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1. INTRODUCTION

1.1 Research intentions

Cosmic rays (CRs) are particles of non-terrestrial origin that reach the
Earth. Although there are several questions in the study of these particles,
there are two central topics of interest: What is their origin (production,
acceleration, and propagation), and what is their importance in the total
energy balance of the universe?

The difficulty in studying CRs lies in the fact that their flux drops many
orders of magnitude for energies between 109 eV and 1020 eV. Therefore,
the experimental techniques used for particle detection change significantly
in this energy range. For energies lower than „ 1014 eV, the flux is high
enough to directly measure the primary particles with spectrometers or
calorimeters through balloons in the upper atmosphere or on satellites and
space stations. For higher energies, the traditional technique is to take
advantage of the interaction of cosmic primaries with the atmosphere.

When penetrating the atmosphere, CRs interact with the nuclei of
atoms and initiate a cascade process called an extensive air shower.
Several experimental techniques have been developed to measure different
components of atmospheric showers. For energies between 109 eV and 1015

eV, one measurement technique is using Imaging Atmospheric Cherenkov
Telescopes (IACTs) for the study of gamma-ray sources through the detection
of gamma-initiated air showers. Each IACT can measure the Cherenkov
light produced by the particles of an atmospheric shower. The signals
measured in each IACT have to be reconstructed to extract from the
measured information the properties of the primary cosmic particles.
Data analysis is optimized to select gamma rays and study astrophysical
sources by measuring the energy spectrum and mapping the emitting object.
However, through the measurements of these telescopes, it is also possible
to reconstruct fundamental information about the cosmic ray composition
as a function of energy. To study the possibility of determining the type of
primary particle using Cherenkov telescopes, this thesis proposes to:

P.1 CR mass identification by reconstructing the shower maximum Xmax

with novel methods using IACTs in the energy range from 1 TeV to
300 TeV.

P.2 Develop a convolutional neural network to separate proton-like and
iron-like events in the energy range from 1 TeV to 300 TeV.

To achieve P.1, we presented two methods. The first method reconstructs
a new mass-sensitive observable for telescopes located at distances ě 150

2



1.1. Research intentions

m with respect to the shower impact on the ground and is explained in
chapter 2. The second method reconstructs the shower profile of electrons
and the depth of the shower maximum, considering telescopes at any
distance from the shower axis, and is presented in chapter 3. For P.2, we
reconstructed the longitudinal profiles of CR showers and separated the
proton and iron based on the shower maximum, presented in chapter 4.
In chapter 5, a deep learning algorithm that takes the image, the shower
maximum, and the energy as inputs is shown and used to separate iron
and proton events.

This chapter is structured as follows. In Section 1.2, an overview of
the historical introduction of CR, the CR spectrum, and mass composition
measurements are described. The overview of gamma-ray astronomy and
the Imaging Atmospheric Cherenkov Telescopes, and in particular of the
upcoming Cherenkov Telescope Array (CTA) observatory, which is one of
the main focuses of this thesis, are given in Section 1.3. A description
of the main methods and techniques used in air shower analysis is also
included. In Section 1.4, the components and development of extensive
air showers in the atmosphere are described. In Section 1.5, concepts and
definitions of artificial neural networks are summarized. Finally, the thesis
outline describing the subsequent chapters is presented in Section 1.6.

3



1. INTRODUCTION

1.2 Overview of cosmic-rays

CRs are relativistic charged particles made up of protons, helium, electrons,
and heavier charged nuclei, carrying enough energy to propagate from
distant sources to Earth. These particles cover a vast energy range up to
„ 1020 eV. The main problem in CR research is understanding the origin
of these particles that lead to the acceleration to such high energies and
the propagation through the galactic and extra-galactic environments. The
fundamental quantities that help to address this problem are the spectrum,
the arrival direction, and the mass composition. This chapter provides
an overview of CR science as follows: Section 1.2.1 presents a historical
perspective, describing the discovery of cosmic radiation and the evolution
of experimental techniques; Section 1.2.2 summarises the measurements
of CR spectrum and composition; Section 1.2.3 discusses the importance
of the mass composition and section 1.2.4 describes some techniques to
study the composition with ground-based observatories.

1.2.1 Historical introduction

In 1912, the radiation of cosmic origin was conclusively discovered by
Victor Hess when he realized that the discharge speed of electroscopes
mounted on atmospheric balloons increased with altitude (up to 5 km)
[1, 2]. He explained this phenomenon with radiation of high penetrating
power coming from outer space and entering the atmosphere. This
discovery led to research on the origin and nature of this radiation. In 1913
and 1914, Kolhorster confirmed these measurements at 6 km and 9 km
of altitude [3, 4, 5]. However, Millikan was initially not convinced about
the evidence of such penetrating radiation, motivating him to carry out
additional experiments [6]. Some doubts appeared in 1922, when Milikan
and Bowen Ballons’s flight indicated much less ionization above 5 km than
Kolhorsters’s observations, concluding that there was no cosmic radiation
of the characteristics described in those results [7, 8]. But later, in 1925,
Millikan and Cameron measured the ionization in snow-fed lakes to clear
up the inconsistencies in measurements of the absorption coefficient of the
cosmic radiation [9]. On this occasion, their results removed all doubts,
indicating radiation travelling downwards with no local contamination, to
which he referred with the name of cosmic rays (CRs). The noun rays was
a misnomer because the nature of CR was not yet known.

Hereafter CRs opened the opportunity to discover new particles such
as the positron, discovered by Anderson in 1933 using cloud chambers
[10], the muon [11, 12] and the pion [13]. In the same year, Blacket also
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1.2.1. Historical introduction

reported tracks in cloud chambers, revealing traces of the electron-positron
pair production [14].

A vital contribution came from Pierre Auger and his group in 1939.
They found that sensors, separated by a maximum distance of 300 m,
detected particle events simultaneously at sea level [15]. Their research
revealed that these simultaneous events were related to the same primary
particle of CRs. The conclusion was that a particle of CR induced an
extensive air shower of secondaries in the upper atmosphere. They also
concluded that the necessary energy for CR to produce these showers was
at least of the order „ 1015 eV [15]. In this sense, a breakthrough was the
work of John Linsley, who pioneered ground-based array detectors and was
the first to detect an air shower initiated by a particle of 1020 eV [16]. This
result extended the CR spectrum by several orders of magnitude including
ultra-high energy cosmic rays (UHECR) [17].

Important implications in the physics of UHECR came with the discovery
of Cosmic Microwave Background (CMB) radiation in 1965. Greisen [18]
and independently Zatsepin and Kuzmin [19], predicted that protons
with energies higher than 4 ˆ 1019 eV would interact with CMB photons,
producing pions. This phenomenon is known as the GZK effect. It
was noted that the GZK effect would suppress the incoming CR flux at
Earth even in scenarios where heavier nuclei dominate the flux. Initially,
there was controversy about the results measured by the AGASA detector
suggesting the absence of such suppression in the energy spectrum [20].
Later, evidence for a spectrum cutoff was presented by the Fly’s Eye
Observatory [21]. The debate created by both collaborations was an extra
motivation for the construction of ground-based observatories such as the
HiRes experiment [22] and the Pierre Auger Observatory [23], whose
measurements resolved the controversy confirming the existence of the
suppression.

Despite the controversy, the tension was a further incentive to create
giant observatories with large collecting areas producing enough statistics,
such as Telescope Array (which is about one-fourth of the area covered
by the Pierre Auger Observatory) [24]. Both Pierre Auger and Telescope
Array observatories allowed full sky coverage for UHECR measurements,
taking advantage of previous technical developments in the surface and
fluorescence technique. Nowadays, many advances have been made
concerning UHECR. Studies about the mass composition have been
performed [25, 26, 27, 28, 29] using the depth in which the shower
reached the maximum number of particles, as will be discussed in detail
later.

5



1. INTRODUCTION

1.2.2 Spectrum and Composition

The energy spectrum of CRs, that is, the number of particles per unit area,
unit time, solid angle, and unit energy, has been well studied up to around
1020 eV, as seen in Figure 1.1. The spectrum can be described using a
power law that falls rapidly with the energy, dN/dE „ E´α, where α is
the spectral index. There is a steepening from α=2.7 to α=3.0 at the
so-called “knee” around 1015 eV. A second steepening occurs at about 5 ˆ

1017 eV with α=3.3, which forms the second knee. Finally, the so-called
“ankle” corresponds to the region above 5 ˆ 1018 eV with a spectral index
of α=2.7.

These changes in the energy spectrum are believed to carry essential
information about the fundamental questions of the origin, acceleration
and propagation of CRs. For energies below the knee (from 108 to 1015

eV), most CRs are believed to be originated from supernova remnants1

inside our galaxy [30]. In this energy range, the detection of CR particles
is performed directly by space-based experiments indicating a composition
of 98% nuclei and 2% for electrons [31]. Of the cosmic ray nuclei, 87%
are protons, 12% are helium nuclei and 1% for heavier nuclei. A tiny
component is antimatter, such as positrons and antiprotons.

A possible explanation of the steepening of the spectrum is given by
the effect of a magnetic field on the motion of the charged particles. The
gyro-radius rg of a charged particle of rigidity R2 in a magnetic field of
strength B (assuming particle velocity orthogonal to B) is [32]:

rg “ 1.1 ˆ 10´6RpGVq

BpµGq
pc. (1.1)

Assuming the magnetic field strength of our galaxy „ 3 µG [33] and
protons of 1015 eV, the gyro-radius is rg « 0.37 pc. In the case of protons
of 1018 eV, rg « 370 pc. Considering that our Galaxy has a radius of about
15 kpc and a thickness of 2h « 400 pc, we can conclude that particles up
to 1015 eV are well confined within the Galaxy. On the other hand, CRs
at higher energies start to escape more freely from the Galaxy, providing
a possible reason for the steepening of the spectrum at the knee. Since
the flux decreases with the energy, the detection of direct CRs particles is
a challenging task. For energies larger than „ 1015 eV, CRs are detected

1A supernova is a catastrophic explosion that occurs at the end of the life of a massive
star, emitting immense energy and ejecting heavy elements into space.

2The rigidity is defined as R “ pc{q, where q is the particle charge, p is the particle
momentum, and c is the speed of light. It can also be referred to as simply R “ Brg, where
B is the magnetic field, rg is the gyro-radius of the particle due to this field.
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1.2.3. Astrophysical models and mass composition importance

Figure 1.1: The all-particle spectrum of CRs as a function of energy, measured by
several air shower experiments. The data points are scaled to visualize better the
spectral index changes. Taken from reference [34].

indirectly by measuring secondary particles that reach the ground, using
the so-called extensive air shower, which will be discussed in the following
section.

1.2.3 Astrophysical models and mass composition importance

Some astrophysical explanations have been proposed for the CR flux
depending on the energy regime. For instance, around the knee („ PeV),
there are (i) models linking the knee to the properties of CR sources and
(ii) models linking the knee to the cosmic ray propagation [35]. In the
first case, the models require two types of populations, one dominating the
energies below the knee and another for energies above the knee. Different
types of supernova sources would fulfil this requirement [36, 37]. In the
second case, the knee could result from turbulent diffusion and drift in the
Galatic magnetic field [38, 39]. Therefore, the precise measurement of the
CR spectrum is an essential task for high-energy physics because it provides
crucial information about their sources and propagation properties within

7



1. INTRODUCTION

the Galaxy. For instance, additional softening in the CR proton spectrum
could have consequences in studying the spectra of atmospheric neutrinos
in the TeV energy range [40].

Fig. 1.2a shows that the CR proton flux (scaled by E2.7) deviates
from a simple power law and exhibits two features. The plot shows a
hardening at around 1TeV, first discovered by PAMELA [41] and confirmed
with high precision by AMS02 [42] and later by several other calorimeter
detectors [43, 44, 45, 46, 47]. A second feature, a softening, is observed
at about 10 TeV by direct measurements from DAMPE [46], with first
hints provided earlier by CREAM [44] and NUCLEON [47] with lower
precision. In addition, the CR proton spectra at high energies obtained by
the ground-based KASKADE and IceTop/IceCube (indirect measurements)
are not in good agreement, which means there is no unique way to
extrapolate the flux at PeV energies (see Fig. 1.2b). The estimate of
the proton flux performed by KASCADE and IceTop differs by a factor
larger than three at around 2 PeV. These discrepancies do not allow
us to establish whether additional spectral features exist. Future air
shower observatories with capabilities for measuring many components
(Cherenkov light, electromagnetic) of the shower (such as CTA [48]) will
have the potential to reduce uncertainties in the spectra measurement for
different primary particles.

In air shower analysis, a helpful quantity to describe the CR mass
composition above 1 PeV is the mean logarithm mass given by [49]:

xlnAy “
ÿ

i

fi lnAi, (1.2)

where fi is the relative fraction of nuclei of mass Ai. Multiple experiments
release observable quantities from which the average logarithmic mass
can be derived. The typical observable is the average depth of the shower
maximum (Xmax), using Cherenkov and fluorescence light detected by air
shower arrays. This is a unique study of the Pierre Auger Collaboration
[50] in which the moments of ln A distributions are performed from the
conversion of the moments of Xmax distributions. These quantities are
illustrated in Fig 1.3 for three different interaction models. Depending on
the interaction model, the ln A values vary from 0 (pure composition of
protons) to „ 4 (pure composition of irons), indicating that composition
goes from light to heavy along the energy.

Measuring the mass composition is needed to test models of suppression
in the full-particle spectrum around the knee and ankle because a change
from heavier to lighter composition would be evidence of a transition from
galactic to extra-galactic sources.

8



1.2.3. Astrophysical models and mass composition importance

(a)

(b)

Figure 1.2: (a) Direct measurements of the CR proton spectrum from many
experiments. (b) All–particle and proton spectra from direct measurements and
air shower observations (KASKADE and IceTop). Images taken from [40]
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1. INTRODUCTION

Figure 1.3: Moments of ln A distributions calculated from converting the moments
of Xmax distributions with EPOS-LHC, QGSJetII-04, Sibyll 2.3c. Image is taken
from [50].

1.2.4 Measurements of the mass composition

In ground-based CR experiments, the energy E0 and the mass A of a
nucleus that originates an air shower are parameters we try to reconstruct
because of the correlation with the accelerating astrophysical sources. Two
independent observables must be measured to estimate the energy and
mass of the CR that generated the air shower. The energy E is proportional
to the shower size Ne, which is the total number of electrons measured
at the detection level. Along with the shower size, the muon size and the
depth of the shower maximum are usually reconstructed. It is difficult
to determine the energy and mass on a shower-to-shower basis because
of fluctuations on Xxmax and Nµ at fixed Ne. These fluctuations come
from experimental limitations and the stochastic nature of the interaction
processes in the air shower, specifically related to the position of the first
interaction.

1.2.4.1 Depth of the shower maximum

The depth of the shower maximum is the position (in g/cm2) where the
number of secondary particles reaches a maximum. For instance, in the
Pierre Auger observatory, the Xmax is obtained from the longitudinal
deposit energy profile reconstructed from fluorescence telescopes. Fig. 1.4
shows simulated shower profiles superimposed on the measured profile.

10



1.2.4. Measurements of the mass composition

One can see that even on a shower-to-shower basis, it is possible to make
a rough distinction between light and heavy primaries by comparing the
position of the Xmax.
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Figure 1.4: Data points of a longitudinal profile measured by fluorescence
telescopes from Auger observatory. The data is compared with ten profiles from
three different simulated air showers. Image is taken from [51].

The most relevant aspect of measuring the Xmax is its relation with
the CR composition because the average xXmaxy and variance σ2pXmaxq

of the shower maximum are sensitive [52, 51] to the distribution of the
primary masses. Measuring mass composition is needed to test models
of suppression in the full-particle spectrum around the knee and ankle
because a change from heavier to lighter composition would be evidence of
a transition from galactic to extragalactic sources. In a first approximation,
a nucleus of mass A and energy E is equivalent to A protons with energy
E{A. In principle, the average shower maximum for showers with similar
energy offers a measure of how heavier or lighter the composition is in
a given energy bin, as shown in Fig. 1.5. Measurements from several
ground-based experiments indicate a change in composition, going from
light to heavier for energies between 1015 eV and 1020 eV.

The average logarithm mass of CRs given in equation (1.2), xlnAy “
ř

fi lnAi, is used for CR experiments where elemental groups of mass Ai

is adjusted with several flux fractions fi. In the case of experiments that
measured xXdata

maxy, the mean logarithm mass can be obtained from the
average depth of shower maximum of protons Xp

max and iron nuclei XFe
max

simulations using [49]:

xlnAy “
xXp

maxy ´ xXdata
maxy

xXp
maxy ´ xXFe

maxy
ˆ lnAFe, (1.3)
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Figure 1.5: Measurements of Xmax with non-imaging Cherenkov detectors
(Tunka, Yakutsk, CASA-BLANCA) and fluorescence detectors (HiRes/MIA, HiRes,
Pierre Auger and TA). Three different hadronic interaction models (QGSJET,
Sybyll, EPOS) for the pure composition of proton and iron nuclei are shown.
Image taken from [51].

where AFe is the mass of the iron. Some measurements of xlnAy from
the Pierre Auger Observatory are plotted in previous Fig. 1.3. As shown
in Fig. 1.5, not many measurements have been performed below the PeV
energy range using this analysis, which is an extra motivation for the future
perspective of ground-based observatories.

1.2.4.2 Resolution of the reconstruction of the shower maximum

The reconstruction of the air shower parameters (primary energy, arrival
direction, altitude/depth of the shower maximum) is essential in air shower
array detectors. Mainly, the resolution in reconstructing the depth of the
shower maximum is the first step before any analysis of CR composition or
method based on the Xmax [53, 54]. The validation consists of calculating
the spread of the distributions between the simulated and the reconstructed
values. In the case of fluorescence detectors for detecting ultra-high energy
(from 1017 to 1020) cosmic rays showers, typical values of Xmax resolution
are lower than 30 g/cm2, reaching values of 12 g/cm2, as seen in Table
1.1. In the case of the non-imaging Cherenkov detectors, the resolution
is about 20 g/cm2. At lower energies (around TeV), Imaging Atmospheric
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1.2.5. Conclusion

Cherenkov Telescopes (IACTs) offer a resolution of about 30 g/cm2.

Experiment Detection
technique

Energy
(eV)

Xmax
resolution
(g/cm2)

TA Fluorescence light 1018.4 - 1020 17.2
HiRes Fluorescence light ą 1017 30.05
PAO Fluorescence light 1017.8 - 1020 25 - 12

Yakutsk Non-imaging Ch. det. „ 1018 38
HESS IAC technique ą 1012 30
LOFAR radio signal 1016.8 - 1018.3 19

Table 1.1: Resolutions values in reconstructing the depth of shower maximum for
different ground-based experiments and techniques. Values taken from Telescope
Array (TA) [55], High Resolution Fly’s Eye experiment (HiRes) [56], Pierre Auger
Observatory (PAO) [53], Yakutsk [57], LOFAR [58].

1.2.5 Conclusion

This section provided an overview of CR research, focusing on detecting
cosmic rays. Throughout history, we review the study of cosmic rays
around the fundamental quest to understand the origin and nature of these
particles. While precise measurements have yielded valuable insights into
the energy spectrum, determining the composition of cosmic rays remains
challenging. Unravelling their mass composition is crucial for constraining
theoretical models of cosmic-ray acceleration and propagation. It is clear
that estimating and analyzing mass composition measurements is not solely
a technical limitation but is also constrained by interpreting observable
quantities derived from air showers. In this sense, this thesis makes
contributions in Chapters 2, 3, and 4, aiming to enhance the interpretation
of Xmax measurements and improve the reconstruction of this parameter.
Given the crucial role of Xmax in determining the mass composition of
cosmic rays, the findings presented in this thesis ultimately contribute to
resolving the challenge of determining cosmic ray mass composition.
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1.3 Overview of gamma-ray astronomy

Gamma-ray astronomy detects and studies photons as they arrive at Earth
from distant sources. The gamma-ray photons could have energies above „

1 MeV and are classified depending on their energy domains (see Table 1.2).
Gamma rays can be observed directly by space-based experiments such as
the Fermi Gamma-ray Space Telescope for low and high-energy domains
[59]. On the other hand, the detection of Very High Energy (VHE) and
Ultra High Energy (UHE) gamma rays requires ground-based observatories
performing indirect detection since the Earth’s atmosphere is opaque to
such high-energy radiation.

Since the atmosphere is not transparent to the gamma rays, they must
be detected from satellites or indirectly using ground-based telescopes.
Satellite detectors typically detect gamma rays with energies below a few
hundred GeV and have an excellent γ/hadron separation. On the other
hand, the flux of VHE sources is so low that the area available on satellite
detectors does not allow to pile up a sufficient number of photons.

The imaging atmospheric Cherenkov technique based on the Cherenkov
light emitted by the air shower initiated by the gamma rays is used to
detect such low fluxes. Using arrays of telescopes provide several order
of collection area larger than satellites. A disadvantage is that they are
sensitive to contamination, such as CR-initiated showers or night sky
backgrounds that limit the observation during clean moonless nights. In
this sense, the present section is focused on reviewing aspects related
to VHE gamma-ray astronomy with attention to experimental techniques
rather than the astrophysical aspects.

Domain Abreviation
Energy Range

min max

Low energy LE 1 MeV 30 MeV
High energy HE 30 MeV 50 GeV
Very-high energy VHE 50 GeV 100 TeV
Ultra-high energy UHE 100 TeV 100 PeV
Extremely-high energy EHE ą 100 PeV

Table 1.2: Energy domains in gamma-ray astronomy. Table modified from [60].
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1.3.1 Historical introduction

Gamma-ray astronomy has been closely related to the history of cosmic
rays. It was understood that cosmic rays, composed mostly of protons and
a small fraction of heavier nuclei, could not be traced back to their sources
due to the deflections by magnetic fields. By the early 1950s, several
authors already suggested that cosmic ray electrons in the trapping field of
a star would generate radio emission [61, 62]. These results gave support
to previous studies that proposed supernovae as cosmic accelerators in
the Galaxy [63]. In addition, it was believed that the interaction of CRs
with interstellar gas and supernova would result in gamma-ray emission,
motivating the development of space experiments to observe high-energy
gamma rays from cosmic sources. In 1972, the OSO-3 satellite was the
first to detect significant gamma-ray emission with energies above 50 MeV
[64], revealing the existence of a galactic component concentrated around
the galactic equator. From 1974 to 1991, more gamma-ray emissions
collected by SAS-2 [65], COS B [66] and CGRO [67] were published. A
big improvement in the sensitivity and field of view came with the AGILE
satellite [68] launched in 2007, and the Large Area Telescope on the Fermi
Gamma-Ray Space Telescope mission (Fermi-LAT) [69] launched in 2008.
These two experiments detected several sources in the energy regime, from
some MeV to many hundreds of GeV.

The extremely low gamma-ray flux at high energies required larger
effective detector areas, which was possible to achieve with ground-based
observatories through the imaging technique. The first idea came in 1948
with Blackett, who estimated that a fraction of 10´4 of the night-sky
background corresponds to Cherenkov radiation produced by cosmic rays
traversing the atmosphere [70]. Based on this effect, in 1953, Galbraith
and Jelley proposed the detection of light Cherenkov pulses at the ground
using photomultipliers, which revealed pulses of short duration correlated
with the cosmic radiation [71].

The concept of a Cherenkov telescope with a small field of view occurs
because Cherenkov light is emitted 1.5˝ around the shower axis, allowing
the search of point-like sources. The Fred Lawrence Whipple Observatory
at Mt. Hopkins in the USA, led by T. Weekes, was the first project to
construct a ground-based telescope for detecting high energy gamma ray
[72]. The observatory consisted of a 10-m reflector telescope with a single
12.5 cm photomultiplier at the focus, offering a field of view of 1˝ [73].
Over the period 1971 to 1972, many observations reported a 4 σ excess
from the direction of the Crab Nebula.
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By this time, Hillas had made essential contributions to the physics
of air showers. He showed that each Cherenkov image of the Whipple
telescope could be parameterized with an ellipse revealing the width,
length, and orientation of the shower image. This method was used to
distinguish between background hadronic showers and TeV gamma-ray
showers from a point source [74]. After this, the imaging technique, based
on the Hillas parameters, established ground-based gamma-ray astronomy.
Nowadays, there are three stereoscopic systems fully operational: MAGIC
(two telescopes), VERITAS (four telescopes), and HESS (five telescopes),
shown in Fig 1.6.

