
UNIVERSIDADE DE SÃO PAULO
FACULDADE DE FILOSOFIA, LETRAS E CIÊNCIAS HUMANAS

DEPARTAMENTO DE FILOSOFIA
PROGRAMA DE PÓS-GRADUAÇÃO EM FILOSOFIA

André Rodrigo Ferreira Coggiola

Deductive Tableaux

São Paulo
2021

André Rodrigo Ferreira Coggiola

Deductive Tableaux

Dissertação apresentada ao
Programa de Pós-Graduação em
Filosofia do Departamento de
Filosofia da Faculdade de Filosofia,
Letras e Ciências Humanas da
Universidade de São Paulo, para
obtenção do título de Mestre em
Filosofia sob a orientação do Prof.
Dr. Rodrigo Bacellar da Costa e
Silva.

São Paulo
2021

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação na Publicação
Serviço de Biblioteca e Documentação

Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo

C676d
Coggiola, André Rodrigo Ferreira
 Deductive Tableaux / André Rodrigo Ferreira
Coggiola; orientador Rodrigo Bacellar da Costa e
Silva - São Paulo, 2021.
 60 f.

 Dissertação (Mestrado)- Faculdade de Filosofia,
Letras e Ciências Humanas da Universidade de São
Paulo. Departamento de Filosofia. Área de
concentração: Filosofia.

 1. LÓGICA . 2. LÓGICA MATEMÁTICA. 3. LÓGICA
INTUICIONISTA . I. da Costa e Silva, Rodrigo
Bacellar, orient. II. Título.

Folha de Aprovação

COGGIOLA, A. R. F. Deductive Tableaux. 2021. Dissertação (Mestrado) –
Faculdade de Filosofia, Letras e Ciências Humanas. Departamento de Filosofia,
Universidade de São Paulo, São Paulo, 2021.

Prof. Dr. Rodrigo de Alvarenga Freire Instituição: Universidade de Brasília

Julgamento:________________________

Assinatura:_________________________

Prof. Dr. Edelcio Gonçalves de Souza Instituição: Universidade de São Paulo

Julgamento:________________________

Assinatura:_________________________

Dr. Pedro Alonso Amaral Falcão Instituição: (sem afiliação)

Julgamento:________________________

Assinatura:_________________________

Para Nina

Agradecimentos

Gostaria de começar agradecendo ao meu orientador Rodrigo
Bacellar pelo apoio e incentivo na realização dessa pesquisa. Não é
exagero afirmar que a maior parte dessa dissertação decorre de
considerações minhas às quais somente pude chegar por meio de suas
aulas, notas de curso e artigos.

Agradeço também ao professor Edelcio Gonçalves, cujas aulas e
grupos de estudo, que tive o prazer de frequentar, foram essenciais em
minha formação lógica. À professora Andrea Loparic, com quem estudei
pela primeira vez dedução natural.

A todos meus amigos e colegas de curso, em especial Pedro Falcão e
Daniel Nagase.

Aos meus pais e minhas irmãs Bianca, Mariana e Laura.

Sou sobretudo grato a Nina Auras pelo apoio diário e constante
nesse período desgraçado do mundo em que essa pesquisa se realizou e
por simplesmente tudo.

Agradeço, por fim, à CAPES pelo financiamento desta pesquisa.

RESUMO

COGGIOLA, André Rodrigo Ferreira. Deductive Tableaux. 2021.
Dissertação (Mestrado) - Faculdade de Filosofia, Letras e Ciências
Humanas. Departamento de Filosofia, Universidade de São Paulo, São
Paulo, 2021.

O presente estudo tem por objetivo a formalização de um cálculo dedutivo
para a lógica clássica baseado em tableaux. São apresentados os cálculos
DT, para a lógica proposicional, e QDT, para a lógica de predicados. Uma
possível formalização de um cálculo intuicionista nos mesmos moldes é
conjecturada. Esses cálculos derivam de uma reformulação do Cálculo de
Dados de Roderick Batchelor, que é brevemente apresentado no início.

Palavras-chave: Lógica - Dedução - Tableaux

ABSTRACT

COGGIOLA, André Rodrigo Ferreira. Deductive Tableaux. 2021.
Dissertation (Master Degree) – Faculdade de Filosofia, Letras e Ciências
Humanas. Departamento de Filosofia, Universidade de São Paulo, São
Paulo, 2021.

The present study aims at a formalization of a deductive calculus for
classical logic based on tableaux. The calculi DT, for propositional logic,
and QDT, for predicate logic, are presented. A possible formaliation of an
intuitionistic calculus on the same framework is conjectured. These calculi
derive from a reformulation of Roderick Batchelor’s Data Calculi, which are
briefly presented at the beginning.

Key Words: Logic - Deduction - Tableaux

Contents

1 Introduction 1

1.1 Preliminary definitions . 1

2 The Data Calculi 3

2.1 The calculus DC . 3

2.2 The calculus QDC . 6

2.3 Examples of developments . 6

3 Deductive tableaux for classical propositional logic 10

3.1 The calculus DT . 10

3.2 Examples of developments . 15

3.3 Soundness . 17

3.4 Completeness . 19

3.5 Remarks on PB and ExF . 23

3.6 Signed formulas, implication and intuitionistic logic 26

4 Deductive tableaux for classical predicate logic 33

4.1 The calculus QDT . 33

4.2 Examples of developments . 38

4.3 Soundness . 39

4.4 Completeness . 41

1 Introduction

In what follows, we will present a new method for logical deductions

for classical logic, called the Deductive Tableaux. It is based on some ideas

from ground theory, having been first devised as a reformulation of the Data

Calculus, a method of directional deduction created by Roderick Batchelor

(2019). In these methods, rules have a directionality, either analytic or syn-

thetic, which is analogous and related to the directionality in the relation of

grounds to their consequences.

In section 2 we will give a brief summary of Batchelor’s DC and QDC

calculi. Then, in sections 3 and 4, we will present our systems for classical

propositional and classical predicate logic, respectively.

1.1 Preliminary definitions

Below are some general definitions that will be used in connection with

both the data calculi and the deductive tableaux.

We are concerned for now with the propositional logic case only. Neces-

sary definitions for the predicate logic case will be introduced later in due

course.

We take ∧, ∨ and ¬ as our primitive connectives. They are called respec-

tively the conjunction, disjunction and negation connectives.

Besides the connectives, our other symbols will be a denumerable set of

propositional variables (called simply variables when no confusion can arise),

together with the left and right parentheses ‘(’ and ‘)’. We will use the letters

p, q, r, . . ., with or without indices (i.e. p1, p2 etc.) as the variables.

Formulas are defined by the usual recursive clauses:

1

1. A variable is a formula (sometimes called an atomic formula or an

atom);

2. If ϕ and ψ are formulas, then ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ) are formulas

(called molecular formulas).

We will use the Greek letters ϕ, ψ, χ, with or without indices, as metavari-

ables for formulas. Γ, ∆ etc. will stand for sets of formulas.

Following the usual custom, we will omit the outer parentheses when

considering a whole formula, as well as write ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕn for ϕ1 ◦ (ϕ2 ◦
(. . . ◦ (ϕn) . . .)), where ◦ is one of the two binary connectives.

The notion of immediate subformula is given by the following clauses:

1. Atomic formulas have no immediate subformula;

2. ¬ϕ has exactly one immediate subformula: ϕ;

3. ϕ∧ ψ and ϕ∨ ψ have each exactly two immediate subformulas: ϕ and

ψ.

To each formula of the language we can ascribe a number, called the

formula’s complexity, consisting of the number of occurrences of connectives

in the formula. It can also be defined inductively by the following clauses.

The complexity number cp(ϕ) of formula ϕ is:

1. 0, if ϕ is atomic;

2. cp(ψ) + 1, if ϕ = ¬ψ;

3. cp(ψ) + cp(χ) + 1, if ϕ = ψ ◦ χ.

We use ϕ→ ψ as abbreviation for ¬ϕ∨ψ, and ϕ↔ ψ for (ϕ∧ψ)∨ (¬ϕ∧
¬ψ).

2

2 The Data Calculi

In this section we will present a summary of Batchelor’s DC and QDC

calculi, for classical propositional logic and classical predicate logic, respec-

tively. The presentation follows Batchelor (2019) very closely, with only a

slight difference in the definition of deduction.

2.1 The calculus DC

A datum is a finite set of finite sets of formulas. We will use α, β, γ etc.

as metavariables for data. The components of a datum are its elements.

Instead of using the usual set theoretical notation, data will often be rep-

resented with slashes separating the components and commas separating the

formulas in each component. So, e.g., instead of {{p, q}, {p,¬q}, {¬p}, {r ∨
¬r}} we write

p, q / p,¬q / ¬p / r ∨ ¬r.

A datum has the effect of a disjunction of conjunctions, for the inner

set-formation is considered as conjunction like and the outer set-formation

as ‘disjunction-like’. In this way, the slashes correspond to structural dis-

junctions and the commas to structural conjunctions.

We can say, then, that an interpretation (i.e. assignment of truth-values to

the propositional variables) σ verifies a datum α if it verifies all the formulas

in some component Γ of α. With this, other semantical notions (validity,

satisfiability etc.) for data can also be defined.

The definition of a datum implies the existence of { } and {{ }} as data.

The first one is clearly unsatisfiable, and will be denoted by ⊥. The second

one is valid and will be denoted by >.

