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Abstract

We present here some highlights of the Theory of Modal Functions, and in

i ort: * re~ ' in the Theory of Systems "~ Mc ™" Fi t
determination of the pre-complete systems of modal functions. This result is the modal
(S5) correlate of Post’s criterion of (truth-)functional completeness, and was originally
shown by the Moldavian logician M. F. Ratsa (who published it in a paper written in
Russian). We present Ratsa’s theorems in a framework slightly different from his, and

we provide corrections of a few small errors of the original version.

Resumo

Apresentamos alguns fatos relevantes da Teoria das Funges Modais, e em
particular um resultado importante na Teoria dos Sistemas de Fungdes Modais: a
determinagdo dos sistemas pré-completos de fungdes modais. Esse resultado € o
correlato modal (em S5) do critério de completude (vero-)funcional de Post, e €
originalmente devido ao 16gico moldavio M. F. Ratsa (que o publicou em um artigo em
russo). NOs apresentamos os teoremas de Ratsa em um contexto ligeiramente

modificado, e fornecemos corre¢des de alguns pequenos erros do artigo original.
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Some essential definitions and some basic results

The language of modal propositional logic S5 may be taken as consisting of the

connectives —, A, O (standing for negation, conjunction, and necessity) and

propositional variables py, p2, p3, ---
The formulas of S5 are defined in the usual way: propositional variables are

formulas and, if ¢ and y are formulas, so are —@, (¢ A ), and Oe.

A model for classical propositional logic attributes to each propositional
variable a truth-value. Now, given a sequence of specific propositions, it might be the
case that not every attribution of truth-values for the propositions is really possible (e.g.:
if p is of the form A s, and q is of the form r A —s, it is impossible to attributé truth to
both p and q). But whichever are the possible attributions of truth-values for the
sequence, they should be of course a subset of the set of all attributions, and among -
these one must correspond to the actual truth-value of the sequence of propositions.

This inspires the following notion of model for S5:

We will say that a model M for classical propositional logic is a function from
the propositional variables into {T, F}. A model for S5 is a non-empty set of models for
classical propositional logic with a designated element, i.e. a pair (W, wo) where wy €

W < {M: M is a model for classical propositional logic}.

(This notion of model is basically the restriction, for propositional S5, of the
semantics presented in Kripke 1959. In this paper Kripke shows the completeness and

soundness of this semantics for S5.)






A n-ary modal value is a non-empty subset of {T, F}" with a designated element,
i.e. a pair (W, wo) where wo € W < {T, F}". (Intuitively, wy stands for the n-ary truth-
value that the variables éctually assume, while W stands for the set of n-ary truth-values

that the variables could possibly assume.)
A modal value is an n-ary modal value, for some n.

An n-ary modal function f is a function from n-ary modal values to truth values.

An n-ary modal function is purely modal if its value ‘depends only on W’, i.e. if
for every non-empty W < {T, F}”, KW, w) =KW, v) forall w=v e W.

The set of all n-ary modal functions will be called 4.
A modal function is an n-ary modal function, for some n.
The set of all modal functions will be called 2.

(This and much of the other notation and terminology in this section is taken
from Batchelor 2017.) v

We can define in a natural way the notion of a formula expressing a modal
function, so that every formula of S5 expresses some modal function: a formula ¢ with
n variables will express the n-ary modal function that gives T precisely to the n-ary
modal values that satisfy ¢. We will see that the converse is also true, i.e. that every

modal function is expressed by some formula of S5.

Modal values and modal functions find a perspicuous representation in modal
tables. A modal table is like a truth-table, except that it is constituted of several sub-
tables. Each sub-table is also like a truth-table, except that some (but not all) of the rows
may be missing. The rows in a modal table for n variables are constituted of n-ary truth-
values. The rows present in a sub-table indicate which attributions of values to the
variables are possible, and the rows absent from a sub-table indicate which attributions
are impossible. A sub-table represents a purely modal value, and its rows represent

modal values. The rules for evaluating formulas of the form —¢ and ¢ A y are the






be called a definition of f. Once we have defined a function we may use it in the

definition of other functions.

id(p) reads ‘id p’ or simply ‘p’, and is the identity function (in the present

context it requires no definition);

T (p) reads ‘verum p’, and is the modal function expressed by any tautology with

p as the only variable. It is part of a family of functions T, the tautologies with n

variables;

1(p) reads ‘falsum p’, and is the modal function expressed by any contradiction
with p as the only variable. It is part of the family 1",

—Op reads ‘it is impossible that p’, and may be expressed as O—p;
—0Op reads ‘it is not necessary that p’;

~ Vp reads ‘it is contingent that p’, and is expressed, for instance, by —Op A

—O—p,
Ap reads ‘itis rigid. that p’, and it is exﬁressed by Op v O—-p;
V'p rea&s ‘it is contingently true that p’, and it is expressed by p A —Op,
—V'p is the negation of V'p;
Vpreads ‘it is céntingently false that p’ and it is expressed by —p A Op,
—V'p is the negation of V'p;

—OvV'p reads ‘p is either impossible or contingently true’. It can be expressed

asp & Vp.

OvV p reads ‘p is either necessary or contingently false’. It can be expressed as

p < Ap.
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The binary modal functions are far too many (2*?) to be introduced one by one.
Each of them corresponds to a distribution of T’s and F’s in the rows of the binary

modal table in the next page, where we again find some examples of formulas and their

valuations. O(p — q) figures among the examples because the strict implication is
perhaps the most famous of the binary (non-truth-functional) modal functions. It
assumes T whenever the binary truth-value (T, F) is absent in a sub-table, i.e. whenever
it is impossible to attribute the value (T, F) to p, q. The relevance of the other examples

will soon be clear.

It is important here to notice that we can express formulas which are satisfied by
exactly one row of one sub-table. To make this clear we need to establish some

ini mbs.
A literal is either a variable or its negation.
The possibilization of a formula ¢ is the formula O¢.
The impossibilization of a formula @ is the formula —0¢.

The classical characteristic formula of a row is the conjunction of literals where
the i-th variable (1 <1 <n) appears negated if and only if the i-th term of the n-ary truth-

value in the row is F.

The characteristic formula of a sub-table is the conjunction whose terms are all
the possibilizations of the classical characteristic formulas of rows present in the sub-
table and all the impossibilizations of the classical characteristic formulas of rows

absent from the sub-table.

The modal characteristic formula of a row of a sub-table is the conjunction of
the classical characteristic formula of the row with the characteristic formula of the sub-

table.

It is easy to see that the modal characteristic formula of a row of a sub-table is

satisfied only by that row of that sub-table.

For instance, the modal characteristic formula of the first row of the second sub-

table

11






of the binary modal table in last page is

PAQAYP A A NP A= AO—pAQ A—=O(=pA—g).

Theorem (Functional completeness of S5 (Massey 1966)). Every modal function

is expressed by some formula of S5.

Proof. 1t is sufficient to notice that an arbitrary modal function f can be

expressed as the disjunction of the modal characteristic formulas of rows where the

function has T (if f has T in no rows, it can be expressed by some L"). O

The theorem above might well be considered the starting point of the theory of
systems of modal functions. Once we know that we can express all modal functions in
terms of the usual connectives —, A, _, i.e. that {—, A, _, is 1 mally ¢ lete, the

question presents itself whether there is a general criterion for establishing, for dny
given set of modal functions, whether the set is functionally complete or not. It is
reasonably well known (although perhaps not as much as it deserves) that Post has
established such a criterion w.r.t. truth-functions. In fact, the criterion is a simple
corollary of Post’s exhaustive classification of the systems of truth-functions, or as he
calls it ‘itératively closed two-valued systems of functions’. In the next section we will
revisit Post’s criterion. In what follows in this section we will state soine definitions and

some simple theorems of the theory of systems of modal functions.

Let C be a set of modal functions.

By £(C) we mean the propositional language whose primitive connectives

express the respective functions in C. (We so to speak ignore merely ‘orthographic’

differences in the connectives, so that this language is always unique for each given C.)

Thus the formulas of {(C) are defined by:

(i) propositional variables are formulas (also called atomic formulas), and

(ii) ¥ f is an n-ary primitive connective in £(C) and ¢; ... @, are formulas, then

f(o1, ... @n) is a formula.

13



We say that a set of modal functions C defines a modal function f if there is a

non-atomic formula @ in £(C) such that = ¢(py, ... , pn) <> f(p1 ... Pn).

By [C] we mean set of all modal functions definable by functions in C. We call
this set the system generated by C.

We may write [fi, 3, ...] instead of [{f}, £, ...}].
If [C] = n we say that C is functionally complete.
If [{f}] = n we say that f is a Sheffer-function for p.