The number of sources detected over the last 60 years is indicated in
Fig. 1.7 for VHE gamma-rays with ground-based observatories (red), high-
energy gamma rays with satellite instruments (blue), and X-rays sources
(green). As can be seen, the number of sources went from 10 to more than
200 only in 20 years. Most VHE sources are located along the galactic plane,
as shown in Fig. 1.8, which was possible by the 3rd generation of IACTs
offering precise information about the spectrum and their morphology.
With this current operation, the TeVCat [78, 79] lists 252 TeV gamma-ray
sources as of June 2023.

The new era of gamma-ray astronomy includes a broad range of
topics, such as the search for dark matter signals [80], measurement of
extra-galactic background [81], and fundamental physics with gamma-ray
propagation [82, 83]. In addition, developing methods for other studies,
such as measuring cosmic ray flux and its mass composition, would offer
the synergy between ground-based observatories and satellite experiments
[84, 85]. To achieve these objectives, the new generation of observatories
would provide better sensitivity than the current generation [86, 87].
In that sense, The Cherenkov Telescope Array (CTA) will lead the next
generation of gamma-ray detections in the range from 30 GeV to 300 TeV
using different sizes of telescopes.

1.3.2 The Imaging atmospheric Cherenkov technique

The direct detection of VHE γ-rays is impossible at the ground because of
the atmosphere. Satellite experiments, used to direct detections outside
the atmosphere, have an effective area Aeff of approximately some square
meters. The differential particle rate, dR

dE , is related to the differential flux,
dΦ
dE , through

dR

dE
pEq “

dΦ

dE
pEq ˆ Aeff pEq. (1.4)
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(a) MAGIC.

(b) HESS.

(c) VERITAS.

Figure 1.6: Current generation of observatories: (a) MAGIC [75], (b) HESS [76]
and (c) VERITAS [77].
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Figure 1.7: Kifune plot showing the number of sources detected over the years in
X-ray, HE, and VHE gamma-rays. Image taken from [88].

Figure 1.8: Sky map of VHE gamma-ray sources by ground-based observatories.
Image taken from [88].
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1.3.2. The Imaging atmospheric Cherenkov technique

If the differential flux is small, the effective area should be big enough to
have an acceptable particle rate in an acceptable time. Therefore, ground-
based telescopes are necessary since they provide an effective area in the
order of ą 105 m. When the γ-ray hits the atmosphere, it creates a particle
cascade. As a result, some of the particles generate Cherenkov light, which
is detected by Cherenkov telescopes (CT), and the method is known as
imaging atmospheric Cherenkov technique. The primary gamma rays can be
detected using ground-based telescopes that collect the Cherenkov light
emitted by the particles in the cascade.

The imaging of the Cherenkov light from the air shower is sketched in
Fig. 1.9. The shower initially grows in size as it penetrates deep in the
atmosphere, reaches a maximum between 8 and 10 km altitude, and then
decreases, losing all its energy. As the air shower emits Cherenkov light, the
emitted photons reach unique positions in the camera in order to form the
image. Therefore, the form of the image is the result of the charged particle
distribution, which is different from shower to shower and depends on
the primary particle energy and type. Gamma-ray events produce images
of approximately elliptical shapes, while most hadron events produce
irregular and asymmetric shapes in the camera, as illustrated in Fig. 1.10.

Figure 1.9: Distribution of Cherenkov light in the camera. [89]

The topology of a shower image is a consequence of the distribution
of charged particles, which varies from shower to shower and depends on
the properties of the primary particle. Notably, images from gamma-ray
showers differ from hadronic showers, as illustrated in Fig 1.10. Notably,
the gamma-induced shower is elliptical, which reflects symmetry around
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the shower axis, contrary to hadron-induced showers, which produce
erratic patterns in the camera.

0 6 15 30 60 150 300 p.e. 0 6 15 30 60 150 300 p.e.

2.6 TeV proton shower1.0 TeV gamma shower

Figure 1.10: Difference between the images of gamma-induced and hadron-
induced showers in a simulated IACT camera. Image taken from [89]

1.3.3 Methods for air shower reconstruction

The most crucial goal of studying air showers is reconstructing the
primary particle energy, arrival direction, and mass (for CRs). Different
techniques are used to solve these tasks depending on the type of
air shower experiment. While in CRs ground-based observatories, the
particle identification is estimated by measuring the depth of the shower
maximum, in γ ray astronomy, the traditional methods are based on the
parametrization of the shower image with an ellipse. The state-of-the-art
of current techniques is also based on deep learning algorithms, which are
used to improve mainly the gamma/hadron separation [90, 91, 92, 93, 94]
and will be discussed later.

There are three traditional techniques in gamma rays analysis: Hillas
parameter-based analysis, Model analysis, and 3D model analysis. The
model analysis is a more elaborated analysis technique based on the image
pixel-wise fit. It is based on a pixel-per-pixel comparison of camera pixel
amplitudes with an expected image template. The reconstruction uses a
maximum likelihood fit to find the best-fit shower parameters [95]. The
3D model analysis [96] is a kind of 3-dimensional generalization of the
Hillas-parameter-based analysis.

20



1.3.3. Methods for air shower reconstruction

1.3.3.1 Hillas-parameter based analysis

In 1985 [97] M Hillas proposed an analysis method to distinguish between
hadronic showers (background) and gamma-ray showers in the TeV energy
range. This method relies on the fact that gamma-ray shower images in the
camera focal plane are in a good approximation of elliptical shape. Then,
by modelling the shower footprint by an ellipse, it is possible to obtain the
following parameters:

• Lenght and width of the ellipse,
• size as the total image amplitude,
• distance d: angular distance between the centre of the camera and

the centre of the image,
• Φ: angle between the line connecting the centre of the ellipse with

the centre of the camera and the x-axis,
• Ψ: angle between the ellipse’s major axis and the x-axis.

Figure 1.11: Geometrical definition of the Hillas parameters. Image taken from
[98].

There are two types of reconstruction: single and stereoscopic
reconstruction. In the single telescope approach, the shower direction
is estimated mainly using length and size parameters, either with lookup
tables or analytical functions [99]. The shower energy is estimated using
the shower size and the angular distance d. On the other hand, the
stereoscopic approach provides a geometric reconstruction of the shower.
The intersection of the main axis of the shower image gives the shower
direction and the shower impact. The shower energy is calculated from the
weighted average of the individual telescopes. The Hillas parameters can
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also provide a way to discriminate between candidate gamma-ray events
and numerous background hadrons (for example, based on the length and
width distribution cuts).

A more elaborated analysis technique is based on the image pixel-
wise fit. This method is based on a pixel-per-pixel comparison of camera
pixel amplitudes with an expected image template. The reconstruction
uses a maximum likelihood fit to find the best-fit shower parameters [95].
A third technique, 3D model analysis [96], is a kind of 3-dimensional
generalization of the Hillas-parameter-based analysis.

1.3.3.2 Model analysis

The Model analysis was introduced by the CAT collaboration [100] and
improved by the HESS collaboration [95]. It is based on an image pixel-
wise comparison between the actual camera image with an expected image
template. They simulate a full set of image templates for the range of
possible shower parameters. The expected and measured images are
compared based on a maximum likelihood function. The likelihood
function of observing a signal S in a given pixel, given an expected
amplitude µ, a width of the pedestal σp (is the charge distribution from
night sky background light and electronic noise) and the width of the single
photo-electron distribution σs is given by:

P pS|µ, σp, σsq “

8
ÿ

n“0

e´µµn

n!
b

2πpσ2
p ` nσ2

sq

exp

ˆ

´
pS ´ nq2

2pσ2
p ` nσ2

sq

˙

(1.5)

The log-likelihood function lnL “ 2
ř

pixeli
ln pPipSi|µ, σp, σsqq is maxi-

mized to obtain primary energy, direction, shower impact, and shower
maximum.

1.3.3.3 3D-Model Analysis

The 3D-Model Analysis is a 2-dimensional generalization of the Hillas-
based analysis. The shower is modelled as a Gaussian sphere around
the maximum in the atmosphere, which is used to predict the Cherenkov
light measured in the camera. This model also assumes that the angular
distribution of the Cherenkov photons is independent of the position of the
emission point and the energy of the primary gamma rays. The 3D model
gives the expected number of Cherenkov photons qth detected by a given
pixel of a given telescope as a function of the following shower parameters:
direction, shower impact, shower maximum, 3D length and width of the
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Gaussian distribution, and the total number of Cherenkov photons emitted
by the shower. For a given pixel, the probability of measuring a charge qth
with fixed parameters q and σ is given by [96]:

P pqth|q, σq “

8
ÿ

n“0

qnthe
´qth

n!
?
2πσ

exp

ˆ

pq ´ nq2

2σ2

˙

(1.6)

The likelihood function for an event takes the form L “
ś

i Pipq
i
th|q, σq,

where the product is taken over all the triggered pixels of the images
produced by a given shower.

1.3.4 The Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA) is an international project that aims to
be the next-generation ground-based observatory for gamma-ray astronomy
from 30 GeV to 300 TeV. CTA will be located in two sites: one in the
Southern hemisphere in Paranal Chile and another in La Palma, Spain
in the North hemisphere [48]. With several tens of telescopes, CTA will
provide better sensitivity for an extended field of view than the current
generation. The arrays will be composed of three types of telescopes
illustrated in Fig. 1.12:

• Large Size Telescope (LST): They will have a 23 m diameter reflector
with a 27.8 m f focal length. Its design is optimized for the lowest
energy band.

• Medium Size Telescope (MST): These telescopes are optimized to
improve the sensitivity in the medium energy band. They will have
12 m reflectors and a 17m focal length.

• Small Size Telescope (SST): Their purpose is to extend the collection
area of the array to capture the gamma rays at the highest energies.
They will be located only in the Southern hemisphere.

1.3.4.1 CTA key characteristics and capabilities

The objective of CTA is to establish an observatory consisting of arrays of
IACTs in two locations, with the aim of:

• Improve the sensitivity of current instruments by an order of
magnitude at 1 TeV. Fig. 1.13 illustrates the notable increase in
flux sensitivity compared to existing observatories.
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Figure 1.12: CTA telescope types: SST (left), two different MST structures, and
LST (right). The figure is taken from [101].

• Increase the detection area, resulting in a higher photon rate and
enabling the observation of phenomena occurring on the shortest
timescales.

• Achieve a significant enhancement in angular resolution and
field of view, thereby improving its capability to image extended
sources with greater precision.

• Achieve energy coverage spanning from 20 GeV to a minimum of
300 TeV. This extensive energy range will enable CTA to explore
high-redshift phenomena and study extreme particle accelerators in
the universe.

• Substantial enhancement in surveying capability, monitoring
capability, and operational flexibility. This will enable CTA to
observe objects in multiple fields simultaneously, expanding its
observational scope and efficiency.

• Open observatory for a broad user community by providing
accessible data products and user-friendly tools suitable for non-
expert users. This approach ensures diverse researchers can
effectively utilize CTA data and contribute to scientific discoveries.

• Offer full-sky coverage through its two observatory sites in the
southern and northern hemispheres.
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1.3.4. The Cherenkov Telescope Array

Figure 1.13: The expected differential sensitivity curves for the Alpha
Configuration of CTA-South and CTA-North, obtained from 50 hours of observation
time, are compared to the sensitivity of current observatories [102].

1.3.4.2 CTA science

The primary scientific questions and subjects addressed by CTA are focused
on three themes [48]:

Understanding the Origin and Role of Relativistic Cosmic Particles:
Relativistic particles are crucial in various astrophysical systems, such as
pulsars, supernova remnants, active galactic nuclei, and galaxy clusters.
CTA will provide the first high angular resolution measurements of cosmic-
ray protons and nuclei, offering valuable insights into the processes of
acceleration, transport, and the cosmic ray-mode feedback mechanisms in
these systems.

Probing Extreme Environments: Particle acceleration to extremely high
energies is typically associated with extreme astrophysical environments
like neutron stars and black holes. VHE emission from these accelerated
particles is a valuable tool to probe these environments, allowing access
to time and distance scales beyond the reach of other wavebands. By
observing gamma-gamma pair production signatures, CTA will enable
measurements of the UV-IR background’s redshift evolution, revealing
the universe’s star-formation history and investigating magnetic fields in
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cosmic voids at significantly lower values than other methods. CTA will
also investigate whether VHE photons heat the gas in these under-dense
regions, potentially suppressing the formation of dwarf satellite galaxies.
The three key areas within this theme are black holes and jets, neutron
stars and relativistic outflows, and cosmic voids.

Exploring Frontiers in Physics: CTA offers a vast potential for significant
discoveries in fundamental physics. It will explore the thermal relic cross-
section for self-annihilating dark matter over a wide range of masses,
including those beyond the reach of the Large Hadron Collider (LHC).
With the combination of long travel times and short wavelengths, gamma
rays from extragalactic sources serve as a sensitive probe for variations
in the speed of light at different energies, potentially originating from
quantum-gravity-induced fluctuations. CTA’s sensitivity allows it to detect
these effects on the Planck scale, representing a substantial discovery.
Additionally, on their cosmic journey, gamma rays may interact with axion-
like particles (ALPs) under the influence of intergalactic magnetic fields,
leading to photon-ALP oscillations. Each of these phenomena would be a
groundbreaking discovery in its own right, justifying the construction and
operation of CTA. CTA’s enhanced sensitivity and extended energy coverage
bring these effects within reach, opening doors to further investigations in
fundamental physics.

1.3.5 Conclusion

This section provided an overview of various aspects of very-high-energy
gamma-ray astronomy. This field of study has advanced since ground-
based detectors’ first detection of a gamma-ray source in 1989. Over time,
both the science itself and the instrumental techniques have advanced
significantly. The current generation of Imaging Atmospheric Cherenkov
Telescopes (IACTs) has reached a level of maturity, revealing the need for
multiple sophisticated analysis techniques to explore their full potential.
With the future Cherenkov Telescope Array (CTA) observatory and its
complex structure, it is essential to focus on studies related to detecting
and reconstructing extensive air showers using Cherenkov light. The results
presented in this thesis are motivated by detecting Cherenkov light from air
showers in IACT systems. Chapters 3 and 4 investigate the reconstruction
of the longitudinal profile by using parametrized angular distributions of
Cherenkov light in air showers. Chapter 5 explores the capabilities of IACTs
in measuring the mass composition of cosmic rays using deep learning
algorithms.
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1.4 Extensive air showers

In 1939, Pierre Auger found that sensors, separated by a maximum distance
of 300 m, detected particle events simultaneously at sea level [15]. His
research revealed that these simultaneous events were related to the same
primary particle of CRs.3 The formation of an air shower is depicted in
figure 1.14. When a photon or CR particle hits the atmosphere, it interacts
with nuclei in the Earth’s atmosphere (made of nitrogen, oxygen, and
argon) at a typical height between 15 and 35 km, producing a shower
of secondary particles such as electrons, positrons, muons, antimuons,
gammas, hadrons, etc. The most abundant generated hadrons are neutral
and charged pions. They form the hadronic shower component together
with baryons and kaons. The photons from the neutral pion decay are the
primary source of the electromagnetic (EM) component. Additionally, 90%
of muons in the hadronic cascade are produced due to the decay of pions
and kaons [103].

Figure 1.14: Formation of the air shower in the atmosphere, showing the different
components. Taken from reference [104].

3Hereafter, the term primary CR will be considered the charged particle that arrives and
hits the atmosphere.
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Figure 1.15 shows the lateral (left) and the longitudinal (right) particle
profiles of the different shower components for simulated events of 1019 eV.
The lateral profile (left panel) represents the particle density as a function
of the core distance. The curves indicate how the particle density of the
different shower components decreases at large distances. The longitudinal
profile (right panel) shows the atmospheric depth (in g/cm2 as a function
of the particle number. The different curves show that the region of the
maximum is mainly determined by the e˘ and γ profiles. The shape and
fluctuation of these profiles are due to the interaction mechanisms in
electromagnetic and hadronic cascades discussed in the following sections.

Figure 1.15: Average of the (a) lateral and (b) longitudinal shower profiles for
simulated vertical proton showers of 1019 eV. The lateral profile of particles is
measured at the detection level of 870 g{cm2. Taken from reference [103].

There are three main mechanisms by which a gamma ray can interact
in the atmosphere: the photoelectric effect, the Compton effect, and
pair production. Figure 1.16 shows the dependence of these attenuation
coefficients on energy, with a predominance of the photoelectric effect
for low energies, the Compton effect for medium energies, and the pair
production for high energies. In the case of gamma rays with energies
greater than GeV, the pair production effect dominates with a threshold
energy of 1.02 MeV.

In the case of charged particles such as electrons, which pass through
the atmosphere, there are two mechanisms of interest in energy loss:
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Figure 1.16: Mass attenuation coefficient for photons in air. Curve 1, labelled
Total Absorption, is the sum of the linear coefficients for photoelectric absorption
(curve 2), Compton absorption (curve 3), and pair production (curve 4). Adding
the Compton scatter (curve 5) gives the Total Attenuation in curve 6. Other curves
are shown as a complement. Taken from reference [105].

ionization and Bremsstrahlung. The losses by ionization refer to the
Coulomb scattering of relativistic electrons from the atmospheric shower
with the electrons in the medium. For low energy, an electron loses energy
mainly by ionization. On the other hand, the main form of energy loss
for energetic electrons is due to Bremsstrahlung because the intensity
of this emission is inversely proportional to the square of the mass and
proportional to the particle’s energy. The energy at which the two losses
are equal, ionization and Bremsstrahlung, is called critical energy. Then,
the critical energy depends on the medium in which an electron propagates,
being in the air at sea level Ecrit « 84 MeV.

It is advantageous to define the radiation length X0 (measured in
g{cm2) when the energy losses by radiation are dominant. The reason is
that this magnitude represents the thickness traversed x in the medium by
which the charged particle loses part of the initial energy E0 by a factor e;
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this is:
Epxq

E0
“ e

´ x
X0 ùñ

ˆ

dE

dx

˙

bremsstrahlung

“ ´
E

X0
. (1.7)

The expression relating Bremsstrahlung radiation length to pair production
differs only by a factor:

X0,pair “

ˆ

9

7

˙

X0,bremsstrahlung, (1.8)

which implies that, on average, a photon travels a longer path in a
medium before creating an electron-positron pair than an electron does to
experience bremsstrahlung. In general, a high-energy photon or electron
that reaches the atmosphere will mainly experience interaction processes
via pair production and bremsstrahlung. These processes create a cascade
of secondary particles which define the electromagnetic component of the
air shower.

1.4.1 Electromagnetic cascades

The simplest model for the development of atmospheric showers considers
only the two fundamental processes already mentioned, pair production
and bremsstrahlung, and is known as the Heitler model [106]. It is
assumed that the radiation lengths for both processes are equal. Under the
assumption that the particle is split in two for each unit radiation length
λe (see Fig. 1.17a), the total number of particles N at depth X is

NpXq “ 2n (1.9)

where n “ X
λe

is the number of generations (i.e. consecutive iterations).
The Xmax is defined by the atmospheric depth where the maximum number
of particles is reached, that is, when a E = Ecrit, which leads to the
following relation:

Nmax “
E0

Ecrit
, (1.10)

where the critical energy defines when the development of the shower
stops. The previous equation can be solved for the Xmax, giving the result:

XpEMq
max „ λe ln

ˆ

E0

Ecrit

˙

. (1.11)

Therefore, the maximum number of particles is proportional to the primary
particle’s energy, and the shower’s maximum depth grows logarithmically
with the primary particle energy in the electromagnetic case.
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1.4.2. Hadronic cascades

Figure 1.17: Shower model according to Heitler. (a) Electromagnetic case.
(b) Hadronic case; dashed lines represent neutral particles (π0) and solid lines
represent charged particles (π˘). Only one interaction of a charged hadron is
shown for each generation. Image taken from reference [103].

1.4.2 Hadronic cascades

The development of the hadronic shower is mainly determined by the
hadron production and the decay of pions and muons as follows:

p ` N ÝÑ p ` N ` nπ˘,0 ` Q,

π` ÝÑ µ` ` νµ,

π´ ÝÑ µ´`
´
νµ,

π0 ÝÑ γ ` γ,

µ` ÝÑ e` ` νe`
´
νµ,

µ´ ÝÑ e´`
´
νe `νµ,

(1.12)

where Q represents other hadrons. It is possible to see that neutral pions
play a particular role in the development of cascades, making up a fraction
of about 30% of all pions and instantly decaying into two photons. Muons
are mainly produced in hadronic cascades and contribute about 10% on
average to the total flux of particles at ground level in an atmospheric
shower.

The characteristics of hadronic showers can be obtained by generalizing
the Heitler model [107]. In this case, the interaction of a hadron with
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energy E will produce ntot new particles with energy E{ntot, where
two-thirds of which are charged particles nch (charged pions) and one-
third of which are neutral particles (neutral pions). Neutral pions decay
rapidly (cτ “ 25 nm) in two photons. After having travelled a distance
corresponding to the interaction length λine, the charged particles can
interact again with the nuclei in the atmosphere. In the case of charged
pions, they can decay (cτ “ 7.8 m), producing a muon particle per
hadron. In each hadronic interaction, 1/3 of the energy is transferred
to the electromagnetic component of the shower via decay of π0. After n
consecutive interactions, the energy of the hadronic and electromagnetic
components is given respectively by:

Ehadron “

ˆ

2

3

˙n

E0 , EEM “

„

1 ´

ˆ

2

3

˙nȷ

E0. (1.13)

At n « 6, approximately 90% of the shower’s initial energy is carried
by electromagnetic particles and deposited as ionization energy in the
atmosphere. Therefore, the electromagnetic particles determine the depth
of the shower maximum in the cascade. Additionally, considering only the
EM sub-showers produced in the first hadronic interaction, one can write
the following:

Xphadronicq
max « λine ` XpEMq

max ¨

ˆ

E0

2ntot

˙

„ λine ` X0 ln

ˆ

E0

2ntotEcrit

˙

.

(1.14)

The hadronic cascade can be seen as a superposition of electromagnetic
sub-cascades, where the maximum number of electrons corresponds to the
electromagnetic component with reduced energy. Hadronic cascades also
spread laterally due to the transverse momentum of the secondary particles.
Because of the large transverse momentum transfer, a hadronic cascade
differs from an electromagnetic one. One form of radiation produced by
air showers is the Cherenkov light.