The rules for DC are divided into three categories. First, the grounding-

3

rules (G-rules) concern, roughly speaking, the analysis and synthesis of for-

mulas with each of the connectives in the language as main connective, and

negations thereof. They, thus, correspond to the (neutral) grounding con-

ditions for these formulas. Second, the negation-rules (N-rules), correspond

to principles of classical logic which derive from the general character of

negation: the principle of non-contradiction (rule NC) and the principle of

excluded middle (rule EM). Finally, the third category consists of the struc-

tural rules (S-rules) Del and Exp, which stand, respectively, for deletion and

expansion.

The rules are represented below, in tables 1, 2 and 3. Instead of using the

traditional horizontal bar for inference, the rules are depicted with an arrow

pointing from premiss to conclusion. The rules with a ↓ are analytic while

those with a ↑ are synthetic. In the G-rules, the l indicates, then, a pair of

rules, one analytic and one synthetic. Notice that in the synthetic rules the

premiss is at the bottom and the conclusion at the top. Finally, Γ, ϕ stands

for Γ ∪ {ϕ} and ρ stands for the ‘rest’ of a datum, i.e. any other number of

components it might have (including the case of none).

∧l
Γ, ϕ ∧ ψ / ρ

l

Γ, ϕ, ψ / ρ

∨l
Γ, ϕ ∨ ψ / ρ

l

Γ, ϕ / Γ, ψ / ρ

¬∧l
Γ,¬(ϕ ∧ ψ) / ρ

l

Γ,¬ϕ / Γ,¬ψ / ρ

¬∨l
Γ,¬(ϕ ∨ ψ) / ρ

l

Γ,¬ϕ,¬ψ / ρ

¬¬l
Γ,¬¬ϕ / ρ

l

Γ, ϕ / ρ

Table 1: G-rules

These rules are all correct, in the sense that, for any pair of data instan-

tiating the given form, an interpretation that verifies the premiss will also

verify the conclusion. The G-rules and N-rules are also equivalential, in the

sense that, for each, the premiss is logically equivalent to the conclusion.

4

NC

Γ, ϕ,¬ϕ / ρ

↓

ρ

EM

Γ, ϕ / Γ,¬ϕ / ρ

↑

Γ / ρ

Table 2: N-rules

Del

Γ,∆ / ρ

↓

Γ / ρ

Exp

Γ / ρ

↑

ρ

Table 3: S-rules

The inverse of each G-rule is itself a G-rule. The inverses of NC and EM are

derivable from Exp and Del, respectively. These two S-rules, in turn, are the

only rules, then, that allow for weakening of strength in a deduction.

A development (in DC) of datum β from datum α is a finite sequence of

data, starting with α and ending with β, s.t. each datum in the sequence

after the first is immediately inferable from the immediately preceding one

by one of the rules above.

A deduction, then, of formula ϕ from the finite set of formulas Γ is de-

fined as any development of {{ϕ}} from {Γ}. A proof of formula ϕ is any

development of {{ϕ}} from >. A refutation of the finite set of formulas Γ is

any development of ⊥ from {Γ}.

A development is analytic (or purely analytic, for emphasis) if it uses

only analytic rules. Similarly for (purely) synthetic developments. A nor-

mal development is one divisible into two consecutive parts, the first purely

analytic and the second purely synthetic.

5

2.2 The calculus QDC

To extend the methods of directional deduction to classical predicate

logic, it is necessary to accommodate in the structure of the datum resources

corresponding to the quantifiers. A datum then becomes an expression of

the form

(Ef)(x) : Γ /∆ / . . .

where Γ, ∆, . . . are finite sets of formulas of first order logic with functional

variables.

The rules of QDC include the obvious counterparts of the propositional

rules. We list below, then, only the additional rules (tables 4 and 5). These

are four pairs of G-rules concerning the analysis and synthesis of the quan-

tifiers (affirmed and denied), and four more S-rules, two weakening rules

corresponding to the new structural resources (Inst and Gen), and the two

equivalential rules ↓EVE (elimination of vacuous existential variables) and

↑IVU (introduction of vacuous universal variables).

In rules Inst and Gen t is any term.

2.3 Examples of developments

We now show a couple of examples of developments in both DC and QDC.

p→ q, (p ∧ q)→ r `DC p→ r

6

l∀
(Ef)(x) : ∀yϕ,Γ / ρ

l

(Ef)(x, y) : ϕ,Γ / ρ

provided y does not occur free in Γ, ρ.

l¬∃
(Ef)(x) : ¬∃yϕ,Γ / ρ

l

(Ef)(x, y) : ¬ϕ,Γ / ρ

provided y does not occur free in Γ, ρ.

l∃
(Ef)(x) : ∃yϕ(y),Γ / ρ

l

(Ef, g)(x) : ϕ(gx),Γ / ρ

provided g does not occur in ϕ(y), Γ, ρ.

l¬∀
(Ef)(x) : ¬∀yϕ(y),Γ / ρ

l

(Ef, g)(x) : ¬ϕ(gx),Γ / ρ

provided g does not occur in ϕ(y), Γ, ρ.

Table 4: G-rules for quantifiers

7

Inst

(Ef)(x, y) : α(y)

↓

(Ef)(x) : α(t)

Gen

(Ef, g)(x) : α(gx)

↑

(Ef)(x) : α(t)

EVE

(Ef, g)(x) : α

↓

(Ef)(x) : α

provided g do not occur in α.

IVU

(Ef)(x, y) : α

↑

(Ef)(x) : α

provided y do not occur free in α.

Table 5: S-rules

¬p ∨ q,¬(p ∧ q) ∨ r ↓∨

¬p ∨ q,¬(p ∧ q) / ¬p ∨ q, r ↓∨(×2)

¬p,¬(p ∧ q) / q,¬(p ∧ q) / ¬p, r / q, r ↓Del

¬p / q,¬(p ∧ q) / ¬p / r ↓¬∧

¬p / q,¬p / q,¬q / ¬p / r ↓NC

¬p / q,¬p / ¬p / r ↓Del

¬p / ¬p / ¬p / r (= ¬p / r) ↑∨

¬p ∨ r

∀xPx ∧ ∀xQx `QDC ∀x(Px ∧Qx)

8

∀xPx ∧ ∀xQx ↓∧

∀xPx,∀xQx ↓∀

(x) : Px, ∀xQx ↓∀

(x, y) : Px,Qy ↓Inst

(x) : Px,Qx ↑∧

(x) : Px ∧Qx ↑∀

∀x(Px ∧Qx)

`QDC ∀y(∀xPx→ Py)

{{ }} ↑EM

¬∀xPx / ∀yPy ↓∀

(y) : ¬∀xPx / Py ↑∨

(y) : ∀xPx→ Py ↑∀

∀y(∀xPx→ Py)

9

3 Deductive tableaux for classical proposi-

tional logic

In this section we will present the calculus DT, a formulation of the de-

ductive tableaux method for classical propositional logic. This calculus is

practically the same as the ‘deduction trees’ presented in Jeffrey 1981 (for

some reason present only in the second edition of that book), with a cou-

ple of differences. In our formulation we use signed formulas and seek to

present the rules in a more symmetrical fashion. Also, Jeffrey’s presentation

is somewhat brief and superficial, not considering all the definitions and al-

ternate formulations we present here, and his motivations are rather different

from ours. Finally, he does not consider any correlate of these methods for

predicate logic, which we will do in section 4.

3.1 The calculus DT

By a signed formula we mean Tϕ or Fϕ where ϕ is a formula. Tϕ and Fϕ

are thought of as meaning ϕ is true and ϕ is false respectively. We will also

say that ϕ is asserted or rejected as it receives the sign T or F , respectively.

As metavariables for signed formulas we will use σ and ξ, with or without

indices.

Σ, Ξ will stand for sets of signed formulas (again, with or without indices).

If Γ = {ψ1, ψ2, . . . , ψn}, then by ΓT we will mean the set of signed formulas

{Tψ1, Tψ2, . . . , Tψn}, and similarly for ΓF .

For Σ = {σ1, σ2, . . . , σn}, by σ∗i , 1 ≤ i ≤ n, we mean

σ∗i =

ϕ if σi = Tϕ

¬ϕ if σi = Fϕ

and by Σ∗ we mean the set of formulas {σ∗1, σ∗2, . . . , σ∗n}. By a tableau for Σ we

10

mean some tableau initiated by σ1, σ2, . . . , σn and expanded only according

to the rules below. We call this initial segment of a tableau for Σ, consisting

of the signed formulas in Σ, the tableau’s origin.

The primitive rules of the system, for expanding a tableau, are represented

on tables 6, 7 and 8.

↓∧T Tϕ ∧ ψ
Tϕ, Tψ

↓∨T Tϕ ∨ ψ
Tϕ | Tψ

↓¬T T¬ϕ
Fϕ

↓∧F Fϕ ∧ ψ
Fϕ | Fψ

↓∨F Fϕ ∨ ψ
Fϕ, Fψ

↓¬F F¬ϕ
Tϕ

Table 6: Analytic G-rules

↑∧T Tϕ, Tψ

Tϕ ∧ ψ
↑∨T Tϕ | Tψ

Tϕ ∨ ψ
↑¬T Fϕ

T¬ϕ

↑∧F Fϕ | Fψ
Fϕ ∧ ψ

↑∨F Fϕ, Fψ

Fϕ ∨ ψ
↑¬F Tϕ

F¬ϕ

Table 7: Synthetic G-rules

ExF
Tϕ, Fϕ

σ
PB

σ

Tϕ | Fϕ

Table 8: N-rules

In ExF and PB, σ is any signed formula. ExF stands for Ex Falso and

PB for Principle of Bivalence. It is clear that these rules are neither analytic

nor synthetic in the same sense the G-rules are, for they don’t concern any

connective of the language or relate anyhow formulas with their constituents.