The third and fourth formulas figuring in the binary modal table above are
Shef functions for p. (These SI fer-f ti  are due, respectively, to Ratsa
Batchelor.) The following is a very simple, but worth proving

Proposition. [{(p = q) > —0p}]=pand [{(=p A—q) v (Op A V'Q)}] = p.

Proof. We saw that every modal function is expressible in terms of {—, A, I:I},

so it will be enough to define these functions in L£({(p = q) — —0p}). This language

has a single primitive symbol, f(p, q), which is equivaleht to (p > q) > —0p.

f(p, p) is iequivalent to (p = p) > —0Op. This formula is an implication with valid

antecedent, and so is equivalent to its consequent which is —0p. So f(p, p) expresses

_IOP.

Since we have defined —0p we can use it to define Op: —0—0p expresses Op (we
could express it in primitive notation as f(f(p, p), f(p, p)))-

Using f and ¢ we can define —p: f(Op, p) is equivalent to (Op — p) —> —00p
which is equivalent to Op — (Op A —p) which is equivalent to —0p v (Op A —p), which

is equivalent to —p.

Using f and ¢ we can also define p — q: f(Op, f(p, q)) is equivalent to
(p = (@ = 9 = —%p)) > ~Wp=
Op = (Op A —~((p > @ > —0p) =

14






each sub-table, there is no sub-table where we can find all four binary truth-values

attributed to ¢, y. This is enough to see that a non-atomic formula of £(Ind(p, q)) will

express either In*  ~ itself, or some L". From this it follows * it
[Ind(p, )] = {Ind(p, @), L', 1, ...}.
The very same argument shows that
[Ind(p; ...po)] = {Ind(p; ...po), L}, 12, ...}.
In fact, using this argument we can conclude that, forany N ¢ {1, 2, 3, ...}:
[{Ind(p; ... p») :n € N}] = {Ind(p; ... pn) :n e N} U { L}, 1% ...}.
Proposition (Batchelor 2017). There are 2%, systems of modal functions.

Proof. We first show that there aren’t more than 2%, systems of modal functions.

It is clear that the number of modal functions is Ny: for each n there are finitely many n-

ary modal functions. It follows that the cardinality of the set of all sets of modal

functions is 2%y. The set of systems of modal functions is a subset of the set of all sets of
modal ﬁnictions, and so its caidinality < 2K,
Now we show that there aren’t Jess than 2%, systems of ﬁlodal functions.
- We just saw that forevery Nc {1, 2, 3, ...},
| [{Ind(p; ... pn) :n € N}] = {Ind(p; ... p) :n e N} U { L', 1% ...}.
It is obvious that if N =M c {1, 2, 3, ...},

{Ind(p; ... pn) : n € N} # {Ind(p; ... Pm) : m € M}

and so
[{Ind(p; ... pn) :n € N}] = {Ind(p; ... pa) :n e N} U { 1}, 1% ..} =

[{Ind(p; ... pm) :m € M}] = {Ind(p; ... pm) :m e M} U { L}, 1%, ...}.

16



Since of course {N : N < {1, 2, 3, ...}} has cardinality 2%, there are then at least 2%,

systems of modal functions. O

Among the systems of modal functions, some are of special interest, because
they can lead us to the criterion of functional completeness for modal functions. We say
that a system of modal functions C is pre-complete if C # p and, for any f ¢ C, [C U
{f}] = p. The determination of the pre-complete systems of modal functions will occupy

us for a good part of what follows.

17



Ratsa’s determination of the pre-complete systems

Ratsa appeals to the fact that there is a connection between ‘Topo-Boolean
Algebras’ and modal logics in order to develop his criterion of functional completeness.
We preferred to deal directly with S5 and its models, but the adaptation we have made
is not in terms of the models presented in the last section, (Kripke 1959)-style, but in
terms of models in a (Kripke 1963)-style. The reason to use the former in the definition
of modal functions is that, in the framework of (Kripke 1959), theré are no two
equivalent models w.r.t. a finite set of variables (i.e. models that verify exactly the samé
formulas), and so the definition of a modal function can be established, as we have seen,

very = ct [ would say « ° ) way. ...e reason to use ” ‘pke (1963) he s
that it is straightforward to adapt Ratsa’s theorems to this framework. The cos? of doing
so is that, in order to use Ratsa’s result to determine the pre-complete systems of modal
functions, as defined in the last section, we will have to establish a correspondence
among our modal functions and what we will call W-operations and to prove that there
is also a correspondence between the systems of modal functions and certain systerhs of
W-operations. Fortunately, that is not very hard to be done. (An adaptatibn of Ratsa’s
results directly to an extension of the framework presented in the last section can be
found in Batchelor 2017.) ‘

Let we make a slight reformulation of our definition of model for S5.

Let W be an arbitrary non-empty set and wo an element of this set (intuitively,
we think of W as the set of all possible worlds and wy as the actual world). A model M
is an attribution of subsets of W to the propositional variables. A model is extended to a

valuation M by the following clauses:
If @ is a propositional variable p, M'(¢) = M(p).

M’ (—¢) = the complement of M*(¢).
M'(@ A y) =M'(®) "M'(y).

M'(Og) =W if M'(¢) =W, and = & if W'(p) = W.

18



The valuation of a sequence of formulas M ({1, ... , ®y)) is understood as

M(@1), ..., M ().

We say that a formula @ is t7ue in a model M if wo € M*(@); otherwise we say ¢

is false.

If a formula @ is true in a model M we say that M satisfies ¢.

If a formula @ is true in every model we say that ¢ is valid, and we write = @.

It is clear that, in this new formulation of model, a formula of S5 will express an

operation on @ (W). A formula with n variables will express a function from (g (W))"
o (W).

An n-ary W-relation is a subset of (o (W))"
An n-ary W-operation is a function from ( (W))" to g (W).

The n-ary W-relation expressed by a formula ¢(py, ... , pn) is the set of |
sequences {M'(p, ... , pn) : M satisfies ¢(p; ... pn)}- ’

‘We say that f is the n-ary W-operation expressed by a formula o(pu, ... , po) if,
for every attribution M of subsets of W to the propositional variables, f{M(p1), -.. ,

M(pn)) = M¢(p1, ceey pn)-

We say that a W-operation corresponds to a modal function if they are expressed
by a same formula. Not every W-operation corresponds to a modal function (and that is
why it is simpler to define a modal function in a (Kripke 1959)-style model).

In the context of W-operations, where C is a set of modal functions, by £(C) we

mean the language whose primitive connectives express W-operations corresponding to

functions in C.

We say that f is a modal W-operation if f corresponds to some modal function,

i.e. if f is the W-operation expressed by a formula of £(—, A, 0O0).

Let Wy = {Wo, W1, ... , Wn1}.

19



W-relations and W-operations are defined for arbitrary W, so it makes perfectly

good sense to talk about W-operations and W-relations expressed by a formula ¢.

If W < W we can talk about the W’-reduct of a W-operation  Oressed by a
formula ¢, and that is simply the W’-operation expressed by ¢. Similarly, we can talk

about the W'-reduct of a W-relation.
The following is a really crucial definition:

We say that an n-ary W-operation f preserves a W-relation R if

vp, p,.-.599q, ... € W: R(p, pi', pi’’s ---) & R(p2, P2’ p2’'s ---) ... & R(Pyy
Pn’s P’ .--) = R(f(P1, --. pu), flp1' --. P), flP1"s - PO, - 2)

It is often useful, when dealing with relations, to think about the matrices whose

columns are the tuples of elements in the relation. The definition above of an operation

reserving a relation can be formulated in terms of matrices: Let 771 be the matrix which
has all (and only) the elements of a relation R as columns. We define an /fl-matrix as a
mafrix whose columns are columns of 771. To say that an n-ary operation preserves 11 is
to say that for every m-matrix with n columns, the result of applying the operation on

the rows of the M-matrix is a column of M.

W2 = {wo, w1}. We will denote W, by 1, {wo} by w, {w1} byvand { } by 0.

It is easy to see that —, A, O preserve the following matrix, which is the W»-

relation expressed by the formula ApAAqA (p & @ .v. VPAVQA(PV Q).

1 v w O

1 w v O

If a W-operation f preserves a W-relation R we say that f is polymorphism of R,

and that R is an invariant for f.

20



The set of all polymorphisms of a relation R will be denoted by Pol(R).

A set of W-operations C is a system of W-operations if, whenever f is a n-ary W-

operat e Candf, ... f, are W-operations of arbitrary arities € C, f{f; ... f,) € C.

Proposition. For any W, and for any W-relation R, the set Pol(R) is a system of

W-relations.

Proof. Let W be an arbitrary set, and let R be a W-relation, and suppose for
contradiction that Pol(R) is not a system, i.e. there are W-operations g, g; ... g, €
Pol(R) and a W-operation f ¢ Pol(R) such that = g(g, ... gn).

