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RESUMO 

OLIVEIRA-FILHO, E.R. Melhoramento da eficiência de conversão de xilose e co-

substratos em copolímeros híbridos P(3HB-co-3HAMCL) por Burkholderia 

sacchari. 2021; 154 f. Tese (Doutorado em Biotecnologia) – Instituto de Ciências 

Biomédicas, Universidade de São Paulo, São Paulo, 2021. 

 

Burkholderia sacchari LFM101, linhagem isolada de solo de canavial do interior do 
Estado de São Paulo, está sendo proposta como plataforma bacteriana para a 
produção biotecnológica de bioprodutos. LFM101 se destaca por sua capacidade de 
metabolizar ampla gama de substratos, como açúcares provenientes de hidrolisados 
hemicelulósicos e diversos ácidos graxos. Esta linhagem bacteriana vem sendo 
estudada por diversos grupos de pesquisa por produzir eficientemente poli(3-
hidroxibutirato) [P(3HB)], biopolímero biocompostável e biocompatível da família dos 
polihidroxialcanoatos (PHA), além de outros bioprodutos como ácido xilônico e xilitol. 
A produção desses biopolímeros vem sendo explorada mundialmente como 
alternativa ao uso de plásticos derivados de petróleo, devido aos diversos problemas 
ambientais causados pelo seu uso. B. sacchari é também capaz de incorporar outros 
monômeros na cadeia polimérica nascente, como 3-hidroxivalerato (3HV), 4-
hidroxibutirato (4HB) e 3-hidroxihexanoato (3HHx) quando suprida com substratos 
relacionados. Copolímeros de 3HB e 3HHx têm sido descritos como promissores para 
a área médica por suas propriedades termomecânicas. Porém, a produção industrial 
de PHA ainda não é completamente viável devido aos custos relacionados às 
matérias-primas utilizadas e etapas de purificação. Visando contribuir para a produção 
industrial de PHA a partir de xilose, matéria-prima barata e abundante, utilizando B. 
sacchari, neste trabalho foram abordados os seguintes tópicos: (1) o efeito de 
diferentes limitações nutricionais sob o crescimento e acúmulo de P(3HB) em 
biorreator suprido com xilose como única fonte de carbono; (2) a construção de 
linhagens recombinantes, seu teste em relação a velocidade específica de 
crescimento em xilose e eficiência de conversão de hexanoato em 3HHx, assim como 
a produção em biorreator de copolímeros contendo diferentes frações molares de 
3HHx e a caracterização dos copolímeros produzidos; (3) o teste dos diferentes 
copolímeros produzidos por B. sacchari como materiais para fabricação de 
nanopartículas, testadas in vitro quanto a sua citotoxicidade e capacidade de drug 
delivery. 
 

Palavras-chave: Xilose. Burkholderia sacchari. Bipolímeros. P(3HB-co-3HHx). 

Nanopartículas. 

  



ABSTRACT 

OLIVEIRA-FILHO, E.R. Improvement of the conversion efficiency of xylose and 

co-substrates to P(3HB-co-3HAMCL) copolymers by Burkholderia sacchari. 2021. 

154 p. Doctoral Thesis (Biotechnology) - Instituto de Ciências Biomédicas, 

Universidade de São Paulo, São Paulo, 2021. 

 

Burkholderia sacchari LFM101, an isolated strain of sugarcane soil in the interior of the 

State of São Paulo, is being proposed as a bacterial chassis for the biotechnological 

production of bioproducts. LFM101 stands out for its ability to metabolize a wide range 

of substrates, such as sugars from hemicellulosic hydrolysates and various fatty acids. 

This bacterial strain has been studied by several research groups for efficiently 

producing poly(3-hydroxybutyrate) [P(3HB)], a biocompostable and biocompatible 

biopolymer from the family of polyhydroxyalkanoates (PHA), in addition to other 

bioproducts such as xylonic acid and xylitol. The production of these biopolymers has 

been explored worldwide as an alternative to the use of oil-based plastics, due to the 

well-known environmental problems caused by their use. B. sacchari is also capable 

of incorporating other monomers into the nascent polymeric chain, such as 3-

hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxyhexanoate (3HHx) 

when co-supplied with related substrates. Copolymers of 3HB and 3HHx have been 

described as promising for the medical field due to their thermomechanical properties. 

However, the industrial production of PHA is not yet completely viable due to the costs 

related to the raw materials used and the purification steps. In order to contribute to 

the industrial production of PHA from xylose, a cheap and abundant raw material, using 

B. sacchari, the following topics were addressed in this work: (1) the effect of different 

nutritional limitations on the growth and accumulation of P(3HB) in a fed-batch 

bioreactor supplied with xylose as the sole source of carbon; (2) the construction of 

recombinant strains, their evaluation regarding to the specific growth rate in xylose and 

to hexanoate conversion efficiency in 3HHx, as well as the production in fed-batch 

bioreactor of copolymers containing different 3HHx molar fractions, and the 

characterization of the produced copolymers; (3) the test of the different copolymers 

produced by B. sacchari as materials for the manufacture of nanoparticles, tested in 

vitro for their cytotoxicity and drug delivery capacity. 

Keywords: Xylose; Burkholderia sacchari; Biopolymers; P(3HB-co-3HHx); 

Nanoparticles. 