But we will treat ExF as an analytic rule itself, or at least as belonging to

the analytic part of the system. PB will then belong to the synthetic part.

We will discuss the directional character and other aspects of these rules in

section 3.5 (page 23).

Formulas separated by a comma belong to the same branch. The expres-

sions of the form σ | ξ in the conclusion of a rule (so in ↓∨T , ↓∧F and PB)

11

indicate branching with σ on the left and ξ on the right. In the premiss of

rule (so in ↑∨T and ↑∧F) this expression occurs merely to abbreviate a pair

of rules, one with σ as single premiss and another with ξ as single premiss.

This is done so as to exhibit more fully some symmetries between the rules.

We can further justify this use by the following considerations. It can be seen

that in all the G-rules we relate single molecular formulas with their immedi-

ate subformulas, either as premiss or conclusion. Expressions corresponding

to the subformulas can be of two types: conjunctive, where the formulas are

separated by a comma (as in e.g. ↑∧T or ↓∧T rules), or disjunctive, where the

formulas are separated by a vertical bar. (For the rules for negation, where

there is only one formula in premiss and conclusion, these can be taken as

conjunctive.) So, as can be seen, the rules can have multiple formulas as

either premiss or conclusion. Multiple premisses of the disjunctive type are

eliminable in the sense that these can be seen as indicating a pair of rules,

each with just one of the premisses, as described. But multiple premisses

of the conjunctive type are non-eliminable. Dually, multiple-conclusions of

the conjunctive type are eliminable, in the sense that these can be seen as

indicating a pair of rules, each with just one of the conclusions. But multiple-

conclusions of the disjunctive type are non-eliminable.

With these considerations we allow that all G-rules, as written down,

can be seen as equivalential, as in DC, for we will take formulas in a same

branch as conjunctive and formulas in different branches as disjunctive. It

also becomes clear that every analytic G-rule is the inverse of some synthetic

G-rule and vice versa.

The dual of a rule R is the rule obtained from R by inverting premiss and

conclusion, dualizing the connectives, and transforming multiple-formulas of

conjunctive type into disjunctive type and vice versa (i.e. dualizing also the

‘structure’). As can be easily seen, every primitive rule in the system is the

dual of another primitive rule. E.g. ↓∧T and ↑∨T are dual to each other, as

well as ExF and PB.

We will say that a tableau branch is closed if the rule ExF could be

12

applied in it, i.e. if it contains some explicit contradiction. A branch that is

not closed is open. A tableau as a whole is closed when all its branches are

closed and open when at least one branch is open.

We can also use formulas with the material implication →, under the

usual definition (already mentioned) ϕ→ ψ =df ¬ϕ ∨ ψ. The corresponding

rules can then be derived from this definition through the rules for ∨ and ¬.

They are represented on table 9.

↓→T Tϕ→ ψ

Fϕ | Tψ
↑→T Fϕ | Tψ

Tϕ→ ψ

↓→F Fϕ→ ψ

Tϕ, Fψ
↑→F Tϕ, Fψ

Fϕ→ ψ

Table 9: Rules for →

We will also, sometimes, following Smullyan, use a unifying notation,

calling molecular signed formulas either α or β, for which we will define

signed formulas α1, α2 and β1, β2, respectively, according to the tables 10

and 11.

α α1 α2

Tϕ ∧ ψ Tϕ Tψ

Fϕ ∨ ψ Fϕ Fψ

Fϕ→ ψ Tϕ Fψ

T¬ϕ Fϕ Fϕ

F¬ϕ Tϕ Tϕ

Table 10: Type A: conjunctive formulas

With this notation, all the G-rules can be succinctly summarized in the

four rules represented on table 12.

A development of a finite set of signed formulas Ξ from a finite set of

signed formulas Σ is defined as any tableau for Σ with at least one ξ ∈ Ξ

13

β β1 β2

Fϕ ∧ ψ Fϕ Fψ

Tϕ ∨ ψ Tϕ Tψ

Tϕ→ ψ Fϕ Tψ

Table 11: Type B: disjunctive formulas

↓A α

α1, α2

↓B β

β1 | β2

↑A α1, α2

α
↑B β1 | β2

β

Table 12: Summarized G-rules

occurring in each branch.

A deduction (in DT) of formula ϕ from the finite set of formulas Γ is now

defined as any development of {Tϕ} from ΓT . Notice this means a tableau

in which Tϕ occurs in every branch.

A proof (in DT) of a formula ϕ is defined as any development of {Tϕ}
from {Fϕ}.

A refutation (in DT) of finite set of formulas Γ is defined as any develop-

ment of ΓF from ΓT .

A development is normal when it is constructed in such a way that,

in every branch, no synthetic rule is applied before an analytic one. We

also say a development is analytic (or purely analytic for emphasis) when

no synthetic rule is applied. Similarly for (purely) synthetic development.

All these definitions naturally apply to deductions, proofs and refutations as

well, as these are defined as developments.

Note that deductions, proofs and refutations are all three allowed to pro-

ceed in any of the three ways: purely analytic, purely synthetic or combining

14

both analytic and synthetic rules. There are, however, deductions that can

only proceed in this third way. In particular, it is obvious that if Γ is consis-

tent and ϕ has some variable not occurring in Γ, then ϕ cannot be analytically

developed. As for proofs, we can show that there will always be two direct

proofs of any valid formula: one purely analytic ‘proof by refutation’ (as in

Smullyan) and one purely synthetic ‘proof proper’ (theorem 3.4 below). Sim-

ilarly for refutations, where we can also define one notion of purely synthetic

‘refutation by proof’ and one purely analytic ‘refutation proper’. But note

that a ‘proof by refutation’ is still a proof by our definition, not a refuta-

tion, even though it might be considered a refutation in the literal sense.

For proofs begin with some formula rejected, while refutations begin with

formulas asserted.

The system DT can then be seen as the combination of two systems, each

complete for both proofs and refutations, but not deductions: the system

DT↓, consisting of only the analytic rules, and the system DT↑, with only

the synthetic rules. We can also consider the systems with either no analytic

or no synthetic G-rules, but with both N-rules.

3.2 Examples of developments

Here we show some examples of developments in DT. We focus on deduc-

tions and synthetic proofs, given that analytic refutations correspond to the

familiar tableaux method (as in Smullyan).

Here and in subsequent examples of tableaux, we will use sometimes the

symbol C to denote the intended conclusion of a development, in order to

avoid the repetition of some large formula. Also, when a same rule is applied

to more than one branch it will be annotated to the right of the line only

once. Otherwise, the rules used in some line are annotated following the

order of the branches from left to right.

p→ q, (p ∧ q)→ r `DT p→ r

15

1.

2.

3.

4.

5.

6.

7.

8.

Tp→ q

T (p ∧ q)→ r

Fp

Tp→ r

Tq

Fp ∧ q

Fp

Tp→ r

Fq

Tp→ r

Tr

Tp→ r

↓→T

↓→T

↓∧F

ExF

↑→T

p ∧ (¬q → ¬p) `DT (p ∧ q) ∨ ¬p

1.

2.

3.

4.

5.

6.

7.

Tp ∧ (¬q → ¬p)
Tp

T¬q → ¬p

F¬q
Tq

Tp ∧ q
T (p ∧ q) ∨ ¬p

T¬p

T (p ∧ q) ∨ ¬p

↓∧T

↓∧T

↓→T

↓¬F

↑∧T

↑∨T

`DT ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))

16

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

F ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))

Tp

Tq

Tr

Tq ∧ r
Tp→ (q ∧ r)

C

Fr

Fp→ r

F (p→ q) ∧ (p→ r)

C

Fq

Fp→ q

F (p→ q) ∧ (p→ r)

C

Fp

Tp→ (q ∧ r)
C

PB

PB

PB

↑∧T ; ↑→F

↑→T ; ↑∧F

↑→T

↑→F

↑∧F

↑→T

↑→T

↑→T

3.3 Soundness

Assume Γ and Σ are finite sets of formulas and signed formulas, respec-

tively. By ∧θ we mean the formula σ∗1∧σ∗2∧ . . .∧σ∗m, where σ1, σ2, . . . , σm are

the m signed formulas in some branch θ. Finally, by (θ, σ) we mean θ ∪ {σ}.
First we will prove the following lemma:

Lemma 3.1. Let θ1, θ2, . . . , θn be the branches of some tableau for Σ. Then,

Σ∗ � ∧θ1 ∨ ∧θ2 ∨ . . . ∨ ∧θn.

Proof. First we note that any tableau for Σ is some extension of the tableau

T consisting only of the signed formulas in Σ in a single branch θ. Clearly

then Σ∗ � ∧θ. Next we show that, if the lemma is true for some tableau T1,

then it is also true for any immediate extension T2 of T1.

Let θ′1, θ
′
2, . . . , θ

′
n be the branches in T1. Let Ξ be the set of signed formulas

at T1’s origin. By hypothesis, Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧θ′n. T2 is obtained by

17

applying some rule to some of the branches θ′i, for 1 ≤ i ≤ n. We then have

three cases:

1. If an A rule is used, then θ′i contains either an α or both α1 and α2 and

is extended to (θ′i, α1, α2) or (θ′i, α), respectively; either way,

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, α1, α2) ∨ . . . ∨ ∧θ′n as well as

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, α) ∨ . . . ∨ ∧θ′n.