Let M be a matrix whose columns are all and only the tuples in R, and let k be

the number of distinct variables occurrir in ... g. It is «~ r that f is a k-ary

operation. All we need to see to establish our contradiction is that: for every 17-matrix
with k columns, the result of applying f in its rows is an 77l-column (i.e. f € Pol(R)). Let
M’ be an M-matrix with k column§. Let us call 77’; the matrix constituted by the
columns of MM’ corresponding to arguments of g;, for (1 <i<n). Itis clear that each 1M’;
is an 171-matrix, and so, since g; € Pol(R), the result 0f applying g; in its columﬂs will be
an M-column. This means that the matﬁx with n columns which we can represent as
a(M’y), ... g«(M'y) is an M-matrix with n columns, and so, since g € Pol(R),
g(@(M’y), ... ga(M'n)) = f(M’) is an M-column, and so f € Pol(R), with contradiction.

a

We say that a set of functions C is separated from a function f by a matrix 11 if

every function in C preserves 1M but f doesn’t. Since preserving matrices is the same as

preserving relations, and since the set of all functions preserving a relation is always a
system, if f is separated from C by some matrix 1M1, f ¢ [C]. E.g., the inexpressibility of

O in terms of —, A follows from the fact that they are separated by the matrix

21
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1 wv O

We say that a subset S of (W) is a modal substructure of W if S is closed

under the modal operations, i.e. if s, s’ € S,thens As' € S, —-s € Sand Os € S.

If W' < W and S is a modal substructure of W, we say that o is an embedding of

S into W' if © is a isomorphism of S and W', i.e. an injective function from S onto W’
such that V p, q € S : o—(p) = —o(p), Oo(p) = o(Op), and o(p A q) = 5(p) A o(q).
Propos n. f W' _ W, there is a subs 1 of W which is dab in
W',
Proof. 1t is sufficient to see that if W' = W — {w}, there is an embedding from a

substructure of W into W', and notice that ‘being embeddable’ is a transitive relation. O

The structures, substructures and embeddings that will be relevant to our

development will be givén explicitly in the next sections.

Proposition. For any W' < W, the set of W-operations whose W’-reducts

preserve a W'-relation is a system of W-operations.

Proof. Since Pol(R) is a system for any R, it is sufficient to notice that, for every
W'-relation R’, and for any embedding o of a substructure of W into W’, 6™'R’ is a W-

relation. O

Proposition. For any two systems C, C', the intersection C N C’ is a system.

Proof. Suppose, for contradiction, that both C and C’ are systems and that C N
C' is not a system, i.e. there are functions g, g, ... , g, € C N C' and a function f ¢ C N
C' that are such that f = g(g,, ... , gn). Since g, g1, ... , g, are both in C and in C’, and

since C and C’ are systems, it follows that f € C n C’, with contradiction. O

22



Proposition. For any W and for any W-relation R, the set of modal functions

corresponding to W-operations in Pol(R) is a system of modal functions.

Proof. TI set of W-operations corresponding to the modal functions is

obviously a system, and the set of W-operations in Pol(R) is also a system; and the

intersection of two systems is always a system. O

This allows us to determine systems of modal functions via W-relations and W-
operations. The next proposition shows that the pre-complete systems can be

determined via W-operations for certain W’s.

The size of a model is the cardinality of W. If a formula ¢ is valid in models
with size n we write =" .

It is well known that

o'} o(e:F o} {o:F g} ...
and that
fp:rey={o:F o}n{o:F o} n{p:F g} ...

We say that a set of modal functions C n-defines a modal function f(p; ... pm) if

there is a formula ¢ € £(C) such that =* ¢(p; ... pm) <> f(p1 ... pw).

Proposition (Ratsa’s Theorem 1). For every set of modal functions-C: C is
complete iff C is 4-complete.

Proof. (=) is quite straightforward, since = ¢ implies =* ¢. (<) Suppose C is

4-complete. So there are formulas ¢, y and 0 satisfying =* —p & ¢, =* Op & v, =*

(p A @) > 0; in each case, the variables on the right side are the same as the variables on

the left side.

It is known that a formula with n propositional variables is valid iff it is valid

w.r.t. models with 2" possible worlds. It follows that the equivalences above, having no

23






0 01

The operations preserving this relation are the monotonic operations; the class of all

monotonic operations will be called IT;.

The W-relation corresponding to E*(p, g, 1, s) corresponds to the matrix

60101010 1]

01101001

The operations preserving this relation are the linear operétions; the class of all linear

functions will be called Il,.
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for ‘at least two among the following thre jropositions are true’ (or: pA Q) V(P AT) V

(q A 1)). Some less well-known connectivi  will be referred to using Greek letters:
y=¢@—>@PVvYVv -p—>9 O@Q@-p))—gq

= (=V'pA@pVv=V'qQ)—>(Aq.
0 =4 (p A =09 v (=0p A Q).

E=¢(@@v9VvOP-—>qVvOg-p)A(@-=pv-qg)vI-p—-> gV
O(—q — —p))) » O © 9.
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;s | 00vvwwll |7 1 - 6 0poq AV, D> 0g,2%,0(p A g) >

| 0lvwvwOl | goyay (P AD-VPA-VG

I ]
6 Ovvwwl T.Lo,~p oy [AVUARADERAD,

| Ovwvwl O@p < q) 23 3

Iy (000 0vvwwlll 1|+ | 5 _ p— Og, AV, 6, 6,0,

' O@<> 9,V

[, 000000111111 1,1 O,— 0@ V9, AV, O, 6
00vwl1100vw 11 A p— 0Oq o3
010001011101 |‘PrD>@ArAY ’

ng 000000111111 T,.I.,—-O,—-V+,C, D,—.D,A,V,p—)l:lq,
OvvwwlOvvwwl
001010101011 |0pAqQ—>(PAQ,V PpAOr @

Our final goal in this section is to prove that a set of modal functions C is 2-
complete iff it is l-complete and, for each IT;, 5 <1< 19, there is f € C such that f ¢ IT;.
This is Ratsa’s Theorem 2, and it will follow easily from a (rather long) series of

lemmas.

In the formulation and in the proofs of these lemmas we use some conventions

on certain indefinite descriptions.

The symbol f; stands for some n-ary modal W2-operation corresponding to modal
function ¢ IT;.

'f will stand for some modal W-operation whose W -reduct is f.

(Since the set {{ }, {wo, wi}} (which we are writing here {0, 1}) is a
substructure of W, which is embeddable in W, the value of a 't will be determined
when its arguments assume only the values 0, 1.)

The symbol Y— will stand for some modal W,-operation corresponding to

element of the set {—, =V, V', OvV}. (The motivation [or mnemonic] for this last

notation is that these are the unary functions which work as negation when applied to

contingent arguments.)

30



We will make extensive use of the fact, mentioned above, that every modal W,-

operation preserves the matrix

1 v w O

1 w v O

This matrix will be called My, (the idea behind this notgtion is that this is a universal

invariant w.r.t. W>-modal operations).
Lemma 1 (Ratsa’s Lemma 4). T, L € [fs, {3, lﬁ, 1J_].

Proof. fs ¢ Ils, so f5s doesn’t preserve (v). So fs(v...v) € {0, w, 1}. If f5(v ... V)

e {0, 1}, we define 1(p) as ' Lfs(p ... p), and T as '='Lfs(p ... p).

If fs(v ... v) = w, we use f;. Since f; doesn’t preserve (w, v), there is a sequence
{01 ... o) where a; € {w, v} and such that f;(0; ... o) € {0, 1}. Let B be the formula

f5(B; ... By) where for 1 <i<m:
Bi= p, - ifei=v;
fi...p)  foi=w.

B € £{f;, ;). Note that Bi(v) = o S0 BY) = HBI(V) ... Bu(¥)) = (e .. o). It

follows that B(v) € {0, 1} and, since B preserves MMv,, we know also that B(w) € {0,
1}. We also know that there is no modal W»-operation mapping {1, 0} into {w, v}. So,
for all values of p, B(p) € {1, 0}.

We now define | as ' L B(p), and T as '—'LB(p). O

Lemma 2 (Ratsa’s lemma 5). At least one of —, —=V', V", OvV € [T, L, f].

Proof. fs does not preserve (1, w, 0). So there is a sequence (o), o € {1, w, 0},

such that f¢(a) = v. The letter B will now stand for the formula f4(B; ... B,), where

B=1(p), ifoy=0;
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Since f}; doesn’t preserve 17, there is a pair of n-sequences {(a) and (§) such

that each pair (o, i) is an 71;;-column and (f;;(a), f11(B)) is not an M;-column. So

fu(@ | —|0 1

f11(B) 10

(Note that, since every modal operation preserves rigidity, we can’t ‘go’ from 11; to

any column with w or v on top.)

