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This thesis is composed of two parts. The first part is concerned to the study of
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and is described in Chap. 6.
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ABSTRACT

SANT’ANA, F. T. A study on quantum gases: bosons in optical lattices and
the one-dimensional interacting Bose gas. 2020. 151p. Thesis (Doctor in
Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2020.

Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model
and can exist in two different phases, Mott insulator or superfluid, depending on the
strength of the system parameters, such as the on-site interaction between particles and
the hopping parameter. Differently from classical phase transitions, the Mott-insulator-
superfluid transition can happen even at zero temperature, driven by quantum fluctuations,
thus characterizing a quantum phase transition. For the homogeneous system, we can
approximate the particle excitations as a mean-field over time, thus providing a local
Hamiltonian, which makes possible the evaluation of physical properties from a single
lattice site. From the Landau theory of second-order phase transitions, it is possible to
expand the thermodynamic potential in a power series in terms of the order parameter,
giving rise to the Mott-insulator-superfluid phase diagram. As the condensate density goes
from a finite value to a vanishing one when the system transits from superfluid to a Mott
insulator, it can be considered as the order parameter of the system. In the vicinity of
the phase boundary, it is possible to consider the hopping term as a perturbation, since
it contains the order parameter. Thence, one can apply perturbation theory in order to
calculate important physical quantities, such as the condensate density. However, due to
degeneracies that happen to exist between every two adjacent Mott lobes, nondegenerate
perturbation theory fails to give meaningful results for the condensate density: it predicts
a phase transition due to the vanishing of the order parameter in a point of the phase
diagram where no transition occurs. Motivated by such a misleading calculation, we
develop two different degenerate perturbative methods to solve the degeneracy-related
problems. Firstly, we develop a degenerate perturbative method based on Brillouin-Wigner
perturbation theory to tackle the zero-temperature case. Afterwards, we develop another
degenerate perturbative method based on a projection operator formalism to deal with
the finite-temperature regime. Both methods have the common feature of separating the
Hilbert subspace where the degeneracies are contained in from the complementary one.
Therefore, such a separation of the Hilbert subspaces fixes the degeneracy-related problems
and provides us a framework to obtain physically consistent results for the condensate
density near the phase boundary. Moreover, we study the one-dimensional repulsively
interacting Bose gas under harmonic confinement, with special attention to the asymptotic
behavior of the momentum distribution, which is an universal k−4 decay characterized by
the Tan’s contact. The latter constitutes a direct signature of the short-range correlations in
such an interacting system and provides valuable insights about the role of the interparticle



interactions. From the known solutions of the system composed of two particles, we are
able to acquire important knowledge about the manifestation of the interaction, e.g., the
cusp condition that implies the vanishing of the many-body wave function whenever two
particles meet. Then, we investigate the system constituted of N interacting particles in
the strongly interacting limit, also known as Tonks-Girardeau gas. In such a regime, the
strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas,
an effect known as fermionization. Because of the difficulty in analytically solving the
system for N particles at finite interaction, the Tonks-Girardeau regime provides, through
the fermionization of the bosons, a favorable scenario to probe the Tan’s contact. Therefore,
within such a regime, we are able to provide an analytical formula for the Tan’s contact in
terms of the single-particle orbitals of the harmonic oscillator. Furthermore, we analyze
the scaling properties of the Tan’s contact in terms of the number of particles N in the
high-temperature regime as well as in the strongly interacting regime. Finally, we compare
our analytical calculations of the Tan’s contact to quantum Monte Carlo simulations
and discuss some fundamental differences between the canonical and the grand-canonical
ensembles.

Keywords: Optical lattices. Bose-Hubbard model. Quantum phase transition. Interacting
Bose gas. Tonks-Girardeau gas.



RESUMO

SANT’ANA, F. T. Um estudo sobre gases quânticos: bósons em redes ópticas
e o gás interagente e unidimensional de Bose. 2020. 151p. Tese (Doutorado em
Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2020.

Átomos bosônicos confinados em redes ópticas são descritos pelo modelo de Bose-Hubbard
e podem existir em duas diferentes fases, isolante de Mott ou superfluido, dependendo da
força dos parâmetros do sistema, tais como a interação local entre partículas e o parâmetro
de salto. Diferentemente das transições de fase clássicas, a transição entre isolante de
Mott e superfluido pode ocorrer mesmo a temperatura zero, impulsionada por flutuações
quânticas, caracterizando uma transição de fase quântica. Para o sistema homogêneo,
podemos aproximar as excitações de partículas a um campo médio ao longo do tempo,
fornecendo um Hamiltoniano local, o que torna possível a avaliação de propriedades físicas
a partir de um único sítio da rede. A partir da teoria de Landau de transições de fase de
segunda ordem, é possível expandir o potencial termodinâmico em uma série de potências
em termos do parâmetro de order, dando origem ao diagrama de fase. Como a densidade
de condensado passa de um valor finito para um valor nulo quando o sistema transita de
superfluido para isolante de Mott, este pode ser considerado como sendo o parâmetro de
ordem do sistema. Nas proximidades da fronteira de fase, é possível considerar o termo
de salto como uma perturbação, uma vez que este contém o parâmetro de ordem. Daí,
pode-se aplicar teoria de perturbação para calcular quantidades físicas importantes, como
a densidade de condensado. No entanto, devido a degenerescências que existem entre
dois lóbulos de Mott adjacentes, teoria de perturbação não degenerada falha em fornecer
resultados significativos para a densidade de condensado: esta prevê uma transição de
fase devido ao desaparecimento do parâmetro de order em um ponto do diagrama de fase
onde nenhuma transição ocorre. Motivados por esse cálculo enganoso, desenvolvemos dois
métodos perturbativos degenerados diferentes para resolver os problemas relacionados às
degenerescências. Em primeiro lugar, desenvolvemos um método perturbativo degenerado
baseado em teoria de perturbação de Brillouin-Wigner para solucionar o sistema a temper-
atura zero. Posteriormente, desenvolvemos outro método perturbativo degenerado baseado
em um formalismo de operadores de projeção para lidar com o regime a temperatura finita.
Ambos os métodos têm a característica comum de separar o subespaço de Hilbert onde as
degenerescências estão contidas de seu complementar. Portanto, essa separação dos sube-
spaços de Hilbert corrige os problemas relacionados às degenerescências e nos fornece uma
estrutura para obter resultados fisicamente consistentes para a densidade de condensado
próximo à fronteira da fase. Além disso, estudamos o gás de Bose unidimensional com
interação repulsiva entre partículas sob confinamento harmônico, com especial atenção ao
comportamento assintótico da distribuição de momento, que é um decaimento universal



de k−4 caracterizado pelo contato de Tan. Este último constitui uma assinatura direta
das correlações de curto alcance em tal sistema interagente e fornece informações valiosas
sobre o papel das interações entre partículas. A partir das conhecidas soluções do sistema
composto de duas partículas, somos capazes de adquirir conhecimentos importantes sobre
a manifestação da interação, e.g., a condição de cúspide que implica no desaparecimento
da função de onda de muitos corpos sempre que duas partículas se encontram. Em seguida,
investigamos o sistema constituído de N partículas fortemente interagentes, também
conhecido como gás de Tonks-Girardeau. Nesse regime, a forte interação entre partículas
faz com que os bósons se comportem de maneira semelhante ao gás ideal de Fermi, um
efeito conhecido como fermionização. Devido à dificuldade em resolver analiticamente
o sistema com N partículas com interação finita, o regime de Tonks-Girardeau fornece,
através da fermionização dos bósons, um cenário favorável para o estudo do contato de
Tan. Portanto, dentro de tal regime, somos capazes de fornecer uma fórmula analítica para
o contato do Tan em termos dos orbitais de uma única partícula do oscilador harmônico.
Além disso, analisamos as propriedades de escalonamento do contato do Tan em termos do
número de partículas N nos regimes de altas temperaturas e fortes interações. Finalmente,
comparamos nossos cálculos analíticos do contato de Tan a simulações de Monte Carlo
quântico e discutimos algumas diferenças fundamentais entre os conjuntos canônico e
macrocanônico.

Palavras-chave: Redes ópticas. Modelo de Bose-Hubbard. Transição quântica de fase.
Gás de Bose interagente. Gás de Tonks-Girardeau.
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1 INTRODUCTION

Before the quantum revolution in the early days of the twentieth century, which
was motivated during the 19th century by the studies of Thomas Young in the famous
double-slit experiment,1 the black-body radiation problem stated by Gustav Kirchhoff,2–4

the Ludwig Boltzmann’s work on the statistics of possible energies of atoms and molecules
in a gas,5 and the works of Max Planck on the quantum hypothesis of energy,6–10 the
world was described by the fundamental laws of Isaac Newton on gravitation and classical
mechanics,11 the unified electromagnetism theory of James Clerk Maxwell,12 and the
classical thermodynamics developed in the 17th century. Due to the absence of a complete
quantum theory in those days, there was a limited access to some physical properties of
matter, such as the states of matter known at that time: liquid, solid and gaseous. However,
such a knowledge about the forms that matter can acquire was about to drastically change
as a result of the advent of quantum mechanics.

The concept of Bose-Einstein condensation (BEC) originated in 1925 when A.
Einstein, on the basis of the work of S. N. Bose,13 which described the quantum statistical
theory of light, wrote a paper about the quantum theory of the ideal monoatomic gas,14

predicting the occurrence of a phase transition at low enough temperatures. In 1938, F.
London argued that the phenomenon of Bose-Einstein condensation was intimately related
to the occurrence of superfluidity in 4He.15 Later on, he also suggested that BEC and
superconductivity phenomena were closely related.16

An important aspect towards the understanding of the Bose-Einstein condensation
is the thermal wavelength,17,18 that relates, by means of the de Broglie relation, the wave
character of a particle with mass m to its temperature T through the formula

λ =
√

2π~2

mkBT
. (1.1)

As the temperature of the particles decreases, its associated de Broglie wavelength increases.
As a result, the many wave packages related to different particles in the system begin to
overlap with one another, until a critical point is reached and all the atoms behave as a
single macroscopic wave, which is the characterization of a Bose-Einstein condensate. The
transition to the BEC phase occurs when the thermal wavelength of the particles in the
atomic gas becomes comparable to the interatomic spacing between them λ ∼ n−1/3,19

where n is the density of atoms. Consequently, the critical temperature in order to achieve
a BEC is of the order of

Tc ∼ n2/3 2π~2

mkB
. (1.2)

To create a BEC one must not just reach the critical temperature, but also achieve
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low densities, otherwise the atomic gas would simply condensate into a more conventional
liquid or solid.19 The density of a dilute gas that provides an adequate environment for
the emergence of a BEC must be of the order of a hundred-thousandth of the density of
normal air, which is around 1019 cm−3. Typically, the particle density at the center of a
BEC is about 1013 − 1015 cm−3.20 Thence, the temperature one must accomplish in order
to realize a BEC is around 10−5 K.

Obviously, it took great amounts of scientific work throughout the twentieth century
for the purpose of achieving such low temperatures. A landmark in the history of atomic
cooling techniques are the works performed during the 1970s and 1980s on laser cooling.
A seminal work on laser cooling techniques was performed by T. W. Hänsch and A. L.
Schawlow in 1975,21 where they were able to achieve temperatures around 0.24 K. Later
on, in 1978, D. J. Wineland et al.22 and A. Ashkin23 succeeded in obtaining temperatures
in the milikelvin, 10−3K, and microkelvin scales, 10−6 K, respectively. After that, many
works followed towards the advance of laser cooling techniques, e.g., S. Chu et al.24

reported the cooling of neutral sodium atoms in three dimensions via radiation pressure of
conterpropagating laser beams, attaining temperatures around 240µK, while A. Aspect
et al.25 described a scheme that allowed the cooling of 4He to a temperature of 2µK. All
these developments in laser cooling culminated in the 1997 Nobel prize awarded to S.
Chu,26 C. N. Cohen-Tannoudji,27 and W. D. Phillips.28

The field of laser cooling includes different techniques: Sisyphus cooling;28–30 re-
solved sideband cooling;22,31–36 Raman sideband cooling;37,38 velocity-selective coherent
population trapping;25 gray molasses;40–44 cavity mediated cooling;45 Zeeman slower ;46,47

electromagnetically induced transparency; 48–52 Doppler cooling.21,22,28,53 The traditional
and still most used is the latter one. The principle behind the Doppler cooling technique is
the following: when an atom interacts with a photon —the interaction process is consisted
of the absorption and thereafter the emission of a photon —the velocity of the atom is
changed due to momentum conservation. Depending on the direction of the photon relative
to the direction of the atom velocity, it can either increase or decrease its momentum. So,
in order to eliminate the undesirable result of increasing the atomic temperature, one has
to tune the laser frequency just below the electronic transition frequency of the atom. This
process results in an overall reduction of the gas temperature, since the atoms will only
interact with counterpropagating photons as a result of the Doppler effect.

Such advances in laser cooling made possible the accomplishment of the Bose-
Einstein condensate in 1995 by the group of Eric Cornell and Carl Wieman at the University
of Colorado Boulder in a gas of rubidium 87Rb atoms54 and by the group of Wolfgang
Ketterle at MIT in a gas of sodium 23Na atoms,55 Fig. 1. In order to achieve cold enough
temperatures to realize the BEC, it was necessary to combine different stages: in the
precooling stage, laser cooling techniques were used to make the atoms cold enough to be
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confined in a wall-free magnetic trap; then forced evaporative cooling was applied as the
second stage,56,57 which consists in reducing the trap depth so that the most energetic
atoms can escape, thus decreasing the temperature of the whole gas. For their achievements
on BEC, Eric Cornell, Carl Wieman and Wolfgang Ketterle were awarded the 2001 Nobel
prize in physics.19,58

Differently from bosons, fermionic atoms are subject to the Pauli exclusion principle,59

which forbids two or more fermions of occupying the same quantum-mechanical state.
However, in view of the formation of the so-called Cooper pairs,60 the realization of BEC in
interacting Fermi gases was achieved in 2003 by Greiner et al.61 with potassium 40K atoms,
while it was also achieved thereafter with lithium 6Li atoms.62–65 Such a realization in
fermionic gases represented the accomplishment of a long-standing goal of ultracold atoms
research, the celebrated BCS-BEC crossover, referring to the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity.66,67

(a) The respective temperatures are, from
left to right, 0.4µK, 0.2µK, and
0.05µK.

(b) From left to right, the temperatures are T >
2µK, T ∼ 2µK, and T < 2µK.

Figure 1 – Observation of the two first Bose-Einstein condensates by absorption imaging
from the rubidium 87Rb experiment54,58 in (a) and from the sodium 23Na
experiment19,55 in (b).

Source: (a) CORNELL et al.;58 (b) KETTERLE.19

1.1 Bosonic atoms loaded in optical lattices

Optical lattices are laser arrangements which enable a spatially periodic trapping
of atoms due to the interaction between the external electric field and the induced dipole
moment of the atoms.20,68–71 Such artificial laser-generated periodic potentials create a
propitious environment to probe ultracold atoms and provide clean access to physical
quantities, in contrast to natural crystal lattices, where disorder of many kinds, e.g., lattice
vibrations, or the so-called phonons, contribute to undesirable features in the effective
Hamiltonian that one needs to take into account to describe the dynamics of the system
as well as to calculate its physical properties. In principle, it is always possible to take
only one kind of disorder into account and apply perturbation theory to evaluate physical
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quantities, but this is simply the reduced version of the story: there happens to exist
innumerable kinds of noise in a crystal lattice that it is theoretically impossible to account
for all their contributions simultaneously. Even if one uses numerical methods, the amount
of computational capacity is usually beyond what the computers nowadays can achieve.
So, optical lattices provide a suitable setting for the realization of simplified models of
condensed-matter systems and the study of many-body systems. Also, optical lattices allow
the implementation of Richard Feynman’s pioneering idea of “quantum simulation”:72,73

using one quantum system to investigate another one.74 In addition, the controllability of
optical lattices is much higher than most condensed-matter systems, thus providing an
easy control of important parameters, such as the strength of the interatomic interactions.

Figure 2 – Schematic drawing of optical lattices in the two different phases: the superfluid
in (a) and the Mott insulator in (b). The superfluid phase is characterized by a
high delocalization of the atoms, implying well known values of the momentum,
generating well defined peaks in the momentum space. On the other hand,
the Mott insulator phase is characterized by a high localization of the atoms,
thence their momentum space image consists in a blur.

Source: BLOCH.69

A gas composed of bosonic atoms in an optical lattice can be described by the Bose-
Hubbard model,70,75 which has three main parameters: the on-site interaction parameter,
the hopping parameter, and the chemical potential. Depending on the magnitude of
the parameters, the system can realize two different phases, the Mott insulator or the
superfluid phase,76–85 as illustrated in Fig. 2. If the on-site interaction parameter is much
larger than the hopping parameter, the system is in the Mott insulator (MI) phase. This
phase is characterized by a high localization of the atoms, implying an integer number of
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particles n per lattice site and zero compressibility, ∂n/∂µ = 0. Also, the Mott insulator
presents an energy gap for both particle and hole excitations, due to the restricted mobility
between neighboring sites. By decreasing the amplitude of the periodic potential, so that
the hopping parameter becomes much larger than the atom-atom interaction parameter,
the system undergoes a phase transition to a superfluid (SF) phase, where a fraction
of the atoms become delocalized. Such a phase is characterized by zero viscosity, i.e.,
superfluidity signifies the ability of carrying currents without dissipation, analogously to
superconductivity. Such differences in the localization of the bosons make it possible to
measure the phase the system is currently in through time-of-flight experiments,78,87 which
are depicted in Fig. 3. The MI-SF transition can happen even at zero-temperature, driven
by quantum mechanical fluctuations, thus characterizing a quantum phase transition.88

Figure 3 – Time-of-flight absorption images for the potential depths V0 of: (a) 0, (b) 3ER,
(c) 7ER, (d) 10ER, (e) 13ER, (f) 14ER, (g) 16ER, and (h) 20ER.

Source: GREINER et al.78

1.1.1 State of the art

Regarding a homogeneous system, we can approximate the particle-hole excitations
as a mean value over time, known as mean-field approximation, thus providing a local
Hamiltonian, which makes possible the evaluation of physical properties from a single lattice
site. More specifically, such a consideration approximates the Bose-Hubbard Hamiltonian
by a sum of local Hamiltonians.76 Following this simplification, Rayleigh-Schrödinger
perturbation theory (RSPT) is typically used for obtaining the mean-field phase diagram
at zero temperature.88 However, there are problems that arise from RSPT, since it does
not properly deal with degeneracies that occur between two consecutive Mott lobes. One
of such RSPT problems concerns the calculation of the condensate density, which falsely
vanishes between two consecutive Mott lobes.89

Also, other methods have been suggested in order to improve the mean-field
quantum phase diagram for bosons in optical lattices, e.g., a variational method that uses a
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field-theoretic concept of the effective potential.90 In addition, the MI-SF phase transition at
arbitrary temperatures was investigated using an effective-action approach.91 Furthermore,
a similiar method was derived for the Bose-Hubbard model within the Schwinger-Keldysh
formalism in order to handle time-dependent problems at finite temperature.92,93 Likewise,
Ref. 89 implemented a nearly degenerate perturbation theory for the zero-temperature case,
which led to better results for the order parameter (OP) when compared to those from the
RSPT calculations. The authors of Ref. 94 applied the Floquet theory in order to analyze
the effects of a periodic modulation of the s-wave scattering length upon the quantum
phase diagram of bosons in 2D80 and 3D optical lattices. It turns out that nondegenerate
finite-temperature perturbation theory91,95 also presents degeneracy problems similar to
RSPT. Indeed, RSPT is equivalent to the usual finite-temperature perturbation theory in
the zero-temperature limit. Therefore, degeneracy-related problems are also expected to
appear at low enough temperatures. Moreover, beyond our considered bosonic gas in an
optical lattice, the degeneracy-related problems also emerge in other systems.96–100

1.2 One-dimensional interacting Bose gas

The study of low dimensional systems is motivated by the fact that many three-
dimensional theories completely fail in lower dimensions, e.g., the Landau-Fermi liquid
theory101 describing interacting fermions in low temperature systems (such as metals and
the liquid helium-3, 3He) simply breaks down in one dimension. The explanation for such
a failure and an adequate treatment of interacting fermions in 1D was firstly given by S.
Tomonaga in 1950,102 and thereafter reformulated in 1963 by J. M. Luttinger,103 with the
theory receiving their names as Tomonaga-Luttinger liquid theory. The works of Tomonaga
and Luttinger were complemented by D. C. Mattis and E. H. Lieb in 1964,104 when they
noted a paradox regarding the density operator commutators and used their observations
to solve the model and obtain the exact solution of the one-dimensional many-fermion
system.

Contrarily to higher dimensions, the role of interactions are particularly important
in 1D systems. This aspect can be easily elucidated by visualizing that, in higher dimensions,
the particles can ipso facto avoid each other, which is completely different in 1D, where the
dimensional constraint assembles the inevitability of interparticle rendezvous. This implies
that whenever there is a single-particle excitation, a collective one will automatically
emerge in the one-dimensional system.

Another important consequence of the reduced dimensionality is the absence of
BEC in an uniform infinite system at nonzero temperature, T > 0, in low dimensions
d ≤ 2.105 Even at zero temperature, the one-dimensional system features the insufficient
conditions for the realization of BEC.106 Such an absence of BEC can be explained by
the Hohenberg-Mermin-Wagner theorem,105,107 that states the absence of spontaneous
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symmetry breaking in low dimensions d ≤ 2.I This theorem has, of course, profound
implications in the occurrence of BEC in low dimensions because the existence of BEC is
associate with the spontaneous breaking of the U(1) gauge symmetry. However, realistically
speaking, there is no infinite system in nature, thus it is possible to realize BEC in one-
and two-dimensional finite systems.108,109

As we have already discussed, the interparticle interactions play a special role
towards the complete description of the one-dimensional system. In this context, the
pioneer work on the exact analysis of the 1D Bose gas interacting via a delta-like potential
at zero temperature was done by E. H. Lieb and W. Liniger110,111 and its extension to
finite temperature by C. N. Yang and C. P. Yang.112 However, in real experiments the
atoms are harmonically trapped, thence one has to take its effect in the Hamiltonian
since V (x) = 0 → V (x) ∝ x2. This change breaks down the integrability of the system.
Nevertheless, by sufficiently increasing the interactions, it is possible to achieve the so-called
Tonks-Girardeau gas,113,114 where the particles behave as impenetrable hard-core spheres.
In this regime, as first stated by M. Girardeau in 1960,114 an effect known as fermionization
occurs, thus enabling one to reduce the original problem into a much simpler one by means
of the Bose-Fermi mapping.

In order to experimentally realize atomic gases in one dimension, one needs to
tune the trapping frequencies in such a way that ωy = ωz = ω⊥ � ωx, also known as
tight confinement aspect. In such a regime, the characteristic energy scale is much greater
than the thermal energy of the atoms ~ω⊥ � kBT . Furthermore, it also implies that
the confinement characteristic length a⊥ ≡

√
~/mω⊥ is much smaller than the three-

dimensional scattering length of the atoms a3D (see App. A), a⊥ � a3D.115–117 Therefore,
the consequence of this experimental setting is that all the dynamics of the system occurs
predominantly in the x-direction, characterizing a quasi one-dimensional system.

1.2.1 State of the art

An accurate description of strongly correlated quantum systems, for an arbitrary
number of particles, is often a dare without a simple solution. Apart from the very
specific family of integrable systems,118–126 where all observables can, in principle, be
theoretically predicted, our knowledge is, in general, limited to simplifications like the
two-body case,127–129 the thermodynamic limit,130,131 the low-energy regime,132 or the
mean-field approximations.133,134 So, it is quite challenging to extract general information
from such systems, e.g., the scaling of physical observables with respect to the number of
particles.

Considering the system composed of a quantum gas where the particles interact
with each other via a delta-like interaction potential, the short-range correlations are

I For mathematical details on the Hohenberg-Mermin-Wagner theorem, see App. B.
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embedded in the Tan’s contact C,135–137 an experimentally relevant quantity that deter-
mines the asymptotic behavior of the momentum distribution n(k) via C ≡ limk→∞ k

4n(k).
This observable can be measured via time-of-flight techniques,139–141 via radio-frequency
spectroscopy,142,143 by Bragg spectroscopy,144 by measuring the energy variation as a
function of the interaction strength,140 or by analyzing the three-body losses in quantum
mixtures.145 Such a quantity depends on many physical aspects, such as the interaction
energy, the density-density correlation functions, the trapping configuration, the tem-
perature, and the magnetization,146,147. Thus, it fluctuates in a nontrivial way with the
nature and the number of particles N . Therefore, even in one dimension, the behavior of
C is not completely clarified, especially in trapped systems, despite of many theoretical
investigations.146–155 For one-dimensional particles trapped in a harmonic potential of
frequency ω, it has been shown that, in the thermodynamic limit, at zero temperature, the
contact rescaled by N5/2 is an universal function of one scaling parameter, the adimensional
interaction strength g̃ ≡ −a0/

√
Na1D,130,152 where a1D is the 1D scattering length (App.

A) and a0 ≡
√
~/mω is the harmonic oscillator length. Such a scaling property also holds

at finite temperatures in the grand-canonical ensemble: the contact rescaled by 〈N〉5/2 is an
universal function of two scaling parameters, g̃ and τ ≡ T/TF ,131,156 where TF = N~ω/kB
is the Fermi temperature. However, for systems with a small number of particles, the
N5/2-scaling fails. In the zero-temperature limit, it is possible to change the paradigm and
to introduce a different scaling form that holds for any number of particles N ≥ 2. 157 At
finite temperature, considering the grand-canonical ensemble, the 〈N〉5/2-scaling law holds
for N > 10.131 However, corrections for a small number of particles have, to our knowledge,
not yet been studied in 1D, and the question of the relevance of the statistical ensemble
has also not yet been addressed. The latter is, indeed, a crucial point, since ultracold-atom
experiments are more properly described by the canonical ensemble or, more often, by an
average over canonical ensembles. This ensemble study is also motivated by the fact that
the scaling properties of the system are strongly affected by the statistical distribution of
the number of particles.

1.3 Thesis outline

Now, let us provide a succint summary of each chapter. In Chap. 2, we present a
brief description of optical lattices and some basic concepts towards the understanding
of the atom-laser interacting potential. Then, we describe the solutions of the respective
Schödinger equation due to such a potential and argue, due to the periodicity of the
potential, that the solutions can be given in terms of the Bloch functions and also in terms
of the convenient Wannier functions. With these concepts, we have the fundamentals in
order to interpret the Bose-Hubbard model and derive its Hamiltonian in terms of the
important parameters. To finish, we briefly study such parameters in order to check how
they depend on the laser potential depth as well as on the recoil energy.
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In Chap. 3, we briefly discuss the fundamentals of second-order quantum phase
transitions, and then we introduce the Landau expansion of the thermodynamic potential
together with the mean-field approximation in order to evaluate the phase boundary
associated with the Mott-insulator-superfluid (MI-SF) quantum phase transition of bosonic
particles in optical lattices. In addition, we apply nondegenerate perturbation theory
(NDPT) at finite temperature to calculate the Landau coefficients, the condensate density,
|Ψ|2, and the density of particles, −∂F/∂µ. Consequently, we show that the calculations
from NDPT lead to nonphysical behaviors for these two physical quantities, which are
clear consequences of the incorrect treatment of the degeneracies that happen to occur
between two consecutive Mott lobes. Finally, we show, as a first degenerate approach, how
such problems can be fixed within an adequate analysis.

