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Abstract 

W e present here some highlights o f the Theory o f Modal Functions, and in 

particular an important result in the Theory of Systems of Modal Functions: the 

determination o f the pre-complete systems o f modal functions. This result is the modal 

(S5) correlate of Post's criterion of (truth-)functional completeness, and was originally 

shown by the Moldavian logician M. F. Ratsa (who published it in a paper written in 

Russian). We present Ratsa's theorems in a framework slightly different from bis, and 

we provide corrections o f a few small errors o f the original version. 

Resumo 

Apresentamos alguns fatos relevantes da Teoria das Funções Modais, e em 

particular um resultado importante na Teoria dos Sistemas de Funções Modais: a 

determinação dos sistemas pré-completos de funções modais. Esse resultado é o 

correlato modal (em S5) do critério de completude (vero-)funCional de Post, e é 

originalmente devido ao lógico moldávio M. F. Ratsa (que o publicou em um artigo em 

russo). Nós apresentamos os teoremas de Ratsa em um contexto ligeiramente 

modificado, e fornecemos correções de alguns pequenos erros do artigo original. 
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Introduction 

'Denying the negation is affirming, but affirming the affirmation is not denying'. 

This is a sort of slogan that I made up in order to try to explain to non-logicians what 

my research is about. It may sound like a silly slogan, but it somehow captures the spirit 

o f the research: the study o f the relations o f defmability ( or un-defmability) between 

logical connectives. Of course the simplicity o f the example is not always reflected in 

the relations o f definability ( or un-defmability) among logical connectives, and it has 

also the problem of dealing only with truth-functions, while the research is majorly 

concemed with modal functions. But, as a slogan, it works. Those who are interested in 

a deeper consideration about the research are readily introduced to the main concepts of 

the theory, viz. the concepts oftruth-function, modal function, systems offunctions, and 

so on. To those who are really interested in the research I recommend reading this 

thesis. 

The most important content in this thesis is a quite complex and very recondite 

result in the theory of systems ofmodal functions, dueto the Moldavian logician M. F. 

Ratsa: the determination of the pre-complete systems of modal functions. This result 

was pursued by me since my Master's Thesis, and I've spent a long time trying to 

achieve it with my own resources, since at that time I was unaware that the question of 

the determination of the pre-complete systems of modal functions was already solved. 

In fact I was unaware that it was ever posed by someone other than me and my 

supervisor, but it turns out that while the question wasn't (as far as I know) ever posed 

or solved in print in the English language ( or in Portuguese ), both things were done in 

Russian. 

The presentation o f the result here follows very closely its Russian counterpart, 

but it isn't exactly a translation, since I have very little knowledge of Russian. What I 

could do was use some automatic translation tools, and the help of friends and 

colleagues, in order to make sense of the whole bunch of formulas and matrices that 

abound in the text. While this was done I carefully checked every lemma and theorem, 

and, although my version is not a proper translation, I'm pretty sure that the 'logical' 

content o f the original material is present here. 
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Since the result is deeply embedded in the Theory of Systems of Modal 

Functions, its significance can't be properly appreciated without a good grasp of this 

theory, and for that reason I will state some of its basic defmitions and a few other 

results. 

I would like to give thanks to some people who helped me while I was writing 

this thesis. To my supervisor, Roderick Batchelor, for having introduced me to the 

Theory of Logical Functions and for being such a careful supervisor; to Irina Starikova 

and Ana Livia Plurabelle Esteves for helping me with the text in Russian; to Vitoria 

Barbosa for the working environment that her h ouse provided during good part o f this 

research; and to ali colleagues in the logic seminars at the Philosophy Department o f the 

University o f São Paulo, for the companionship during a research that could be lonely if 

I wouldn't share it with them. To CAPES, for the scholarship. To Melina Bertholdo, for 

the love and support during these last years. 
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Some essential definitions and some basic results 

The language o f modal propositionallogic S5 may be taken as consisting o f the 

connectives --., A, D (standing for negation, conjunction, and necessity) and 

propositional variables PI. p2, p3, ... 

The formulas of S5 are defmed in the usual way: propositional variables are 

formulas and, if <p and 'I' are formulas, so are -.<p, ( <p 1\ '!'), and D<p. 

A model for classical propositional logic attributes to each propositional 

variable a truth-value. Now, given a sequence of specific propositions, it might be the 

case that not every attribution oftruth-values for the propositions is really possible (e.g.: 

if p is o f the form r 1\ s, and q is o f the form r 1\ --.s, it is impossible to attribute truth to 

both p and q). But whichever are the possible attributions of truth-values for the 

sequence, they should be of course a subset of the set of ali attributions, and among . 

these one must correspond to the actual truth-value of the sequence of propositions. 

This inspires the following notion o f model for S5: 

We will say that a model M for classical propositional logic is a function from 

the propositional variables into {T, F}. A model for S5 is a non-empty set of models for 

classical propositionallogic with a designated element, i.e. a pair (W, w0) where w0 E 

W c {M: M is a model for classical propositionallogic}. 

(This notion of model is basically the restriction, for propositional S5, of the 

semantics presented in Kripke 1959. In this paper Kripke shows the completeness and 

soundness ofthis semantics for S5.) 
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A model (W, wo) induces a valuation, i.e. a function (W, wot from the formulas 

o f S5 into {T, F}, by the following clauses: 

If cp is a propositional variable p, (W, w0t(cp) = T iffw0(p) = T. 

(W, wot(-.cp) = T iff (W, wot(cp) =F. 

(W, wot(cp 1\ '!') = T iff(W, wot(cp) = T and (W, wot('l') = T. 

(W, w0)+(Dcp) = T iff (W, w)+(q>) = T for every w E W. 

The valuation of a sequence o/formulas (W, wot((q>I, ... , Cf>n)) is understood as 

((W, wot(Cf>I), ... , (W, wot(cpn)). 

It is clear from these clauses that, in order to evaluate a formula, ali we need to 

know is the 'behavior' ofthe model w.r.t. the variables that occur in the formula. If q>(p1 

. .. Pn) is a formula with n propositional variables we can evaluate it considering: 

(i) The n-sequence of truth-values that the model attributes to the sequence (p~, 

··· 'Pn). 

(ii) The set of n-sequences of truth-values that the models (W, w) (w E W) 

attribute to the sequence (p1, ... , Pn). 

If (W, wot(cp) = T, we say that (W, wo) satisfies q>. 

If (W, wot(cp) = T for every (W, w0), we say that cp is valid, and we write F= q>. 

We call an n-sequence of truth-values an n-ary truth-value, and we call a non­

empty set o f n-ary truth-values an n-ary purely moda! value. 
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A n-ary moda/ value is a non-empty subset o f {T, F} n with a designated element, 

i.e. a pair (W, wo) where wo E W ç {T, F}n. (Intuitively, w0 stands for the n-ary truth­

value that the variables actually assume, while W stands for the set of n-ary truth-values 

that the variables could possibly assume.) 

A moda/ value is an n-ary moda! value, for some n. 

An n-ary moda/ function f is a function from n-ary moda! values to truth values. 

An n-ary modal function is purely moda/ if its value 'depends only on W', i. e. if 

for every non-empty W c {T, F} n, f(W, w) = f(W, v) for all w ::1:- v E W. 

The set o f all n-ary modal functions will be called j/. 

A modal function is an n-ary modal function, for some n. 

The set of a// modal functions will be called p. 

(This and much of the other notation and terminology in this section is taken 

from Batchelor 2017.) 

W e can define in a natural way the notion of a formula expressing a modal 

function, so that every formula of S5 expresses some modal function: a formula <p with 

n variables will express the n-ary modal function that gives T precisely to the n-ary 

modal values that satisfy <p. We will see that the converse is also true, i.e. that every 

modal function is expressed by some formula ofS5. 

Modal values and modal functions find a perspicuous representation in moda/ 

tables. A modal table is like a truth-table, except that it is constituted o f severa! sub­

tables. Each sub-table is also like a truth-table, except that some (but not ali) o f the rows 

may be missing. The rows in a modal table for n variables are constituted o f n-ary truth­

values. The rows present in a sub-table indicate which attributions of values to the 

variables are possible, and the rows absent from a sub-table indicate which attributions 

are impossible. A sub-table represents a purely modal value, and its rows represent 

modal values. The rules for evaluating formulas of the form -.cp and <p 1\ 'I' are the 
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p 

T 

F 

T 

F 

familiar ones, anda formula ofthe form Ocp has Tina row ofa sub-table ifand only if 

cp has T in ali rows o f that sub-table. 

There are four unary modal values: ( {T, F}, T) (contingent and true), ( {T, F}, F) 

(contingent and false), ( {T}, T) (necessary), and ({F}, F) (impossible). They are 

represented in this order in the four rows o f the unary modal table below, where we can 

also fmd some examples o f formulas with their valuations. 

p 

T 

F 

T 

F 

--.p 

F 

T 

F 

T 

Op 0--.p -,0--,p 

F F T 

F F T 

T F T 

F T F 

Notice that the formula --.0--.p expresses the unary modal function that only 

gives F to impossible arguments, and so may :well serve as a definition of the symbol o f 

possibility O (Op reads 'it is possible that p'). 

Since modal functions are functions from modal values to truth-values, and there 

are four unary modal values, it follows that there are sixteen unary modal · functions. 

They are ali represented in the following table: 

T o --.0 v -.v- id --.Ovv+ V+ -.V+ ovv- --, v- 1:!. o -.0 

T T T T T T T T F F F F F F F 

T T T T F F F F T T T T F F F 

T T F F T T F F T T F F T T F 

T F T F T F T F T F T F T F T 

Some of these functions may appear a bit recondite, but it is interesting to 

understand what each of these modal functions 'says', and to find formulas in the 

language o f S5 that express these functions. A formula that expresses a function f may 
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be called a definition of f. Once we have defined a :function we may use it in the 

definition o f other :functions. 

id(p) reads 'id p' or simply 'p', and is the identity :function (in the present 

context it requires no defmition); 

T (p) reads 'verum p', and is the modal :function expressed by any tautology with 

p as the only variable. It is part of a family of :functions Tn, the tautologies with n 

variables; 

j_(p) reads 'falsum p', and is the modal :function expressed by any contradiction 

with p as the only variable. It is part o f the family j_ n; 

-,Op reads 'it is impossible that p', and may be expressed as 0-.p; 

-.Op reads 'it is not necessary that p'; 

Vp ieads 'it is contingent that p', and is expressed, for instance, by -.Op A 

--,0--,p, 

~p reads 'it is rigid thatp', and it is expressed by Op v 0-.p; 

V+p reads 'it is contingently true that p', and it is expressed by p A -.Op, 

-.Vp is the negation ofVp; 

Vp reads 'it is contingently false that p' and it is expressed by -.p A Op, 

-.Vp is the negation ofVp; 

-.OvVp reads 'p is either impossible or contingently true' . lt can be expressed 

asp~Vp. 

OvVp reads 'p is either necessary or contingently false'. lt can be expressed as 

p~~p. 
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The binary modal functions are far too many (232
) to be introduced one by one. 

Each of them corresponds to a distribution of T's and F's in the rows of the binary 

modal table in the next page, where we again fmd some examples o f formulas and their 

valuations. D(p ~ q) figures among the examples because the strict implication is 

perhaps the most famous of the binary (non-truth-functional) modal functions. It 

assumes T whenever the binary truth-value (T, F) is absent in a sub-table, i.e. whenever 

it is impossible to attribute the value (T, F) to p, q. The relevance ofthe other examples 

will soon be clear. 

It is important here to notice that we can express formulas which are satisfied by 

exactly one row of one sub-table. To make this clear we need to establish some 

definitions. 

A literal is either a variable or its negation. 

The possibilization o f a formula cp is the formula Ocp. 

The impossibilization o f a formula <p is the formula -.Ocp. 

The classical characteristic formula of a row is the conjunction o f literais where 

the i-th variable (1 :::; i :::; n) appears negated if and only if the i-th term o f the n-ary trúth­

value in the row is F. 

The characteristic formula of a sub-table is the conjunction whose terms are all 

the possibilizations of the classical characteristic formulas of rows present in the sub­

table and ali the impossibilizations of the classical characteristic formUlas of rows 

absent from the sub-table. 

The moda/ characteristic formula of a row of a sub-table is the conjunction of 

the classical characteristic formula o f the row with the characteristic formula o f the sub­

table. 

It is easy to see that the modal characteristic formula of a row of a sub-table is 

satisfied only by that row ofthat sub-table. 

For instance, the modal characteristic formula ofthe frrst row ofthe second sub-

table 
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p q D(p ~ q) Ind(p,q) (p ~ q) ~ ---,Op (---,p 1\ ---,q) v (op 1\ v+ q) 

TT F T F F 

TF F T T F 

F T F T F F 

FF F T F T 

TT F F F F 

TF F F T F 

FT F F F F 

TT F F F F 

TF F F T F 

FF F F F T 

TT T F F F 

F T T F F F 

F F T F F T 

TF F F T F 

FT F F F F 

F F F F F T 

TT F F F . T 

TF F F T F 

TT T F F F 

F T T F F F 

TT T F F F 

FF T F F T 

TF F F T F 

FT F F F F 

TF F F T F 

FF F F F T 

F T T F T F 

FF T F T T 

TT T F F F 

TF F F T F 

F T T F T F 

FF T F T T 
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o f the binary modal table in last page is 

p 1\ q 1\ O(p 1\ q) 1\ O(p 1\ -.q) 1\ O( -.p 1\ q) 1\ -.0( -.p 1\ -.q). 

Theorem (Functional completeness of S5 (Massey 1966)). Every modal function 

is expressed by some formula ofS5. 

