• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.87.2019.tde-13012021-163404
Document
Author
Full name
Adriana Sanches da Silva
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Alcalde, Felipe Santiago Chambergo (President)
Oliveira, Luisa Helena dos Santos
Rocha, Adriana Rios Lopes
Salinas, Roberto Kopke
Title in Portuguese
Estudo e caracterização da enzima acetil xilano esterase de Thermobifida fusca para degradação de biomassa
Keywords in Portuguese
Thermobifida fusca
Acetil xilano esterase
Biomassa
Cinética enzimática
Xilano desacetilado
Abstract in Portuguese
A hemicelulose é o segundo polissacarídeo mais abundante na parede celular vegetal, apresentando uma estrutura principal de polímero com ramificações de açúcares como galactose, arabinose e outros monômeros como acetato, ácido ferúlico, entre outros. A hidrólise enzimática de hemicelulose permite obter açúcares de 5 ou 6 carbonos que podem ser fermentados para obtenção de produtos de interesse biotecnológico, além de expor a celulose à ação enzimática. Este trabalho caracterizou uma enzima codificada por um gene identificado na análise do genoma da bactéria termofílica Thermobifida fusca YX (GenBank ID: CP000088) como Esterase/Lipase, (GenBank: AAZ54193.1) que contém 957 pb e codifica uma proteína de 318 aminoácidos e 32,9 kDa, potencialmente uma acetil xilano esterase, que cliva o enlace éster do xilano acetilado, liberando ácido acético e facilitando a ação de outras enzimas envolvidas na degradação dos polissacarídeos vegetais. A enzima apresenta os aminoácidos S155, D256 e H286 do sítio catalítico das acetil xilano esterase, a fenda oxiânion e um pentapeptídeo altamente conservados, sendo clonada, expressa, purificada e caracterizada funcionalmente. A atividade da proteína purificada por cromatografia de afinidade foi determinada com o substrato p-nitrofenil butirato demonstrando estabilidade térmica nas temperaturas de 30°C e 40°C por 72 horas, ativa no pH entre 4 e 9 a 30°C. Os parâmetros cinético enzimáticos foram determinados para os substratos p-nitrofenil acetato (km = 2,67mM; kcat = 1,59 s-1 e kcat/km = 0,59 s-1.mM-1), p-nitrofenil butirato (km = 1,07mM; kcat = 0,97 s-1 e kcat/km = 0,9 s-1.mM-1), p-nitrofenil octanoato (km = 1,44mM; kcat = 0,4 s-1 e kcat/km = 0,28 s-1.mM-1) e 1-naftil acetato (km = 12,39mM; kcat = 0,358 s-1 e kcat/km = 0,029 s-1.mM-1). A desacetilação dos substratos xilano acetilado, triacetina e α- D Glicose pentaacetato comprovou que a enzima é uma acetil xilano esterase (EC 3.1.1.72), sendo denominada TfAXE, pertencente as famílias 1, 2, 3, 4, 5, 6, 7 e 12 na classe das carboidrato esterases, no banco de dados CAZy e cuja propriedades apontam suas potenciais aplicações biotecnológicas.
Title in English
Study and Characterization of the Enzyme Acetylxylan Esterase from Thermobifida fusca for biomass degradation.
Keywords in English
Acetylated xylan deacetylation
Acetylxylan esterase
Biomass
Enzymatic kinetics
Thermobifida fusca
Abstract in English
Hemicellulose is the second most abundant polysaccharide in the plant cell wall, presenting a main polymer structure with sugar branches such as galactose, arabinose and other monomers like acetate, ferulic acid, among others. Hemicellulose enzymatic hydrolysis yields 5 or 6 carbon sugars that can be fermented to obtain products of biotechnological interest, besides exposing cellulose to enzymatic action. This work characterized an enzyme encoded by a gene identified in the thermophilic bacterial genome analysis Thermobifida fusca YX (GenBank ID: CP000088) as Esterase / Lipase, (GenBank: AAZ54193.1) that contains 957 bp and encodes a protein of 318 amino acids and 32.9 kDa, potentially an acetyl xylan esterase, which cleaves the acetylated xylan ester linkage, releasing acetic acid and facilitating the action of other enzymes involved in the polysaccharides plant degradation. The enzyme has, highly conserved, the amino acids S155, D256 and H286 from the catalytic site of acetyl xylan esterase, the oxyanion hole and a pentapeptide, being cloned, expressed, purified and functionally characterized. The activity of purified protein by nickel affinity chromatography was determined with the p-nitrophenyl butyrate substrate demonstrating thermal stability at temperatures of 30°C and 40°C for 72 hours, active at pH between 4 and 9 to 30°C. Enzymatic kinetic parameters were determined for p-nitrophenyl acetate (km = 2,67mM; kcat = 1,59 s-1 e kcat/km = 0,59 s-1.mM-1), p-nitrophenyl butyrate (km = 1,07mM; kcat = 0,97 s-1 e kcat/km = 0,9 s-1.mM-1)), p-nitrophenyl octanoate (km = 1,44mM; kcat = 0,4 s-1 e kcat/km = 0,28 s-1.mM-1) and 1-naphthyl acetate (km = 12,39mM; kcat = 0,358 s-1 e kcat/km = 0,029 s-1.mM-1) substrates. Deacetylation of the acetylated xylan, triacetin and α-D - Glucose pentaacetate substrates proved that the enzyme is an acetyl xylan esterase (EC 3.1.1.72), being called TfAXE, belonging into families 1, 2, 3, 4, 5, 6, 7 and 12 of the carbohydrate esterases class in the CAZy database, whose properties point to their potential biotechnological applications.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-10-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.