Chap. 4 is concerned with the development of the Brillouin-Wigner perturbation
theory (BWPT) applied to the zero-temperature regime of bosons in optical lattices. We
begin by introducing the formulation behind the BWPT, which consists in achieving a
Schrödinger-like equation for an effective Hamiltonian so that it can be expanded up to
the desired order in the perturbation parameter. Then we apply the BWPT for the case
where the degenerate Hilbert subspace is consisted of one state, and check that the results
for the condensate density are slightly improved, but still unsatisfactory, leading to the
necessity of considering two states in the degenerate Hilbert subspace. After calculating
the important physical quantities in our two-state approach, we realize that it produces
physically consistent results for both the condensate and the particle densities. Afterwards,
we develop an useful graphical approach for easily calculating higher-order terms in the
pertubative expansion. Finally, we consider the effects of a harmonic trap in the system
and calculate how it affects the equation of state.

In Chap. 5, we turn our attention to the finite-temperature scenario. We develop a
finite-temperature degenerate perturbation theory (FTDPT) based on a projection operator
formalism that, similarly to BWPT, separates the Hilbert space into the degenerate
subspace and the complementary one, which is free from any degeneracy. We then apply
our developed FTDPT to the one lattice site mean-field Bose-Hubbard Hamiltonian in
order to get meaningful results for the condensate density as well as for the particle density
in the vicinity of the MI-SF quantum phase transition.

In Chap. 6, we study the one-dimensional interacting Bose gas. We begin with the
case with N = 2 particles, which is an integrable system and an instructive example to en-
lighten some basic concepts that arise from considering delta-like interparticle interactions.
We work out the details behind the calculations in order to get the relative-motion wave
function and check the discontinuity it presents at the contact point. Then we work out
the asymptotic behavior of the momentum distribution, that leads to a relation where
one can recognize the valuable role of a term that depends on the second-order correla-
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tion function, the so-called Tan’s contact, C. Then, we exactly calculate the two-boson
contact. Subsequently, we develop an analytical expression for the N -boson contact in the
Tonks-Girardeau limit. Following, we analyze the scaling properties of the Tan’s contact
within some specific temperature regimes, such as the zero- and the large-temperature
scalings. From those, we propose a generalized scaling conjecture for all ranges of tem-
perature. Furthermore, from quantum Monte Carlo (QMC) calculations, we investigate
the intermediate-interaction regime, g̃ ∼ 1. Finally, we draw a comparison between the
canonical and the grand-canonical ensembles in the context of the interparticle contact.
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2 BOSONS IN OPTICAL LATTICES

In this chapter, we discuss the fundamental concepts associated with the description
of Bose gases loaded into optical lattices. We begin with the theory behind the atom-
laser interaction, focusing on a brief discussion about the atomic energy shift due to its
interaction with the laser-generated electric field and on the form of the periodic potential,
which leads us to describe the solutions of the respective Schödinger equation by applying
the Bloch theorem, i.e., the same one used in solid state physics in order to interpret
the solutions of a generic periodic potential in terms of a plane wave times a periodic
function, which are then named as Bloch functions. After that, we perform a description
of the Bose-Hubbard model, introducing its general form in terms of the Hamiltonian
parameters. Then, we apply a harmonic approximation in the laser field potential so that
we can perform a first estimation of the Hamiltonian parameters.

2.1 Atom-laser interaction

The interaction between the laser-generated electric field and the atom electric
dipole within the electric dipole approximation is given by69,70

Vext(r) = −d · E(r), (2.1)

where d ≡ −e∑i ri denotes the atomic electric dipole, with e being the electronic charge
and ri its distance from the nucleus, and E(r) is the external electric field. Let us consider
an atomic transition from the fundamental state |0〉 to any excited state |n〉 due to the
external electric field. It is possible to calculate a second-order correction in the atomic
ground-state energy, which is given by20

∆E = −
∑
n

|〈n|V̂ext|0〉|2
En − E0

= −α2 |E|
2, (2.2)

where E0 and En are the energies of the fundamental and the excited state, respectively,
and

α ≡ −∂
2∆E
∂E2 = 2

∑
n

|〈n|d̂ · ε̂|0〉|2
En − E0

, (2.3)

is the atomic polarizability, while ε̂ represents the direction of the laser electric field. Of
course that this simple static analysis already gives us some insights about the energy
shift due to the interaction, but it does not correspond to the more realistic case. So, in
order to approximate the discussion to the real world, let us consider a time-dependent
laser-generated electric field E(r, t) = E0(r)e−iωt + c.c. In such a case, the energy shift due
to the interaction is given by20

∆E =
∑
n

〈0|d̂ · Ê|n〉〈n|d̂ · Ê†|0〉
En − E0 + ~ω

+ 〈0|d̂ · Ê
†
|n〉〈n|d̂ · Ê|0〉

En − E0 − ~ω

 . (2.4)
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It is instructive to note that the first term comes from the absorption of a photon by
the atom, while the second one comes from the emission of a photon.158 Eq. (2.4) can be
simplified to

∆E =
∑
n

|〈n|d̂ · ε̂|0〉|2|E0|2
[
(En − E0 − ~ω)−1 + (En − E0 + ~ω)−1

]
= −α(ω)

2 〈E(r, t)2〉,
(2.5)

where 〈E(r, t)2〉 = 2|E0|2 represents the time-average of the squared electric field. Also, we
have introduced the dynamical polarizability, that reads

a(ω) =
∑
n

|〈n|d̂ · ε̂|0〉|2
[
(En − E0 − ~ω)−1 + (En − E0 + ~ω)−1

]

= 2
∑
n

(En − E0)|〈n|d̂ · ε̂|0〉|2
(En − E0)2 − (~ω)2 .

(2.6)

In many cases of interest, where the frequency of the laser field is close to the atomic
resonance one, the polarizability can be reduced to I

α(ω) ≈ |〈n|d̂ · ε̂|0〉|2
En − E0 − ~ω

. (2.7)

Now, let the excited state have a finite lifetime Γ−1
n , where

Γn = 4
3
∑
m

ωn,m
4πε0~c3 |〈n|d̂ · ε̂|m〉|

2 (2.8)

is the rate of decay by spontaneous emission.159 In this more realistic scenario, it implies
that the energy of the excited state must contain an additional term to account for the
spontaneous emission, namely En → En − i~Γn/2. Consequently, the energy shift (2.5)
results in

∆E = ~
2

Ω2
R

δ2
n + Γ2

n/4

(
δn − i

Γn
2

)
, (2.9)

where we have introduced the Rabi frequency71,160,161 ΩR ≡ |〈n|d̂ · Ê0|0〉|/~ as well as the
detuning, given by the difference between the radiation field frequency and the frequency
of the atomic transition δn ≡ ω − (En − E0)/~. In the cold atoms literature, δn > 0 is
known as blue detuning, while δn < 0 is known as red detuning.

Let us turn our attention to the form of the potential Vext(r) generated by the laser.
The profile of a monochromatic Gaussian laser beam is given by95,162

Vext(r) = −V0
∑

(i,j,l)
e−2(x2

i+x
2
j)/b2

0 cos2(kLxl), (2.10)

I For a more profound discussion and algebraic manipulations, see PETHICK; SMITH20 and
PITAEVSKII; STRINGARI.71
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where b0 is the laser beam waist,162 while kL = 2π/λ and λ are the laser wavevector and
wavelength, respectively. Here, the sum is performed for the three possible sequence of the
independent coordinate variables that produce different results for the argument of the
sum, i.e., (i, j, l) = (1, 2, 3), (1, 3, 2), (2, 3, 1). In the most part of cold atoms experiments,
the atoms are concentrated around the center of the trap, thus implying r � b0.95 This
justifies the approximation ex ≈ 1 + x + O(x2), |x| � 1, leaving us with a simplified
formula for the external potential

Vext(r) = V0

4r2

b2
0
− 3 +

∑
(i,j,l)

sin2(kLxl)
[
1− 2

b2
0

(
x2
i + x2

j

)] . (2.11)

Again, by the same reasoning as above, we perform another round of simplifications, that
results in

Vext(r) = V0
∑
i

sin2(kLxi), (2.12)

where we have performed the shift Vext(r) + 3V0 → Vext(r), since V0 is simply a constant.

2.1.1 Solutions for the laser field potential

Now, as the laser potential (2.12) is a periodic one, we know from solid state
physics163 that the solutions of the Schrödinger equation regarding noninteracting particles
in such a potential, [

− ~2

2m∇
2 + Vext(r)

]
Ψn,k(r) = En,kΨn,k(r), (2.13)

are given by
Ψn,k(r) = eik·rΦn,k(r), (2.14)

where Φn,k(r) are the so-called Bloch functions164 and they possess the same periodicity
of the trapping potential. The wave vector is represented by k and n is the band index.

When the potential depth is big enough and the temperature low enough so that
the tunneling probability between neighboring sites is small, the single-particle wave
functions can be approximated by a linear combination of localized states in each potential
well. In order to explore this effect, it is convenient to use the more convenient Wannier
functions,165,166 which are localized functions defined according to

Wn(r− ri) ≡
1√
Ns

∑
k

e−ik·riΨn,k(r), (2.15)

where Ns is the number of lattice sites, ri is the location of the i-th lattice site, and the
sum in k runs over the first Brillouin zone, i.e., −π/d ≤ ki ≤ π/d, where d = π/kL = λ/2
is the lattice spacial periodicity. As the Bloch functions fulfill the orthonormality and the
completeness properties,163,167 it is possible to derive the respective orthonormality and
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completeness properties for the Wannier functions:∫
<
d3rW ∗

n(r− ri)Wm(r− rj) = 1
Ns

∑
k,k′

ei(k·ri−k′·rj)
∫
<
d3r Ψ∗n,k′(r)Ψm,k(r)

= δn,m
1
Ns

∑
k

eik·(ri−rj)

= δn,mδi,j,

(2.16)

and ∑
n,i

W ∗
n(r− ri)Wn(r′ − ri) =

∑
n,k,k′

Ψ∗n,k(r)Ψn,k′(r′)
1
Ns

∑
i

ei(k−k′)·ri

=
∑
n,k

Ψ∗n,k(r)Ψn,k(r′)

= δ(r− r′),

(2.17)

respectively. Such conditions assure that any wave function can be written as a series
expansion of the Wannier functions.

Now, as the laser-generated potential (2.12) consists of separated contributions
on each coordinate variable, the original three-dimensional Schrödinger equation can be
separated into three identical one-dimensional Schrödinger equations, which read[

− ~2

2m∇
2
j + Vext(xj)

]
ψnj ,kj(x) = εnj ,kjψnj ,kj(xj), (2.18)

with
ψn,k(r) =

∏
j

ψnj ,kj(xj), (2.19)

and
En,k =

∑
j

εnj ,kj . (2.20)

Analogously to the three-dimensional problem, each one-dimensional solution can be
written in terms of the respective one-dimensional Bloch functions as

Ψnj ,kj(xj) = eikjxjφnj ,kj(xj). (2.21)

Consequently, the corresponding one-dimensional Wannier functions read

wnj
(
xj − x(i)

j

)
=
(

1√
Ns

)1/3∑
kj

e−ikjx
(i)
j ψn,kj(xj). (2.22)

Therefore, the tridimensional Bloch and Wannier functions become

Φn(r) =
∏
j

φnj ,kj(xj) (2.23)

and
Wn(r− ri) =

∏
j

wnj
(
xj − x(i)

j

)
, (2.24)

respectively.
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2.2 The Bose-Hubbard model

The Bose-Hubbard model168,169 provides a suitable description of interacting
spinless bosonic atoms confined in optical lattices. The fundamental mathematical con-
siderations within the model are developed as follows. Let us start with the general
second-quantized Hamiltonian

Ĥ =
∫
d3rΨ̂†(r)

[
− ~2

2m∇
2 + Vext(r)− µ

]
Ψ̂(r)

+ 1
2

∫
d3r1

∫
d3r2Ψ̂†(r1)Ψ̂†(r2)Vint(r1, r2)Ψ̂(r1)Ψ̂(r2),

(2.25)

where the first term represents the single-particle Hamiltonian, with Vext(r) representing
the atom-laser interaction, and µ is the grand-canonical chemical potential; while the
second term corresponds to the interparticle interaction term, where Vint(r1, r2) is the
atomic interaction potential. The bosonic field operators are represented by Ψ̂†(r) and
Ψ̂(r), and they obey the usual bosonic commutation rules[

Ψ̂(r), Ψ̂†(r)
]

= δ(r− r′), (2.26a)[
Ψ̂(r), Ψ̂(r′)

]
=
[
Ψ̂†(r), Ψ̂†(r′)

]
= 0. (2.26b)

Considering gases with low density profiles, the interaction between particles can
be approximated by20,71

Vint(r1, r2) = 4π~2a3D

m
δ(r1 − r2), (2.27)

where a3D is the three-dimensional s-wave scattering length (see App. A). Thus, Eq. (2.25)
reduces to

Ĥ =
∫
d3rΨ̂†(r)

[
− ~2

2m∇
2 + Vext(r)− µ

]
Ψ̂(r) + g

2

∫
d3rΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r), (2.28)

where g ≡ 4π~2a3D/m is the coupling constant.

Now, taking into account that ultracold atoms confined in deep periodic potentials
can be regarded as occupying only the lowest Bloch band, we can simplify the problem by
restricting ourselves to the Wannier function corresponding to n = 0, W0(r). Therefore,
due to the completeness of the Wannier functions (2.17), the field operators can then be
expanded as

Ψ̂(r) =
∑
i

âiW0(r− ri), (2.29a)

Ψ̂†(r) =
∑
i

â†iW
∗
0 (r− ri), (2.29b)

where âi and â†i are, respectively, the annihilation and creation operators of particles at a
given lattice site i. From (2.26), it is also possible to derive the commutation rules for the
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lattice operators, resulting in [
âi, â

†
j

]
= δi,j, (2.30a)

[âi, âj] =
[
â†i , â

†
j

]
= 0. (2.30b)

By substituting (2.29) into (2.28), we have

Ĥ = 1
2
∑
i,j,k,l

Uijklâ
†
i â
†
j âkâl +

∑
i,j

Jij â
†
i âj −

∑
i,j

µij â
†
i âj, (2.31)

where the parameters read

Uijkl = g
∫
d3rW ∗

0 (r− ri)W ∗
0 (r− rj)W0(r− rk)W0(r− rl), (2.32a)

Jij =
∫
d3rW ∗

0 (r− ri)
[
− ~2

2m∇
2 + Vext(r)

]
W0(r− rj), (2.32b)

µij = µ
∫
d3rW ∗

0 (r− ri)W0(r− rj). (2.32c)

Following the discussion from UEDA,75 in a scenario where the confining potential
is sufficiently deep, the Wannier functions are strongly localized, hence the overlap between
the different-site-particle wave functions is small. Therefore, in this model we consider
only nearest neighbors transitions and local interparticle interaction. Such considerations
and the orthonormality of the Wannier functions lead to the Bose-Hubbard Hamiltonian

ĤBH = U

2
∑
i

â†i â
†
i âiâi − J

∑
〈i,j〉

â†i âj − µ
∑
i

â†i âi, (2.33)

where

U = g
∫
d3r |W0(r)|4, (2.34a)

J =
∫
d3rW ∗

0 (r)
[
~2

2m∇
2 − Vext(r)

]
W0(r). (2.34b)

Such parameters have clear interpretations: U is the on-site interaction parameter between
particles and J is the hopping parameter, which describes the tunneling probability of
particles between its original site to a neighboring one.

The Bose-Hubbard model predicts two different phases for the whole system
depending on the ratio between the on-site interaction and the hopping parameters: if
the on-site interaction between atoms is much stronger than the hopping parameter, i.e.,
U/J � 1, the system realizes a Mott insulator phase;170–172 on the other hand, if the
hopping parameter predominates over the on-site interaction parameter, i.e., U/J � 1,
the ground state of the system is a superfluid phase. Deep in the Mott insulator phase,
where all atoms are highly localized in the potential minima, the ground state of the whole
system is given by20,71

|ΨMI〉 = (n!)−Ns/2
Ns∏
i=1

(
â†i
)n⊗

Ns

|0〉, (2.35)



2.2 The Bose-Hubbard model 45

where Ns is the number of lattice sites and n is the average occupation number per site.
In the opposite scenario, i.e., the ground state of the system deep in the superfluid phase
can be considered as20,71

|ΨSF〉 = N−N/2s√
N !

(
Ns∑
i=1

â†i

)N⊗
Ns

|0〉, (2.36)

where N is the total number of particles and ⊗Ns |0〉 = |0〉 ⊗ |0〉 · · · ⊗ |0〉 is the vacuum
state.

2.2.1 The Hamiltonian parameters

For a deep periodic potential, we can consider the lowest-band Wannier function
as a solution of the laser field potential[

− ~2

2m∇
2
x + V0 sin2(kLx)

]
w0(x) = E0w0(x). (2.37)

This differential equation has approximate solutions in terms of the Mathieu functions173,174

w0(x) = C
(

1− Ṽ0

2 ,−
Ṽ0

4 , kLx
)

+ S
(

1− Ṽ0

2 ,−
Ṽ0

4 , kLx
)
, (2.38)

where C(a, q, z) and S(a, q, z) are the even and odd Mathieu functions, respectively. Here
we have defined Ṽ0 ≡ V0/ER and introduced the so-called recoil energy ER ≡ ~2k2

L/2m.
With such a solution, it is possible to approximately evaluate the hopping energy (2.34b),
which is performed in Ref. 175 with the following result

J = 4√
π
ERṼ

3/4
0 e−2Ṽ 1/2

0 . (2.39)

2.2.1.1 Harmonic approximation

A first approximation of the laser field potential is the harmonic approximation176

sin2(kLx) ≈ (kLx)2. Again, let us consider the lowest-band Wannier function as a solution
of the harmonic potential[

− ~2

2m∇
2
x + V0(kLx)2

]
w0(x) = E0w0(x). (2.40)

The solution is the known fundamental state of the harmonic oscillator

w0(x) =
k2

LṼ
1/2

0
π

1/4

exp
(
−x

2

2 k
2
L

√
Ṽ0

)
, (2.41)

with the energy given by E0 = ER

√
Ṽ0.
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It follows that we can also find an expression for the the Bose-Hubbard parameters
(2.34) from the solution w0(x) within the harmonic approximation. So, from (2.34a) we
have that the on-site interaction energy reads

U = g
∫
<
d3r |W0(r)|4 = g

(∫ +∞

−∞
dx |w0(x)|4

)3
=
√

8
π
a3DkLERṼ

3/4
0 . (2.42)

Similarly, from (2.34b)

J =
∫
<
d3rW ∗

0 (r)
[
~2

2m∇
2 − Vext(r)

]
W0(r)

=
∫ +∞

−∞
dxw∗0(x− d)

(
~2

2m∇
2
x − V0 sin2(kLx)

)
w0(x).

(2.43)

Substituting the solution (2.41) into (2.43) and performing the integral, the hopping energy
results in

J = ER
4
(
π2Ṽ0 − 2Ṽ 1/2

0

)
exp

(
−π

2

4

√
Ṽ0

)
− ER2 Ṽ0

(
1 + eṼ

−1/2
0

)
exp

−4 + π2Ṽ0

4
√
Ṽ0

. (2.44)

As a comparison, we plot the hopping energy from the Mathieu solution (2.39) and
from the harmonic approximation (2.44) in Fig. 4 and conclude, by direct observation, that
the harmonic approximation does not result in a good enough estimation of the hopping
energy for shallow potentials.
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Figure 4 – Hopping energy from the Mathieu solution (2.39) (blue line) and from the
harmonic approximation (2.44) (yellow line).

Source: By the author.
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3 MOTT-INSULATOR-SUPERFLUID QUANTUM PHASE TRANSITION

The purpose of this chapter is the study of the main considerations taken into
account in order to investigate the Mott-insulator-superfluid (MI-SF) quantum phase
transition of bosons in optical lattices. We begin by introducing some basic concepts
about second-order phase transitions. Also, we discuss the Landau assumptions for the
thermodynamic potential in the vicinity of the phase transition. Then, we introduce the
mean-field approximation, which is the main path taken in order to remove the nonlocality
present in the Bose-Hubbard Hamiltonian, leading to a great simplification. Following, we
perform calculations based on nondegenerate perturbation theory (NDPT), which results
in the MI-SF phase diagram. Following such calculations, we show that NDPT leads to
some inconsistencies due to degeneracy, which turns out to provide a nonphysical behavior
of the order parameter.

3.1 Quantum phase transitions

In 1933, Paul Ehrenfest noted that different systems in thermodynamical equilib-
rium could present distinct-order discontinuities in their thermodynamic potential: some
transitions were characterized by a discontinuity in the first derivative of the thermody-
namic potential with respect to some variable (which we will call order parameter later
on), which he then named first-order phase transitions; others indicated a discontinuity in
the second derivative of the thermodynamic potential, and those he called second-order
phase transitions.177,178

Differently from classical phase transitions, that arise as a result of thermal fluctua-
tions, quantum phase transitions can happen even at zero temperature, driven by quantum
fluctuations.179–182 This is the case of our considered system constituted of bosons in
optical lattices: the transition from the Mott insulator to the superfluid phase can happen
at T = 0 without the effects of thermal fluctuations, thus characterizing a quantum phase
transition. In the Mott insulating phase, the atoms are localized at the minima of the
laser-generated potential, meaning that the condensate density is zero in such a regime. On
the other hand, in the superfluid phase, the system is characterized by a high delocalization
of the atoms, which means that it has achieved a nonzero condensate density. Due to this
explicit change from a zero value to a nonzero one of the condensate density, we can regard
it as being the order parameter of the quantum phase transition in question.

3.1.1 Landau theory of second-order phase transitions

Landau argued that the thermodynamic potential F could be written as a poly-
nomial function of the order parameter in the vicinity of a phase transition.183 In the
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case of BEC, where the order parameter is the condensate wave function Ψ, the Landau
expansion could in principle be

F = a0 + a1|Ψ|+ a2|Ψ|2 + a3|Ψ|3 + a4|Ψ|4 + · · · . (3.1)

However, in the case of the Bose-Hubbard Hamiltonian described by (2.33), which possesses
a global U(1) phase invariance, i.e., the Bose-Hubbard Hamiltonian is invariant under the
transformation â→ eiθâ, an will not vanish only for even values of n. Therefore, since we
are considering only small values of |Ψ|, further analysis will be held on the even Landau
expansion up to fourth order,

F ≈ a0 + a2|Ψ|2 + a4|Ψ|4. (3.2)

From Fig. 5, for a4 > 0, it is possible to realize that, for a2 > 0, the stable state,
i.e., the minimum of F , happens at |Ψ| = 0, which corresponds to the symmetrical phase.
On the other hand, when a2 < 0, the stable state is given by nonvanishing values of the
order parameter, |Ψ| 6= 0, corresponding to the unsymmetrical phase. Conclusively, the
condition a2 = 0 defines the phase boundary between the two phases. Also, the solution
for the unsymmetrical phase is given by

∂F
∂|Ψ|

∣∣∣∣∣∣
|Ψ|6=0

= 0⇒ |Ψ|2 = − a2

2a4
. (3.3)

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

|Ψ|

ℱ

Figure 5 – Landau expansion of the thermodynamic potential from (3.2). The blue, yellow,
and green curves correspond to, respectively, a2 > 0, a2 = 0, and a2 < 0.

Source: By the author.

3.2 Mean-field approximation

Due to the non-local character of the hopping term in the Bose-Hubbard Hamilto-
nian (2.33), we perform a mean-field approximation,76,89,90,95 which consists in considering
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the bosonic operators as the contribution of its mean value summed to a fluctuation
âi = 〈âi〉+ δâi. Thus, the hopping term in (2.33) reads

−J
∑
〈i,j〉

â†i âj = −J
∑
〈i,j〉

(
〈â†i〉+ δâ†i

)
(〈âj〉+ δâj) . (3.4)

Neglecting quadratic terms of fluctuations we have

−J
∑
〈i,j〉

â†i âj = −J
∑
〈i,j〉

(
〈â†i〉âj + â†i〈âj〉 − 〈â

†
i〉〈âj〉

)
. (3.5)

Now, let us consider a homogeneous system so that the average value of the annihilation
operator is site-independent, implying the definition Ψ ≡ 〈âi,j〉. Moreover, denoting the
number of nearest neighbors by z, we obtain the mean-field Hamiltonian,

ĤMF = U

2
∑
i

(
n̂2
i − n̂i

)
−
∑
i

µn̂i − Jz
∑
i

(
Ψ∗âi + Ψâ†i −Ψ∗Ψ

)
, (3.6)

where n̂i = â†i âi is the number operator at the lattice site i. Note that we have used the
bosonic commutation relations (2.30) in order to rewrite the on-site interaction term in
terms of the number operator n̂.

Since (3.6) is a sum of local Hamiltonians, we restrict ourselves to the one lattice
site Hamiltonian,

Ĥ = U

2
(
n̂2 − n̂

)
− µn̂− Jz

(
Ψ∗â+ Ψâ† −Ψ∗Ψ

)
. (3.7)

3.2.1 Nondegenerate perturbation theory

As mentioned before, the transition from Mott-insulator to superfluid is associated
to the breakdown of the U(1) symmetry and can then be characterized by the change in
the order parameter from zero to a non-zero value. Since we are considering our system in
the vicinity of the phase transition, where |Ψ| has a small value, and only the hopping
term depends explicitly on Ψ in (3.7), we can treat the hopping term as a perturbation.
Thus, (3.7) decomposes according to Ĥ = Ĥ0 + V̂ into the unperturbed Hamiltonian

Ĥ0 = U

2
(
n̂2 − n̂

)
− µn̂+ JzΨ∗Ψ, (3.8)

and the perturbation
V̂ = −Jz

(
Ψ∗â+ Ψâ†

)
. (3.9)

The unperturbed eigenenergies are

En = U

2
(
n2 − n

)
− µn+ Jz|Ψ|2, (3.10)

where the quantum number n = 0, 1, 2, . . . indicates the number of bosons per site.
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At this point, we are interested in evaluating how the perturbation changes the
free energy of the system. To this purpose, we must work out the partition function,

Z = Tr
[
e−βĤ

]
, (3.11)

in order to obtain the free energy of the system.