Proof It is sufficient to notice that an arbitrary modal function f can be 

expressed as the disjunction of the modal characteristic formulas of rows where the 

function has T (iffhas T in no rows, it can be expressed by some .ln). D 

The theorem above might well be considered the starting point o f the theory o f 

systems o f modal functions. Once we know that we can express ali modal functions in 

terms o f the usual connectives -., /\, D, i.e. that { -., 1\, D} is functionally complete, the 

question presents itself whether there is a general criterion for establishing, for any 

given set of moda/ functions, whether the set is functionally complete or not. It is 

reasonably well known (although perhaps not as much as it deserves) that Post has 

established such a criterion w.r.t. truth-functions. In fact, the criterion is a simple. 

corollary of Post's exhaustive classification of the systems of truth-functions, or as he 

calls it 'iteratively closed two-valued systems of functions'. In the next section we will 

revisit Post' s criterion. In what follows in this section we will state some definitions and 

some simple theorems o f the theory o f systems of moda! functions. 

Let C be a set o f modal functions. 

By :C(C) we mean the propositional language whose primitive connectives 

express the respective functions in C. (We so to speak ignore merely 'orthographic' 

differences in the connectives, so that this language is always uni que for each given C.) 

Thus the formulas o f :e( C) are define.d by: 

(i) propositional variables are formulas (also called atomic formulas), and 

(ii) If f is an n-ary primitive connective in ;i,( C) and <p1 •.• <J>n are formulas, then 

f( <pt, ..• <J>n) is a formula. 
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W e say that a set o f modal functions C defines a modal function f if there is a 

non-atomic formula cp in X( C) such that I= cp(p1. ... , Pn) ~ f(p1 ... Pn). 

By [C] we mean set of all modal functions definable by functions in C. We call 

this set the system generated by C. 

We may write [fi. f2, ... ] instead of[ {f1, f2 •.. } ]. 

If [C]= J..l we say that C isfunctionally complete. 

If [ {f}] = J..L we say that f is a Sheffer-function for J..L. 

The third and fourth formulas figuring in the binary modal table above are 

Sheffer functions for J..L. (These Sheffer-functions are due, respectively, to Ratsa and 

Batchelor.) The following is a very simple, but worth proving 

Proposition. [ { (p ~ q) ~ -,Op}] = J..l and [ { ( -,p 1\ -.q) v (Dp 1\ V+ q)}] = J..l· 

Proof We saw that every modal function is expressible in terms of { -., 1\, O}, 

so it will be enough to define these functions in X( { (p ~ q) ~ -,Op} ). This language 

has a single primitive symbol, f(p, q), which is equivalént to (p ~ q) ~ -.Op. 

f(p, p) is equivalent to (p ~ p) ~ -.Op. This formula is an implication with valid 

antecedent, and so is equivalent to its consequent which is -.Op. So f(p, p) expresses 

-,Op. 

Since we have defmed -,Op we can use it to define Op: -,0-,0p expresses Op (we 

could express it in primitive notation as f(f(p, p), f(p, p))). 

Using f and O we can define -.p: f(Op, p) is equivalent to (Op ~ p) ~ -.OOp 

which is equivalent to Op ~ (Op 1\ -,p) which is equivalent to -,Op v (Op 1\ -,p), which 

is equivalent to -.p. 

Using f andO we can also defme p ~ q: f(Op, f(p, q)) is equivalent to 

(Op ~ ((p ~ q) ~ -,Op )) ~ -,OOp = 

Op ~ (Op 1\ -,((p ~ q) ~ -,Op) = 

14 



Op ~(OpA ((p ~ q) A Op) = 

Op~(p~q)= 

(p~q). 

U sing --,, O, and ~ it is easy to define the functions in { --,, A, O}. 

So far we argued for the correctness of these defmitions appealing to 

equivalential transformations. One can also use modal tables, and evaluate the formulas 

considering the modal values ofits sub-formulas. It can then be checked that: 

If f= ( --,p A --,q) v (op A v+ q): 

--,p = f(p, p) 

Tp = --,f(p, --,p). 

p v q = --,f(p, --,f(q, p)). 

v+p=f(Tp,p). 

Again, with these resources it is easy to defme the functions in { ---,, A, O}. O 

Let us consider which is the system generated by Ind(p, q) - the second function 

in the modal table above. This function reads 'p and q are independent', and it can be 

expressed by O(p A q) A O_(p A --,q) A O( -.p A q) A O( --,p A --,q). It is true in a sub-table 

only if ali binary truth-values figure in the sub-table. This function is part of a family: 

for each n there is a function Ind(p1. ... , Pn), which is true only if ali n-ary truth-values 

figure in a sub-table. 

The formulas of .:f(Ind(p, q)) are either propositional variables or of the form 

Ind(cp, '1'), where cp, 'V E .:f(Ind(p, q)). 

It happens that, while Ind(p, q) is true if and only if it 'finds' four different 

sequences of truth values in a sub-table, it is also a purely modal function, i.e., a 

function that never has different values for rows within a same sub-table. So if at least 

one of cp, 'V is non-atomic then, since at least one of cp, 'V has only one truth-value in 
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each sub-table, there is no sub-table where we can fmd all four binary truth-values 

attributed to q>, 'I'· This is enough to see that a non-atomic formula of :f(Ind(p, q)) will 

express either Ind(p, q) itself, or some ..l n. From this it follows that 

[Ind(p, q)] = {Ind(p, q), ..l1, ..l2, • • . }. 

The very same argument shows that 

. l 2 
. [Jnd(p1 ... Pn)] = {Jnd(p1 · · · Pn), ..l , ..l , · · ·} · 

In fact, using this argument we can conclude that, for anyN ç {1, 2, 3, ... }: 

[ {Ind(p1 ... Pn): n E N}] = {Ind(p1 ... Pn): n E N} u { ..i\ ..l2, • •• } . 

Proposition (Batchelor 20 17). There are 2 ~'<0 systems o f modal :functions. 

Proof We first show that there aren't more than 2~'<0 systems ofmodal :functions. 

lt is clear that the number o f modal :functions is N0: for each n there are fmitely many n:­

ary modal :functions. lt . follows that the cardinality o f the set o f all sets o f modal 

:functions is 2~'<0 . The set ofsystems ofmodal :functions is a subset ofthe set ofall sets of 

modal :functions, andso its cardinality::: 2~'<0 • 

Now we show that there aren't less than 2~'<0 systems ofmodal :functions. 

Wejust sawthat foreveryN ç {1, 2, 3, .. . }, 

[ {lnd{pt ... Pn): n E N}] = {Ind(p1 .. . Pn): n E N} u {..i\ ..l2, ... }. 

It is obvious that ifN -:t:. M ç {1, 2, 3, ... }, 

{Ind(p1 ... Pn): n E N} -:t:. {Ind(p1 ... Pm): mE M} 

andso 

[{Ind(p1 ... Pn): n E N}] = {Ind(p1 . .. Pn): n E N} U { ..l1, ..l2, .. . } -:t:. 

[ {lnd(pt . .. Pm): mE M}] = {Ind(p1 .. . Pm): mE M} u { ..l1, ..l2, •• • }. 
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Since of course {N : N ç {1, 2, 3, .. . }} has cardinality 2N0, there are then at least 2N0 

systems of modal functions. D 

Among the systems of modal functions, some are of special interest, because 

they can lead us to the criterion of functional completeness for moda/ functions. We say 

that a system of modal functions C is pre-complete if C ::t:. J.l and, for any f ~ C, [C u 

{f}] = J.l. The determination of the pre-complete systems o f modal functions will occupy 

us for a good part o f what follows. 
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Ratsa 's determination o f the pre-complete systems 

Ratsa appeals to the fact that there is a connection between 'Topo-Boolean 

Algebras ' and modallogics in order to develop bis criterion o f functional completeness. 

W e preferred to deal directly with S5 and its models, but the adaptation we have made 

is not in terms of the models presented in the last section, (Kripke 1959)-style, but in 

terms ofmodels in a (Kripke 1963)-style. The reason to use the former in the definition 

of modal functions is that, in the framework of (Kripke 1959), there are no two 

equivalent models w.r.t. a finite set ofvariables (i.e. models that verify exactly the same 

formulas), and so the defmition ofa modal function can be established, as we have seen, 

in a very direct (and I would say elegant) way. The reason to use Kripke (1963) here is 

that it is straightforward to adapt Ratsa's theorems to this framework. The cost of doing 

sois that, in order to use Ratsa's result to determine the pre-complete systems ofmodal 

functions, as defined in the last section, we will have to establish a correspondence 

among our moda/ functions and what we will call W-operations and to prove that there 

is also a correspondence between the systems o f modal functions and certain systems of 

W-operations. Fortunately, that is not very hard to be done. (An adaptation of Ratsa's 

results directly to an extension of the framework presented in the last · section can be 

found in Batchelor 2017.) 

Let we make a slight reformulation of our definition of model for S5. 

Let W be an arbitrary non-empty set and w0 an element ofthis set (intuitively, 

we think of W as the set of all possible worlds and w0 as the actual world). A model M 

is an attribution o f subsets o f W to the propositional variables. A model is extended to a 

valuation M+ by the following clauses: 

If <p is a propositional variable p, ~ ( <p) = M(p ). 

~(.....,<p) = the complement of~(<p). 

M+(<p A 'I')= M+(<p) n M+('l'). 

~{D<p) = W ifM+(<p) = W, and = 0 ifW(<p) =t:- W. 
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The valuation of a sequence of formulas M+((cp~, ... , q>n)) is understood as 

(~{q>I), . · · , M+{q>n)). 

We say that a formula cp is true in a model M ifw0 E ~(cp); otherwise we say cp 

isfalse. 

If a formula cp is true in a model M we say that M satisfies <p. 

If a formula cp is true in every model we say that q> is valid, and we write I= q>. 

It is clear that, in this new formulation of model, a formula o f S5 will express an 

operation on p(W). A formula with n variables will expressa function from (p{W))n 

to p(W). 

An n-ary W-relation is a subset of{p{W)t 

An n-ary W-operation is a function from (p(W)t to p{W). 

The n-ary W-relation expressed by a formula q>{p1, ... , Pn) is the set of 

sequences . {M+ (PI, ... , Pn) : M satisfies q>{p1 ... Pn)}. 

W e say that f is the n-ary W-operation expressed by a formula cp(p~, . . . , Pn) if, 

for every attribution M of subsets of W to the propositional variables, f(M(p1), 

M(Pn)) = ~ cp(p~, ... , Pn). 

... , 

W e say that a W -operation corresponds to a modal function if they are expressed 

by a same formula. Not every W-operation corresponds to a modal function (and that is 

why it is simpler to define a modal function in a (Kripke 1959)-style model). 

In the context ofW-operations, where C is a set ofmodal functions, by ~(C) we 

mean the language whose primitive connectives express W -operations corresponding to 

functions in C. 

W e say that f is a moda/ W-operation if f corresponds to some modal function, 

i.e. iffis the W-operation expressed by a formula of ~(-,,A, D). 

Let Wn = {wo, WI. ... , Wn-I}. 
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W -relations and W -operations are defmed for arbitrary W, so it makes perfectly 

good sense to talk about W 0 -operations and W 0 -relations expressed by a formula cp. 

If W' c W we can talk about the W' -reduct o f a W -operation expressed by a 

formula cp, and that is simply the W' -operation expressed by cp. Similarly, we can talk 

about the W' -reduct of a W -relation. 

The following is a really crucial definition: 

W e say that an n-ary W -operation f preserves a W -relation R if 

Vp, p', ... , q, q', ... c W: R(pt, Pt', Pt", ... ) & R(p2, P2', P2", . . . ) ... & R(pn, 

Pn', Pn", ... ) => R(f{pt, ... Pn), f{pt', ... Pn'), f(pt", ... Pn"), ... ). 

lt is often useful, when dealing with relations, to think about the matrices whose 

columns are the tuples of elements in the relation. The defmition above of an operation 

preserving a relation can be formulated in terms of matrices: Let m be the matrix which 

has all (and only) the elements of a relation R as columns. We define an m-matrix as a 

matrix whose columns are columns ofm. To say that an n-ary operation preserves m is 

to say that for every m-matrix with n columns, the result of applying the operation on 

the rows ofthe m-matrix is a column ofm. 

W2= {wo, Wt}. Wewilldenote w2 by 1, {wo} byw, {wt} byvand {} byO. 

It is easy to see that -,, A, D preserve the following matrix, which is the W 2-

relation expressed by the formula ~p A ~q A (p ~ q) .v. V'p A V'q A (p y q). 

1 v w o 
1 w v o 

If a W -operation f preserves a W -relation R we say that f is polymorphism o f R, 

and that R is an invariant for f. 
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The set of ali poiymorphisms of a reiation R will be denoted by Pol(R). 

A set o f W -operations C is a system o f W-operations if, whenever f is a n-ary W­

operation E C and f1 ... fn are W-operations of arbitrary arities E C, f(f1 .. . fn) E C. 

Proposition. For any W, and for any W-reiation R, the set Poi(R) is a system of 

W -reiations. 

Proof. Let W be an arbitrary set, and Iet R be a W -reiation, and suppose for 

contradiction that Poi(R) is not a system, i. e. there are W -operations g, g1 . . . ~ E 

Poi(R) anda W-operation f !i!: Poi(R) such that f= g(g1, ... ~). 

Let m be a matrix whose coiumns are ali and only the tupies in R, and Iet k be 

the number of distinct variabies occurring in g1 ... ~- It is clear that f is a k-ary 

operation. Ali we need to see to estabiish our contradiction is that: for every m-matrix 

with k coiumns, the resuit of appiying f in its rows is an m:-coiumn (i. e. f E Poi(R)). Let 

m• be an m-matrix with k coiumns. Let us call m•i the matrix constituted by the 

coiumns of m· corresponding to arguments o f gj, for (1 :::: i :::: n). It is clear that each m· i 
is an m-matrix, and so, since gi E Pói(R), the result o f appiying gi in its coiumns will be 

an m-coiumn~ This means that the matrix with n coiumns which we can represent as 

gl(m'l), 000 gn(m'n) is an m-matrix with n coiumns, and so, since g E Poi(R), 

g(gl(m'l), 000 ~(m'n)) = f(m') is an m-coiumn, and so f E Poi(R), with contradiction. 

