pair’s close

contact tested IGRA-positive at the baseline, i.e., on the day of enrollment. Table 4

provides the outcome information of Cohort B participants with their respective cohort

pairs IDs.

Table 4 - Pair ID with their corresponding Cohort B outcomes
Pair ID Cohort A Cohort B Outcome of Cohort B

18 A105262 B505439 IGRA-Negative at Baseline; IGRA-positive at Month 6
32 A104180 B504249 IGRA-Negative at Baseline; Active TB at Month 6
20 A105161 B505289 IGRA-Negative at Baseline and at Month 6
22 A105192 B505339 IGRA-Negative at Baseline and at Month 6
23 A105268 B505452 IGRA-Negative at Baseline and at Month 6
7 A105198 B505350 IGRA-Positive at Baseline
Source: The author, 2023.
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The algorithm outlined in the methods section (3.3.3) was used to analyze the

spatial-temporal overlap between the index cases and their close contact of all six

pairs, hence retrieving the frequency of encounters and the time spent together

between the participants in each cohort pair.

The close contact from cohort pair 18, initially IGRA-negative at enrollment,

converted to IGRA-positive by the end of the sixth month. Figure 14a shows this

Cohort B individual spent over 150 hours with the index case during the two months

after enrollment. Notably, the potential for transmission could have existed before the

enrollment, as the weekly time spent together between the participants was as high

as 90 hours just before the enrollment began. This total duration of exposure

observed has previously been identified as a significant predictive factor for the onset

of latent tuberculosis infection (REICHLER et al., 2020). Interestingly, there was a

decline in hours spent together immediately after the enrollment, suggesting that the

active TB participant may have been isolated from the close contact during this

period.

The close contact of pair 32, who developed active TB, spent an average of

150 hours every week with the index case throughout the study period (Figure 14b).

Firstly, this high spatial-temporal overlap between the participants demonstrates an

elevated level of exposure risk from the active TB patient. Such extended exposure

to frequent aerosolization of infected respiratory secretions (2005), would intensify

the degree of exposure, making the progression to active TB infection more likely

(ACUÑA-VILLAORDUÑA et al., 2018). Also, the presence of these respiratory

secretions in indoor settings, along with the poor quality of ventilation at the

encountered locations directly contribute to the transmission of TB infection (HOUK

et al., 1968; KENYON et al., 1996; MOORE et al., 1999; RILEY, 1957). It is also

important to recognize factors such as the age and immunosuppression status of the

close contacts, which further increase this risk during a potential exposure

(CARAUX-PAZ et al., 2021; HASAN et al., 2018).
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Figure 14 – Weekly time spent and frequency of encounters of converter cohorts

The graphs illustrate high hours of exposure before and after enrollment between the index
cases and close contacts of pairs 18 and 32, who converted to IGRA-positive status (one of
them also progressing to active TB) at the end of study period. Source: The author, 2023.

Close contacts in three other specific cohort pairs (20, 22, and 23) remained in

IGRA-negative status after the sixth month. As illustrated in Figure 15, the time spent

between the participants in these pairs was significantly less, ranging from no contact

to a maximum of 62 hours in total throughout the two months following enrollment.

Conversely, the close contact of pair 7, who tested IGRA-positive on the day of

enrollment, had spent over 420 hours with the corresponding index case in the month

leading up to the enrollment (Figure 16).

By using location history data from smartphones, this analysis facilitates a

digitally-based spatial-temporal contact investigation, providing a comprehensive and

quantifiable assessment of potential exposure between index cases and their close

contacts. Conventionally, this crucial contact assessment is carried out via direct

interviews of index cases or designated proxies, a method susceptible to recall bias

(2005). Furthermore, location data objectively records interactions between infected

and susceptible individuals. The speed and consistency of automated data collection
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and processing provide additional advantages, enabling a more time-efficient and

reliable method for contact investigation. In large outbreak settings, where

transmission is prevalent even among casual contacts (DUTHIE et al., 2008), this

digital approach proves to be a more effective method for contact investigation.

Figure 15 - Weekly time spent and frequency of encounters of non-converter cohorts

The line graphs illustrate comparatively low hours of exposure before and after enrollment
between the index cases and close contacts of pairs 20, 23 and 22, who maintained
IGRA-negative status at the end of study period. Source: The author, 2023.
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Figure 16 - Weekly time spent and frequency of encounters of already IGRA-positive cohort

The line graphs illustrate high hours of exposure a month before the enrollment between the
index case and close contact of pair 7, who tested IGRA-positive on the day of enrollment.
Source: The author, 2023.