The quantum-mechanical evolution operator within the imaginary-time formalism,
i.e., Û = e−τĤ , can be factorized according to

Û = e−τĤ0ÛI(τ), (3.12)

where ÛI(τ) is the interaction picture imaginary-time evolution operator. Note that we
are assuming ~ = 1. The equation for the time evolution of such an operator is161

dÛI(τ)
dτ

= −V̂I(τ)ÛI(τ), (3.13)

with
V̂I(τ) = eτĤ0V̂ e−τĤ0 . (3.14)

Equation (3.13) can be iteratively solved, thus allowing the construction of a
perturbative expansion. Performing the expansion, with the initial value ÛI(0) = 1̂, up to
fourth order, we have

ÛI(β) ≈ 1̂−
∫ β

0
dτ1V̂I(τ1) +

∫ β

0
dτ1

∫ τ1

0
dτ2V̂I(τ1)V̂I(τ2)

−
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3V̂I(τ1)V̂I(τ2)V̂I(τ3)

+
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4V̂I(τ1)V̂I(τ2)V̂I(τ3)V̂I(τ4).

(3.15)

It is possible to observe, from the perturbative Hamiltonian (3.9), that odd-order
terms in (3.15) will vanish. Therefore, we can restrict ourselves to the calculation of the
zeroth-, second-, and fourth-order terms in (3.15).

Making use of the time-evolution operator in the interaction picture
Z = Tr

[
e−βĤ0ÛI(β)

]
, we calculate the partition function up to fourth order,

Z =
∞∑
n=0

e−βEn〈n|ÛI(β)|n〉 ≈ Z(0) + Z(2) + Z(4), (3.16)

with the single-site eigenstates |n〉 corresponding to the occupation number in the Mott
insulator state. The zeroth-order term yields

Z(0) =
∞∑
n=0

e−βEn〈n|1̂|n〉 =
∞∑
n=0

e−βEn . (3.17)
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Now, let us proceed to the detailed calculation of the second- and fourth-order
terms, Z(2) and Z(4), respectively. The second-order term reads

Z(2) =
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2〈n|V̂I(τ1)V̂I(τ2)|n〉. (3.18)

Inserting (3.14) into (3.18), we have

Z(2) =
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2〈n|eτ1Ĥ0V̂ e−τ1Ĥ0eτ2Ĥ0V̂ e−τ2Ĥ0|n〉. (3.19)

The exponential of an Hermitian operator Ô with eigenstates |φλ〉 and respective eigenvalues
λ is simply given by

eÔ = e
∑

λ
λ|φλ〉〈φλ|

=
∞∑
n=0

1
n!

(∑
λ

λ|φλ〉〈φλ|
)n

=
∑
λ

( ∞∑
n=0

λ

n!

)
|φλ〉〈φλ|

=
∑
λ

eλ|φλ〉〈φλ|.

(3.20)

As |n〉 are eigenstates of Ĥ0, Eq. (3.19) reduces to

Z(2) =
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2e(τ1−τ2)En〈n|V̂ e−τ1Ĥ0eτ2Ĥ0V̂ |n〉. (3.21)

According to (3.9), we have

Z(2) = J2z2
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)En〈n|

(
Ψ∗â+ Ψâ†

)
e−τ1Ĥ0

×eτ2Ĥ0
(
Ψ∗â+ Ψâ†

)
|n〉,

(3.22)

yielding

Z(2) = J2z2
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)En

(
Ψ
√
n〈n− 1|+ Ψ∗

√
n+ 1〈n+ 1|

)
×
(
Ψ∗
√
ne(τ2−τ1)En−1 |n− 1〉+ Ψ

√
n+ 1e(τ2−τ1)En+1|n+ 1〉

)
.

(3.23)
The scalar products reduce (3.23) to

Z(2) = J2z2|Ψ|2
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

[
ne(τ1−τ2)∆n,n−1 + (n+ 1)e(τ1−τ2)∆n,n+1

]
. (3.24)

Finally, the integrations yield

Z(2) = J2z2|Ψ|2
∞∑
n=0

e−βEn
n(eβ∆n,n−1 − 1

∆2
n,n−1

− β

∆n,n−1

)

+(n+ 1)
(

eβ∆n,n+1 − 1
∆2
n,n+1

− β

∆n,n+1

),
(3.25)
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where we have introduced the abbreviation ∆i,j ≡ Ei −Ej for the differences between two
consecutive energies given by (3.10).

For the fourth-order term, we have

Z(4) =
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4〈n|V̂I(τ1)V̂I(τ2)V̂I(τ3)V̂I(τ4)|n〉. (3.26)

Inserting (3.8) and (3.14) into (3.26) gives

Z(4) =
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4e(τ1−τ4)En〈n|V̂ e−τ1Ĥ0V̂I(τ2)V̂I(τ3)eτ4Ĥ0V̂ |n〉.

(3.27)
According to (3.9), we have

Z(4) = J2z2
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4e(τ1−τ4)En

(
Ψ
√
ne(τ2−τ1)En−1〈n− 1|

+Ψ∗
√
n+ 1e(τ2−τ1)En+1〈n+ 1|

)
V̂ e−τ2Ĥ0eτ3Ĥ0V̂

(
Ψ∗
√
ne(τ4−τ3)En−1|n− 1〉

+Ψ
√
n+ 1e(τ4−τ3)En+1|n+ 1〉

)
.

(3.28)
Using again (3.8) and (3.14) together with (3.28) results in

Z(4) = J4z4
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4e(τ1−τ4)En

×
[
Ψ
√
ne(τ2−τ1)En−1

(
Ψ
√
n− 1e−τ2En−2〈n− 2|+ Ψ∗

√
ne−τ2En〈n|

)
+Ψ∗
√
n+ 1e(τ2−τ1)En+1

(
Ψ
√
n+ 1e−τ2En〈n|+ Ψ∗

√
n+ 2e−τ2En+2〈n+ 2|

)]
×
[
Ψ∗
√
ne(τ4−τ3)En−1

(
Ψ∗
√
n− 1eτ3En−2|n− 2〉+ Ψ

√
neτ3En|n〉

)
+Ψ
√
n+ 1e(τ4−τ3)En+1

(
Ψ∗
√
n+ 1eτ3En|n〉+ Ψ

√
n+ 2eτ3En+2|n+ 2〉

)]
,

(3.29)

which, after performing all the scalar products, reduces to

Z(4) = J4z4|Ψ|4
∞∑
n=0

e−βEn
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4

×
[
n(n− 1)e(τ1−τ4)∆n,n−1e(τ2−τ3)∆n−1,n−2 + (n+ 1)(n+ 2)e(τ1−τ4)∆n,n+1e(τ2−τ3)∆n+1,n+2

+ n2e(τ1−τ4)∆n,n−1e(τ2−τ3)∆n−1,n + n(n+ 1)e(τ1−τ2)∆n,n−1e(τ3−τ4)∆n,n+1

+n(n+ 1)e(τ1−τ2)∆n,n+1e(τ3−τ4)∆n,n−1 + (n+ 1)2e(τ1−τ2)∆n,n+1e(τ3−τ4)∆n,n+1
]
.

(3.30)
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Finally, the integrations result in

Z(4) = J4z4|Ψ|4
∞∑
n=0

e−βEn
{
n (n− 1) eβ∆n,n−2 − 1

∆n,n−1∆n−1,n−2∆n,n−2

(
1

∆n−1,n−2
− 1

∆n,n−2

)

+n (n− 1) eβ∆n,n−1 − 1
∆2
n,n−1∆n,n−2

(
1

∆n,n−1
+ 1

∆n−1,n−2

)

+ n (n− 1) eβ∆n,n−1 − 1
∆2
n,n−1∆n−1,n−2

(
1

∆n,n−1
− 1

∆n−1,n−2

)

− n (n− 1) β

∆2
n,n−1

(
eβ∆n,n−1

∆n−1,n−2
+ 1

∆n,n−2

)

+ (n+ 1) (n+ 2) eβ∆n,n+2 − 1
∆n,n+1∆n+1,n+2∆n,n+2

(
1

∆n+1,n+2
− 1

∆n,n+2

)

+ (n+ 1) (n+ 2) eβ∆n,n+1 − 1
∆2
n,n+1∆n,n+2

(
1

∆n,n+1
+ 1

∆n+1,n+2

)

+ (n+ 1) (n+ 2) eβ∆n,n+1 − 1
∆2
n,n+1∆n+1,n+2

(
1

∆n,n+1
− 1

∆n+1,n+2

)

− (n+ 1) (n+ 2) β

∆2
n,n+1

(
eβ∆n,n+1

∆n+1,n+2
+ 1

∆n,n+2

)

+ 3n2 1− eβ∆n,n−1

∆4
n,n−1

+ n2 β

∆3
n,n−1

(
2 + eβ∆n,n−1

)
+ n2 β2

2∆2
n,n−1

+ n (n+ 1)
∆2
n,n+1∆n−1,n+1

(
eβ∆n,n+1 − 1

∆n,n+1
+ 1− eβ∆n,n−1

∆n,n−1

)

+ n (n+ 1) 1− eβ∆n,n−1

∆2
n,n−1∆n,n+1

(
1

∆n,n−1
+ 1

∆n,n+1

)

+ n (n+ 1) β

∆n,n−1∆n,n+1

(
1

∆n,n−1
+ 1

∆n,n+1

)
+ n (n+ 1) β2

2∆n,n−1∆n,n+1

+ n (n+ 1)
∆2
n,n−1∆n+1,n−1

(
eβ∆n,n−1 − 1

∆n,n−1
+ 1− eβ∆n,n+1

∆n,n+1

)

+ n (n+ 1) 1− eβ∆n,n+1

∆2
n,n+1∆n,n−1

(
1

∆n,n+1
+ 1

∆n,n−1

)

+ n (n+ 1) β

∆n,n+1∆n,n−1

(
1

∆n,n+1
+ 1

∆n,n−1

)
+ n (n+ 1) β2

2∆n,n+1∆n,n−1

+3 (n+ 1)2 1− eβ∆n,n+1

∆4
n,n+1

+ (n+ 1)2 β

∆3
n,n+1

(
2 + eβ∆n,n+1

)
+ (n+ 1)2 β2

2∆2
n,n+1

}
.

(3.31)

Now that we have an expression for the partition function, we then evaluate the
free energy,

F = − 1
β

lnZ. (3.32)

By considering the natural logarithm expansion at x = 0, ln(1 + x) ≈ x− x2/2, we get,
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up to fourth order in the hopping parameter,

F ≈ − 1
β

lnZ(0) + Z
(2)

Z(0) + Z
(4)

Z(0) −
1
2

(
Z(2)

Z(0)

)2 . (3.33)

Therefore, by comparing (3.1) and (3.33), we read off the Landau expansion
coefficients:

a0 =− 1
β

lnZ(0), (3.34a)

a2 =− 1
β

1
|Ψ|2
Z(2)

Z(0) , (3.34b)

a4 =− 1
β

1
|Ψ|4

Z(4)

Z(0) −
1
2

(
Z(2)

Z(0)

)2 . (3.34c)

At zero temperature, we obtain results which are equivalent to RSPT. In particular,
the Landau expansion coefficients reduce to:

lim
β→∞

a0 =En − Jz|Ψ|2 ≡ E(0)
n , (3.35a)

lim
β→∞

a2 =Jz + (Jz)2
(
n+ 1
∆n,n+1

+ n

∆n,n−1

)
, (3.35b)

lim
β→∞

a4 = (Jz)4
[

n (n− 1)
∆2
n,n−1∆n,n−2

+ (n+ 1) (n+ 2)
∆2
n+1,n∆n,n+2

+ n2

∆3
n−1,n

+(n+ 1)2

∆3
n+1,n

+ n (n+ 1)
∆2
n+1,n∆n−1,n

+ n (n+ 1)
∆2
n,n−1∆n+1,n

]
. (3.35c)

As previously discussed, the explicit solution of a2 = 0 results in the phase
boundaries between the superfluid and the Mott insulator. Such phase boundaries are
depicted in Fig. 6 for four different temperatures.

3.2.1.1 Nondegenerate perturbation theory inconsistencies

As already pointed out, NDPT is expected to exhibit degeneracy-related problems.
Indeed, by directly observing the coefficient denominators in (3.35b) and (3.35c), we
clearly identify such a degeneracy problem. Whenever µ/U becomes an integer n, there
is an equality between two consecutive energy values, for instance En and En+1, thus
characterizing a divergence in those expressions.

According to (3.1), we consider the Landau expansion up to fourth order for the
free energy in the vicinity of a phase transition. Extremizing (3.1) with respect to the
order parameter leads to

∂F
∂|Ψ|2 = a2 + 2a4|Ψ|2 = 0, (3.36)

with the solution in the superfluid phase

|Ψ|2 = − a2

2a4
. (3.37)
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Figure 6 – Phase diagrams for the inverse temperatures β = 5/U (black), β = 10/U (red),
β = 30/U (green), and β →∞ (blue).

Source: SANT’ANA et al.184

Therefore, in order to explicitly show the degeneracy-related problems, we calculate
the particle density,

n = −∂F
∂µ

, (3.38)

and the condensate density |Ψ|2 via NDPT.

The plots of |Ψ|2 and n as functions of µ/U in Fig. 7 are interesting for our
purposes since they reveal some nonphysical behaviors, which are consequences of NDPT:
the order parameter approaches zero at a point where no phase transition occurs while the
particle density shows strange behaviors, especially at the degeneracy points, presenting
divergences at µ/U ∈ N. Fig. 7 (a) shows equation (3.37) for Jz/U = 0.2 for a varying
chemical potential. We observe that, indeed, the OP is a well-behaved quantity in most
parts of the diagram. However, it also shows an inconsistency: at integer values of µ/U ,
the order parameter at the zero-temperature limit goes to zero, while for T > 0 it mimics
the zero-temperature behavior by decreasing its values but not vanishing.

Since, for finite temperatures, NDPT also shows the same nonphysical behavior
typical of RSPT, in the following section we explore the method through which such
problems can be fixed at finite temperature.

3.2.2 Properties at zero temperature

For large Jz/U , the system is in the superfluid phase, far away from the phase
boundary, as the Mott insulator needs low hopping probabilities. Since all of our theory is
based on the assumption of being close to the phase boundary, we cannot obtain reliable
results for values of Jz/U deep in the superfluid phase. Nevertheless, for Jz/U . 0.35, we
assume our model to be valid. While for Jz/U = 0 we have no superfluid phase but only
Mott insulator, it is possible to reach the superfluid phase by increasing Jz/U . Another
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Figure 7 – Condensate density (a) from (3.37) and particle density (b) from (3.38) via
NDPT as functions of µ/U for Jz/U = 0.2 as well as β = 5/U (dotted-
dashed black), β = 10/U (dashed red), β = 30/U (dotted green), and β →∞
(continuous blue).

Source: SANT’ANA et al.184

way of changing the phase of the system from the Mott insulator to the superfluid phase
is by tuning µ/U at Jz/U > 0. If we start in the first Mott lobe and increase µ/U , the
ordered structure breaks down at some point and the superfluid phase is energetically
more favorable and thus realized. For µ/U < 0, the system is in the superfluid phase for
Jz/U > −µ/U , whereas for Jz/U < −µ/U we have no particles at all, as depicted in Fig.
6.

After obtaining the phase boundary, we take a closer look at the ground state
energies for increasing n. In the plot of the unperturbed energies from (3.35a) in Fig. 8,
we see that the ground state energies have a degeneracy at integer values of µ/U . As, for
example, in between the lobes for n = 1 (line with the smallest slope, red) and n = 2
(line with the second smallest slope, blue) at µ/U = 1, we are at the degeneracy point
where the energies E(0)

1 and E(0)
2 coincide. Analogous formulas are valid between every

two neighboring lobes. Such degeneracies at µ = Un make any algebraic treatment of the
system quite complex. However, since we always have only two degenerate energies to
handle at a time, a solution to this problem can be found, as it will be shown further on.

With this degeneracy in mind, we now discuss the order parameter. Firstly, let us
plot Ψ∗Ψ = −a2/2a4 by using (3.35b) and (3.35c). Since a4 approaches infinity at µ = Un,
where E(0)

n = E
(0)
n+1, the condensate density Ψ∗Ψ tends to zero at these points, which falsely

indicates a phase boundary. This nonphysical behavior is depicted in Fig. 9 through the
dashed plots.

3.2.3 A first degenerate correction

One way to improve these results is to apply degenerate perturbation theory, which
was done up to the first perturbative order in Ref. 89. In the referred work, the corrected
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n = En − Jz|Ψ|2. Different lines cor-
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n = 2 (blue), n = 3 (green), and n = 4 (purple). Vertical dashed black lines
correspond to the points of degeneracy. Solid colored lines represent realized
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energy lines.
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condensate density yields

Ψ∗Ψ = (n+ 1)
4 − (µ− Un)2

4J2z2 (n+ 1) . (3.39)

Let us now introduce the parameter ε ≡ µ− Un in order to analyze the system in
the vicinity of the degeneracy, according to

Ψ∗Ψ = (n+ 1)
4 − ε2

4J2z2 (n+ 1) . (3.40)

The resulting condensate densities from (3.40) are depicted by the dotted curves in Fig. 9.

By setting Ψ∗Ψ = 0 in (3.39), we obtain the phase boundary, which is shown in
Fig. 10 by the dotted magenta curve. The phase boundary obtained out of the degenerate
approach is linear in µ/U , thus coinciding with the one from NDPT only at the vicinity
of the points µ/U ∈ N. Nevertheless, for small values of Jz/U , it can be considered a
good approximation (see inset in Fig. 10). The tips of the triangular Mott lobes (dotted
magenta) correspond to µ/U = 1/3 ≈ 0.333, µ/U = 7/5 = 1.4, µ/U = 17/7 ≈ 2.429, and
µ/U = 31/9 ≈ 3.444 for increasing n, which differ from the tips of the curved lobes (dashed
orange), that correspond, respectively, to µ/U =

√
2− 1 ≈ 0.414, µ/U =

√
6− 1 ≈ 1.449,

µ/U = 2
√

3− 1 ≈ 2.464, and µ/U = 2
√

5− 1 ≈ 3.472. The horizontal continuous lines in
Fig. 10 correspond to, from bottom to top, Jz/U = 0.02 (red), Jz/U = 0.08 (blue), and
Jz/U = 5 − 2

√
6 ≈ 0.101 (green), while the latter one hits the second lobe exactly on

its tip. These lines allow a better comparison between the dashed orange and the dotted
magenta phase boundaries.
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Figure 9 – Condensate densities from nondegenerate perturbation theory (dashed lines) in
comparison to the condensate densities from degenerate perturbation theory
according to (3.40)89 (dotted lines) with µ = Un + ε and n = 1 for the
left part (negative ε/U) and n = 2 for the right part (positive ε/U). The
hopping strengths are, from the spacing inside to outside, Jz/U = 0.02 (red),
Jz/U = 0.08 (blue), and Jz/U = 0.101 (green). The dashed plots vanish at the
mean-field phase boundary, yielding a nonphysical behavior at the degeneracy.
Also, they have increasing maxima for increasing Jz/U , and for Jz/U = 0.101
and ε/U = 0.442 the lobe is just touching in one point and goes smoothly to
zero. The dotted plots provide a physical behavior at the degeneracies, although
they always present the value Ψ∗Ψ = 0.5 for the condensate density at the
degeneracies, a fact that can be directly seen in (3.40). For small Jz/U and
close to the phase boundary, the plots coincide.

Source: KÜBLER et al.185
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Figure 10 – Zero-temperature phase boundaries for bosons in optical lattices from different
treatments. The nondegenerate theory 186 yields the dashed orange plot, while
the degenerate one 89 results in the dotted magenta plot. Inside the lobes the
system is in the Mott insulator phase, while outside the lobes the superfluid
phase takes place. The number of particles per site, n, increases from left to
right by one per lobe. The three horizontal continuous lines correspond to, from
bottom to top, Jz/U = 0.02 (red), Jz/U = 0.08 (blue), and Jz/U = 0.101
(green). They all start at the line Jz/U = −µ/U , which indicates n = 0, and
end at µ/U = 2.15. The inset shows the zoomed region between the first two
Mott lobes.

Source: KÜBLER et al.185
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4 THE ZERO-TEMPERATURE REGIME

This chapter is devoted to the development of the Brillouin-Wigner pertubation
theory (BWPT) method to treat the degeneracy-related problems that artificially arise
from NDPT for the bosonic lattice at zero temperature, e.g., the condensate density
would vanish in a region of the quantum phase boundary where no transition occurs,
which is a strong evidence of a nonphysical behavior generated by such an erroneous
treatment, the NDPT. So, firstly we develop the fundamentals of the BWPT, which
consists in establishing a Schödinger-like equation with an effective Hamiltonian that can
be perturbatively expanded up to the desired order, providing a valuable tool in order to
correct the degeneracy-related problems. Then, we apply the BWPT in the cases where
the degenerate Hilbert subspace is composed of both one and two states, namely one- and
two-state approaches. After the evaluation for the condensate density in both treatments,
we conclude that the one-state approach results in better results when compared to the
NDPT procedure, but not fully overcoming the nonphysical results from the latter. Thence,
we found ourselves the necessity of considering a degenerate Hilbert subspace composed of
two states, that turns out to entirely correct the degeneracy-related problems from NDPT.
In addition, we develop a graphical approach for the BWPT method that allows one to
easily calculate higher-order terms in the perturbative expansion. Finally, we consider the
effects of a harmonic trap in the equation of state of the system, i.e., how the number of
particles changes with the chemical potential.

4.1 Brillouin-Wigner perturbation theory

We begin by providing a concise summary of the Brillouin-Wigner perturbation
theory.187 It amounts to derive an effective Hamiltonian for an arbitrarily chosen Hilbert
subspace, which is characterized by a projection operator P̂. To this purpose, we have
to eliminate the complementary Hilbert subspace, which is spanned by the projection
operator Q̂.

4.1.1 General formalism

Let us start by reformulating the time-independent Schrödinger equation,

Ĥ|Ψn〉 = En|Ψn〉, (4.1)

with the help of the projection operators.185,187 To this end, we insert the unity operator
1̂ = P̂ + Q̂ on both sides of (4.1), yielding

ĤP̂|Ψn〉+ ĤQ̂|Ψn〉 = EnP̂|Ψn〉+ EnQ̂|Ψn〉. (4.2)
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Multiplying the left side of (4.2) by P̂ and considering the relations P̂2 = P̂ and P̂Q̂ = 0,
we have that

P̂ĤP̂|Ψn〉+ P̂ĤQ̂|Ψn〉 = EnP̂|Ψn〉. (4.3)

Analogously, if we multiply the left side of (4.2) by Q̂ and make use of the corresponding
relations Q̂2 = Q̂ and Q̂P̂ = 0, we also have that

Q̂ĤP̂|Ψn〉+ Q̂ĤQ̂|Ψn〉 = EnQ̂|Ψn〉. (4.4)

The next step consists in finding a single equation for P̂|Ψn〉 in a similar shape to
the time-independent Schrödinger-equation. So, in order to eliminate Q̂|Ψn〉 from (4.3),
let us work out Eq. (4.4),

Q̂ĤP̂|Ψn〉+ Q̂ĤQ̂2|Ψn〉 = EnQ̂|Ψn〉. (4.5)

From rearranging and factoring out, it follows that

Q̂ĤP̂|Ψn〉 =
(
En − Q̂ĤQ̂

)
Q̂|Ψn〉. (4.6)

Thus, a formal solution with respect to Q̂|Ψn〉 reads

Q̂|Ψn〉 =
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂|Ψn〉. (4.7)

A further action of Q̂ results in

Q̂|Ψn〉 = Q̂
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂|Ψn〉. (4.8)

Note that, at this point, we have succeeded in isolating the therm Q̂|Ψn〉. Inserting (4.8)
into (4.3), we get a single equation for P̂|Ψn〉:[

P̂ĤP̂ + P̂ĤQ̂
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂

]
|Ψn〉 = EnP̂|Ψn〉. (4.9)

Splitting the Hamiltonian regarding the perturbation allows one to rewrite (4.9) as

P̂ĤP̂|Ψn〉+ P̂
(
Ĥ0 + λV̂

)
Q̂
(
En − Q̂ĤQ̂

)−1
Q̂
(
Ĥ0 + λV̂

)
P̂|Ψn〉 = EnP̂|Ψn〉. (4.10)

From the fact that Q̂Ĥ0P̂ = 0, we finally obtain

P̂
[
Ĥ + λV̂ Q̂

(
En − Q̂ĤQ̂

)−1
Q̂λV̂

]
P̂|Ψn〉 = EnP̂|Ψn〉. (4.11)

Equation (4.11) represents a single equation for P̂|Ψn〉, which represents the basis of the
Brillouin-Wigner perturbation theory.187

The resulting equation (4.11) has the form of a time-independent Schrödinger-
equation

P̂ĤeffP̂|Ψn〉 = EnP̂|Ψn〉, (4.12)
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with the effective Hamiltonian defined as

Ĥeff ≡ Ĥ + λ2V̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂V̂ . (4.13)

Another way to represent Ĥeff is

Ĥeff = Ĥ0 + λV̂ + λ2V̂ Q̂
(
En − Q̂Ĥ0Q̂ − λQ̂V̂ Q̂

)−1
Q̂V̂ . (4.14)

The resolvent
R̂(En) ≡

[
En − Q̂

(
Ĥ0 + λV̂

)
Q̂
]−1

(4.15)

can be written as a series expansion of λ in the following way:

R̂(En) =
(
En − Q̂Ĥ0Q̂

)−1 ∞∑
s=0

[
λQ̂V̂ Q̂

(
En − Q̂Ĥ0Q̂

)−1
]s
. (4.16)

Note the crucial property of (4.16): instead of the unperturbed energy eigenvalues E(0)
n , it

contains the full energy eigenvalues En.

Inserting (4.15) into (4.14), it follows that

Ĥeff = Ĥ0 + λV̂ + λ2V̂ Q̂R̂(En)Q̂V̂ . (4.17)

As λ approaches zero, it reproduces the unperturbed Schrödinger equation. The essential
property of (4.17) is, however, that En appears nonlinearly within the resolvent R̂(En),
Eq. (4.15).

Note that the first perturbative order λV̂ in (4.17) corresponds to the original
contribution of Ĥ. In contrast, all higher orders in (4.17) originate from the resolvent
term R̂(En). In particular, s = 0 gives the second perturbative order, s = 1 produces
the third perturbative order, and so on. This fundamental difference in the origins of
the perturbative orders was already evident in (4.2), where the term ĤP̂ gave rise to
the zeroth and the first perturbative orders, while the term ĤQ̂ gave rise to all higher
orders. In other words, the zeroth and the first perturbative orders are contained within
the Hilbert subspace P , while for all higher orders, the Hilbert subspace Q must be taken
into account.

Now, let us calculate the correction terms of the effective Hamiltonian up to λ4.
To do so, we evaluate the sum over s in the resolvent formula (4.16) up to second order,
s = 2. This way, Eq. (4.17) reads

Ĥeff =Ĥ0 + λV̂ + λ2V̂ Q̂R̂0(En)Q̂V̂ + λ3V̂ Q̂R̂0(En)Q̂V̂ Q̂R̂0(En)Q̂V̂
+ λ4V̂ Q̂R̂0(En)Q̂V̂ Q̂R̂0(En)Q̂V̂ Q̂R̂0(En)Q̂V̂ + · · · .