2. If a B rule is used, then θ′i contains a β or either β1 or β2, and is

extended to either both (θ′i, β1) and (θ′i, β2) or simply to (θ′i, β); either

way,

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, β1) ∨ ∧(θ′i, β2) ∨ . . . ∨ ∧θ′n as well as

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, β) ∨ . . . ∨ ∧θ′n.

3. Finally, one of the N rules might be used. If θ′i is extended by ExF to

(θ′i, ξ), then θ′i
∗ is unsatisfiable, and so

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, ξ) ∨ . . . ∨ ∧θ′n.

If θ′i is extended by PB to both (θ′i, Tϕ) and (θ′i, Fϕ), it is clear that

Ξ∗ � ∧θ′1 ∨ ∧θ′2 ∨ . . . ∨ ∧(θ′i, Tϕ) ∨ ∧(θ′i, Fϕ) ∨ . . . ∨ ∧θ′n.

We now can prove the theorem:

Theorem 3.2 (Soundness of DT). If Γ `DT ϕ, then Γ � ϕ.

Proof. Assume Γ `DT ϕ. This means there exists a tableau for ΓT with Tϕ

occurring in every branch. Let θ1, θ2, . . . , θn be its branches. By the previous

18

lemma, and the fact that (ΓT)∗ = Γ, we have that Γ � ∧θ1 ∨∧θ2 ∨ . . .∨∧θn.

Therefore, since ϕ is in every θi, 1 ≤ i ≤ n, we have that Γ � ϕ.

3.4 Completeness

In order to prove the completeness of DT, we first prove lemma 3.3.

It leads us to theorem 3.4, the proof completeness of DT. From there we

have one way of proving the deduction completeness (theorem 3.6), through

lemma 3.5. Finally we prove completeness for normal deductions (theorem

3.7), which follows directly from lemma 3.3.

Lemma 3.3. For any formula ϕ with variables p1, p2, . . . , pn, and for any

valuation v, if v(ϕ) = T , then there exists a deduction for π1, π2, . . . , πn `DT

ϕ using only the synthetic G-rules, where, for 1 ≤ i ≤ n,

πi =

pi if v(pi) = T

¬pi if v(pi) = F

Otherwise, if v(ϕ) = F , there exists a deduction for π1, π2, . . . , πn `DT ¬ϕ
using only the synthetic G-rules.

Proof. We will prove this lemma by induction on the complexity of the for-

mulas. For the base case, we consider ϕ to be a variable, say ϕ = p1. Then

we have the two one line deductions where

if v(p1) = T then π1 = p1 `DT p1 = ϕ;

if v(p1) = F then π1 = ¬p1 `DT ¬p1 = ¬ϕ.

Now assume the lemma is true for some formulas ψ1 and ψ2. We then have

three cases:

1. ϕ = ¬ψ1.

Note that the variables in ψ1 and ϕ are the same. If v(ϕ) = T , then

19

v(¬ψ1) = T , so v(ψ1) = F . By the induction hypothesis we then have

that

π1, π2, . . . , πn `DT ¬ψ1 = ϕ.

If v(ϕ) = F , then v(¬ψ1) = F , so v(ψ1) = T . So, by the hypothesis,

π1, π2, . . . , πn `DT ψ1.

Applying now, to every branch, the rule ↑¬F followed by ↑¬T , we reach

a deduction of ¬¬ψ1 = ¬ϕ.

2. ϕ = ψ1 ∧ ψ2.

Note that ϕ contains all the variables in ψ1 and ψ2. If v(ϕ) = T , then

v(ψ1 ∧ ψ2) = T , so v(ψ1) = v(ψ2) = T . By the induction hypothesis,

we then have both

π1, π2, . . . , πn `DT ψ1 and

π1, π2, . . . , πn `DT ψ2.

So, applying ↑∧T to every branch, we reach a deduction of ψ1∧ψ2 = ϕ.

If v(ϕ) = F , then v(ψ1 ∧ ψ2) = F , so v(ψ1) = F or v(ψ2) = F . So, by

the hypothesis, we will have either

π1, π2, . . . , πn `DT ¬ψ1 or

π1, π2, . . . , πn `DT ¬ψ2.

Either way, by ↑∧F (for, since T¬ψ1 or T¬ψ2 was obtained synthet-

ically, Fψ1 or Fψ2 must occur before) followed by ↑¬T , we reach a

deduction of ¬(ψ1 ∧ ψ2) = ¬ϕ.

3. ϕ = ψ1 ∨ ψ2.

Note that ϕ contains all the variables in ψ1 and ψ2. If v(ϕ) = T ,

then v(ψ1 ∨ ψ2) = T , so v(ψ1) = T or v(ψ2) = T . By the induction

20

hypothesis, we then have either

π1, π2, . . . , πn `DT ψ1 or

π1, π2, . . . , πn `DT ψ2.

Either way, applying ↑∨T to every branch, we reach a deduction of

ψ1 ∨ψ2 = ϕ. If v(ϕ) = F , then v(ψ1 ∨ψ2) = F , so v(ψ1) = v(ψ2) = F .

So, by the hypothesis, we will have both

π1, π2, . . . , πn `DT ¬ψ1 and

π1, π2, . . . , πn `DT ¬ψ2.

So, by ↑∨F (again, for Fψ1 and Fψ2 must occur before T¬ψ1 and

T¬ψ2) followed by ↑¬T , we reach a deduction of ¬(ψ1 ∨ ψ2) = ¬ϕ.

Theorem 3.4 (Proof completeness of DT). If � ϕ, then there exists a purely

synthetic proof of ϕ in DT.

Proof. Assume � ϕ and that p1, p2, . . . , pn are the variables in ϕ. We begin

the proof with Fϕ, as by definition, and apply PB (a synthetic rule) suc-

cessively to every available branch, each time introducing occurrences of one

of the variables in ϕ, asserted and rejected. This procedure will generate

branches corresponding to each possible truth-value assignment to the vari-

ables. A tautology is precisely a formula that is true under every truth-value

assignment to its atoms. So we first apply ↑¬T to assert the negation of all

rejected atoms, and now, by the previous lemma, we have that it is possible

to synthetize Tϕ in every branch.

Note that the proof for ϕ constructed according to the above procedure

makes no essential use of the initial premiss Fϕ, for the rule PB is indifferent

regarding its premisses. This means, in practice, that any tautology can be

21

correctly synthetically inferred at any point in a tableau (i.e. we can attach

this proof minus its first line to the end of any branch and the result will still

be a correct tableau). We will make use of this fact in the next proof.

Assume Γ = {ψ1, ψ2, . . . , ψn} for some n.

Lemma 3.5. If `DT ¬ψ1 ∨ ¬ψ2 ∨ . . . ∨ ¬ψn ∨ ϕ, then Γ `DT ϕ.

Proof. Assume `DT ¬ψ1 ∨ ¬ψ2 ∨ . . . ∨ ¬ψn ∨ ϕ. Now we begin to construct

a tableau for ΓT . By the hypothesis and the previous theorem, we can

synthetically extend this tableau deducing ¬ψ1∨¬ψ2∨. . .∨¬ψn∨ϕ. Through

sereval applications of ↓∨T and ↓¬T we reach a tableau with each branch

ending with, for 1 ≤ i ≤ n, either one of the ψi rejected or with ϕ asserted.

So, finally, we apply ExF to each branch with a Fψi (since all branches

contain also every Tψi at the origin) to infer Tϕ, obtaining a tableau for

Γ `DT ϕ.

Theorem 3.6 (Deduction completeness of DT). If Γ � ϕ, then Γ `DT ϕ.

Proof. Assume Γ � ϕ. So, � ¬ψ1 ∨ ¬ψ2 ∨ . . . ∨ ¬ψn ∨ ϕ. Then, by theorem

3.4, we have that `DT ¬ψ1 ∨¬ψ2 ∨ . . .∨¬ψn ∨ϕ. Finally, by lemma 3.5, we

have that Γ `DT ϕ.

Theorem 3.7 (Normal deduction completeness of DT). If Γ � ϕ, then there

exists a normal deduction of ϕ from Γ.

Proof. Assume Γ � ϕ. We begin the construction of a tableau for ΓT . First

we fully analyze the premisses, i.e. apply every analytic rule possible until we

have only atoms, asserted or rejected. To every branch with some formula

both asserted and rejected we adjoin Tϕ by ExF. The remaining branches

have signed formulas corresponding to some interpretation that verifies Γ.

By the hypothesis, every such interpretation also verifies ϕ. So, either it

is possible to synthesize ϕ already in these branches (or some of them),

or first we will have to apply PB as many times as needed to introduce

22

every variable that occurs in ϕ missing from the branch. It is clear that the

branches thus generated will remain open (for we only introduced missing

variables). Therefore, they each correspond to an interpretation that verifies

Γ and so, by hypothesis, that verifies also ϕ. Since now they also have every

atom occurring in ϕ, by ↑¬T and lemma 3.3, we will eventually be able to

synthesize Tϕ in every such branch.

The deductions constructed according to the procedure described in the

above proof actually satisfy an even stronger condition for normality than

the one defined: no N-rule is applied before an analytic G-rule or after a

synthetic G-rule.

3.5 Remarks on PB and ExF

As we said before, we are considering, somewhat arbitrarily, ExF to be an

analytic rule and PB a synthetic rule. We will now comment on this choice

and discuss some alternative formulations of these rules.