D 

W e say that a set o f functions C is separated from a function f by a matrix m if 

every function in C preserves m but f doesn't. Since preserving matrices is the same as 

preserving reiations, and since the set of ali functions preserving a reiation is aiways a 

system, if f is separated from C by some matrix m, f !i!: [C]. E.g., the inexpressibiiity of 

D in terms of -,, A follows from the fact that they are separated by the matrix 
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1 1 o o 
1 w v o 

W e say that a subset S o f p (W) is a moda/ substructure of W if S is closed 

under the modal operations, i. e. if s, s' E S, then s A s' E S, -.s E S and Os E S. 

IfW' c W and S is a modal substructure ofW, we say that cr is an embedding of 

S into W' if cr is a isomorphism o f S and W', i.e. an injective function from S onto W' 

such that "i/ p, q E S: cr-.(p) = -.cr(p), Dcr(p) = cr(Dp), and cr(p A q) = cr(p) A cr(q). 

Proposition. If W' c W, there is a substructure of W which is embeddable in 

W'. 

Proof · lt is sufficient to see that if W' = W - { w}, there is an embedding from a 

substructure ofW into W', and notice that 'being embeddable' is a transitive relation. D 

The structures, substructures and embeddings that will be relevant to our 

development will be given explicitly in the next sections: 

Proposition. For any W' ç W, the set of W-operations whose W'-reducts 

preserve a W' -relation is a system o f W -operations. 

Proof Since Pol(R) is a system for any R, it is sufficient to notice that, for every 

W'-relation R', and for any embedding cr of a substructure ofW into W', cr-1R' is a W-

relation. D 

Proposition. F o r any two systems C, C', the intersection C n C' is a system. 

Proof Suppose, for contradiction, that both C and C' are systems and that C n 

C' is not a system, i. e. there are functions g, g~, ... , &! E C n C' and a function f ~ C n 

C' that are such that f= g(g1, • • • , &!). Since g, g~, ... , &! are both in C and in C', and 

since C and C' are systems, it follows that f E C n C', with contradiction. D 
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Proposition. For any W and for any W-relation R, the set of moda/ functions 

corresponding to W-operations in Pol(R) is a system ofmodalfunctions. 

Proof The set o f W -operations corresponding to the modal functions is 

obviously a system, and the set o f W -operations in Pol(R) is also a system; and the 

intersection of two systems is always a system. o 

This allows us to determine systems of modal functions via W -relations and W­

operations. The next proposition shows that the pre-complete systems can be 

determined via W-operations for certain W's. 

The size of a model is the cardinality of W. If a formula cp is valid in models 

with size n we write l=n cp. 

It is well known that 

{cp: l=l cp} 2 {cp: 1=2 cp} 2 {cp: 1=3 cp} ... 

and that 

{cp: I= cp} = {cp: l=l cp} íY {cp: 1=2 cp} n {cp: 1=3 cp} .... 

We say that a set o f modal functions C n-defines a modal function f(p1 ... Pm) if 

there is a formula cp e .:C(C) such that l=n cp(p1 ... Pm) ~ f(p1 ... Pm)· 

Proposition (Ratsa's Theorem 1). For every set of modal functions ·C: C is 

complete iff C is 4-complete. 

Proof (=>) is quite straightforward, since I= cp implies 1=
4 cp. (<=) Suppose C is 

4-complete. So there are formulas cp, 'V and 9 satisfying 1=4 -,p ~ cp, 1=4 Dp ~ 'lf, 1=4 

(p 1\ q) ~ 9; in each case, the variables on the right side are the same as the variables on 

the left side. 

It is known that a formula with n propositional variables is valid iff it is valid 

w.r.t. models with 2n possible worlds. It follows that the equivalences above, having no 
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more than two variables and being 4-valid, are S5-valid. So our formulas <p, 'V and e are 

such that F -,p ~ <p, F Dp ~'!',F (p 1\ q) ~e. D 

Given the proposition above, the main theorem can be established by proving a 

functional completeness criterion for modal W 4-operations. That will be done after 

establishing the criterion for modal W1.,., W2-, and W3-operations. 

We start by dealing with W 1-relations and W 1-operations. In this section we will 

for convenience write 1 for {w0} andO for { }. it is clear that F 1 Dp ~ p, and so the 

functional completeness criterion w.r.t. modal W1-operations is 

Theorem 1 (essentially Post's functional completeness criterion). A set ofmodal 

functions C is l-complete ifffor each ofthe W1-relations corresponding to -.p, p, p y q, 

p ~ q, E4(p, q, r, s), there is a function in C that does not preserve this relation (where 

E4(p, q, r, s) stands for 'among p, q, r, s there is an even number oftruths'). D 

The W1~relation corresponding to -,p (resp., p) is just {O} ({1}), and the 

corresponding matrix is (O) ((1)). The dass ofall óperations preserving this relation w:ill . 

be called Tio (TI1). 

The W 1-relation corresponding to p y q is {(0, 1), (1, O)} and the corresponding 

matrix is 

o 1 

1 o 

The operations preserving this relation are the functions whose W 1-reduct is a self-dual 

function; the class of all such functions will be called TI2. 

The W 1-relation corresponding to p ~ q is {(0, 0), (0, 1), (1, 1)} and the 

corresponding matrix is 
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o o 1 

o 1 1 

The operations preserving this relation are the monotonic operations; the class of ali 

monotonic operations will be called TI3. 

The W 1-relation corresponding to E4(p, q, r, s) corresponds to the matrix 

o o o o 1 1 1 1 

o o 1 1 o o 1 1 

o 1 o 1 o 1 o 1 

o 1 1 o 1 o o 1 
I 

The operations preserving this relation are the linear operations; the class of ali linear 

functions will be called il4. 
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A functional completeness criterion for moda/ W2-operations 

In this section we will establish a criterion for functional completeness w.r.t. 

modal W2-operations. This is the first and more laborious step in the path from Post's 

classical criterion to the criterion offunctional completeness w.r.t. S5. 

The modal W2-operations are operations on {w0, wi} which are expressed by 

some formula ofS5. In this section we will for convenience write 1 for {w0, w1}, w for 

{w0}, v for {w1} andO for { }. (For the benefit ofthose who may be consulting Ratsa's 

paper, we mention that there one fmds the symbols 1, cr, p, O instead of 1, w, v, 0.) 

Here are some examp1es o f moda1 W 2-operations: 

p 1-,p Dp Op ~p p 1\ q 

o 1 o o 1 p\q o v w 1 

v w o 1 o o o o o o 

w v o 1 o v o v o v 

1 o 1 . 1 1 w o o w w 

1 o v w 1 

p ~ q 

p\q o v w 1 

o 1 w v o 
v w 1 o v 

w v o 1 w 

1 o v w 1 

Note that not every operation on {0, v, w, 1} is expressed by a modal formula. For 

instance, there is no modal function corresponding to the unary operation defined by the 

scheme 

go(p) =O, ifp E {0, v} ; 
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1, ifp E {w, 1}. 

Although this is not a modal operation, it is used by Ratsa in the definition of 

one o f the maximal classes. We give here a different defmition for that class, in terms o f 

a modal operation. 

The criterion is based on twenty classes o f modal functions, denoted by Tio, ... , 

TI19; each class will be the class of functions with operational correlate preserving a 

certain relation. Ilo-il4 are as above, i.e. modal functions whose W 1-correlate preserves 

m1-m4; Tis-TI19 are the modal functions whose correlated modal W2-operations 

preserve, respectively, the following relations (or their corresponding matrices): 

ms: Vp; m6: -.v-p; m1:Vp; 

ms: O(p ~ Oq); m9: O(p ~ Oq); m10: (op 1\ v v (-.Op 1\ -.q); 

mu: O(p ~ Oq) v O(p ~ Oq); m12: O(p ~ Oq) v 0(--.p ~ Oq); 

m13: 0(--.p ~ Oq) v O(p ~ Oq); m14: O(V+p ~ V+q); 

ril1s: .1-p ~ .1-q; m16: (p ~ q) v (Vp 1\ Vq); m11: .1-p v .1-q; 

mls: .1-p 1\ & 1\ ((p ~r) v .1-q); 

m19: .1-p A & A ((p y_ r)~ Vq). 

In Ratsa's paper the matrix miO is defined using a formula involving the above-

mentioned non-modal operation g0 (viz. the formula O(p ~ go(q))). But we prefer, 

when possible, to avoid this use of non-modal operations in the characterization of 

maximal classes; whether this is always possible is a question that will come up later. 

In the table below we list the classes, together with the matrices corresponding 

to each of the relations, and we give examples of functions preserving and not 

preserving each o f the matrices. In fact, for each pair of matrices, there is an example o f 

a function preserving one and not preserving the other. In the examples, to save space, 

we write e.g. 1\ for p A q, and similarly for other well-known connectives. 23 will stand 
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I 

J 
for 'at least two among the following three propositions are true' ( or: (p A q) v (p A r) v 

(q A r)). Some less well-known connectives will be referred to using Greek letters: 

\jl =df(p ~ {O{p v q) v O{p ~ q) v O{q ~ p))) ~ q. 

Ç =df(--.V"p A (Op V --.V"q}) ~ {p A q}. 

9 =df {p A --.Oq} V ( --.Op A q}. 

~ =df {{O{p v q) v O{p ~ q) v O{q ~ p)) A {0{--.p v --.q) v 0{--.p ~ --.q) v 

0{--.q ~ --.p))) ~ O(p ~ q). 
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=I 
Class Matrix f ETI f~TI 

Tio o ..L, O, O, /\,v, y_, 'I' T,--.,-.V 

+ llt 1 T, O, O,/\, v,~' 'V ..L,-., v 

llz o 1 3 O,--.,, 2 , 'V T, ..L, -,V 

1 o 
n3 001 ·T, ..L, O, -,V+,/\, v, 'V --,,-,O, -,O, -,OvV+ 

o 1 1 

I4 00001111 T, ..L,--.,, O,~' 1\, v, Ç, O(p v q), 23
, 

00110011 

o 1 o 1 o 1 o 1 
O(p 1\ q) ~ (p 1\ q), 'V p~Oq 

01101001 

Tis v -,V, V+,/\, v, --,OvT, 'V ..L(p ), Op, Op, --,p 

n6 Ow1 T' ..L, -,O, O,/\, v, 'V -.,-.v+, v-,~,~, 

p~Oq 

n1 vw --.,,-.v+, ....:,v-, 23
, 'V T, ..L, O, O, 1\ 

Tis . o o o 1 T, _L, -,O, V, 1\, p v Oq, 'V O, --.,, ..:.,O, --,V 

Ovw1 

n9 o 1 1 1 T, ..L, -,O, -,v+, v, p 1\ Oq, 'V O,--.,, -.0, V 

Ovw1 

n10 o o 1 1 T,..L,-.,/\,V,'Jf O, -,O, -.0, -,V+, -.V 

Ovw 1 

llu 000111 T, ..L, --.,, --.,v+, "' O, ô, -.0, -.0, /\, 

Ovwvw1 
O(p 1\ q) ~ (p 1\ q) p~Oq 

nl2 000011 T, ..L, -,O, V, 1\, 'V + --,,-,V , v, p v Oq 

Ovw101 

lln 001111 T, _L, -,O, v, p ~ Op, 'I' -.,v-, 1\, p 1\ Oq 

010vw1 

llt4 00vw11 T, ..L, O,--.,, --,Vp 1\ --,Vq, 3 
1\, v, ~' 2 , p ~ Oq, 

01vw01 
O(p 1\ q) ~ (p 1\ q) O(p ~ q), Ç, 'I' 
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·i 
TI1s 00vvww11 T , .l, --,, B, D(p B q) A, v, p ~ Dq, 23

, O(p "q) ~ 

01vwvw01 D(p v q), 'I' (p 1\ q), --,V"p 1\ --,V"q 

n16 Ovvww1 T, ..i, O, -., p ~ O q, Ç, 'I' A, v, O(p A q) ~ (p A q), 

Ovwvw1 O(p ~ q), 23
, Ç 

nl7 000 Ovvww111 1 T, ..l, O,-,, p ~ Oq, A, V, ~. Ç, 9, 

Ovw101 01 Ovw1 O(p A q) ~ (p A q), 23 

O(p ~ q), 'I' 

TI1s 000000111111 T, ..l; O,-,, O(p v q), 1\, v, ~. Ç, 

00vw1100vw 11 
p~ Oq,23 

O(p 1\ q) ~ (p 1\ q), 'I' 
010001011101 

n19 000000111111 
T, ..l, -,O, -.V, Ç, o, -.o, A, v , p ~ oq, 

Ovvww10vvww1 

001010101011 O(p 1\ q) ~ (p 1\ q), 'I' p 1\ {Dp ~ q) 

Our final goal in this section is to prove thata set of modal functions C is 2-

complete iff it is l-complete and, for each ni, 5.:::: i.:::: 19, there is f E C such that f ~ ni. 
This is Ratsa's Theorem 2, and it will follow easily from a (rather long) series of 

lemmas. 

In the formulation and in the proofs o f these lemmas we use some conventions 

on certain indefinite descriptions. 

The symbol fi stands for some n-ary modal W roperation corresponding to modal 

function ~ nj. 

1fwill stand for some modal W2-operation whose W1-reduct is f. 

(Since the set { { }, {w0, wi}} (which we are writing here {0, 1}) is a 

substructure o f W 2 which is embeddable in W 1. the value o f a 1f will be determined 

when its arguments assume only the values O, 1.) 

The symbol v-. will stand for some modal W 2-operation corresponding to 

element of the set {-., -.V, v-, OvV} . (The motivation [or mnemonic] for this last 

notation is that these are the unary functions which work as negation when applied to 

contingent arguments.) 

30 



We will make extensive use of the fact, mentioned above, that every modal W 2-

operation preserves the matrix 

1 v w o 
1 w v o 

This matrix will be called mv2 (the idea behind this notation is that this is a universal 

invariant w.r.t. W2-modal operations). 

Lemma 1 (Ratsa's Lemma 4). T, ..L E [f5, f7, 1-., 1..L]. 

