• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.8.2013.tde-18042013-120246
Documento
Autor
Nombre completo
Luciano Vicente
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Loparic, Andrea Maria Altino de Campos (Presidente)
Coelho, Antonio Mariano Nogueira
Guerzoni, José Alexandre Durry
Pereira, Luiz Carlos Pinheiro Dias
Santos, Luiz Henrique Lopes dos
Título en portugués
Definições parciais de verdade e sistemas de acumulação na aritmética formal
Palabras clave en portugués
Definições parciais de verdade
Sistemas de acumulação
Resumen en portugués
Segundo o teorema da indefinibilidade de Tarski-Gödel, não existe fórmula da linguagem da aritmética que defina o conjunto dos números de Gödel das sentenças verdadeiras da aritmética. No entanto, para cada número natural n, podemos definir o conjunto dos números de Gödel das sentenças verdadeiras da aritmética de grau menor que n. Essas definições produzem uma hierarquia V0(x), V1(x),..., Vn(x),... tal que, para todo x, se Vn(x), então Vn+1(x). Nesse estudo, ensairemos algumas aplicações desses predicados, chamados definições parciais de verdade, e outros predicados relacionados a eles na construção de sistemas formais para as verdades da aritmética. A ideia subjacente aos nossos sistemas é muito simples, devemos acumular de alguma maneira as definições parciais de verdade. Grosso modo, mostrar como fazê-lo é o objetivo desse estudo.
Título en inglés
Partial truth definitions and accumulation systems in formal arithmetic
Palabras clave en inglés
Accumulation systems
Partial truth definitions
Resumen en inglés
According to Tarski-Gödels undefinability theorem, there is no formula in the language of arithmetic which defines the set of Gödel numbers of arithmetical true sentences. Nevertheless, for each n, we can define the set of Gödel numbers of all arithmetical true sentences of degree n or less. These definitions yield a hierarchy of predicates V0(x), V1(x),..., Vn(x),... such that, for all x, if Vn(x), then Vn+1(x). In this study, we will ensay some aplications of these predicates, called partial truth definitions, and others related ones in building of formal systems for arithmetical truth. The underlying idea of our systems is very simple, we should accumulate in some way the partial truth definitions. Roughly speaking, showing how we can do that is the aim of this study.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2013-04-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.