(4.18)

Here, we have introduced the unperturbed Hamiltonian resolvent

R̂0(En) ≡
(
En − Q̂Ĥ0Q̂

)−1
. (4.19)
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Now, let us represent the projection operators as P̂ = ∑
k∈P |Ψ

(0)
k 〉〈Ψ

(0)
k | and

Q̂ = ∑
l∈Q |Ψ

(0)
l 〉〈Ψ

(0)
l |. Using these relations, the matrix elements of the resolvent, Eq.

(4.19), yield
〈Ψ(0)

l |R̂0(En)|Ψ(0)
l 〉 = 1

En − E(0)
l

, (4.20)

where l ∈ Q. Taking into account (4.20) within Eq. (4.18), we obtain

Ĥeff =Ĥ0 + λV̂ + λ2 ∑
l∈Q

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂

En − E(0)
l

+ λ3 ∑
l,l′∈Q

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂(

En − E(0)
l

) (
En − E(0)

l′

)
+ λ4 ∑

l,l′,l′′∈Q

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂ |Ψ

(0)
l′′ 〉〈Ψ

(0)
l′′ |V̂(

En − E(0)
l

) (
En − E(0)

l′

) (
En − E(0)

l′′

) + · · · .
(4.21)

This representation of the effective Hamiltonian Ĥeff possesses no operator in the denomi-
nators, hence it can be used as a starting point for further calculations.

Now, we want to determine an equation for the perturbed energies En. To this end,
let us reformulate (4.12) according to

∑
k,k′∈P

|Ψ(0)
k 〉〈Ψ

(0)
k |Ĥeff |Ψ(0)

k′ 〉〈Ψ
(0)
k′ |Ψn〉 = En

∑
k′∈P
|Ψ(0)

k′ 〉〈Ψ
(0)
k′ |Ψn〉. (4.22)

Then, multiplying the left-hand side by 〈Ψ(0)
k |,∑

k,k′∈P
〈Ψ(0)

k |Ĥeff |Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ψn〉 = En

∑
k,k′∈P

〈Ψ(0)
k |Ψ

(0)
k′ 〉〈Ψ

(0)
k′ |Ψn〉, (4.23)

yields
〈Ψ(0)

k′ |Ψn〉
∑

k,k′∈P

(
〈Ψ(0)

k |Ĥeff |Ψ(0)
k′ 〉 − Enδk,k′

)
= 0. (4.24)

In order to obtain a nontrivial solution of (4.24), 〈Ψ(0)
k′ |Ψn〉 6= 0, we have to demand

det
(
〈Ψ(0)

k |Ĥeff |Ψ(0)
k′ 〉 − Enδk,k′

)
= 0, (4.25)

where the determinant in (4.25) is performed with respect to k, k′ ∈ P .

4.1.2 Specific cases

In the following, we specialize in the cases where the projection operator P̂ consists
of either one or two states.

4.1.2.1 One-state approach

Firstly, let us consider the special case where P̂ contains only one state, namely

P̂ ≡ |Ψ(0)
k 〉〈Ψ

(0)
k |. (4.26)
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In this case, where k = k′, and considering that k = n, Eq. (4.25) simplifies to

En = 〈Ψ(0)
n |Ĥeff |Ψ(0)

n 〉. (4.27)

Inserting (4.21) into (4.27), we have that

En =E(0)
n + λVn,n + λ2∑

l 6=n

Vn,lVl,n

En − E(0)
l

+ λ3 ∑
l,l′ 6=n

Vn,lVl,l′Vl′,n(
En − E(0)

l

) (
En − E(0)

l′

)
+ λ4 ∑

l,l′,l′′ 6=n

Vn,lVl,l′Vl′,l′′Vl′′,n(
En − E(0)

l

) (
En − E(0)

l′

) (
En − E(0)

l′′

) + · · · ,
(4.28)

where we have taken into account that 〈Ψ(0)
n |Ĥ0|Ψ(0)

n 〉 = E(0)
n and defined the matrix

elements according to Vi,j ≡ 〈Ψ(0)
i |V̂ |Ψ

(0)
j 〉.

Note that, due to the nonlinear appearance of En, (4.28) represents a self-consistency
equation for the energies En. Furthermore, we observe that, up to third order, every power
of λ consists of one single term. Since n 6= l, l′, l′′, the denominator does not vanish in any
situation, thus no divergence occurs in this perturbative representation of the perturbed
energies En.

4.1.2.2 Two-state approach

Now, let us consider the case where the projection operator P̂ is constituted of two
states:

P̂ ≡ |Ψ(0)
k 〉〈Ψ

(0)
k |+ |Ψ

(0)
k′ 〉〈Ψ

(0)
k′ |. (4.29)

Thus, (4.25) yields ∣∣∣∣∣∣Heff,k,k − En Heff,k,k′

Heff,k′,k Heff,k′,k′ − En

∣∣∣∣∣∣ = 0, (4.30)

with the matrix elements defined as Heff,i,j ≡ 〈Ψ(0)
i |Ĥeff |Ψ(0)

j 〉. Note that

Γ ≡
Heff,k,k Heff,k,k′

Heff,k′,k Heff,k′,k′

 (4.31)

represents a 2× 2 matrix, since the projection operator P̂ in (4.29) is composed of two
states.

4.2 Degenerate solutions of the mean-field Bose-Hubbard Hamiltonian

At the end of Chap. 3, by comparing Fig. 10 to Fig. 9, we have concluded that the
nondegenerate approach (dashed lines) yields a reasonable quantum phase boundary, but
an inconsistent condensate density, while the degenerate approach (dotted lines) yields an
improved result for the order parameter, but a worse quantum phase boundary. Therefore,
in order to handle both adequately, another approach is necessary. To this end, we stay
in the perturbative picture, which already succeeded in reproducing the quantum phase
boundary. So, in order to accurately calculate the order parameter, we will apply the
Brillouin-Wigner perturbation theory developed in Sec. 4.1 in the following.
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4.2.1 One-state approach

At first, we tackle our problem within the one-state approach of the Brillouin-
Wigner perturbation theory as specified in Sec. 4.1.2. To this end we consider a subspace
of the Hilbert space spanned by only one eigenstate of the Hamiltonian (3.8), |n〉. Hence,
its projection operator reads

P̂ = |n〉〈n|. (4.32)

The ground state energy is then identified as En = 〈Ψ(0)
n |Ĥeff |Ψ(0)

n 〉. From (4.28), up to
third order in λ, we have that

En =E(0)
n + λJzΨ∗Ψ + λ2J2z2Ψ∗Ψ

 n

En − E(0)
n−1

+ n+ 1
En − E(0)

n+1


+ λ3J3z3 (Ψ∗Ψ)2

 n(
En − E(0)

n−1

)2 + n+ 1(
En − E(0)

n+1

)2

 .
(4.33)

As already pointed out, let us emphasize that (4.33) represents a self-consistency equation
for En.

4.2.1.1 Quantum phase boundary

Now, we work out the mean-field quantum phase boundary within the one-
state approach of the Brillouin-Wigner perturbation theory. To this end, we evaluate
∂En (Ψ∗Ψ) / (Ψ∂Ψ∗), with En being the energy formula from the one-state approach up
to third order in λ according to (4.33).

We proceed by showing, in a general manner, that we can neglect all terms with
power higher than three in λ. To such a purpose, we can write down a generic structure of
En (En,Ψ∗Ψ) from Eq. (4.33):

En (En,Ψ∗Ψ) = α + Ψ∗Ψβ + Ψ∗Ψγ0

γ1 + Ψ∗Ψγ2
+
∞∑
m=2

(Ψ∗Ψ)m km
P (En,Ψ∗Ψ) . (4.34)

The coefficients α, β, γ0, γ1, γ2, and km are independent of Ψ∗Ψ, but they depend on En,
and P (En,Ψ∗Ψ) is a polynomial. Performing the differentiation of (4.34), we have that

1
Ψ
∂En (En,Ψ∗Ψ)

∂Ψ∗ =β + γ0γ1

(γ1 + Ψ∗Ψγ2)2

+
∞∑
m=2

(
m (Ψ∗Ψ)m−1 kmP

P 2 −(Ψ∗Ψ)m km
P 2

1
Ψ
∂P

∂Ψ∗

)
.

(4.35)

Therefore, the quantum phase boundary yields

1
Ψ
∂En (En,Ψ∗Ψ)

∂Ψ∗

∣∣∣∣∣∣
Ψ∗Ψ=0

= β + γ0

γ1
= 0. (4.36)
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Here, we see that all corrections from higher-order terms, λ > 2, can be neglected.
Consequently, the phase boundary does not change even if higher orders in λ are taken
into account.

Comparing (4.36) to the derivative of (4.33), we identify the relevant coefficients:

β =λJz, (4.37a)
γ0 =λ2J2z2

[
(2n+ 1)En + (n− 1)E(0)

n−1 − nE
(0)
n+1

]
, (4.37b)

γ1 =
(
En − E(0)

n+1

) (
En − E(0)

n−1

)
. (4.37c)

Inserting them into (4.36), we obtain

1
Ψ
∂En (Ψ∗Ψ)

∂Ψ∗

∣∣∣∣∣∣
Ψ∗Ψ=0

= λJz + λ2z2En − E
(0)
n−1 + 2nEn − nE(0)

n+1 + nE
(0)
n−1(

En − E(0)
n+1

) (
En − E(0)

n−1

) . (4.38)

Thus, from (4.38) = 0, we achieve the mean-field quantum phase boundary condition

Jz

U
= − 1

λU

(
En − E(0)

n+1

) (
En − E(0)

n−1

)
En − E(0)

n−1 + 2nEn − nE(0)
n+1 − nE

(0)
n−1

, (4.39)

which turns out to be identical to the one obtained from RSPT in Fig. 10 (dashed orange
line).

4.2.1.2 Energy and condensate density

In order to calculate the energy and the condensate density within the one-state
approach, we make use of ∂En/ (Ψ∂Ψ∗) = 0 from (4.33),

0 =
(
En − E(0)

n−1

)2 (
En − E(0)

n+1

)2
+ λJz

[
n
(
En − E(0)

n−1

) (
En − E(0)

n+1

)2

+ (n+ 1)
(
En − E(0)

n−1

)2 (
En − E(0)

n+1

)]
+ 2λ2J2z2Ψ∗Ψ

[
n
(
En − E(0)

n+1

)2
+ (n+ 1)

(
En − E(0)

n−1

)2
]
,

(4.40)

and Eq. (4.33) itself up to second order in λ,

0 =
(
En − E(0)

n−1

) (
En − E(0)

n+1

) (
E(0)
n − En + λJzΨ∗Ψ

)
+ λ2J2z2Ψ∗Ψ

[
n
(
En − E(0)

n+1

)
+ (n+ 1)

(
En − E(0)

n−1

)]
.

(4.41)

Both (4.40) and (4.41) are now used to calculate the ground state energy En and the
condensate density Ψ∗Ψ.

The corrections on the energy are obtained by subtracting the unperturbed energy
from the perturbed energy. From zeroth to second order, the corrections amount to +1.08%.
From second to fourth order, the corrections are −0.05%. Furthermore, from fourth to
sixth order, the corrections add up to −0.18%. Note that for higher values of Jz/U the
convergence turns out to be slower.
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Figure 11 – Condensate density from the one-state approach for n = 1 (negative ε/U ,
purple squares) and n = 2 (positive ε/U , red circles), with the hopping
strength of Jz/U = 0.08.

Source: KÜBLER et al.185

The condensate density Ψ∗Ψ follows from iteratively solving both (4.40) and (4.41).
The results are plotted in Fig. 11 for µ = Un+ ε, λ = 1, and Jz/U = 0.08. We observe
that the order parameter obtained from the Brillouin-Wigner perturbation theory for the
one-state approach according to Fig. 11 is better than the one obtained from Rayleigh-
Schrödinger perturbation theory, where the order parameter vanishes at the degeneracy,
as in Fig. 9. Nevertheless, the order parameter depicted in Fig. 11 is discontinuous at
ε/U = 0. Therefore, we conclude that it does not represent a physically acceptable result.

4.2.2 Two-state approach

In the following, we will consider the degenerate Hilbert subspace composed of two
states, |Ψ(0)

n 〉 and |Ψ
(0)
n+1〉. This choice is motivated due to the degeneracy present between

two consecutive Mott lobes in the zero-temperature phase diagram of the Bose-Hubbard
model. Any state vector is projected into the referred subspace through the projection
operator

P̂ = |n〉〈n|+ |n+ 1〉〈n+ 1|. (4.42)

4.2.2.1 Quantum phase boundary

In order to calculate the mean-field quantum phase boundary via the two-state
approach, we start by evaluating the entries of the matrix (4.31). Up to fourth order, they
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read

Γ1,1 =E(0)
n + λJzΨ∗Ψ + λ2 J2z2Ψ∗Ψn

En − E(0)
n−1 − λJzΨ∗Ψ

(4.43a)

+ λ4 J4z4(Ψ∗Ψ)2n (n− 1)(
En − E(0)

n−1 − λJzΨ∗Ψ
)2 (

En − E(0)
n−2 − λJzΨ∗Ψ

) , (4.43b)

Γ1,2 = Γ∗2,1 = −λJzΨ∗
√
n+ 1, (4.43c)

Γ2,2 =E(0)
n+1 + λJzΨ∗Ψ + λ2 J2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2 − λJzΨ∗Ψ

(4.43d)

+ λ4 J4z4(Ψ∗Ψ)2 (n+ 2) (n+ 3)(
En − E(0)

n+2 − λJzΨ∗Ψ
)2 (

En − E(0)
n+3 − λJzΨ∗Ψ

) . (4.43e)

To calculate the phase boundary, we perform

1
Ψ
∂ |Γ− IEn|

∂Ψ∗

∣∣∣∣∣∣
Ψ∗Ψ=0

=λJz
[(
E(0)
n − En

)
+
(
E

(0)
n+1 − En

)
− λJz (n+ 1)

]

+ λ2J2z2

(n+ 2)
(
E(0)
n − En

)
En − E(0)

n+2
+
n
(
E

(0)
n+1 − En

)
En − E(0)

n−1

 = 0,
(4.44)

resulting in

Jz

U
=

−
(
2En − E(0)

n − E
(0)
n+1

) (
En − E(0)

n+2

) (
En − E(0)

n−1

)
λnU

(
En − E(0)

n+1

) (
En − E(0)

n+2

)
+ λU

[
(n+ 1)

(
En − E(0)

n+2

)
+ (n+ 2)

(
En − E(0)

n

)] ,
(4.45)

which is the mean-field phase boundary. All higher-order corrections drop out of the
formula if we set Ψ∗Ψ = 0. Thus, the phase boundary does not change even if higher
orders in λ are taken into account. To determine the perturbed energies En, we calculate
the determinant of Γ− IEn and set Ψ∗Ψ = 0, which is effectively equivalent to calculate
the matrix up to zeroth order. Hence, the roots of

det (Γ− IEn) =
(
E(0)
n − En

) (
E

(0)
n+1 − En

)
= 0 (4.46)

are given by En = E(0)
n and En = E

(0)
n+1. Consequently, the mean-field phase boundary

(4.45) calculated with λ = 1 agrees with the previous result from Eq. (4.39). By using
the explicit forms of the unperturbed energies (3.35a) together with µ = U + ε, the two
possible solutions for the perturbed energies are given by

E1

U
= E

(0)
1 = −

(
1 + ε

U

)
, (4.47)

and
E1

U
= E

(0)
2 = −

(
1 + 2ε

U

)
. (4.48)

These two energies are depicted in Fig. 8 and they yield the corresponding lowest energies
within the first and the second Mott lobes, i.e., for −1 < ε/U < 0, E1 is the minimal
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energy, while for 0 < ε/U < 1, E2 turns into the lowest one. Therefore, in order to
evaluate the phase boundary, we insert (4.47) and (4.48) into (4.45). According to Fig.
8, we conclude that E1 gives rise to the first lobe, while E2 gives rise to the second one,
originating the Mott-lobe structure from Fig. 10.

4.2.2.2 Energy and particle density

Now, we proceed to numerically calculating the perturbed ground state energies
En from the two conditions

det (Γ− IEn) = 0, (4.49a)
1
Ψ
∂ |Γ− IEn|

∂Ψ∗ = 0, (4.49b)

with the Γ entries given by (4.43). The perturbed ground state energy En is then determined
by iteratively solving both (4.49a) and (4.49b), resulting in Fig. 12, where the ground
state energy En is depicted as a function of the chemical potential. The calculation
corresponds to λ = 1. Note that, as we are evaluating the superfluid energy, the missing
data corresponds to Mott insulating regions.
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Figure 12 – Perturbed ground state energies En/U up to O (λ4) between the Mott lobes,
inside the superfluid regions, for three different hopping values: Jz/U = 0.02
(red circles), Jz/U = 0.08 (blue crosses), and Jz/U = 5− 2

√
6 ≈ 0.101 (green

rings). At Jz/U = 5− 2
√

6, the second lobe achieves its tip. (a) Superfluid
energies between the first two Mott lobes. For a better visualization, the
linear equation 0.15 + 1.55µ/U , which scales the outmost points of the green
plot to zero, is added to the energy. (b) Zoomed region centered around the
degeneracy by introducing µ = U + ε. For a better visualization, the linear
equation 1.15 + 1.66ε/U , which scales the outmost points of the green plot to
zero, is added to the energy.

Source: KÜBLER et al.185

Now, we proceed to calculating the particle densities regarding both the superfluid
and the Mott insulator. As we have already explained, a fundamental feature of the Mott
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insulator phase is its integer occupation number, i.e., the particle densities for the Mott
insulator regions are n = 1 within the first lobe, n = 2 within the second one, and so on.
Within the superfluid regions, the particle densities must be evaluated from the previously
calculated energies via −∂En/∂µ. Therefore, by doing so, we achieve the results depicted
in Fig. 13 for two different hopping values. We can observe the effect that the increase of
the hopping produces on the curves, they become smoother. Such an outcome has a clear
interpretation: the increase of the hopping has a direct consequence on the single-particle
energies, also increasing them, thus boosting the probabilities of the particles to hop from
one site to a neighboring one. Consequently, the on-site characteristic occupation number
changes from an integer value to a real one.
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Figure 13 – Particle densities −∂En/∂µ as functions of the chemical potential µ/U ac-
cording to the corresponding hopping values. Horizontal lines correspond
to Mott-insulating regions, while ascending curves correspond to superfluid
regions. The higher the hopping, the rounder the curves become.

Source: KÜBLER et al.185

4.2.2.3 Condensate density

The corresponding results for the condensate densities Ψ∗Ψ are presented in Figs.
14 and 15. The data start at the phase boundary on the first Mott lobe, n = 1, and end at
the phase boundary on the second Mott lobe, n = 2. Note that these different values of
the occupation number n are taken into account by the structure of the matrix entries
(4.43). Thus, evaluating the matrix elements with n = 1, we get the physical results for
the right half of the Mott lobe, while for the left half of the Mott lobe we must perform
the calculation with n = 2. Also, we observe that every corresponding condensate density
data has a maximum at ε/U > 0.

Fig. 14 shows the condensate density Ψ∗Ψ over ε/U for two different hopping
values and for four different orders in λ. As we can observe, the relative error between the
condensate densities from O (λ4) and O (λ6) is about 0.0016%, justifying the truncation
of the perturbative series to fourth order in λ.
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Figure 14 – Condensate densities as functions of ε/U = µ/U − 1 according to the corre-
sponding hopping values. The curve styles correspond to, from the top to the
bottom, the following corrections: O (λ) (red circles), O (λ2) (blue squares),
O (λ3) (green rings), and O (λ4) (purple triangles). For small values of Jz/U ,
and thus close to the degeneracy, the third- (green rings) and fourth-order
(purple triangles) data coincide.

Source: KÜBLER et al.185
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Figure 15 – Condensate densities Ψ∗Ψ as functions of ε/U = µ/U − 1 up to O (λ4)
between the first and the second Mott lobes for different hopping values: from
Jz/U = 0.01 (innermost points) until Jz/U = 0.20 (outermost points) with a
step size of 0.01.

Source: KÜBLER et al.185

Fig. 15 illustrates the condensate densities Ψ∗Ψ as functions of ε/U for twenty
different hopping strengths. Considering the hopping values from Jz/U = 0.01 (pink
dots) to Jz/U = 0.09 (purple dots), the data behave very similarly to parabolas. For
Jz/U = 5− 2

√
6 ≈ 0.101 (blue dots), the second Mott lobe achieves its tip, and the data

touches the ε/U axis at positive ε/U . From Jz/U = 0.11 (pink dots) up to Jz/U = 0.16
(brown dots), considering the region of positive ε/U , the data present a minimum, while for
the negative ε/U region, the data intersect the corresponding axis. For Jz/U = 3− 2

√
2 ≈
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0.172 (orange dots), which corresponds to the tip of the first lobe, the data touches the
ε/U axis at negative ε/U. From Jz/U = 0.18 (red dots) up to Jz/U = 0.20 (blue dots),
for which the system is found to be deeply in the superfluid phase, the whole graph is
monotonically increasing. Finally, note that this is a representation of the condensate
density Ψ∗Ψ that provides nonzero and continuous results at the degeneracy, an outcome
that was not obtained by the Rayleigh-Schrödinger perturbation theory (see Fig. 9) nor
by the Brillouin-Wigner one-state approach (see Fig. 11). Therefore, we conclude that the
condensate density out of the Brillouin-Wigner two-state approach is the most appropriate
choice and is the one that should be used for further calculations.

4.2.2.4 Comparison

By comparing our developed BWPT to the numerical diagonalization of the Bose-
Hubbard Hamiltonian performed in M. Kübler et al. (2019)185, we find a good convergence
at small hoppings. In Fig. 16, the uppermost curve (blue line) stems from the numerical
calculation, while the remaining curves correspond to different orders from the BWPT.
As we can observe, the one-state energy is quasi-exact at small hopping values. Moreover,
as the energies from the one-state and the two-state approaches coincide, the two-state
approach energy can also be considered as quasi-exact within the small hopping regime.
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Figure 16 – Ground-state energy E1 out of the one-state approach for µ = 0.7U . From
top to bottom, the curves represent the numerical diagonalization calculation
(blue line) as well as the perturbative analytical calculations up to O (λ6)
(yellow line), O (λ4) (red line), and O (λ2) (green line). Here, Ns represents
the number of lattice sites and F stands for the zero-temperature free energy.

Source: KÜBLER et al.185

4.3 Graphical approach

In order to evaluate (4.30), it is mandatory to evaluate the matrix elements (4.31).
It is possible to observe from the effective Hamiltonian form in Eq. (4.21) that, for higher
orders in λ, there is an increase in the algebraic difficulty in calculating such terms. So,
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for the sake of simplifying the evaluation of higher-order terms of (4.21), we work out an
efficient graphical approach.

In particular, for the mean-field Hamiltonian (3.7), we work out, within the two-
state approach, a graphical representation for the jth-order terms H(j)

eff,k,k′ according to
the expansion

Heff,k,k′ =
∑
j

H
(j)
eff,k,k′ , (4.50)

which is depicted in Fig. 17. The first row of Fig. 17 represents the orders in λ for the
respective correction terms. In the first column we have different states ranging from n− 3
to n+ 4. Within the two-state matrix approach we choose P̂ = P̂n + P̂n+1, once there is a
degeneracy between two consecutive Mott lobes in the zero-temperature phase diagram of
the Bose-Hubbard model.

Figure 17 – Graphical approach for the matrix elements (4.31) from the effective Hamil-
tonian (4.21) for the Bose-Hubbard mean-field Hamiltonian (3.7) up to fifth
order in the hopping term for the two-state approach.

Source: KÜBLER et al.185

In order to obtain all possible graphs in Fig. 17, we have to take into account the
following empirical rules:

1. Since V̂ is linear in â and â† in Eq. (3.9), we can only go from one state to one of its
nearest-neighbor states;

2. Because the effective Hamiltonian Ĥeff in (4.13) contains only the projection oper-
ator Q̂, but it is sandwiched by the projection operator P̂ according to (4.12), it
follows that only the first and the last states are allowed to be within P , while the
intermediate states must be contained in Q.

We interpret each graph according to the following rules:

• The starting point of every graph corresponds to

S (m) = En − E(0)
m , (4.51)

with m being the state we start the graph in.
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• Every line in the graph corresponds to the following terms. Ascending lines correspond
to

LA (m) = −λJzΨ
√
m+ 1

En − E(0)
m

, (4.52)

with m being the state the line started in.

• Descending lines correspond to

LD (m) = −λJzΨ∗
√
m

En − E(0)
m

. (4.53)

• Horizontal lines correspond to

LH(m) = λJzΨ∗Ψ
En − E(0)

m

. (4.54)

The off-diagonal matrix elements vanish for all orders except for O(λ):

H
(1)
eff,n,n+1 = S(n+ 1)LD(n+ 1) = −λJzΨ∗

√
n+ 1, (4.55)

H
(1)
eff,n+1,n = S(n)LA(n) = −λJzΨ

√
n+ 1. (4.56)

Now we proceed to evaluating the diagonal matrix elements for ascending orders of
λ. For O(λ) we have

H
(1)
eff,n,n = S(n+ 1)LH(n+ 1) = λJzΨ∗Ψ, (4.57)

H
(1)
eff,n+1,n+1 = S(n)LH(n) = λJzΨ∗Ψ. (4.58)

For O(λ2) we have, correspondingly,

H
(2)
eff,n,n = S(n+ 1)LA(n+ 1)LD(n+ 2) = λ2J2z2Ψ∗Ψ n+ 2

En − E(0)
n+2

(4.59)

and
H

(2)
eff,n+1,n+1 = S(n)LD(n)LA(n− 1) = λ2J2z2Ψ∗Ψ n

En − E(0)
n−1

. (4.60)

For O(λ3) one obtains

H
(3)
eff,n,n = S(n+ 1)LA(n+ 1)LH(n+ 2)LD(n+ 2) = λ3J3z3Ψ∗2Ψ2 n+ 2(

En − E(0)
n+2

)2 (4.61)

together with

H
(3)
eff,n+1,n+1 = S(n)LD(n)LH(n− 1)LA(n− 1) = λ3J3z3Ψ∗2Ψ2 n(

En − E(0)
n−1

)2 . (4.62)

For O(λ4) we find

H
(4)
eff,n,n = S(n+ 1)LA(n+ 1) [LA(n+ 2)LD(n+ 3) + LH(n+ 2)LH(n+ 2)]LD(n+ 2)

= λ4J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

) + λ4J4z4Ψ∗3Ψ3 n+ 2(
En − E(0)

n+2

)3

(4.63)
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and

H
(4)
eff,n+1,n+1 = S(n)LD(n) [LD(n− 1)LA(n− 2) + LH(n− 1)LH(n− 1)]LA(n− 1)

= λ4J4z4Ψ∗2Ψ2 n (n− 1)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

) + λ4J4z4Ψ∗3Ψ3 n(
En − E(0)

n−1

)3 .