1.4.3 Cherenkov light in air showers

Charged particles moving at relativistic speed through a dielectric medium
generate a symmetrical polarization in the azimuthal plane but not along
the motion axis [105]. As a result, a dipole field extends along the charged
particle track. If a charged particle propagates in a medium with velocity vp
faster than the speed of light in that medium, the created dipole fields will
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interfere under the Cherenkov emission angle θ defined by the following
equation:

cospθq “
1

βη
, (1.15)

where β “ vp{c and η is the refraction index of the traversed medium. From
equation 1.15 for a given η, there is a minimum velocity a charged particle
must have in order to induce the Cherenkov emission in the medium, the
threshold velocity βth “ 1{η. Moreover, for each medium, there is a specific
maximum angle of emission θmax when β “ 1, i.e.:

θmax “ 1{ arccospηq. (1.16)

The threshold energy for the Cherenkov emission depends on the particle
mass m0 by:

Emin “
m0c

2

a

1 ´ η´2
, (1.17)

which means particles such as electrons and positrons have a lower
threshold energy in the same medium compared to heavier particles. The
air density changes continuously with height [105], as does the refractive
index, and therefore, the threshold energy and emission angle depend on
the altitude in the atmosphere. For instance, Ee˘

min = 21.22 MeV ,Eµ˘

min =
4.38 GeV, Ep

min « 39 GeV e EFe
min « 1 TeV at sea level. The atmospheric

density (and the index of refraction) increases as the altitude decreases.
Assuming an isothermal atmosphere, one can use the barometric formula
for air density to express the dependence on the altitude of the index of
refraction:

ηphq “ 1 ` η0 e
´h{h0 , η0 “ 0.00029 , h0 “ 7250 m. (1.18)

The emission angle θmax as a function of altitude obtained from equations
(1.15) and (1.18) is depicted in Fig. 1.18a. The Cherenkov light is emitted
in a cone around the particle’s path with an opening angle of 2θmax. At the
altitude H0, this results in an approximately circular ring with a radius R
given by

R “ ph ´ H0q tan pθmaxq . (1.19)

The change of the radius R with the emission altitude is shown in Fig.
1.18b. At the observation level, the light cones emitted by electrons
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Figure 1.18: (a) Emission angle θC and (b) Cherenkov ring radius R as a function
of emission altitude. Plot (c) clarifies the geometry of the Cherenkov light cone
emitted at different altitudes. The observation level is at sea level.

and positrons at different altitudes overlap each other, resulting in an
almost homogeneous distribution of light in a Cherenkov ring with a radius
between 100 and 130 m (in the case of an electromagnetic shower [108])
around the axis of the shower head as shown in Figure 1.18c. The photons
arrive in a period of a few nanoseconds. However, the light distribution
contains scattered spots at the detection level due to multiple scattering
for hadronic showers.

Figure 1.19 compares Cherenkov light distribution measured on the
ground for simulated hadronic and EM showers. In the case of a gamma-
ray of 1 TeV (top left plot), one can see the Cherenkov light pool with
a radius of typically 150 m, as well as for the 30 TeV case (bottom left
plot), which includes some electrons striking the ground. In contrast, the
hadronic shower generated by a 1 TeV proton (top right plot) displays
heterogeneous and asymmetric structures reflecting differences in shower
development. The rings are caused by muons hitting the ground. For the
30 TeV proton shower (bottom left plot), the Cherenkov light pool starts to
be well-defined because the higher the shower energy, the more Cherenkov
photons are produced and reach the ground, dominating the Cherenkov
rings caused by muons.
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Figure 1.19: Cherenkov light distribution measured at ground. On the left, a
gamma-ray shower of 1 TeV and 30 TeV is shown, and on the right, a proton
shower of 1 TeV and 30 TeV. The images were simulated with CORSIKA. The green
and red dots correspond to muons and electrons/positrons, respectively, arriving
at the detection level.
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Figure 1.20: Simulated longitudinal profiles of air showers as a function of depth
(a) and shower age (b). Images taken from [111].

1.4.4 Shower universality

The concept of the shower age is related to the idea that all showers, at their
maximum development, exhibit a certain degree of ”similarity” to each
other (which means to have the same age). This similarity is characterized
by the fact that, in all showers at maximum, the energy spectra of most
electrons and photons share the same shape [109]. The cascade theory
gives the form of the shower age s defined as [110]:

s “
3X

X ` 2Xmax
, (1.20)

where X is the atmospheric depth and Xmax is the depth of the maximum.
On the left side of Fig 1.20, it shows several profiles for each type of air
shower, and on the right, the corresponding profiles as a function of the
shower age [111]. It is possible to check that all profiles for the same
primary share a universal behaviour near the maximum where s “ 1 and
along the shower age.
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1.5. Artificial neural networks

1.5 Artificial neural networks

The concept behind designing a neural network model draws an analogy
from the information processing mechanisms found in biological organisms.
In biological brains, neurons, which are electrically activated nerve
cells, are interconnected through synapses, facilitating the transfer of
information between neurons [112]. One equivalent machine learning
(ML) architecture of this biological structure is the Artificial Neural Network
(ANN), which learns from data to solve a specific task. The learning is
done using mathematical functions called neurons. These neurons are
arranged in layers and connected to each other, as shown in Fig 1.21.
In the graphical description, the connections symbolize that the neurons
of one layer become the inputs for the subsequent neurons in the next
layer. This establishes a directional flow of information from layer to layer,
classifying this architecture as a feed-forward neural network. In this
discussion, we will explore one approach for optimizing neural networks:
supervised learning. Supervised learning is an ML process where training
data consists of input-output pairs. The input is accompanied by the correct
answer (the label) and instructs the network on the desired task.

Figure 1.21: Basic architecture illustration of neural network with three layers:
input layer (left), a hidden layer with three neurons (middle), and an output layer
with two neurons (right). Image is taken from [112].

1.5.1 Neurons

The fundamental block of ANN is the neuron. A neuron is a real number
and transfers the information through the layers throughout parameters
known as weights and biases, optimised during the training of the network.
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The linear function qi that represents the value of the i-th neuron is:

qi “
ÿ

j

Wijxj ` bi, (1.21)

where Wij are the weights representing the connection strength of the j-th
neuron with the i-th neuron, xj are the input data of the preceding layer,
and bi is a constant known as the bias. This notation tells us that the value
q of a neuron is the result of connections with all input neurons xj from the
previous layer (see schematic representation on the left side in Fig 1.22).

The neuron is transformed non-linearly using an activation function
g(q) with the value q as input. The activation function represents the
property that neuron spikes, producing a noticeable output when the input
grows beyond a certain threshold value. Fig. 1.22 shows common choices
of activation functions for input and hidden layers: Rectified Linear Unit
(ReLU), sigmoid, and hyperbolic tangent function. A particular case of an
activation function is the softmax used in the output layer. Let us label by
k = 1, . . . , n the number of neurons in a layer with value qk. Then, the
softmax for a neuron k is given by:

gkpq1, . . . , qnq “
eqk

řn
k1“1 e

qk1
. (1.22)

The property
ř

k gkpq1, . . . , qnq “ 1 can be derived from 5.2, which allows
interpreting the output layer as a probability distribution and makes the
softmax function useful for classification tasks.

1.5.2 Training

The goal of any ML algorithm is to calculate values that are as close as
possible to the truth output for every input. The true value is called label,
and for binary and multi-classification problems, the label is encoded in a
one-hot vector. For a scenario composed of two classes, A and B (binary
classification), the labels would be:

class A ÝÑ label : l0 “

ˆ

1
0

˙

class B ÝÑ label : l1 “

ˆ

0
1

˙

.

(1.23)

To measure how well the algorithm does the task, we use the definition of
loss function. The lost function is computed by comparing the output of our
algorithm with the true label of each sample i in a training data set. The
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Figure 1.22: Left: schematic representation of a single neuron with its value gpqq.
Right: Examples of activation functions: Rectified linear unit (ReLU), sigmoid,
and hyperbolic tangent function. Image taken from [112].

most simple cost function L is given by the mean square error and defined
as:

Lpθq “
1

n

n
ÿ

i“0

pypiq ´ lpiqq
2, (1.24)

where li are the true labels, ypiq are the outputs from the neural network
and n is the total number of samples. The training process consists of
minimizing Lpθq with respect to the weights and biases collectively denoted
by θ. The gradient descent is an iterative method used to minimize the loss
function numerically. The method can be seen as descending a hill in the
parameter space until a local minimum is reached. The weights and biases
are updated over training steps (epochs) using the derivatives of the cost
function:

θα Ñ θα ´ η
BLpθq

Bθα
. (1.25)

where η is the learning rate representing the step size to be walked down
the hill. The loss curve as a function of the epochs should have an initial
steep decrease and stabilize toward the end of the training. The training
is also verified in an independent data set called validation to avoid over-
fitting. One of the metrics to evaluate the performance of our neural
network is accuracy, calculated in an independent testing set:
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accuracy “
correct predictions

total predicitons
(1.26)

1.5.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of ANN that considers
the geometric structure and identifies certain local patterns in the data
(especially for pictures) [112]. CNN is one of the most successful tools for
image classification. There are two main parts in the structure of a CNN:
the convolutional layers plus the pooling layers, which focus on feature
extraction, and the fully connected layer that makes the classification
process. The following is a brief description of these types of layers.

Convolutional layer: This layer identifies local patterns such as straight or
curved lines in the image. The patterns are encoded in kernels or filters
with weights. As shown in Fig. 1.23, the filters convolve the image by
an element-wise multiplication matrix with a portion of the image called
the local receptive field. The convolution is repeated for each receptive
field of the input. The output of this process defines the feature maps.
After applying the filter to the full image, we obtain a feature map as output.

Figure 1.23: Schematics of a convolutional layer. The filter application is
made over a specific image region (local receptive field) by an element-wise
multiplication matrix. Image taken from [113].

Pooling layer: This layer reduces the spatial dimension of the feature map
and typically goes after convolutional layers. The input feature map is
compressed to a few neurons to contain the most significant information.
There are two types: average pooling and max pooling, as shown in Fig.
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1.24. The pool size defines the dimensional reduction. The max pooling
detects any feature in the map by picking the neuron with the maximum
value. Max pooling is useful to avoid zero values, i.e., dead neurons that
do not represent a change in the training. In contrast, the average pooling
is a direct compression that takes the average of the neurons.

Figure 1.24: Output map after applying the two types of pooling layers in the
feature map. Image taken from [114].

Dense layer: This fully connected layer of neurons goes after convolutional
and pooling layers. Each neuron receives the extracted feature maps
from the previous layers. The dense layers are structured to perform the
classification task based on the information derived from the feature maps.

Dropout layer: it drops features similar to pooling layers. Nevertheless,
dropout layers ignore neurons randomly during the training only. By
dropping random neurons, dropout introduces noise to the network, which
helps in making the network more robust to variations and perturbations
in the input data. It also helps to identify the more general features better
[112].
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1.6 Outline of the thesis

This thesis is divided into two parts: I) Study of air shower detection using
Cherenkov light and II) Iron/proton separation for air shower simulations
with the CTA. Part I shows two proposed methods to reconstruct the depth
of the shower maximum, and part II is focused on applying one of our
methods to CTA simulations. It also includes the application of deep
learning algorithms to separate the cosmic ray species.

Novel methods for air shower detection using Cherenkov light

The Imaging Atmospheric Cherenkov Telescopes (IACTs) have a central role
in detecting gamma-ray air showers in the TeV energy range, as they reject
cosmic-ray showers, which are considered background. In recent years,
many IACTs have provided the possibility to reconstruct the cosmic-ray
spectrum, which is limited by the identification of the primary mass. This
thesis starts by tackling this problem by proposing a method to measure the
shower maximum with an ideal array of telescopes. We aim to demonstrate
the feasibility of measuring the Xmax observable as a function of the
distance to the shower impact. In chapter 3, we also proposed a more
precise method to reconstruct the longitudinal shower profile. This method
considers the distribution of the Cherenkov light around the shower axis
and the contribution of all triggered telescopes. At the time of the writing
of this manuscript, these results are already published.

Iron-proton separation for air showers simulations with the
Cherenkov Telescope Array

In the second part, we tested our method that reconstructs the shower
profile using the Cherenkov Telescope Array software simulations. We
proposed a cut on the depth of shower maximum distribution to separate
the iron events from proton showers. We also presented a deep learning
architecture to classify images generated by iron and proton showers by
training a convolutional neural network (CNN). The CNN inputs combined
the image pixel intensities, depth of shower maximum, and the event
energy for images detected by Small-Sized Telescopes (SSTs) and Medium-
Sized Telescopes (MSTs).
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1.7 Contributions from co-authors

The work presented in this thesis was done with the contributions of several
co-authors. This section summarizes the contributions of the PhD candidate
and his co-authors in every chapter4.

Chapter 2: Measuring the depth of the depth of shower
maximum of extensive air showers using Cherenkov light

• Andrés G. Delgado: methodology, software, formal analysis, writing
- original draft, review editing, and visualization.

• Vitor de Souza: conceptualization, methodology, software, writing -
original draft, review editing, visualization, investigation, supervi-
sion and project administration.

• Luan B. Arbeletche: software, resources and investigation.
• Ralph Bird: supervision and project administration.
• Rene A. Ong: supervision and project administration.

Chapter 3: Cosmic-ray measurements with an array of Cherenkov
telescopes using reconstruction of longitudinal profiles of air
showers

• Andrés G. Delgado: methodology, software, formal analysis, writing
- original draft, review editing, software, resources, investigation,
and visualization.

• Vitor de Souza: conceptualization, methodology, software, writing -
original draft, review editing, visualization, investigation, supervi-
sion and project administration.

Chapter 4: Cosmic-ray measurements by reconstructing longitu-
dinal profiles for the Cherenkov Telescope Array

• Andrés G. Delgado: software development, co-writing, application
of the methods, visualization, responsible for producing the results
of propagation parameters.

• Manuela Vecchi: supervision, conceptualization, review and editing,
inputs on the interpretation of the results.

• Vitor de Souza: supervision, conceptualization, review and editing,
inputs on the interpretation of the results.

4The terminology of credit author statements are taken from https://www.elsevier.

com/authors/policies-and-guidelines/credit-author-statement.
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Chapter 5: Iron and proton separation using convolutional
neural networks for the telescope Cherenkov Array

• Andrés G. Delgado: software development, co-writing, application
of the methods, visualization, responsible for producing the results
of propagation parameters.

• Manuela Vecchi: supervision, conceptualization, review and editing,
inputs on the interpretation of the results.

• Vitor de Souza: supervision, conceptualization, review and editing,
inputs on the interpretation of the results.
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Part I

Novel methods for air shower
detection using Cherenkov

light.
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ABSTRACT

A method is proposed to reconstruct the depth at which showers reach
the maximum number of charged particles (Xcharged

max ) using atmospheric
Cherenkov telescopes. The dependence of the Cherenkov signal with
telescope distance from the shower core is explored, and a region in
which the measurement is possible is determined (150 to 200 m). A
parametrization is presented to reconstruct Xcharged

max . The resolution of the
method is studied as a function of energy for different primary particle types
and for telescope fields of view ranging from 3.5˝ to 10˝. Good resolution
(„ 25 g/cm2) is achieved for most of the cases of primary particle type
(gamma ray, proton, and iron nuclei) and energy (10TeV ă E ă 300TeV).
Very good resolution (ă 15 g/cm2) is achieved in the best cases, and not-so-
good resolution (ą 40 g/cm2) is seen for energies below 30 TeV. The results
presented here contribute to the understanding of the development of
gamma-ray showers and suggest another possibility of using atmospheric
Cherenkov telescopes to study cosmic rays in the TeV-PeV energy range.

60
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2.1 Introduction

The imaging atmospheric Cherenkov telescope (IACT) technique has
reached maturity with the observatories currently in operation: HESS [1],
MAGIC [2] and VERITAS [3]. Currently, the precision of the instruments
and the sophistication of the analysis allow the reconstruction of a gamma-
ray air shower typically with 0.1˝ accuracy in the arrival direction and
the determination of the gamma-ray energy with 15% resolution [4, 5, 6].
Thanks to their good performance, more than a hundred TeV gamma-
ray sources have been discovered [7] and carefully studied, leading
to important discoveries in high-energy astrophysics. The next stage
is the Cherenkov Telescope Array (CTA) [8] which is presently under
development. The CTA baseline design calls for 118 telescopes to be
installed at two sites covering areas of 0.6 km2 on La Palma, Spain, and
4 km2 near Paranal, Chile. Each telescope of CTA detecting the same shower
will offer a different view of the shower, and the multitude of images will
offer a unique perspective of the air shower development.

Atmospheric Cherenkov telescopes are typically used for gamma-ray
astrophysics studies. Non-gamma-ray events are mostly rejected by the
telescope trigger and in the subsequent data analysis. Only a few dedicated
analyses have been developed to study electron [9, 10, 11], proton [12]
and iron nuclei primaries [13, 14]. For even the strongest gamma-ray
sources, the flux of non-gamma-ray events is at least 1000 times higher
than the flux of gamma-ray events at TeV energies. A crude estimate based
on the extrapolation of the proton energy spectrum measured by AMS-
02 [15] predicts that VERITAS detects more than 1000 proton events above
1 PeV per year of operation. The study of cosmic rays (non-gamma rays)
with energies ranging from 10TeV to 1 PeV lacks precision because not many
events have been measured either by space or ground-based detectors. That
happens because it is very challenging to extend the sensitivity in energy of
space experiments because of the decreasing flux and very hard to extend
down in energy the sensitivity of ground-based experiments because of the
reduced number of particles reaching the ground.

Previous studies have proposed ways to study the cosmic ray composi-
tion using IACT [16, 17] based on the measurement of the Cherenkov light
generated by the primary particle and by measuring the lateral distribution
of Cherenkov light. Previous studies report Xcharged

max reconstruction methods
with resolution around 30 g/cm2 for gamma-ray events with energy below
10TeV as seen by the H.E.S.S. experiment [18]. This paper proposes a new
technique to reconstruct the depth at which the air shower reaches the
maximum number of charged particles (Xcharged

max ) using the data measured
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by IACTs. The new method is based on the measurement of the longitudinal
development of the Cherenkov light by telescopes further than 150 m from
the shower core. The key aspect of the method is the capability of IACTs to
measure the development of the longitudinal profile of Cherenkov photons.
This feature explored here could be used in tandem with previous proposals
of reconstruction of Xcharged

max and with composition studies based on the
direct Cherenkov light from the primary particle.

It has long been known that Xcharged
max correlates with the primary particle

type [19], and this variable has been used for primary identification in the
data analysis of fluorescence telescopes [20, 21, 22]. However, the beamed
emission of the Cherenkov light makes the analysis of the longitudinal
profile of charged particles measured by IACT more complicated than the
analysis of the fluorescence light, which is emitted isotropically. It has
already been pointed out by Hillas [23] that the longitudinal development
measured by an IACT depends on the position of the telescope and also that
at larger distances (ą 200m) from the shower core, the “Cherenkov flux
traces the longitudinal development surprisingly faithfully”. However, this
idea of exploring the longitudinal development in shower reconstruction
seems not to be fully developed in modern data analysis.

Given the significance of Xcharged
max , the method developed here could

impact the analysis procedures in IACT in many ways: a) better
discrimination of gamma-ray events, b) an enhancement of the science
scope of IACTs to non-gamma-ray events can be developed especially
towards mass composition studies of all primaries, c) improvements of the
air-shower reconstruction in observatories with large number of telescopes
(CTA) could be derived and d) a better understanding of the shower physics
is also possible. The method proposed here does not include details of the
telescope or of the reconstruction chain. The details of each analysis chain
and the characteristics of each observatory need to be taken into account
to get the final resolution of the method. Nevertheless, the resolution
obtained here is robust even when bad-case scenarios are considered.

Throughout the paper, the conditions in which Cherenkov light detected
by IACTs can be used to calculate Xcharged

max are explained. The dependence
on telescope distance from the shower core is explored in detail. In
section 2.2, modern simulation software packages are used to produce a
large library of gamma-ray, proton, and iron nuclei showers. In section 2.3,
a method is proposed to calculate Xcharged

max using telescopes outside the
Cherenkov cone (ą 150m from the shower core). It is shown that the
method works for a wide energy range and all primaries. A parametrization
useful to data analysis is given. The Xcharged

max resolution achieved by this
technique suggests the possibility that IACT could measure the cosmic ray

62



2.2. Simulation

energy spectrum for groups of elements for energies ranging from 10’s of
TeV to 1 PeV. Finally, in section 2.4, the main limitations of the technique
are discussed, and the conclusions are presented in section 2.5.

2.2 Simulation

2.2.1 Air shower simulation

The CORSIKA version 7.6300 software package [24] was used to simulate
104 air showers for each case described below. Three primary particles were
considered: gamma rays, proton (A = 1) and iron nuclei (A = 56) with
energies of 10TeV, 30TeV, 100TeV and 300TeV. The incident zenith was set
to 20˝ and azimuthal angles were allowed to vary randomly. The cutoff
energies for secondary particles of the air shower were set to 300MeV
for hadrons, 100MeV for muons, 20MeV for electrons, and 20MeV for
photons (including π0). The observation level was fixed at 2150m above
sea level. EPOS-LHC [25] and FLUKA [26] codes were used to simulate
the hadronic interactions. The longitudinal development of all particles
in the shower was recorded in steps of 5 g/cm2. The depth at which the
shower reaches the maximum number of charged particles (Xcharged

max ) was
calculated by fitting the number of charged particles as a function of depth
with a Gaisser-Hillas function [27]:

NpXq “ Nmax

ˆ

X ´ X0

Xcharged
max ´ X0

˙

X
charged
max ´X0

λ

exp

˜

Xcharged
max ´ X

λ

¸

(2.1)

in which X is atmospheric depth, Nmax is the maximum number of particles
in the shower, λ and X0 are mass and energy dependent fit parameters.

2.2.2 Reconstruction of longitudinal Cherenkov profile

Cherenkov photons were produced in bunches of up to five and propagated
to ground level. No telescope simulation was considered. A simple field of
view (FOV) cut is used to simulate the aperture limitation of the telescopes.
All photon bunches reaching spheres with 5m radius were considered
detected, and their position, arrival direction, and energy were stored.
The simplified telescopes were placed in 10m steps up to 300m from the
shower core. Cherenkov photons are not attenuated in the simulations
considered here. The study is concentrated in very high energy (ą 10 TeV);
therefore, the shower produces light well above the trigger level of current
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Figure 2.1: Definition of the shower face plane and detector geometry. The
various quantities are defined in the text.

IACTs. One exception to this case is going to be noted below for telescopes
with small FOV and far away from the shower core.

The shower face plane is defined here by the set of points p⃗ such that
pp⃗ ´ p⃗0q ¨ n⃗ “ 0, where p⃗0 is the shower core position and n⃗ is the direction
perpendicular to the shower face plane. The vector n⃗ is defined such that
its projection at ground points towards the telescope position. Therefore,
for each telescope, a different shower face plane is assigned. See figure 2.1
for a visualization of the shower face plane in which l⃗ is the direction of
the primary particle. In this paper, it is assumed that the direction of the
primary particle (⃗l), the core position (p⃗0) and the energy are reconstructed
using one of the techniques available in the literature.

The longitudinal Cherenkov profile is reconstructed by projecting the
arrival direction of each photon bunch back into the shower face plane.
Examples of the Cherenkov photons projected on the shower face plane
are shown in figure 2.2. The subsequent projection of all bunches on the
shower axis results in figure 2.3, which shows the longitudinal Cherenkov
profile. The depth at which the longitudinal Cherenkov profile reaches its
maximum (XCherenkov

max ) is calculated by fitting a second-order polynomial
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Figure 2.2: Examples of projections of Cherenkov photons in the shower face
plane. Showers were initiated by gamma ray (left), proton (middle) and iron
nuclei (right) with primary energies of 100 TeV. Telescopes were located at 50 m
(lower row) and 200 m (upper row) from the shower core. The colour code shows
the number of Cherenkov photons. Note that each plot has its own colour scale.

function as shown in figure 2.3. Only events surviving fit quality criteria
(cuts) are used in the following calculations. The quality cuts are: a) the
fit must result in a parabola with its opening in the downward direction
(negative coefficient for the second order term), b) the fitted XCherenkov

max

should be bracketed by measured points and be further than 45 g/cm2

from the edge1 of the detected profile and c) chi-squared per degree of
freedom (χ2{ndof) smaller than 10. Errors are taken to be Poissonian, and
the ndof is the number of points in the fit minus three. Roughly 80% of
the simulated events survived these cuts depending slightly on energy.

1The edge is defined by the intersection of the longitudinal profile with the telescopes’
FOV.
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Figure 2.3: Longitudinal development of the number of Cherenkov photons for
a gamma-ray shower with 100 TeV seen by telescopes at 50 m (top) and 200
(bottom) m from the shower core. The number of photons was fitted by a second-
order polynomial, as shown in red.
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2.3 Analysis of the longitudinal Cherenkov profile

The arrival direction of each photon in the telescope accumulates
information about a large set of factors, including the variation of the index
of refraction with height, the evolution of the electron energy spectrum
with shower age, the scattering of the electrons around the shower axis
and of the photons (Rayleigh [28] and Mie [29]) along the way to the
telescope. The deconvolution of all these effects is not a straightforward
problem, but it is easy to understand that all together, they result that
XCherenkov
max depends on the telescope position relative to the shower core.