 

  



1 INTRODUCTION 

Modern society is highly dependent on the use of plastic materials. Plastics are 

used from the manufacturing packages to noble materials, such as suture lines, 

prostheses, and surgical supplies, for example. Although conventional oil-based 

plastics are non-biodegradable, they are used in huge quantities and not recycled in 

most countries, therefore its residues are accumulating in the environment. Some eco-

friendly materials have been proposed as alternatives to oil-based plastics, such as 

polyamines, polycaprolactones, polylactic acid, gutta-percha, and 

polyhydroxyalkanoates (PHA). 

The PHA are natural biopolyesters naturally produced and accumulated by 

bacterial and archaeal strains in specific conditions. Intracellular PHA granules serve 

as an energy and reducing power source for the microorganism. PHA are truly green 

plastics, since they can be produced from different carbon sources, including waste 

biomass, and are fully biodegradable in the environment (under adequate pH, 

humidity, temperature) by depolymerases, being converted to CO2 and H2O or to CH4. 

PHA biosynthesis is mainly influenced by three factors: (a) the supplied carbon 

source; (b) the bacterial metabolic pathways responsible for converting substrates or 

co-substrates to 3-hydroxy acid monomers; (c) the PHA synthase, the key enzyme in 

PHA biosynthesis. Accordingly, short- (HASCL: 3 to 5 carbon atoms) or medium-chain-

length (HAMCL: 6 to 14 carbon atoms) monomers can be produced and incorporated 

into the nascent PHA polymeric chain. PHA copolymers are composed of short and 

medium-chain-length monomers, and can present improved properties, as being less 

brittle and more elastomeric, which favors their use to manufacture different products. 

In fact, the copolymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate 

(3HHx) [P(3HB-co-3HHx)] was indicated as the most promising PHA for biomedical 

applications. 

However, the PHA production costs are still too high for industrial applications, 

mainly affected by the used carbon source, which represents from 30 to 50% of the 

final costs. In this scenario, the use of byproducts, especially lignocellulosic 

hydrolysates, came out as an alternative production route. A few bacterial strains are 

able to produce these interesting copolymers from cheap substrates as the main 

carbon source. One of the most interesting of them is Burkholderia sacchari LFM101. 



Burkholderia sacchari was isolated in the 1990s from sugarcane crop soil in 

Brazil, in a joint research project aiming to identify microorganisms capable of 

producing new products from sucrose. The isolate presented high yields to convert 

sucrose to poly(3-hydroxybutyrate), also assimilating 3HV with spectacular efficiency 

from propionate. Later, LFM101 potential to produce PHA with different monomeric 

compositions, and other value-added industrially relevant biomolecules, like xylitol and 

xylonic acid, was evidenced. Although a non-model bacterium, B. sacchari is currently 

studied by different research groups worldwide distributed (Brazil, Portugal, Austria, 

Czech Republic, Ireland, the United States of America, Mexico, Ecuador, Canada and 

Oman) and proposed as a bacterial chassis to produce PHA and other bioproducts. B. 

sacchari can catabolize different carbon sources, is resistant to some of the growth 

inhibitors present in lignocellulosic hydrolysates, does not present virulence-

associated gene sequences, and is sensitive to clinically relevant antibiotics. 

In this context, the aim of the research presented in this thesis was to study the 

production of PHA copolymers by B. sacchari and define its applications, through (1) 

investigate nutrient limitations role in growth and PHA production in fed-batch 

cultivations; (2) construct recombinants with improved xylose catabolism and P(3HB-

co-3HHx) production, aiming to tailor the 3HHx molar fraction in fed-batch cultivations; 

(3) apply different P(3HB-co-3HHx), with various 3HHx molar fractions, produced by 

recombinant B. sacchari from xylose and hexanoate as materials to produce 

nanoparticles. 



7 CONCLUSIONS AND FUTURE PERSPECTIVES 

The main conclusions obtained in this work are the following: 

a. The great potential of B. sacchari to produce PHA and other fine chemicals is 

presented, also as a source of genes and for the identification of new pathways. 

Its integration to biorefineries is a promising, but some aspects should be the 

subject to future studies, such as the use of alternative bioreactors and alternative 

substrates, obtaining clones resistant to toxic compounds present in 

hemicellulose hydrolysates, and extending the knowledge on the metabolic routes 

and cultivation conditions to produce new fine chemicals. 

b. In fed-batch bioreactor using xylose as the sole source of carbon, phosphorus 

concentration is a defining factor to achieve higher growth rates on xylose. 

Phosphorus limitation (nitrogen excess) resulted in P(3HB) concentration, 

although polymer accumulation phase started later. PHO regulon expression 

studies would reveal new aspects regarding phosphate assimilation in B. 

sacchari. The accumulation of polyphosphate by B. sacchari is also a hot-topic to 

be studied in the next years. 

c. Recombinant B. sacchari expressing genes encoding for xylose catabolism 

enzymes and heterologous PHA biosynthesis genes was described as a good 

strategy to produce of P(3HB-co-3HAMCL) containing from different HAMCL molar 

fractions. The biopolymers produced by B. sacchari demonstrated interesting 

characteristics to be applied as biomaterials. 

d. PHA copolymers containing different 3HAMCL molar fractions were successfully 

tested to produce monodisperse nanoparticles using a highly reproducible 

technique. The encapsulation of different hydrophobic drugs was successfully 

achieved. In vivo application of the PHA produced by B. sacchari is an ambitious 

perspective contribution for the application of PHA biopolyesters as 

nanomaterials. 
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