(4.64)
Finally, the fifth column, corresponding to O(λ5), results in

H
(5)
eff,n,n =S(n+ 1)LA(n+ 1) [LA(n+ 2)LH(n+ 3)LD(n+ 3)

+ LH(n+ 2)LH(n+ 2)LH(n+ 2)
+ 2LA(n+ 2)LD(n+ 3)LH(n+ 2)]LD(n+ 2)

=λ5J5z5Ψ∗3Ψ3 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)2

+ 2λ5J5z5Ψ∗3Ψ3 (n+ 2) (n+ 3)(
En − E(0)

n+2

)3 (
En − E(0)

n+3

)
+ λ5J5z5Ψ∗4Ψ4 n+ 2(

En − E(0)
n+2

)4 ,

(4.65)

together with

H
(5)
eff,n+1,n+1 =S(n)LD(n) [LD(n− 1)LH(n− 2)LA(n− 2)

+ LH(n− 1)LH(n− 1)LH(n− 1)
+ 2LD(n− 1)LA(n− 2)LH(n− 1)]LA(n− 1)

=λ5J5z5Ψ∗3Ψ3 n (n− 1)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)2

+ 2λ5J5z5Ψ∗3Ψ3 n (n− 1)(
En − E(0)

n−1

)3 (
En − E(0)

n−2

)
+ λ5J5z5Ψ∗4Ψ4 n(

En − E(0)
n−1

)4 .

(4.66)

4.4 Harmonic trap

In view of actual experiments, we consider now the impact of a harmonic confinement
upon the equation of state. Although most traps in experiments have an ellipsoidal
shape, for simplicity we perform calculations regarding the case of a spherical trap.185 In
order to add a trap to our calculations, we have to perform the so-called Thomas-Fermi
approximation188,189

µ = µ̃− 1
2mω

2r2. (4.67)

Here, m denotes the mass of the particles and ω stands for the trap frequency. Thus, the
chemical potential is now consisting of a trap term and the original chemical potential µ̃.
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This strategy effectively gives rise to the same curves as in Fig. 13. We identify
µ̃max as being the center of the trap, while its borders are identified by the vanishing points
of the condensate density. In between, we have Mott insulating and superfluid regions,
which produce, in a three-dimensional trap, a wedding-cake structure with alternating
Mott insulating and superfluid shells.86,89,190

In order to identify the curves from Fig. 13 with a real experimental setting, we have
to determine µ̃. This can done by integrating the curves from Fig. 13. Such a procedure
results in a curve for the total number of particles, which allows one to determine the
corresponding value of µ̃. Thus, the number of particles reads

Nµi,µo = − 1
a3

∫ ∂En
∂µ

d3r = −4π
a3

∫ Ro

Ri
r2∂En
∂µ

dr, (4.68)

where the radii Ri and Ro are the inner and the outer radius of the shell that we want
to compute, respectively. Here, a is the lattice spacing. The following calculation is done
for Jz/U = 0.101 and 2 ≤ n ≤ 3 (see Fig. 13, 1.69 ≤ µ/U ≤ 2.15), which is just the
innermost superfluid shell. Hence, from the solution for the energies En, we have that the
integration argument yields

N1.69,2.15 = −4π
a3

∫ R3

R2
r2
[
13− 38 µ

U
+ 37

(
µ

U

)2
− 18

(
µ

U

)3
+ 4

(
µ

U

)4
− 0.4

(
µ

U

)5
]
dr,

(4.69)
with

R3 =
√

2(µ̃− 2.15U)
mω2 , (4.70a)

R2 =
√

2(µ̃− 1.69U)
mω2 . (4.70b)

The last step consists of inserting (4.67) into (4.69) and perform the integration.
The same procedure must be repeated for all other regions of Fig. 13, namely, N1.23,1.69,
N0.82,1.23, N0.10,0.82, and N−0.08,0.10, which represent the remaining superfluid and Mott
insulating shells, respectively. Then, the total number of particles is obtained by summing
all these contributions,

N = N−0.08,0.10 +N0.10,0.82 +N0.82,1.23 +N1.23,1.69 +N1.69,2.15. (4.71)

The resulting equation of state N = N(µ̃) is shown in Fig. 18. For small values of µ̃,
the particle number rapidly vanishes. Thus, we conclude that, for a given µ̃, the minimal
particle number is not achieved for Jz/U = 0, where all particles are in the Mott insulator
phase, nor for Jz/U > 0.172, where all particles are in the superfluid phase. Instead,
the minimal particle number is achieved for a specific distribution of Mott insulator and
superfluid, represented by a corresponding hopping value Jz/U , which can be determined
by the methods introduced here.
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Figure 18 – Equations of state N = N(µ̃) for the following parameters: m = 87u, a =
400nm, and ω = 48πHz. From left to right, the hopping values are: Jz/U =
0.02 (dashed red line), Jz/U = 0.101 (dotted green line), and Jz/U = 0.08
(continuous blue line).

Source: KÜBLER et al.185
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5 THE SYSTEM AT FINITE TEMPERATURE

In this chapter, we introduce the finite-temperature degenerate perturbation theory
(FTDPT) method, which consists of a degenerate perturbative calculation making use of
projection operators. From the developed FTDPT, we evaluate the condensate densities
for different temperatures and hopping values. Following, we turn our attention to a
region between two consecutive Mott lobes, which is a region in the phase diagram where
the superfluid clearly dominates and also a region where the NDPT fails at very low
temperatures, i.e., it predicts a phase transition, even though there should be none. Then,
we compare the results from NDPT and FTDPT in order to corroborate the results from
our developed method. Finally, we calculate the particle densities for different temperatures
and hopping values, observing the existence of the melting of the structure due to both
the temperature and the hopping increase.

5.1 The projection operators method

We begin by considering two adjacent degenerate states |n〉 and |n+ 1〉. Firstly,
we let us define the subspace of the Hilbert space in which those two state are located, P .
Then, the projection operator that allows us to access the respective Hilbert subspace is
given by

P̂ ≡ |n〉〈n|+ |n+ 1〉〈n+ 1|. (5.1)

Likewise, we define the complementary Hilbert subspace, Q, in which all the remaining
states are located. Thus, the corresponding complementary operator is defined as

Q̂ ≡
∑
m/∈P
|m〉〈m|. (5.2)

Let us begin our analysis by considering the one-site mean-field Hamiltonian (3.7)
and regard, as in Sec. 3.2.1, the hopping term (3.9) as a perturbation in (3.8). Multiplying
both sides of the perturbation by the identity operator, 1̂ = P̂ + Q̂, we have that

Ĥ = Ĥ0 +
(
P̂ + Q̂

)
V̂
(
P̂ + Q̂

)
= Ĥ0 + P̂V̂ P̂ + P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂.

(5.3)

This procedure allows us to define a new unperturbed Hamiltonian and a new perturbation
according to

Ĥ0 ≡ Ĥ0 + P̂V̂ P̂ , (5.4a)
V̂ ≡ P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂. (5.4b)
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The Hamiltonian (5.4a), written in the basis of the unperturbed eigenstates, is a
block diagonal matrix, whose only non-diagonal block is

Ĥ(nd)
0 =

 En −JzΨ
√
n+ 1

−JzΨ∗
√
n+ 1 En+1

 . (5.5)

Its eigenvalues and eigenstates are respectively given by

E± = En + En+1

2 ± 1
2
[
(En − En+1)2 + 4J2z2|Ψ|2 (n+ 1)

]1/2
, (5.6a)

|Φ±〉 =
[
1 + |E± − En|2

J2z2|Ψ|2 (n+ 1)

]−1/2 |n〉+ En − E±
Jz
√
|Ψ|2 (n+ 1)

|n+ 1〉
 . (5.6b)

Note that we have dropped out the index (0) for the unperturbed eigenenergies that were
used all along Chap. 4 for the sake of simplicity. Therefore, keep in mind that we use En
instead of E(0)

n throughout the entire current chapter.

As pointed out in Sec. 3.2.1, we must evaluate the partition function (3.11) in order
to calculate the free energy (3.32). The only difference is that now we are working with
the new unperturbed Hamiltonian (5.4a) and the new perturbation (5.4b). With this, the
time-evolution operator now reads

Û = e−βĤ0ÛI. (5.7)

The respective Schrödinger equation for the time-evolution operator in the interaction
picture is given by

d ÛI(τ)
dτ

= −V̂I(τ)ÛI(τ), (5.8)

where
V̂I(τ) = eτĤ0

(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τĤ0 . (5.9)

The solution of equation (5.8) with the initial condition ÛI(0) = 1̂, is given by, up
to second order,

ÛI(β) ≈ 1̂−
∫ β

0
dτ1V̂I(τ1) +

∫ β

0
dτ1

∫ τ1

0
dτ2V̂I(τ1)V̂I(τ2). (5.10)

Evaluating the partition function Z = Tr
[
e−βĤ0ÛI(β)

]
, we have

Z = e−βE+〈Φ+|ÛI(β)|Φ+〉+ e−βE−〈Φ−|ÛI(β)|Φ−〉+
∑
m∈Q

e−βEm〈m|ÛI(β)|m〉. (5.11)

Considering only the zeroth-order term from (5.10) into (5.11) yields

Z(0) = e−βE+ + e−βE− +
∑
m∈Q

e−βEm . (5.12)

Furthermore, from (3.9), (5.9), and (5.4b), we read off that the first-order contribution in
(5.11) must vanish.
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Now we proceed to performing the calculation of the second-order term,

Z(2) = e−βE+
∫ β

0
dτ1

∫ τ1

0
dτ2 〈Φ+|V̂I(τ1)V̂I(τ2)|Φ+〉

+ e−βE−
∫ β

0
dτ1

∫ τ1

0
dτ2 〈Φ−|V̂I(τ1)V̂I(τ2)|Φ−〉

+
∑
m∈Q

e−βEm
∫ β

0
dτ1

∫ τ1

0
dτ2 〈m|V̂I(τ1)V̂I(τ2)|m〉.

(5.13)

We shall calculate each term separately and identify them as Z(2) = Z(2)
+ +Z(2)

− +Z(2)
m . As

the evaluation of Z(2)
+ and Z(2)

− are completely equivalent, we perform a generic calculation
for both contributions. Inserting the expression of the interaction-picture perturbation,
(5.9), into the first term, we have

Z(2)
± = e−βE±

∫ β

0
dτ1

∫ τ1

0
dτ2 〈Φ±|eτ1Ĥ0

(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τ1Ĥ0

×eτ2Ĥ0
(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τ2Ĥ0|Φ±〉.

(5.14)

As |Φ±〉 are eigenstates of Ĥ0, we get

Z(2)
± = e−βE±

∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)E±〈Φ±|

(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τ1Ĥ0

×eτ2Ĥ0
(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
|Φ±〉.

(5.15)

Also, from the projection relations Q̂|Φ±〉 = 0 and P̂|Φ±〉 = |Φ±〉, and having in mind
that Q̂ and P̂ are hermitian operators, (5.15) reduces to

Z(2)
± = e−βE±

∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)E±〈Φ±|V̂ Q̂e−τ1Ĥ0eτ2Ĥ0Q̂V̂ |Φ±〉. (5.16)

From (3.9), (5.6b), and the scalar products

〈n|Φ±〉 =
[
1 + |E± − En|2

J2z2 |Ψ|2 (n+ 1)

]−1/2

, (5.17a)

〈n+ 1|Φ±〉 =
[
1 + |E± − En|2

J2z2 |Ψ|2 (n+ 1)

]−1/2
En − E±

Jz
√
|Ψ|2 (n+ 1)

, (5.17b)

we have that

Z(2)
± = e−βE±

∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)E±J2z2

(
Ψ〈Φ±|n〉

√
n〈n− 1|

+Ψ∗〈Φ±|n+ 1〉
√
n+ 2〈n+ 2|

)
e−τ1Ĥ0eτ2Ĥ0

×
(
Ψ∗〈n|Φ±〉

√
n|n− 1〉+ Ψ〈n+ 1|Φ±〉

√
n+ 2|n+ 2〉

)
.

(5.18)

Thus, evaluating (5.18) leads to

Z(2)
± = J2z2|Ψ|2e−βE±

∫ β

0
dτ1

∫ τ1

0
dτ2

(
e(τ1−τ2)∆±,n−1n

∣∣∣〈Φ±|n〉∣∣∣2
+e(τ1−τ2)∆±,n+2(n+ 2)

∣∣∣〈Φ±|n+ 1〉
∣∣∣2) , (5.19)
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where we have introduced the abbreviation ∆i,± ≡ Ei − E±. Finally, performing the
integrations in (5.19), the term Z(2)

± results in

Z(2)
± = J2z2|Ψ|2e−βE±

[
n
∣∣∣〈Φ±|n〉∣∣∣2

(
eβ∆±,n−1 − 1

∆2
±,n−1

− β

∆±,n−1

)

+(n+ 2)
∣∣∣〈Φ±|n+ 1〉

∣∣∣2 (eβ∆±,n+2 − 1
∆2
±,n+2

− β

∆±,n+2

)]
.

(5.20)

The last term to be calculated is Z(2)
m . The first steps of this calculation are similar

to those from the evaluation of Z(2)
± . Therefore, we have

Z(2)
m =

∑
m∈Q

e−βEm
∫ β

0
dτ1

∫ τ1

0
dτ2 〈m|eτ1Ĥ0

(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τ1Ĥ0

× eτ2Ĥ0
(
P̂V̂ Q̂+ Q̂V̂ P̂ + Q̂V̂ Q̂

)
e−τ2Ĥ0|m〉

=
∑
m∈Q

e−βEm
∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)Em〈m|V̂ e−τ1Ĥ0eτ2Ĥ0V̂ |m〉

=J2z2 ∑
m∈Q

e−βEm
∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)Em

(
Ψ
√
m〈m− 1|+ Ψ∗

√
m+ 1〈m+ 1|

)
× e−τ1Ĥ0eτ2Ĥ0

(
Ψ∗
√
m|m− 1〉+ Ψ

√
m+ 1|m+ 1〉

)
.

(5.21)
Applying the exponential operators to the eigenstates, we are left with

Z(2)
m = J2z2 ∑

m∈Q
e−βEm

∫ β

0
dτ1

∫ τ1

0
dτ2 e(τ1−τ2)Em

×
[
Ψ
√
m
(

e−τ1E+〈m− 1|Φ+〉〈Φ+|+ e−τ1E−〈m− 1|Φ−〉〈Φ−|

+
∑
m′∈Q

e−τ1Em′ 〈m− 1|m′〉〈m′|
)

+ Ψ∗
√
m+ 1

(
e−τ1E+〈m+ 1|Φ+〉〈Φ+|

+ e−τ1E−〈m+ 1|Φ−〉〈Φ−|+
∑
m′′∈Q

e−τ1Em′′ 〈m+ 1|m′′〉〈m′′|
)]

×
[
Ψ∗
√
m
(

eτ2E+〈Φ+|m− 1〉|Φ+〉+ eτ2E−〈Φ−|m− 1〉|Φ−〉

+
∑

m′′′∈Q
eτ2Em′′′ 〈m′′′|m− 1〉|m′′′〉

)
+ Ψ
√
m+ 1

(
eτ2E+〈Φ+|m+ 1〉|Φ+〉

+ eτ2E−〈Φ−|m+ 1〉|Φ−〉+
∑

m′′′′∈Q
eτ2Em′′′′ 〈m′′′′|m+ 1〉|m′′′′〉

)]
.

(5.22)

When we evaluate the multiplication among the terms between brackets, we must be
aware of the fact that the cross terms, i.e., those that contain Ψ2 or Ψ∗2 vanish since they
contain the products 〈m− 1|Φ±〉 and 〈m+ 1|Φ±〉, which cannot be both non-zero because
it is not possible that m+ 1 and m− 1 be simultaneously equal to n or n+ 1. With this,
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we have that

Z(2)
m = J2z2|Ψ|2

∑
m∈Q

e−βEm
∫ β

0
dτ1

∫ τ1

0
dτ2

me(τ1−τ2)∆m,+
∣∣∣〈Φ+|m− 1〉

∣∣∣2
+me(τ1−τ2)∆m,−

∣∣∣〈Φ−|m− 1〉
∣∣∣2 +m

∑
m′∈Q

e(τ1−τ2)∆m,m′
∣∣∣〈m− 1|m′〉

∣∣∣2
+ (m+ 1)e(τ1−τ2)∆m,+

∣∣∣〈Φ+|m+ 1〉
∣∣∣2 + (m+ 1)e(τ1−τ2)∆m,−

∣∣∣〈Φ−|m+ 1〉
∣∣∣2

+ (m+ 1)
∑
m′′∈Q

e(τ1−τ2)∆m,m′′
∣∣∣〈m+ 1|m′′〉

∣∣∣2
.

(5.23)

Finally, the integrations lead to

Z(2)
m = J2z2|Ψ|2

∑
m∈Q

e−βEm
m∣∣∣〈Φ+|m− 1〉

∣∣∣2
eβ∆m,+ − 1

∆2
m,+

− β

∆m,+


+m

∣∣∣〈Φ−|m− 1〉
∣∣∣2
eβ∆m,− − 1

∆2
m,−

− β

∆m,−


+m

∑
m′∈Q

eβ∆m,m′ − 1
∆2
m,m′

− β

∆m,m′

∣∣∣〈m− 1|m′〉
∣∣∣2

+ (m+ 1)
∣∣∣〈Φ+|m+ 1〉

∣∣∣2
eβ∆m,+ − 1

∆2
m,+

− β

∆m,+


+ (m+ 1)

∣∣∣〈Φ−|m+ 1〉
∣∣∣2
eβ∆m,− − 1

∆2
m,−

− β

∆m,−


+ (m+ 1)

∑
m′′∈Q

eβ∆m,m′′ − 1
∆2
m,m′′

− β

∆m,m′′

∣∣∣〈m+ 1|m′′〉
∣∣∣2
.

(5.24)

Combining the contributions (5.20) and (5.24), the second-order term of the
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partition function reads

Z(2) = J2z2|Ψ|2e−βE+

n∣∣∣〈Φ+|n〉
∣∣∣2
eβ∆+,n−1 − 1

∆2
+,n−1

− β

∆+,n−1


+ (n+ 2)

∣∣∣〈Φ+|n+ 1〉
∣∣∣2
eβ∆+,n+2 − 1

∆2
+,n+2

− β

∆+,n+2


+ J2z2|Ψ|2e−βE−

n∣∣∣〈Φ−|n〉∣∣∣2
eβ∆−,n−1 − 1

∆2
−,n−1

− β

∆−,n−1


+ (n+ 2)

∣∣∣〈Φ−|n+ 1〉
∣∣∣2
eβ∆−,n+2 − 1

∆2
−,n+2

− β

∆−,n+2


+ J2z2|Ψ|2

∑
m∈Q

e−βEm
m∣∣∣〈Φ+|m− 1〉

∣∣∣2
eβ∆m,+ − 1

∆2
m,+

− β

∆m,+


+m

∣∣∣〈Φ−|m− 1〉
∣∣∣2
eβ∆m,− − 1

∆2
m,−

− β

∆m,−


+m

∑
m′∈Q

eβ∆m,m′ − 1
∆2
m,m′

− β

∆m,m′

∣∣∣〈m− 1|m′〉
∣∣∣2

+ (m+ 1)
∣∣∣〈Φ+|m+ 1〉

∣∣∣2
eβ∆m,+ − 1

∆2
m,+

− β

∆m,+


+ (m+ 1)

∣∣∣〈Φ−|m+ 1〉
∣∣∣2
eβ∆m,− − 1

∆2
m,−

− β

∆m,−


+ (m+ 1)

∑
m′′∈Q

eβ∆m,m′′ − 1
∆2
m,m′′

− β

∆m,m′′

∣∣∣〈m+ 1|m′′〉
∣∣∣2
.

(5.25)

Now, taking into account that the scalar products 〈m− 1|m′〉 and 〈m+ 1|m′′〉 lead to one
further restriction each in the summations, we finally obtain

Z(2) = J2z2|Ψ|2
(n+ 2)β

∣∣∣〈Φ+|n+ 1〉
∣∣∣2
e−βE+ − e−βEn+2

∆n+2,+


+
∣∣∣〈Φ−|n+ 1〉

∣∣∣2
e−βE− − e−βEn+2

∆n+2,−

+ nβ

∣∣∣〈Φ+|n〉
∣∣∣2
e−βE+ − e−βEn−1

∆n−1,+


+
∣∣∣〈Φ−|n〉∣∣∣2

e−βE− − e−βEn−1

∆n−1,−


+

∑
m∈Q
m 6=n−1

(m+ 1)
e−βEm+1 − e−βEm

∆2
m,m+1

− βe−βEm
∆m,m+1



+
∑
m∈Q
m 6=n+2

m

e−βEm−1 − e−βEm
∆2
m,m−1

− βe−βEm
∆m,m−1

.

(5.26)

From Eq. (5.26) we observe that the differences between the degenerate energies
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En and En+1 will no longer appear in the denominator of the free energy as it did in the
NDPT treatment, thus solving the degeneracy-related problems.

5.2 Condensate density

Now we turn our attention to the calculation of the condensate density, which
turns out to coincide to the superfluid density within the mean-field approximation.185

Our degenerate approach, up to second order, results in the partition function given by
Z = Z(0) + Z(2) with (5.12) and (5.26), which is free from any divergence despite of the
degeneracies. Thus, from the partition function, the free energy of the system reads, up to
second order,

F = − 1
β

[
lnZ(0) + Z

(2)

Z(0)

]
. (5.27)

Hence, we calculate the condensate density |Ψ|2 by evaluating

∂F
∂|Ψ|2 = 0. (5.28)

Now, applying the above-mentioned procedure for different temperatures and
hopping values, the resulting condensate densities are depicted in Fig. 19. In order to check
the fidelity of the calculated condensate densities, we must observe the phase boundaries
evaluated by FTDPT, which emerge from

∂F
∂|Ψ|2

∣∣∣∣∣∣
Ψ=0

= 0. (5.29)

Such an operation leads to the same phase diagrams evaluated by NDPT. From Fig. 6, we
read off that for small values of Jz/U there are bigger portions of values of µ/U where the
condensate density can be evaluated, since we regard the Landau expansion of the order
parameter being only valid in the vicinity of the phase transition, i.e., the smaller the
hopping the bigger the region of the calculated condensate density. Therefore, we conclude
that we are able to reliably calculate |Ψ|2 via FTDPT near the phase boundary in Fig. 19.
Furthermore, we observe that for µ/U ∈ N the condensate densities no longer vanish or
approach zero as they do when calculated from NDPT.

Let us remark that the results for the zero-temperature condensate density from
FTDPT, which is depicted in Fig. 19(d), are similar to those obtained from BWPT in Fig.
15. Also, it is important to note that we have restricted ourselves to the second-order term.
This can be explained by the following: in the NDPT approach, the fourth-order term is
necessary for the calculation of the condensate density since it corresponds to the first
nontrivial solution of the extremization equation for the free energy, see Eqs. (3.36) and
(3.37). However, this is not the case for our FTDPT due to fact that the exact solution of
the problem in the projected Hilbert space automatically generates higher-order terms.
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Figure 19 – Condensate densities as functions of µ/U evaluated from FTDPT via (5.28)
for four different temperatures: (a) β = 5/U , (b) β = 10/U , (c) β = 30/U , and
(d) T = 0. Different data styles correspond to different hoppings: Jz/U = 0.2
(blue circles), Jz/U = 0.15 (orange squares), Jz/U = 0.1 (green rhombuses),
Jz/U = 0.05 (red triangles), and Jz/U = 0.01 (purple inverted triangles).

Source: SANT’ANA et al.184

Therefore, our FTDPT is an effective resummation of the power series generated by NDPT.
In the FTDPT, the second- and higher-order calculations only include extra effects due to
the non-projected Hilbert space. Indeed, it is even possible to calculate the condensate
density from the zeroth-order term, as one can observe from Eq. (5.12), since it has an
implicit dependency on the OP. Therefore, we have restricted ourselves to the second-order
correction. In order to check how important the fourth-order corrections would be, we
compared the zero-temperature results from FTDPT to the results from BWPT up to
the fourth-order term in the perturbation. The analogous results, T = 0, are displayed in
Figs 15 and 19(d). The errors between the BWPT- and FTDPT-calculated |Ψ|2, for the
hopping strengths Jz/U = 0.2, 0.15, 0.1, 0.05, and 0.01, are 4.12%, 1.17%, 0.69%, 0.5%,
and 0.38%, respectively. Consequently, we consider the errors to be small enough in such
a way that it justifies our neglect of the fourth-order term in the FTDPT approach.

5.2.1 Comparison between NDPT and FTDPT

Now we turn our attention to the point between two consecutive Mott lobes in
order to analyze the differences between the condensate densities calculated via NDPT
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and FTDPT between the Mott lobes n = 0 and 1, and n = 1 and 2, as shown in Fig. 20.
We observe that the NDPT gives rise to condensate densities that approach zero or have a
decreasing behavior at the degeneracy point, which correspond to µ/U = 0 for the region
between n = 0 and n = 1 and are depicted in Figs. 20(a) and 20(b); while for the region
between the first and the second Mott lobes, i.e., n = 1 and 2, the degeneracy occurs
at µ/U = 1 and the corresponding condensate densities are depicted in Figs. 20(c) and
20(d). Such behavior indicates an inaccuracy of the theory, since it mimics the nonphysical
vanishing of the OP typical of RSPT, which is a direct consequence of not taking into
account the degeneracies that happen in between two consecutive Mott lobes. While
NDPT presents such a nonphysical behavior due to the incorrect treatment of degeneracies,
FTDPT gives consistent results for the condensate density between two consecutive Mott
lobes.
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Figure 20 – Comparison between the condensate densities calculated via FTDPT (dots)
and NDPT (lines) for the temperatures β = 30/U (left panel) and T = 0 (right
panel), and for the hoppings Jz/U = 0.2 (blue circles and continuous blue
lines), Jz/U = 0.15 (orange squares and dashed orange lines), and Jz/U = 0.1
(green rhombuses and dotted green lines). (a) and (b) correspond to the region
between n = 0 and 1, while (c) and (d) correspond to the region between the
first and second lobes.

Source: SANT’ANA et al.184

We observe from Fig. 20 that the condensate densities calculated via FTDPT,
which are represented by the data, do not present any decreasing behavior in the vicinity
of the degeneracy, concluding that they are consistent in all considered regions of the phase
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diagram. In particular, at integer µ/U the condensate densities no longer vanish or present
a decreasing behavior as they do when calculated from NDPT. The decreasing behavior
presented by the condensate densities calculated via NDPT can clearly be observed by
the curves in Fig. 20. Such decreasing behavior is a direct consequence of the incorrect
treatment of degeneracies by NDPT, which happens to occur between two consecutive
Mott lobes.

5.3 Particle density

Now, let us calculate the particle density (3.38) by making use of our developed
FTDPT. We consider different temperatures and different hopping values for the purpose
of analyzing their effects on the density of particles. We plot the resulting equation of
state for two different values of the hopping parameter and four different values of the
temperature, thus observing the melting of the structure,190,191 as shown in Fig. 21.
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Figure 21 – Equation of state for the hopping strengths (a) Jz/U = 0.05 and (b) Jz/U =
0.1 and the temperatures T = 0 (continuous blue), β = 30/U (dotted green),
β = 10/U (dashed red), and β = 5/U (dotted-dashed black).