3.4.2 Movement patterns associated with active TB patients and close contacts
A particularly salient aspect of understanding the transmission dynamics of a

human-to-human transmissible infection involves looking at the movement patterns

of index cases and their immediate contacts. Some features that precisely describe

the movement patterns relevant to TB transmission include daily commuting distance

and visits to non-home locations (BROWN et al., 2022).

At first, distance variables such as total and maximum distance traveled on

each day by the participants were calculated. Subsequently, home locations were

determined based on the clustering, frequency, and time of visitation (22:00 - 7:00

hrs) to the stop locations. The daily maximum distance traveled from home was

calculated using the identified home coordinates and other recognized stop locations

in the trajectory. Furthermore, the number of locations and unique locations visited

daily by the participants were identified.

Figures 17 and 18 show the computed mobility measurements of active TB

patients during the study period. The mobility measurements of active TB patients

illustrated in Figure 17 show a significant drop after a positive diagnosis. However,

most patients quickly rebound to previous mobility patterns in a couple of weeks. In

practice, patients diagnosed with active TB should be isolated for two weeks after

starting the relevant medication (D. AHMAD; W.K.C. MORGAN, 2000) for the

patients to become non-infectious. Contrarily, the active TB patients shown in Figure

18 recorded increased or no change in distance and visitation measurements after
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enrollment. This suggests that these patients might act as infection reservoirs and

represent potential transmission of TB.

Figure 17 – Active TB patients with decrease in mobility measures after active TB diagnosis

Drop in distance traveled and number of visitations observed each week two months before
and after active TB diagnosis. Week 0 represents the enrollment week. Source: The author,
2023.
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Figure 18 – Active TB patients with increased or no change in mobility measures after active
TB diagnosis

Increase or no change in distance traveled and number of visitations observed each week
two months before and after active TB diagnosis. Week 0 represents the enrollment week.
Source: The author, 2023.

Such drops or increases in mobility patterns have been reported during

infection outbreaks by using anonymized population mobility data (SHIBAMOTO;

HAYAKI; OGISU, 2022). Although these population-level anonymized studies help

design outbreak intervention strategies (BUCHEL et al., 2021), they are inadequate

to examine the underlying relationship between mobility and the infectious disease.

Hence, examining and correlating the mobility patterns of individual patients, along

with their diagnosis information on a large scale can offer an opportunity to predict
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crucial outcomes such as intensity of illness, TB treatment (MULHOLLAND et al.,

2023), and death by sickness (ROBSKY et al., 2020).

Two cohort B participants who progressed to active TB later during the study

period were tested IGRA-negative on enrollment day; hence, latent TB treatment not

being prescribed. As observed in Figure 19, these individuals continued their regular

mobility patterns and potentially played a primary role as superspreaders. (DU et al.,

2023) report that such latent TB-negative close contacts were more likely to be the

superspreaders during an outbreak.

Figure 19 – Mobility patterns of cohort B participants who progressed to active TB

Cohort B participants who initially tested IGRA-negative but progressed to active TB at the
end of the study period show regular moving patterns, thus likely to be superspreaders.
Source: The author, 2023.
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3.5 Conclusion
In conclusion, the present chapter provides insights into quantifying the

exposure risk between active TB patients and their immediate close contacts using

location data retrieved from smartphones. The recruited paired index and close

contact participants observed varied exposure durations based on the outcome of

close contact. Considering direct transmission as the primary risk, the time spent

together by active TB patients and close contacts, derived from location history data,

can directly correlate with the likelihood of TB transmission. Furthermore, the

computed movement patterns, such as daily commuting distance and visits,

showcase a promising approach to understanding the mobility patterns associated

with both active TB patients and their outcomes. These findings emphasize the

potential of smartphone location data in augmenting the contact investigation process

of human-to-human transmission.
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CHAPTER IV
4. SUMMARY
4.1 Overview

The present study demonstrates the overall applicability of location history

data from patients' smartphones for improving surveillance of infectious diseases.

This study mainly used the location history data digitally sourced from Google LLC,

which is widely available, focusing on malaria and tuberculosis transmission. The

methods developed, and analyses performed in this study quantify the crucial

retrospective location history of malaria patients, thus allowing the identification of

hotspot clusters in malaria-endemic regions like Manaus. This innovative approach to

pinpointing vector reservoirs extends its applicability to diseases like Schistosomiasis

and Chagas. Furthermore, the study also develops methods to implement digital

contact investigation by identifying exposure risk between active TB patients and

their close contacts. This digitally-based contact investigation method can be applied

to other human-to-human contact infections like measles and COVID-19.

Once quantified into meaningful information, this transformed location history

data retrieved from the smartphones can be effectively used with visualization tools

for real-time exploration and examination of infection transmission hotspots. Visual

exploration of the analyzed malaria patients’ data is shown in Figures 20 and 21.