Proof f5 ~ TI5, so f5 doesn't preserve (v). So f5(v ... v) E {0, w, 1 }. Iffs(v ... v) 

E {0, 1}, we defme ..L(p) as 1..Lf5(p ... p), and Tas 1-.1..Lf5(p ... p). 

If f5(v ... v) = w, we use f7. Since f7 doesn't preserve (w, v), there is a sequence 

(a.1 ... a.n) where Cl.i. E {w, v} and such that f7(a.1 ... a.n) E {0, 1}. Let B be the formula 

f1(B1 ... Bn) where for 1 _::: i_::: n: 

Bi= p, ifCl.i.=v; 

fs(p ... p), ifCl.i.=W. 

B E ~{fs, f7}. Note that Bi(v) = Cl.i.. So B(v) = f7(B1(v) ... Bn(v)) = f1(a.1 ... a.n). It 

follows that B(v) E {0, 1} and, since B preserves mv2, we know also that B(w) E {0, 

1 } . We also know that there is no modal W 2-operation mapping { 1, O} in to { w, v}. So, 

for ali values ofp, B(p) E {1, 0}. 

We now defme ..L as 1..LB(p ), and T as 1-. 1..LB(p ). O 

Lemma 2 (Ratsa's lemma 5). At least one of -,, -,v+, v-, o v v- E [T' ..L, f6]. 

Proof f6 does not preserve (1, w, 0). So there is a sequence (g), a.i E {1, w, 0}, 

such that f6(g) =v. The letter B will now stand for the formula f6(BI ... Bn), where 

Bi = ..L(p), if a.i =O; 
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p, ifai = w; 

T(p), if Ui= 1. 

B E ~{-., ..L, f6} . Note that Bi(w) = Ui; so B(w) = f6(g) =v. Since B(w) =v and B 

preserves my2 it follows that B(v) = w. The table below will help us to see that this 

proves the lemma. 

p I B(p) -,p -.V(p) V"(p) OvV"(p) 
-

1 ? o 1 o 1 

w v v v v v 

v w w w w w 

o ? 1 1 o o 

(As mentioned above, the symbol v--, will be an indefinite description for one of these 

functions.) O 

W e will state and prove lemma 3 after establishing some auxiliary lemmas. 

Lemma 3.1 (Ratsa's lemma A). At least one of o, O, 11 E [T, ..L, f10, f11 , v..:..,, I-,]. 

Proof. I_, is one of -., -.0, -.0, -.OvV. If I_, is -.0 or -.0 we are done, since 

I_, I-,p will be then, respectively, Op or Op. 

There are two cases left. 

Case (i): I_, is -.OvV+. In this case we define formula C bythe scheme: 

C= v -.(-.OvV}(p), 

( -.OvvJ v -.p, 

v -,p, 

·f V 1 --, = --,; 

ifv--, =-.V; 

ifv--, =v- or v--,= ovv-. 

C E ~{v-., -.OvV+}, and C satisfies: C(O) =O and C(v) = w. 
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Since f11 doesn't preserve m 11 , there is a pair of n-sequences (g) and@ such 

that each pair (Ui, l3i) is an mu-column and (f11(QJ, f11(ID) is not an mu-column. So 

fll(QJ I c I o 1 

f11(ID I I 1 O 

(Note that, since every modal operation preserves rigidity, we can't 'go' from m11 to 

any column with w or v on top.) 

Let D be the formula ftt {Dt ... Dn), where, for 1 .:5 i .:5 n: 

Di= ..L(p), if Ui = l3i = O; 

p, if Ui = O and l3i = v; 

C(p), if Ui = O and l3i = w; 

:-OvT(p), if Ui = 1 and l3i = v; 

:-OvV+(C(p)), . if Ui = 1 and l3i = w; 

T(p), if Uj = l3i = 1. 

The values considered for Uj, l3i exhaust mll . D E .:f(T' ..L, c, 1
-,, fll), Var(D) (i.e. the 

variables ofD) = {p}. Since C(O) =O and C(v) = w, we can see that Di(O) =Ui and Di(v) 

= l3i· So 

D(O) = fll(Dt(O) ... Dn(O)) = f11(g) 

D(v) = fll{Dt{V) ... Dn(v)) = f11@) 

From the inclusion above we know that 

D(O) = O and D(v) = 1 

o r 
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D(O) = 1 and D(v) = O. 

From D and -.OvV+ we defme 

E= D(p), ifD(O) = 1; 

-.OvV\D(p)), ifD(O) =O. 

E(O) = 1, E(v) =O. Since E preserves m·,n, E(w) =O. We don't know whether E(1) = 1 

or E(l) = O, but in either case we can defme one o f the functions desired in this lemma. 

The tables below help us see that. The first table deals with case E(1) = 1, the second 

with case E(1) = O. 

p E(p) ~p 

1 1 1 

w o o 
v o o 
o 1 1 

p 1 E(p) -.OvV(E(p)) Op 

1 I o 
w o 

v I o 
o 1 

It remains to consider 

1 

1 

1 

o 

1 

1 

1 

o 

Case (ii): 1
..., is -.. In this case we use f10• f10 does not preserve m 10, so there are 

n-tuples (y), (Q) where each pair (Yi. Õi) is an mw-column and such that 
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f10WiciO o 11 

f10@ I I w 1 O v 

The letter F will stand for the formula f10(F 1 ••. Fn), where, for 1 :Si :S n: 

Fi= ..L(p), ifyi = Õi =O; 

p, if Yi = O and Õi = v; 

-,p, if Yi = 1 and Õi = w; 

T(p), if <li = Pi = 1. 

This exhausts mJO. F E :f{T, ..L,-,, FIO}, Var(F) = {p}. lt is easy to see that Fi(O) = Yi 

and Fi(v) = õb from which it follows that F(O) = fuW and F( v)= fu@. So 

F(O) I c I o o 1 1 

F(v) I I w 1 . O v 

We reduce the four cases (corresponding to the possible values of F(O), F(v)) to two 

using formula G, defined by the scheme: 

G= F, ifF(O) = 1; 

-,F, ifF(O) = O. 

We know that G(O) = 1. G(v) can be either O or v; ifG(v) =O, since G preserves m .. ,12, 

G(w) =O and we are done, as the table below helps us see: 
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p I G(p) ~p -,Op 

1 ? 1 o 

w I o 
v o 
O I 1 

o 
o 
1 

If G is -.Op, we define Op as -,-,Op. 

o 
o 
1 

If G(v) =v we need to use again formula D, but now defined in terms of T, ..L, G 

and -.. D = f11CD1 ... Dn) where, for 1,:::: i_:::: n: 

Di= ..L, if Ui = J3i = O; 

p, if ai = O and J3i = v; 

-.G, if ai = O and J3i = w; 

G, if Ui = 1 and J3i = v; 

-,p, if Ui = 1 and J3i = w; 

T, if Ui = J3i = 1. 

Di(O) =Ui, Di(v) = J3i· Recall that D(O) =O and D(v) = 1 or D(O) = 1 and D(v) =O. We 

reduce these two cases to one using formula E: 

E= D, ifD(O) = 1; 

-D, ifD(O) = O. 

E(O) = 1, E(v) =O. Bypreservation ofmv2, E(w) =O. So we are in the same situation as 

above with G when G(v) =O. SoEis either ~ or -.0 and we are done. O 

Lemma 3.2 (Ratsa's lemma 5). At least one ofO, ~E [T, ..L, o, f8, v_,, 1-.]. 
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Proof If v--, is --,, we define Op as --,0--,p. If v--, is -,V+ we defme ôp as 

0--,V+p. 1f v--, is V or OvV we use fs. Since fs doesn't preserve ms there are n-tuples 

(ID, © such that each pair (ei, Si) is an ms-colunm and such that 

fsW l c I O 1 1 1 

f8(g I I 1 O v w , . 

Let H stand for the formula Fs(H1 .•. Hn) where for 1 :Si :S n: 

Hi= ..L(p), ife· = s· =O· 1 1 , 

p, if Ei = O and Si = v; 

v --,p, if Ei = O and Si = w; 

T(p), ifei =Si = 1. 

This cases exhausts ms. H E { T, ..L, fs, v--,}, v ar(H) = {p}. Note that Hi(O) = Ei and 

H( v)= Si· So H(O) = fsW and H(v) = fs(Q, from which we get 

H(O) I c I o 1 1 1 

H(v) I I 1 O v w , . 

It follows that 

OH(O) I c I o 1 

OH( v) 1 o' . 

As usual, we reduce these two cases to one using a scheme 
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P = 1--,0H, ifH(O) =O; 

OH, if H( O) = 1. 

P E ~{o, H, 1--,}, Var(P) = p. P(O) = 1, P(v) =O; by m·,n, P(w) =O. IfP(1) = 1, P is ô; 

ifP(1) =O, P is --,0. In either case we can defme one of ô, O. This proves lemma 3.2. O 

Lemma 3.3 (Ratsa's lemma B). At least one of o: ô ·E [T, ..L, O, f9, v--,, 1-,]. 

Proof. By dualization ofthe proof ofleinma 3.2. O 

Lemma 3 (Ratsa' s lemma 6). ô E { T, ..L, f8, f9, f10, f11 , 
1-,, v--,, 1 

A}. 

Proof This follows immediately from the auxiliary lemmas and Lemma 4 

below. O 

Lemma 4 (Ratsa's lemma I} ô E [O, O, 1:.,.,, 1A]. 

Proof. ôp can be defined as 1--,(0p 1A 
1-;0p). o . 

. v 1 1 Lemma 5 (Ratsa's lemma 7). O andO E [T, ..L, ô, f19, --,, --,, A]. 

In facto ando are interdefinable in presence of ô, 1--,, 1A: Op = (Op 1
A ôp) and 

Op = 1-,e --,Op 1 
A ôp ). So it will be enough to prove that one o f o, O is expressible in 

the conditions o f the lemma. 

As we know, 1--, is one of --,,-,O, --,0, --,OvV+. 

Case (i). 1--, is -,O or --,0. This is immediate since Op = --,0--,0p and Op = 

-,0--,0p. 

The other cases are much more laborious. 

Case (ii). 1...., is -,. Now we need to deal with 1
A. This is some modal W2-

operation whose W1-correlate is A . But we don't know how it behaves w.r.t. W2-

arguments other than O and 1. But we know that 
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(v 1A O) E{O, v, w, 1}. 

Case {ii-a). (v 1A O) E {0, 1}. In this case we use formula p 1A ôp which is 

equivalent either to Dp (if (v 1 A O) = O) or to Op (if (v 1 A O) = 1 ). So in these sub-cases 

we are done. 

Case (iib). (v 1A O) E {v, w}. We now define formula C using the scheme: 

C= --.(p 1A_l), if(v 1A0)=v; 

--(-,p 1 
A _i), if (v 1 

A O)= w. 

c E 1:{_1_, ...,, 1A}, Var(C) = {p}. Since c preserves mv2 and C(v 1
/\ O)= w, it follows 

that C(w 1A O)= v. So C is ...,v+: 

p I C(p) --.v+p 
-

1 1 1 

w v v 

v w w 

o 1 1 

Now, (v 1A w) E {0, w, v, 1}. If(v 1A w) E {0, 1}, we can define one of D, O using the 

formula p 1A --.v+p, which will be equivalentto Dp, if(v 1A w) =O, or to Op, if(v 1A w) 

=1. 

If (v 1 A w) E {w, v} we first take formula D, defined by the scheme: 

D(p) = (--.V+p 1 
A p), 

(p 1/\ --.v+p), 

if(v 1A w)=v; 

if(v 1A w) =w. 

Since 1A preserves mv2, (v 1A w) =v implies (w 1A v)= w. From this it is easy to see 

that D is W2-equivalent to DvV. 

Now we need to use f19• Since f19 does not preserve m 19 there are n-tuples (g), 

@, (1) such that each (Ui, f3i, Yi) is an mwcolumn and such that 
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f19(g) I I O O 1 1 

fi9@ I c I o 1 o 1 

f19(y) I I 1 1 O O 

Let E be formula f19(E1 ... En) where for 1 ~ i~ n: 

Ei= ..1., if Ui = ~i = Yi = O; 

-{-,V+p), if Ui = O ~- = v y· = O· 
' 1 ' 1 ' 

p, ifO-i=O, ~i=v, Yi= 1; 

--,(--.v+ (....,v+ P) ), ifUi=O ~ - =w y· =O· 
' 1 ' 1 ' 

DvVp, if Ui = o ~- = w y· = 1 . 
, 1 ' 1 ' 

-,(ôp), if Ui= O, ~i= 1, Yi =O; 

ôp, if Ui = 1 ~- = O y· = I· 
' 1 ' 1 ' 

-,(DvVp), if Ui = 1 ~- = v y· = O· J 1 J I J 

....,v+(....,v+p), if Ui = 1 ~- = v y· = 1 . 
' 1 , 1 ' 

-,p, if Ui = 1 ~- = w y· = O· 
' 1 , 1 ' 

....,v+p, if Ui = 1 ~- = w y· = 1. 
' 1 , 1 ' 

T, if Ui = ~i = Yi = 1. 

This exhausts ml9· Var(E) = {p}, E E ~{T, ..1., ô, ...,V+, DvV, -., f19}. Note that Ei(O) 

=Ui, ~(v)= ~i. and Ei(l) = Yi· So 

40 



E(O) I I O O 1 1 

E(v) I c I O 1 O 1 

E(1) I I 1 1 O O , . 

Since E preserves m'<t2, E(v) =O implies E(w) =O (similarly for 1). SoEis one of o, O, 

-,O, -,O. 

Case (iii), 1
--, is -.OvV, can be reduced to the cases already considered. To doso 

note first that 

--,OvV'+(V --,p) = --,Vp, ifv--, is V; 

ifv . '{"/ --,p, ---., IS O v v • 

This is enough to assure us that at least one of ---.,,-,V'+ E [v---.,, 1
---,]. The case---., was our 

case (ii); in the case ---.,V we take formula 

F= --,OvVp 1 
A --,V'+p; if (v 1/\ w) = w; 

+ 1 o + ---.,V' p 1\--, v V' p, if(v 1A w) :;t: w. 