Source: SANT’ANA et al.184

We observe the effects that the change of both the temperature and the hopping
have upon the particle density in Fig. 21. First, we conclude that increasing the temperature
makes the particle density to vary more smoothly when compared to those particle densities
with lower temperatures. This fact is due to thermal fluctuations, which make the system
more feasible to exist in the Mott insulator phase. Moreover, by comparing the left panel
to the right one we observe the melting of the Mott lobes due to an increased hopping,
which is also very intuitive: the particles, having more kinetic energy, are more likely to
hop from one site to another, which is a characteristic of the SF phase. Another factor
responsible for making the curves smoother is the increase of the chemical potential, µ/U .
The reason for this relies on the fact that the bigger µ/U becomes, the smaller the Mott
lobes are, as can be seen in Fig. 6. Thus, the system is more likely to exist in the superfluid
phase for bigger values of µ/U .
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Now we must turn our attention to the points of the figures where the degeneracies
happen, which correspond to µ/U = 0, 1 and 2. We observe that our calculations lead
to no nonphysical behavior happening at those regions, meaning that our developed
FTDPT method possesses no inconsistency in the calculation of the equation of state for
the mean-field approximation of bosonic atoms confined in optical lattices. Finally, as
the NDPT leads to a weird behavior of the particle densities, together with divergences
and discontinuities in the vicinity of the degeneracies, i.e., µ/U ∈ N, we also conclude
that FTDPT provides reliable results for the particle density since there is no decreasing
behavior or discontinuities in the vicinity of the degeneracies in Fig. 21.
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6 ONE-DIMENSIONAL INTERACTING BOSE GAS

The purpose of this chapter is the description of one-dimensional repulsively
interacting bosonic particles, also known as Lieb-Liniger gas,110 trapped in a harmonic
confinement at finite temperature. We begin by briefly discussing the model and the
solutions for the homogeneous gas and the role of the interactions. Then, we study the
details behind the solutions for the two-particle case, followed by a development of the
asymptotic behavior of the momentum distribution. In such an asymptotic context, we
introduce an important physical quantity that gives us valuable short-range insights
about the system, the so-called Tan’s contact. Moreover, we take our studies beyond the
two-particle scenario up to the N -particle system. As our knowledge and abilities to solve
the problem are reduced in such a N > 2 scenario, i.e., for N > 2 the system can be
analytically solved only in the strongly interacting limit, also known as Tonks-Girardeau gas
(TG gas). In this limit, we are able to exactly solve the problem due to the fermionization
of the bosons. In the last part of this chapter, we study the scaling properties of the
Tan’s contact in all ranges of temperatures and in the intermediate- and strong-interaction
regimes. To finalize, we compare our analytical results to quantum Monte Carlo (QMC)
simulations.

6.1 The model

To begin with, let us consider the one-dimensional system consisted of N bosons
of mass m repulsively interacting via a delta potential and confined in a generic potential
of the form V (x). The Hamiltonian describing such a system is given by

Ĥ =
N∑
i=1

(
− ~2

2m
∂2

∂x2
i

+ V (xi)
)

+ g
∑
i<j

δ(xi − xj), (6.1)

where the interaction strength depends on the 1D scattering length as g = −2~2/ma1D.I

Also, repulsive interaction means positive interaction strength, g > 0. Then, the respective
stationary Schrödinger equation reads

 N∑
i=1

(
− ~2

2m
∂2

∂x2
i

+ V (xi)
)

+ g
∑
i<j

δ(xi − xj)− E
Ψ (x1, x2, . . . , xN) = 0. (6.2)

I For more details on the one-dimensional interaction strength, see App. A.
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Considering any pair of particles (i, j), let us integrate Eq. (6.2) in the vicinity of the
interaction xij ≡ xi − xj = 0, i.e., inside the small interval (−ε,+ε):

∫ +ε

−ε

[(
− ~2

2m
∂2

∂x2
ij

+ V (xij) + gδ(xij)− E
)

Ψ (x1, x2, . . . , xN)
]
dxij = 0

⇒ − ~2

2m
∂Ψ
∂xij

∣∣∣∣∣∣
+ε

−ε

+ gΨ (xij = 0) = 0.
(6.3)

Therefore, as ε→ 0, the contact interaction generates a condition given by

(
∂Ψ
∂xi
− ∂Ψ
∂xj

) ∣∣∣∣∣∣
xi−xj→0+

−
(
∂Ψ
∂xi
− ∂Ψ
∂xj

) ∣∣∣∣∣∣
xi−xj→0−

= 2mg
~2 Ψ(xi = xj), (6.4)

which can be interpreted as the following: whenever two particles meet, there happens a
discontinuity in the many-body wave function and it abruptly falls to zero.

6.1.1 The Lieb-Liniger gas

The case of free Bosons, V (x) = 0, interacting via a delta-like potential is known
as Lieb-Liniger gas and its solutions are given by110

Ψ(x1, . . . , xN) =
∑
P

a(P ) exp
i N∑

j=1
kjxj

 , (6.5)

where kj ∈ < with k1 < k2 < · · · < kN , and the sum in P is taken over all the N !
permutations of 1, 2, . . . , N . The coefficients read

a(P ) =
∏

1≤i<j≤N

(
1 + ig

ki − kj

)
, (6.6)

and the energy of the system is given by

E =
N∑
i=1

k2
i . (6.7)

By substituting (6.6) into (6.5) and imposing the periodic condition on a length L
Ψ(x1, . . . , xi, . . . , xN) = Ψ(x1, . . . , xi + L, . . . , xN), one obtains a set of N equations that
allow the determination of the ki’s:75

kiL = 2πni − 2
N∑
j=1

tan−1
(
ki − kj
g

)
, (6.8)

where n1 < n2 < · · · < nN are integers if N is odd and half-integers if N is even.



6.2 The two particles case 93

6.2 The two particles case

Let us consider two particles harmonically trapped interacting via a delta-like
potential. This case corresponds to considering N = 2 and V (xi) = mω2x2

i /2 within the
Hamiltonian (6.1):

Ĥ = − ~2

2m

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
+ 1

2mω
2
(
x2

1 + x2
2

)
+ gδ(x1 − x2). (6.9)

In order to solve the respective stationary Schrödinger equation, we perform a change
of coordinates: xcm ≡ (x1 + x2)/2 is the center of mass coordinate and xr ≡ x1 − x2 is
the relative coordinate. Also, the effective masses are M ≡ 2m and µ ≡ m/2. With these
changes the Hamiltonian reads

Ĥ = − ~2

2M
∂2

∂x2
cm

+ 1
2Mω2x2

cm −
~2

2µ
∂2

∂x2
r

+ 1
2µω

2x2
r + gδ(xr). (6.10)

The solutions for the center of mass coordinate equation are the known solutions for the
harmonic oscillator,160,161,192,193

Ψ(cm)
n (xcm) = e−(xcm/a0)2/2Hn (xcm/a0)

π1/4
√
a02nn!

, (6.11)

where a0 =
√
~/Mω is the harmonic oscillator length andHn are the Hermite polynomials,173,194

with n ∈ N. The energies are given by E(cm)
n = (n+ 1/2)~ω.
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Figure 22 – The fundamental and the first three excited states of the harmonic oscillator
wave function (6.11).

Source: By the author.

Regarding the equation for the relative coordinate, the solutions for the analogue
three-dimensional system was given by BUSCH et al.127 Here, we work out the solution
for the one-dimensional system.



94 Chapter 6 One-dimensional interacting Bose gas

Firstly, let us consider the relative motion Hamiltonian given by

Ĥ(r) = − ~2

2µ
∂2

∂x2 + 1
2µω

2x2 + gδ(x). (6.12)

Now let us write the wave functions, which are solutions of the respective stationary
Schrödinger equation

Ĥ(r)Ψ(r)
ν = E(r)

ν Ψ(r)
ν , (6.13)

as an expansion of the complete set of the known solutions of the harmonic oscillator
φn(x):

Ψ(r)
ν (x) =

∞∑
n=0

cnφn(x). (6.14)

Inserting (6.14) into (6.13) we have
∞∑
n=0

cn(En − Eν)φn(x) + gδ(x)
∞∑
m=0

cmφm(x) = 0. (6.15)

Nota that we have omitted, and will continue omitting during the following analytical
demonstrations, the identification indexes (r) and (cm) for the sake of simplicity.

Now, multiplying (6.15) by φ∗j(x) and integrating it all over the real space <, we
have that

cn(En − Eν) + gφ∗n(0)
∑
m

cmφm(0) = 0, (6.16)

where we have used the orthogonality of the φ’s∫ +∞

−∞
dx φm(x)φn(x) = δm,n. (6.17)

We can observe that the coefficients cn possess the following form:

cn = A
φ∗n(0)

En − Eν
, (6.18)

with A being a proportionality constant. Therefore, the solutions we are seeking for reduce
to

Ψ(r)
ν (x) = e−x2/2

∞∑
n=0

φ∗n(0)
En − Eν

Hn(x). (6.19)

As the possible energies are given by Eν = (ν + 1/2)~ω, we have that

Ψ(r)
ν (x) = e−x2/2

∞∑
n=0

φ∗n(0)
(n− ν)~ωHn(x). (6.20)

Now we transform the Hermite polynomials into Laguerre ones through their relationships

H2n(x) = (−1)n22nn!L(−1/2)
n (x2), (6.21a)

H2n+1(x) = (−1)n22n+1n!xL(1/2)
n (x2), (6.21b)
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and make use of the integral representation

1
n− ν

=
∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)n−ν−1

, (6.22)

so that we arrive at

Ψ(r)
ν (x) = e−x2/2

∞∑
n=0

∫ ∞
0

dy

(1 + y)2

(
y

1 + y

)n−ν−1 [
L(−1/2)
n (x2) + xL(1/2)

n (x2)
]
, (6.23)

where we have embedded all the constants into the normalization of the wave function
that we shall deal later.

From the generating function of the Laguerre polynomials
∞∑
n=0

L(α)
n (x)tn = e−xt/(1−t)

(1− t)α+1 , (6.24)

(6.23) reads

Ψ(r)
ν (x) = e−x2/2

∫ ∞
0

dy

(1 + y)2

(
y

1 + y

)−ν−1

e−yx2 [(1 + y)1/2 + x(1 + y)3/2
]
. (6.25)

At this point, we are able to recognize the integral representation of the Tricomi hypergeo-
metric function174

U(a, b, z) = 1
Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt, (6.26)

so that
Ψ(r)
ν (x) = e−x2/2Γ(−ν)

[
U
(
−ν, 1/2, x2

)
+ xU

(
−ν, 3/2, x2

)]
, (6.27)

where Γ(x) is the Euler gamma function.

Before assuming that Eq. (6.27) is our final form of Ψ(r)
ν , we must remind ourselves

that we got two solutions from the relations between the Hermite and the Laguerre
polynomials. Hence, let us test these solutions with the help of the condition at xr = 0,
Eq. (6.4), which, for the N = 2 case, reduces to

∂Ψ(r)
ν

∂xr

∣∣∣∣∣∣
xr→0+

− ∂Ψ(r)
ν

∂xr

∣∣∣∣∣∣
xr→0−

= 2µg
~2 Ψ(r)

ν (0). (6.28)

The first solution unrestrictedly satisfies (6.28), while the second one only satisfies it for
integer values of ν, which is a restriction that we never imposed. This means that at
xr = 0, xr U (−ν, 3/2, x2

r)→∞, ∀ ν /∈ N. Therefore, it can not be a solution because the
wave function must vanish when two particles meet, Ψ(x1 = x2) = 0. In conclusion, we
have that the final solution for the relative motion problem is given by

Ψ(r)
ν (xr) =

√
1
N (ν) e−(xr/a0)2/2 U

(
−ν2 ,

1
2 ,
x2
r

a2
0

)
, (6.29)
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where now the oscillator length reads a0 =
√
~/µω. Also, it is worth noting that we

rescaled the factor ν by 2, and this can be done without loss of generality. We did it in
order to keep the solutions more similar to the solutions of the harmonic oscillator, once
Hn(x) = 2nU(−n/2, 1/2, x2). After all, the interacting system is simply the same as the
harmonic oscillator except at the contact point xr = 0.

The normalization is given by

N (ν) = 1
2

∫
dx e−x2/a2

0

∣∣∣∣U
(
−ν2 ,

1
2 ,
x2

a2
0

) ∣∣∣∣2 = a0
√
π

2−ν−2

Γ(−ν)

[
ψ
(1− ν

2

)
− ψ

(
−ν2

)]
,

(6.30)
where ψ(x) = Γ′(x)/Γ(x) is the digamma function.173,194
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Figure 23 – Relative motion wave functions for different interaction strength g̃. Different
colors correspond to different states, from the fundamental state to the third
excited one. In growing order of excitation they correspond to the blue, yellow,
green, and red curves.

Source: By the author.

The behavior of the relative motion wave function is depicted in Fig. 23 for different
values of the adimensional interaction parameter g̃ ≡ −a0/

√
2a1D. We can observe its

discontinuity happening at x1 = x2. The higher the interaction, the more pronounced it
becomes. Also, its expansion around x = 0 is

Ψ(r)
ν (x) ∼

√
π

N (ν)

[
Γ
(1

2 −
ν

2

)−1
− 2 Γ

(
−ν2

)−1 |x|
a0

+O(x2)
]
. (6.31)
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Conclusively, it becomes clear, not only from Fig. 23, but also from Eq. (6.31), the
|x|-behavior of Ψ(r)

ν (x) around x = 0.

Inserting (6.29) into (6.28) we obtain the following relation:

f(ν) ≡
Γ
(
−ν

2

)
Γ
(

1−ν
2

) = −1
g̃
. (6.32)

Thus, we are able to find the ν’s, which are the quantum numbers with respect to the
relative motion wave function (6.29), by solving (6.32).

In order to have an idea about the behavior of the function f(ν) + 1/g̃, we plot it
for different values of g̃ in Fig. 24. We observe that the solutions of (6.32) for the weakly
and the strongly interacting limits are given by

ν(n) =

2n, for g̃ � 1

2n+ 1, for g̃ � 1
, ∀n ∈ N. (6.33)
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Figure 24 – f(ν) + 1/g̃ as a function of ν for different adimensional interaction strengths
g̃. The zoomed inset helps us recognize the vanishing of the function between
ν = 0 (weakly interacting limit) and ν = 1 (strongly interacting limit).

Source: By the author.

6.3 The momentum distribution asymptotic behavior

Let us begin this section with the N -body wave function solution of (6.2). As the
N = 2 case is solved, we can choose any pair of particles in the respective N -body problem
so that x(cm)

ij = (xi + xj)/2 and x(r)
ij = xi − xj, so that the solution is given by

Ψ(x1, . . . , xN) = Ψ(x1, . . . , xN)Ψ(cm)
(
x

(cm)
ij

)
Ψ(r)

(
x

(r)
ij

)
. (6.34)
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Also, from the behavior of the relative motion wave function near xi = xj (6.31), we have
that

Ψ(x1, . . . , xN) ≈ Ψ
(
x1, . . . , x

(cm)
ij , . . . , xN

)1−
√

2
|x(r)
ij |
a1D

+O
(
x

(r)
ij

2
) , (6.35)

where we have left the normalization factor and other constants out for the sake of
simplicity. Now, following the developments from Refs. 130,195, the Fourier transform of
Ψ, i.e., its representation in the momentum space, is given by

Ψ̃(k, x2, . . . , xN) = 1√
2π

∫
dx1 e−ikx1Ψ(x1, . . . , xN)

≈ 1√
2π

∫
dx1 e−ikx1

N∑
j=2

Ψ
(
x1 = x

(cm)
1j , . . . , xj = x

(cm)
1j , . . . , xN

)1−
√

2
|x(r)

1j |
a1D

 . (6.36)

In addition, making use of the asymptotic behavior of the Fourier transform of f(x) =
f ′(x)|x− x0|, with f ′(x) being a smooth function,196∫

dx e−ikxf(x) ∼
k→∞

− 2
k2f

′(x0)e−ikx0 , (6.37)

and that
∫
dx e−ikxf ′(x) falls to zero as O(k−2),197 (6.36) reduces to

Ψ̃(k, x2, . . . , xN) ∼
k→∞

2k−2
√
πa1D

N∑
j=2

e−ikxjΨ (x1 = xj, x2, . . . , xj, . . . , xN) . (6.38)

Now we proceed to the evaluation of n(k) itself:

n(k) =N
∫
dx2 . . . dxN |Ψ̃(k, x2, . . . , xN)|2

∼
k→∞

2N
πa2

1D
k−4

∫
dx2 . . . dxN

N∑
j,l=2

e−ik(xj−xl)Ψ∗(x1 = xj, x2, . . . , xj, . . . , xN)

×Ψ(x1 = xl, x2, . . . , xl, . . . , xN).

(6.39)

Noting that the terms j 6= l all cancel out, we have

n(k) ∼
k→∞

2N
πa2

1D
k−4

∫
dx2 . . . dxN

N∑
j=2
|Ψ(x1 = xj, x2, . . . , xj, . . . , xN)|2. (6.40)

Moreover, because of the indistinguishability nature of quantum particles, it is possible to
write the two-body correlation function as195,198,199

%(2)(x, x′) =
∫
dx1 . . . dxN |Ψ(x1, . . . , xN)|2

∑
i 6=j

δ(x− xi)δ(x′ − xj). (6.41)

Finally, we conclude the asymptotic behavior of the momentum distribution:

n(k) ∼
k→∞

2
πa2

1D
k−4

∫
dx %(2)(x, x). (6.42)



6.3 The momentum distribution asymptotic behavior 99

6.3.1 Tan’s contact

From the contact definition

C ≡ lim
k→∞

k4n(k) (6.43)

together with (6.42) we have that

C = 2
πa2

1D

∫
dx %(2)(x, x). (6.44)

Now we want to relate the Tan’s contact to the slope of the energy with respect to the
inverse of the interaction strength g−1. From the Hellmann-Feynman theorem200 we have
that

∂E

∂g−1 = −g2
∫
dx1 . . . dxN |Ψ(x1, . . . , xN)|2

∑
i<j

δ(xi − xj)

= −g2
∫
dx %(2)(x, x).

(6.45)

Therefore, from (6.44) and (6.45) we find the relation

C = −m
2

π~4
∂E

∂g−1 , (6.46)

which is known as Tan’s sweep theorem.136,138

6.3.1.1 The two-boson contact

Let us now proceed to the calculation of the contact for our N = 2 system at finite
temperature T > 0. We begin by making use of

C = −m
2

π~4
∂F
∂g−1 , (6.47)

where F = −kBT lnZ is the free energy of the system, with Z = ∑
n,ν e−β(E(cm)

n +E(r)
ν ) being

the respective partition function and β = 1/kBT . We must note that only the energies
related to the relative motion coordinate depend on g (6.32). Also, making use of

∂ν

∂g̃
= 1
g̃2

(
∂f(ν)
∂ν

)−1

, (6.48)

and evaluating ∂f(ν)/∂ν,

∂f(ν)
∂ν

= 1
2

Γ
(
−ν

2

)
Γ
(
−ν

2 + 1
2

) [ψ (−ν2 + 1
2

)
− ψ

(
−ν2

)]
, (6.49)

the contact, as a function of g̃ and β, reads

C(g̃, β) = 25/2g̃

πa3
0Z

∑
n,ν

e−β(E(cm)
n +E(r)

ν )
[
ψ
(
−ν2

)
− ψ

(
−ν2 + 1

2

)]−1
. (6.50)
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It is straightforward to observe that the contact is independent of the center-of-mass
energy E(cm)

n , which is a direct consequence of the Kohn’s theorem:71 differently from the
relative-motion energy E(r)

ν , E(cm)
n is independent of the interatomic interactions. Thence,

the contact reduces to

C(g̃, β) = 25/2g̃

πa3
0Zr

∑
ν

e−βE
(r)
ν

[
ψ
(
−ν2

)
− ψ

(
−ν2 + 1

2

)]−1
, (6.51)

where we have defined the relative-motion partition function Zr ≡
∑
ν e−βE

(r)
ν . As E(r)

ν =
(ν + 1/2)~ω, we can perform one more reduction in the contact expression,

C(g̃, β) = 25/2g̃

πa3
0Zr

∑
ν

e−β~ων
[
ψ
(
−ν2

)
− ψ

(
−ν2 + 1

2

)]−1
. (6.52)

Here, for the sake of avoiding the introduction of unnecessary terms, we simply transform
the relative-motion partition function according to Zr → eβ~ω/2Zr.

The two-boson contact from (6.52) is depicted in Fig. 25 for different values of
the adimensional interaction parameter g̃. From the referred curves, we observe that the
contact increases with both the temperature and the interaction strength, an effect that
was to be expected once both variables contribute to the increase of the interaction energy.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Ca
3 0

kBT/~ω

g̃ = 0.05
g̃ = 1
g̃ = 2.5
g̃ = 5
g̃ = 100

Figure 25 – Tan’s contact from (6.52) as a function of the adimensional temperature
kBT/~ω for different values of the adimensional interaction parameter g̃.

Source: By the author.

6.3.1.1.1 The Tonks-Girardeau limit

Now, let us work out a formula for the strongly interacting scenario, also known as
Tonks-Girardeau limit (TG limit).II From the two-boson contact of Eq. (6.52) and from

II Thanks to Patrizia Vignolo for working out these steps.
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the fact that ν = 2j − 1 in the TG limit, we have that

C(g̃ →∞, β) = 25/2

πa3
0Zr

∑
j>0

e−β~ω(2j−1) Γ(1− j)
Γ
(

1
2 − j

) [ψ(1− j)− ψ
(1

2 − j
)]−1

. (6.53)

Because of Γ(1− j)→∞, ∀ j ∈ N∗, as well as ψ(1− j)→∞, ∀ j ∈ N∗, we can perform
the approximation ψ(1− j)−ψ

(
1
2 − j

)
≈ ψ(1− j), so that we are able to restrict ourselves

to evaluating Γ(1− j)/ψ(1− j). Let us begin with the definition of the gamma function
Γ(z) ≡ (z − 1)!, which implies

Γ(z) = Γ(z + n+ 1)∏n
i=0(z + i) , (6.54)

and its derivative

Γ′(z) = Γ′(z + n+ 1)∏n
i=0(z + i) − Γ(z + n+ 1)

n∑
l=0

1
(z + l)∏n

i=0(z + i) . (6.55)

Hence, the digamma function reads

Γ′(z)
Γ(z) = Γ′(z + n+ 1)

Γ(z + n+ 1) −
n∑
`=0

1
z + `

. (6.56)

Therefore, we have for our inverted-desired ratio the following:

Γ′(z)
Γ2(z) = Γ′(z + n+ 1)

Γ2(z + n+ 1)

n∏
i=0

(z + i)−
n∑
`=0

1
z + `

∏n
i=0(z + i)

Γ(z + n+ 1) . (6.57)

For z = −n, we have that

Γ′(−n)
Γ2(−n) = Γ′(1)

Γ(−n) −
n∑
`=0

∏n
i=0(i− n)
`− n

. (6.58)

Here, all terms vanish except when ` = n,

Γ′(−n)
Γ2(−n) = −

n−1∏
i=0

(i− n). (6.59)

Therefore, we finally arrive at our desired result:

Γ′(1− j)
Γ2(1− j) = (−1)j(j − 1)!. (6.60)

Consequently, Eq. (6.53) yields

C(g̃ →∞, β) = 25/2

πa3
0Zr

∑
j>0

e−β~ω(2j−1) (−1)j

Γ
(

1
2 − j

)
(j − 1)!

. (6.61)

The plot of (6.61) as a function of the temperature reproduces the yellow curve (g̃ = 100)
in Fig. 25.



102 Chapter 6 One-dimensional interacting Bose gas

6.3.1.1.2 The zero-temperature regime

At zero temperature, the contact reduces to

C(g̃, β →∞) = 25/2g̃

πa3
0

[
ψ
(
−ν2

)
− ψ

(
−ν2 + 1

2

)]−1
, (6.62)

which is depicted in Fig. 26.
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Figure 26 – Zero-temperature Tan’s contact from (6.62) as a function of the adimensional
interaction parameter g̃.

Source: By the author.

6.3.1.1.3 The Tonks-Girardeau limit in the zero-temperature regime

Moreover, we can observe in Fig. 26 the known zero-temperature strongly interacting
limit as g̃ →∞,

lim
g̃,β→∞

C(g̃, β)a3
0 =

( 2
π

)3/2
. (6.63)

6.4 The Tonks-Girardeau regime for N particles

In this section we regard the strongly interacting scenario g →∞, also known as
Tonks-Girardeau gas. In such a case, it is known114 that the relationship between the
many-body wave functions of such a bosonic system and a fermionic one is given by

Ψ(b)
α (x1, . . . , xN) = Θ(x1, . . . , xN)Ψ(f)

α (x1, . . . , xN), (6.64)

where Θ(x1, . . . , xN) ≡ ∏i>j sgn(xi − xj) is either +1 or −1, in order to compensate the
anti-symmetrization of the fermionic wave function Ψ(f)

α , and α is the quantum number



6.4 The Tonks-Girardeau regime for N particles 103

describing the particles in a respective set of individual quantum numbers {n1, n2, . . . , nN}.
In the strongly interacting scenario g →∞, also called Tonks-Girardeau gas, the system
behaves the same way as the trapped ideal Fermi gas, whose many-body wave function is
given by the Slater determinant

Ψ(f)
α (x1, . . . , xN) = (N !)−1/2 det[φni(xj)]ni∈{n1,...,nN};xj∈{x1,...,xN}, (6.65)

where φn(x) are the solutions of the single-particle harmonic oscillator Hamiltonian,

φn(x) = e−(x/a0)2/2Hn(x/a0)
π1/4
√
a02nn!

. (6.66)

This correspondence between the strongly interacting bosonic system and the noninteract-
ing fermionic one is known as fermionization of bosons.201,202 The reason behind such an
effect comes from the Pauli exclusion principle, which states that two fermions cannot
occupy the same quantum state. In our scenario, the strong repulsion is the equivalent
of such a postulate. Therefore, all these considerations culminate in the fact that, for
observables depending on |Ψ|2, strongly interacting bosons behave as the ideal Fermi gas.

6.4.1 The zero-temperature case

The solutions for the Bose gas consisted of N -impenetrable particles (Tonks-
Girardeau gas) subject to the periodic boundary condition on a length L at T = 0, where
the solutions are given by plane waves φn(x) ∝ ei2πnx/L instead of (6.66), were carried out
in Ref. 114 and are given by

Ψ(b)
0 (x1, . . . , xN) =

√
2N(N−1)

N !LN
∏
i>j

sin
(
π

L
|xi − xj|

)
, (6.67)

together with its associated ground state energy

E0 =
(
N − 1

N

) ~2π2N2

6mL2 . (6.68)

Now, considering the effects of a harmonic trap, whose solutions are given by (6.66),
the ground state many-body wave function is given by203,204

Ψ(b)
0 (x1, . . . , xN) = 2N(N−1)/4

a
N/2
0

(
N !