Let D be the formula f};(D; ... Dy), where, for 1 <i<n:

Di= L(p), ifai=Bi=0;
P ifa;=0and B;=v;
C(p), if o; =0 and B; = w;
—-OvV'(p), ifo;=1and Bi=v;
-0V (CD)), if o =1 and B; = w;

T(®), ifo;=p;=1.

The values considered for o, B; exhaust M;;. D € £(T, 1, C, L, f11), Var(D) (i.e. the
variables of D) = {p}. Since C(0) = 0 and C(v) = w, we can see that D;(0) = o; and Dy(v)
= ﬁi- So

D(0) = f11(D1(0) ... Dx(0)) = fur(e)
D(v) = f11(D1(V) ... Dn(v)) = f11(B)
From the inclusion above we know that
D(0) =0 and D(v) = 1

or
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fio(y)

IN

£10(5) wilo0yv

The letter F will stand for the formula fyo(F; ... F,), where, for 1 <i<n:

Fi= L(p), ifyi=96;,=0;
P, ify;=0and §;=v;
—p, ifyi=1and §;=w;
T(p), ifo,=f;i=1.

This exhausts Myo. F € L£{T, L, —, Fio}, Var(F) = {p}. It is easy to see that F;(0) =;
and F;(v) = §;, from which it follows that F(0) = f;;(y) and F(v) = f;(3). So

FO)[—{0 0 1 1

F(v) w 1l.0wv

We reduce the four cases (corresponding to the possible values of F(0), F(v)) to two
using formula G, defined by the scheme:

G= F, if F(0) = 1;

—F, if F(0) = 0.

We know that G(0) = 1. G(v) can be either 0 or v; if G(v) = 0, since G preserves My,,

G(w) = 0 and we are done, as the table below helps us see:
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Proof. If V- is —, we define Op as —O—p. If Y- is —=V* we define Ap as

D—1V+p. If V—1is V" or OVV™ we use f;. Since fz doesn’t preserve Mg there are n-tuples

2, (&) such that each pair (g;, &) is an Mg-column and such that

I H: dfortt
H;= J—(P),V
b
-p,
T(®),

This cases exhausts M. H € {T, 1, f5, "=}, Var(H) = {p}. Note that H;(0) = &; and

f3(e) | — 0111
REO|[ {1 0 vw

Fs(Hy ... )+ 1<i<n:
ife;=C;=0;

- ifgg=0and §;=v;

if &= 0 and ;= w;

ifg=0=1.

H(v) = ;. So H(0) = f3(g) and H(v) = f3({), from which we get

It follows that

HO) [ —|0 1 1 1

H(v) 1 0 v w
oH(0) [ |0 !
OH) 10

As usual, we reduce these two cases to one using a scheme
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P='-0OH, ifH(0)=0;
OH, if H(0)=1.

P e X{0, H, '5}, Var(P) = p. P(0) = 1, P(v) = 0; by My,, P(w) = 0. IFP(1) = 1, P is A;

if P(1) =0, P is —0. In either case we can define one of A, 0. This proves lemma 3.2. O
Lemma 3.3 (Ratsa’s lemma B). At least one of D,' Ael[T,L, 016, v, 1—.].
Proof. By dualization of the proof of lemma 3.2. O

Lemma 3 (Ratsa’s lemma 6). A € {T, L, fy, fo, fio, fi1, '—, "=, 'A}.

Proof. This follows immediately from the auxiliary lemmas and Lemma 4
below. O

Lemma 4 (Ratsa’s lemma I'). A € [0, 0, L IAL
Proof. Ap can be defined as _(p'Al=Op). O
Lemma 5 (Ratsa’s lemma 7). Oand ¢ € [T, L, A, fio, V—., 1—., 1/\].

In fact O and ¢ are interdefinable in presence of A, ', 'A: Op = (Op ‘A Ap) and

Op = '~(*—~Op 'A Ap). So it will be enough to prove that one of O, ¢ is expressible in

the conditions of the lemma.

1 .
As we know, '— is one of -, =0, =0, =0OVV".

Case (i). '= is =0 or —0. This is immediate since Op = —0O-0p and Op =

—~0—0p.

The other cases are much more laborious.

Case (ii). '= is —. Now we need to deal with 'A. This is some modal Wo-

operation whose Wi-correlate is A. But we don’t know how it behaves w.r.t. W,-

arguments other than 0 and 1. But we know that
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v'A0)e{0,v,w,1}.

Case (¥ ~, (v '~ ™ ~ fn 13, In this case we use formula p 'A Ap which is
equivalent either to Op (if (v 'A 0) = 0) or to Op (if (v 'A 0) = 1). So in these sub-cases

we are done.

Case (iib). (v'A0) € {v. w}. We now define formula C using the scheme:

C= —=@p'Al), ifF'A0)=v;
—(—p'Al), if(v'A0)=w.

C e £{1, —, 'A}, Var(C) = {p}. Since C preserves My, and C(v A 0) = w, it follows
that C(w 'A0, 7. SoCis—V":

p|CE —V'p
1] 1 1
W \A v
v w W
0| 1 1

Now, (v 'Aw) € {0, w, v, 1}. If (v 1(\ w) € {0, 1}, we can define one of O, ¢ using the

formula p 'A —V'p, which will be equivalent to Op, if (v "Aw) =0, orto Op, if (v 'A w)
=1.

If (v 'A W) e {w, v} we first take formula D, defined by the scheme:
D(p)=(=V'p 'A D), if (v'Aw)=v;
@ 'A=V'D), if (viAw)=w.
Since 'A preserves My, (v 'A w)=vin lies (W 'A v) = w. From this it is easy to see

that D is W,-equivalent to OVV ",

Now we need to use fj5. Since fj5 does not preserve 1,5 there are n-tuples (o),

), () such that each (o, B;, i) is an MM ;s-column and such that
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fio(a)

fio(B)

fis(y)

0011

0101

1100

Let E be formula fi9(E; ... E,) where for 1 <i<n:

Ei= 1,
~(=V'p)s
ps
—(=V'(=V'p),
ovwVp,
—(Ap),
Ap, .
—(OvV'p),

V' (=V'p),

ifo;=Bi=vi=0;

ifa;=0, Bi=v, i=0;
ifai=0, Bi=v, 1i=1;
ifo; =0, Bi=w, 7i=0;
ifai=0, Bi=w, ,=1;
ifa;=0, Bi=1, yi=0;
ifo;=1, B;=0, vi=1;
ifo;=1, Bi=v, 1:=0;
ifo;=1, Bi=v, vi=1;
ifo;=1, Bi=w, 1:=0;

ifo;=1, Bi=w, 1:i=1;

ifai='3i='Yi=1~

This exhausts M9 Var(E) = {p}, E € £{T, L, A, =V', OVV", —, fis}. Note that E;(0)

= o, Ei(v) = B;, and E;(1) = 7. So
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E(0) 0011

E(V) 0101

E(1) 1100

Since E preserves My,, E(v) = 0 implies E(w) = 0 (similarly for 1). So E is one of 00, 0,

—0, —0.

Cr-~1ii), '= - ~,V*, can be reduced to the cases already considered. To do so

note first that
—ovwW'("—p) = —V'p, ifV—is V3
—p, if —isOVV.

.. v
This is enough to assure us that at least one of =, =V" € ['—, !_]. The case — was our

case (ii); in the case =V we take formula
F= | W IA=V'p,  if(vIAW)=w;
VD A=W, ifvAw) 2w
Var(F) = {p}, F € {—=V", I, 'A}. It is easy to check that F is W,-equivalent to one of

=0, —0; in all cases we fall into a case already considered. O

Lemma 6 (Ratsa’s lemma 8). As least one of {—}, {~V',V} [T, 1, 0,9, fis,

v 1
f13, ) _']-

Proof. The case where " is — is trivial.

Case (i): Y= is V_. In this case we use fi,. fi doesn’t preserve 111, an  so there

are n-tuples () and (B) such that each o, B;) is an 71,-column and such th:
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fi3(y)

N

. f13(§) vV W

Take formula E = f3(E; ... E;) where for 1 <i<n:

Ei= lp, ify;i=8=0;
~0Op, ifyi=0and §;=1;
Op, ifyi=1and §;=0;
ps ifyi=1andd v;
v e -~
-, if yi=1and §;=w;
Tp, ify1=6=1.

This exhausts M3. Var(E) = {p}, E € £{T, L, Vo, -, fi3}. Note that Ey(1) = Yi and
Ei(v) = &.. So ' '

E() [ —|0 ©

E(v) vV W

We now define formula F by scheme
F= E(-p), ifE(v)=v;

E(p), ifE(v) = w.

