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ABSTRACT

NOGUEIRA. G. A. Higher-order QCD in Higgs to gluon gluon. 2024. 116p.
Dissertation (Master in Science) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2024.

One of the most prominent decay channels of the Higgs boson is the decay of the Higgs
into two gluons. The decay width Γ(h → gg) starts at second order in the strong coupling
αs and is known up to O(α6

s) in perturbative QCD. However, the truncation error of this
quantity needs to be investigated, considering that its precise theoretical knowledge is part
of crucial tests of the Standard Model of particle physics. In order to achieve better control
over this truncation error, it is necessary to know the coefficients at higher order. In this
work, we produce accurate estimates for the first unknown coefficient of the Higgs decay
into two gluons, at O(α7

s). We investigate the coefficients at high orders using rational
approximants also known as Padé approximants, in combination with the Borel transform
of the series, in addition to employing other methods such as the so-called Dlog Padés,
renormalization scheme variation, and conformal mapping. We provide model-independent
estimates for the first unknown coefficient, c5, in the series for the Higgs decay into two
gluons. We analyzed two prescriptions for the renormalization of the top-quark mass,
considering the dependence on the number of flavors of light quarks, denoted as nf . For
the case of greatest interest, with nf = 5, we obtained estimates of c5 = −304 ± 106 under
the Scale Invariant prescription, and c5 = −293 ± 78 for the On-Shell top-quark mass.
This allows us to assess the intrinsic truncation uncertainty of this quantity in light of our
results.

Keywords: QCD. Gluons. Higgs boson.





RESUMO

NOGUEIRA. G. A. QCD em altas ordens no decaimento do Higgs em dois
glúons. 2024. 116p. Dissertação (Mestrado em ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2024.

Um dos canais de decaimento mais proeminentes do bóson de Higgs é o decaimento do
Higgs em dois glúons. A largura de decaimento Γ(h → gg) começa em segunda ordem no
acoplamento forte αs e é conhecida até O(α6

s) na QCD perturbativa. No entanto, o erro de
truncamento dessa quantidade precisa ser investigado, considerando que seu conhecimento
teórico faz parte dos testes cruciais do Modelo Padrão da física de partículas. Para obter um
controle mais preciso sobre esse erro de truncamento, é necessário conhecer os coeficientes
de ordem superior. Neste trabalho, produzimos estimativas precisas para o primeiro
coeficiente desconhecido do decaimento do Higgs em dois glúons, em O(α7

s). Investigamos
os coeficientes em ordens elevadas usando aproximantes racionais, também conhecidos
como aproximantes de Padé, em combinação com a transformada de Borel da série, além
de empregar outros métodos, como os chamados Dlog Padés, variação de esquema de
renormalização e mapeamento conforme. Fornecemos estimativas independentes de modelo
para o primeiro coeficiente desconhecido, c5, na série para o decaimento do Higgs em
dois glúons. Analisamos duas prescrições para a renormalização da massa do quark top,
considerando a dependência no número de sabores de quarks leves, denotado como nf .
Para o caso de maior interesse, com nf = 5, obtivemos estimativas de c5 = −304 ± 106 sob
a prescrição Invarante de Escala e c5 = −293 ± 78 para a massa do quark top On-Shell,
permitindo-nos avaliar a incerteza intrínseca de truncamento dessa quantidade à luz de
nossos resultados.

Palavras-chave: QCD. Glúons. Bóson de Higgs.
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1 Introduction

The Standard Model of particle physics (SM) is the theory that incorporates the
fundamental particles present in the universe and their interactions (except for gravity) (1).
The history of the Standard Model is rooted in the development of gauge theories. Its
origins trace back to the formulation of Quantum Electrodynamics (QED) in the 1940s
by Dirac, Tomonaga, Schwinger, and Feynman (2–5), providing a precise description of
electromagnetic interaction among charged particles. The introduction of non-abelian
gauge theories, such as SU(2) and SU(3), was essential to describe strong forces among
quarks, representing a significant contribution by Gell-Mann (6), Ne’eman (7), and others.
Quantum Chromodynamics (QCD) has arisen as the fundamental gauge theory of the
strong interactions, characterized by the SU(3)c group (8). The subscript c signifies that
this group is associated with color symmetry. This theory governs strong interactions,
elucidating the dynamics of the interactions between quarks and the eight gluons.