The G-rules, by relating molecular formulas with their immediate subfor-

mulas, have a clear analytic or synthetic character. The DC counterparts of

ExF and PB (NC and EM, respectively) also have a clear analytic or syn-

thetic character, but this time regarding the constitution of data instead of

formulas. But what about ExF and PB? Even if we consider PB synthetic,

because it creates a new branch, or even because it allows the introduction

of ‘new’ material to a branch, this hardly says anything about ExF being

analytic. There are, though, ways to rectify this.

First, let us say why we chose that particular formulation for these rules.

ExF and PB are the only structural rules, in the sense that they only concern

the structural resources of the calculus (i.e. the tableau form and the signs).

This means also that some aspects of the calculus, like the definitions of

deduction, proof and refutation, depend on the particular way we formulate

23

these rules. For example, because every rule (including PB) requires some-

thing as premiss, the definition of proof requires some starting point, such

as the rejection of the formula to be proved. This might seem artificial, but

we believe it is very appropriate for classical logic and has some interesting

consequences. In particular, it allows for, as already mentioned, two different

forms of normal proof (and similarly for refutations): one analytic and one

synthetic. (Actually, there are also analytico-synthetic normal proofs and

refutations, that can sometimes be shorter than the other two types.) This

initial premiss is somewhat irrelevant in the synthetic proof, but it is neces-

sary for the analytic proof. In this way, if we consider some of the partial

systems (i.e. DT↓ or DT↑), we still have proofs and refutations both defined

and distinguished from one another. Proofs of either form, in this way, ac-

quire the aspect of the Consequentia Mirabilis, or Clavius Law, which states

that if something is implied by its own negation, then it must be the case (in

symbols: (¬A → A) → A). Refutations, in turn, have the form of reductio

ad absurdum ((A → ¬A) → ¬A). Finally, this formulation makes all rules

relate (signed) formulas in premiss and conclusion, making unnecessary extra

symbols, like ⊥ and >, while also keeping ExF and PB directly dual to each

other, in keeping with the general symmetry of the system.

But we could, in fact, use these extra symbols. In particular, it is quite

usual to use⊥ (sometimes called the ‘absurd’ or the ‘canonical contradiction’)

in formulations of natural deduction (as in Prawitz 1965). Instead of a single

rule ExF (or more properly ExF∗ from table 15 below, as we consider here for

simplicity the unsigned calculus), there are then two rules, one for introducing

⊥ (from some formula both affirmed and denied) and one for ‘eliminating’ it

(allowing to infer any formula). If negation then is defined (as is also usual)

by implication and ⊥ (i.e. ¬ϕ =df ϕ → ⊥), then the first of these rules is

actually an instance of modus ponens and is clearly analytic. The second

rule, that properly states the ex falso quodlibet principle, is then synthetic.

So, with ⊥ (and >) in the language, we could have these rules (call them NC⊥

and ExF⊥) instead of ExF∗ and redefine refutation of Γ as a development

of ⊥ from ΓT (i.e. a ‘closed’ tableau). Maintaining the duality, EM⊥ will

24

have > as premiss, and now a proof of ϕ is defined, more generically, as a

development of ϕ from >. Also, dual to ExF⊥ there would be the rule that

allows to infer > from any formula.

This, however, we think, introduces many redundancies and does not cor-

respond well to the idea of ground. For, if ⊥ and > are introduced directly

to the object language, their rules would have to count (in our approach)

as G-rules, which hardly makes sense. If we use signs, there would also be

redundant signed formulas F⊥, F>, requiring rules of their own. Introduc-

ing these resources as special, ‘empty’, signed formulas make things neater,

allowing their rules to be structural. But it is still not quite clear what ex-

actly these objects are, from a conceptual point of view, for they have to be

artificially inserted. (As we will see in the next section, generalizing signed

formulas as sequents makes these objects appear somewhat more naturally.)

There is still another approach, more in line with the analogy between

DC and DT. We could want (synthetic) proofs to start from the empty set of

premisses (or from a set of extra-logical axioms in some formalized theory)

instead of the rejection of the conclusion or some artificial object. So PB,

which, as can be seen by theorems 3.4 and 3.7, is an initial rule for the syn-

thetic part of developments, would have to be formulated as a zero-premiss

rule, allowing it to initiate a development. Note that a tableau can also be

treated as finite set of finite sets of formulas, just as a datum, the branches

of a tableau corresponding to the components of a datum. A (purely log-

ical) proof, then, begins from the tableau with a single empty branch, i.e.

from {{ }}, just as in DC. Dually, there is then a rule analogous do DC’s

NC, allowing the elimination of a branch in which a formula and its inverse

both occur. A refutation of Γ becomes then the empty tableau (i.e. { }),
constructed from ΓT .

In a deduction of (not valid) ϕ from unsatisfiable Γ, it would be necessary

then to apply EM first of all, branching with Tϕ and Fϕ, and then eliminate

this second branch only. But this deduction would not be normal, because

it begins with the use of a synthetic rule. We could then, to rectify this,

25

introduce also a synthetic rule analogous to DC’s Exp, allowing the intro-

duction of an arbitrary branch. Since now developments can begin with a

branching, i.e. from an empty point (because of the reformulated PB), this

rule would introduce an empty point above the topmost point in the tableau

and a new branch to the right, below this point, the whole tableau before

the application of the rule becoming the left branch. (Notice that an empty

tableau has no points or branches at all. Applying the rule then leaves us

with a tableau with one branch, not two.) In this way, we can synthetically

introduce the conclusion after analytically destroying the tableau developed

from unsatisfiable Γ.

3.6 Signed formulas, implication and intuitionistic

logic

The signs T and F in DT actually serve more than one purpose. First,

they provide a structural resource for dealing with ¬, as the tableaux tree

structure provides a resource for dealing with ∧ and ∨. In this way we have

a structural resource corresponding to each primitive connective. Also, it

allows all primitive rules to be pure, in the sense of always involving just

one occurrence-of-connective. The calculus then is completely generalizable

to arbitrary sets of primitive truth-functional connectives, including cases

where negation is absent.

The signed formulas also serve to make explicit the relation of the system

with the semantical theory. The rules directly correspond to the truth and

falsity (or assertion and rejection) conditions for each connective or, in the

case of the N-rules, to general logical principles characterizing the semantics.

Constructing a development can be seen as a search through the (partial)

models that correspond to the valuations given at the tableau’s origin. We

have exploited this fact, for example, in the completeness proofs above.

Related to this last point, Rumfitt (2000) uses signed formulas in order

26

to argue against a common line of thought in the literature. E.g. Garson

(2008) (but also, to some extent, Prawitz, Dummett and Tennant; references

to those autors can be found in the two papers mentioned) propounds the

idea that intuitionistic rather than classical logic has better claim to being

truly logical, based on the fact that the rules of natural deduction systems

can be shown to express intuitionistic truth-conditions. On the other hand,

Rumfitt argues that that line of thought depends on failing to treat assertion

and rejection on a par, proposing the use of signed formulas. Intuitionistic

logic would then be characterized, in particular, by concentrating exclusively

on assertions.

We do not intend to join in this particular discussion here. However, we

would only like to point out that the idea that natural deduction favours

intuitionistic logic should come as no surprise. For, it is clear, at least in

Gentzen’s and Prawitz’ formulations, that the classical natural deduction

calculus comes from the intuitionistic one by the addition of a single rule,

that corresponds indirectly to the excluded middle. So it is no wonder the

remaining rules, in particular the ones for the connectives, characterize intu-

itionistic meanings. Von Plato (2014) even suggests that one of the possible

sources of Gentzen’s natural deduction was Heyting’s (1931) characterization

of the connectives in terms of proof, which is closely related to intuitionistic

logic.

In contrast, DT (as DC) is eminently classical, and not only because of the

use of signed formulas. First of all, it has no structural resource for dealing

with implication primitively, and that is the main thing we will consider

here. Also, DT has more than one rule not valid for intuitionistic logic, in

particular, obviously, PB, which is an essential structural rule.

Let us first briefly consider a deductive tableaux system for plain formu-

las, without signs, which we will call DT∗. The rules for this system are

represented on tables 13, 14 and 15.

A development (in DT∗) of finite set of formulas ∆ from finite set of

27

↓∧ ϕ ∧ ψ
ϕ, ψ

↓∨ ϕ ∨ ψ
ϕ | ψ

↓∧¬ ¬(ϕ ∧ ψ)

¬ϕ | ¬ψ
↓∨¬ ¬(ϕ ∨ ψ)

¬ϕ,¬ψ
↓¬¬ ¬¬ϕ

ϕ

Table 13: Unsigned analytic G-rules

↑∧ ϕ, ψ

ϕ ∧ ψ
↑∨ ϕ | ψ

ϕ ∨ ψ

↑∧¬ ¬ϕ | ¬ψ
¬(ϕ ∧ ψ)

↑∨¬ ¬ϕ,¬ψ
¬(ϕ ∨ ψ)

↑¬¬ ϕ

¬¬ϕ

Table 14: Unsigned synthetic G-rules

ExF∗
ϕ,¬ϕ
ψ

PB∗
ψ

ϕ | ¬ϕ

Table 15: Unsigned N-rules

formulas Γ is defined as any tableau beginning with formulas in Γ and with

at least one ϕ ∈ ∆ occurring in each branch. A deduction of formula ϕ from

Γ is now defined as any development of {ϕ} from Γ (i.e. a tableau with ϕ

occurring in every branch). A proof of ϕ is then a development of {ϕ} from

{¬ϕ}, and a refutation of Γ, a development of Γ¬, a set consisting of formulas

in Γ negated, from Γ.