V ar(F) = {p}, F E {---.,v+, 1
--,, 

1 
A}. It is easy to check that F is W 2-equivalent to one o f 

---.,,-,O, -,O; in ali cases we fali into a case already considered. O 

Lemma 6 (Ratsa's lemma 8). As least one of {---.,}, {-,V'+, V} ç [T, .l, O, O, f12, 

f13, v---.,, 1---,]. 

Proof The case where v---., is --, is trivial. 

Case (i): v--, is V. In this case we use f12• f12 doesn't preserve m12 and so there 

are n-tuples (g) and@ such that each (Ui, f3i) is an m12-column and such that 
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-l 

f12Ú!) I c I 1 1 

fl2(ID I I v w ' . 

Let C be formula f12(C1 ... Cn) where for 1 ~i~ n: 

Ü = _lp if N · = A. = O· 1 , """~ Pt , 

P if a: = O and A. = v· 
' 1 t-'1 ' 

Vp, if <li= O and l3i = w; 

Op, if <li =O and l3i = 1; 

1--,0p if No= 1 and A. = o· 
' U.t P'l ' 

Tp, if Ui= j3i = 1. 

. . v 1 
Thts exhausts m12· Var(C) = {p}, .:t(C) = {T, ..L, O, -., -., f12}. Note that Ci(O) 

=Ui and Ci(v) = l3i· So C(O) = 1 and C(v) E {v, w}. So D, defined by scheme 

D = C(Vp), ifC(v) =v; 

C(p), ifC(v) = w, 

is such that D E .:i{V, C} and D satisfies D(O) = 1, D(v) = w (also, by m,n, D(w) =v). 

So D is either--, or -,V+; in any case expressing what the lemma asks. 

lt remains to consider 

Case (ii): v--, = --,v+ or v--, = o v v-. 

In this case we use f13• f13 doesn't preserve m 13, so there are n-tuples (i) and (Q) 

etc. such that 
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fn(y) I c I O O 

fn@ I I V w , . 

Take formula E = f13(E1 ••• En) where for 1 ~ i ~ n: 

Ei= ..Lp, ifyi = Ôi =O; 

-.Dp, if Yi = O and Ôi = 1; 

Dp, if Yi = 1 and Ôi = O; 

p, if Yi = 1 and Ôi = v; 

v -,p, if Yi = 1 and Ôi = w; 

Tp, ifyt = Ôi = 1. 

. . v 
Thts exhausts ffln. Var(E) = {p}, E E ~{T, ..L, -,, -., fn}. Note that Ei(1) = Yi and . 

Ei(v) = Ôi. So 

E(1) I c I o o 

E(v) I I v w,. 

We now define formula F by scheme 

F= E(v -.p), ifE(v) =v; 

E(p), ifE(v) = w. 

F(1) = 1, F(v) = w. By m'v'2, F(w) =v and F is one of -,,v-; these cases were already 

considered. D 
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Lemma 7 (Ratsa's lemma 9). Let :E be one ofthe sets {-.}, {-,V+, V}. Then at 

least one of -.V+, O v V E [T, ..L, O, O, f17, :E] = [ {T, ..L, O, O, f17} u :E] and this system 

defines also some formula cp satisfying 

Proof Suppose 

c= --,p, 

+ -,V p, 

D = -.p, 

cp(v, 1) = cp(1, v)= v. 

if:E = {-.}; 

if:E = {-.V+, V}. 

if:E = {-.}; 

Vp, if:E = {-.V+, V}. 

C, D E :f(:E) and satisfy 

C(O) = 1, C(v) = D(v) = w, and D(1) =O. 

Sincef17 does not preserve ffl 17, there are n-tuples (g),@ such that each (ab J3i) 

is an ml7-column and such that 

fr1úY I c I v v w w 

f17(]) I I v w v w , . 

Let E be formula fr1CEr ... En), where for 1 ~i~ n: 

Ei= ..L, if a · = J3 · = O· I I > 

D(s), if <li = O and J3i = v; 

D(r), if <li = O and J3i = w; 

Op, if ai = O and J3i = 1; 

D(q), if ai = v and J3i = O; 

p, i f ai = v and J3i = 1; 

D(p), ifai =w and J3i =O; 
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q, if Ui = w and f3i = 1; 

Dr if N · = 1 and A. =o· 
, ""1 Pt ' 

r ifN· = 1 andA. =v· 
, """'1 Pt ' 

~ ~Ui=1and~=~ 

T, if Ui = f3i = 1. 

This exhausts m17. Var(E) = {p, q, r, s}, E E ~{T' .1, o, D, ft7}. Note that, given the 

conditions on D, Ei(v, w, 1, 1) =Ui and ~(1, l, v, w) = f3i. So we have 

E(v, w, 1, 1) I c 1 v v w w 

E(1, 1, v, w) 1 1 v w v w, . 

We define formula F by scheme: 

F= E, ifE(v, w, 1, 1) = E(1, 1, v, w) =v; 

E(r/s, s/r), ifE(v, w, 1, 1) =v and E(l, 1, v, w) = w; 

E(p/q, q/p), ifE(v, w, 1, 1) = w and E(1, 1, v, w) =v; 

D(E), ifE(v, w, 1, 1) = E(1, 1, v, w) = w. 

F E ~{D, E} . Since F preserves m-,n, F satisfies 

F(v, w, 1, 1) = F(1, 1, v, w) =v. 

Take unary formula G, defmed by the scheme: 

G = C(F(OD, T, p, D)), ifF(O, 1, 1, O)= O; 

F(D, p, T, OD), ifF(O, 1, 1, O)= 1. 

(Recall that C is either--, or -.V.) So G(1) = 1, G(v) = w, G(w) =v. We don't know 

whether G(O) = 1 or G(O) = O. If G(O) = 1, G is --,V+; if G(O) = O, G is o v v-. 
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Finally, notice that F(p, G(p), q, G(q)) is a suitable cp, i.e. a formula cp in two 

variables such that cp(v, 1) = cp{1, v)= v. D 

Lemma 8 (Ratsa's lemma 10). Let E be one of -,V, DvV, and L be one of 

{-,}, {-,V, V}. Then -.,-,V E [T, ..l, D, f18, E, 1-,, 1/\, L] and this system contains 

also some formula 'I' satisfying 

'1'{1, O)= O, '!'(v, 1) =v, '1'{1, 1) = 1. 

Proof Since f18 does not preserve m 18, there are n-tuples (g), (ID, and (;i) such 

that each (ai. J3i. Yi) is an m1s-column and such that (f1s(Q), f1s@, f1s(y)) is not an m1s­

column. Since the a's and y's are ali either O or I, it follows that 

f1s(i) I I O O 1 1 

f1sCID I c I v w v w 

f1sW I I 1 1 o o 

Let D be as defined in the proof oflemma 7. D E L and D satisfies D(v) = w and 

D(1) =O. We take then formula F= f18(F1 ... Fn) where for 1 ::=:::i::=::: n: 

Fi= ..l, if Ui= f3i = Yi =O; 

Dp 1/\ q, i f Ui = f3i = O and Yi = 1; 

D(E(p)), if Ui = O and f3i = v and Yi = O; 

D(p), if Ui = O and f3i = w and Yi = O; 

1-,Dp, if Ui = O and f3i = 1 and Yi = O; 

q, if a · = O and A. = 1 and y· = 1· 1 Pt t , 
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1 -,q, 

Dp, 

p, 

E(p), 

1-,(Dp 11\ q), 

T, 

if01= 1 and~i=Oand Yi=O; 

if Ui = 1 and ~i = O and Yi = 1; 

if Ui = 1 and ~i = v and Yi = 1; 

if Ui = 1 and ~i = w and Yi = 1; 

if Ui = 1 and ~i = 1 and Yi = O; 

if Ui = ~i = Yi = 1. 

This exhausts m18· Var(F) = {p, q}, F E :!{T, l., 1
A, D, D, E}. Taking into account the 

conditions on D (D(v) = w, D(1) =O), we can see that Fi(1, O)= Ui, Fi(v, 1) =~h and 

Fi(1, 1) = Yi. So 

F(1,0)1 lO O 1 1 

F(v, 1) I c 1 v w v w 

F(1, 1) 1 1 o o ' . 

The formula C satisfying the conditions ofthe lemma will be defined as: 

C= F, ifF(1, O)= O and F(v, 1) =v and F(1, 1) = 1; 

F(E(p), q), ifF(1, O)= O and F(v, 1) = w and F(1, 1) = 1; 

F(p, 1-,(Dp 1Aq)), ifF(1,0)= 1 andF(v, 1)=vandF(1, 1)=0; 

F(E(p), 1-,(Dp 1A q)), ifF(1, O)= 1 and F(v, 1) = w and F(1, 1) =O. 

(Recall that Eis either .,v+ or DvV'.) c E :t{D, E, F, 1
-., 

1
A}. Since c preserves mv2 

it follows that C satisfies the conditions o f the lemma. 

W e now build formulas for -, and -,V'. Let L be {-,}. It is enough then to see 

that -,V' is equivalent to 
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-.C( -.p, -.0-.p ), 

C(p, T(p)), 

ifC(O, 1) =O; 

ifC(O, 1) = 1. 

Finally, let I: be {-.V+, V}. Note that 1=2 C(-,V+p, -.Dp) ~ -.p. Now -.Vp is 

simply -.(V p ). o 

Lemma 9 (Ratsa's lemma 11). (-.Op v -.Vq) E [T, ..L,-., O, -.v-, f14, f15]. 

Proof. f14 does not preseiVe m14, and so there are n-tuples (g) and @ such that 

each (<li, l3i) is an mwcolumn and such that 

ft4(g) I c I o o v v w w 1 1 v w 

f14(ID. I I v w O 1 O 1 v w w v , . 

· Let D be formula f14(D1 ... Dn) where for l,:S i .:S n: 

Di= ..L, if<li = l3i =O; 

p, if <li = O and l3i = 1; 

q, if <li = l3i = v; 

--,q, if <li = l3i = w; 

--,p, if <li = 1 and l3i = O; 

T, if <lj = l3i = 1. 

This exhausts ml4· Var(D) = {p, q}, D E ~{T' ..L,--,, fi4}. Note that D(O, v)= Ui and 

D(1, v) = l3i· It follows that 
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D(O, v) I C I O O v v w w 1 1 v w 

D(1, v) vw010 1 vwwv .. 

We begin by considering the cases corresponding to the frrst eight columns. To 

do so take formula E, defined by the scheme: 

E= -,VD(p, q), ifD(O, v)= O and D(1, v)= v; 

-.D(p, q), ifD(O, v)= O and D(1, v)= w; 

-.VD(-.p, q), ifD(O, v)= v and D(1, v)= O; 

D(-.p, q), ifD(O, v)= v and D(1, v)= 1; 

-.D( -.p, q), ifD(O, v)= w and D(1, v)= O; 

D( -.p, -.q), ifD(O, v)= w and D(1, v)= 1; 

D(p, q), ifD(O, v)= J and D(l, v)= v; 

D(p, -.q), ifD(O, v)= 1 and D(1, v)= w. 

E E ;!{--,,-.v-, D}; E satisfies E(O, v)= 1, E(1, v)= v. It is not hard to see that 

F= 2 -,v-E(Op, q) B (--,Op v -.Vq). 

The last two cases, corresponding to the last two columns of the matrix above, 

will be treated using formula F, defmed by scheme: 

F= D, ifD(O, v)= v and D(l, v)= w; 

-.D, ifD(O, v)= w and D(1, v)= v. 

F E;!{--,, D} and F satisfies F(O, v)= v, F(1, v)= w. Now we use f1s- Since f1 5 does not 

preserve mls, there are n-tuples (y) and (Q) where each (yi, Õi) is an mwco1umn and 

such that 
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f1sW I c I O O v v w w 1 1 

f1 5@ I I v w O 1 O 1 v w , . 

We denote by G the formula fis(GI . .. Gn) where for 1,:::: i,:::: n: 

Gi = ..L, ifyi=Õj=O; 

p, if Yi = O and oi = 1; 

q, ifyi =Oi= v; 

F, if Yi = v and Õi = w; 

-.F, if Yi = w and Õi = v; 

--,q, ifyi = Õi =w; 

-.p, if Yi = 1 and Oi = O; 

T, ifyi =oi= 1. 

This exhausts ml5· Var(G) = {p, q}, G E .:t{T, ..L,-., F, f1s}. Since F(O, v)= v and F(1, 

v)= w we can see that Gi(O, v)= Yi and Gi(1, v)= Õj. So 

G(O, v) I C I O O v v w w 1 1 

G(1, v) v w o 1 o 1 v w .. 

Note that this matrix = the first eight columns o f the matrix above, and so we fali in to a 

case already considered. D 

Lemma 10 (Ratsa's lemma 12). O(p 1\ q) E [T, ..L, O, f16, 1/\]. 
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Proof f16 does not preserve m 16 and so there are n-tuples (g) and (ID such that 

each pair (Ui, ~i) is an mwcolumn and such that 

f!6Ú!) I c I o o o v v w w 1 1 1 

f16@) I I v w 1 O 1 O 1 O v w , . 

Let D be formula f16(DI ... Dn) where for 1 :S i :S n: 

Di= .l, if01 =~i= O; 

p, if01 =~i= v; 

q, if Ui = v and ~i = w; 

-,q, . if Ui = w and ~i = v; 

-,p, if01 =~i =w; 

T, if Ui = ~i = 0. 

This exhausts m16· Var(D) = {p, q}, D E X{T' .l, -,, fi6}. lt is easy to see that Di( v, v) 

=Ui and Di(v, w) =~i· So 

D(v, v) I c I O O O v v w w 1 1 · 1 

D(v, w) v w 1 o 1 o 1 o v w .. 