Besides, these factors might also mean that XCherenkov
max is different from

the depth at which the shower reaches its maximum number of particles
(Xcharged

max ).
Figure 2.4 shows the longitudinal Cherenkov profile of the same shower

as seen by telescopes with varying distances from the shower core. The
dependence of XCherenkov

max with the distance of the telescope from the
shower core is discernible. Figure 2.5 shows examples of XCherenkov

max versus
the distance from the telescope to the shower core for three gamma-ray
showers. Xcharged

max is also shown by the horizontal dashed line.
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Figure 2.4: Longitudinal development of the number of Cherenkov photons seen
by telescopes at 50, 100 and 200 m away from the shower core for gamma-ray
shower with 100 TeV energy. The number of photons was normalized to an
integral of 1.0 to allow comparison of the profiles.
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Figure 2.5: XCherenkov
max as a function of the telescope position from the shower

core. Each colour shows the simulation of one shower initiated by a gamma-ray
primary with energy 100 TeV at 20˝ zenith angle and different azimuth angles as
indicated in the legend. The field of view of the telescopes was set to 10˝. Xcharged

max

(dashed lines) is also shown for each shower.

For distances smaller than «100 m from the shower core, the amount
of Cherenkov light reaching the telescopes is highly dominated by the
Cherenkov pool. The combination of all factors listed above resulted in
a linear decrease of XCherenkov

max as a function of distance from the shower
core up to 100 m. For distances larger than 150 m from the shower core,
XCherenkov
max does not depend on the distance and stays constant. The amount

of Cherenkov light reaching these distances is dominated by scattering,
and therefore the light does not keep the information of the Cherenkov
angle of emission. A transition in the behaviour of XCherenkov

max with distance
from the shower core around (100-150) m is seen. Figure 2.6 shows
the transition in detail. Two peaks are seen in this transition region: a
narrow one corresponding to the Cherenkov light pool and a broader
one corresponding to the scattered Cherenkov light. As a telescope gets
farther from the shower core, the peak corresponding to the scattered light
dominates. A similar trend of XCherenkov

max as a function of distance from
the shower core was seen irrespective of primary particle type and energy.
The effect of the scattering at larger distances from the shower core is also
visible in figure 2.2.

68



2.3.1. Definition of the Apparent Cherenkov Maximum

0 200 400 600 800 1000 1200
]-2Slant depth [gcm

0

0.005

0.01

0.015

0.02

0.025
N

or
m

al
iz

ed
 C

he
re

nk
ov

 p
ho

to
ns

 [a
rb

itr
ar

y 
un

its
]

100 m
110 m
120 m
130 m
140 m
150 m
200 m

Figure 2.6: Longitudinal development of the number of Cherenkov photons seen
by telescopes at distances 100, 110, 120, 130, 140 and 150 m from the shower
core for a gamma ray shower with 100 TeV energy. The number of photons was
normalized to an integral of 1.0 to allow comparison of the profiles.

2.3.1 Definition of the Apparent Cherenkov Maximum

The constant behaviour of the XCherenkov
max for distances larger than

150 m from the shower core suggests a reconstruction procedure that
is independent of telescope distance. Beyond that, note in figure 2.5 that
the three events shown also suggest a correlation between the constant
value of XCherenkov

max and Xcharged
max . The distance range from 120 to 150 m from

the shower core is avoided because the exact transition between regimes
depends on several aspects and because of the presence of two peaks in the
longitudinal profile. Distances beyond 200 m from the shower core were
also avoided due to large fluctuations and, in addition, the trigger efficiency
of a shower beyond 200 m strongly depends on the configurations of the
telescopes, and specific analysis should be done to extend the range beyond
200 m. The apparent Cherenkov depth of maximum (Xapparent

max ) is defined
here as the constant value of XCherenkov

max for distances larger than 150 m and
smaller than 200 m from the shower core and it is calculated by fitting a
constant line.

Figure 2.7 shows the correlation of Xcharged
max and Xapparent

max . There is a
linear correlation between Xcharged

max and Xapparent
max for gamma-ray and proton

primaries regardless of energy and for iron nuclei with energy above 30 TeV.

69



2. MEASURING THE DEPTH OF SHOWER MAXIMUM OF EXTENSIVE AIR

SHOWERS USING CHERENKOV LIGHT

Even if iron nuclei do not have a linear behaviour for energies below 30 TeV,
these showers were included in the calculations of the resolution below. In
these figures, six telescopes with positions ranging from 150 to 200 m from
the shower core were used in the fit to calculate Xapparent

max . The influence of
the number of telescopes used in this fit will be studied in the next sections.

2.3.2 Reconstruction of Xcharged
max using Xapparent

max

A linear fit Xcharged
max “ po ` p1X

apparent
max was done for all simulated events

at given fixed energies. In the first attempt, the three simulated primaries,
gamma-rays, proton, and iron nuclei, were fit together as shown in
figure 2.8a. The results of the fit for each energy are shown in table 2.1.
These parametrizations can be used to reconstruct Xcharged

max from Xapparent
max

even when the primary particle is not known. The calculation was done
for four hypothetical configurations: a) six telescopes at distances of 150
to 200 m from the shower core, b) three telescopes 150, 170 and 190 m
from the shower core, one telescope at 150 m from the shower core and
one telescope at 200 m from the shower core. The configuration with six
telescopes represents a theoretical best-performance case.

The parameterization was used to reconstruct a value of Xcharged
max for all

simulated events. The reconstructed Xcharged
max is named Xrec

max to differentiate
it from the simulated true value Xcharged

max . In other words, Xrec
max is calculated

by the linear parametrization Xrec
max “ po ` p1X

apparent
max with p0 and p1 given

in table 2.1. Figure 2.8b shows the distribution of Xrec
max - Xcharged

max for
all events. The resolution in the reconstruction of Xrec

max is taken as the
standard deviation of the (Xrec

max - Xcharged
max ) distribution. Table 2.1 shows

the values of the resolution for all cases. It is clear that the resolution
improves with energy and also with the number of telescopes used to
calculate Xapparent

max (see figure 3.8).

2.4 Resolution in the reconstruction of Xcharged
max for

different scenarios

As mentioned in the introduction, it is not the purpose of this study to
analyse the details of detection and the specific reconstruction chain of
each IACT observatory. Each collaboration makes use of different analysis
techniques, and the specifications are only available for internal use. The
method proposed here is, therefore, based on shower simulation and on
perfect detection of Cherenkov light. The method is proven to be robust
in a large energy range and to be independent of the previous knowledge
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initiated 100 TeV air showers. Six telescopes (150 to 200 m from the shower core)
were used to calculate Xcharged

max . Telescopes were considered to have 10˝ FOV.
Bottom: Distribution of the difference between Xrec

max and XCherenkov
max .
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Figure 2.9: Resolution in the reconstruction of Xrec
max as a function of energy.

Telescopes were considered to have 10˝ FOV. The four colours correspond to the
configuration of telescopes used to fit Xapparent

max . All simulated primaries are used
together.

E 150 to 200 m 150-170-190 m
(TeV) p0 p1 σ p0 p1 σ

10 20.72 0.97 42.14 -8.99 1.02 58.73
30 16.84 0.97 20.08 8.75 0.99 28.20

100 132.11 0.73 16.24 102.9 0.80 21.33
300 90.47 0.82 14.28 78.78 0.85 17.45

E 200 m 150 m
(TeV) p0 p1 σ p0 p1 σ

10 -7.63 1.02 61.33 -25.96 1.05 80.75
30 28.04 0.95 37.17 -3.54 1.02 44.12

100 99.36 0.80 26.22 118.3 0.78 24.17
300 58.47 0.88 19.28 135.9 0.74 20.29

Table 2.1: Results of the linear fit (Xrec
max “ po`p1X

apparent
max ) and the reconstruction

resolution of Xrec
max (σ in g/cm2). Gamma-ray, proton and iron nuclei primaries

were used. Each column shows the configuration of telescopes used to calculate
Xapparent
max . Telescopes were considered to have 10˝ FOV.
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of the primary particle. In this section, the resolution of the method is
calculated under the assumption of selected primary particles and different
telescope FOV.

Minor aspects in the determination of the resolution of the method are
discussed here. The energy determination of current IACT is around 15%
for gamma-ray showers and around 25% for hadronic showers. Figure 2.7
shows that the parametrization proposed here does not depend on energy
for all cases, except iron nuclei with energy below 30 TeV. Therefore an
energy resolution of 25% has a negligible effect on the resolution of Xcharged

max

determined here. The use of a specific hadronic interaction model (EPOS
and FLUKA) also has minor (ă 5%) influence in IACT analysis [30]. The
largest difference of Xcharged

max between models at this energy is 9 g/cm2, still
smaller than the resolution calculated in this paper, resulting in a minor
source of systematic effect.

The method proposed here is based on the distance of the telescope
from the shower core. Therefore, the resolution on the core position
determination influences the resolution of Xcharged

max achieved by the method.
Current IACTs are able to determine the core position with a resolution
better than 30 m for the energies of this study. This figure will likely
improve with CTA. If the core position is shifted with respect to its true
position, the optimum range of 150-200 m from the shower core would
also be shifted accordingly. However, this does not invalidate the ideas
presented here. The key aspect of the method proposed here is that there is
a range in distance from the shower core in which Xapparent

max does not change.
If a large array of telescopes is used in the measurement of the shower, the
range of distances from the shower core for which Xapparent

max is constant can
be determined event-by-event from the data itself. For observatories with a
small number of telescopes, the range of distances from the shower core
for which Xapparent

max is constant needs to be calculated, including the details
of the analysis chain, especially the core position resolution. The effect for
the observatories with a small number of telescopes should be a shift of the
range of distances from the shower core for which Xapparent

max is constant by a
value smaller than the resolution in the determination of the core position.

2.4.1 Selected primary particles

In section 2.3.2, the parametrization of Xcharged
max and the resolution were

calculated as if no information about the primary particle were known, and
equal samples of gamma rays, proton and iron nuclei were considered in
the simulations. However, as previously written, many analysis methods
were developed to discriminate gamma-ray events from other primaries.
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Figure 2.10: Resolution in the reconstruction of the Xrec
max as a function of

the energy. Six telescopes (150 to 200 m from the shower core) were used to fit
Xapparent
max . Telescopes were considered to have 10˝ FOV. The two curves correspond

to gamma or proton and iron primary particles, as indicated in the legend.

The basic image analysis techniques (e.g. Hillas moments [31]) remove
more than 99% of the background, keeping 50-70% gamma rays. Therefore,
it is justifiable to consider parametrizations tuned for gamma-ray events
separated from proton and iron nuclei showers.

The same procedure above was repeated. A fit of a linear function is
done (Xrec

max “ po ` p1X
apparent
max ) considering now two sets: a) gamma-ray

and b) proton and iron nuclei events. Table 2.2 shows the results of the fit.
Figure 2.10 shows the resolution for the two sets as a function of energy.

2.4.2 Telescope FOV

The telescope FOV is an important limitation for the determination of
Xcharged
max . Since Xapparent

max should be within the FOV of the telescope in order
to be measured, small FOV telescopes will have limited power of detection.
The effect is illustrated in figure 2.11 in which

〈
XCherenkov

max

〉
is shown as a

function of the telescope distance from the shower core. The average of
XCherenkov
max over all simulated events is shown to emphasize the effect by

minimizing the fluctuations. It is clear that when the FOV gets smaller, the
constancy of XCherenkov

max with distance from the shower core is valid for a
narrower interval of distance. In single showers, the effect is not so strong
due to fluctuations.
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E gamma ray proton + iron
TeV p0 p1 σ p0 p1 σ

10 -39.88 1.09 15.55 22.28 0.97 60.22
30 -14.69 1.03 11.56 26.85 0.97 30.33

100 -65.81 1.13 14.09 121.5 0.76 20.81
300 21.72 0.95 5.39 105.5 0.80 16.46

Table 2.2: Results of the linear fit (Xrec
max “ po`p1X

apparent
max ) and the reconstruction

resolution of Xrec
max (σ in g/cm2). The analysis was done using two independent

sets: a) gamma rays and b) proton and iron nuclei. Six telescopes were used to
calculate Xapparent

max . Telescopes were considered to have 10˝ FOV.
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Figure 2.11: Mean XCherenkov
max as a function of telescope distance from the shower

core for different telescope fields of view. The different curves correspond to four
different fields of view, as indicated in the legend.
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Figure 2.12: Resolution in the reconstruction of the Xrec
max as a function of

telescope FOV. Six telescopes (150 to 200 m from the shower core) were used to
fit Xapparent

max . The four curves correspond to different primary energies, as indicated
in the legend. All simulated primaries are used together.

The analysis procedure discussed above was repeated for different
telescope fields of view ranging from 3.5˝ to 10˝. For each FOV, a
new XCherenkov

max versus Xapparent
max correlation was done, and a new fit was

performed. In this way, the corresponding Xrec
max for each FOV was

calculated. Figure 2.12 shows the resolution of the Xrec
max reconstruction as

a function of FOV. The resolution curve shows an artificial improvement for
FOV values smaller than « 4.5˝ which is not related to an improvement of
the technique. For small FOV values (ă 4.5˝), the telescopes start to show
showers with small Xcharged

max (shower developing high in the atmosphere).
The spread of the measured Xcharged

max is smaller, the calibration curve is more
precise, and the resolution seems to get better. The calculated resolution
gets artificially better with decreasing FOV because the telescopes measure
a sample of showers with less spread in Xcharged

max .

2.5 Conclusions

A method to reconstruct Xcharged
max using atmospheric Cherenkov telescope

data was presented. The dependency of the Cherenkov signal on the
distance of the telescope from the shower core was studied. The depth at
which telescopes measure the maximum number of Cherenkov photons
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(XCherenkov
max ) depends on the distance of the telescope from the shower

core up to (120-150 m). For distances larger than 150 m and smaller than
200 m from the shower core, XCherenkov

max stays constant with distance and
a reconstruction method is proposed using the data detected by these
telescopes.

A new parameter, Xapparent
max , is defined from the linear fit of the

dependence of XCherenkov
max with distance. Xapparent

max is the average constant
value of XCherenkov

max in the distance range of (150-200) m from the shower
core. Xapparent

max is shown to be correlated with Xcharged
max , and this correlation

is proposed as a novel reconstruction method.

The resolution of the method to reconstruct Xcharged
max has been studied

as a function of energy, primary particle type, number of telescopes and
telescope FOV. Figure 2.7 shows that the parametrization proposed here
does not depend on energy for all cases except iron nuclei with energy
below 30T̃eV. The resolution improves with energy starting from 60 g/cm2

at 10 TeV and reaching 15 g/cm2 at 300 TeV, even if the primary particle is
not known. Two sets of primary particles are considered: a) gamma rays
and b) proton and iron nuclei. The method shows better resolution for
the gamma-ray events 10-20 g/cm2, whereas proton and iron nuclei have
20-60 g/cm2, depending on energy. The number of telescopes used to fit
Xapparent
max was considered to be a maximum of six and a minimum of one at

selected distances from the shower core. The best resolution is achieved
when six telescopes are used. If only one telescope is used, the resolution
worsens by a maximum of 40 g/cm2 in the worst case. The resolution also
improves as a function of increasing telescope FOV. The dependence with
FOV is more important at lower energies (10 and 30 TeV) than at high
energies (100 - 300 TeV).

The parametrization proposed here could be tuned to each telescope
type and the telescope array configuration. It is expected that a fine-
tuning of the parametrization to the characteristics of each observatory will
improve the resolution of Xcharged

max predicted here. The Xcharged
max distributions

of proton and iron nuclei at 100 TeV have mean 502 and 342 g/cm2,
respectively, differing from each other of 160 g/cm2. The resolution
achieved by the method proposed here is, in all cases, much smaller than
the differences between the means, suggesting a new possibility to study
cosmic rays with IACTs using Xcharged

max distributions.
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3. COSMIC-RAY MEASUREMENTS WITH AN ARRAY OF CHERENKOV

TELESCOPES

ABSTRACT

We present a method to reconstruct the longitudinal profile of electrons in
showers using Cherenkov telescopes. We show how the Cherenkov light
collected by an array of telescopes can be transformed into the number of
electrons as a function of atmospheric depth. This method is validated using
air shower and simplified telescope simulations. The reconstruction of the
depth in which the shower has the maximum number of electrons (Xmax)
opens the possibility of cosmic ray composition studies with Cherenkov
telescopes in the energy range from 10 to 100 TeV.
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3.1. Introduction

3.1 Introduction

Cherenkov telescopes are mainly used for gamma-ray astronomy. Non-
gamma-ray events have not been fully analysed by standard analysis chains.
Exceptions are the study of electron [1, 2, 3] and extreme (proton and iron)
nuclei primaries [4, 5, 6]. Besides those, Cherenkov telescopes measure at
least 1000 times more cosmic rays, including all nuclei, than gamma-ray
showers.

This paper proposes a technique to reconstruct the longitudinal profile
of electrons in the shower using the signal detected by Cherenkov
telescopes. The reconstruction of the longitudinal profile of electrons in
the shower could be applied to better understand the shower development
in comparison to the Monte Carlo simulation and also to improve
reconstruction chains. We focus on the possibility of reconstructing the
depth in which showers have the maximum number of electrons (Xmax)
and its use to determine the primary particle type.

Deep learning models to analyze data from arrays of imaging at-
mospheric Cherenkov telescopes (IACTs) are under active development
[7]. Previous papers based on the lateral distribution of Cherenkov
light produced in the shower proposed methods to study the cosmic ray
composition using IACTs [8, 9]. The determination of the Xmax was
also studied in references [10, 11]. In these studies, a complex full
reconstruction of the shower is implemented via a fit of the camera image
or deep learning techniques. All parameters are reconstructed together,
including Xmax. The complexity of these methods increases significantly
with the number of telescopes in the analysis. They also depend on large
sets of simulated showers. In reference [10], an Xmax resolution of 30
g/cm2 for energies below 1 TeV was achieved.

In a previous publication [12], we showed how to use telescopes
outside the Cherenkov beam (ą 150 m) to reconstruct Xmax. In this
paper, we make use of the parametrization of the angular distribution
function of Cherenkov photons [13] to reconstruct the longitudinal profile
and calculate Xmax using telescopes at all distances from the shower axis.
This is one of the key differences between the method proposed here and
previous publications. The new method allows a more direct measurement
of the shower properties and the use of telescopes with larger signals and,
therefore higher probability of trigger. The method proposed here also
significantly reduces the complexity of the analysis by focusing on only one
parameter (Xmax), which might lead to computational advantages when
analyzing multiple telescopes simultaneously.
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In section 3.2, the shower and the telescope simulation are explained.
In section 3.3, we present the method to reconstruct the longitudinal profile
of electrons and the fitting to calculate its maximum. In section 3.4, the
reconstructed shower maximum Xmax and the resolution are discussed;
and finally, in section 3.5, the conclusions and final remarks are given.

3.2 Simulation of the Cherenkov light reaching the
telescopes

We simulated air showers using the CORSIKA 7.6900 package [14]. We
considered vertical showers generated by gamma, proton and iron nuclei
with energy of 10, 30 and 100 TeV. QGSJET II-04 [15] and URQMD [16]
were used for high and low-energy hadronic interactions. The hadronic
interaction models do not influence the reconstruction of Xmax, which
is the focus of this paper. The hadronic interaction models influence
the interpretation of Xmax as composition. For each energy and primary
particle, 10000 events were simulated. The threshold energies for hadrons,
muons, electrons and photons were set to 0.3, 0.01, 0.020, and 0.020 GeV,
respectively. The U.S. standard atmosphere model was used.

Cherenkov photons were produced in the simulation. Photons were
emitted in bunch size 5 with a wavelength between 200 and 700 nm.
The emission angle of the Cherenkov light is taken to be wavelength-
independent, and photons are propagated until sea level. An array in the
shape of a North-South cross with 24 telescopes delimited by spheres with
2.15 m of radius spaced 40 m apart from each other. All photons reaching
the detectors have direction and momentum recorded.

A simplified simulation of the telescope was considered taking into
account the field of view of 10.5 degrees and the camera pixelization with
0.19 degrees hexagonal pixels. Pixels were considered to be triggered if
the number of collected photons is three times larger than the night sky
background of 2.6ˆ108 photons per sr s m2. The sampling rate was taken
to be 500 MHz. The optical efficiency of the telescopes was assumed to be
0.1 p.e./photon. An example of a simulated image is shown in figure 3.1.

3.3 Reconstruction of the longitudinal profile

The shower plane is defined by the shower axis and the vector pointing
to the telescope from the impact point of the shower axis. Each pixel
intersects the shower plane, defining a region. In a good approximation,
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Figure 3.1: Simplified simulation of a camera image generated by a vertical
proton of 100 TeV. The image corresponds to the telescope at 120 m from the
shower axis. Only pixels satisfying the trigger condition are plotted.

all photons detected by one pixel can be considered to be generated in this
region. Figure 3.2 shows the number of photons in each region defined by
the pixels shown in figure 3.1 and its subsequent (right panel) projection
into the shower axis to find the longitudinal profile of Cherenkov photons.
A constant density of photons was considered inside each pixel, and the
photons were distributed into depth bins uniformly. For details about the
projection, see reference [12].

Given that the Cherenkov emission is highly beamed, the Cherenkov
photons emitted at a given depth can only be measured by telescopes in
specific positions. In other words, each telescope samples different parts
of the longitudinal development of the shower as shown in figure 3.3 for
telescopes at 80, 120, 160 and 200 m away from the shower core and as
carefully discussed in reference [12].

According to the model developed in reference [13], the number of
Cherenkov photons emitted in a given angle, θ, with the shower axis by
the particles in a shower can be written as

d2Nγ

dθ dX
pθ, s, hq “

1

π
Nepsq ˆ sin θ ˆ Ipθ, hq ˆ Kpθ, s, hq (3.1)
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Figure 3.3: Cherenkov photon profiles of the same air shower event initiated by
a proton of 100 TeV. Each curve represents the profile observed by telescopes at
different distances from the impact point.
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max at 9th iteration.

where s is age1, h height and Ne the number of electrons in the shower.
Ipθ, hq and Kpθ, s, hq are functions describing the angular emission of
Cherenkov photons for which a parametrization is given in reference [13].
This parametrization describes quite well the behaviour of the Cherenkov
light distribution at short distances with respect to the shower core.

Given the position of the telescope, equation 3.1 allows us to calculate
the number of electrons corresponding to the number of photons detected
by each pixel. The calculation must be done in an iterative procedure,
given the dependence on age. We start the calculation considering
s “ 1 for all pixels and find the corresponding longitudinal profile.
We find the maximum of this longitudinal profile and recalculate the
longitudinal profile using the new estimate of age. The procedure is
repeated until convergence. Figure 3.4 shows that after the 5th iteration,
the reconstructed depth in which the shower has the largest number of
electrons, Xrec

max , is stable within less than 1 g/cm2.
Figure 3.5 shows the longitudinal profile of electrons reconstructed

using the procedure explained above. The number of photons simulated in
each pixel of the 24 telescopes was projected into the shower plane and
then projected into the shower axis. The longitudinal profile of Cherenkov
photons was transformed into the number of electrons using equation 3.1.

1s “ 3X{pX ` 2Xmaxq
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Figure 3.5: Electron shower profiles reconstructed at 9th iteration from Cherenkov
photons profiles for telescopes at different distances. The final profile is the
weighted average not only of the profiles shown but of the complete telescope
configuration.

The contribution of the telescopes at 80, 120, 160 and 200 m away from the
shower core are shown for comparison; however, the final reconstructed
longitudinal electron profile includes the signal of all 24 telescopes in the
simulation. Xrec

max is calculated by fitting the reconstructed profile with a
second-order polynomial ranging ˘100 g/cm2 around the peak as shown
in figure 3.6. The agreement between the reconstructed and simulated
longitudinal electron profile is remarkable, as well as the simulated (Xsim

max)
and reconstructed shower maximum. Because the telescopes point to the
zenith and have 10.5 degrees of field of view, they don’t detect Cherenkov
photons generated deep in the atmosphere, causing the reconstructed
profile to have systematically fewer particles than the simulated profile at
large depths.
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Figure 3.7: Distributions of Xsim
max ´ Xrec

max for all primary particles and energies.