We can translate any deduction in DT into a valid deduction in DT∗: we

just erase all the T signs, substitute every Fϕ with ¬ϕ and erase formulas

obtained with ↑¬T and ↓¬T , since these in the unsigned system will be equal

to their premisses and thus redundant. It is clear then that DT∗ is also

complete.

In order to accommodate → in DT∗ primitively we could only introduce

the familiar resource from natural deduction of taking arbitrary assump-

tions that can be discharged by conditionalization. A new synthetic rule

then, called PM (for principle of monotonicity, in keeping with the idea of

28

structural rules corresponding to general logical principles characterizing the

semantics), would allow the introduction of any formula inside an ‘assump-

tion context’. This can be, for example, a box, as in, e.g. Jáskowski’s original

natural deduction system (cf. Prawitz 1965, pp. 98-101). The first formula

inside the box is the assumption (say ϕ) and any formula effectively devel-

oped inside below it (say ψ) can then be conditionalized to the assumption,

discharging it (i.e., ϕ → ψ can be added outside the box). A whole con-

ditional box, then, no matter how many branchings occur inside, occupies a

single point in the outer tableau branch. The conditionalization rule (i.e. the

introduction of →, call it ↑→) is obviously synthetic as well.

The analytic rule corresponding to→ could then simply be modus ponens

(call it MP). But we could also consider analysing implications into their

corresponding structural resource (i.e. a conditional box), as is done for ∧
and ∨. A rule ↓→ would then introduce a box containing ϕ and ψ, in that

order, from single premiss ϕ → ψ. But then we would need as well another

analytic structural rule corresponding to modus ponens, i.e. if there is a box

containing a development of ψ from assumption ϕ and ϕ also occurs above

outside the box, then ψ can be added below outside the box. This resembles

the cut rule, and so we call it Cut. Clearly, MP is then a derived rule.

Call the calculus formed by DT∗ plus the above rules for→ (i.e. PM, ↑→
and either MP or ↓→ and Cut) DT→. We can question now what restric-

tions or modifications are necessary in this calculus in order to characterize

intuitionistic logic. First of all, rules PB∗, ↓¬¬ and ↓∧¬ should be dropped.

The remaining rules are all sound, but insufficient. The main problem is the

introduction of negation. Introducing ⊥ to the language and its correspond-

ing rules, as well as defining negation in terms of→ and ⊥ (so dropping ¬ as

primitive connective), as we considered above, alleviates this problem. Alter-

natively, if we wish to keep ¬ and avoid ⊥, we could define a rule ↑¬ in the

following way: if ¬ϕ is developed in a conditional box from ϕ, then ¬ϕ can

be added outside the box. (But note that anyhow to ¬ and → correspond

now the same structural resource.) In either case, all negative rules could

29

be dropped. Also, proofs now have to be defined as developments from the

empty set Γ of initial premisses, i.e. they will always begin with applications

of PM.

Conjecture 3.8. The following sets of rules are adequate for an intuition-

istic deductive tableaux calculus:

• ↓∧, ↓∨, ↓→, ↑∧, ↑∨, ↑→, PM, Cut and ExF⊥. (For ¬ϕ =df ϕ→ ⊥.)

• ↓∧, ↓∨, ↓→, ↑∧, ↑∨, ↑→, ↑¬, PM, Cut and ExF∗. (For ¬ primitive.)

In both, ↓→ and Cut might be replaced by MP. Also, adding PB∗ to either

gives us classical logic.

But there is also another approach to dealing with → related to signed

formulas and so closer to DT than to DT∗. We can see the signed formulas as

special cases of sequents, i.e. sequents in which at most one formula occurs.

So Tϕ can be seen as ` ϕ and Fϕ as ϕ ` . Allowing then more than one

formula to occur and, in particular, any number of formulas to occur on the

antecedent, gives us another way of dealing with →. I.e. rules for analysing

and synthesizing →, could now be, respectively, something like

Γ ` ϕ→ ψ

Γ, ϕ ` ψ
and

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

.

I.e. we can treat assertion and rejection as limiting cases of implication. We

would have, in this way, an analytico-synthetic sequent calculus in tableaux

form. There are, however, many subtleties and possibilities in the formulation

of such a calculus, and we only intended here to remark how with the use

of signed formulas we are only one step away from committing to sequents

and, so, to a possible generalization of the calculus to include→ as primitive.

Note that, again, negation becomes a special case of implication, but now

even without the introduction of ⊥ and the definition of negation, for ¬ and

→ will also share the same structural resource.

30

Note that in the first approach we are introducing a resource for impli-

cation in the outer structure of the calculus, while on the second approach,

we complexify the internal structure of the formal object (i.e. go from for-

mulas to signed formulas and then to sequents). But we could use more

than one of these resources at the same time, in particular, we could use e.g.

signed formulas and a structural resource of introducing assumptions and

conditionalization.

For, notice, and with this we conclude these remarks, despite what was

said above, it is possible to maintain the use of signed formulas in a formal-

ization of an intuitionistic calculus. Fitting (1969) does precisely that in an

intuitionistic analytic tableaux calculus. But now, instead of Tϕ and Fϕ

being read as ϕ is true and ϕ is false, respectively, they should be read as ϕ

is (already) proved and ϕ is (not yet) proved. Or, alternatively, we know that

ϕ is the case and we don’t know that ϕ is the case. On this reading, from the

DT calculus, only the rules ↓¬F and ↑¬T (i.e. the only rules that go from a

rejected premiss to an asserted conclusion) become incorrect for intuitionis-

tic logic and should be dropped. Rule ↓∧F and even PB can be maintained.

Dropping those two rules for negation makes it impossible to develop the

excluded middle or to remove double negations. Obviously, however, other

modifications are still necessary in order to get intuitionistic logic.

Remark. We will notice here a curious formulation of a classical propositional

calculus that is, in some sense, equivalent to DT, but requires no extra sym-

bols T and F and actually has less rules. For we will need only the affirmative

unsigned rules for ∧ and ∨ (i.e., the rules ↑∧, ↓∧, ↑∨ and ↓∨ from the above

tables). Then, for negation we have the following peculiar rule: if formula

ϕ occurs in a branch, we can adjoin ϕflip to the same branch, where ϕflip is

ϕ with either one negation added or one negation removed (if it had any)

and flipped upside down (i.e. either vertically mirrored or with each symbol

rotated 180◦), so that conjunctions become disjunctions and vice versa (we

then also use – (a n-dash) for negation for symmetry). By avoiding using

vertically symmetrical variables, we will always be able to tell if a formula

is upright or not. Upright formulas are asserted while upside down formulas

31

are rejected, but then treated as asserted formulas with the flipped (i.e. du-

alized) connectives. In this way we dispense with the negative or rejective

rules. PB and ExF can be formulated in terms of formulas and their flipped

versions, but it is probably easier to just use PB∗ and ExF∗ instead. This

is obviously more the sort of thing a logician does to amuse himself than

anything of theoretical importance. But often with amusement comes also a

little insight, so that we found it appropriate to include this remark.

32

4 Deductive tableaux for classical predicate

logic

We will now extend the deductive tableaux methods to classical predicate

logic. Setting aside the analogies with the data calculi and ground theory,

we will seek only to generalize the familiar analytic tableaux method to the

analytico-synthetic context of deductions. I.e. we will provide synthetic rules

corresponding to the already familiar analytic rules, as well as characterize

the necessary new restrictions on developments. In this way, we will have

an interesting new method of deduction for classical predicate logic based on

tableaux, even though not completely in line with our earlier approaches.

4.1 The calculus QDT

Formulas now are defined in the usual way, concerning a language con-

taining, besides the propositional connectives above, the quantifiers ∀ and ∃.
Also, free and bound variables are going to be typographically distinguished,

i.e. we will have a denumerable set of individual variables (x, y, z etc.), oc-

curring only bounded, and a denumerable set of individual parameters (a, b, c

etc.), occurring only free. But we will have no functional variables or identity

sign.

The rules of QDT include counterparts of all rules of DT, only now ϕ, ψ

etc. are formulas in the new sense. We then expect to have, as for the other

constants, four rules for each quantifier, i.e., the analytic rules ↓∀T , ↓∀F , ↓∃T

and ↓∃F , and the synthetic rules ↑∀T , ↑∀F , ↑∃T and ↑∃F . We will divide these

rules into four categories: the rules of Universal Generalization (UG), rules

of Existential Generalization (EG), rules of Universal Instantiation (UI) and

rules of Existential Instantiation (EI).

We begin by writing down the very straightforward formulation of all

these rules (table 16) and then we will describe the restrictions and other

33

necessary adjustments to guarantee the correctness in their applications. In-

stantiation rules are analytic and generalization rules are synthetic.

UI: ↓∀T T∀xϕ
Tϕ(x

a
)

↓∃F F∃xϕ
Fϕ(x

a
)

EI: ↓∀F F∀xϕ
Fϕ(x

a
)

↓∃T T∃xϕ
Tϕ(x

a
)

UG: ↑∀T Tϕ

T∀xϕ(a
x
)

↑∃F Fϕ

F∃xϕ(a
x
)

EG: ↑∀F Fϕ(. . . a . . . a . . .)

F∀xϕ(. . . x . . . a . . .)
↑∃T Tϕ(. . . a . . . a . . .)

T∃xϕ(. . . x . . . a . . .)