We now define formula E as follows: 

E= OD, ifD(v, v)= O and D(v, w)-:~; O; 

-,OD, ifD(v, v) E {w, v} and D(v, w) =O; 

0-,D, ifD(v, v)= {1} andD(v, w)"# 1; 
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-.0--.D, ifD(v, v) E {w, v} and D(v, w) = 1. 

Eis a purely modal function on two arguments, and is expressible in terms of --.,O, D. 

Since E(v, v)= O and E(v, w) = 1, we can conclude that 

F
2 (Op 1A (Oq 1A -.(E 1A ( --.Dp 1A --.Dq)) ~ O(p 1\ q). D 

We are now ready to prove 

Theorem 2 (Functional completeness criterion w.r.t. modal W2-operations -

Ratsa's theorem 2). A set ofmodal functions C is 2-complete iffit is l-complete and, 

for each n, 5::: i::: 19, there is f E c such that f fé IIj. 

Proof The (~) part of this theorem follows from { q> : F 2 q>} ç { q> : F 1 q>} and 

the fact that the classes II5 ••• II19 are compositionally closed and not 2-complete. 

(<=).In view ofLemmas 1-10 we conclude that lising 1--., 1..l, 1
A and formulas 

fs- f19 we can define D, -.,-.v-, -.Op v -.Vq, O(p 1\ q), as well as formulas B and C, in 

two variables, satisfying 

B(v, 1) = B(l, v)= v 

C(l, O)= O, C(v, 1) =v, C(l, 1) = 1. 

With these resources we can define O(p 1\ q) ~ (p 1\ q): 

F 2 --.v-B[(--.Dp v -.Vq), (-.O(p A q) v -.Vp)] ~ (O(p i-. q) ~ p A q)). 

Finally, with this formula and C we can define p 1\ q: 

F 2 C[O(p 1\ q) ~ p A q, O(p A q)] ~ p A q. D 
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Afimctional completeness criterion w.r.t. moda/ W3-operations 

Our next step towards the main theorem is to establish the functional 

completeness criterion w.r.t. modal W3-operations. 

W3 = {wo, w~, w2}. In this section, as usual, we will write 1 for {w0, w1, w2} and 

O for { }; also we write w for {w0}, u for {w1}, and v for {w2}; moreover we write wu 

for {w0, w1}, and similarly for the other cases. (Again, in Ratsa's paper one will find 

different names for the elements of f.J(W3); the subsets of W3 which we are 

representing as 1, wu, wv, uv, w, u, v, O are represented in his paper as 1, ro, cr, v, J..l, p, 

E, 0.) 

The convention for indefinite descriptions will also be used, and so e.g. 21\ will 

stand for some W 3-operation which is W 2-equivalent to /\. 

The sub-structures {0, u, wv, 1}, {0, w, uv, 1}, and {0, v, wu, 1} are isomorphic 

and embeddable in W 2, from which it follows that the values o f unary operations on W 3 

are determined by their values w.r.t. W2. This, of course, doesn't hoid for binary 

operations. 

The following will be extensively used below: 

Proposition. The matrix below, mvJ, is invariant w.r.t. W3-modal operations. 

o u w v wu uv wv 1 
o u v w uv wu wv 1 
o w u v wu wv uv 1 
o w v u wv wu uv 1 
o v u w uv wv wu 1 
o v w u wv uv wu 1 

Proof It is easy to check that O, -,, 1\ do preserve this matrix; preserving 

relations ( or their corresponding matrices) is a hereditary property. O 

Thanks to this result it won't be necessary to deal with the full tables for W3, 

which would have 64 entries; instead we will use the following pair o f partia! tables: 
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u 
1 

o u 1 
p \q 1 u w uv 

Using the fact that every modal W3-operation preserves mv3, we can find the missing 

values. 

We will use below the following W3-operations, which are not modal W3-

operations: 

l 

o o o o o 
u o wv u wv 
w o wv uv wu 
v 1 wv wu uv 

wu 1 u v w 
uv o u w v 
wv o u wv u 
1 o 1 1 1 

The symbols TI2o-II23 will denote the classes of modal W3-operations 

preserving, respectively, the following predicates: g1(p) = O, ~(p) = q, ~(p) = q, and 

~(p) = q. These predicates correspond to the following matrices: 

m2o =(0, u, w, uv, wv, 1); 

m21 = 1° u w v wu uv wv 1 

o wv wv wv u u u 1 

m22 = 1° u w v wu uv wv 1 

o u uv wu v w wv 1 

mn= I o u w v wu uv wv 1 

o wv wu uv w v u 1 

In the previous section we were able to avoid using non-modal operations in the 

definition of the matrix m10• So far we have not been able to do the same w.r.t. the 

matrices m2o-m23· This leads to the above-mentioned 
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Question. Is it possible to define the matrices m 2o-m23 using only moda! W3-

operations? If it is, which formulas could do the job? 

We will show in the end of this section that a set of modal functions is 3-

complete iff it is 2-complete and not included in any o f the classes Ib1 TI23; but first we 

need to show some lemmas, starting with 

Lemma 11 (Ratsa's lemma 13). There is a modal W3-operation Q satisfying 

Q(wv, uv) =v such that Q E [T, _i,--., f2o]. 

Proof Since f2o ~ TI2o, there is an n-tuple (g), ai E {0, u, w, uv, wv, 1}, such 

that f2o(g) E {v, wu}. 

Let B be formula f2o(B1 ... Bn) where for 1 :S i :S n: 

Bi= _l, if01 =O; 

-.p, · if ai = u; 

-.q, if ai = w; 

q, ifai = uv; 

p, if01 = wv; 

T, if01 = 1. 

This exhaust m2o, Var(B) = {p, q}, B E ~{T, _l, -., f2o}. Note that Bi(WV, uv) = Uj. So 

B(wu, uv) = f2o(g), and consequently B(wv, uv) E {v, wu}. The formula satisfying the 

condition o f the lemma will be 

Q= B, ifB(wv, uv) =v; 

-.B, ifB(wv, uv) = wu. D 

Lemma 12 (Ratsa's lemma 14). For any formula Q as above, we have D(p ~ q) 

E (T, _l, D, -., f21, 2/\, Q]. 
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Proof Since we have--, and 2A, we can defme 2v, 2~. and formula 

E(p, q) = D(p 2~ q) 2" D(--,p 2~ -.q). 

Clearly, E(p, q) is W2-equivalent to D(p ~ q). We can see also that 

t=3 E(p, q) ~ E( -.p, -.q), 

and so we have 

E(u, w) = E(wv, uv) and E(u, uv) = E(wv, w). 

There are two cases to consider: (i) E(u, w) = E(u, uv) and (ii) E(u, w) "# E(u, uv). 

In case (i) we have t= 3(E(p, q) 2
A -.E(p, -.q)) ~ D(p ~ q). 

Case (ii) is sub-divided into (ii-a) E(u, w) =O and E(u, uv) = 1 and (ii-b) E(u, w) 

= 1 and E(u, uv) =O. 

In case (ii-a), where E(u, w) =O, let R be formula --,Q(p, -.q). We have then 

R(wv, w)=wu 

[-.Q(wv, -.w) = -.Q(wv, uv) =-,v= wu] 

Let B be formula 

D(DR 2v -.R) 2v (E(p, R) 2v E(R, -.q)). 

B assumes only values O and 1. Since in this case R(wv, w) = wu, E(wv, uv) = O (recall 

that E(wv, uv) = E(u, w)), and since every modal W3-operation preserves mv3, we can 

conclude that B(wv, w) = O. Since R(u, u) e {0, u, wv, 1} (modal operations applied to 

arguments in some substructure return values in the same substructure) we can see also 

that B(O, O) = B(u, u) = B(1, 1) = 1. lt is then easy to check that 

1=3 (E(p, q) "2 (B(p, q) 2" B(-.p, -.q))) ~ D(p ~ q). 

In case (ii-b), where E(u, w) = 1, we first show that with Q we can express a 

formula C on variables p and q, assuming only values O and 1, and satisfying 
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C(u, u) = 1, C(wv, uv) =O 

Q(u, u) E {0, u, wv, 1}. If Q(u, u) E {0, u, 1}, our formula C is 

D(DQ 2v -,Q) 2v E(p, Q). 

C E .:C{D, --., 2v, E, Q}. Given E(u, uv) = O it follows that E(wv, w) = O; since E 

preserves mv3 we can conclude that our formula is a suitable C. 

If Q(u, u) = wv, we use f21· Since f21 ~ II21 there are n-tuples (g), (ID etc. such 

that the pair (f21 (g), f21(ID) is one ofthe colurnns ofthe following matrix: 

l
o o ou u u w w w v v v wu wu wu uv uv uv wv wv wv 1 1 1 I 
uwv10u10 u 1 Ou1 O wv 1 O wv 1 O wv 1 Ouwv 

(Note that, although the full w 3-matrix has 64 co1urnns and m21 has only 8 colurnns, 

the matrix of co1umns not in m 21 but in the co-domain of some modal W3-operation 

applied to an mz1-matrix has 'only' 24 columns. That happens because the second row 

ofm21 is constituted only by elements ofthe substructure {0, u, wv, 1 }.) 

We now defme formula F= f21(F1 ... Fn) where for 1 :Si :S n: 

Fi= _L, ifa· =~- =o· 
1 1 ' 

-.p, if Ui = u and ~i = wv; 

-,q, if Ui = w and ~i = wv; 

Q, if a · = v and ~- = wv· 
1 1 ' 

-,Q, if Ui = wu and ~i = u; 

q, if ai = uv and ~i = u; 

p, if ai = wv and ~i = u; 

T, ifUi =~i= 1. 
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This exhausts m21· F E :!{T, l_, -., f2t, Q}, Var(F) = {p, q}. Note that Fi(WV, uv) = CXj 

and Fi(u, u) = f3i· So the pair (F(wv, uv), F(u, u)) is one ofthe columns ofthe big matrix 

above. In any o f the twenty-four relevant cases, our formula can be defined by the 

scheme: 

C= D-.F, 

E(p, F) 2 
A -.E( -.p, F), . 

E( -.p, F) 2 
A -.E(p, F), . 

DF, 

ifF(u, u) =O; 

if F(u, u) = u; 

if F(u, u) = wv; 

ifF(u, u) = 1. 

Using the properties ofE (and remembering that C(u, u) = 1 and C(wv, uv) =O) 

it is not hard to check that 

F=3 ((E 2A C 2A C(-.p, -.q)) 2v ((Dp A Dq) 2v (D-.p A 0-.q))) ~ D(p ~ q). D 

Lemma 13 (Ratsa's lemma 15). For any such operation Q, the modal W3-

operation p A q E [T, l_, 0, -., D(p ~ q), f22, f23, 2 
A, Q]. 

Proof . We fiTSt construct a formula B, assuming only values O and 1, and 

. satisfying 

B(wv, w) =O, B(wv, uv) = 1. 

Since Q(wv, uv) =v, it is easy to see that, when Q(wv; w) E {0, u, w, uv, wv, 

1}, the formula B will be one o f OQ, O(p ~ Q), -.0( q ~ Q), O( q ~ Q), -.D(p ~ Q), 

-.DQ. 

Another simple case is Q(wv, w) =v. Since Q(wv, uv) =v and Q preserves mv3, 

we know that Q(wv, wu) = w. In these circumstances, our formula Bis 

-.D(q ~ Q(p, -.Q)). 

If Q(wv, w) = wu, we need to use f22· Since 62 !é TI22, we have n-tuples (ill and 

<ID etc. where the pair (f22Ú!), f22Cill) is nota column ofthe m22-matrix. 
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We now defme formula C as f22(C1 ••• Cn) where for I ~ i ~ n: 

Ci= ..l, if <li = J3i = O; 

-,p, if <li = J3i = u; 

q, if <li = w and J3i = uv; 

--.Q, if <li = v and J3i = wu; 

Q, if <li = wu and Jl = v~ 
. I ' 

-,q, if <li = uv and J3i = w; 

p, if <li = J3i = wv; 

T, if <li = J3i = I. 

This exhausts m22· Var(C) = {p, q}, c E .t:{T, ..L,--,, f22, Q}. Note that Ci(WV, w) =Ui 

and Ci(wv, uv) = J3i. Therefore, the pair (C(wv, w), C(wv, uv)) is one ofthe 56 columns 

notin m22· 

In any ofthe 56 relevant cases, the required formulais expressible by D, --,, D(p 

~ q), C and 2v, as shown by the scheme: 

B= oc, if C(wv, w) =O and C(wv, uv) -:t:. O; 

O(p~C), ifC(wv, w) = u and C(wv, uv) -:t:. u; 

-.D(q ~C), if C(wv, w) = w and C(wv, uv) -:t:. uv; 

O(C~Q), ifC(wv, w) =v and C(wv, uv) -:t:. wu; 

-.D(C ~Q), ifC(wv, w) = wu and C(wv, uv) -:t:. v; 

O(q ~C), ifC(wv, w) = uv and C(wv, uv) -:t:. w; 

--.D(p~C), ifC(wv, w) = wv and C(wv, uv) -:t:. wv; 

--.DC, ifC(wv, w) = 1 and C(wv, uv) -:t:. I. 
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We will also need a formula E, on variables p, q, assuming only values O and 1 

and such that 

E(u, w) =O, E(wv, uv) = 1. 

IfQ(u, w) E {0, wv, w, uv, u, 1} our formula Eis one ofOQ, O(p ~ Q), ---,D(q 

~ Q), O(q ~ Q), -.D(p ~ Q), -.DQ. IfQ(u, w) =v, then E will be B(-.Q, q); that this 

is the case can be seen remembering that Q(wv, uv) = v, B(wv, w) = O, B(wv, vu) = 1 · 

and using m'<t3· 

Let Q(u, w) = wu. We now use f23. Since f23 ~ TI23, there are n-tuples (y),@ etc. 

and so (f23(y), f23@) is one ofthe 56 columns not in m23· 

Let G be formula f23(G1 ... Gn) where for 1::;: i::;: n: 

G= ..l, ifyi = Õi =O; 

p, ifyi = u and Õi = wv; 

q, ifyi = w arid Õi = wu; 

---,Q, ifyi = v and Õi = uv; 

Q, ifyi = wu and Õi = w: 

---,q, ifyi = uv and Õi =v; 

---,p, ifyi = wv and Õi = u; 

..l, ifyi = Õi =o . 