N−1∏
n=0

n!
√
π

)−1/2 N∏
i=0

e−x2
i /2a

2
0

∏
1≤j<k≤N

|xk − xj|, (6.69)

with its respective density profile given by205,206

n(x) = e−x2/a2
0

√
πa0

N−1∑
i=0

H2
i (x/a0)
2ii! . (6.70)
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6.4.2 The finite-temperature regime

When we are dealing with quantum systems, the notion of quantum correlation
turns out to be a valuable tool in order to characterize a system or, more specifically,
to have a measurement of how correlated the particles of a system are with each other,
specially an interacting one. An useful quantity associated with such an idea is the so-called
j-body density matrix,17,20,71,207 which, for the system consisted of N interacting particles
at temperature T , is given by

%(j)(x1, . . . , xj;x′1, . . . , x′j) = N !
(N − j)!Z

−1∑
α

e−βEα
∫
<
dxj+1 . . . dxNΨ(b)∗

α (x1, . . . , xN)

×Ψ(b)
α (x′1, . . . , x′j, xj+1, . . . , xN),

(6.71)
where Z = ∑

α e−βEα is the partition function of the system and its total energy is simply
the summation of all the individual single-particle energies, i.e., Eα = ∑N

i=1 εni , with
εni = (ni + 1/2)~ω.

From the Bose-Fermi mapping relation (6.64), Eq. (6.71) reads

%(j)(x1, . . . , xj;x′1, . . . , x′j) = N !
(N − j)!Z

−1∑
α

e−βEα
∫
<
dxj+1 . . . dxNΘ(x1, . . . , xN)

×Ψ(f)
α (x1, . . . , xN)Θ(x′1, . . . , x′j, xj+1, . . . , xN)Ψ(f)

α (x′1, . . . , x′j, xj+1, . . . , xN).
(6.72)

Now we turn our focus to the integrand. It is possible to rewrite the product of the Θ’s
as208

Θ(x1, . . . , xN)Θ(x′1, . . . , x′j, xj+1, . . . , xN) = Θ(x1, . . . , xj)Θ(x′1, . . . , x′j)

×
N∏

i=j+1

2j∏
l=1

sgn(xi − yl),
(6.73)

with y1 = x1 < y2 = x2 < . . . < yj = xj < yj+1 = x′1 < . . . < y2j = x′j . Now let us consider
the union of the disjoint intervals (yi, yj), S = {(y1, y2) ∪ (y3, y4) ∪ · · · ∪ (y2j−1, y2j)}. It is
straightforward to observe that

2j∏
i=1

sgn(x− yi) =

−1, x ∈ S

+1, x /∈ S
. (6.74)

Denoting the number of variables among xj+1, . . . , xN which are in S by MS, we have
that

Θ(x1, . . . , xN)Θ(x′1, . . . , x′j, xj+1, . . . , xN) = Θ(x1, . . . , xj)Θ(x′1, . . . , x′j)(−1)MS . (6.75)

Consequently, Eq. (6.72) results in

%(j)(x1, . . . , xj;x′1, . . . , x′j) = N !
(N − j)!Z

−1Θ(x1, . . . , xj)Θ(x′1, . . . , x′j)
∑
α

e−βEα

×
∫
<
dxj+1 . . . dxN(−1)MSΨ(f)

α (x1, . . . , xN)Ψ(f)
α (x′1, . . . , x′j, xj+1, . . . , xN).

(6.76)
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Now, considering any integral of the form

I =
∫
<
dx1 . . .

∫
<

(−1)MSf(x1, . . . , xj), (6.77)

where MS is the number of integration variables inside the subdomain S and f is a
symmetric function, it is possible to write208

I =
j∑

m=0

(
j

m

)
(−1)m

∫
S
dx1 . . . dxm

∫
<−S

dxm+1 . . . dxjf(x1, . . . , xj). (6.78)

Making use of
∫
<−S dx =

∫
< dx−

∫
S dx, we have

I =
j∑

m=0

(
j

m

)
(−1)m

j−m∑
n=0

(
j −m
n

)
(−1)n

∫
S
dx1 . . . dxm+n

∫
<
dxm+n+1 . . . dxjf(x1, . . . , xj).

(6.79)
Performing the summation for m+ n = i, (6.79) reduces to

I =
j∑
i=0

(
j

i

)
(−2)i

∫
S
dx1 . . . dxi

∫
<
dxi+1 . . . dxjf(x1, . . . , xj). (6.80)

Thence, we have that the j-body density matrix (6.76) can be written as

%(j)(x1, . . . , xj;x′1, . . . , x′j) = N !
(N − j)!Z

−1Θ(x1, . . . , xj)Θ(x′1, . . . , x′j)
∑
α

e−βEα

×
N−j∑
i=0

(
N − j
i

)
(−2)i

∫
S
dxj+1 . . . dxj+i

∫
<
dxj+i+1 . . . dxN

×Ψ(f)
α (x1, . . . , xN)Ψ(f)

α (x′1, . . . , x′j, xj+1, . . . , xN).
(6.81)

The one-body density matrix is given by209

%(1)(x, x′) =N
Z
∑
α

e−βEα
N−1∑
j=1

(
N − 1
j

)
(−2)j[sgn(x− x′)]j

∫ x′

x
dx2 . . . dxj+1

×
∫
<
dxj+2 . . . dxNΨ(f)

α (x, x2, . . . , xN)Ψ(f)
α (x′, x2, . . . , xN).

(6.82)

Here it is possible to recognize the j-body fermionic correlator as

%(1)(x, x′) =
N−1∑
j=1

(−2)j
j! [sgn(x−x′)]j

∫ x′

x
dx2 . . . dxj+1%

(j+1)
f (x, x2, . . . , xj+1;x′, x2, . . . , xj+1),

(6.83)
where

%
(j)
f (x1, . . . , xj;x′1, . . . , x′j) = N !

(N − j)!Z
−1∑

α

e−βEα

×
∫
<
dxj+1 . . . dxNΨ(f)

α (x1, . . . , xN)Ψ(f)
α (x′1, . . . , x′j, xj+1, . . . , xN).

(6.84)
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As we are interested in the contact, we are going to restrict ourselves to small
distances, |x′ − x| � 1. Therefore, we consider only the term j = 1, because the terms
j > 1 produce negligible results in the small distance approximation:

%(1)(x, x′) ∼
x→x′

2 sgn(x′ − x)
∫ x′

x
dx2 %

(2)
f (x, x2;x′, x2)

≈2 sgn(x′ − x)%(2)
f (x,R;x′, R)δx,

(6.85)

where R ≡ (x+ x′)/2 and δx ≡ x′ − x.

Now we proceed to the explicit evaluation of %(2) making use of (6.84) together
with (6.65).

N=2 particles

%
(2)
f (x,R;x′, R) =Z−1 ∑

n1,n2

e−β(εn1+εn2 )

∣∣∣∣∣∣φn1(x) φn2(x)
φn1(R) φn2(R)

∣∣∣∣∣∣
∣∣∣∣∣∣φn1(x′) φn2(x′)
φn1(x2) φn2(x2)

∣∣∣∣∣∣
=Z−1 ∑

n1,n2

e−β(εn1+εn2 ) [φn1 (R− δx/2)φn2(R)− φn2(R− δx/2)φn1(R)]

× [φn1(R + δx/2)φn2(R)− φn2(R + δx/2)φn1(R)]

=Z−1 ∑
n1,n2

e−β(εn1+εn2 )
[(
φn1 −

δx

2 ∂Rφn1

)
φn2 −

(
φn2 −

δx

2 ∂Rφn2

)
φn1

]

×
[(
φn1 + δx

2 ∂Rφn1

)
φn2 −

(
φn2 + δx

2 ∂Rφn2

)
φn1

]

=Z−1 ∑
n1,n2

e−β(εn1+εn2 ) δx
2

4

×
[
(φn2∂Rφn1)2 + (φn1∂Rφn2)2 − 2φn1φn2∂Rφn1∂Rφn2

]
.

(6.86)

N=3 particles

%
(2)
f (x,R;x′, R) =Z−1 ∑

n1,n2,n3

e−β(εn1+εn2+εn3 )

×
∫
dx3

∣∣∣∣∣∣∣∣∣
φn1(x) φn2(x) φn3(x)
φn1(R) φn2(R) φn3(R)
φn1(x3) φn2(x3) φn3(x3)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
φn1(x′) φn2(x′) φn3(x′)
φn1(R) φn2(R) φn3(R)
φn1(x3) φn2(x3) φn3(x3)

∣∣∣∣∣∣∣∣∣
=Z−1 ∑

n1,n2,n3

e−β(εn1+εn2+εn3 )

φ2
n1

(
δx

2 ∂Rφn2

)2

+ φ2
n1

(
δx

2 ∂Rφn3

)2

+φ2
n2

(
δx

2 ∂Rφn1

)2

+ φ2
n2

(
δx

2 ∂Rφn3

)2

+ φ2
n3

(
δx

2 ∂Rφn1

)2

+φ2
n3

(
δx

2 ∂Rφn2

)2

− 2φn1φn2

δx2

4 ∂Rφn1∂Rφn2

−2φn1φn3

δx2

4 ∂Rφn1∂Rφn3 − 2φn2φn3

δx2

4 ∂Rφn2∂Rφn3

]
.

(6.87)
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Note that in the steps above we have used the differentiation relation

∂Rφ(R) = φ(R)− φ(R− δx/2)
δx/2 (6.88)

and the orthogonality of the φ’s∫ +∞

−∞
dx φm(x)φn(x) = δm,n. (6.89)

Therefore, from the explicit evaluations for N = 2 and 3 particles, we can generalize
the fermionic two-body density matrix for N particles as

%
(2)
f (x,R;x′, R) =(x′ − x)2

4 Z−1 ∑
n1,n2,...,nN

e−β
∑N

i=1 εni

×
∑
j 6=k

{[
φnj(R)∂Rφnk(R)

]2
− φnj(R)φnk(R)∂Rφnj(R)∂Rφnk(R)

}
.

(6.90)
Consequently, we have that

%(1)(x, x′) ≈ |x
′ − x|3

2 F (R), (6.91)

with the definition

F (R) ≡Z−1 ∑
n1,n2,...,nN

e−β
∑N

i=1 εni

×
∑
j 6=k

{[
φnj(R)∂Rφnk(R)

]2
− φnj(R)φnk(R)∂Rφnj(R)∂Rφnk(R)

}
.

(6.92)

We shall note that the limits of sums in the set n1, n2, . . . , nN were omitted, although
they are not obvious. We must remember that in the Tonks-Girardeau gas, the bosons
fermionize due to the strong interaction between them. This phenomena implies that all
particles must be "found" in different states with respect to each other. For example, if
particle 1 is in the fundamental state n1 = 0, particle 2 must be in any excited state,
n2 ∈ N − {0}. If particle 2 realizes the state n2 = 1, then the possible set of states for
particle 3 is n3 ∈ N− {0, 1}. And this reasoning continues for all particles. Therefore the
possible states particle i can be found in is the set {i− 1, i, . . . ,∞}, which are the sets for
the sums that we fix here.

6.4.2.1 Momentum distribution

As our main interest in taking the above simplification steps is the study of the
Tan’s contact, we still need to go through the momentum distribution in order to achieve
our desired goal. Therefore, the momentum distribution, in terms of the one-body density
matrix, reads

n(k) = 1
2π

∫
dx
∫
dx′ eik(x−x′)%(1)(x, x′), (6.93)

and is depicted in Fig. 27 for the number of particles from N = 2 up to N = 5 as well as
for the low-, intermediate-, and high-temperature regimes.
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Figure 27 – Momentum distributions for different number of particles as well as different
temperatures. The insets show the tails of the curves.

Source: By the author.

6.4.2.2 Tan’s contact

Making use of the asymptotic behavior of the Fourier transform of |x−x0|a−1f(x),130,196,209

∫
dx e−ik(x−x0)|x− x0|a−1f(x) = 2

ka
f(x0) cos(πa/2)Γ(a), (6.94)

and the definition of the contact C ≡ k4n(k) as k →∞ we arrive at

C = 2
π

∫ +∞

−∞
dxF (x). (6.95)

The contact from (6.95) is depicted in Fig. 28 for the number of particles ranging
from N = 2 to 5 in terms of the temperature, together with the analogous results within
the grand-canonical ensemble from VIGNOLO, P.; MINGUZZI, A,209 which we shall
discuss later.
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Figure 28 – Tonks-Girardeau contact in the canonical ensemble (empty symbols) from Eq.
(6.95) and in the grand-canonical ensemble (filled symbols) from Ref. 209 for
N = 2 (violet squares), N = 3 (green circles), N = 4 (light-blue triangles),
and N = 5 (orange inverted triangles). Here, τ ≡ T/TF is the adimensional
temperature and aho ≡

√
~/mω is the harmonic oscillator length.

Source: SANT’ANA et al.210

6.5 The contact scaling properties

6.5.1 Zero-temperature scaling

It was shown in Ref. 157 that the contact for N bosons at T = 0 can be expressed
as a function of the two-boson contact, CN = CN (C2). Also, it was verified that the scaling
relation

fN(g̃, T = 0) ≡ CN(g̃, T = 0)
CN(g̃ →∞, T = 0) , (6.96)

where g̃ ≡ −a0a
−1
1D/
√
N and CN(g̃, T = 0) ∝ N5/2 − γNη, establishes the following:

fN(g̃, T = 0) ' f2(g̃, T = 0). (6.97)

In particular, in the Tonks-Girardeau limit, γ ≈ 1 and η = 3/4.

For the two-particle case, from (6.62) and (6.63), we have that

f2(g̃, T = 0) = 2
√
πg̃
[
ψ
(
−ν2

)
− ψ

(
−ν2 + 1

2

)]−1
. (6.98)

6.5.2 Large-temperature scaling

When the temperature is large enough, T � TF , where TF = N~ω/kB is the Fermi
temperature, quantum correlations become negligible in the system, so that the contact
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for N particles is given by the two-particle contact times the number of pairs,210

CN(g̃, T � TF ) = N(N − 1)
2 C2(g̃, T � TF ). (6.99)

Following the development at high temperatures from Ref. 131 and making use of the
Euler reflection formula

Γ(x)Γ(1− x) = π

sin(πx) , (6.100)

it is possible to rewrite Eq. (6.32) as

f(ν) = − cot(πν/2)Γ (1/2 + ν/2)
Γ (1 + ν/2) . (6.101)

From the asymptotic behavior of the gamma function

Γ(x) ∼
x→∞

ex(log(x)−1)+O(x−3)

√2π
x

+O
(
x−3/2

) , (6.102)

we obtain the asymptotic formula of (6.101)

f(ν) ∼
ν→∞

−
√
ν

2 cot(πν/2). (6.103)

By employing the fact that the solutions of (6.32) as g̃ →∞ are given by 2n+ 1, n ∈ N,
we get

ν = 2
π

cot−1

√2n+ 1
2 g̃−1

+ 2n. (6.104)

Now that we have a formula for the ν’s in the strongly interacting limit for large
temperatures, let us insert it in the contact expression for N = 2. Recalling Eq. (6.47), we
have that

C2(g̃ →∞, T � TF ) = 23/2g̃2

πa3
0
Z−1
r

∑
n

e−βE
(r)
νn
∂νn
∂g̃

, (6.105)

where Zr ≡
∑
ν e−βE

(r)
ν is the relative motion partition function. By performing the

derivative ∂νn/∂g̃, (6.105) yields

C2(g̃ →∞, T � TF ) = 23/2g̃2

πa3
0
Z−1
r

∑
n

e−βE
(r)
νn

√
2(2n+ 1)

πg̃2
(
1 + 2n+1

2g̃2

) . (6.106)

As we are interested in the strongly interacting limit g̃ → ∞, the term n/g̃2 in the
denominator of the series can be disregarded, leaving us with

C2(g̃ →∞, T � TF ) = 23/2

a3
0
Z−1
r e−β~ω/2

∑
n

e−β~ω(2n+1)
√

2(2n+ 1). (6.107)

By exploiting the fact that
∑
n

e−α(2n+1)√2n+ 1 =
∑
n

e−αn
√
n−

∑
n

e−α2n√2n, (6.108)
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and that the sums are given by
∑
n

e−α(2n+1) = eα
e2α − 1 , (6.109a)∑

n

e−αn
√
n = Li−1/2(e−α), (6.109b)∑

n

e−α2n√2n =
√

2Li−1/2(e−2α), (6.109c)

with α ≡ β~ω, (6.107) yields

C2(g̃ →∞, T � TF ) = 22

a3
0
e−α

(
e2α − 1

) [
Li−1/2(e−α)−

√
2Li−1/2(e−2α)

]
, (6.110)

where Lin(z) is the polylog function.173 The expasions of the polylog functions around
α = 0 yield

Li−1/2(e−α)−
√

2Li−1/2(e−2α) ≈π
−3/2

4α3/2 +O
(
α3/2

)
+
(
1−
√

2
)
ζ(−1/2) +

(
2
√

2− 1
)
αζ (−3/2) +O(α2),

(6.111)
with ζ(x) being the Riemann zeta function.173 Therefore, as α approaches zero, the contact
reduces to

C2(g̃ →∞, T � TF ) = 2π−3/2

a3
0

√
kBT

~ω
=
( 2
π

)3/2
a−3

0

√
T

TF
. (6.112)

Hence, the expression for the N -particle contact (6.99) in the strongly interacting
limit is given by

CN (g̃ →∞, T � TF ) = N(N − 1)
a3

0π
3/2

√
NT

TF
. (6.113)

Therefore, we have the scaling function in the high-temperature regime for the TG limit
as being

CN (g̃ →∞, T � TF ) = hN (g̃ →∞, T � TF )
(
N5/2 −N3/2

)
⇒ hN (g̃ →∞, T � TF ) = h2(g̃ →∞, T � TF ) =

√
T/TF

a3
0π

3/2 .
(6.114)

6.5.3 Generalized scaling conjecture

Having studied the behavior of the contact in terms of the number of particles for
both high (T � TF ) and low temperatures (T � TF ) in the strongly interacting limit
g̃ →∞, we now propose a conjecture for the entire range of temperatures in the aforesaid
regime.

At large temperatures, where quantum correlations play a minor role towards the
properties of the system, the contact dependency on the number of particles is given by
the number of pairs N(N − 1) times a

√
N factor that comes from the Fermi temperature.

As the temperature decreases, there happens an intensification on the N -dependency of
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the contact, from N5/2 −N3/2 to N5/2 −N3/4. Therefore, following such a reasoning, we
have proposed the following scaling hypothesis:210

CN(g̃ →∞, τ) ∝ N5/2 −N3/4[1+exp (−2/τ)], (6.115)

where τ ≡ T/TF .
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Figure 29 – Tan’s contacts in the Tonks-Girardeau limit from Eq. (6.95) in adimensional
units as functions of the reduced temperature τ scaled by the generalized con-
jecture s(N) ≡ N5/2 −N3/4[1+exp(−2/τ)] for the respective number of particles:
N = 2 (violet squares), N = 3 (green circles), N = 4 (blue triangles), and
N = 5 (orange inverted triangles). The black cross corresponds to the zero-
temperature Tonks-Girardeau two-boson contact from Eq. (6.63) rescaled by
s(N) for τ = 0: (25/2 − 23/4)−1C2(g̃ →∞, T → 0) = (25/2 − 23/4)−1(2/π)3/2 =
0.127784. The blue dashed line corresponds to

√
τ/π3/2, while the black con-

tinuous line is simply the contact rescaled by the generalized scaling factor,
i.e., the implicit proportionality factor in Eq. (6.115).

Source: SANT’ANA et al.210

Fig. 29 displays the Tan’s contacts in the strongly interacting limit from Eq.
(6.95) scaled by our proposed generalized conjecture from (6.115) for different number
of particles ranging from 2 to 5. Hence, we can observe the collapse of all data on the
same curve. Moreover, we compare it to the blue dashed line, which corresponds to the
high-temperature behavior in the TG limit from Eq. (6.112). We observe that all data, in
the high-temperature regime, also collapse over the curve of the high-temperature TG-limit
two-boson contact C2(g̃ →∞, T � TF ).

6.5.4 Intermediate interaction strength scaling

We now turn our attention to the intermediate interaction strength scenario g̃ ∼ 1.
In such a regime, the integrability of the system breaks down, so that we must rely
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Figure 30 – Tan’s contacts from QMC simulations as functions of the adimensional tem-
perature τ for z = g̃ = 1. The panels (a), (b), and (c) correspond to the
rescaling of the contact regarding the low-temperature factor N5/2−N3/4, the
high-temperature factor N5/2 − N3/2, and the all-range-temperature factor
s(N) ≡ N5/2 −N3/4[1+exp(−2/τ)], respectively. In panel (d), the QMC data is
rescaled by the TG-limit contact from Eq. (6.95). The symbol styles correspond
to: N = 2 (violet squares), N = 3 (green circles), N = 4 (blue triangles), and
N = 5 (orange inverted triangles). The continuous yellow line corresponds
to the two-boson contact obtained by Eq. (6.52). The QMC error bars are
smaller than the symbol sizes.

Source: SANT’ANA et al.210

on quantum Monte Carlo (QMC) calculations.III We analyze the QMC data for g̃ = 1
in Fig. 30 and for g̃ = 2.5 in Fig. 31. In both figures, we rescale the contact by all
scaling factors introduced: the zero-temperature scaling N5/2 − N3/4 (panel (a)), the
large-temperature scaling N5/2 −N3/2 (panel (b)), and the generalized scaling conjecture
N5/2 −N3/4[1+exp(−2/τ)] (panel (c)). In panel (d) of both Figs. 30 and 31, we rescale the
QMC data by the TG-limit contact from Eq. (6.95). We observe that, the zero-temperature
scaling factor in Fig. 30(a) makes the data approach each other at small temperatures,
while we observe a collapse of the whole data in Fig. 31(a) at low temperatures. The
same occurs at high temperatures: the data approach each other in Fig. 30(b), while they
collapse over each other in Fig. 31(b). Differently, the generalized scaling conjecture works
well within the whole temperature range, with an incertitude of 5% for g̃ = 1 (Fig. 30(c))
and of 1% for g̃ = 2.5 (Fig. 31(c)).

III Thanks to Frédéric Hébert for performing the QMC simulations. For the details on the QMC
simulations, see SANT’ANA et al.210
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Figure 31 – Tan’s contacts from QMC simulations as functions of the adimensional
temperature τ for z = g̃ = 2.5. The panels (a), (b), and (c) correspond to the
rescaling of the contact regarding the low-temperature factor N5/2−N3/4, the
high-temperature factor N5/2 − N3/2, and the all-range-temperature factor
s(N) ≡ N5/2 −N3/4[1+exp(−2/τ)], respectively. In panel (d), the QMC data is
rescaled by the TG-limit contact from Eq. (6.95). The symbol styles correspond
to: N = 2 (violet squares), N = 3 (green circles), N = 4 (blue triangles), and
N = 5 (orange inverted triangles). The continuous yellow line corresponds
to the two-boson contact obtained by Eq. (6.52). The QMC error bars are
smaller than the symbol sizes.

Source: SANT’ANA et al.210

Moreover, analogously to the zero-temperature analysis, we can define the ratio

fN(g̃, T ) ≡ CN(g̃, T )
CN(g̃ →∞, T ) (6.116)

and certify ourselves that, from Figs. 30(d) and 31(d), the relation

fN(g̃ & 1, T � TF ) = f2(g̃ & 1, T � TF ) (6.117)

holds for the whole temperature range —not only for the low-temperature regime (τ � 1)
and for the high-temperature one (τ � 1) as previously stated, but also for the intermediate-
temperature regime (τ ∼ 1).

Now, let us summarize the results of this section. An important consequence of the
scaling results is that the contact for N bosons at temperature T with repulsive interaction
characterized by the adimensional interaction strength g̃ rescaled by the contact for N
strongly interacting bosons at temperature T , i.e., CN (g̃, T )/CN (g̃ →∞, T ), is an universal
function of the adimensional interaction strength g̃ ≡ −a0a

−1
1D/
√
N and the adimensional
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temperature τ ≡ T/TF . Furthermore, another important result comes from the generalized
scaling function. Namely, the ratio between the contact for N bosons at temperature T
with repulsive interaction characterized by an interaction strength g and the generalized
scaling function s(N) ≡ N5/2 −N3/4[1+exp(−2/τ)], i.e., CN(g̃, T )/s(N), is also an universal
function of g̃ and τ .

6.6 Comparison between ensembles

In this section we draw a comparison between the contact calculated from the
canonical ensemble evaluated in this thesis and the grand-canonical one from Ref. 209 at
finite temperature. The motivation for comparing both ensembles comes from the fact that
the scaling properties of the contact are strongly affected by the statistical distribution.
Considering that in most ultracold atom experiments the number of particles is fixed,
performing the calculations within the canonical ensemble is a more appropriate choice. On
the other hand, the grand-canonical ensemble is advantageous when dealing with systems
where the number of particles vary, such as open systems. In the latter, the average number
of particles 〈N〉 is then determined by fixing the temperature and the chemical potential,
while the most remarkable feature of the former is that the particles can have any value
for its energy and the average energy 〈E〉 of the whole system is then determined by
the temperature. For the sake of clarity, in this section we introduce the index (gc) that
represents the respective physical quantity in the grand-canonical ensemble. Moreover, we
analyze the differences from both ensembles in the QMC simulations.

6.6.1 Analytical formula

In the zero-temperature limit, there is no physical distinction between the grand-
canonical and the canonical ensembles. Thus, the contacts from both calculations scale as
N5/2 −N3/4. However, by increasing the temperature, the distinction between ensembles
is enhanced. Such differences can be observed from Fig. 28, where the grand-canonical
contact increases more rapidly when compared to the canonical one as the temperature
rises. In fact, in the large-temperature scenario, the term corresponding to the number of
pairs N(N − 1) in Eq. (6.99) has to be replaced by its average value in the grand-canonical
calculations:

〈N(N − 1)〉 = 〈N2〉 − 〈N〉 = 〈N〉2. (6.118)

Note that this last step follows from the fact that, at large T , 〈∆N2〉 ' 〈N〉. So, analogously
to the canonical scaling (6.99), we have for the grand-canonical contact that

C(gc)
N (g̃, T � TF ) = 〈N〉

2

2 C2(g̃, T � TF ). (6.119)
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In the TG limit, the above relation together with (6.113) yields, by defining TF =
〈N〉~ω/kB, the 〈N〉5/2-dependency,

C(gc)
N (g̃ →∞, τ � 1) = 〈N〉

5/2

π3/2a3
0

√
τ , (6.120)

corroborating the result from Ref. 131. This result is shown in Fig. 32.
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Figure 32 – Canonical (empty symbols) contact in the TG limit from (6.95) rescaled
by N5/2 − N3/2 and grand-canonical (filled symbols) contact from Ref. 209
rescaled by N5/2 as functions of τ for the respective number of particles:
N = 2 (violet squares), N = 3 (green circles), N = 4 (blue triangles), and
N = 5 (orange inverted triangles). The black continuous curve corresponds to√
τ/π3/2.