F(1) =1, F(v) = w. By My, F(w) = v and F is one of —, V; these cases were already

considered. O
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Finally, notice that F(p, G(p), q, G(q)) is a suitable ¢, i.e. a formula ¢ in two

variables such that ¢(v, 1)=¢(1,v)=v. O

Lemma 8 (Ratsa’s lemma 10). Let E be one of —V', OvV", and T be one of

{=}, {=V', V}. Then —, =V~ € [T, 1, O, fis, E, ', 'A, 2] and this system contains

also some formula y satisfying
y(1,0)=0,y(v, D)=v,y(l,1)=1.

Proof. Since f13 does not preserve M3, there are n-tuples (o), (B), and (1) such

that each (o, B;, vi) is an MM s-column and such that (fig(a), fis(B), fis(y)) is not an M s-

column. Sincetl a’sandy’sarealleitl 0orl, it followst -

fisga)| (0 0 1 1

flg(ﬁ)CVWVW

f1s(y) 11 00

Let D be as defined in the proof of lemma 7. D € X and D satisfies D(v) = w and
D(1) = 0. We take then formula F = f;3(F; ... F,) where for 1 <i<n: '

Fi= 1, ifo;=PBi=7i=0;
Op 'Aq, ifo;=P;=0andy;=1;
D(E(p)), ifa;=0and B;=vand y;=0;
D(p), ifo;=0and B;=wand y;=0;
I op, ifo;=0andB;=1and y;=0;
qQ, ifo;=0andB;=1and y;=1;
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— ifa;=1and ;=0 and y;=0;

Op, ifo;=1andB;=0and y;=1;
P, ifog;=1andBi=vand y;=1;
E(p), ifa;=1andB;=wand y;=1;
'(@p'Aq), ifaj=1and B;=1and y;=0;
T, ifo,=Bi=vi=1.

This exhausts 1M,5. Var(F) = {p, q}, F € £{T, 1, 'A, O, D, E}. Taking into account the
conditionsonD T v, w,D(1)=0), wecansee " tFiy(1,00 x, Fi(v,1)=8; and
Fi(1,1)=vi.So '

F(1, 0) 00 11

Fv, D) ||V w v w

FQ, 1) 1100

he formula C satisfying the conditions of the lemma will be defined as:
C= F, if F(1,0)=0and F(v, 1)=vand F(1,1)=1;

F(E(p), 9), if F(1,0)=0 and F(v, 1) =w and F(1, 1) = 1;
F(p, '~(Op 'Aq), ifFQ,0)=1andF(v, 1)=vandF(1, 1)=0;
F(E(p), '~(Op 'A q)), if F(1,0) =1 and F(v, 1) =w and F(1, 1) = 0.

(Recall that E is either -V* or OVV ") C € £{0O, E, F, ', 'A}. Since C preserves My,

it follows that C satisfies the conditions of the lemma.

We now build formulas for — and —V". Let ¥ be {—}. It is enough then to see
that -~V is equivalent to
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—|C(—|p, —||:|—|p),

Cp, TN,

ifC(0, 1)=0;

ifC(0,1)=1.

Finally, let £ be {—V*, V}. Note that => C(—V*p, —0p) <> —p. Now =V p is

simply —(Vp). O

Lemma 9 (Ratsa’s lemma 11). (0pv =V @) € [T, L, —, 0, =V, fis, fis].

Proof. fi4 does not preserve 1,4, and so there are n-tuples (o) and (B) such that

{ou, Bi) is an M 4-column and such that

f14(B).

fis(@) | =

0 0 vvwwl11 v w

vw 0101 vwwey

‘Let D be formula f14(D; ... D,) where for 1 <i<n:

Di= .J_,

p;

ifa4-=|31.=0;>
if;=0andB; = 1;
ifo;=Bi=v;
ifoy =Pi=w;
ifo;=1andB;=0;

ifoy=pi=1.

This exhausts M,4. Var(D) = {p, q}, D € £{T, L, —, fi4}. Note that D(0, v) = o; and

D(1, v) = B;. It follows that
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D(O,V)COOvvwwllvw

D(1,v) vwOoO1l101 vwwy

We begin by considering the cases corresponding to the first eight columns. To
do so take formula E, defined by the scheme:

E= =V D(p,q), if D(0, v) =0 and D(1, v) =v;
=D(p, @), if D(0, v) =0 and D(1, v) = w;
=V D(-p, q), if D(0, v)=v and D(1, v) =0;
D(—p, q), if D(0, v)=vand D(1,v)=1;
—D(—p, q), if D(0, v) =w and D(1, v) =0;
D(=p, —q), | if D(0,v; wand D(1,v)=1;
D(p, q), if D(0, v) = 1 and D(1, v) =v;

' D(p,—q), if D0, v) =1 and b(l, v)=w.

E € __ [, =V, D}; E satisfies E(0, v) = 1, E(1, v) = v. It is not hard to see that

=2~V E(0p, q) <> (=0p v =V"Q).

The last two cases, corresponding to the last two columns of the matrix above,

will be treated using formula F, defined by scheme:
F= D, if D(0, v) = v and D(1, v) = w;
=D, ifD(0,v)=wand D(1,v)=v.

F € £{—, D} and F satisfies F(0, v) = v, F(1, v) = w. Now we use fs. Since f;5 does not

preserve M,s, there are n-tuples (y) and (8) where each (y;, &;) is an 11;s-column and

such that
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f15(y)COOVVWW11

f15(8) vwoOol01vw

: denote by G the formula f15(G; ... G,) where for 1 <i<n:
G= .1, ify;=&=0;
P, ify;=0and §;=1;
q, ifyi=8=v;
F, ifyy=vand §;=w;
—F, ify;=wandgi=v;
—q, ify;=8=w;,
—p, ify;=1and§=0;
T, ify;=6=1.

This exhausts M;s. Var(G) = {p, q}, G € L{T, L, %, F, fis}. Since F(0, v) = v and F(1,
v) =w we can see that G;(0, v) =y; and G(1, v) = &;. So
G(O,v)'COOVVWWII

G(1,v) vwOo1l0 1 vw

Note that this matrix = the first eight columns of the matrix above, and so we fall into a

case already considered. I

Lemma 10 (Ratsa’s lemma 12). O(p A Q) € [T, L, 0, fis, ‘Al
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Proof. fi¢ does not preserve M ;¢ and so there are n-tuples (o) and (B) such that

each pair (o, Bi) is an M ¢-column and such that

fis@| 100 0O vvwwll]

fm(ﬁ) vwi1l10101 0vw

Let D be formula fi¢(D; ... Dy) where for 1 <i<n:

D;i= 1, if a; = B; =0;
JoR ifo=Bi=v;
q, | ifa;=vand Bi=w;
—q, ifo=wandB;=v;
-» if¢%3i=w;
T,  ifoy=p;i=0.

This exhausts M¢. Var(D) = {p, q}, D € L£L{T, 1, -, fi¢}. It is easy to see that Di(v, v) |
=a . Div,w)=Bi So

DV, |{0 0 0 vvwwlHl1]1

|D(v,w) vw101010vw

We now define formula E as follows:

E= 0D, if D(v, v) = 0 and D(v, w) = 0;
—0D, if D(v, v) € {w, v} and D(v, w) =0;
0-D, if D(v, v) = {1} and D(v, w) = 1;
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—0-D, if D(v, v) € {w, v} and D(v, w)=1.

E is a purely modal function on two arguments, and is expressible in terms of —, 0, D.

Since E(v, v) ) and E(v, w) = 1, we can conclude that

=2 (0p 'A (09 'A =B 'A (=Op 'A -0g9)e0pag. O
We are now ready to prove

Theorem 2 (Functional completeness criterion w.r.t. modal W,-operations —
Ratsa’s theorem 2). A set of modal functions C is 2-complete iff it is 1-complete and,

foreach IT;, 5 <1< 19, thereis f € C such that f ¢ IT;.

Proof. The ) part of this theorem follows from {¢ : =2 ¢} < {¢ : =' ¢} and

the fact that the classes IT; ... IT;9 are compositionally closed and not 2-complete.

(«=). In view of Lemmas 1-10 we conclude that using 1—., 11, 'A and formulas

fs—fi19 we can define 0, —, =V, =0p v =V q, O(p A q), as well as formulas B and C, in

two variables, satisfying
B, 1)=B(,v)=v
C1,0)=0,C(v, D=v,C(, 1)=1.
With these resources we can define d(p A q) > (p A Q):
= =V B[(=0p v -V @), (=0p A v =V D) & 0P A ) > P A Q).

Finally, with this formula and C we can define p A q:

E2CO(pAQ 2pAgOdPAQlepAag O
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A functional completeness criterion w.r.t. modal W3-operations

Our next step towards the main theorem is to establish the functional

completeness criterion w.r.t. modal W3-operations.