In the 1970s, a significant breakthrough occurred with the unification of electromagnetic
and weak interactions in the electroweak theory by Glashow, Salam, and Weinberg (9–11).
Despite the elegance of the eletroweak theory, a significant challenge was evident: particles
did not exhibit mass. This gap was bridged with the discovery of the Higgs mechanism,
proposed independently in the 1960s by François Englert, Robert Brout, Peter Higgs (12,13),
representing a crucial advance in understanding particle physics. The central idea is the
existence of a scalar field, called the Higgs field, permeating all space. Some of the
elementary particles interact with this field and, in doing so, acquire mass.

The Standard Model incorporates the Higgs Mechanism to explain the origin of
elementary particle masses. In the SM, the Higgs boson is the particle associated with the
Higgs field. Its experimental discovery in 2012 at the Large Hadron Collider (LHC) (14) at
CERN was a a significant achievement, validating the existence of this mechanism. Then,
the SM interactions can be divided into sectors, reflecting the type of interaction. In the
context of this work, the sectors of strong interaction and the Higgs boson sector stand
out, as the primary focus is on the decay of the Higgs boson into two gluons.

In perturbative QCD, the width of the Higgs decay into two gluons Γ(h → gg) is
currently known up to α6

s (15). Among the key decays of the Higgs boson is the decay
h → gg, representing the second principal decay channel of the Higgs boson. In the
context of exploring Higgs physics, considering the absence of new physics observations
at the LHC, an approach to search for physics beyond the Standard Model (BSM) is
precision physics. An important quantity in this context is the signal strength µ, defined
as the ratio of the experimental cross-section for Higgs production multiplied by Higgs
decay in a specific channel, divided by the same quantity obtained through theoretical
predictions in the Standard Model. This implies that if the Standard Model adequately
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describes the analyzed processes, this quantity should be equal to one. The combination
of ATLAS and CMS data (16) provides a averaged signal strength of µ = (1.09 ± 0.11),
this implies the necessity to attain higher levels of theoretical precision, to verify if the
experiments and the theory are indeed fully consistent. To increase the accuracy of theory
predictions, obtaining high-order cross-sections and decay widths in perturbation theory
is necessary. It is essential to note that, although the Higgs decay into two gluons is not
currently measured at the LHC, precise theoretical knowledge of this decay can enhance
the theoretical accuracy of the process gg → h, thus assisting in identifying any deviation
in µ, if it exists.

Corrections at high orders for the decay of the Higgs into two gluons are calculated in
an effective theory where the top quark mass is considered much larger than the typical
energy scale of the process. The top quark mass is mt = 173 GeV, while the Higgs mass is
mh = 125 GeV. In the calculation of the decay h → gg, mass corrections are expressed
in terms of a parameter τ = (mh/mt)2 ≈ 0.52. Despite not being very close to zero, the
coefficients multiplying the powers of τ further suppress these corrections, generating
small mass corrections. Under these conditions for the calculation of loop diagrams it is
reasonable to employ the limit where mt → ∞, resulting in an effective theory with five
dynamical quark flavours. This limit is known as heavy-top limit (17).

The evaluation at high orders presents many theoretical and computational chal-
lenges (15), several years are required to perform a calculation at the next order in
perturbation theory. Perhaps, the term at O(α7

s) will never be calculated. Given this state
of affairs, we have performed the estimates for the coefficient of order O(α7

s) of the decay
width of the Higgs boson into two gluons, using Padé Approximants (PAs), which is a
model-independent method widely used in the literature for estimating unknown coeffici-
ents in perturbation theory, providing reliable estimates with realistic errors. This method
involves employing a ratio of two polynomials to approximate a series. By matching the
expansion of the rational approximant to the Taylor series of the function of interest, it
is possible to determine all the free parameters of the Padé (provided sufficient informa-
tion is available), and thereby one can reconstruct the function and obtain estimates of
higher-order Taylor-series coefficients. Here, we use variants of the methods employed in
Refs. (18–21).

Currently, in QCD processes, at most the first four or five coefficients in perturbation
theory are known. In other words, only a small amount of information is available about
the series. Therefore, to investigate the estimation methods employed in this work, we
used the large-β0 limit of QCD (22) for the gluon-gluon correlator DG2 . A fundamental
advantage of working in this limit is that the quantities analyzed in it can be evaluated
to all orders in perturbation theory, serving as a kind of laboratory to test our estimates
made by Padé Approximants. However, it is important to emphasize that the correlator
DG2 and the decay width Γ(h → gg) are different quantities, so that different methods
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can be used to investigate them.
The large-β0 limit is an extension of the large-nf limit, where the number of flavors, nf ,

tends to infinity (nf → ∞), while the product αsnf remains of order O(1). Consequently,
αs scales as 1/nf . In this limit, the analysis focuses on evaluating an infinite number of
qq̄ bubble corrections to the gluon propagators, where each of these bubbles contributes
at O(1). These bubbles are proportional to the ferminonic contribution to leading order
coefficient of the QCD beta function β0f = −nf/6π. Then, the large-β0 limit is reached by
replacing the fermionic contribution with the complete β0 term: β0f → β0f + β0A. Here,
the non-abelian term β0A is taken into account, ensuring that β0 has the correct sign,
recovering the asymptotic freedom characteristics of QCD coupling. This procedure is
called naive non-Abelianization (22).