3.4 Results

Figure 3.7 shows the distribution of Xsim
max ´ Xrec

max for all primary particles
and energies considered here. The distributions are narrow, showing the
quality of the method. The resolution of the reconstruction is taken as the
standard deviation of these distributions, and they are shown in figure 3.8.

For gamma-ray showers, the resolution is around 10 g/cm2 along the
energy range. A deterioration of the resolution can be seen for cosmic
ray events at low energies. In the best case at 100 TeV, the resolution for
cosmic ray showers is below 16 g/cm2.

The arrival direction accuracy (angular resolution) is probably the
most important source of systematic uncertainty for this method. If
the arrival direction is badly reconstructed, the projection of each pixel
onto the shower plane would be systematically misplaced, affecting the
reconstruction of the longitudinal profile and, therefore, of Xmax. IACT
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angular resolution is typically 0.1 degrees, which is expected to be smaller
than 0.05 degrees for CTA [17]. We calculated the resolution in Xmax for
100 TeV proton events, assuming that the reconstructed shower direction is
0.1 degrees apart from the simulated shower direction. The Xmax resolution
worsens only by 1 g/cm2. The second-degree polynomial fitting also
provides the maximum number of reconstructed particles Nrec

max observed
at depth Xrec

max , which is a reasonable energy estimator of the primary
particle. Table 3.1 contains the mean and standard deviation values of
the pNsim

max ´ Nrec
maxq{Nsim

max distribution for each particle and energy, where
Nsim

max is the maximum number of simulated particles at Xsim
max.

Energy
Gamma Proton Iron

mean std dev mean std dev mean std dev

10 TeV 0.0399 0.0641 0.1401 0.1173 0.7119 0.0621
30 TeV 0.0000 0.0617 0.0671 0.0916 0.5152 0.0546

100 TeV -0.0413 0.0522 0.0119 0.0729 0.3237 0.0458

Table 3.1: Mean and standard deviation values for pNsim
max ´ Nrec

maxq{Nsim
max

distribution.
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3.5 Conclusions

In this paper, a novel method for the reconstruction of longitudinal air
shower profiles using Cherenkov telescopes was presented. Using a
shower and simplified detector simulations, we have shown that the Xmax

parameter can be reliably estimated for each event. The resolution in the
Xmax reconstruction, which was defined as the standard deviation of the
difference distribution between Xmax simulated and Xmax reconstructed,
was determined as a function of energy and type of primary particle. For all
primaries, the resolution improves with energy. Moreover, the resolution is
below 16 g/cm2 at 100 TeV for all studied cases. The resolution is worse
for heavier nuclei, which might indicate the need for a two-dimensional
analysis for these primaries. The resolution achieved here makes it possible
to study cosmic ray composition with Cherenkov telescopes.

Besides reconstructing Xmax, the method proposed here reconstructs
the longitudinal development of electrons in the shower. This feature of the
method is going to be developed in a future study towards reconstructing
the energy of the shower. As it is widely used in the cosmic ray data
analysis [18, 19], fitting the entire longitudinal development with a Gaisser-
Hillas fuction [20] leads to a very accurate and bias-free reconstruction of
the shower energy.

The method developed here must be optimized for the telescope type
and array configuration. The calculation presented in this paper based
on simplified telescope simulations would imply that the Xmax resolution
overestimates the real Xmax resolution to be achieved by the method.
Exposure and acceptance estimations and systematic uncertainties should
be considered when analysing real data towards composition studies.
Moreover, the simplicity of the method proposed here allows the use
of the data from dozens of telescopes without the computational expenses
required by template or deep learning techniques. It is expected that a fine-
tuning of the method to the characteristics of each observatory will improve
the resolution of Xmax predicted here. The Xmax resolution of gamma-rays,
proton and iron nuclei at 100 TeV are 8, 13, 16 g/cm2, respectively. The
Nmax resolution (standard deviation) of gamma-rays, proton and iron
nuclei at 100 TeV are 5.22%, 7.29% and 4.58%, respectively. The Xmax

resolutions are much smaller than the differences between the means of
Xmax distributions, suggesting a real possibility of studying cosmic rays
with IACTs as complementary measurements together with other well-
developed methods. Also, these measurements would allow synergy and
complementarity with information from space instruments that lack data.
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ABSTRACT

The Cherenkov Telescope Array (CTA) will be the next-generation gamma-ray
observatory to observe the energy range from 20 GeV to 300 TeV, offering
5-10 times better flux sensitivity than the current generation of Imaging
Atmospheric Cherenkov Telescopes (IACTs). Each telescope will capture
an image of the Cherenkov light produced when air showers created by
gamma or cosmic rays pass through the atmosphere.

The longitudinal development of the shower in the atmosphere can
be studied by measuring the number of charged particles produced as a
function of depth. The reconstruction of the longitudinal shower profile
provides the depth of the shower maximum Xmax, a mass-sensitive parameter
useful for cosmic ray composition. In this work, we use for the first
time the Cherenkov light detected on IACT cameras to reconstruct the
longitudinal profile and the Xmax of air showers initiated by two kinds of
cosmic ray species, proton and iron, with energies between 10 TeV and
300 TeV. This method is different from other methods used in the past
as template-based fit techniques that require a detailed and computing-
intensive simulation chain. In contrast, we use a parameterized function
for the angular distribution of Cherenkov light around the shower axis for
the first time.
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4.1 Introduction

Cosmic ray (CR) particles interact in the atmosphere, producing cascades
of secondary particles known as air showers. Along each air shower, the
number of charged particles reaches a maximum, referred to as Xmax.
The depth of the Xmax, expressed in g/cm2 of traversed matter, is a key
observable to estimate the mass of primary cosmic particles (see [1] for a
review) and has been used for many experiments (see [2, 3]). In this work,
we applied a new method proposed in [4, 5] to reconstruct the longitudinal
shower profile and the Xmax from images recorded by imaging atmospheric
Cherenkov telescopes (IACTs).

The Cherenkov Telescope Array (CTA) [6] will be the next generation
of IACTs to observe the energy range from 20 GeV to 300 TeV. In order to
observe the sky, tens of telescopes will be spread out over two arrays:
one in La Palma (Spain, CTA North) and one in Paranal (Chile, CTA
South). CTA will have telescopes of three different sizes: Small-Sized
Telescopes (SSTs), Medium-Sized Telescopes (MSTs), and Large-Sized
Telescopes (LST) to cover the large energy range. Since the cosmic-ray flux
dominates the incoming gamma-ray flux, CTA could also provide cosmic
composition through indirect CR measurements in the energy regime where
the transition from galactic to extragalactic CRs occurs [7]. These indirect
measurements would allow synergy with data from space instruments such
as CALET [8] and DAMPE [9]. Nevertheless, indirect measurements have
difficulties identifying individual CRs, and consequently, the composition
has a lower resolution than direct measurements. Therefore, methods are
required to measure mass-sensitive parameters as Xmax. For instance, the
Pierre Auger Observatory, which uses fluorescence telescopes to measure
the development of CR air showers, has shown a total Xmax resolution
of about 15 g/cm2 at energies above 1019.3 eV [10]. On the other hand,
Monte Carlo template-based analysis [11] for IACTs is a commonly used
tool to find the best-fit shower parameters, which provide a relatively small
spread (30 g/cm2) in the reconstructed values of the shower maximum.
The template-based analysis techniques require detailed and computing-
intensive simulations of image templates for each array configuration and
particle type, while our method does not. Instead, our method uses a
parameterized function that describes the development of the Cherenkov
light along the air shower for gamma and cosmic rays separately [12]. For
other techniques and resolution values, see [13, 14].

This work is organized as follows: section 4.2 describes the simulations
used in this analysis. We also describe the method for reconstructing the
longitudinal profiles and the quality cuts applied. Section 4.3 presents the
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results of the Xmax resolution. Additionally, we separate the iron events
from proton showers using a cut on the Xmax distribution. Finally, we
conclude the work in section 4.4.

4.2 Air showers

4.2.1 Image simulation

In this work, the data set consists of simulated air showers generated by
protons and iron CR particles detected by 25 MSTs with FlashCam using
Prod5 (Omega configuration). The camera is hexagonal with a radius of
1.2 m for the external circle. The array dimension extends within a „

500m radius circle. The events come from random directions within a
view cone of 10 degrees, pointing at a 20-degree zenith angle in the North
direction. A set of „ 15000 air showers from 10 TeV to 300 TeV was used
for proton events following a power law in the energy distribution with
a spectral index of -2.57. For iron events, we simulated „ 3000 events
for each energy bin 10 TeV, 30 TeV, 50 TeV, 100 TeV and 300 TeV. The
images are calibrated and parameterized using the ctapipe v11.0 [15].
The calibration process consists of an initial step where pixels must be
above a given threshold value and a neighbour above a second threshold.
Afterwards, the Hillas parametrization [16] allows the extraction of image
parameters from these cleaned images. An example of one image produced
by an 11.2 TeV proton-induced shower is shown on the top panel of Fig.
4.1, where triggered pixels are highlighted in green.

The information used to reconstruct the shower plane containing
longitudinal profile involves the telescopes’ position and direction in the
layout and true values of the shower’s impact and direction. We used the
pixel intensities to estimate the number of photons along the longitudinal
profile. The pixel coordinates are used to project each pixel from the
camera into the shower plane.

4.2.2 Shower profile reconstruction

The longitudinal profile reconstruction is performed using the method
described in [4, 17]. As a first step, we reconstruct a plane spanned by the
shower axis and telescope position using the information of the shower
core and direction. Within this plane, a geometrical projection of the
camera pixels is achieved by using the pixel coordinates and the telescope
axis. An example of one reconstructed shower plane with the geometrical
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Figure 4.1: Top panel: Camera image generated by an 11.2 TeV proton-induced
shower. The colour palette denotes the number of photo-electrons in the pixels.
Triggered pixels are highlighted in green. The zoom box shows the ellipsoid
obtained from the Hillas parametrization. Bottom panel: Shower plane. Pixels
are projected along the height and lateral distance. The colour palette is the same
as the camera view. The red line indicates the true direction of the shower axis.
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pixel projection is shown at the bottom in Fig. 4.1. Only triggered pixels
are projected in the plane.

(a) Before applying cuts (b) After applying cuts

Figure 4.2: Profile reconstruction of an 11.2 TeV proton air shower. (a) Electron
profiles before applying quality cuts. Each curve belongs to one image of a
triggered telescope. In this case, 19 telescopes were triggered. (b) Electron
profiles after applying quality cuts. Each curve belongs to one image of a triggered
telescope.

With the help of the reconstructed shower plane, the content of every
projected pixel of an image is binned along the vertical axis corresponding
to the altitude. Then, the altitude is transformed in depth using an
atmospheric model for CTA South. This process generates one photon
profile dNγ

dX per telescope. In the final step of the reconstruction, the
electron profiles NepXq are obtained from the photon profiles using a
parametrization for the angular distribution of Cherenkov light fC around
the shower axis given by [12]:

d2Nγ

dθ dX
pθ, s, hq “

1

π
NepXq ˆ fCpθ, s, h, Eq, (4.1)

where θ is the angle between the shower axis and the photon emission, E
is the energy of the primary particle, s “ 3X{pX ` 2Xmaxq is the shower
age, and Nγ and Ne is the number of Cherenkov photons and electrons,
respectively, at atmospheric depth X or altitude h. The form of the angular
distribution of Cherenkov photons is shown in Appendix 4.A.

The attenuation and absorption of the photons in the atmosphere are
also taken into account in the reconstruction by transmission factors due
to Rayleigh (TR) and Mie (TM) scattering given in [18]:

TR “ exp

«

´

ˆ

|X1 ´ X2|

XR

˙ ˆ

400

λ

˙4
ff

, (4.2)
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where X1 and X2 are the slant depth at emission and detection, λ is
wavelength of the Cherenokov photon in nm, and XR = 2974 g/cm2,

TM “ exp

„ˆ

e
´

´

h1
hM

¯

´ e
´

´

h2
hM

¯˙

hM secpθq

LM

ȷ

, (4.3)

where h1 and h2 are the emission and detection altitudes, the scale height
is hM “ 1200 m, the mean free path at 360 nm for the Mie scattering is LM

= 14000 m, and θ is the angle between the shower axis and the photon
emission.

Since equation (4.1) depends on the shower maximum through the
shower age, s=1 is set at the beginning of the reconstruction. Once the
electron profiles are calculated by using equation (4.1), the longitudinal
profile is obtained as the average of the electron profiles. A Gaisser-Hillas
(GH) function [19] is adjusted around the peak of the average profile to
obtain the depth of the shower maximum reconstructed, which is referred
to Xrec

max in the following. We recalculate and update the value of the
Xrec
max in the next iterations. Fig. 4.2a shows the electron profiles at the

5th iteration, considering all the triggered telescopes for the same event
where each camera image produces a profile. As shown in Fig. 4.2a,
including profiles from all telescopes results in a noisy measurement of the
longitudinal profile.

To determine the images that offer the best description in the
reconstruction, we applied a quality cut in the number of islands. The
number of islands is defined as a cluster of contiguous bright or boundary
pixels surrounded by empty pixels. An island could be as large as the
main part of a shower image or even as small as a single bright pixel.
With island cleaning, more pixels are included, whilst the noise pixel is
excluded as it is not part of a significant island. Hadronic showers tend to
give rise to sub-showers, resulting in multiple Cherenkov images and, thus,
light clusters away from the image’s main part, resulting in an incorrect
reconstruction of the longitudinal shower profile [20].

In order to identify those telescopes that provide the best description in
the reconstruction, we applied the following quality cuts to select images:
the position of the ellipse with respect to the centre of the camera must be
less than or equal to 0.8 m, the number of pixels clusters per image must
be less than 3, the telescope position with respect to the shower core must
be within a radius of at least 300 m in order to see the region of the shower
maximum, and each event must trigger at least five telescopes. Fig. 4.2b
shows the electron reconstructed profiles using these cuts. It is remarkable
to note that profiles that do not provide a good reconstruction are rejected.
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4.3 Results

We can present our results based on the iron and proton simulated data
sets described in the data section. This set is considered relevant to
describe the heavier and lighter CR data better. In this section, we first
inspect the reconstruction of the shower profile and check its compatibility
with the true and reconstructed parameters. We then analyse shower
maximum distribution and discuss the Fe/p separation based on the shower
maximum.

4.3.1 Reconstructed profile

Fig. 4.3 shows an example of a reconstructed longitudinal shower profile
for a proton event with the true depth of the shower maximum Xtrue

max =
298.46 g/cm2. The blue curve corresponds to the average from the three
profiles of Fig. 4.2b. The red curve is the Gaisser-Hillas function fitted
around the maximum and constrained to the maximum data point, plus
three data points to the right and left. The reconstructed shower maximum
was Xrec

max = 297.39 ˘ 30 g/cm2, close to the true value.
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Figure 4.3: Reconstructed longitudinal profile of 11.2 TeV proton event. The
profile is obtained as the average from the three profiles of Fig 4.2b. The red
curve is the Gaisser-Hillas fitting around the maximum.
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Figure 4.4: Comparison of the Xmax distributions as reconstructed (solid
histograms) for iron (blue) and proton (red) showers and the simulated
distribution (dashed histograms).

The correct shape of the Xmax distribution is crucial for estimating the
cosmic-ray composition [21]. To investigate the Xmax distribution, we
show in Fig. 4.4 the results of the Xmax reconstruction with our method in
the energy range from 10 TeV to 300 TeV. The solid histograms represent
the distribution of reconstructed Xmax for iron (blue) and proton (red)
showers. The simulated Xmax values are marked by dashed histograms. It
is noticeable that the simulated and reconstructed distributions agree with
each other for both the iron and proton events. To validate our method,
we separately estimated the resolution in the Xmax reconstruction from
the distribution of the difference between the reconstructed and the true
shower maximum for proton and iron events. A Gaussian function is fitted
on each distribution where the standard deviation σ and the mean µ of
the distribution are considered as the resolution and bias of the method,
respectively. The resolution and bias for proton and iron events taking the
whole energy range are shown in Fig. 4.5. The resolution is around 31 ˘

1 g/cm2 for proton showers and represents a relative error of 11 % (see
appendix 4.B and Fig.4.10 for the relative error distribution). In the case
of iron showers, the resolution is around 37 ˘ 2 g/cm2, representing a
relative error of 8%. In both cases, the bias is marginally compatible with
zero for iron and proton showers, meaning the reconstructed maximum
is slightly shifted. The relative error of the bias is ă 1% in both kinds of
showers. In Fig. 4.6, the event-by-event correlation between the Xmax

reconstructed and simulated is shown. The Pearson correlation coefficient
is 0.74 for iron showers and 0.89 for proton showers.

109



4. RECONSTRUCTING LONGITUDINAL PROFILES FOR THE CHERENKOV

TELESCOPE ARRAY

300 200 100 0 100 200 300
(Xrec

max - Xtrue
max) [g/cm2]

0

10

20

30

40

50

60

70

80

Ev
en

ts

 = -2.95 ± 1.74 g/cm2

 = 36.55 ±  1.74 g/cm2

iron

300 200 100 0 100 200 300
(Xrec

max - Xtrue
max) [g/cm2]

0

10

20

30

40

50

60

70

80

Ev
en

ts

 = -2.10 ± 1.09 g/cm2

 = 30.58 ±  1.09 g/cm2

proton

Figure 4.5: Distribution of the difference between the reconstructed and the true
shower maximum for iron (blue) and iron (red) showers. Gaussian fitting is the
black dashed curve with their respective mean and standard deviation.
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Figure 4.6: Event-by-event correlation of the Xmax reconstructed and simulated
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4.3.2. Resolution of Xmax vs energy
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Figure 4.7: Difference of the Xmax between reconstructed and true values for
three example energy intervals for iron showers.

4.3.2 Resolution of Xmax vs energy

To provide a more precise assessment of the reconstruction of the Xmax

and offer a detailed analysis of the resolution, we evaluated the first and
second moments of the distribution of the shower maxima as a function
of the energy. In figure 4.7, we present the event-by-event difference
∆Xmax “ Xrec

max ´Xtrue
max for three example energy intervals for iron showers.

It can be observed that all distributions are relatively narrow and follow
a Gaussian function. Each energy interval’s bias and resolution values
are obtained from a Gaussian fitting. The energy dependency of this
reconstruction bias is summarized in Fig. 4.8b. The bias fluctuates between
around 20 g/cm2 and -20 g/cm2 in the full energy range. Only the lowest
bin at 14.87 TeV exhibits a larger bias for iron showers. The negative
observed biases indicate that the average reconstructed Xmax values are
too small. Consequently, our method reconstructs shallower Xmax values
for iron showers, except at the highest energy bin. In contrast, larger Xmax

values are reconstructed for proton showers. The error bars represent the
uncertainty from the Gaussian fitting. In Fig. 4.8a, we show the standard
deviation σ∆Xmax of the event-wise differences between the reconstructed
and true shower maximum. There is a significant energy dependence in
the resolution for iron events, which decreases from 56.08 g/cm2 at 14.87
TeV to 35.40 g/cm2 at about 226 TeV. In the case of proton showers, there
is no significant energy dependence in the resolution. Only the highest
energy bin at around 226 TeV shows a slightly smaller resolution of 24.98
g/cm2. The error bars indicate the uncertainty of the σ∆Xmax of Gaussian
fitting within the corresponding energy bin.

111



4. RECONSTRUCTING LONGITUDINAL PROFILES FOR THE CHERENKOV

TELESCOPE ARRAY

101 102

Energy [TeV]

20

30

40

50

60

X m
ax

  [
gc

m
2 ]

iron
proton

(a) Resolution

101 102

Energy [TeV]

60

40

20

0

20

X m
ax

 [g
cm

2 ]

(b) Bias

Figure 4.8: (Energy-dependent (a) resolution and (b) bias for proton and iron
showers.

4.3.3 Iron-proton separation

In order to separate the iron events from proton showers, we set a cut
on the shower maximum distribution called Xcut

max. Since proton showers
develop deeper in the atmosphere, they will have a larger shower maximum
than iron showers of the same energy. Hence, values of Xmax ą Xcut

max are
considered proton events, and values of Xmax ď Xcut

max are considered as
iron events. To calculate the position of the cut, we compute the efficiency
of events classified as iron or proton. The iron ηFe and proton ηp efficiency
is defined as:

ηFepXcut
maxq “

iron events ď Xcut
max

NFe
, (4.4)

ηppXcut
maxq “

proton events ď Xcut
max

Np
, (4.5)

where NFe and Np are the total number of triggered iron and proton events.
Given this definition, ηFe corresponds to the correct classification of iron
events, and ηp corresponds to the misclassification of iron as proton events.
Therefore, a maximum value of ηFe and a minimum value of ηp gives the
best scenario. Fig. 4.9 shows the iron (solid line) and proton (dashed
line) efficiency for different cut values from 100 g/cm2 to 700 g/cm2. The
optimal cut value is given at the position of maximum separation between
both efficiency curves. The maximum separation occurs at Xcut

max = 346
g/cm2 which corresponds to iron efficiency ηFe of around 75 %. On the
other hand, the false positive rate, which is the fraction of true proton
events reconstructed as iron events, is about 32% for this cut.
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Figure 4.9: Left: distribution of reconstructed shower maximum for iron (blue)
and proton (red) showers. The vertical line represents the optimized Xcut

max. Right:
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4.4 Conclusion

For the first time, longitudinal profiles of the Cherenkov emission
of simulated cosmic-ray air showers using the CTA telescopes were
reconstructed. In this study, we used „ 104 simulated events of proton and
iron recorded by the MSTs in the energy range from 10 TeV to 300 TeV.
The applied method measured the shower maximum on an event-by-event
basis, opening a complementary technique to space-based detectors for
estimating the CR composition in the TeV energy range up to PeV.

The Xmax resolution and bias for two kinds of cosmic-ray showers were
obtained. For iron-induced showers, the resolution was 36.55 g/cm2, and
the bias was -2.95 g/cm2 in the energy range from 10 TeV to 300 TeV.
For proton-induced showers, the resolution was below compared to the
iron case, 30.58 g/cm2, and the bias was -2.10 g/cm2. The bias in both
cases showed a slight shift in the reconstructed shower maximum. When
analysing per energy bin, the resolution of Xmax improves as the energy of
cosmic rays increases and depends on the composition of the cosmic rays.
For iron-induced showers, the resolution is 56.08 at the lowest energy bin
and improves to 35.40 at the highest energies. For proton primaries, the
resolution is around 34 g/cm2 along the energy and is better than 25 g/cm2

at the highest energy bin. We then estimate the bias of reconstructed Xmax.
Compared to the true shower maximum, a shift of the reconstructed Xmax

of up to -2 g/cm2 was found for both primaries in the full energy range.
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The bias fluctuates around ˘ 20 g/cm2 from 10 TeV to 300 TeV, and only
the lowest energy bin shows a larger shift for iron showers.

Additionally, reconstructing the longitudinal profile and Xmax opens
the possibility for complementary indirect measurements of cosmic rays,
especially in the energy regime where direct observations lack statistics. For
instance, the reconstructed Xmax distribution is suitable for distinguishing
between light and heavy nuclei. We separated iron from proton showers
by applying a cut on the shower maximum distribution at 346 g/cm2. The
true reconstructed iron events were separate with an efficiency of 74.5
%, while the 31.8 % corresponded to the fraction of true proton events
reconstructed as iron primaries.