W3 = {wo, W1, W2}. In this section, as usual, we will write 1 for {wo, w1, w»} and
0 for { }; also we write w for {wo}, u for {w;}, and v for {w»}; moreover we write wu
for {wo, w1}, and similarly for the other cases. (Again, in Ratsa’s paper one will find
different names for the elements of ¢ (W3); the subsets of W3 which we are
repr  wing as 1, wu, wv, uv, w, u, v, 0 are represented in his paper as 1, o, o, v, 4, p,

£ 0.)

The convention for indefinite descriptions will also be used, and so e.g. %A will

stand for some W3-operation which is W»-equivalent to A.

The sub-structures {0, u, wv, 1}, {0, w, ui/, 1}, and {0, v, Wu-, 1} are isomorphic
and embeddable in W>, from which it follows that the values of unary 6perations on W3
are determined by their values w.r.t. W,. This, of course, doesn’t hold for binary

operations.

The following will be extensively used below:

Proposition. The matrix below, Mys3, is invariant w.r.t. W3-modal operations.

0 u w v wu uv wv 1
0O u v w uwwv wu wv 1
O wu v wua wv uv 1
O w v u w wua uv 1
0O v u w uw wv wu 1
O v wu wv uv wu 1

Proof. 1t is easy to check that 00, —, A do preserve this matrix; preserving

relations (or their corresponding matrices) is a hereditary property. I

Thanks to this result it won’t be necessary to deal with the full tables for W3,

which would have 64 entries; instead we will use the following pair of partial tables:
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p\qlo u 1

u w nv

Lol — ==

Using the fact that every modal W3-operation preserves Mlys, we can find the missing
values.

We will use below the following Wj-operations, which are not modal W;-
operations:

P 18 £ 8 &
oj0 0 0 O
ul|l0 w u wyv
wi|0 wv uv wu
vi| il wv wu uv
wa|ll uv v w
w|0 u w v
wv|i0 u wv u
110 1 1 1

The symbols IT1II; will denote the classes of modal Wj-operations -
preserving, respectively, the following predicates: gi(p) = 0, g2(p) = q, g3(p) = q, and
24(p) = q. These predicates correspond to the following matrices: '

M3 =(0, u, w, uv, wv, 1);

-10 wu uv wv 1
My = u w v

0O w ww wv u u u 1

—10 wu uv wv 1
M,y = uw v

0 v ww wu v w wv 1

b

mB=Ou w v wu uv wv 1

0O ww wua uwv w v u 1

In the previous section we were able to avoid using non-modal operations in the

definition of the matrix M;o. So far we have not been able to do the same w.r.t. the

matrices M,—1M,3. This leads to the above-mentioned
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Clu,w)=1,C(wv,uv)=0
Qu, u) € {0, u, wv, 1}. If Q(u, u) € {0, u, 1}, our formula C is

0OQ*v —Q) *v E@, Q).
C e {0, -, v, E, Q}. Given E(u, uv) = 0 it follows that E(wv, w) = 0; since E
preseryes M3 we can conclude that our formula is a suitable C. |

If Q(u, u) = wv, we use f>;. Since f5; ¢ Il there are n-tuples {(a), (B) etc. such
that the pair (f1(a), f21(B)) is one of the columns of the following matrix:

0 0 0 u u u W W W V vV V Wl Wd Wu u uv uv wv
0 wv 1 0

u w 1 0 uw 1 0 uw 1

(Note that, although the full W3-matrix has 64 columns and 71>, has only 8 columns,
the matrix of columns not in 71,; but in the co-domain of some modal W3-operation
applied to an M,1-matrix has ‘only’ 24 columns. That happens because the second row

of m;l is constituted only by elements of the substructure {0, u, wv, 1}.)

We now define formula F = fzi(F 1... Fn) wheré for1<i<n:
Fi= 1, ifw:Bi;OQ

—p, ifai=ugnd[3i=wv;

—q, ifo;=wandp;=wv;

Q, if o =v and B; = wv;

—Q, ifoi=wuandfi=u;

qQ, if g =uv and B; =u;

P, if i =wv and i = u;

T, ifo=pi=1.
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We will also need a formula E, on variables p, q, assuming only values 0 and 1

and such that
E(u, w) =0, E(wv,uv) = 1.

If Q(u, w) € {0, wv, w, uv, u, 1} our formula E is one of 0Q, ¢(p «> Q), =0(q

© Q), %q & Q), -O(p « Q), -0OQ. If Q(u, w) = v, then E will be B(—Q, q); that this
is the case can be seen remembering that Q(wv, uv) = v, B(wv, w) =0, B(wv, vu) =1 -

and using Mys;.

Let Q(u, w) = wu. We now use f33. Since 53 ¢ ..., there are n-tuples (y), (8) etc.

and so (f23(Y), £23(8)) is one of the 56 columns not in 1M,3.

Let G be formula £,3(G; ... Gp) where for 1 <i<n:

G= 1, ifyi=8=0;
p, | ifyi=uvand & =wv,
4, if yi= wand &; = wu;
-Q, if7i= v and §; =uv;
Q, ify;= wu and §;=w:
—q, ify;= uv and §;=v;
—p, ifyi= wv and §;=u;
1, ifyi=8;=0.

(This exhausts MM,3.) Remembering that (by My3) Q(wv, uv) = v is equivalent to Q(wv,
wu) = w, it can be seen that G;(u, w) = y; and Gi(wv, wu) = ;. So (G(u, w), G(wv, wu))

is one of the 56 columns not in M,3.

Since (by Mys) E(wv, uv) = 1 is equivalent to E(wv, wu) = 1, it is easy to see

that in any of the 56 cases the desired formula E is expressible using O, —, O(p <> q), G
and Q, as the following scheme shows:
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E= 0G, if G(u, w) = 0 and G(wv, wu) = 0;

-O(pp & G), if G(u, w) = u and G(wv, wu) # wv;
—-0(q & G), if G(u, w) = w and G(wv, wu) # wu,
UG e Q), if G(u, w) = v and G(wv, wu) # uv;
-0(G & Q), if G(u, w) = wu and G(wv, wu) # w;
(qe G), if G(u, w) =uv and G(wv, wu) = v;
opeG), if G(u, w) = wv and G(wv, wu) = u;
-C _, if G(u, w) = 1 and G(wv, wu) = 1.

Let R be formula (B *A B(q, p)) A E. Since B(wv, w) =0, B(wv, vu) = 1 and

1 ,w)=0,EWwv,uv)=1we lcqow that R satis_ﬁes conditions
R(u, w) =R(u, uv) =R(wv, w) =0
Rwv,uv)=1. .
Now lef F be formula
QAR ™V (@ “AR(P, D)™V (@ A R@, ~),

expressible by —, 2v, 2, Q and R. Then, from the conditions on Q and R we can find
that

F(u, w) =0, F(u, uv) =u, F(wv, w) = w, F(wv, uv) =v.

Finally, let H be formula
(Op >v O—p) >v (Oq v O—q) v O(p < q) >v O(—p < q).

H is expressible via O, -, O(p <> q), and >v. H has the following table:
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p\q|0 u 1

0 (1 11

a 111 1 p\qlu w wv

111 11 u (1 0 0
wv [1 0 O

We can see that
E (v v-HAF> VH)opAaq O

Theorem 3 (Ratsa’s theorem 3). A set of modal functions is 3-complete iff it is

2-complete and not included in any of the classes [To~T12;.

Proof. (=) follows from {¢ : "¢} < {¢ : => ¢} and the fact ~ t " classes

«xy -3 are closed under definability and not complete w.r.t. modal W3-operations.

(<) By hypothesis we have all modal W-operations, including A and 0. Also
by hypothesis, we have functic~- f; ¢ IT; (i= 20, 21, 22, 23), not necessarily distinct and
with (so to speak) variables among p; ... pn. It is enough to show that in these

conditions we can define the modal Ws-operation corresponding to p A q. This was seen

in the previous three lemmas. O
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A functional completeness criterion w.r.t. modal W4-operations

Recall that W4 = {wyg, w1, w2, w3}. We will for convenience write w for {wo}, u
for {w;}, v for {w,}, and z for {ws}; the conventions in the preceding sections are
extended to this one in the obvious way. (In Ratsa’s notation, the elements of (W)
here referred to as 1, wuv, wuz, wvz, ﬁvz, WU, Wv, uv, wz, uz, vz, w, u, v, z, 0 are

denoted by 1, ®, v, y, B, p, 7, 3,7, 0, 5, o, @, 1, €, 0.)
The following substructures of W are isomorphic and embeddable in W3.
{0, wu, v, z, wuv, wuz, vz, 1};
{0, w, v, wv, uz, wuz, uvz, 1};
{0, u, v, uv, wz, wuz, wvz, 1};
{O, W, U, VZ, Wu, WVZ, uvz, 1};
{0, u, z, wv, uz, wuv, wvz, 1};

{0, w, z, uv, wz, wuv, uvz, 1}.