In the large-β0 limit, it is possible to investigate the behavior of series at high orders.
The series in QCD are expected to be divergent, and it is conjectured that these series are
asymptotic. In this context, it is known that this divergence is related to the factorial
growth of the coefficients. At a certain order N , the contribution N ! of this coefficient is
no longer suppressed by the small value of αN

s , and the series diverges. The divergences of
these series can be better investigated through the so-called Borel transform —in terms of
a new variable u — that suppresses the factorial growth of the coefficients by dividing
them by N !. The singularities of the Borel transform present on the real axis of this
transformation, with integer values of u, are called renormalons and govern the behaviour
of the series for high orders.

In addition, we employed several types of Padé Approximants evaluated in conjunction
with methods of varying the renormalization scheme (23) and conformal mapping (24),
analyzed in the gluon-gluon correlator in the large-β0 limit. Variation in the renormalization
scheme can be used to change the relative weight of each renormalon, while the conformal
mapping of the Borel plane was employed to examine the behavior of the correlator after
modifying the relative weight of the different renormalon singularities.

This dissertation is structured as follows. In Chapter 2, an overview of the Standard
Model, with a focus on Higgs boson physics and Quantum Chromodynamics, is presented.
Chapter 3 explores the details of the Higgs boson decay into two gluons at LO, providing
insights into the current status of this decay in perturbation theory. Chapter 4 introduces
the methods utilized for estimation and details the calculation of the gluon-gluon correlator
in the large-β0 limit. Moving on to Chapter 5, it reveals the results obtained in large-β0,
discussing the convergence properties of the analyzed perturbative series. This discussion
encompasses the use of Padé approximants, variation of the renormalization scheme, and
conformal mapping. Finally, Chapter 6 presents the ultimate results of the decay h → gg

estimation at higher orders, accompanied by a discussion on the intrinsic uncertainty
associated with truncation and an analysis of variations in the renormalization scale.
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2 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is characterized by the combination of the
symmetry groups of the electroweak interaction, SU(2)L ⊗ U(1)Y , composed of the weak
isospin interaction of left-handed particles and hypercharge, along with the strong sector
represented by the SU(3)C symmetry group, which describes quantum chromodynamics
(QCD), the interaction of quarks and gluons that carry color charge. In addition to
these interactions, the SM also includes the Higgs boson and its interactions. The SM
characterizes a universe evolving in a manner that leads to spontaneous symmetry breaking,
causing dissociations among the fundamental interactions of nature. The electroweak
symmetry breaking, which accounts for the electromagnetic and weak interactions between
quarks and leptons, contains rich information regarding the role of the Higgs boson and
its interactions, responsible for giving mass to the fundamental particles in the SM.

For sake of simplicity we can start by investigating how Dirac’s Lagrangian,

L 0
D = iψ̄γµ∂µψ, (2.1)

without the mass term gives rise to QED due to the gauge principle, i.e., the requirement
that the Lagrangian must be invariant under local gauge transformations. In Eq. (2.1), ψ
represents the fermionic field, and ψ̄ is the adjoint of ψ, which is ψ̄ = ψ†γ0.

The Eq. (2.1) is clearly invariant under a global transformation, where the phase
parameter α does not depend on space-time coordinates in the transformation ψ → ψ′ =
eiαψ. The dynamics of quantum field theories are constructed to be invariant under local
phase transformations, i.e., when the fields transform with α ≡ α(x). Hence, for a local
transformation, the massless Dirac Lagrangian changes to

L 0
D → L 0′

D = ψ̄iγµ∂µψ + ψ̄γµψ∂µα(x). (2.2)

Then, the second term of Eq. (2.2) tells us that this Lagrangian is not invariant under
local phase transformation due to the appearance of a term coupling the fermionic current
jµ = ψ̄γµψ and the term ∂µα(x). Consequently, for the Dirac Lagrangian to be invariant
under local phase transformation, we need to couple jµ with a new vector field, the gauge
field Aµ — such that L 0

