• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.82.2012.tde-08012013-110054
Document
Auteur
Nom complet
Silvio Moreto Pereira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2012
Directeur
Jury
Marques, Paulo Mazzoncini de Azevedo (Président)
Ana, Lauro Wichert
Barbosa, Marcello Henrique Nogueira
Titre en portugais
Caracterização de imagens de úlceras dermatológicas para indexação e recuperação por conteúdo
Mots-clés en portugais
Aprendizado de máquinas
CBIR
Processamento de imagens coloridas
Quantificação de cores
Reconhecimento de padrões
Recuperação baseada em conteúdo
Segmentação de imagens coloridas
Úlceras dermatológicas
Resumé en portugais
Úlceras de pele são causadas devido à deficiência na circulação sanguínea. O diagnóstico é feito pela análise visual das regiões afetadas. A quantificação da distribuição de cores da lesão, por meio de técnicas de processamento de imagens pode auxiliar na caracterização e análise da dinâmica do processo patológico e resposta ao tratamento. O processamento de imagens de úlceras dermatológicas envolve etapas relacionadas a segmentação, caracterização e indexação. Esta análise é importante para classificação, recuperação de imagens similares e acompanhamento da evolução de uma lesão. Este trabalho apresenta um estudo sobre técnicas de segmentação e caracterização de imagens coloridas de úlceras de pele, baseadas nos modelos de cores RGB, HSV, L*a*b* e L*u*v*, utilizando suas componentes na extração de informações de textura e cor. Foram utilizadas técnicas de Aprendizado de Máquina e algoritmos matemáticos para a segmentação e extração de atributos, utilizando uma base de dados com 172 imagens. Nos testes de recuperação, foram utilizadas diferentes métricas de distância para avaliação do desempenho e técnicas de seleção de atributos. Os resultados obtidos evidenciam bom potencial para apoio ao diagnóstico e acompanhamento da evolução do tratamento com valores de até 75% de precisão para as técnicas de recuperação, 0,9 de área embaixo da curva receiver-operating-characteristic na classificação e 0,04 de erro médio quadrático entre a composição de cores da imagem segmentada automaticamente e a segmentada manualmente. Nos testes utilizando seleção de atributos, foi observado uma redução nos valores de precisão de recuperação (60%) e valores similares nos tetes de classificação (0,85).
Titre en anglais
Characterization of dermatological ulcers images for indexing and content-based retrieval
Mots-clés en anglais
CBIR
Color image processing
Color quantification
Content-based retrieval
Machine learning
Pattern recognition
Segmentation of color images
Skin ulcers
Resumé en anglais
Skin ulcers are caused due to deficiency in the bloodstream. The diagnosis is made by a visual analysis of the affected area. Quantification of color distribution of the lesion by image processing techniques can aid in the characterization and response to treatment. The image processing steps involves skin ulcers related to segmentation, characterization and indexing. This analysis is important for classification, image retrieval and similar tracking the evolution of an injury. This project presents a study of segmentation techniques and characterization of color images of dermatological skin ulcers, based on the color models RGB, HSV, L*a*b* and L*u*v*, using their components in the extraction of texture and color information. Were used Machine Learning techniques, mathematical algorithms for segmentation and extraction of attributes, using a database containing 172 images in two versions. In recovery tests were used different distance metrics for performance evaluation and techniques of features selection. The results show good potential to support the diagnosis and monitoring of treatment progress with values up to 75% precision in recovery techniques, 0.9 area under the curve receiver-operating-characteristic) in classification, and 0.04 mean square error between the color composition of the automatically segmented image and the manually segmented image. In tests utilizing feature selection was observed a decrease in precision values of image retrieval (60%) and similar values in the classification's tests (0.85).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-11-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.