(This exhausts m23.) Remembering that (by mv3) Q(wv, uv) =vis equivalent to Q(wv, 

wu) = w, it can be seen that Gi(u, w) = Yi and Gi(wv, wu) = Õi. So (G(u, w), G(wv, wu)) 

is one ofthe 56 columns not in m23· 

Since (by mv3) E(wv, uv) = 1 is equivalent to E(wv, wu) = 1, it is easy to see 

that in any ofthe 56 cases the desired formula Eis expressible using D, ---,, D(p ~ q), G 

and Q, as the following scheme shows: 
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E= OG, ifG(u, w) =O and G{wv, wu)-:;; O; 

-.O{pBG), ifG(u, w) =u and G(wv, wu) -:;;wv; 

-,O{q B G), ifG(u, w) = w and G(wv, wu)-:;; wu; 

O(GBQ), ifG{u, w) =v and G{wv, wu)-:;; uv; 

-.O{GBQ), ifG(u, w) = wu and G(wv, wu)-:;; w; 

O(q BG), ifG(u, w) = uv and G(wv, wu)-:;; v; 

O(pBG), ifG(u, w) = wv and G(wv, wu)-:;; u; 

-.OG, ifG(u, w) = 1 and G(wv, wu)-:;; 1. 

Let R be formula (B 2
A B(q, p)) 2A E. Since B(wv, w) =O, B(wv, vu) = 1 and 

E{u, w) =O, E(wv, uv) = 1 we know that R satisfies conditions 

R(u, w) = R(u, uv) = R(wv, w) =O 

R(wv, uv) = 1. 

Now let F be formula 

(Q 2 
A R) 2v ((p 2 

A R(-.p, q)) 2v (q 2 
A R(p, -,q))), 

expressible by -., 2v, 2 
A, Q and R. Then, from the conditions on Q and R we can find 

that 

F(u, w) =O, F(u, uv) = u, F(wv, w) = w, F(wv, uv) =v. 

Finally, let H be formula 

(Dp 2v 0-.p) 2v (Dq 2v 0--,q) 2v O{p B q) 2v 0{--,p B q). 

H is expressible via o , -., O{p B q), and 2v . H has the following table: 
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o u 1 
1 1 1 

u 11 1 1 
1 1 1 1 

W e can see that 

u w uv 

u 11 o o 
wv 1 o o 

t= 3 ((p 2v q) 2v -,H) 21\ (F 2v H)) B p 1\ q. O 

Theorem 3 (Ratsa's theorem 3). A set of moda1 functions is 3-complete iff it is 

2-complete and not included in any ofthe classes II2o-II23 • 

Proof. ( =>) follows from { <p : F=
3 <p} c { <p : F=

2 <p} and the fact that the classes 

II20- II23 are closed under definability and not complete w.r.t. modal W3-operations. 

( ç) By hypothesis we have ali modal W 2-operations, including 2
1\ and o. Also 

by hypothesis, we have functions fi ~ rri (i = 20, 21, 22, 23), not necessarily distinct and 

with (so to speak) variables among p1 . . . Pn· It is enough to show that in these 

conditions we can define the modal W3-operation corresponding to p 1\ q. This was seen 

in the previous three lemmas. O 
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Afunctional completeness criterion w.r.t. moda/ W4-operations 

Recall that w4 = {wo, w., W2, WJ}. We will for convenience write w for {wo}, u 

for {w1}, v for {w2}, and z for {w3}; the conventions in the preceding sections are 

extended to this one in the obvious way. (In Ratsa's notation, the elements of f,J(W4) 

here referred to as 1, wuv, wuz, wvz, uvz, wu, wv, uv, wz, uz, vz, w, u, v, z, O are 

denoted by 1, ro, v, 'JI, ~. p, 't, ô, y, 9, cr, a, <p, J.l, e, 0.) 

The following substructures ofW4 are isomorphic and embeddable in W3. 

{O,wu, v,z,wuv, wuz, vz, 1}; 

{0, w, v, wv, uz, wuz, uvz, 1}; 

{0, u, v, uv, wz, wuz, wvz, 1}; 

{0, w, u, vz, wu, wvz, uvz, 1}; 

{0, u,z, wv, uz, wuv, wvz, 1}; 

{0, w, z, uv, wz, wuv, uvz, 1}. 

Proposition. The matrix below, mv4, is invariant w.r.t. modal W4-operations. 

o w u v z wu wv uv wz uz vz wuv wuz wvz uvz 1 
o w u z v wu wz uz wv uv vz wuz wuv wvz uvz 1 
o u v z w uv uz vz wu wv wz uvz wuv wuz wvz 1 

Proof. Again, it is easy to see that --.,, O, and " do preserve this matrix. o 

The unit subsets of W4 will be called atoms, their complements co-atoms, and 

the two-element subsets e/ements of the middle. We will call a middle pair a pair of 

non-complementary elements ofthe middle. So the middle pairs are: 
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" 

(wu, uv), 

(uz, wu), 

(uz, wz), 

(vz, wv), 

(wz, uz), 

(uv, wu), 

(uv, wv), 

(wz, wu), 

(wv, uv), 

(vz, uv), 

(wuuv), 

(wv, wu), 

(uz, vz), 

(vz, uz), 

(wu, uz), 

(uz, uv), 

(wv, wz), 

(wz, vz), 

(uz, vz), 

(uv, uz), 

(wz, wv), 

(wv, vz), 

(vz, wz), 

(wv, wz). 

Since every modal W4-operation preserves mv4, given the value of such an 

operation w.r.t. one of the middle pairs we can find its values w.r.t. any other middle 

parr. 

Given one pair o f subsets o f W 4, one of two things must happen: (i) they are a 

middle pair, or (ü) they belong to some o f the substructures above. So an adequate table 

for modal W 4-operations should have cells corresponding to elements o f one o f the 

substructures and cells for one o f the middle pairs. 

II24 is the class o f modal functions whose corresponding modal W 4-operations 

preservep E {O,wv, wz, uv, vz, 1}. 

II25 is the class o f modal functions whose corresponding modal W 4-operations 

preservep E {0, wv, wu, wz, uv, uz, vz, 1}. 

(Here, again, the question presents itself whether there are modal formulas 

corresponding to these relations.) 

W e will show in the end o f this section that a system o f modal functions is 4-

complete iff it is 3-complete and not included in TI24 or II25; that will be done after we 

establish some (few) lemmas. 

Lemma 14. There is a formula B satisfying 

B(wu, uv)=u 

and expressible in terms of T, ..L, D, --,, f24, fzs, /\3
• 

Proof Since fz4 ~ IIz4 and m24 = {0, wv, wz, uv, vz, 1}, there is (g) such that 

fz4Ú!) ç {w, u, v, z, wv, uz, wuv, wuz, wvz, uvz}. 
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Let C be formula f24(C1 ... Cn) where for 1::;: i::;: n: 

Ci= _l, if<li =O; 

p, ifeli=wu; 

q, ifeli = uv; 

-.q, ifeli ~wz; 

-,p, if <li= vz; 

T, if Ui= 1. 

This exhausts m24, c E :1:, {T, _l, --,, f24}, Ci(WU, uv) =Ui. lt follows that 

C(wu, uv) c {w, u, v, z, wv, uz, wuv, wuz, wvz, uvz}. 

We now defme formula 

E= C, ifC{wu, uv} E {w, u, v, z, wv}; 

-.C, if C( WU; uv} E { uz, wuv' wuz, wvz, uvz}. 

E(wu, uv) E {w, u, v, z, wv}. When E (wu, uv) ::t: wv, the desired formulais 

B = p 3 
A -.E(p, q), ifE(wu, uv) = w; 

E(p, q), ifE(wu, uv) = u; 

q 3 A -.E(p, q), ifE(wu, uv) =v; 

3 ( 3 p A --, -.q A -.E(p, q) ), ifE (wu, uv) = z. 

If E(wv, uv) = wv, we use f25. f25 ~ TI25 and so there is an n-tuple @, f3i E {0, 

wv, wu, wz, uv, uz, vz, 1}, such that f2s® E {w, u, v, z, wuv, wuz, wvz, uvz}. 

Let F be formula f2s(F1 ... Fn) where for 1 ::;: i::;: n: 

Fi= _i, ifA· =O· Pt , 
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p, iff3i =wu; 

E(p, q), iff3i = wv; 

q, iff3i = uv; 

-,q, iff3i = wz; 

-.E(p, q), iff3i = uz; 

-.p, iff3i = vz; 

T, iff3i = 1. 

(This exhausts m25.) F E .t:{T, ..L,-,, E, f2s}. Fi(wu, uv) = f3i. and so F(wu, uv) E {w, u, 

v, z, wuv' wuz, wvz, uvz}. 

We reduce the cases by half using formula 

G= F, ifF(wv, uv) E {w, u, v, z}; 

-.F, ifF(wv, uv) E {wuv, wuz, wvz, uvz}. 

Comparing G with E above, we can see that this is a case already considered. The 

lemma is proved. O 

We will see now that formula -.Ind(p, q) is expressible in W 4 by O, -., 3v, 3 
A. 

First we establish the equalities 

O(wu 3v uv) = O(wv 3v wz) = O(vz 3v uv) = O(vz 3v wz). 

(This holds since the arguments are middle pairs and the formula can 't assume values 

other than O and 1.) W e also use formulas 

(O(p 3v q) 31\ 0(-.p 3v -.q)) 31\ (0(-.p 3v q) 31\ O(p 3v -.q)) 

(O(p 3v q) 3
v 0(-.p 3v -.q)) 3v (0(-.p 3v q) 3

v O(p 3v -.q)) 

W3-equivalent, respectively, to O and 1. They will be designated by H, and H2. 
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Given the equalities above we can verify that by --,, H1 and H2 we can express 

-,lnd(p, q): 

-.Ind(p, q) = H2, if O(wu 3v uv) =O; 

-.H1. if O(wu 3v uv) = 1. 

Finally, we take formula 

(B(p, q) 3v --,lnd(p, q)) 3 
A ((p 3 

A q) V lnd(p, q)) 

which is W4-equivalent topA q. O 

Now we can officially state and prove 

Theorem 4. A system of modal functions is 4-complete iff it is 3-complete and 

not included in Il24 or Il2s-

Proof . ( ~) follows from the facts that { <p : I= 4 <p} c { <p : 1=3 <p} and that II24 and 

II25 are not complete w.r.t. modal W4-operations. (<=) is immediate from the lemmas · 

above. O 
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-1 

A functional completeness criterion for moda/ functions; determination o f the pre­

complete systems; results on bases for fJ 

Proposition 1 and theorems 1-4 yield 

Theorem 5. A set of modal functions C is complete iff for each of the classes 

Tio, ... , ll2s there is a function in C that doesn't belong to it. D 

For what follows we have to establish the following definitions: 

S(p, q) =df D(p v q) v D(p ~ q) v D(q ~ p). 

<p(p, q) =df S(p, q) A S( --.p, q) A S(p, --.q) 1\ S( --.p, --.q). 

Using the criterion above it is easy to check that the following is an independent 

basis for J..l: 

Dp, -,V p, V p, p 1\ (Dp v Oq), p 1\ (Dp ~ Oq), 

p ~ (L\q ~ L\p), p ~ (L\p ~ (Dq ~ Dr)), 

(p ~ (L\q ~L\p)) ~ (q 1\ (L\q ~ L\p)), <p(p, q) ~ q, 

(p ~ L\r) ~ (Op 1\ D(p v q) 1\ L\r), ((p ~ q) ~ --.Ind[p, q]) ~r, 

((p v q v r v D(p ~ q) v D(q ~r) v D(r ~ p)) ~ --.Ind[p, q]) ~r, 

(p v S[p, q]) 1\ (p ~ S(p, --.q)) A (q v (S(--.p, q) A S(--.p, --.q))) A (<p ~ q), 

((p v q) ~ S) A ((p ~ q) ~ S[--.p, q]) A ((q ~ p) v S[p, --.q]) 1\ ((p A q) ~ S[-.p, --.q]) 

1\ (<p ~ q). 

W e show below a table o f functions preserving and not preserving matrices 

m2crm25· 

Recall that: 
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m2o = (0, u, w, uv, wv, 1); 

m21 = I o u w v wu uv wv 1 

Owvwvwv u u u 1 

m22 = I o u w v wu uv wv 1 

Ouuvwu v wwv1 

m23 = I o u w v wu uv wv 1 

Owvwuuv w v u 1 

m24 = (o, wv, wz, uv, vz, 1 ); 

m25 =(o, wv, wu, wz, uv, uz, vz, 1). 

In the following table, 9 and 'V are as defined above on page 28. 
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Class f E TI F~ TI 
II2o T, _1_, O,-,, p ~ Oq, O(p ~ q), e, ~. (p ~ (S[-,p, -,q] ~ S)) ~ q, 

S, 
\jl, 

(p ~ Ind(p, q)) ~·q 
(p ~ S) 1\ ( q ~ S), 

(p v q v S) 1\ ((p 1\ q) v S[-,p, 

-,q]) 

II21 T, _l_, O,-,, (p ~ Oq), e, O(p ~ q), 'I' 
(p ~ S) 1\ ( q ~ S), 
(p ~ Ind[p, q]) ~ q, (S 1\ S[ -,p, 

-,q]) ~ O(p ~ q) 
II22 T, _1_, O, -,, ~. (p ~ Oq), O(p ~ S, (S 1\ S[-,p, -,q]) ~ O(p ~ q), 

q), (p ~ Ind[p, q]) ~ q, e 
(p v q v S) 1\ ((p 1\ q) v S[-,p, 
-,q]),\j/ 

II23 T, _1_, O, -,, (p ~ Oq), O(p ~ q), ~. S, (p ~ S) 1\ (q ~ S), 'I' 

e, (p ~ Ind[p, q]) ~ q, (p v q v s) 
1\ ((p 1\ q) v S[-.p, -,q]) 

II24 T, _1_, O,-,, p ~ Oq, O(p ~ q), e, ~. (p ~ Ind[p, q]) ~ q, 'I' 

S, 
(p ~ (S[-.p, -,q] ~ S)) ~ q, p v q 

v r v O(p ~ q) v O(q ~r) v O(r 
~p) 

I125 T,_l_, o,-;,~,p~ Oq, O(p~ (p ~ Ind[p, q]) ~ q, 'I' 

q), e, s 

Proposition. There are no inclusions among the classes II0-II25. 