D becomes a new Lagrangian L 0
D(ψ,Aµ) —, and after the phase

transformation in the fermionic field, a specific transformation in photon field, Aµ, will be
necessary for maintaining the Lagrangian invariant under this gauge transformation. To
verify this, it is necessary to analyze how the modified Lagrangian transforms

L 0
D(ψ,Aµ) → L 0′

D (ψ,Aµ) = ψ̄iγµ∂µψ + ejµ
(
Aµ + 1

e
∂µα(x)

)
. (2.3)

So, to keep (2.3) invariant, we must perform the transformation, called gauge transformation

Aµ → A′
µ = Aµ − 1

e
∂µα(x), (2.4)
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such that
L 0

D(ψ′, A′
µ) = L 0

D + Lint. (2.5)

Where Lint = ejµAµ represents the interaction term of the Lagrangian. However, in
addition to the interaction term, Aµ must contribute a kinetic term Lk, as it must also
have its own kinematic Lagrangian. This term is

Lk = −1
4FµνF

µν . (2.6)

Here, Fµν = ∂µAν − ∂νAµ represents the electromagnetic field tensor, and Aµ represents
the particle associated with this field, which is the photon. In light of this, we can indeed
write the total Lagrangian as

L (ψ,Aµ) = iψ̄γµ(∂µ − ieAµ)ψ + Lk = iψ̄γµDµψ + Lk. (2.7)

Here, due to the gauge transformation, there is a transition from ∂µ to another derivative
called the covariant derivative

Dµ = ∂µ − ieAµ. (2.8)

Concluding that, to build a theory invariant under local field transformations, it is necessary
to modify the derivative in order to preserve local gauge invariance. This is the principle
that is generalized in other sectors of the SM, as we discuss briefly in the next sections.

2.1 Strong Interaction Sector

The next step in building the standard model of particle physics is the description
of strong interactions, which are described by quantum chromodynamics and aim at
explaining the interaction between the constituents of hadrons, i.e., quarks and gluons
(25). The existence of a vast number of baryons and mesons isolated is an indication that
there is still a more fundamental level in this picture. Baryons (B) are composed of three
quarks, and mesons (M) consist of a quark-antiquark pair

B = 1√
6
εαβγ|qαqβqγ⟩, M = 1√

3
δαβ|qαq̄β⟩, (2.9)

where εαβγ is the Levi-Cevita tensor, δαβ is the Kronecker delta and each quark q carries
a corresponding new quantum number, represented by the index α, with α = 1,2,3, or
commonly identified by colors: red, green, and blue.

The necessity of incorporating this new quantum number arises in order for hadrons to
obey Fermi-Dirac statistics. In the case of the ∆++ hadron — without the inclusion of
the color number —, which is composed of three quarks u↑u↑u↑ with spins in the same
direction and consequently with zero relative angular momentum the wave function is
symmetric and therefore does not respect the correct statistics. It is necessary that, in
order for Fermi-Dirac statistics to be respected, a new quantum number be introduced. In
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this case, the required quantum number is the color charge, which needs at least 3 colors
to produce an antisymmetric state as

∆++ = 1√
6
εαβγ|u↑

αu
↑
βu

↑
γ⟩. (2.10)

The construction of QCD is based on the color symmetry group of this interaction, the
SU(3)C group. The choice of this symmetry group arises from a series of tests based on
certain conditions (25)

• The quarks must belong to the triplet representation of the group, because Nc = 3;

• The triplet representation of this group must be complex, as quarks and anti-quarks
are distinct states.

This uniquely restricts the SU(3)C group as the representative of this symmetry since,
among compact Lie groups, there are only four with three-dimensional representations:
SO(3) ≃ SU(2) ≃ Sp(3) and SU(3). However, three of them are isomorphic to each
other, which directly leads us to the SU(3) group as the only one that satisfies the listed
conditions, as the triplet representation of the SO(3) group is real.

A Lie group emerges from the elements of a Lie algebra through the process of
exponential mapping (26). Lie algebras, when adhering to specific conditions, can exhibit
diverse structures, giving rise to a variety of algebras. Within this framework, the concepts
of roots and weights are crucial in shaping the algebra’s structure.

The roots, generally denoted as α, are indispensable for understanding the internal
mechanisms of a Lie algebra. They originate from the eigenvalues of the adjoint represen-
tation, providing crucial insights into how the algebra can be decomposed into simpler
components. The unique combinations and properties of roots lead to the emergence of
different algebras, each with its own distinct characteristics.

