• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.88.2010.tde-21112010-084639
Document
Author
Full name
Wellington Massayuki Kanno
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2010
Supervisor
Committee
Souza, Milton Ferreira de (President)
Boschi, Anselmo Ortega
Debs, Mounir Khalil El
Ghavami, Khosrow
Rodrigues, José de Anchieta
Title in Portuguese
Propriedades mecânicas do gesso de alto desempenho
Keywords in Portuguese
Água confinada
Gesso
Módulo de Weibull
Reforço por fibras
Resistência mecânica
Tenacidade
UCOS
Abstract in Portuguese
O método Umedecimento, Compactação e Secagem (UCOS) (1, 2, 3) produz, a partir de gesso e água, um material de elevada resistência mecânica: até 90 MPa na compressão. Este trabalho apresenta o estudo do comportamento mecânico deste material e como a água, a temperatura, as impurezas e a microestrutura influenciam no seu comportamento. Durante o estudo da adesão intercristalina, foi encontrada presença de água confinada e que é responsável por grande parte da resistência mecânica. Para auxiliar o estudo, foi desenvolvido outro método: Empacotamento Direto do Dihidrato (EDD). Nesta metodologia, é produzido um material com a mesma resistência, porém com algumas diferenças no comportamento mecânico diferente. Através da elevada resistência mecânica alcançada pelos métodos UCOS e EDD, as aplicações do gesso podem ser ampliadas desde que o gesso conformado por tais métodos possuam confiabilidade e segurança. Para avaliar as propriedades mecânicas, a confiabilidade e a segurança de tal material, realizou-se o estudo dos mecanismos tenacificadores e da mecânica da fratura. Os mecanismos tenacificadores estudados neste trabalho são: controle da microestrutura (aumento da superfície de ruptura), introdução de fibras poliméricas (distribuição da tensão na ponta da trinca, ramificação da ponta da trinca e contenção da abertura da trinca) e introdução de adesivo polimérico (melhora a adesão entre cristais e distribui melhor a tensão na ponta da trinca). Os resultados mostram que os compósitos de gesso reforçados com fibras poliméricas e/ou adesivo polimérico possuem elevada resistência e comportamentos mecânicos distintos para cada tipo de compósito e método de conformação. Concluímos que, com o conhecimento adquirido, é possível intervir no processamento e na microestrutura, além de poder incorporar elementos a esse material para atender às condições de uma determinada aplicação
Title in English
Mechanical properties of high strength gypsum
Keywords in English
Confined water
Fiber reinforcement
Mechanical strength
Plaster
Toughening
UCOS
Weibull modulus
Abstract in English
The humidification, compaction and drying (Umedecimento, Compactação e Secagem UCOS) (1, 2, 3) method produces a high strength material from plaster and water: up to 90 MPa in compression. This work presents the study of mechanical properties of this material and how water, temperature, impurity and microstructure influence in its behavior. During the study of the intercrystalline adhesion force, we found the presence of confined water and that it accounts for great part of the strength. In order to aid the study, another method was developed: Direct Packaging of the Dihydrate (Empacotamento Direto do Dihidrato EDD). In this methodology, it produces a material with the same resistance, but with some difference in the mechanical behavior. Through the high strength reached by the UCOS and EDD methods, the plaster applications can be extended, since the set material by these methods are reliable and safe. In order to evaluate the mechanical properties, the reliability and the safety of these pieces, we performed the study of the fracture mechanics and the fracture toughening mechanisms. In this work, the studied toughening are: microstructure control (enlargement of the fracture surface), polymeric fiber reinforcement (tension distribution on the fracture tip, fracture tip deflection, and fiber bridging), and polymer adhesive reinforcement (they enhance the adhesion between crystals and better distribute the tension on the fracture tip). The results show that the plaster composites of polymeric fibers and/or polymer adhesive have high resistance, and different mechanical behaviors for each type of composite and setting method. Based on the acquired knowledge, we conclude that it is possible to interfere on the processing and on the microstructure, as well as reinforcements in this material to satisfy the needs of a specific application
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2010-12-20
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.