Since we are using one type of telescope, it is essential to mention
that the resolution stated in this analysis does not represent the actual
Xmax resolution expected by the entire CTA South array at the end of the
construction phase. However, it has a significant potential to offer new
understandings of the composition of cosmic rays at very high energy
levels.
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4.A. Angular distribution of Cherenkov photons

Appendix 4.A Angular distribution of Cherenkov
photons

We used the angular distribution of Cherenkov photons fC given in the
literature by [12] as:

fCpθ, s, h, Eq “ N sinpθqIpθ, hqKpθ, s, h, Eq (4.6)

where the Ipθ, hq corresponds to the distribution of the light and
Kpθ, s, h, Eq represents the electron energy along the atmosphere. We
used the parametrisation for I and K proposed by Luan B. in [12]:

Ipθ, θemq “
1

sinxθpy

#

π ´ log
´

1 ´ θ
θem

¯

, if θ ď θem

π ´ log
`

1 ´ θem
θ

˘

, if θ ą θem,
(4.7)

and

Kpθ, s, h, Eq “ C xθpyν´1e
´

xθpy

θ1

ˆ

1 ` ϵe
xθpy

θ2

˙

(4.8)

where θem “ arccos p1{nq. θp stands for the scattering angle of the particle
originating the Cherenkov photon and its average is given by [12]:

θp “

"

θem, if θ ď θem
θ, if θ ą θem,

(4.9)

The parameters ν, θ1, θ2 and ϵ vary with the shower age, energy, and
refractive index (height):

νps, nq “ p0,νpn ´ 1qp1,ν ` p2,ν logpsq

θ1ps, n,Eq “ p0,θ1 pEq
p2,θ1 pn ´ 1qp1,θ1 ` p3,θ1 logpsq

θ2ps, n,Eq “ θ1ps, n,Eqpp0,θ2 ` p1,θ2 sq

ϵpEq “ p0,ϵ ` p1,ϵpEqp2,ϵ

(4.10)

where the coefficients are listed in tables 4.1 and 4.2 for gamma and proton
air showers, respectively. We consider the proton air shower coefficients
for iron showers in our reconstruction.

Appendix 4.B Distribution of ∆Xmax

Fig. 4.10 shows the relative error of the difference distribution between
the Xrec

max and Xtrue
max for both iron and proton, separately. A Gaussian

function is fitted (black) in order to obtain the mean and standard deviation
parameters.
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i p0,i p1,i p2,i p3,i

ν 0.34329 -0.10683 1.46852 -
θ1 1.4053 0.32382 0 -0.048841
θ2 0.95734 0.26472 - -
ϵ 0.0031206 0 0 -

Table 4.1: Coefficients for the angular distribution of Cherenkov photons in
gamma-ray showers. Taken from [12]

i p0,i p1,i p2,i p3,i

ν 0.21155 -0.16639 1.21803 -
θ1 4.513 0.45092 -0.008843 -0.058687
θ2 0.90725 0.41722 - -
ϵ 0.009528 0.022552 -0.4207 -

Table 4.2: Coefficients for the angular distribution of Cherenkov photons in
proton showers. Taken from [12]
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Figure 4.10: Relative error of the difference between the reconstructed and the
true shower maximum for iron (blue) and iron (red) showers. Gaussian fitting is
the black dashed curve with their respective mean and standard deviation.
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4.C. Distribution of ∆Xmax per energy intervals

Appendix 4.C Distribution of ∆Xmax per energy in-
tervals

4.C.1 Iron showers

Fig. 4.11 and 4.12 show the difference distributions and their relative error,
respectively, between the reconstructed and simulated shower maximum
for iron showers. The mean µ and standard deviation σ are obtained from
a Gaussian fitting (red dashed curve).
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Figure 4.11: Difference of the Xmax between reconstructed and true values for
five energy intervals for iron showers.
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Figure 4.12: Relative error difference of the Xmax between reconstructed and true
values for five energy intervals for iron showers.
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4.C.2. Proton showers

4.C.2 Proton showers

Fig. 4.13 and 4.14 show the difference distributions and their relative error,
respectively, between the reconstructed and simulated shower maximum
for proton showers. The mean µ and standard deviation σ are obtained
from a Gaussian fitting (red dashed curve).
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Figure 4.13: Difference of the Xmax between reconstructed and true values for
five energy intervals for proton showers.
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Figure 4.14: Relative error difference of the Xmax between reconstructed and true
values for five energy intervals for proton showers.
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ABSTRACT

The Cherenkov Telescope Array (CTA) will be the next-generation gamma-
ray observatory offering better flux sensitivity than the current generation.
Each telescope will detect the Cherenkov emission from air showers
initiated by gamma and cosmic rays. State-of-the-art deep learning
algorithms, such as convolutional neural networks (CNNs), are used
to reconstruct the energy and classify the primary particle. CNNs are
commonly used for image classification because they extract and learn
from the features and patterns within an image. In this work, we proposed
an architecture to separate iron and proton-induced showers using the
image recorded in the camera (Image), the depth of the shower maximum
(Xmax), and the particle energy (E) associated with the air shower. We
tested the CNN performance with three different inputs: (i) Image + E,
(ii) Image + Xmax, and (iii) Image + Xmax + E. In addition, we used
reconstructed and true values (for the Xmax and E) during the training and
the prediction. This architecture takes advantage of the image patterns and
the air showers’ mass-sensitive parameters. Therefore, we aim to obtain
significant efficiency in identifying iron and proton events.
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5.1 Introduction

Very-high energy (VHE) gamma rays are photons with energies between
hundreds of GeV to hundreds of TeV that hit the Earth’s atmosphere [1].On
the other hand, cosmic rays (CRs) are relativistic charged particles made
up of „ 85% protons, „ 12% helium, „ 2% electrons, and „ 1% of heavier
charged nuclei with energies up to „ 1015 eV (also known as the knee)
[2]. The flux of CRs with energies below the knee can be described by a
power law spectrum dΦ

dE9E´γ with a spectral index γ „ 2.7: these particles
are expected to be of Galactic origin [3]. Precise measurement of the CR
flux is essential because it encodes important information about sources
and properties of CR propagation in the Galaxy. For instance, specific
components of the CR flux can contain additional spectral structures [4].
On the other hand, although supernova remnants (SNRs) are the most
likely candidate for the galactic CRs, the search for the sources of GCRs is
still an open question [5, 6].

The Earth’s atmosphere is opaque to gamma rays and CRs. When these
particles hit the atmosphere, a cascade of secondary particles (including
electrons, positrons, and pions) is created. This cascade is called air
shower [7]. The secondary particles propagating in the atmosphere with
velocities higher than the speed of light produce nanosecond-long flashes of
Cherenkov radiation captured by arrays of Imaging Atmospheric Cherenkov
Telescopes (IACTs), which use these light pulses to reconstruct the type of
primary particle, the energy, and the direction of the primary particle. The
Cherenkov Telescope Array (CTA) [8] is the next-generation ground-based
instrument for gamma-ray astronomy at very high energies. It will be made
of several tens of IACTs located on both hemispheres, and it will cover
an unprecedented energy range between 20 GeV to 300 TeV providing
5-10 times better flux sensitivity than the current generation of telescopes
(such as MAGIC [9], HESS [10], VERITAS [11]). Although designed as
a gamma-ray observatory, CTA will also detect air showers initiated by
CRs due to their high flux compared with gamma rays and is expected to
perform higher event statistics than the current systems. To evaluate CTA’s
potential for identifying CR events, we performed dedicated Monte Carlo
simulations, which included the air shower development and telescope
detection of proton and iron events.

Traditionally, the separation of CRs and gamma-ray events relies on
the Hillas parameters [12], which characterize the elliptical shape of the
shower image on the cameras. These parameters are used to reconstruct
the properties of the incoming particle [13, 14]. Other methods, such
as the ImPACT algorithm [15], use image templates from simulations to
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reconstruct shower parameters. CNNs are supervised learning algorithms
that can extract and learn essential features of images and determine
which category they correspond to. The use of CNNs encompasses several
fields of science, including physics and astroparticle physics [16, 17, 18,
19, 20, 21, 22, 23]. Currently, CNNs are used in IACT analysis for the
gamma/cosmic-ray separation, energy, and shower direction reconstruction
[24, 25, 26, 27, 28, 29, 30, 31]. The state of the art of CNNs includes
algorithms such as VGG [32], AlexNet [33], GoogLeNet [34], and ResNet
[35]. In particular, the VGG16 is based on a structure of blocks of 2D
convolutional and fully connected layers that can extract features and
classify the images.

In this work, we present a machine-learning approach that allows the
identification of CRs nuclei based on the measurement of the Cherenkov
light with ground-based Imaging Cherenkov Telescopes. We focused our
study on the TeV energy range, where CR measurements can be compared
with those of the current generation satellite experiments such as AMS-02,
CALET and DAMPE. We trained our CNN on SSTs, and MSTs simulated
images from proton-induced and iron-induced air showers where the
algorithm can learn essential features of the images. SSTs and MSTs
detect events in the TeV energy range were chosen because they cover the
highest energy range up to 300 TeV. We aim to obtain iron efficiencies ą

90% while keeping the proton misidentification rate as low as possible
using different inputs for training our CNN.

Our strategy was the following: First, we generated the telescopic
images of air showers initiated by two cosmic ray species: iron and proton.
Then, the images of each primary particle type are combined into a final
image containing either one or multiple telescope detections. The shower
images are simulated for MST and SST. We proposed different scenarios
considering different inputs for the CNN training, combining the image
pixel intensities, type of telescope, the true and reconstructed values of the
shower maximum and primary particle energy of each event. We trained
our CNN based on labelled images and tested the performance using the
Receiver Operating Curve (ROC) and efficiency-vs-energy curves.

In section 5.2, we describe the details of the air shower simulation and
the generation of the images. In section 5.3, we explain the architecture
used. We also describe the metrics used to characterize the performance
of our algorithm. In section 5.4, we present the input features and
the performance of reconstructing the energy using the random forest
algorithm. In addition, the shower maximum reconstruction is also
described. In section 5.5, the results of our classifier are described for
the different types of inputs and telescopes. The results are based on signal-
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background separation distributions, the Receiver operating characteristic
(ROC) and the energy dependence of the iron efficiency. In section 5.6, we
summarise our findings and discuss some advantages and limitations of
our method, applications and extensions.

5.2 Simulation Setup

One of the two CTA arrays will be located in Paranal (Chile) at 2147 m
above sea level [36]. This array will contain two types of telescopes of
interest for this work: the medium-size telescope (MST) and the small-
size telescope (SST). The MST has a reflector dish of 11.5 m of primary
diameter containing an effective mirror area of 90 m2 [37]. The camera
is placed at the dish’s focal point, at a distance of 16 m, with respect to
the primary mirror. The camera has 1764 hexagonal pixels organized in a
hexagonal lattice. Each MST has a field of view of around 80. In contrast,
the SST has a reflector diameter of 4 m, representing an effective mirror
area of 8 m2. The camera has 2368 square pixels and is located at a focal
distance of 2.15 m. The field of view of the SST is „ 90 [38]. Both types of
telescopes are aligned to point in the same direction (parallel pointing).
IACTs are designed to capture the flash of Cherenkov light from the air
shower and detect it through the camera pixels as photo-electron counts.
As a result, camera images are recorded and saved in HDF files. The
simulation and extraction of the shower images consist of two stages: air
shower simulation and shower detection. We now describe our procedure
for simulating shower images for CTA.

5.2.1 Air shower simulation

We use the version called Prod5 from the CTA collaboration for the extensive
air showers simulation. The Prod5b is based on CORSIKA (COsmic Ray
SImulations for KAskade) [39] and simtelarray [40] packages. Among
the several candidates of array configurations, we selected the OMEGA
configuration in this study. In this configuration, the 25 MSTs and 70
SSTs are distributed as shown in Fig 5.1. The main inputs we have set are
1) the particle type, 2) the energy range, 3) the direction of the primary
particle, 4) the angle cone for diffuse air showers, and 5) the area for
shower impact.

We simulate air showers initiated by proton (p) and iron (Fe) cosmic
rays. The choice of these nuclei is motivated by representing light and
heavy components of cosmic rays. We generated around 20000 events
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Figure 5.1: Array configuration used in the simulation. There are 25 MTSs and
70 small-size SSTs.

for each primary in the energy range from 1 TeV to 300 TeV. This energy
coverage plays an important role in the origin and acceleration mechanism
of Galactic cosmic ray particles, offering synergy for composition analysis
with data from space experiments. The events are generated following
a power law with a spectral index of -2.57. The detection level is 2147
m above sea level. The zenith angle of the primary particles is 200, and
the viewcone1 is 100. Table 5.1 summarises the configuration options we
selected for our simulations.

5.2.2 Shower detection

Shower detection involves calibrating and extracting the camera images
[41]. For the calibration of the images, we use the ctapipe package [42].
In this step, the images are cleaned to eliminate pixels that contain noise
from the night sky background. The image-cleaning procedure involves
selecting only pixels with a signal higher than the picture threshold and

1The viewcone is an option for diffuse simulation. It selects the primary to come from a
cone around a fixed zenith, and azimuth angle
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parameters values
partID 5626 (Fe), 101 (p)

Energy range 1 TeV to 300 TeV
Zenith angle 200

Azimuthal angle pointing to the North
Viewcone angle 100

Radius of thrown 1000 m

Table 5.1: Values used in the shower simulation.

all those above the boundary threshold that are neighbours of a picture
pixel2.After cleaning, the Hillas parameters are extracted for each image.
The depth of the shower maximum is reconstructed geometrically using
the Hillas parameters and assuming that the shower maximum lies at the
brightest point of the camera image [42].

In order to provide readable square lattice images into our CNN, we
performed transformations depending on the pixel shape. The SST images
are already square-shaped. In this case, the image transformation consists
only of filling each corner with zero values, as shown in Fig. 5.3. On the
other hand, MST images are hexagonal-shaped. In order to transform an
image with hexagonal pixels into a readable square-shaped image, we used
the oversampling mapping method3 [43] using the DL1-Data4-Handler
(DL1DH) package [44]. This method divides every hexagonal pixel into
n-by-n square pixels and assigns the photoelectrons of the new square pixel
as n´2 of the original hexagonal pixel (for n=2). The final image can be
seen on the right side of Fig. 5.2. The motivation to use the oversampling
is based on superior performance over other methods [43].

In the final stage, we combined all CTA images of the same telescope
and event by summing up individual pixel values and combining them
into a single one. We acknowledge that this approach reduces the array
performance, but it served to simplify our proof of concept work.

2For the ctapipe [42], the standard values of picture threshold is seven and boundary
threshold is five.

3A mapping method transforms the input image into a square lattice image.
4DL1 data stands for calibrated data.
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Figure 5.2: Left: MST camera detection of an iron event. The pixel arrangement
is hexagonal-shaped. Right: Final image after transforming the same camera
image into a square arrangement using the oversampling method.
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Figure 5.3: Left: SST camera detection of a proton event. The pixel arrangement
is squared. Right: Final image after transformation of camera image into a square
arrangement. The corners are filled with zero values.
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5.3 Neural network architecture and performance
metrics

In this section, we describe the details of the machine learning algorithms
that we use to predict the species of the shower primary particle. The
machine learning architecture was implemented using Keras [45] and
Tensorflow [46] libraries. We used ADAptive Moment (ADAM) optimizer
[47] with a batch size of 128, which is the number of processed samples
before the CNN is updated. It was also considered an early stopping
criterion of 10 iterations, which stops the training if no improvement is
found. In the following, we will discuss the architecture of our neural
network.

5.3.1 Binary classifier architecture

A CNN is a complex function that receives a set of images as input and
predicts the classification class, that is, to what type of air shower the
image belongs. We use supervised training, which means feeding the
CNN using data with labels so that CNN can identify a specific class and
classify it to that type. The main advantage of a CNN is to learn from the
spatial relationship between pixels and learn the underlying features, such
as edges or shapes, throughout each layer of the architecture. Our CNN
corresponds to a modified VGG16 architecture as shown in Fig 5.4 and
as detailed in Table 5.2. Six main layers define our architecture: input,
convolutional, max pooling, flatten, dense, and output.

The input layer corresponds to the input image of dimension 48 x
48 for SST and 112 x 112 for MST. The dimensions of the input images
are different to account for the differences between the SSTs and MSTs
cameras. In particular, the 48 x 48 SST image comes from the number
of square pixels in the camera. The 112 x 112 MST image comes from
applying an oversampling method to the camera image that transforms a
hexagonal lattice (hexagonal pixels in the flashCam) to a square lattice.
The method divides each hexagonal pixel into four squared pixels and
pads the corners with zero values. The convolutional layers (Conv)
include the feature extraction from the input image. Our CNN model is
motivated by VGG16 architecture, which uses a sequence of small filters
grouped into blocks. The VGG16 baseline model contains around 15
million trainable parameters [32]. The CNN has 13 convolutional layers
grouped in five blocks, as shown in Table 5.2. The first convolutional layer
receives the input image and extracts a collection of feature maps (64
feature maps of dimension 112 ˆ 112 for MST images). Each feature map
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5.3.1. Binary classifier architecture

Modified VGG-16 for MST and SST images
Layer Description Output shape: MST Output shape: SST

2xConv 112 ˆ 112 ˆ64 48 ˆ 48 ˆ 64
Block 1

Max Pooling 56 ˆ 56 ˆ 64 24 ˆ 24 ˆ 64
2xConv 56 ˆ 56 ˆ 128 24 ˆ 24 ˆ 128

Block 2
Max Pooling 28 ˆ 28 ˆ 128 12 ˆ 12 ˆ 128
3xConv 28 ˆ 28 ˆ 256 12 ˆ 12 ˆ 256

Block 3
Max Pooling 14 ˆ 14 ˆ 256 6 ˆ 6 ˆ 256
3xConv 14 ˆ 14 ˆ 512 6 ˆ 6 ˆ 512

Block 4
Max Pooling 7 ˆ 7 ˆ 512 3 ˆ 3 ˆ 512
3xConv 7 ˆ 7 ˆ 512 3 ˆ 3 ˆ 512

Block 5
Max Pooling 3 ˆ 3 ˆ 512 1 ˆ 1 ˆ 512

– Flattening 4608 512
– Concatenating 4608 + (Xmax, E) 512 + (Xmax, E)
FC 1 Dense 512 512
FC 2 Dense 512 512
Output Dense 2 2

Table 5.2: Description of the VGG-16 architecture for SST and MST image
inputs. The baseline model (without adding Xmax and energy parameters in
the concatenation layer) for the SST and MST architecture has 15 239 874 and
17 337 026 trainable parameters, respectively. Adding either Xmax or energy
parameter in the concatenation increases 512 extra trainable parameters; adding
both increases 1024 extra trainable parameters.

can be considered a new image where each pixel is a real number x. The
activation function used for the output image is the REctifier Linear Unit
(RELU) given by:

RELUpxq “

"

x for x ą 0
0 for x ă 0

(5.1)

The next layer is the max pooling used to reduce the dimensionality of
the output feature map (64 feature maps of dimension 56 ˆ 56 for MST
images). This process is repeated along the five blocks. As the image is
passed from one block to the next, it generates more feature maps with
reduced dimensions that would contain only essential features of the initial
image.

At the end of block 5, we flatten all the output images and get a one-
dimensional array of 4608 nodes (3 ˆ 3 ˆ 512 for MST images) that
defines the flatten layer. The Xmax and/or energy values associated with
the image event are added after the flattening layer. We add one or two
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extra nodes with these values in a concatenation layer. Adding either Xmax

or energy parameters in the concatenation layer increases 512 additional
trainable parameters while adding both increases 1024 extra trainable
parameters. The flattened layer is fully connected (FC) to two successive
dense layers with 512 nodes each. We also use the RELU function for
the FC layers. This part of the architecture is focused on the classification
task and is based on the previous feature maps. The output layer is the
final FC layer that encloses the number of labelled categories. In this case,
for the binary classification, it has two nodes where each node is also a
real number yi. For this last layer, we used the softmax activation function
given by:

αi “
eyi

ncategories“2
ř

i
eyi

, (5.2)

where αi is the output in i ´ th node of the last layer. This function
represents the probability distribution over the predicted output classes.
Because we are training on labelled input data, the one-hot-encoding
method passes the labels qi as two-dimensional vectors. Therefore, the
labels for iron and proton images are (1, 0) and (0,1), respectively. The
architecture compares the αi outputs with the labels using the categorical
cross-entropy loss (LCCE) function defined as:

LCCE “ ´

ncategories“2
ÿ

i“1

qi ¨ logαi. (5.3)

The algorithm optimizes the trainable parameters during the training by
minimizing the loss function averaged over all training input images using
the training data set. For SST, the data set consisted of „ 20000 events
equally distributed for iron and protons, with 11% corresponding to test
and 89% for training and validation. For MST, the data set consisted of
32900 events with the same percentage for training and testing. Once the
machine is trained, it uses an independent data set (validation set) to check
if the machine is learning about the images by measuring the convergence
of the loss function. We make the predictions on another independent test
data set by choosing different threshold values of αi.

5.3.2 Metrics to evaluate the performance of our classifier

To check the performance of the CNN, we use two classification metrics:
the classification accuracy and the Receiver Operating Characteristic (ROC)
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Figure 5.5: Confusion matrix for binary classification. The diagonal indicates
the correct prediction of each category, while the off-diagonal boxes are miss-
reconstructed predictions.

Term Definition

True Positive (TP) correctly classified iron events
True Negative (TN) correctly classified proton events
False Positive (FP) misclassified proton as iron events
False Negative (FN) misclassified iron as proton events

Table 5.3: Definitions of event classifications for binary classification.

curve. The classification accuracy can be understood from the confusion
matrix, which offers a detailed quantification of the performance of the
model, as shown in Fig. 5.5. The columns indicate the predicted category,
and the rows correspond to the true category. Then, the classification
accuracy is defined as the number of correct classified predictions to the
total number of predictions:

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
, (5.4)

where the definitions for the binary classifications are listed in Table 5.3. On
the other hand, the ROC curve shows the performance of the classification
task for different threshold values of si (equation 5.2). It shows the true
positive rate as a function of the false positive rate for all possible threshold
values, providing discrimination power at different thresholds. This plot
provides the area under the curve (AUC) that is a metric in the range [0,1]
and checks the performance of the CNN. The greater the AUC, the better
the performance.
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Term Definition

Input 1 Image + true energy (Etrue)
Input 2 Image + true shower maximum (Xtrue

max)
Input 3 Image + Xtrue

max + Etrue

Input 4 Image + reconstructed energy (Erec)
Input 5 Image + reconstructed shower maximum (Xrec

max)
Input 6 Image + Xrec

max + Erec

Table 5.4: Definitions of inputs for the CNN.

5.4 Input features

We tested different combinations of inputs for training our CNN using the
information of the image, the primary particle energy (E), expressed in TeV,
and depth of shower maximum (Xmax)5. We used true and reconstructed
values of the shower maximum and energy for testing the CNN. In addition,
we used two types of images as input in the CNN: a) images from one
telescope and b) images from multiple telescopes. In the first case, the
image is taken from the first triggered telescope for each event. In the
second case, we sum the images from all triggered telescopes into one
image for each event, as shown in Fig. 5.6. Choosing the latter approach
reduces the number of trainable parameters compared to using a true
stereo mode. Finally, each input type is trained using the separated SST
and MST images. The combinations of inputs for each type of telescope
and approach are listed in Table 5.4.

5.4.1 Energy reconstruction

In this work, we use simulated DL1 data, i.e. calibrated images, which
do not include energy nor the reconstructed shower maximum. Since
the reconstructed energy is one of the features we plan to include in our
algorithm, we use Random Forest (RF) to reconstruct the energy, as it
is usually done in the field. We applied the same algorithm to train the
RF on cosmic ray events. We evaluated the performance on the test-data
set by comparing the reconstructed energy Erec of the RF with the true
energy Etrue of the initial cosmic ray shower. Fig. 5.7 shows the energy
2D histogram of Erec against Etrue obtained from RF trained for train and
predicted on the test data-set. The Pearson correlation coefficient (R2)

5Atmospheric depth where the maximum number of secondary particles is reached in
an air shower [g/cm2]
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Figure 5.6: Image of (a) proton-induced and (b) iron-induced shower detected by
the camera of an SST. Left: Multiple triggered detections from an event grouped
into a single image. Right: One triggered detection for the same event.
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measures the strength of the linear correlation between the variables Erec

and Etrue and goes from -1 to 1.