Proposition. The matrix below, My, is invariant w.r.t. modal W-operations.

Uuv Wz uz vz wuv wuz wvz uvz 1

0 wuv z wu wv
0 W u 2z VvV Wu WZ UZ WV UV VZ WUZ WwWuv wvz uvz 1
0 u v z Ww u uz VvZ wu WV Wz uvz wuv wuz wvz |

Proof. Again, it is easy to see that —, O, and A do preserve this matrix. O

The unit subsets of W, will be called atoms, their complements co-atoms, and
the two-clement subsets elements of the middle. We will call a middle pair a pair of

non-complementary elements of the middle. So the middle pairs are:
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Let C be formula £4(C; ... C,) where for 1 <i<n:

G= 1, if ;=0;
P if a; = wu;
q, if o =uv;
—q, ifoi=wz;
—-p, ifoi=vz
T, ifo; = 1.

This exhausts My, CeL{T,1,—, .f24}, Ci(wu, uv) = o;. It follows that
C(wu, wv) € {w, 0, v, Z, Wv, Uz, Wav, wuz, wvz, uvz}.
We ‘now ‘deﬁne formula
E= C, ifC{wu, uv} € {w,u, Vv, z, wv};

—C, if C(wu; uv} e {uz, wuv, wuz, wvz, uvz}.

E(wu, uv) € {w, u, v, z, wv}. When E (wu, uv) # wv, the desired formula is

B= p’A—E@,q), if E(wu, uv) = w;
E(p, 9, if E(wu, uv) = u;
q3A —-E(p, @), if E(wu, uv) =v;

p A —~(—q’A—E(@p,q), ifE (wu uv)=z.

If E(wv, uv) = wv, we use f2s5. f5 & Il;5 and so there is an n-tuple (B), B; € {0,

WV, Wu, WZ, uv, uz, vz, 1}, such that £r5(8) € {w, u, v, z, wuv, wuz, wvz, uvz}.
Let F be formula f55(F; ... F,) where for 1 <i<n:

Fi= 1, if B;=0;
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P, if Bi = wu,
E(p, 9), if B; = wv;
q, if Bi = uv;
—q, if Bi = wz;

_'E(p’ q.)’ if Bi =uz;

—p, if Bi=vz;
T, ifi=1.

(This e m YF 7~ T, 47 7 Fwu,uv)=p; 1soF(wu,uv) {w,

Vv, Z, WUV, WUz, WVZ, UVZ}.
We reduce the cases by half using formula
G= F, if Fwv, wv) e {w, u, v, 7};
—F, if F(wv, uv) e {wuv, WUz, Wz, U\.IZ}.

Comparing G with E above, we can see that this is a case already c_onsidered. The

lemma is proved. O

We will see now that formula —Ind(p, q) is expressible in W4 by O, —, 3, A

First we establish the equalities
O(wu >v uv) = O(wv v wz) = O(vz *v uv) = O(vz >v wz).

(This holds since the arguments are middle pairs and the formula can’t assume values

other than 0 and 1.) We also use formulas
@O 3v 1)) 3A O(—p 3v -q)) 3A (A(—p 3v q) A O(p v —q))
O 3v Q 3v O(—p 3v —q)) v (O(—p 3v 9 3v O(p v —-q))

W3i-equivalent, respectively, to 0 and 1. They will be designated by H; and H,.

66



Given the equalities above we can verify that by —, H; and H, we can express

—Ind(p, q):

—Ind(p, Q)= H,, if O(wu’vuy)=0;

—~H,, ifO(wu’vuv)=1.
Finally, we take formula
B, 9 °v —Ind(p, 9) °A (¢ °A 9 v Ind(p, )
which is W4-equivalenttop Aq. O
Now we can officially state and ove

Theorem 4. A system of modal functions is 4-complete iff it is 3-complete and

not included in I'ly4 or TTs.

Proof. (=) follows from the facts that {p:=* 0} < {¢: = ¢} and that TT,4 and
I,s are not complete w.r.t. modal W4-operations. (<=) is immediate from the lemmas

above. O
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A functional completeness criterion for modal functions; determination of the pre-

complete systems; results on bases for u

Proposition 1 and theorems 1-4 yield

Theorem 5. A set of modal functions C is complete iff for each of the classes

Iy, ..., I1,s there is a function in C that doesn’t belong to it. O
For what follows we have to establish the following definitions:
S(p,q¢ sO(PvevIIdlp-—q9vIq—p).

(P(p, q.) =af S(P9 q) A S(_‘p9 q) A S(p’ _‘q) A S(_‘p’ _‘q)

Using the criterion above it is easy to check that the following is an independent

basis for p:
Op, =Vp, Vp, p A (Op v 0g), p A (Op — 09),
p < (Aq — Ap), p © (Ap — (Oq < On)),

(p = (Aq =Ap)) = (9 A (Aq — Ap)), o 9 —>q,

(P — A = (Op A O(p v q) A A), (@ © @) - —Ind[p, q) & 1,
(pvqvrvOpPp—->qQviO@—>pvOr—p)—>-ndp,ql)—r,

(@ Vv Sp, 9D A (P~ S@, ~D) A (q Vv (8(=p, D A S(=p, =D A (¢ = @),

v —>S)A(@—>9 —S[-p,a) A((@—>p) v S[p, =) A (p A @) > S[-p, —q])
Ao — Q).

We show below a table of functions preserving and not preserving matrices

m20_m25-

Recall that:
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M= (0, w,uv,wv,]l);

0 uw w v wu uv wv 1

m; =

0 ww wvw wv u u u 1

’

O u ww wu v w wv 1

My =

Ouwkuuvwvll

0 ww wu uwv w v u 1

M2 = (0, wv, wz, uv, vz, 1);

Mas = (0, wv, wu, wz, uv, uz, vz, 1).

In the following table, 0 and y are as defined above on page 28.
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Now suppose for contradiction that I, (n € {0, ..., 25}) is properly included in

some system S # p. So S contains a function f ¢ I1,. But by ‘no inclusions’ proposition
above, we ©~ w " tfor every k #n, 0 <k <25, I, & Il. This means that, for every k
#n, 0 <k <25, there is some function g such that g € 1, — whence g € S~and g ¢ I.

But then S satisfies the conditions of Theorem 5, and so S = y, with contradiction.

We need to show also that no other system is pre-complete. Suppose, for
contradiction, that there is another system S which is also pre-complete. So S is not

included in any of the classes IIg—II,s. But then, by Theorem 5, S = p, with

contradiction. O
The following proposition will 1  aseful in the proof of the next theorem.

Propositibn. If a formula ¢ preserves relations characterized by formulas Py, ...
, P, then @ also preserves every relatic  characterized by formulas obtained from the

P;’s via substitution of variables, conjunction and existential quantification.

Proof. Cf. e.g. Bodnarchuk et al. 1969. O

- Theorem 7. An independent basis for u cannot have more than 14 elements.

Proof. We first prove the following inclusions (we use Ratsa’s numbering. of

these):
Mo N Iis c M2 (76) Mg "Iy < H3_ (83)
Il NI c i3 an g~ I c I3 (84)
M, NI I (78) Ilo N IT10 c I3 (85)
IIs " Is c Ip 79 Iy nIisc iy (86)
s "Iy I, (80) MenIlizcIh;  (87)
IIs nITie = Ilp (81) IIis NI = Iy (88)
Ts AT, < s (82) Mynecll  (89)
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M nILycIhis  (90)

Iz N I3 € Iz (€29)

o NTIy N I3 € Iy (92)
o NIy NIy c 2 (93)
I NIy NI < Iy %4)
MOy necIls  (95)
ITo nIT; nI1s N I3 < 1137 (96)

“'v 7 proposition above, = order to show thate IIpNII;g3 Tl itv ™ be

enough to construct a formula whose W,-matrix is M, using predicates Ry and Ry

(corresponding to M, and Ms) and conjunctions, substitution of variables, and

existential quantification. The formula in question is 3z(Ro(z) A Ris(x, ¥, z)), and that
proves (76). V

We will use below formulas: E;, corresponding to the matrix My,; E,,
corresponding to the first two rows of matrix Mys; and Es, corresponding to the last two

rows of matrix Mys.
The formulas proving (77)~(92) and (94) are:
(77) 3z(Ri(2) AR1s(x, ¥, 2));  (78) Fy(Ra(x, ) A Rs(x, Y));
(79) IyRs(y) ARe(x,¥));  (80) Iy(Rs(¥) A Ro(x, ¥));
(81) IyRs(Y) ARio(x, ¥));  (82) Iy(Re(y) A Ra(y) A Ei(x, y));
(83) Iz(Rs(x, 2) ARs(y, 2));  (84) 3z(Rs(x, 2) A Ruoly, 2));
(85) Iz(Ro(Y, 2) AR10(X, 2));  (86) Fu(Rus(X, u) A Ryx(z, u)a Rys(y, w));