OUTBREAK, an open-source disease surveillance tool, was made available at

https://outbreak.sysbio.tools/ to explore such data (Figure 22).

Figure 20 - Quantified location history data of all malaria patients in the city of Manaus

Exploration of staying point locations (red color) and moving points (orange color) of all
malaria patients on an interactive map. Source: The author, 2023.
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Figure 21 - Potential infected locations of malaria patients based on their visitation

Locations visited by all malaria patients are clustered and sized (height of the bar) based on
the visitation frequency. Source: The author, 2023.

Figure 22 – Example use of OUTBREAK tool for disease surveillance

Example GPS data uploaded and explored on OUTBREAK online tool, with street-level zoom
facility. Each GPS point can be assigned an HTML color. Source: The author, 2023.

To conclude, this crucial digital location history data from the patients'

smartphones demonstrates a robust potential use by local health and municipal

agencies for efficient real-time disease surveillance, rapid infection containment, and

implementation of infection prevention programs.
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4.2 Limitations
4.2.1 Data privacy

Ensuring the privacy of patients is a critical aspect of studies utilizing GPS

data for the surveillance of infectious diseases. While the present study has taken

steps to anonymize patients' location data, it is crucial to acknowledge that extracting

home location information introduces a potential risk of patient identification.

Nevertheless, it is essential to note that gathering such information is a standard

practice during patient interactions at hospitals. Employing GLH data in the

surveillance process complements the routine data collection process by providing a

more reliable and timely strategy for analyzing transmission. However, this sensitive

information must be restricted to a specific group of experts directly engaged in

infection control efforts and, thus, carefully monitored. This restrictive access is vital

in balancing the advantages of data-driven insights and the imperative to safeguard

patient privacy. Furthermore, stringent confidentiality measures must be rigorously

implemented, examined, and approved by the ethical committee, including secure

data storage.

4.2.2 Data size, parameter selection, and analysis
The small data size was one of the major limiting factors in the present study.

Out of eight hundred individuals reporting to FMT-HVD with malaria symptoms, only

two hundred and fifty eventually participated in the study. One primary reason was

that the patient lacked a mobile phone with a GPS facility. Other reasons include

technical issues during the data acquisition; for example, the participant needed to

remember their Google login password for authentication. Moreover, the retrieved

GLH file often lacked the necessary data, for instance, data falling within the

exposure and symptomatic timeline and GPS points with reasonable accuracy. Since

the patient's data was excluded in these cases, retrieving adequate data for

identifying mosquito breeding hotspots can remain challenging. In the tuberculosis

pilot study, out of forty-three recruited pairs, only six had the necessary data to

perform the digital contact investigation. While the derived hours of exposure risk

between these close contacts and index cases across all categories conform to the

previous epidemiological studies, more data pair participants are required to validate

these findings at the clinical level. Despite the current limitations, the existing data
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represents a step forward in transmission hotspot identification and contact

investigation.

Parameter selection, such as the maximum distance to be considered as

clustering radius to cluster stop points and the number of patients in a cluster to be

considered a hotspot, play a crucial role in determining the effectiveness of the

methods and findings of the present study. The parameters chosen in the current

study were determined based on the present literature, practical feasibility, and

alignment with the objectives. When calculating the clustering score to prioritize the

hotspot clusters, the weights were arbitrarily chosen based on the importance of the

variable determined from the previous studies. As more patient data becomes

available, future studies may implement iterative methods for selecting optimal

parameters, thus maximizing the utility of the collected location history data.

In addition, more variables, such as the presence of stagnant water bodies

and forest cover around the identified clusters, can be incorporated into the hotspot

cluster scoring. Given the coordinates of the clusters, the presence of these

environment features near the clusters can be retrieved from the Open Street Maps

or Google Maps APIs. However, this information may only sometimes be available

through the APIs and may lead to inaccuracies in cluster scoring. Hence, domain

experts should develop more advanced methods to identify these environmental

features by pattern recognition from satellite map images. In the case of digital

contact investigation, the patients' and their close contacts' diagnostic and hospital

data can be integrated into the analysis to estimate health outcomes. Nevertheless,

such data integration is practical and definitive only in full-length, comprehensive

studies with more participants.

In summary, despite the existing constraints, this study marks progress in

pinpointing transmission hotspots and recognizing mobility patterns contributing to

infection and conducting digital contact investigations. With ongoing technological

advancements and expanding location mobility data sources, forthcoming research

should prioritize refining methodologies, addressing patients' data privacy issues, and

broadening the spectrum of variables considered.
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