Figure 5.7: Example of the reconstructed energy against true energy obtained
from an RF trained with Hillas parameters for the train (right) and test (left) data
set.

The R2 = 1 (or -1) describes a perfect linear correlation, while R2 =
0 denotes no linear dependency. For R2 ą 0.7 already indicates a strong
correlation. As shown in Fig. 5.7, the R2 for training and test data sets are
0.884 and 0.875, a good indicator of the linear correlation. The typical
R2 for gamma-ray events is „ 0.96. The relative energy error given by
∆E/Etrue = (Erec - Etrue)/Etrue is computed for each event. The energy
range between 1 TeV and 300 TeV is split into seven logarithmic bins, and
each event is designated to an energy bin based on its true energy. We
computed the distribution of the relative energy error ∆E/Etrue for each
energy bin and its mean and standard deviation. The mean of ∆E/Etrue

is called the energy bias. The smaller the energy bias and resolution, the
higher the accuracy of the energy reconstruction. The energy resolution
is defined by the standard deviation of ∆E/Etrue. The energy bias and
resolution are shown in Fig. 5.8 for both the train and test data set. The
energy resolution obtained for the train and test data set is fairly similar,
reaching up to „ 25 % at the highest energy bin. In contrast, the energy
resolution is deficient at the lowest energy bin. The energy bias ranges
from -0.38 to 0.26, with a minimum at „ 10 TeV (except at the lowest
energy bin, where the energy bias is around 1.45).
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Figure 5.8: Energy resolution (standard deviation of ∆E/Etrue) on top and
energy bias (mean of ∆E/Etrue) on bottom, against the true energy. The shaded
region on the bottom represents one standard deviation.

5.4.2 Shower maximum reconstruction

The depth of the shower maximum, Xmax, is reconstructed using the
package ctapipe based on the Hillas parameters. The distribution of the
true and reconstructed for all the events are shown on the upper plot in
Fig 5.9. To filter the bad reconstructed values around „ 800 g/cm2, we
applied a cut in the relative error ∆X{Xtrue

max “ pXreco
max ´ Xtrue

maxq{Xtrue
max in

order to be less than ˘ 0.5. The result of applying this cut can be seen on
the bottom plot in Fig 5.9.
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Figure 5.9: Example of the true and reconstructed shower maximum distribution
with events considering images from MSTs, before (left) and after (right) applying
cut.
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5.5 Results

5.5.1 Signal-background separation

According to our CNN, the αi defined by (5.2) can represent a marginal
probability of an event being iron-like, i.e., the ironness or αFe. Therefore,
each event can be labelled by its ironness, where an ironness = 1
corresponds to an iron event and an ironness = 0 corresponds to a proton
event. Examples of the ironness distributions obtained from a single CNN
trained for different kinds of inputs are shown in Fig 5.10 and 5.11 for
SSTs and MSTs, respectively. The distributions are the results of using true
parameters of shower maximum, energy, and SST/MST images from one
or multiple telescopes as inputs for the training and prediction of the CNN.

For SSTs and MSTs (according to Fig 5.10 and 5.11), most iron events
are classified with ironness equal to 1 and most proton events are classified
with ironness equal to 0 in the case of the inputs: Image + Xtrue

max + Etrue.
However, when using the input Image + Etrue, the ironness distribution
is irregular, and the CNN cannot make a good separation on the test data
set for the SST case. On the other hand, this last scenario even produces
an acceptable result in the case of the MST. The multiple-telescope images
indicate a better capability for iron-proton separation in all scenarios with
respect to the one-telescope image. Furthermore, in all cases, it is shown
that increasing the number of input parameters helps to improve the
separation capability.

The previous results were obtained from training and testing using true
shower maximum and true energy values. The ironness results, differences
aside, still show the same behaviour when using reconstructed parameters
as input for training and testing our CNN (see appendix 5.A for ironness
distribution using reconstructed parameters). We found that Image + Xrec

max

+ Erec is still the best scenario for both SST and MST using reconstructed
inputs. In particular, the multiple SSTs also offer a good separation
using only Image + Xrec

max. In addition, there is a better distinction in
the ironness distributions for SST images than MST images, either using
true or reconstructed parameters. On the other hand, the Image + Erec

case always shows irregular distributions independently of the telescope
and type of input for reconstructed values. It is even possible to see this
behaviour on the top plot in Fig. 5.10, where a significant fraction of true
proton events are misclassified as iron events (with ironness close to 1).
This suggests that the energy would not be a sufficient parameter for the
separation.
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Figure 5.10: Example of the ironness distributions obtained from one trained
CNN using the different types of inputs labelled on each plot. The plots on the left
correspond to training with images from one SST, and the plots on the right to
images using several SSTs. The inputs used are the true values.
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Figure 5.11: Example of the ironness distributions obtained from one trained
CNN using the different types of inputs labelled on each plot. The plots on the left
correspond to images from one MST, and the plots on the right to images using
multiple MSTs. The inputs used are the true values.
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We trained several independent CNNs with the same architecture to
guarantee our results. Tables 5.5 and 5.6 show the average accuracy values
obtained from five independently trained CNN architectures. These results
correspond to predictions made on the testing set. From the accuracy
scores listed in these tables, we can see that our CNNs can distinguish
between categories of cosmic ray shower images very ably, with accuracy
scores larger than 80% with small fluctuations in most cases.

We found that the accuracy scores were slightly better when we trained
and tested the CNN using true parameters of shower maximum and energy
instead of the reconstructed values. The accuracy results were also better
when using multiple-telescope images than just one-telescope images for
both SST and MST. In the case of SST images, the input Image + Xrec

max +
Erec showed an improvement of around 2% in the average accuracy when
using multiple-telescope images rather than just one-telescope. In the case
of MST images, the gain was around 4% for the same input.

The Image + Xrec
max was also a good CNN input, offering an average

accuracy of about 80 % and 82 % using one and multiple-telescope
SST images, respectively. For MSTs, the same input showed a score of
around 80 % only for multiple-telescope images. On the other hand,
the input Image + Erec showed the lower accuracy scores ranging from
70 % to 78 % in all cases. The last result shows that the energy does
not provide enough information to separate the iron proton events. A
possible explanation is that proton-induced showers at higher energies
produce a comparable quantity of photons to iron-induced showers of
lower energies, resulting in similar images. As a result, there could be
a misclassification of some images. This suggests that energy is not a
sufficient parameter for separation. However, the energy information, in
combination with the maximum shower parameter, helps to improve the
iron-proton classification, as we will see in the following sections.
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Inputs using SST Image
Average accuracy (std dev)

one multiple

Image + Etrue 0.837 (0.019) 0.884 (0.006)
Image + Xtrue

max 0.818 (0.004) 0.848 (0.001)
Image + Xtrue

max + Etrue 0.925 (0.006) 0.939 (0.003)
Image + Erec 0.734 (0.007) 0.780 (0.003)
Image + Xrec

max 0.802 (0.002) 0.829 (0.002)
Image + Xrec

max + Erec 0.827 (0.003) 0.840 (0.005)

Table 5.5: Testing set average accuracy scores by training our CNN with different
types of inputs and using a mixed set of iron and proton shower images from SSTs
in the energy range from 1 TeV to 300 TeV. The values in parentheses correspond
to one standard deviation.

Inputs using MST Image
Average accuracy (std dev)

one multiple

Image + Etrue 0.804 (0.003) 0.876 (0.005)
Image + Xtrue

max 0.805 (0.002) 0.837 (0.017)
Image + Xtrue

max + Etrue 0.921 (0.002) 0.925 (0.002)
Image + Erec 0.707 (0.002) 0.749 (0.050)
Image + Xrec

max 0.768 (0.001) 0.801 (0.005)
Image + Xrec

max + Erec 0.785 (0.004) 0.820 (0.004)

Table 5.6: Testing set average accuracy scores by training our CNN with different
types of inputs and using a mixed set of iron and proton shower images from MSTs
in the energy range from 1 TeV to 300 TeV. The values in parentheses correspond
to one standard deviation.
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5.5.2 Determination of the optimal threshold value for iron
identification

Studying the efficiency as a function of the ironness helps to determine the
optimal threshold value for the ironness in order to maximize the separation
of the categories. For a fixed threshold ironness αFe, the iron efficiency
is defined as nFe “ TP

TP`FN , i.e., the fraction of true iron events correctly
classified as iron events with ironness ě αFe. Correspondingly, the proton
efficiency is given by np “ FP

FP`TN , i.e., the fraction of true iron events
misclassified as proton events with ironness ă αFe. Examples of iron (solid
line) and proton (dashed line) efficiencies as a function of the thresholds
ironness αFe for one-telescope (red) and multiple-telescope images (blue)
are shown in Fig. 5.12 and Fig. 5.13 for SSTs and MSTs, respectively. Each
plot shows the results for a CNN trained with different types of inputs as
labelled on them.

A good classifier is given by a high iron efficiency and a low proton
efficiency for a fixed ironness threshold. The point of the maximum
separation between the iron and proton efficiency curves determines the
optimal threshold ironness, as can be seen in Fig 5.12. The bottom plots
of both Fig 5.12 and 5.13 show efficiencies decreasing steadily when
increasing the ironness value in contrast to the upper plot. The bottom
plots also show similar behaviour with different optimal threshold values
when using one and multiple telescopes. The summary of the optimal
threshold values is listed in Table 5.7 for all input cases. We found there is
no tendency for the optimal threshold value when using one or multiple
telescopes for MST or SST. In order to outperform the best separation for
each scenario, we use each of the best thresholds based on table 5.7.

CNN inputs
SST MST

one multiple one multiple

Img + Etrue 0.47 0.53 0.37 0.44
Img + Xtrue

max 0.51 0.40 0.40 0.40
Img + Xtrue

max + Etrue 0.44 0.58 0.47 0.39
Img + Erec 0.51 0.48 0.44 0.43
Img + Xrec

max 0.50 0.45 0.41 0.41
Img + Xrec

max + Erec 0.52 0.50 0.46 0.42

Table 5.7: Optimal threshold values obtained in a single CNN trained with
different inputs. The optimal threshold values are separated by the telescope type
and image.
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Figure 5.12: Iron efficiency η and proton efficiency as a function of the ironness
thresholds αFe for the SSTs images. The CNN was trained using the different
input types labelled on each plot. The inputs used are the true values.
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Figure 5.13: Iron efficiency η and proton efficiency as a function of the ironness
thresholds αFe for the MSTs images. The CNN was trained using the different
input types labelled on each plot. The inputs used are the true values.
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5.5.3 ROC curve

The ROC curve also helps to evaluate the performance of the trained
CNN on the test data set measuring the AUC scores. An example of the
average ROC curve and AUC values obtained from five independently
trained CNNs is shown in Fig 5.14 and 5.15. As a reference, the dashed
black line represents an algorithm that makes random classifications. We
can see that the ROC curves obtained from the input Image + Xtrue

max +
Etrue, either for SSTs or MSTs, are notably steeper than the other cases,
indicating the best scenario as expected from the ironness distribution and
the efficiency-vs-threshold results discussed previously.

For the input Image + Xtrue
max + Etrue and according to Fig. 5.14, the

average AUC values of 0.977 and 0.984 for one-telescope and multiple-
telescope SST images are significantly larger than in other cases. This
means the CNN trained with this input, particularly with multiple-telescope
images, provides a higher signal-background separation than just using the
image plus another parameter. On the other hand, in the MST case, there
is no difference in the AUC values („ 0.97) between one-telescope and
multiple-telescope (see bottom plot in Fig. 5.15).

When we compared the results using reconstructed parameters, the
input Image + Xrec

max + Erec with multiple-telescope is still the best scenario
but with less AUC values than using true parameters: 0.923 for SST and
0.901 for MST (see Fig. 5.24 and 5.25 in appendix 5.C). Interestingly, the
input Image + Erec shows many fluctuations along the proton efficiency in
multiple MST scenarios, which means a high variability in the predictions
of the independently trained CNNs (see 5.C).
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Figure 5.14: Average ROC curves and average AUC values obtained from 5 CNNs
independently trained with images from one and multiple SSTs. The shaded
region corresponds to one standard deviation. The dashed black line represents
the curve from a CNN that makes a random classification.
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5.5.4 Energy dependence of efficiency

To check the robustness of our CNN classifier, we also performed the
efficiency for different energy bins (from 1 TeV to 300 TeV) using the
optimal threshold ironness values6. Fig. 5.16 shows the average efficiency
of iron and protons for the SST case as a function of the true energy for
different inputs. Their corresponding values are listed in Table 5.8. In these
plots, the best scenario corresponds to the case of the maximum separation
between both curves, iron and proton efficiency. As expected, the bottom
panel in Fig. 5.16 with Image + Xtrue

max + Etrue gives the best scenario
because the iron efficiency goes from 0.89 to 0.98 along the energy (except
in the second energy bin, which is 0.72) and the proton efficiency increase
from „ 0.01 to „ 0.13 for multiple telescopes (see Table 5.8).

Similarly, the middle panel of Fig. 5.16 with Image + Xtrue
max also

provides a higher iron efficiency (ą 0.8) for all energies. In contrast, the
proton efficiency decreases from 0.25 to 0.06 as a function of the energy
for multiple SSTs. However, the top panel of Fig. 5.16 with Image + Etrue

provides the worse case; despite having a higher iron efficiency, the proton
efficiency is relatively higher (ą 0.5 for high energies) compare to the
other cases.

Energy Test-set Image Image Image +
bin SST + Etrue + Xtrue

max Etrue + Xtrue
max

[TeV] # Fe / # p Img ηFe ηp ηFe ηp ηFe ηp

1.79 2/268 one 0.00 0.00 1.00 0.22 1.00 0.03
mul 0.00 0.00 1.00 0.21 1.00 0.01

4.64 35/406 one 0.28 0.02 0.88 0.28 0.77 0.06
mul 0.29 0.00 0.84 0.25 0.72 0.05

12.01 382/251 one 0.95 0.45 0.86 0.16 0.92 0.10
mul 0.96 0.23 0.87 0.14 0.89 0.03

31.07 330/157 one 0.97 0.67 0.89 0.11 0.98 0.21
mul 0.99 0.45 0.95 0.13 0.98 0.09

80.38 208/83 one 0.97 0.63 0.81 0.10 0.99 0.21
mul 0.99 0.53 0.92 0.11 0.97 0.13

207.97 116/45 one 0.92 0.60 0.62 0.08 0.97 0.20
mul 0.89 0.54 0.87 0.06 0.95 0.13

Table 5.8: Iron (ηFe) and proton (ηp) efficiency values of Fig. 5.16 for each energy
bin considering one, multiple SSTs and true parameters as inputs. The number of
iron and proton events in the test data set per energy bin is also provided.

6Values taken from Table 5.7
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Figure 5.16: Average iron (orange) and proton (black) efficiency with ironness
threshold fixed by Table 5.7 and obtained from 5 trained CNNs as a function of
the true energy. CNNs were independently trained with images from one and
multiple SSTs with different inputs.
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From Table 5.8, we can also note that the number of events for the first
energy bin is just two, resulting in an iron efficiency of 1.00 and 0.00 in
some cases. However, the tendency for the rest of the bins is to increase
with the energy as expected. Similar behaviour occurred when we trained
the CNN with MST images. The bottom plot in Fig. 5.17 also shows the
best scenario for MST with iron efficiency ranging from 0.93 to 0.98 along
the energy bins. The proton efficiency is „ 0.10 in most of the bins for
multiple telescopes (except at 207.97 TeV with 0.23).

Unlike the SST case, MST images with only Xtrue
max do not provide a good

iron efficiency at higher energies, as seen in the middle panel of Fig. 5.17.
On the other hand, despite having good iron efficiency in the scenario with
the image and the energy, they do not produce a low proton efficiency as
required.

Similar tendencies in the iron and proton efficiency occurred when
we trained the CNN with the reconstructed shower maximum and
reconstructed energy for SST and MST images as can be seen in Fig.
5.18 and 5.19, respectively7. The best case is still Image + Xrec

max + Erec for
either one or multiple telescopes. But in all cases, the efficiency worsens
depending on the energy bin. For instance, iron efficiency decreases by 11%
for multiple SST and MST at 31 TeV. The proton efficiency also worsens by
about 1% at 31 TeV for multiple SSTs.

Energy Test-set Image Image Image +
bin MST + Etrue + Xtrue

max Etrue + Xtrue
max

[TeV] # Fe / # p Img ηFe ηp ηFe ηp ηFe ηp

1.79 046/844 one 0.08 0.00 0.99 0.33 0.81 0.04
mul 0.28 0.01 1.00 0.26 0.98 0.09

4.64 381/626 one 0.83 0.21 0.96 0.29 0.87 0.08
mul 0.79 0.10 0.95 0.23 0.93 0.09

12.01 513/399 one 0.95 0.46 0.89 0.14 0.93 0.10
mul 0.92 0.20 0.88 0.11 0.95 0.09

31.07 335/242 one 0.96 0.57 0.87 0.09 0.96 0.10
mul 0.95 0.25 0.89 0.11 0.97 0.11

80.38 207/149 one 0.95 0.65 0.75 0.07 0.96 0.15
mul 0.93 0.31 0.81 0.08 0.96 0.13

207.97 107/060 one 0.94 0.74 0.51 0.10 0.92 0.17
mul 0.84 0.44 0.66 0.20 0.93 0.23

Table 5.9: Iron (ηFe) and proton (ηp) efficiency values of Fig. 5.17 for each energy
bin considering one, multiple MSTs and true parameters as inputs. The number of
iron and proton events in the test data set per energy bin is also provided.

7see Tables 5.10 and 5.11 in the appendix 5.D for more information
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Figure 5.17: Average iron (orange) and proton (black) efficiency with ironness
threshold fixed by Table 5.7 and obtained from 5 trained CNNs as a function of
the true energy. CNNs were independently trained with images from one and
multiple MSTs with different inputs.
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Figure 5.18: Average iron (orange) and proton (black) efficiency with ironness
threshold fixed by Table 5.7 and obtained from 5 trained CNNs as a function of
the true energy. CNNs were independently trained with images from one and
multiple SSTs with different inputs.
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Figure 5.19: Average iron (orange) and proton (black) efficiency with ironness
threshold fixed by Table 5.7 and obtained from 5 trained CNNs as a function of
the true energy. CNNs were independently trained with images from one and
multiple MSTs with different inputs.
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5.6 Conclusion

We have developed a machine-learning approach for identifying cosmic-ray
nuclei, mainly proton and iron nuclei, using simulated images from the
upcoming Cherenkov Telescope Array (CTA). We addressed this problem
using the approach of convolutional neural networks (CNNs), which are
commonly used tools for image classification.

We trained our CNN with proton and iron shower images detected by
the SSTs and MSTs, including two extra parameters: the shower energy
(E) and the depth of the shower maximum (Xmax). We used true and
reconstructed values of these parameters for training the CNN. In addition,
two types of images were used as input for the CNN: images recorded by
one triggered telescope and images recorded by all triggered telescopes. In
the latter case, this is not a proper stereo mode but a stacking of images on
top of each other. As a result, we found that our CNN with images from
SSTs can separate iron events from protons with ą 93 % accuracy when
using true parameters as input and ą 84 % when using the reconstructed
parameters as input. Also, MSTs can separate iron from protons with ą 92
% accuracy when using true parameters as input and ą 82 % when using
the reconstructed parameters as input.

Our study also showed that predictions from trained CNN only using
image and energy provided good iron efficiencies at high energies, either
using MSTs or SSTs. However, in both MST and SST, the proton efficiency
at high energies was larger than 40% along the energy, which means
significant contamination according to our definition of proton efficiency
(misclassified proton as iron events).

On the other hand, CNNs trained with the image, energy, and depth of
shower maximum showed the best results for MST and SST images. For
SSTs, the iron efficiency remained almost constant throughout the energy
for the multiple telescopes, using Image + Xmax + E or even using simply
Image + Xmax, either with true or reconstructed values. The iron efficiency
reached a maximum efficiency of 98 % at 31 TeV using true parameters as
inputs. In addition, the proton efficiency was below 13 % for all energy
bins. In the case of using reconstructed parameters as inputs, the iron
efficiency is still higher than 87 % for energy bins greater than 31 TeV
using multiple SSTs. Proton efficiency remains below 24 %.

For MSTs, the iron efficiency also remained almost constant throughout
the energy for multiple telescopes, using Image + Xmax + E either with true
or reconstructed values. The iron efficiency reached a maximum efficiency
of 97 % at 31 TeV using true parameters as inputs. The proton efficiency
was below 23 % for all energy bins. In the case of using reconstructed
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parameters as inputs, the iron efficiency is higher than 85 % for energy
bins greater than 31 TeV using multiple MSTs. Proton efficiency remains
below 24 %.

In addition, the constant behaviour along the energy was supported
by the mean ROC curve reaching a value of AUC = 0.984 and 0.977 for
multiple SSTs and MSTs. We have shown that our CNN has the capability
to detect the features of the IACT images and classify heavy from light
cosmic-ray events.
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Appendix 5.A Ironness distributions

5.A.1 For SSTs and reconstructed parameters
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Figure 5.20: Example of the ironness distributions obtained from one trained
CNN using the different types of inputs labelled on each plot. The plots on the left
correspond to images from one SST, and the plots on the right to images using
multiple SSTs. The inputs used are the reconstructed values.
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5.A.2 For MSTs and reconstructed parameters
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Figure 5.21: Example of the ironness distributions obtained from one trained
CNN using the different types of inputs labelled on each plot. The plots on the left
correspond to images from one MST, and the plots on the right to images using
multiple MSTs. The inputs used are the reconstructed values.
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Appendix 5.B Efficiency as a function of the iron-
ness

5.B.1 For SSTs and reconstructed parameters
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Figure 5.22: Iron efficiency η and proton efficiency as a function of the ironness
thresholds αFe for the SSTs images. The CNN was trained using the different
input types labelled on each plot. The inputs used are the reconstructed values.
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5.B.2 For MSTs and reconstructed parameters
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Figure 5.23: Iron efficiency η and proton efficiency as a function of the ironness
thresholds αFe for the MSTs images. The CNN was trained using the different
input types labelled on each plot. The inputs used are the reconstructed values.
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Appendix 5.C Mean ROC curves

5.C.1 For SSTs and reconstructed parameters
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Figure 5.24: Average ROC curves and average AUC values obtained from 5 CNNs
independently trained with images from one and multiple SSTs. The shaded
region corresponds to one standard deviation. The dashed black line represents
the curve from a CNN that makes a random classification.
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5.C.2 For MSTs and reconstructed parameters
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Figure 5.25: Average ROC curves and average AUC values obtained from 5 CNNs
independently trained with images from one and multiple MSTs. The shaded
region corresponds to one standard deviation. The dashed black line represents
the curve from a CNN that makes a random classification.
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Appendix 5.D Mean efficiency vs. energy

5.D.1 For SSTs and reconstructed parameters

Energy Test-set Image Image Image +
bin SST + Erec + Xrec

max Erec + Xrec
max

[TeV] # Fe / # p Img ηFe ηp ηFe ηp ηFe ηp

1.79 002/268
one 0.10 0.04 1.00 0.21 1.00 0.13
mul 0.00 0.08 1.00 0.23 1.00 0.14

4.64 035/406
one 0.32 0.22 0.76 0.25 0.63 0.16
mul 0.43 0.20 0.77 0.25 0.66 0.17

12.01 382/251
one 0.68 0.50 0.78 0.16 0.74 0.12
mul 0.70 0.34 0.79 0.13 0.73 0.11

31.07 330/157
one 0.88 0.62 0.85 0.13 0.82 0.16
mul 0.91 0.46 0.90 0.11 0.87 0.10

80.38 208/083
one 0.96 0.58 0.84 0.13 0.93 0.28
mul 0.98 0.52 0.90 0.13 0.93 0.24

207.97 116/045
one 0.89 0.58 0.64 0.10 0.85 0.23
mul 0.94 0.49 0.77 0.06 0.91 0.24

Table 5.10: Iron (ηFe) and proton (ηp) efficiency values of Fig. 5.18 for each
energy bin considering one, multiple SSTs and reconstructed parameters as inputs.
The number of iron and proton events in the test data set per energy bin is also
provided.
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5.D.2 For MSTs and reconstructed parameters

Energy Test-set Image Image Image +
bin MST + Erec + Xrec

max Erec + Xrec
max

[TeV] # Fe / # p Img ηFe ηp ηFe ηp ηFe ηp

1.79 046/844
one 0.64 0.25 0.83 0.36 0.78 0.23
mul 0.42 0.17 0.84 0.28 0.83 0.24

4.64 381/626
one 0.61 0.32 0.81 0.30 0.70 0.21
mul 0.49 0.19 0.81 0.22 0.82 0.20

12.01 513/399
one 0.71 0.35 0.79 0.15 0.70 0.12
mul 0.64 0.18 0.78 0.12 0.77 0.10

31.07 335/242
one 0.83 0.48 0.83 0.09 0.81 0.11
mul 0.76 0.22 0.83 0.11 0.86 0.10

80.38 207/149
one 0.88 0.51 0.71 0.11 0.81 0.21
mul 0.83 0.29 0.78 0.04 0.85 0.11

207.97 107/060
one 0.90 0.66 0.68 0.15 0.84 0.19
mul 0.85 0.45 0.69 0.15 0.87 0.20

Table 5.11: Iron (ηFe) and proton (ηp) efficiency values of Fig. 5.19 for each
energy bin considering one, multiple MSTs and reconstructed parameters as inputs.
The number of iron and proton events in the test data set per energy bin is also
provided.
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6. SUMMARY AND CONCLUSIONS

During the last three decades, the first and second generations of Imaging
Atmospheric Cherenkov Telescopes (IACTs), such as Whipple Observatory,
VERITAS, HESS and MAGIC, have provided measurements of several TeV
gamma-ray sources. Experiments like the Cherenkov Telescope Array
(CTA) will be the next-generation IACTs in the southern and northern
hemispheres, offering better sensitivity, angular resolution, and larger
collection area than the current generation. One of the CTA’s aims is to
make significant progress in detecting high-energy cosmic rays, providing
insight into cosmic ray propagation and acceleration. The work done in
this thesis is twofold. The first part proposes two methods to measure a
mass-sensitive parameter of nuclei-initiated air showers: the depth of the
shower maximum Xmax. The second part corresponds to the analysis of
CTA simulations to separate iron-initiated from proton-initiated showers.
This chapter will give a brief overview of all the results, ending with the
conclusions of this thesis.