Proof Given the list of examples of functions preserving and not preserving 

each o f the matrices mo-m25, it is mechanical to check that for any two o f the classes 

IIo-II25 there is a function that belongs to one and doesn't belong to the other. O 

Theorem 6. Tio, ... , II2s are the pre-complete systems o f modal functions. 

Proof We start by showing that these systems are pre-complete. 

Clearly IIi =t:. 1.1. for i E {0, ... , 25}. 
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Now suppose for contradiction that IIn (n E {0, ... , 25}) is properly included in 

some system S-:~; Jl. So S contains a function f !l: IIn. But by 'no inclusions' proposition 

above, we know that for every k-:~; n, O :S k :S 25, IIn $ IIk. This means that, for every k 

-:~; n, O :S k :S 25, there is some function g such that g E IIn- whence g E S - and g !l: IIk. 

But then S satisfies the conditions ofTheorem 5, and so S = Jl, with contradiction. 

W e need to show also that no other system is pre-complete. Suppose, for 

contra~iction, that there is another system S which is also pre-complete. So S is not 

included in any of the classes II0-II2s. But then, by Theorem 5, S = Jl, with 

contradiction. D 

The following proposition will be useful in the proof o f the next theorem. 

Proposition. If a formula cp preserves relations characterized by formulas Pt, ... 

, P n then cp also preserves every relation characterized by formulas obtained from the 

Pi's via substitution ofvariables, conjunction and existential quantification. 

Proof Cf. e.g. Bodnarchuk et al. 1969. D 

Theorem 7. An independent basis for Jl cannot have more than 14 elements. 

Proof We first prove the following inclusions (we use Ratsa's numbering of 

these): 

Tio n llts ç II12 (76) Tis n I19 c I13 (83) 

llt n llts ç IIn (77) Tis n Tito ç I13 (84) 

II2 n I13 ç Tio (78) I19 n Tito ç I13 (85) 

Tis n Tis ç Tio (79) IIu n llts ç I1t9 (86) 

Tis n I19 ç llt (80) II12 n IIn ç I1t7 (87) 

Tis n Tito ç Tio (81) I1t4 n I1t6 c llts (88) 

II6 n II1 ç Tis (82) II11 n I1t9 ç ~ (89) 
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nl7 n n19 c TIIs (90) 

TI22 n ll23 ç:; TI2o (91) 

Tio n I4 n Tin ç:; nl7 (92) 

Tio n nl7 n n19 c n12 (93) 

Til n I4 n n12 ç:; nl7 (94) 

Til n nl7 n n19 ç:; Tin (95) 

Tio n TI1 n I4 n TI1s ç:; TI11 (96) 

Given the proposition above, in order to show that e.g. Tio n TI18 ç:; TI12 it will be 

enough to construct a formula whose W2-matrix is m 12 using predicates Ro and R1s 

(corresponding to mo and mis) and conjunctions, substitution of variables, and 

existential quantification. The formula in question is :3z(Ro(z) A R18(x, y, z)), and that 

proves (76). 

We will use below formulas: E1, corresponding to the matrix m-.12; E2, 

corresponding to the first two rows o f matrix m-.13; and E3, corresponding to the last two 

rows of matrix m .. /3: 

The formulas proving (77)-{92) and (94) are: 

(77) :3z(RI(z) 1\ Ris(x, y, z)); (78) ::ly(R2(x, y) 1\ R3(x, y)); 

(79) :3y(Rs(y) 1\ Rs(x, y)); (80) :3y(Rs(y) A R9(x, y)); 

(81) :3y(Rs(y) A R10(x, y)); (82) :3y(R6(y) A R7(y) A E1(x, y)); 

(83) :3z(Rs(x, z) 1\ R9(y, z)); (84) :3z(Rs(x, z) 1\ R10(y, z)); 

(85) ::lz(R9(y, z) A R10(x, z)); (86) :3u(Ru(x, u) 1\ Ru(z, u)A Ris(y, u)); 

(87) :3z(Rn(z, x) 1\ Rn(z, y)); (88) :3z(RI4(x, z) A R16(y, z)); 
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(89) 3a3b3p3q3r3s3t3v3w(R17(a, p) 1\ R17(b, q) 1\ R17(b, r) 1\ R11(p, q) 1\ R17(p, 

r) 1\ R11(q, r) 1\ R19(x, a, y) 1\ R19(z, a, u) 1\ R19(x, b, z) 1\ R19(y, b, u) 1\ R19(x, p, s) 1\ 

R19(s, q, t) 1\ R19(t, r, u) 1\ R19(y, p, v) 1\ R19(v, q, w) 1\ R19(w, r, z)); 

(90) 3u(R17(y, u) 1\ R19(x, u, z)); 

(91) 3y3z3u(R22(y, z) 1\ R23(y, u) 1\ E2(x, y) 1\ E3(z, u)); 

(92) 3z3u3v3w(Ro(z) 1\ ~(z, .u, v, w) 1\ R 13(u, x) 1\ R13(u, y) 1\ R13(v, x) 1\ 

Rn(w, y)); 

(94) 3z3u3v3w(R1(z) 1\ ~(z, u, v, w) 1\ Rl2(u, x) 1\ Rl2(u, y) 1\ Rl2(v, x) 1\ 

Rl2(w, y)). 

(It is worth noting that in Ratsa's paper the conjunct R 17(b, r) is missing from the 

giant formula above. Without this conjunct the formula can't do its job.) 

Inclusion (93) follows from inchisions (76) and (90); inclusion (95) follows from 

(77) and (90); (96) follows from (77) and (92). 

Now take a set of fu.i1ctions {Ao ... A2s} such that, for O ::: i ::: 25, Ai ~ IIi. 

Given these inclusions, we can 'cut' twelve of the functions Ao ... A 2s in such a way 

that the remaining formulas will also satisfy the conditions of the theorem. 

Note that given (82) we know that either As ~ II6 or As ~ I17; that enables us to 

cut one of ~' A7. 

Analogously, by (88) we drop one of At4, A16; by (91) we drop one of A22, A23; 

by (86) one of A11, Ats; and by (83) one of As, A9. 

Five were done. 

Now, we will deal with A3. Given (83), there are three cases to consider: (i) A3 

E Tis - I19, (ii) A3 E I19 -Tis, and (iii) A3 ~ Tis and A3 ~ I19. 

In case (i) we use inclusion (84) to cut A 10 (since A3 ~ II3 and A3 E Tis, from 

(84) it follows that A3 ~ II10) and inclusion (79) to cut As orAs (we are sure that in our 
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list there is some formula corresponding to function not in II0; this function cannot be in 

Tis n Tis). 

In case (ii) we use inclusion (85) to cut Ato and inclusion (80) to cut As or A9. 

In case (iii), given (81) we can cut, besides both As and A9, one o f As and Ato. 

Seven were done. 

Next we wi11 use (78) and (87) to cut the eighth and ninth formul~ (one ofA2, 

A3 and one of A12, A13). 

There are three 1eft. 

We deal with A17 by cases (cf. (87)). Case (i): If An E II12- I113. Case (ü): At7 

E I113- I1t2· Case (iii) At7 ~ II12 and At7 ~ I113 . . 

In case (i) we use (76) to cut Ao or Ats and (94) to cut Ator~- Also we can use 

(89) to cut one of A17, A19. [Ratsa says that instead of (89) we could use (93) to cut one 

of Ao, A 17, A19, but that doesn't seem to work. Ifthe function to be cut in this lastcase 

is Ao we are double-counting it.] 

In case (ii) we use (77) to cut A1 or A1s and (92) to cut Ao or ~- Also we use 

(89) to cut one of A17, A19. [Same as above, but with (95) instead of (93).] 

In case (iii) we cut both A12 and A13, and then use (96) to cut one of Ao, At. ~. 

Ats. Finally, we use (89) or (90) to cut one of An, At9· D 

Theorem 8. A function f is a Sheffer-function for J..l iff f ~ Tio, Tit, II2, Tis, II6, 

II1, Tis, I19, II10, I1t4, llts, I1t6, II11, II2o, II2t. II22, I123, II24, II2s. 

Proof (=>) follows from Theorem 5. (<=) follows from Theorem 5 and the 

inclusions: 

I13 ç Tio u IIt (100) I113 ç IIt u I16 (104) 

~ ç Tio u IIt u II2 (101) llts ç Tio u IIt u IIn (105) 

lltt ç Tio u IIt u II1 (102) I1t9 ç Tio u llt u II1 (106) 
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Il12 ç Ilo u I16 (103) 

(100) and (101) are known (cf. Post). To prove (102) suppose f E II11 and f~ II0 

and f~ I17• So f(O, . . . , O)= 1 and there is an n-tuple (g) where, for 1 ~i~ n, Ui E {w, 

v} and f((g)) E {0, 1 }. Note that the following are mu-matrices. 

o .. . o 
a1 .. . Un 

1 . . . 1 

a1 .. . Un 

By hypothesis, f E II11 • Considering the first matrix, f(O, ... , O)= 1 implies f((g)) = 1. 

By the second matrix, given f((g)) = 1 we get f(1 , ... , 1) = 1. So f E Ilt. 

We now show inclusion (103). Suppose f E II12 and f~ II6; it follows that there 

is a tuple (g) where Ui E {0, w, 1} and such that f((g)) =v. Take the ml2-matrix 

o . ... o 
a1 ... Un 

Since f((g)) =v and f E II12 it follows that f(O, . .. , 0), which means that f E II0• The 

proof of (1 04) is similar. 

Inclusion (105) can be seen as follows: suppose f E II18 but f~ II0 and f~ II17. 

So f(O, ... , O) = 1 and there are tuples (g) and @, where (ai. f3i) are m 17-columns, 

such that (f(g), f(])) is nota m17-column, and so 

f(a1 Un) I c I w w v v 

f(J3I f3n) w v w v 
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At this point it is worth remembering that R 17 = dp v dq, and that 

R1s = dp AMA ((p ::{r) ~ dq). 

We define sequence <:i; using the scheme 

Yi =O, ifui E {0, 1} 

1, if Ui E {w, v}. 

(Altemative1y, we cou1d say that Yi =V ui.) 

Wenowhave 

1 ... 1 o ... o 
J3I ... f3n c m1s 

UI ... an I c m1s 

YI ... Yn 
YI .. . Yn 

Since f E TI18 and f(O, . . . , O) = 1 and f(@) E {v, w}, it follows that 

f( O ... O) c I 1 1 

f(J3I ... f3n) IW v 
I 

This entai1s 

f( O ... O) I I 1 1 

f(J3I .. . J3n) I c w v 

f(yl ... Yn) I 1 1 

and so we can conclude that f((y)) = 1; this with f(g) E {w, v} implies that f(1, ... , 1) = 

1, i.e. f E TI1. 

We tum, finally, to (106). Let f E TI19 and f !é Tio and f !é TI7. So f(O, ... , O)= 1 

and there is (g), Ui E {w, v}, such that f((g)) E {0, 1 }. Remember that R19 = dp AMA 

((p ::{r)~ Vq). So 
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o ... o 

a.1 .. . cx.n 1 c m19 

1 ... 1 

Since f E TI19 and f((g)) E {0, 1} it follows that f(O, ... , O)= f(1, ... , 1) = 1, i.e. f E TI1. 

D 

That none of the nineteen classes in Theorem 8 could be dispensed with or 

replaced by any other pre-complete system is assured by the following list, which gives, 

for each o f the nineteen classes, one function belonging to it but not belonging to any o f 

the other pre-complete classes. Here S(p, q) and <p{p, q) are as defined after Theorem 5. 

Tio: (p A q) +-+ -.Oq; TI1: (p ~ q) +-+ ~q; TI2: -.23(p, q, Dr); 

. TI5: -.(p v q) +-+ {~p v ~q); TI6: ((OpA Oq) ~ ((p A q) v D(p +-+ q))) A -.D(p A q); 

ll7: (p v ~q) ~{-.(pAr) A ~q); . Tis: Dp ~ {(q v {r+-+ M)) A -.D(q ~r)); 

ll9: ((p A (q +-+ ~q)) v D(p +-+ q)) A -.Or; TI10: -.(p A q); 

ll14: (p ~ Dp) A (Oq ~ q) A -.D(p A q); 

llts: ((p v q v (Op A Oq)) ~ ((p A q) v D(p +-+ q))) A -.D(p A q); 

llt6: -.p A (Oq ~ q) A -.D(p v q); ll17: ((Op ~ p) v (q +-+ ~q)) A {p ~ -.Dq); 

TI2o: (<p(p, q) ~ ((p ~ q) A -.Dq)) A (<p(p, q) v [((p ~ -.Ind(p, q)) ~ q) ~ S(p, q)]); 

n21: (<p{p, q) ~ ((p ~ q) 1\ -.oq)) 1\ (<p(p, q) v [(p B S(p, q)) 1\ (q ~ S(p, q))] 

TI22: -,Dp A (p +-+ q) A (q ~ -.lnd(p, q)); 

ll23: (<p(p, q) ~ ((p ~ q) A -.Dq)) A (p v q v S(p, q)) A ((p A q) v S(-.p, -.q)); 
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~((b 'd)pUJ:L-1\ 

(d ~ 1)0 "(1 ~ b)o "(b ~ d)o "1" b "d) v ((boL-v (b ~ d)) ~ (b 'd)pUJ:L-) :vzu 
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