• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.85.2021.tde-23062021-144310
Documento
Autor
Nombre completo
Bruna Mota Terra
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2021
Director
Tribunal
Mesquita, Roberto Navarro de (Presidente)
Barbosa, Paulo Roberto
Pardini, Luiz Claudio
Título en portugués
Caracterização da etapa de estabilização do processo produtivo de fibra de carbono a partir de poliacrilonitrila utilizando algoritmos inteligentes
Palabras clave en portugués
estabilização térmica
fibra de carbono
mapas auto-organizáveis
poliacrilonitrila
rede neural
Resumen en portugués
Nos últimos anos, os materiais compósitos vêm expandindo, cada vez mais, sua aplicação em diversos segmentos, e em especial, os materiais compósitos poliméricos reforçados com fibra de carbono, demonstram ser um material estrutural de elevado desempenho que combina baixa massa específica e estabilidade mecânica. A produção de fibra de carbono, utilizando a poliacrilonitrila como precursor, possui diversas etapas em sequência: polimerização, fiação, estabilização térmica, carbonização e tratamento superficial. Em função da elevada duração e da importância das reações que ocorrem durante a estabilização, esta é considerada a etapa mais crítica do processo, na qual ocorre a formação do anéis aromáticos que influenciam diretamente na estrutura final da fibra de carbono e, consequentemente, na qualidade deste material. Visando otimizar o desenvolvimento deste material, bem como obter a redução do custo de produção, o presente trabalho realizou a modelagem computacional da etapa de estabilização térmica utilizando algoritmos inteligentes. Para obter o modelo, foi realizada uma prévia análise qualitativa utilizando as variáveis de processo e de qualidade dos materiais envolvidos na produção destas fibras. Esta análise inicial utilizou Mapas Auto-Organizáveis, a qual baseia-se em um treinamento não-supervisionado desta rede neural artificial. Posteriormente, foi utilizado treinamento supervisionado em uma rede neural feed-forward com retropropagação (backpropagation) para a análise quantitativa. A partir destas análises, foi possível simular a etapa de estabilização térmica de uma planta, em escala laboratorial, de produção de fibra de carbono, obtendo-se resultados com erros relativos de 2,98±0,01% e 2,48±0,02% para os parâmetros de Densidade Volumétrica e do Índice de Conversão por Espectrometria por Infravermelho com Transformada de Fourier (FTIR), quando comparados com os resultados experimentais.
Título en inglés
Characterization of polyacrylonitrile thermal stabilization process for carbon fiber production using intelligent algorithms
Palabras clave en inglés
carbon fiber
neural network
polyacrylonitrile
self-organizing maps
thermal stabilization
Resumen en inglés
Composite materials have widened their application areas in recent years. The polymeric composite materials reinforced with carbon fibers are a high-performance structural material which merges low weight and mechanical stability. The carbon fiber production using polyacrylonitrile precursor has many stages such as polymerization, spinning, thermal stabilization, carbonization, and surface treatment. Due to long-term and the main stability reactions, this is the critical stage of the carbon fiber process, which produces the aromatic rings, responsible for the carbon fiber structure and, therefore, the quality of this material. A thermal stabilization model using intelligent algorithms is proposed in order to optimize this material development process and to obtain possible production cost reduction. A qualitative analysis using Self-Organizing Maps based on quality and process variables of the materials involved in fiber production was initially performed. Thereafter a supervised training with feedforward backpropagation neural network was used for quantitative analysis. Based on this last analysis, it was possible to simulate the thermal stabilization carbon fiber process for a laboratory-scale production plant, which resulted in 2,98±0,01% and 2,48±0,02% mean relative errors to experimental results of Volumetric Density and FTIR Conversion Index parameters.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-06-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.