Novel methods for air shower detection using Cherenkov
light

In chapter 2, we studied reconstructing an apparent shower maximum
parameter to use as a mass-sensitive discriminator. The first step involved
projecting the Cherenkov photons reaching the observation level into a
plane containing the air shower, producing a bi-dimensional photon profile.
The next part was to investigate whether different kinds of air showers
would yield different results in the bi-dimensional profiles. The results
showed a difference in the longitudinal development of gamma, proton
and iron showers for lateral distances greater than 150 m with respect to
the shower impact, which motivated the definition of a new observable
called Xapparent

max , leading to the correlation with the depth of the shower
maximum Xmax. The new observable was used to reconstruct the value of
the Xmax by a fitting between them for each energy simulated. The results
show that the Xmax reconstruction quality is good enough compared to
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other techniques and that the nuclei-initiated air shower classification is
possible using an apparent shower maximum. This result was published in
the peer-reviewed Astroparticle Physics Journal in January 2021.

In chapter 3, we explored the possibility of reconstructing the complete
longitudinal shower profile using IACTs. We recall that the Cherenkov
photons in air showers are produced mainly by relativistic electrons
(and positrons) passing through the atmosphere. Therefore, the angular
distribution of the Cherenkov light that reaches the ground results from a
convolution between the particle’s and the photon emission’s angles. We
exploited this characteristic to reconstruct the electron shower profile
by using a parameterized function of the angular distribution for air
Cherenkov photons given in the literature. Our method reconstructs the
shower profile using all telescope detections simultaneously and adjusting
the value of the Xmax in an iterative process. In addition, the possibility
of reconstructing the primary particle’s energy was also investigated by
using the maximum number of photons at Xmax. For the first time, we
have proposed a method to reconstruct the complete electron shower
profile using all IACTs triggered. Moreover, these results showed open the
possibility of cosmic ray measurements in terms of discrimination by the
shower profile and the Xmax. This result was published in the peer-reviewed
Astroparticle Physics Journal in June 2023.

Iron-proton separation for air showers simulations
with the Cherenkov Telescope Array

The analysis of cosmic ray measurements with full detector simulations
from CTA software started in Chapter 4, where we discussed separating
iron events from proton showers. First, it was shown that the shower profile
and Xmax reconstruction for CTA work by applying our proposed method
in chapters 2 and 3. The selection criteria to improve this reconstruction
was able to clean the noisy measurements significantly, making the final
profile peaks sharper and, thus, easing the identification of the Xmax. We
tested our method using proton and iron simulations for Medium-Sized
Telescope (MST) detections showing resolution values around „ 35 g/cm2

for both species in the energy range from 10 TeV to 300 TeV. The resolution
and bias in the Xmax reconstruction as a function of primary energy were
also obtained. In addition, based on the distribution of the reconstructed
shower maximum Xrec

max, a cut in the distribution to separate iron events
from proton showers was proposed.
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Chapter 5 addressed the challenge of making a binary classification of
iron and proton events using deep learning algorithms. A convolutional
neural network (CNN) was built, motivated by state-of-the-art image
classification with neural networks. Initially, to accept only images as
inputs, this CNN architecture was modified by adding two extra parameters
as inputs: the depth of the shower maximum related to the primary mass
and the primary energy related to the number of photons produced in
the air shower. We used two image approaches: one from one telescope
or all detections. The iron and proton efficiency was calculated for each
input type and plotted as an energy function. The best performance for the
binary classification was given in the scenario of inputs: image + Xmax +
energy. In this scenario, we achieved iron identification efficiency better
than 90%.

Conclusion and outlook

In the following years, CTA will collect data, allowing us to probe different
aspects of cosmic rays and air shower physics.

The analysis methods and pipeline produced in this thesis can be
readily adjusted to studying the separation of cosmic-ray air showers. The
significant flux of cosmic-ray nuclei detected by IACTs, 1000 times greater
than gamma-ray events, can be used to reconstruct the Xmax and identify
nuclei of the primary in an air shower. The techniques developed here are
general and can be applied to any nuclei-initiated shower. Studying the
Xapparent
max along the lateral distance for telescopes located at distances ě 150

m with respect to the shower impact provides an excellent starting point for
a mass-sensitive parameter search. The second procedure of reconstructing
the electron profile allows us to estimate the shower maximum and make a
separation using a cut in its distribution. The third procedure is focused on
using CNNs that include images plus mass-sensitive parameters as inputs.
We recall that the iron efficiency corresponds to true events classified as
iron events, and in contrast, proton efficiency corresponds to proton events
miss-reconstructed as iron events. It was shown that by maximizing the
separation between the iron (signal) and proton (background) efficiency
curves, the input image plus Xmax provided the best scenario with an iron
efficiency better than 90% and a proton efficiency lower than 10%.

Keywords: Air Shower. Imaging Atmospheric Cherenkov Telescope.
Shower Maximum. Convolutional Neural Network. Machine Learning.
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7. SAMENVATTING EN CONCLUSIES

In de afgelopen drie decennia hebben de eerste en tweede generatie
Imaging Atmospheric Cherenkov Telescopes (IACT’s), zoals Whipple Ob-
servatory, VERITAS, HESS en MAGIC, metingen gedaan aan verschillende
TeV-gammastralingsbronnen. Experimenten zoals de Cherenkov Telescope
Array (CTA) zullen de volgende generatie IACT’s zijn op het zuidelijk en
noordelijk halfrond, met een betere gevoeligheid, hoekresolutie en een
groter verzamelgebied dan de huidige generatie. Een van de doelstellingen
van de CTA is om aanzienlijke vooruitgang te boeken bij het detecteren
van hoogenergetische kosmische straling, wat inzicht zal verschaffen in de
voortplanting en versnelling van kosmische straling. Het onderzoekin
dit proefschrift is tweeledig. Het eerste deel draagt twee methoden
aan voor het meten van een massagevoelige parameter voordoor kernen
veroorzaakte luchtbuien: de diepte van de bui, die maximaal Xmax is.
Het tweede deel gaat over de analyse van CTA-simulaties om buien te
onderscheiden die door ijzer danwel protonen veroorzaakt zijn. Dit
hoofdstuk geeft een kort overzicht van alle resultaten en eindigt met de
conclusies van dit proefschrift.

Nieuwe methoden voor detectie van luchtbuien met
Cherenkov licht

In Hoofdstuk 2 hebben we de reconstructie van een parameter voor het
schijnbare maximum van een een bui bestudeerd om deze te gebruiken
als massagevoelige onderscheidingsparameter. De eerste stap bestond
uit het projecteren van de gedetecteerde Cherenkov-fotonen die het
observatieniveau bereikten op een vlak met daarin de luchtbui, waardoor
een tweedimensionaal fotonenprofiel ontstond. Het volgende deel was om
te onderzoeken of verschillende soorten luchtbuien verschillende resultaten
zouden opleveren in de tweedimensionale profielen. De resultaten toonden
een verschil aan in de longitudinale ontwikkeling van gamma-, protonen-
en ijzerbuien voor laterale afstanden groter dan 150 m met betrekking tot
de impact van de buidouche. Dit motiveerde de definitie van een nieuwe
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waarneembare parameter genaamd Xmax-app, wat leidde tot de correlatie
met de diepte van de douche maximaal Xmax. De nieuwe waarneembare
parameter werd gebruikt om de waarde van Xmax te reconstrueren door
voor elke gesimuleerde energie tussen de twee te fitten. De resultaten
laten zien dat de Xmax-reconstructiekwaliteit afdoende is vergeleken met
andere technieken en dat door kernen veroorzaakte luchtbuiclassificatie
mogelijk is met behulp van een schijnbaar buimaximum. Dit resultaat werd
in januari 2021 gepubliceerd in het peer-reviewed Astroarticle Physics
Journal.

In Hoofdstuk 3 hebben we mogelijkhedenonderzocht om het volledige
longitudinale buienprofiel te reconstrueren met behulp van IACT’s, zelfs
op een grotere afstand dan 150 m van het inslagpunt van de bui.
We herinneren de lezer eraandat de Cherenkov-fotonen in luchtbuien
voornamelijk worden geproduceerd door relativistische elektronen (en
positronen) die door de atmosfeer heen bewegen. Daarom is de
hoekverdeling van het Cherenkov-licht dat de grond bereikt het gevolg
van een convolutie tussen de emissiehoeken van het deeltje en het foton.
We hebben deze eigenschap benut om het elektronenbuienprofiel te
reconstrueren door gebruik te maken van een geparametriseerde functie
van de hoekverdeling voor lucht-Cherenkov-fotonen uit de literatuur.
Onze methode reconstrueert het buienprofiel door alle telescoopdetecties
tegelijkertijd te gebruiken en de waarde van de Xmax iteratief aan te
passen. Daarnaast werd ook de mogelijkheid onderzocht om de energie
van het primaire deeltje te reconstrueren door het maximale aantal fotonen
bij Xmax te gebruiken. We hebben de eerste methode voorgesteld om
het volledige elektronenbuienprofiel te reconstrueren met behulp van alle
getriggerde IACT’s. Bovendien toonden deze resultaten de mogelijkheid
tot kosmische stralingsmetingen in termen van onderscheid door het
buienprofiel en Xmax. Dit resultaat werd in juni 2023 gepubliceerd in
het peer-reviewed Astroparticle Physics Journal.

IJzer-protonscheiding voor simulaties van luchtbuien
met de Cherenkov Telescope Array

De analyse van kosmische stralingsmetingen met volledige detectorsimu-
laties van CTA-software begon in hoofdstuk 4, waar we het onderscheiden
van ijzergebeurtenissen en protonenbuien bespraken. Ten eerste werd
aangetoond dat de buienprofiel-reconstructie en de Xmax-reconstructie
voor CTA werken door het toepassen van de door ons voorgestelde methode,
die werd besproken in de hoofdstukken 2 en 3. De selectiecriteria
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om deze reconstructie te verbeteren waren in staat om de ruis in
de metingen aanzienlijk op te schonen, waardoor de uiteindelijke
profielpieken scherper werden en dus de identificatie van Xmax werd
vergemakkelijkt. We hebben onze methode getest met behulp van proton-
en ijzersimulaties voor detecties met middelgrote telescoop (MST), en deze
lieten resolutiewaarden rond „ 35 g/cm2 voor beide soorten zien in het
energiebereik van 10 TeV tot 300 TeV. De resolutie en bias in de Xmax-
reconstructie als functie van de primaire energie werden ook verkregen.
Bovendien werd op basis van de distributievan het gereconstrueerde
buienmaximum Xrec

max een splitsing van de distributievoorgesteld om
ijzergebeurtenissen te scheiden van protonenbuien.

Hoofdstuk 5 ging in op de uitdaging van het maken van een binaire
classificatie van ijzer- en protongebeurtenissen met behulp van deep
learning-algoritmen. Er werd een convolutioneel neuraal netwerk (CNN)
gebouwd, gemotiveerd door de modernste beeldclassificatie-technieken
met neurale netwerken. Aanvankelijk, zodat alleen beelden als invoer
werden geaccepteerd, werd deze CNN-architectuur aangepast door twee
extra parameters als invoer toe te voegen: de diepte van het maximum
van de bui gerelateerd aan de primaire massa en de primaire energie
gerelateerd aan het aantal fotonen geproduceerd in de luchtbui. We
gebruikten twee beeld-benaderingen: één van één telescoop of alle
detecties. Voor elk type invoer werd de ijzer- en protonefficiëntie berekend
en geplot als een functie van energie. De beste prestatie voor de binaire
classificatie werd bereikt met de invoercombinatie bestaande uit een
afbeelding, Xmax waarde en energie. In dit scenario bereikten we een
ijzeridentificatie-efficiëntie van meer dan 90%.

Conclusie en vooruitzichten

In de komende jaren zal CTA gegevens verzamelen waarmee we verschil-
lende aspecten van de fysica van kosmische straling en luchtbuien kunnen
onderzoeken. De analysemethoden en pipelinedie in dit proefschrift zijn
geproduceerd kunnen gemakkelijk worden aangepast om de scheiding
van kosmische-straling luchtbuien te bestuderen. De aanzienlijke stroom
kosmische stralingskernen die door IACT’s wordt gedetecteerd, 1000 keer
meerdan het aantal gammastralingsgebeurtenissen, kan worden gebruikt
om de Xmax te reconstrueren en om de kernen van de primaire kernen
in een luchtbui te identificeren. De hier ontwikkelde technieken zijn
algemeen en kunnen worden toegepast op elke door kernen gëınitieerde
buie. Het bestuderen van de Xapparent

max langs de laterale afstand voor
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telescopen die op afstanden ą 150 m ten opzichte van de inslag van
de buistaan, biedt een uitstekend startpunt voor een massagevoelige
parameterzoektocht. De tweede procedure voor het reconstrueren van
het elektronenprofiel stelt ons in staat het maximum van de buiin te
schatten en een scheiding te maken door een splitsingin de distributieervan
te maken. De derde procedure is gericht op het gebruik van CNN’s die
afbeeldingen plus massagevoelige parameters als invoer bevatten. We
wijzen eropdat de ijzerefficiëntie overeenkomt met echte gebeurtenissen
die zijn geclassificeerd als ijzergebeurtenissen, en dat de protonefficiëntie
daarentegen overeenkomt met protongebeurtenissen die verkeerd zijn
gereconstrueerd als ijzergebeurtenissen. Er werd aangetoond dat, door het
maximaliseren van de scheiding tussen de ijzer- en protonefficiëntiecurven,
een invoer bestaande uit de afbeelding, Xmax en energie de beste
prestatie opleverde met een ijzer(signaal)efficiëntie beter dan 90% en
een proton(achtergrond)efficiëntie lager dan 10%.

Trefwoorden: Luchtbuien. Imaging Atmospheric Cherenkov Telescoop.
Diepte van de Douche Maximaal. Convolutioneel Neuraal Netwerk.
Machine Learning.
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Nas últimas três décadas, as gerações de Imaging Atmospheric Cherenkov
Telescopes (IACTs), como o Observatório Whipple, VERITAS, HESS e
MAGIC, têm fornecido medições de diversas fontes de raios gama de
TeV. Experimentos como o Cherenkov Telescope Array (CTA) terão IACTs
de próxima geração nos hemisférios sul e norte, oferecendo melhor
sensibilidade, resolução angular e uma área de coleta maior do que a
geração atual. Um dos objetivos do CTA é fazer avanços significativos na
detecção de raios cósmicos de alta energia, fornecendo informações sobre a
propagação e aceleração desses raios cósmicos. O trabalho realizado nesta
tese foi dividido em duas partes. A primeira parte propõe dois métodos
para medir um parâmetro senśıvel à massa dos núcleos que iniciam os
chuveiros atmosféricos: a profundidade de máximo do chuveiro Xmax. A
segunda parte corresponde à análise de simulações do CTA para separar
chuveiros iniciados por ferro de chuveiros iniciados por prótons. Este
caṕıtulo fornecerá uma breve visão geral de todos os resultados, encerrando
com as conclusões desta tese.

Novos métodos para detecção de chuveiros atmosféricos
usando luz Cherenkov

No caṕıtulo 2, estudamos a reconstrução de um parâmetro aparente do
máximo do chuveiro para usar como um discriminador senśıvel à massa. O
primeiro passo envolveu a projeção dos fótons Cherenkov que alcançam
o ńıvel de observação em um plano contendo o chuveiro atmosférico,
o que fornece um perfil bidimensional de fótons. A próxima parte foi
investigar se diferentes tipos de chuveiros atmosféricos resultariam em
diferentes perfis bidimensionais. Os resultados mostraram uma diferença
no desenvolvimento longitudinal de chuveiros gama, próton e ferro para
distâncias laterais maiores que 150 m em relação ao impacto do chuveiro,
o que motivou a definição de um novo observável chamado Xapparent

max ,
correlacionando-o com a profundidade do máximo do chuveiro Xmax. O
novo observável foi usado para reconstruir o valor do Xmax por meio de
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um ajuste linear para cada energia simulada. Os resultados mostram que a
qualidade da reconstrução do Xmax é suficientemente boa em comparação
com outras técnicas, e a classificação de chuveiros atmosféricos iniciados
por núcleos é posśıvel usando um máximo aparente do chuveiro. Esse
resultado foi publicado no Journal of Astroparticle Physics em janeiro de
2021.

No caṕıtulo 3, exploramos a possibilidade de reconstruir o perfil
longitudinal completo do chuveiro usando IACTs. Ressaltamos que
os fótons de Cherenkov em chuveiros atmosféricos são produzidos
principalmente por elétrons (e pósitrons) relativ́ısticos que passam pela
atmosfera. Portanto, a distribuição angular da luz de Cherenkov que
atinge o solo resulta de uma convolução entre os ângulos de emissão da
part́ıcula e dos fótons. Exploramos essa caracteŕıstica para reconstruir
o perfil do chuveiro de elétrons usando uma função parametrizada da
distribuição angular para fótons Cherenkov atmosféricos encontrada na
literatura. Nosso método reconstrói o perfil do chuveiro usando todas
as detecções do telescópio simultaneamente e ajustando o valor do Xmax

em um processo iterativo. Além disso, investigou-se a possibilidade de
reconstruir a energia da part́ıcula primária usando o número máximo de
fótons em Xmax. Pela primeira vez, propusemos um método para reconstruir
o perfil de elétrons do chuveiro usando todos os IACTs acionados. Além
disso, esses resultados mostraram a possibilidade de medições de raios
cósmicos em termos de discriminação pelo perfil do chuveiro e Xmax. Esse
resultado foi publicado no Journal of Astroparticle Physics em junho de
2023.

Separação ferro-próton para simulações de chuveiros
atmosféricos com o Cherenkov Telescope Array

A análise de medições de raios cósmicos com simulações completas dos
telescópios a partir do software CTA é feita no Caṕıtulo 4, onde discutimos
a separação entre chuveiros iniciados por prótons e núcleos de ferro.
Primeiramente, mostrou-se que o perfil do chuveiro e a reconstrução
do Xmax para o CTA funcionam aplicando nosso método proposto nos
caṕıtulos 2 e 3. Os critérios de seleção para melhorar essa reconstrução
foram capazes de limpar significativamente as medições ruidosas, tornando
os picos finais do perfil mais ńıtidos e, assim, facilitando a identificação
do Xmax. Testamos nosso método usando simulações de prótons e núcleos
de ferro para detecções do Medium-Sized Telescope (MST), mostrando
valores de resolução em torno de „ 35 g/cm2 para ambas as espécies na
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faixa de energia de 10 TeV a 300 TeV. A resolução e o viés na reconstrução
do Xmax em função da energia primária também foram obtidos. Além disso,
com base na distribuição do Xrec

max reconstrúıdo, foi proposto um corte na
distribuição para separar eventos de ferro de chuveiros de prótons.

O Caṕıtulo 5 abordou o desafio de fazer uma classificação binária de
eventos de ferro e próton usando algoritmos de aprendizado de máquina.
Uma rede neural convolucional (CNN) foi constrúıda, motivada pela
classificação de imagens de ponta com redes neurais. A arquitetura de
CNN foi modificada para aceitar imagens e parâmetros do chuveiro como
entradas. Neste caso os dois parâmetros foram a profundidade do máximo
do chuveiro relacionada à massa primária e a energia primária relacionada
ao número de fótons produzidos no chuveiro atmosférico. Usamos dois
modos de imagem: imagem formada por a detecção de um telescópio e
imagem contendo todas as detecções dos telescópios acionados para o
mesmo evento. A eficiência de identificação de ferro e próton foi calculada
para cada tipo de entrada e plotada como uma função de energia. O melhor
desempenho para a classificação binária foi dado no cenário de entradas:
imagem + Xmax + energia. Nesse cenário, alcançamos uma eficiência de
identificação de ferro melhor que 90%.

Conclusão e Perspectivas

Nos próximos anos, o CTA irá coletar dados, permitindo-nos explorar difer-
entes aspectos dos raios cósmicos e da f́ısica dos chuveiros atmosféricos.

Os métodos de análise e o pipeline produzidos nesta tese podem ser
facilmente ajustados para estudar a separação de chuveiros atmosféricos
de raios cósmicos. O significativo fluxo de núcleos de raios cósmicos
detectados por IACTs, mil vezes maior do que eventos de raios gama, pode
ser usado para reconstruir o Xmax e identificar núcleos primários em um
chuveiro atmosférico. As técnicas desenvolvidas aqui são gerais e podem
ser aplicadas a qualquer chuveiro iniciado por núcleos. Estudar o Xapparent

max

ao longo da distância lateral para telescópios localizados a distâncias ě

150 m em relação ao impacto do chuveiro fornece um excelente ponto
de partida para uma busca senśıvel à massa. O segundo procedimento
de reconstrução do perfil de elétrons nos permite estimar o máximo do
chuveiro e realizar uma separação usando um corte em sua distribuição.
O terceiro procedimento é focado no uso de CNNs que incluem imagens
mais parâmetros senśıveis à massa como entradas. Ressaltamos que a
eficiência de ferro corresponde a eventos verdadeiros classificados como
eventos de ferro, e, em contraste, a eficiência de prótons corresponde a
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eventos de prótons reconstrúıdos erroneamente como eventos de ferro. Foi
demonstrado que maximizando a separação entre as curvas de eficiência
de ferro (sinal) e próton (fundo), a combinação entre entrada de imagem
com o Xmax forneceu um cenário com uma eficiência de ferro superior a
90% e uma eficiência de prótons inferior a 10%.

Palavras-chave: Chuveiro Atmosférico. Imaging Atmospheric Cherenkov
Telescope. Profundidade do Máximo do Chuveiro. Rede Neural Convolu-
cional. Aprendizado de Máquina.
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