(87) Iz(Ri2(z, x) AR13(z, ¥));  (88) Fz(Rua(x, z) A Ryg(y, 2));
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(89) 3a3b3p3q3r3s3t3v3w(R17(a, p) A R17(b, q) A R17(b, I‘) A R17(p, q) A R17(p,
1) A Ri7(q, 1) AR19(X, 3, ¥) A Rio(z, a, u) A Rig(x, b, ) A Rio(y, b, u) A Rio(x, p, S) A

Rig(s, 4, ) A Rus(t, 1, u) A Rs(y, p, v) A Rig(v, g, W) A Rig(W, 1, 2));

(90) Fu(Ry7(y, w) A Rig(x, u, 2));

(91) FyazFu(Rax(y, 2) A Ras(y, u) A Ea(x, y) A Es(z, w);

(92) FzFuIVAW(RH(Z) A Rez, 1, V, W) A Ris(t, %) A Ris(, ¥) A Ris(V, %) A
Ris(w, ¥));

(94) JzFudvaw(Ri(z) A Ra(z, u, v, w) A Ri2(u, x) A Ria(u, y) A Ria(v, x) A
- z(W, Y))'

(It is worth noting that in Ratsa’s paper fhe conjunct Ry(b, r) is missing from the

giant formula above. Without this conjunct the formula can’t do its job.)

Inclusion (93) follows from inclusions (76) and (90); inclusion (95) follows from
(77) and (90); (96) follows from (77) and (92). '

Now take a set of functions {Ao ... Azs} Such_ that, for 0 <i <25, A; ¢ II;.
Given these inclusions, we can ‘cut’ twelve of the functions Ap ... Ays in such a way

that the remaining formulas will also satisfy the conditions of the theorem.

Note that given (82) we know that either As ¢ Ils or As ¢ Il;; that enables us to
cut one of Ag, A7.

Analogously, by (88) we drop one of As, Ajs; by (91) we drop one of Az, Azs;
by (86) one of A;1, Ais; and by (83) one of As, As.

Five were done.

Now, we will deal with As. Given (83), there are three cases to consider: (i) Az

eIlg— Hg, (ll) Az eIlg— Hg, and (111) As ¢ Ilg and As ¢ Is.

In case (i) we use inclusion (84) to cut A, (since A; ¢ I3 and A; e Ilg, from

(84) it follows that Az ¢ Iljg) and inclusion (79) to cut As or Ag (we are sure that in our
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list there is some formula corresponding to function not in Iy; this function cannot be in

I15 N Ig).
In case (ii) we use inclusion (85) to cut A and inclusion (80) to cut As or Ay.
In case (iii), given (81) we can cut, besides both Az and Ay, one of As and Ao.
Seven were done.

Next we will use (78) and (87) to cut the eighth and ninth formulas (one of A,,
Aj and one of Az, Aj3).

There are three left.

We deal with A;; by cases (cf. (87)). Case (i): If A); € I); — ;3. Case (ii): Ay
e I3 —I1j,. Case (111) A7 ¢ I, and Ay7 ¢ Ths. .

In case (i) we use (76) to cut Ag or A;g and (94) to cut A; or As. Also we can use
(89) to cut one of Ay7, Ayo. [Ratsa says that instead of (89) we could use (93) to cut one '
of Ay, A7, Ajg, but that doesn’t seem to work. If the function to be cut in this last case

is Ag we are double-counting it.]

In case (ii) we use (77) to cut A, or Az and (92) to cut Ag or A4 Also we use
(89) to cut one of A;7, Ajs. [Same as above, but with (95) instead of (93).]

In case (iii) we cut both A, and A3, and then use (96) to cut one of Ay, A, Ay,

Ajs. Finally, we use (89) or (90) to cut one of Aj7, Aje. O

Theorem 8. A function f is a Sheffer-function for p iff £ ¢ Iy, IT;, I1,, Is, I,
Iy, I, Iy, 1o, T4, Iys, Tye, I1y7, T1ao, T1a1, T1a2, T1p3, 124, Tlas.

Proof. (=) follows from Theorem 5. (<) follows from Theorem S and the

inclusions:
Il < Iy U TT, (100) My < I U T (104)
ILcIlyvIL VI, (101) Mg c Iy vIL Iy (105)
Iy cllyvIl VIl (102) [IiycIly Il VI (106)
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[T, c Iy U IIs (103)

(100) and (101) are known (cf. Post). To prove (102) suppose f € IT;; and f ¢ Iy
and f ¢ IT7. So f{0, ..., 0) 1 and there is an n-tuple (a) where, for 1 _ i <n, o € {w,

-and f({a)) € {0, 1}. Note that the following are 17,,-matrices.

0 ... O
[0 8] cee Olp
1 o 1
(0 4] . (o %

By hypothesis, f € IT;;. Considering the first matrix, f{0, ... , 0) = 1 implies f{{)) = 1.
By the second matrix, given f{{a)) =1 we get f(1, ..., 1)=1. So f e IT;.

We now show inclusion (103). Suppose f € 1), and f ¢ Ig; it follows that there

is a tuple (o) where o; € {0, w, 1} and such that f{{a)) = v. Take the 1M ,,-matrix

o .. O

(03] eee Ol

Since f({a)) =v and f e Iy, it follows that f{0, ... , 0), which means that f € I1y. The
proof of (104) is similar.

Inclusion (105) can be seen as follows: suppose f € Iljg but f ¢ Ig and f ¢ I1;7.
So f(0, ..., 0) = 1 and there are tuples (o) and (B), where (o, B;) are 1M;7-columns,

such that (f(a), f(B)) is not a 7M;7-column, and so

f((},l cee (X,n)

IN
g
g
<
<

fiBr -+ Bn) w v w v
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At this point it is worth remembering that Rj7 = Ap v Aq, and that
Ris=Ap A Ar A ((p v 1) > AQ).
We define sequence (y) using the scheme
vi=0,ifo; € {0, 1}
1, ifo; € {w, v}.

(Alternatively, we could say that y; = Va;.)

We now have
1 e 1
.. 0
(03] (o /% m
|Bl o Bale My c M
Yi. -~ Th

l Yl i Yﬂ

Since f € ITj3 and f(0, ..., 0)=1 and f{((B)) € {v, w}, it follows that

0 .. 0 | |2 1
| f(B1 - Ba) wov
This entails
0 ... 0) | 1
fB - By | (W OV
;1 - o) 11

and so we can conclude that f({y)) = 1; this with Ka) € {w, v} implies that f(1, ..., 1) =
1,ie. fell,.

We tumn, finally, to (106). Let f € ITjo and f ¢ Iy and f ¢ I1;. So f(0, ... ,0)=1
and there is (@), o; € {w, v}, such that f{{a)) € {0, 1}. Remember that Rj9 = Ap A Ar A
((pyvr) > Vq).So

76



Since f & ITy9 and f({a)) € {0, 1} it follows that f(0, ... , 0)=f(1, ..., 1) =1, i.e. f e I,.
a

That none of the nineteen classes in Theorem 8 could be dispensed with or
rc pre-ct  le sys dby " b Tt f
for each of the nineteen classes, one function belonging to it but not belonging to any of

the other pre-complete classes. Here S(p, q) and ¢(p, q) are as defined after Theorem 5.
o: (p AQ) ¢ —0g; IT: (> Q) > Ag; T =2°(p, q, Or);

T ~p v ) ¢ (Ap v A Tl (Op A9 = (@ A ) v TP © D) A~ A Qs
IT7: (p v AQ) — (=(p A.r) AAGDS Tl Op > (v (6 AD) A—0( )

Tls: (0 A (a > AQ) v D@ > Q) A~0r5  Tigt =(p A 0

s (p = Op) A(®q > ) A =D A 9);

Mis: (@ vav ©p A99) > (@ A @) v O > ) A0 A Q)

M ~p A (09— @) A =D v 9 M2 (Op > ) v (@ > AQ) A (p > —~D;

Io: (¢(p; D — (P = @ A —OQ) A (¢(p; P v [((p > —Ind(p, Q) = @ —> S(p, DI);
Iz (@, D > (P > D A -BD) A (0P, D v [(p & S, D) A (9 — S, D)]
II: -=Op A (p © @ A (q = —Ind(p, Q);

Is: (e, D> (P 2> DA -BY) APV qV S, D) A (P AQ vV S(=p, ~D);
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Iy (-Ind(p, Q) > (p > PA-OQ)A(PpvqvrvOp—>qQvDO@—->r)vOir—p)

v —=Ind(p, 9)); ITas: (—=Ind(p, @) = ((p = P A -0OQ) A ((p © Q) v —~Ind(p, q)).
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