Table 16: QDT rules for the quantifiers

The expression ϕ(x
a
) means the formula obtained from ϕ by replacement

of every free occurrence of variable x in ϕ by parameter a. Likewise, the

expression ϕ(a
x
) means the formula obtained from ϕ by replacement of every

occurrence of some parameter a by x. In the EG rules, ϕ(. . . a . . . a . . .)

means a formula ϕ with some (zero or more) occurrences of parameter a, not

all of which must be replaced by variable x in the conclusion (indicated by

ϕ(. . . x . . . a . . .)).

Of all these rules, only the UI and EG rules are really sound as stated. In

these rules, a can be any parameter. The remaining rules (i.e. the UG and

EI rules) need some restrictions and other considerations to work, which we

will describe now.

First of all, we will have to introduce the following procedure in the

construction of developments: all the initial signed formulas in a development

will have to be marked somehow, in order to distinguish them as assumptions

from other formulas occurring in the development. We will do this by putting

a p sign before them. Then, the ‘conclusions’ of all branching rules (so ↓∨T ,

↓∧F and PB) and the ‘conclusion’ of the EI rules have to be marked as

34

assumptions as well.

Next, after the application of any of the rules EI or UG the parameter

a has to be flagged, i.e. it has to be written somewhere outside the tableau

(usually we will write the parameter next to the name of the rule off to the

right of the line infered by it). The first restriction common to both EI and

UG rules then is: no parameter can be flagged twice (i.e. none of these

rules is permissible if a has previously been flagged). The EI rules have the

additional restriction that the parameter introduced has to be new to the

development. Also, no flagged parameter can occur in the conclusion of a

development.

Finally, the UG rules can only be applied provided a does not occur in

any assumption (i.e. signed formulas marked with a p sign) upon which the

signed formulas Tϕ or Fϕ depends. This means these rules can be applied

either locally, on a single branch, provided a does not occur in any marked

formula on that branch, or globally, i.e. to several branches at once, provided

the signed formula to be generalized occurs in all branches directly under

assumptions with no occurrence of a.

The definition of development for QDT, then, is: a development of a finite

set of signed formulas Ξ from a finite set of signed formulas Σ is defined as any

tableau for Σ with at least one ξ ∈ Ξ occurring in each branch and with no

parameter in Ξ flagged. The definitions of deduction, proof and refutation,

then, are all as before.

To make all these things clearer, we will provide now a couple of simple

examples of developments and comment on them.

1. ∀xPx ∨ ∀xQx `QDT ∀x(Px ∨Qx)

35

1.

2.

3.

4.

5.

pT∀xPx ∨ ∀xQx

pT∀xPx
TPa

TPa ∨Qa
T∀x(Px ∨Qx)

pT∀xQx
TQb

TPb ∨Qb
T∀x(Px ∨Qx)

↓∨T

↓∀T

↑∨T

↑∀T a; ↑∀T b

2. ∀x(Px→ Qx),∀x(Qx→ Rx) `QDT ∀x(Px→ Rx)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

pT∀x(Px→ Qx)

pT∀x(Qx→ Rx)

TPa→ Qa

TQa→ Ra

pFPa

TPa→ Ra

T∀x(Px→ Rx)

pTQa

pFQa

TPa→ Ra

T∀x(Px→ Rx)

pTRa

TPa→ Ra

T∀x(Px→ Rx)

↓∀T

↓∀T

↓→T

↓→T

ExF; ↑→T

↑→T

↑∀T a

In the first of these examples we applied the rule ↑∀T locally, in each

branch separately, for the parameters introduced in each don’t occur in any

of the two marked formulas above TPa ∨ Qa or TPb ∨ Qb. But note we

could have instantiated both formulas in line 2 with the same parameter

a. Then in line 4 both branches would have TPa ∨ Qa, which would be a

development depending only on the signed formula in line 1. (I.e. when a

formula is developed, local assumptions are ‘discharged’.) In this case, the

rule ↑∀T could also be applied globally, to both branches at once.

Now, in the second example, the same rule ↑∀T can only be applied glob-

36

ally, to every branch at once, after developing TPa → Ra. For, above each

occurrence of TPa → Ra there are assumptions in which the parameter a

occurs, forbidding the local application of the rule. But the only assumptions

common to all these occurrences are the ones in lines 1 and 2, in which a

does not occur, so the global application of the rule is allowed.

To make this procedure of ‘discharging assumptions’ involved in the re-

striction of the UG rules more clear, consider the following development

scheme:

pσ1

pσ2
...

pσ3

...

ξ1

ξ2

ξ

pσ4

pσ5
...

ξ2

ξ3

ξ4

ξ

pσ6
...

ξ4

ξ5

ξ

Here, ξ depends only on assumptions σ1 and σ2 and we say, in fact,

that ξ was developed from assumptions σ1 and σ2, because it occurs in all

branches below these assumptions and no other assumption occurs above

common to all these occurrences of ξ. The other premisses occurring above

each occurrence of ξ are then considered discharged. Now ξ1 depends also on

the local (i.e. particular to its branch) assumption σ3, and is a development

from σ1, σ2 and σ3, but not from σ1 and σ2 alone. ξ3 then depends also on

assumptions σ4 and σ5, and ξ5 on assumptions σ4 and σ6. Now, ξ4 occurs in

all branches below σ4, discharging then assumptions σ5 and σ6 (i.e. ξ4 is a

development from σ1, σ2 and σ4). Finally, even though ξ2 occurs in more than

37

one branch and the only assumptions common to both these branches are σ1

and σ2, it is not a development from these assumptions alone, for it does not

occur in all branches below these assumptions. Rather, each occurrence of ξ2

depends on a different set of undischarged assumptions. Also, an assumption

cannot be discharged unless all assumptions occurring below are discharged.

In this case, then, σ4 could not be discharged before σ6.

There is one additional consideration regarding the discharging of as-

sumptions introduced by EI rules. This assumption is discharged for any

signed formula developed below it in which the parameter flagged in the

application of the rule does not occur.

4.2 Examples of developments

∀xPx ∧ ∀xQx `QDT ∀x(Px ∧Qx)

1.

2.

3.

4.

5.

6.

7.

pT∀xPx ∧ ∀xQx
T∀xPx
T∀xQx
TPa

TQa

TPa ∧Qa
T∀x(Px ∧Qx)

↓∧T

↓∧T

↓∀T

↓∀T

↑∧T

↑∀T

`QDT ∀y(∀xPx→ Py)

1.

2.

3.

4.

5.

pF∀y(∀xPx→ Py)

pT∀xPx
TPa

T∀xPx→ Pa

T∀y(∀xPx→ Py)

pF∀xPx

T∀xPx→ Pb

T∀y(∀xPx→ Py)

PB

↓∀T

↑→T

↑∀T a; ↑∀T b

38

4.3 Soundness

In the next section, we will produce some arguments which guarantee

the completeness of QDT. On the other hand, the soundness of this calculus

is a main open question. In particular, we would have to show that the

restrictions imposed on the EI and UG rules are the correct ones, given that

the remaining rules are in fact sound. In this section we will then try, first,

to motivate the given formulation of these rules. Afterwards, we will provide

a proof scheme of soundness for QDT, which depends on the still unproved

conjecture 4.1.

First, let us show why it is not possible to deduce ∀xϕ(x) from ∃xϕ(x).

A tableau beginning with T∃xϕ(x) would then be as follows:

1.

2.

pT∃xϕ(x)

pTϕ(a) ↓∃T a

Now, it is not possible to apply ↑∀T for two different reasons. First,

parameter a occurs in an assumption. Second, parameter a is also flagged.

To see why we need both restrictions on UG rules, let us see another example

of an invalid deduction to which an attempt to construct a development fails.

If we tried to deduce ∃y∀xPxy from ∀x∃yPxy we would then have:

1.

2.

3.

pT∀x∃yPxy
T∃yPay
pTPab

↓∀T

↓∃T b

Now, even though parameter a is not flagged, it still occurs in an assump-

tion, so, again, the application of ↑∀T is blocked. But we have to notice that

any assumption introduced by an EI rule is ‘discharged’ when any formula

without the parameter introduced is infered from this assumption. So, if to

line 3 we applied ↑∃T , making b disappear, this infered formula would be a

development from 1 only, in which a does not occur, allowing the application

of ↑∀T . (i.e. we can ‘go back’ to the premiss).

39

Conjecture 4.1. Any interpretation that verifies all the initial assumptions

of a development plus every assumption introduced by EI rules will verify also

at least one branch.

Notice that all the propositional rules preserve truth in a tableau (lemma

3.1). This is also the case for UI and EG rules, as they are sound. The

EI rules, in turn, introduce assumptions that are considered true under the

conjecture’s hypothesis. Notice it is possible for an interpretation to verify

simultaneously all such assumptions because of the requirement that the pa-

rameter introduced by the rule should be new to the development. The only

case left to consider in a proof of this conjecture, then, is the application

of UG rules. We could argue then in the following way: suppose an inter-

pretation ι that verifies all the initial and EI assumptions. Then ι verifies

also ϕ(a) (i.e. the premiss of ↑∀T ; another argument analogous to this one

works for ↑∃F). By the conditions imposed on the rule, this parameter a is

not flagged nor does it occur, in particular, in any initial assumption. This

means in fact that a is really arbitrary, i.e. it could have been any other

parameter. So ι actually verifies ϕ(a) for any a, which means, in turn, that ι

verifies also ∀xϕ(x). However, since we still lack a more rigorous treatment

of this argument, we prefer to leave it here as a motivated conjecture, on

which the following theorem depends.