Source: SANT’ANA et al.210

6.6.2 Quantum Monte Carlo simulations

Now, let us analyze the differences between the canonical and the grand-canonical
QMC simulations. Fig. 33 displays the contact from both ensembles calculated via QMC
considering the weak-intermediate interaction regime, g̃ = 0.5. As expect and already
discussed, the grand-canonical contact presents a steeper rise as the temperature increases
when compared to the canonical one. This difference can be explained by the fundamentals
of the grand-canonical ensemble: there is a probability that the system contains any number
of particles; and such contributions, especially for N > 〈N〉, produces an initial growth of
the contact at low temperatures. This explanation is better understood by mathematical
means: consider the fugacity term ∑

N eβµN , it is then straightforward to see that such a
contribution becomes considerable at large values of N as well as small values of T ∝ β−1.
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Then, at some point, the contact reaches its maximum, which was recently explained as
the mark of the crossover between a quasicondensate and an ideal Bose gas.131 Afterwards,
it begins to decrease. This decline is explained by the very nature of the quantum realm:
as T increases, the de Broglie wavelength decreases, then the overlap between individual
particle waves also decreases, resulting in the overall drop of the total contact.
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Figure 33 – Tan’s contacts evaluated from canonical QMC simulations (empty symbols)
and from grand-canonical QMC simulations (filled symbols) as functions of
τ in the weak-intermediate regime z = g̃ = 0.5 for the respective number of
particles: N = 2 (violet squares), N = 3 (green circles), N = 4 (blue triangles).
QMC error bars in the canonical-ensemble calculation are smaller than the
symbols size.

Source: SANT’ANA et al.210

Now, let us test the scaling hypothesis (6.117) by plotting the ratio

C(gc)
N (g̃ = 1, T )
C(gc)
N (g̃ →∞, T )

, (6.121)

with C(gc)
N (g̃ = 1, T ) being the data from QMC calculation and C(gc)

N (g̃ →∞, T ) being the
analytical formula from Ref. 209. These results are displayed in Fig. 34. We observe that
the curves do not collapse over each other. Thence, we conclude that the scaling hypothesis
(6.121) fails in the grand-canonical ensemble and that the grand-canonical TG contact
does not embed the full N -dependency as it does in the canonical ensemble, at least in
the low- and intermediate-temperature regimes.

It is worth remarking that the QMC simulations are limited within the weak- and
intermediate-interaction regimes, g̃ � 1 and g̃ ∼ 1, and also for low and intermediate
temperatures, τ � 1 and τ ∼ 1. Moreover, by increasing the number of particles, QMC
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Figure 34 – QMC grand-canonical contact rescaled by the TG grand-canonical contact
from Ref. 209 as a function of τ for the respective number of particles: N = 2
(violet squares), N = 3 (green circles), and N = 4 (blue triangles).

Source: SANT’ANA et al.210

simulations become very difficult, and the relative errors increase together with the increase
of τ , g̃, and N . For more details on the QMC calculations see SANT’ANA et al.210
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7 CONCLUSIONS

In this thesis we have studied the system formed by bosonic atoms loaded into
optical lattices and the one-dimensional repulsively interacting Bose gas under a harmonic
confinement. Regarding the first part, bosons in optical lattices, we focused on the MI-SF
quantum phase transition. We introduced the general basis behind the Bose-Hubbard
model in order to construct the BH Hamiltonian, which is the main mathematical quantity
for the evaluation of important physical properties of the system. Another cornerstone of
our theory is the mean-field approximation, which neglects some quantum fluctuations
over the so-called mean-field, which is simply the average of the bosonic lattice operator,
throughout the whole lattice. Within the mean-field theory, which turns out to give rise to
a Hamiltonian which is a summation of the one-site independent Hamiltonians, we are
able to consider such separated single lattice sites, considerably simplifying all calculations.
Then, we introduced the general expansion of the thermodynamic potential in the vicinity
of a second-order phase transition using the analyticity assumptions suggested by Landau.
This expansion provides valuable insights about the phase in which the system is in
terms of the series coefficients of the thermodynamic potential. By applying perturbation
theory, it is then possible to calculate the MI-SF quantum phase diagram. However, it has
been noted that, between every adjacent Mott lobes in the MI-SF phase boundary, there
happens to occur degeneracies between the respective energies of these Mott lobes. When
usual perturbation theory is applied to this system, such degeneracies lead to nonphysical
results, e.g., the condensate density, which is the order parameter in this system, vanishes
in a point of the phase diagram where actually no quantum phase transition occurs. This
result can be considered as an inconsistency that artificially arises from such an erroneous
treatment. Therefore, in order to correct this problem, we developed two methods based
on degenerate perturbation theory to correctly calculate meaningful physical quantities
of the system. Both methods are based on a projection-operator formalism, that enables
us to separate the Hilbert subspace where the degeneracies are contained in from the
complementary subspace, which is free from any degeneracy. With this we are able to
solve the degeneracy problems which are typical of nondegenerate perturbation theories.

Firstly, we developed the Brillouin-Wigner perturbation theory to tackle the zero-
temperature system composed of bosons in optical lattices. Such results were published in
Ref. 185. After that, in order to generalize for finite temperature scenarios, we developed
the finite-temperature degenerate perturbation theory approach and published the results
in Ref. 184. These two methods presented in this thesis are fundamentally different: the
BWPT is developed in the context of the time-independent Schrödinger equation, while
the FTDPT is developed in the context of the time-dependent Schrödinger equation. In
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the latter, the relation between imaginary time and temperature arises naturally by means
of the correspondence between the time-evolution operator and the partition function,
which is simply the trace of the former after performing a Wick rotation. By correctly
treating the degeneracies between the Mott lobes, we were in possession of a reliable
method to calculate important physical quantities, with special attention to the condensate
density due to its role as the order parameter. Finally, it is important to remark that
both methods developed in the first part of the thesis, the BWPT and FTDPT, not
only provide relatively simple frameworks for calculating the condensate density, but are
actually very generic approaches in the sense that they can also be applied to a wide range
of optical-lattice systems, e.g., out-of-equilibrium systems,92,93 bosonic optical lattices
with three-body constraint,96 and different-geometry lattices such as Kagomé lattice,97

triangular and hexagonal lattices,98 as well as the Jaynes-Cummings lattice.99,100

Regarding the one-dimensional repulsively interacting Bose gas under harmonic
confinement, we have studied the asymptotic behavior of the momentum distribution
at both zero and finite temperatures, with special attention to the intermediate- and
strong-interaction regimes, since the weakly interacting regime simply reduces to the
known ideal Bose gas. We began our study by solving the two-particle problem, which is an
integrable model and provides valuable insights regarding the behavior of the many-body
wave function at the contact point: the contact interaction originates a cusp condition
in the wave function, implying its vanishing whenever two particles meet. Beyond two
particles, the integrability breaks down and we have to restrict ourselves to specific regimes,
such as the strongly interacting limit, also known as Tonks-Girardeau limit, where there
happens the so-called fermionization of the bosons, i.e., the bosons behave as the ideal
Fermi gas, enabling the mapping of the bosonic system into a simpler noninteracting
fermionic one. Then, we were able to derive an analytical formula for the Tan’s contact
of N particles repulsively interacting under a harmonic confinement in one dimension in
terms of the single-particle orbitals of the harmonic oscillator in the TG limit. Afterwards,
we investigated the scaling properties of the contact in terms of the number of particles N .
Firstly, we argued that, at large temperatures, the N -particle contact can be written as
the two-particle contact times the number of pairs. This comes from the fact that, as the
temperature increases, quantum correlations can be neglected, thence we simply need to
consider the effects of every pair of particles contacting with each other. More specifically,
we showed that the ratio between the N -particle contact at finite interaction strength
and its correspondent in the TG limit is an universal N -independent scaling function.
Following such advances in the high temperature scenario, we proposed a generalized
scaling conjecture for the entire range of temperatures in the TG limit. Then, we properly
demonstrated that such a conjecture works well for any considered temperature.

Furthermore, we also inspected the intermediate interaction regime, g̃ ∼ 1, with
the help of QMC simulations. In such a regime, we found analogous results to the Tonks-
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Girardeau limit, i.e., meaning that all our previously stated conjectures regarding the
range of temperatures also works when g̃ ∼ 1. Consequently, we conclude that the
contact of N bosons at temperature T with repulsive interaction characterized by the
adimensional interaction strength g̃ rescaled by the contact of N strongly interacting
bosons at temperature T , i.e., CN(g̃, T )/CN(g̃ →∞, T ), is an universal function of the
adimensional interaction strength g̃ and the reduced temperature τ for the whole range of
temperatures. Likewise, the ratio between the contact of N bosons at temperature T with
finite repulsive interaction and the generalized scaling function s(N), i.e., CN(g̃, T )/s(N),
is also an universal function of g̃ and τ for all temperatures.

Finally, as our main calculations were performed within the canonical ensemble, we
compared our results to the grand-canonical calculations performed in Ref. 209. We have
checked that, at large temperatures, both the canonical and the grand-canonical contacts
are proportional to the two-boson contact, with the proportionality factor depending on
the number of pairs in the canonical ensemble as well as the average number of pairs
in the grand-canonical one. On the other hand, at low and intermediate temperatures,
the grand-canonical contact of an average number of 〈N〉 bosons cannot be written as a
function of the 〈2〉-boson contact or of the 〈N〉-TG-boson contact, to the extent of the
QMC simulations, which is the intermediate-interaction regime.

The results obtained in the referred part of the thesis were published in Ref.
210. Such developments are properly suited for probing the contact as well as the role of
correlations and interactions in experiments with a small number of bosonic particles.211,212

Moreover, it is worth noting that the canonical ensemble calculations realized in this thesis
correspond to most real experimental conditions, since the number of atoms is fixed.210

From a conceptual point of view, it is an important step forward to the understanding of
the correlation and interaction effects on the harmonically trapped interacting Bose gas
in one dimension at finite temperature, as well as to the enlightenment of the role of the
particle-number fluctuations.
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APPENDIX A – ATOMIC COLLISIONS IN COLD GASES

In this appendix we derive the general theory regarding two-body collisions that
happens to give rise to interacting properties of cold atoms in three and one dimensions.

A.1 The three-dimensional case

Firstly, we want to find a solution for the respective Schrödinger equation[
− ~2

2µ∇
2 + V (r)− E

]
ψ(r) = 0 (A.1)

in terms of the relative distance r = r1 − r2 and the reduced mass µ = m/2. Now, let us
expand the wave function making use of the spherical harmonics:194,213

ψ(r) =
∞∑
`=0

φ`(r)Y`,0(θ). (A.2)

Substituting the solution (A.2) into (A.1) we have that

d2

dr2u`(r)−
`(`+ 1)
r2 u`(r) + 2µ

~2 [E − V (r)]u`(r) = 0, (A.3)

where u`(r) ≡ rφ`(r). In the asymptotic region r � r0, where r0 is the range of the
interatomic potential V (r), the solution of (A.1) can be regarded as the contributions of
an incident plane wave in the x direction and a spherical scattered wave71

ψ(r) '
r→∞

eikx + f(θ)eikr
r
, (A.4)

where f(θ) is the scattering amplitude as a function of the angle between ~r and the x-axis
θ, which relates the differential cross section dσ to the solid angle element dΩ in elastic
scattering processes via

dσ = |f(θ)|2dΩ. (A.5)

Therefore, for r � r0, the term ∝ 1/r2 in (A.3) can be neglected, yielding the solution

u`(r) = A` sin
(
kr − π`

2 + δ`

)
, (A.6)

where A` is the normalization constant and δ` is simply a phase factor. By performing the
expansion

eikx = 1
2ikr

∞∑
`=0

(2`+ 1)P`(cos θ)
[
eikr − e−i(kr−π`)

]
(A.7)

and choosing A` = (2`+ 1)i`eiδ` ,71 we have that, from (A.2) = (A.4),

f(θ) = 1
2ik

∞∑
`=0

(2`+ 1)P`(cos θ)
(
e2iδ` − 1

)
. (A.8)
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In the ultracold regime, we can consider the atomic energies low enough so that we
must only consider the ` = 0 term in the expansion, also known as s-wave approximation.213

Within such a consideration, the scattering amplitude reduces to

f(θ) ≈ e2iδ0 − 1
2ik = 1

k cot(δ0)− ik . (A.9)

So, we now define the so-called s-wave scattering length as

a ≡ − lim
k→0

f(θ) = −tan(δ0)
k

. (A.10)

It is worth noting that the scattering length a is deeply related to the initial condition of
the radial solution (A.6) as

1
u0(r)

du0(r)
dr

∣∣∣∣∣∣
r=0

= k cot(δ0) = −1
a
. (A.11)

Moreover, the definition of the scattering length implies that the total scattering cross
section yields σ = 4πa2, which turns out to be the same as an impenetrable sphere of
radius a.213,214

It was shown in HUANG; YANG214 that, instead of performing all considerations
that were done until now, the problem can be equivalently formulated by introducing the
pseudopotential

V̂ps(r) = 4π~2a

m
δ(r) ∂

∂r
r (A.12)

in the respective Schrödinger equation[
− ~2

2µ∇
2 + V̂ps(r)− E

]
ψ(r) = 0. (A.13)

Finally, we conclude that, via the introduction of the pseudopotential,214 the
interaction parameter in the three-dimensional case is defined as

g ≡ 4π~2a3D

m
, (A.14)

with a3D being the three-dimensional s-wave scattering length.

A.2 The one-dimensional case

The one-dimensional scattering amplitude within the pseudopotential approxima-
tion was performed by M. Olshanii in 1998.215 Thus, the considerations under such a
treatment are: a) the atomic motion is allowed to happen freely along the x-axis; b) the
harmonic potential possesses a frequency ω⊥, acting along the yz-plane; c) the interaction
between particles is of the form of the pseudopotential introduced in Eq. (A.12). Therefore,
the respective Schrödinder equation reads[

− ~2

2µ∇
2
x + Ĥ⊥ + V̂ps − E

]
ψ(r) = 0, (A.15)
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where
Ĥ⊥ = − ~2

2µ
(
∇2
y +∇2

z

)
+ µω2

⊥
2 (y2 + z2). (A.16)

Assuming that the incident wave corresponds to a particle in the ground state of Ĥ⊥,
ψ = eikxφ0(y, z), the asymptotic solution of (A.15) is given by

ψ(r) ∼
x→∞

(
eikx + feven(k)eik|x| + fodd(k)sgn(x)eik|x|

)
φ0(y, z), (A.17)

where feven/odd(k) is the even/odd partial wave scattering amplitude. For low velocities
kr0 � 1 and the tight confinement regime a⊥ � |a3D|, and regarding the one-dimensional
pseudopotential

Vps(x) = − 2~2

ma1D
δ(x), (A.18)

the odd scattering amplitude vanishes, fodd = 0, while the even one yieldsI

feven(k) ≈ − (1 + ika1D)−1 , (A.19)

where
a1D = − a2

⊥
2a3D

(
1− Ca3D

a⊥

)
(A.20)

is the one-dimensional s-wave scattering length, a⊥ ≡
√
~/µω⊥, and

C ≡ lim
u→∞

(∫ u

0

du′√
u′
−

u∑
u′=1

1√
u′

)
≈ 1.4603. (A.21)

In conclusion, the analogous one-dimensional pseudopotential (A.18) retains the proper
scattering behavior, so that we can define the corresponding interaction strength in 1D as

g ≡ − 2~2

ma1D
. (A.22)

I For the detailed analytical calculation, see Ref. 215.
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APPENDIX B – BOSE-EINSTEIN CONDENSATION IN LOW DIMENSIONS

In this appendix we present a concise description of the underlying physics involved
in low-dimensional BECs. Let us begin with the D-dimensional ideal Bose gas. The
chemical potential µ is determined by satisfying the number of particles formula∑

k

1
eβ(Ek−µ) − 1 = N. (B.1)

Now, suppose the chemical potential vanishes, µ → 0, at a critical temperature Tc ≡
(kBβc)−1. Then, as the density of states (DOS) becomes a continuous one, ρ(E), we perform
the substitution ∑k → (L/2π)D

∫
dDk and then the number of particles formula reads∫ ∞
0

dE
ρ(E)

eβcE − 1 = N. (B.2)

However, as the DOS depends on the dimensionality as ρ(E) ∝ ED/2−1,75 the integral in
(B.2) diverges for D ≤ 2. This implies that µ 6= 0 in D ≤ 2 and that no BEC occurs at
T > 0.

In the 3D scenario, ρ(E) ∝
√
E, thence ρ(E) E→0→ 0, meaning that a macro-

scopic occupation of the lowest-energy state is favorable. Differently, in 1D we have that
ρ(E) ∝ E−1/2, implying that ρ(E) E→0→ ∞, disfavoring the occupancy of the lowest-energy
configuration. In 2D, the DOS is independent of E and the analysis for the occurrence of
BEC is a bit more subtle: the main point is that in 2D the off-diagonal long-range order
breaks down, but a quasi long-range order associated with a topological quantum phase
transition emerges.I

When the system is spatially confined, the picture changes and BEC can emerge in
low dimensions d ≤ 2.109 This happens because there is a change in the DOS-dependency
on the energy due to the dependency on the size occupied by such a nonuniform gas,
e.g., consider the power law potential V (r) ∝ rα; because of LD ∝ ED/α,75 the density of
states changes according to ρ(E) ∝ LDED/2−1 = ED/α+D/2−1. Thus, the condition for the
integral (B.2) to converge becomes

D >
2α
α + 2 , (B.3)

which results in D > 3/2 for a linear potential V (r) ∝ r and D > 1 for a harmonic
potential V (r) ∝ r2.

B.1 Hohenberg-Mermin-Wagner theorem

In this section we are concerned with the derivation of the Hohenberg-Mermin-
Wagner theorem, that states the absence of the U(1)-symmetry breaking at T > 0 in D ≤ 2
I For a detailed explanation, see UEDA.75
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and is associated with the proof of Bogoliubov’s inequality:107

〈{Â, Â†}〉〈[B̂†, [Ĥ, B̂]]〉 ≥ 2kBT |〈[Â, B̂]〉|2. (B.4)

Here Â and B̂ are arbitrary operators, Ĥ is the Hamiltonian of the system, [· · · ] and
{· · · } are, respectively, the commutator and the anticommutator, while 〈· · ·〉 stands for
the thermal average of an arbitrary operator Ô,

〈Ô〉 ≡
∑
n

Pn〈n|Ô|n〉, Pn ≡
e−βEn

Tr
[
e−βĤ

] , (B.5)

where Ĥ|n〉 = En|n〉. Let us define

(Â, B̂) ≡
∑
m6=n
〈n|Â†|m〉〈m|B̂|n〉 Pm − Pn

En − Em
. (B.6)

Now, making use of the hyperbolic inequality x−1 tanh(x) ≤ 1, we have that

tanh [β(Em − En)/2]
β(Em − En)/2 = 2(pm − pn)

β(pm − pn)(En − Em) ≤ 1

⇒ 0 < pm − pn
En − Em

≤ β

2 (pm − pn).
(B.7)

Thence, it follows that

(Â, Â) =
∑
m6=n
|〈m|Â|n〉|2 pm − pn

En − Em
≤ β

2
∑
m,n

|〈m|Â|n〉|2(pm − pn) = β

2 〈{Â, Â
†}〉. (B.8)

In addition, let Ĉ ≡ [B̂†, Ĥ], so we work out

(Ĉ, Ĉ) =
∑
m 6=n
〈n|Ĉ†|m〉〈m|[B̂†, Ĥ]|n〉 pm − pn

En − Em

=
∑
m,n

〈n|Ĉ†|m〉〈m|B̂†|n〉(pm − pn)

= 〈[B̂†, Ĉ†]〉 = 〈[B̂†, [Ĥ, B̂]]〉,

(B.9)

and
(Â, Ĉ) =

∑
m 6=n
〈n|Â†|m〉〈m|[B̂†, Ĥ]|n〉 pm − pn

En − Em

=
∑
m,n

〈n|Â†|m〉〈m|B̂†|n〉(pm − pn)

= 〈[B̂†, Â†]〉.

(B.10)

Now, let us introduce the Schwarz inequality173,194

(Â, Â)(Ĉ, Ĉ) ≥ |(Â, Ĉ)|2. (B.11)

By the direct substitution of (B.8), (B.9), and (B.10) into (B.11), we prove the Bogoliubov
inequality (B.4).
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Now, let the operators be Â = â†p and B̂ = ρ̂p ≡
∑

k â
†
kâk+p, then

〈{Â, Â†}〉 = 2np + 1, np ≡ 〈â†pâp〉, (B.12a)

[B̂†, [Ĥ, B̂]] = [ρ̂†p, [Ĥ, ρ̂†p]] = N
p2

m
, II (B.12b)

[Â, B̂] = −â†0. (B.12c)

By using these results into Eq. (B.4), the Bogoliubov inequality results in

np ≥
mkBT

p2
|〈â0〉|2

N
− 1

2 . (B.14)

Therefore, it follows from (B.14) the absence of the U(1)-symmetry breaking in D ≤ 2
at T > 0 because of the divergence of the sum ∑

p np (unless 〈â0〉 = 0). In the zero-
temperature regime, 〈â0〉 6= 0 can happen in 2D, but it cannot in 1D. In order to show
this, let us make use of the following inequality:75

〈{Â†, Â}〉〈{B̂†, B̂}〉 ≥ |〈[Â†, B̂]〉|2. (B.15)

Similarly to the previous association, let the operators be Â = â†p and B̂ = ρ̂p. Hence,

〈{Â, Â†}〉 = 2np + 1, (B.16a)
〈{B̂†, B̂}〉 = 2〈ρ̂pρ̂

†
p〉, (B.16b)

[Â, B̂] = −â†0. (B.16c)

Consequently, the inequality (B.15) results in

np ≥
|〈â0〉|2

2〈ρ̂pρ̂
†
p〉
− 1

2 . (B.17)

In the low-momentum limit p→ 0, we have that

〈ρ̂pρ̂
†
p〉 ≤

Np

2mvs
, (B.18)

where vs is the sound velocity.
II Consider the Hamiltonian

Ĥ =
∑

p
Epâ

†
pâp + 1

2
∑

k,p,q
Vkâ

†
p+kâ

†
q−kâqâp

=
∑

p
Epâ

†
pâp + 1

2
∑

k
Vkρ̂

†
kρ̂k −

1
2N

∑
p
Vp.

By performing some algebraic manipulations and considering Ek = k2/2m and N̂ ≡
∑

k â
†
kâk,

we have that

[Ĥ, ρ̂p] =
∑

k
(Ek − Ek+p)â†kâk+p,

[ρ̂†p, [Ĥ, ρ̂p]] =
∑

k
(Ek+p + Ek−p − 2Ek)â†kâk = N̂

p2

m
.
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Proof. Starting with
[ρ̂†p, [Ĥ, ρ̂p]] = N̂

p2

m
, (B.19)

multiplying both sides by eβĤ/Tr
[
eβĤ

]
and taking the trace,75 we obtain

∫ ∞
0

~ωS(p, ω)dω = EpN, (B.20)

where

S(p, ω) ≡ 1
Tr
[
eβĤ

] ∑
m,n

eβEm
(
|〈m|ρ̂†p|n〉|2 + |〈m|ρ̂p|n〉|2

)
δ(~ω − ~ωnm), (B.21)

is called dynamic structure factor and ωnm ≡ ωn−ωm. From the Schwarz inequality (B.11),
one obtains

S(p) =
∫ +∞

−∞
S(p, ω)dω ≤

√∫ +∞

−∞
~ωS(p, ω)dω

∫ +∞

−∞
(~ω)−1S(p, ω)dω, (B.22)

with S(p) being called static structure factor. From (B.20), the inequality reduces to

S(p) ≤
√

2EpN
∫ +∞

−∞
(~ω)−1S(p, ω)dω. (B.23)

In the low-momentum limit, it can be shown that75

lim
p→0

∫ +∞

−∞
(~ω)−1S(p, ω)dω = N~

mv2
s

, (B.24)

which results in
S(p)

∣∣∣∣
p→0
≤ Np

mvs
. (B.25)

Consequently, we have that

np ≥
mvs|â0|2

2Np − 1
2 . (B.26)

The aftermath of Eq. (B.26) is the following: because ∑p np diverges in 1D, we conclude
that the U(1)-symmetry breaking does not occur, even at T = 0, unless 〈â0〉 vanishes. On
the other hand, for D = 2, the sum ∑

p np is a convergent one, thence it is possible the
appearance of the U(1)-symmetry breaking.

To conclude this appendix, we showed that the Hohenberg-Mermin-Wagner theorem
forbids the breaking of the U(1) symmetry in low dimensions. However, BEC can exist
even without the presence of the U(1)-symmetry breaking.75
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The occurrence of BEC is associated with an important quantity that, depending
on the textbook, is known as one-body density matrix or one-body correlator,

%(1)(r, r′) ≡ Tr
[
%̂Ψ̂†(r)Ψ̂(r′)

]
= 〈Ψ̂†(r)Ψ̂(r′)〉, (C.1)

where %̂ is the density operator, while Ψ̂†(r) and Ψ̂(r) are the field operators that create
and annihilate a particle at the spatial position r, respectively. This physical quantity has
a clear interpretation: it is the probability amplitude of the annihilation of a particle at
position r′ followed by the creation of a particle at position r. As the system undergoes
BEC, the waves of the individual particles overlap over each other, enhancing their
indistinguishability and, consequently, producing the effect of increasing the correlation
between long-distance particles. Mathematically, this fact corresponds to216

lim
|r−r′|→∞

%(1)(r, r′) 6= 0, (C.2)

and is known as off-diagonal long-range order (ODLRO).

As we shall discuss, the concepts of BEC and superfluidity are strongly related,
although there is a subtle relation between them. For example, the special case of an
ideal gas that undergoes BEC presents no superfluidity and a 2D superfluid presents no
BEC. Despite of these two referred cases, there are many systems in which BEC and
superfluidity coexist.

Let us consider a time-dependent system and its associated one-body density matrix

%(1)(r, r′; t) = 〈ψ̂†(r, t)ψ̂(r′, t)〉 =
∑
ν

nν(t)ψ∗ν(r, t)ψν(r′, t), (C.3)

with nν(t) satisfying ∑
ν

∫ ∞
0

nν(t)dt = N. (C.4)

Considering that ν = 0 represents the BEC mode, it follows that

lim
|r−r′|→∞

%(1)(r, r′; t) = n0ψ
∗
0(r, t)ψ0(r′, t). (C.5)

We can interpret
Ψ(r, t) ≡ √n0ψ0(r, t) (C.6)

as being the condensate wave function as well as

%(r, t) ≡ Ψ∗(r, t)Ψ(r, t) (C.7)
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as being the particle density in the BEC state. From the continuity equation

∂

∂t
%(r, t) +∇ · j(r, t) = 0, (C.8)

the current of particles yields

j(r, t) = −i ~
2m [Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)] . (C.9)

Decomposing the BEC wave function into an amplitude times a phase,

Ψ(r, t) = A(r, t)eiφ(r,t), (C.10)

the density and the current possess the form

%(r, t) = A2(r, t), (C.11a)

j(r, t) = ~
m
A2(r, t)∇φ(r, t). (C.11b)

Now, from the definition of the superfluid velocity,

vs(r, t) ≡
j(r, t)
%(r, t) = ~

m
∇φ(r, t), (C.12)

it is possible to realize the connection between BEC and superfluidity: the phase of the
condensate wave function φ plays the role of the velocity potential in the superfluid.
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