Theorem 4.2. If Γ `QDT ϕ, then Γ � ϕ (depending on the truth of conjecture

4.1).

Proof. Assume Γ `QDT ϕ. This means there exists a development beginning

with ΓT and with Tϕ in every branch. Since it is a development, no flagged

parameter occurs in ϕ or in Γ. So, any assumptions introduced by EI rules

have been discharged for Tϕ. Any interpretation ι for the language without

any of the flagged parameters that verifies Γ can be extended to an interpre-

tation ι′ that verifies also all the assumptions introduced by EI rules. Now, if

conjecture 4.1 holds, this interpretation will verify at least one branch. Since

ι and ι′ match in everything unrelated to the flagged parameters, we have

that Γ � ϕ.

40

4.4 Completeness

We will prove now that QDT is complete for proofs by showing we can

prove the axioms and simulate the rules of a known axiomatic system for

classical predicate logic (see e.g. Hilbert & Ackermann 1928). We will call

this system HQ and assume its completeness. It has as its axioms every

tautology plus every instance of the two schemes ∀xϕ(x)→ ϕ(a) and ϕ(a)→
∃xϕ(x), where a is any parameter free for x in ϕ. The rules of HQ are modus

ponens plus the two rules

ψ → ϕ(a)

ψ → ∀xϕ(x)
and

ϕ(a)→ ψ

∃xϕ(x)→ ψ

where a does not occur in ψ.

We know already that the DT rules (included in QDT) can prove any

tautology (theorem 3.4 above). We have to show now we can prove any

instance of the axiom schemes (lemma 4.3 below). Next, we will show we

can simulate modus ponens (lemma 4.4) as well as the rules above (lemma

4.5).

Lemma 4.3. For any formula ϕ, we have (where a is any parameter free for

x in ϕ):

1. `QDT ∀xϕ(x)→ ϕ(a)

2. `QDT ϕ(a)→ ∃xϕ(x)

Proof. We have the following two proof schemes:

1. `QDT ∀xϕ(x)→ ϕ(a)

41

1.

2.

3.

4.

5.

6.

pF∀xϕ(x)→ ϕ(a)

pT∀xϕ(x)

pTϕ(a)

T∀xϕ(x)→ ϕ(a)

pFϕ(a)

F∀xϕ(x)

T∀xϕ(x)→ ϕ(a)

pF∀xϕ(x)

T∀xϕ(x)→ ϕ(a)

PB

PB

↑∀F

↑→T

↑→T

2. `QDT ϕ(a)→ ∃xϕ(x)

1.

2.

3.

4.

5.

6.

pFϕ(t)→ ∃xϕ(x)

pT∃xϕ(x)

Tϕ(a)→ ∃xϕ(x)

pF∃xϕ(x)

pTϕ(a)

T∃ϕ(x)

Tϕ(a)→ ∃xϕ(x)

pFϕ(a)

Tϕ(a)→ ∃xϕ(x)

PB

PB

↑∃T

↑→T

↑→T

Lemma 4.4. If `QDT ϕ and `QDT ϕ→ ψ, then `QDT ψ.

Proof. We begin a tableau with Fψ. We apply PB to branch with Tϕ on

the left and Fϕ on the right. In the right branch we can then reproduce

the proof `QDT ϕ, developing Tϕ, and then introduce Tψ by ExF. In

the left branch, since we have now Tϕ and Fψ, we use ↑→F to develop

Fϕ → ψ. We can now reproduce the proof `QDT ϕ → ψ in this branch,

developing Tϕ → ψ. So, by ExF, we can adjoin Tψ to this branch as well,

concluding the proof. Below we show also a tableau scheme of this argument.

42

1.

2.

3.

4.

5.

6.

7.

8.

pFψ

pTϕ

Fϕ→ ψ
...

Tϕ→ ψ

Tψ

pFϕ
...

Tϕ

Tψ

PB

By hypothesis

↑→F

By hypothesis

ExF

Lemma 4.5. For formulas ϕ and ψ and a not in ψ:

1. If `QDT ψ → ϕ(a), then `QDT ψ → ∀xϕ(x).

2. If `QDT ϕ(a)→ ψ, then `QDT ∃xϕ(x)→ ψ.

Proof. 1. Assume `QDT ψ → ϕ(a). Now, from Fψ → ∀xϕ(x), we have

the following scheme of development of Tϕ(a):

1.

2.

3.

4.

5.

6.

7.

8.

9.

pFψ → ∀xϕ(x)

pTϕ(a) pFϕ(a)

pTψ → ϕ(a)

pTψ

Fψ → ϕ(a)

Tϕ(a)

pFψ

Tψ → ∀xϕ(x)

Tϕ(a)

pFψ → ϕ(a)

...

Tψ → ϕ(a)

Tϕ(a)

PB

PB

PB

↑→F ; ↑→T

ExF

From assumption

ExF

43

Now we can apply ↑∀T to adjoin T∀xϕ(x) to every branch, since Tϕ(a)

is a development from the formula in line 1, where a does not occur.

Then, by ↑→T we develop Tψ → ∀xϕ(x), concluding the proof.

2. Assume `QDT ϕ(a) → ψ. Now, from F∃xϕ(x) → ψ, we have the

following scheme of development of Fϕ(a):

1.

2.

3.

4.

5.

6.

7.

8.

9.

pF∃xϕ(x)→ ψ

pTϕ(a)

pTϕ(a)→ ψ

pTψ

T∃xϕ(x)→ ψ

Fϕ(a)

pFψ

Fϕ(a)→ ψ

Fϕ(a)

pFϕ(a)→ ψ

...

Tϕ(a)→ ψ

Fϕ(a)

pFϕ(a) PB

PB

PB

↑→T ; ↑→F

ExF

From assumption

ExF

Now we can apply ↑∃F to adjoin F∃xϕ(x) to every branch, again, since

a does not occur in line 1. Then, by ↑→T we develop T∃xϕ(x) → ψ,

concluding the proof.

Theorem 4.6. If � ϕ, then `QDT ϕ.

Proof. Assume the hypothesis. Then, since HQ is complete, `HQ ϕ. By

theorem 3.4 of previous section, and the lemmas 4.3, 4.4 and 4.5, we have

that QDT can simulate any proof of HQ, and so `QDT ϕ.

By the above proof we have actually that for any valid ϕ there exists a

proof in QDT that is synthetic except for applications of ExF.

Assume now Γ = {ψ1, ψ2, . . . , ψn} for some n.

44

Theorem 4.7. If Γ � ϕ, then Γ `QDT ϕ.

Proof. Assume the hypothesis. Then � ¬ψ1 ∨ ¬ψ2 ∨ . . . ∨ ¬ψn ∨ ϕ. By the

previous theorem we then have that `QDT ¬ψ1 ∨ ¬ψ2 ∨ . . . ∨ ¬ψn ∨ ϕ. Now,

by an argument exactly analogous to lemma 3.5 of previous section, we have

that Γ `QDT ϕ.

Alternatively, to prove the deduction completeness of QDT, instead of

assuming the completeness of HQ, we could have only assumed the refutation

completeness of QDT↓ (i.e. QDT with only analytic rules, which corresponds

to the familiar analytic tableaux). We begin then a tableau with ΓT and

apply PB, branching with Tϕ on the left and Fϕ on the right. In the right

branch we then do the usual analytical refutation of Fϕ, developing finally

by ExF Tϕ.

It is still an open question whether QDT is complete for normal deduc-

tions, or even at least some other weaker notion.

45

References

Batchelor, Roderick (2010). ‘Grounds and Consequences’. Grazer

Philosophische Studien, vol. 80, pp. 65-77.

(2019). Directional Deduction, unpublished manuscript.

Carnap, Rudolf (1943). Formalization of Logic. Cambridge, Mass.: Harvard

University Press.

Fitting, Melvin (1969). Intuitionistic Logic, Model Theory and Forcing. Am-

sterdam: North-Holland Pub. Co..

Gentzen, Gerhard (1969). The Collected Papers of Gerhard Gentzen. Ams-

terdam: North-Holland Pub. Co..

Heyting, Arend (1931). ‘Die intuitionistische Grundlegung der Mathematik’.

Erkenntnis 2 (1), pp. 106-115.

Hilbert, David & Ackermann, W. (1928). Grundzüge der Theoretischen

Logik. Springer Verlag.

Jeffrey, Richard (1981). Formal logic: Its scope and limits. New York:

McGraw Hill.

Kneale, William (1956). ‘The province of logic’, In: H. D. Lewis (ed.),

Contemporary British Philosophy, Third Series, London, Allen & Unwin,

pp. 235-61.

Kneale, W. C.; Kneale, M. (1962). The Development of Logic. Oxford

University Press.

von Plato, Jan (2014). ‘From Axiomatic Logic to Natural Deduction’. Studia

Logica 102 (6):1167-1184.

Prawitz, Dag (1965). Natural Deduction: A Proof-Theoretical Study. Dover

46

Publications.

Rumberg, Antje (2013). ‘Bolzano’s concept of grounding against the back-

ground of normal proofs’. Review of Symbolic Logic 6 (3):424-459.

Rumfitt, I. (2000). “‘Yes” and “no”’. Mind 109 (436), pp. 781-823.

Shoesmith, D. J.; Smiley, T. (1978). Multiple-Conclusion Logic. Cambridge

University Press.

Smiley, Timothy (1996). ‘Rejection’. Analysis 56 (1):1–9.

Smullyan, Raymond M. (1968). First-Order Logic. Dover (repr. 1995).

47