On the other hand, weights, represented as λ, are associated with elements within
a Cartan subalgebra of the Lie algebra (26, 27). They clarify how algebraic elements
behave under specific transformations. When combined with the information derived
from roots, weights offer a comprehensive perspective on the algebra’s representation
theory. Fundamental weights, in particular, constitute a fundamental set, enabling the
characterization of irreducible representations and enhancing our understanding of the
underlying algebraic structures.

After selecting the symmetry group of the interaction, it is important to mention the
postulate that quarks must be confined and cannot be found isolated in nature. Therefore,
the hadrons are represented by the product of the representations of each quark (or anti-
quark) that constitutes it. The decomposition of products of this reducible representations
into irreducible representations must contain at least one singlet state, as hadrons are
color singlets. A concrete example of this decomposition can be found in Appendix A.
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2.2 QCD Lagrangian

Non-Abelian gauge theories, also known as Yang-Mills theories, exhibit greater com-
plexities compared to theories like QED, mainly because in this case, there is interaction
among the gauge bosons of the theory. In the scattering process gg → ggg, for example,
there are around 10000 terms present in tree-level calculations (1). The starting point
for performing perturbative calculations in QCD is to work with Feynman rules, which
can be extracted from the Lagrangian of this theory. To describe the dynamics of strong
interactions, we must have a Lagrangian invariant under local transformations of the
SU(3)C group. A first starting point to achieve the QCD Lagrangian is Dirac’s Lagrangian,
LD, for the quark fields qf

α, as follows

LD =
∑

f

q̄f
α(iγµ∂µ −mf )qf

α, (2.11)

where the index f refers to the quark flavor and mf is the quark mass. Calling the
generators of the fundamental representation of the algebra as λa, with a = 1,2...,8, the
field transforms as

qα
f −→ (qf

α)′ = Gαβ q
α
f ≡

[
exp

(
−igs

λa

2 θa

)]
αβ

qf
α, (2.12)

where gs represents the coupling of strong interaction and θa denotes a phase parameter,
which remains constant under global transformations, while in local transformations,
θ ≡ θ(x) depends on the spacetime coordinates. The Lagrangian in Eq. (2.11) preserves
its invariance under global transformations, but under local transformations, it transforms
as follows

LD → L ′
D =LD + i

2 q̄
f
α(x)γµ[G†(x)∂µG(x)]αβq

f
β(x)

− i

2 q̄
f
α(x)γµ[(∂µG†)G(x)]αβq

f
β(x), (2.13)

which is clearly not invariant under the transformation. The prescription used to obtain
an invariant Lagrangian is, again, the modification in the derivative δαβ∂

µ by the covariant
derivative:

Dµ
αβ ≡ δαβ∂

µ − igs
λa

2 A
µ
a(x), (2.14)

wich act in a quarks field as

D′µ
αβ(x)qf

β(x) = G(x)αγD
µ
γδq

f
δ (x). (2.15)

Here, Aµ
a denotes the gluon field and T a = λa/2 are the generators of su(3) algebra, up

to a constant. Additionally, it is already possible to write a gauge-invariant Lagrangian.
However, this Lagrangian does not describe the equation of motion for the gluon field. To
accomplish this, we can add terms to ensure the completeness of the dynamics of this
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Figure 2.1 – QCD Feynman Diagrams: In parts a) and b), the self-interaction terms of 3 and 4
legs among the gluons are depicted. In figure c), the explicit interaction vertices
between quarks and gluons are shown, while in part d), it illustrates the interaction
between gluons and the theory’s ghosts. In these parts, we are considering g ≡ gs.

Source: By the author.

field, as long as the invariance is maintained, which are the field tensors of QCD, obtained
directly from the commutation relation

Gµν(x) ≡ i

gs

[Dµ,Dν ] = ∂µAν
a − ∂νAµ

a − igs[Aµ
a ,A

ν
a] ≡ λa

2 G
µν
a . (2.16)

Here, it is possible to express the tensor as

Gµν
a (x) = ∂µAν

a − ∂νAµ
a + gsf

abcAµ
bA

ν
c , (2.17)

playing a crucial role in the computation of the gluon-gluon correlator discussed in
Chapter 4. This quantity holds significant importance in the scope of this work. Keeping
this in mind, the Lagrangian of QCD can be written as

L (0)
QCD ≡ −1

4G
µν
a Ga

µν +
∑

f

q̄f
α(iγµDµ −mf )qf

α. (2.18)

In this compact form, the types of interactions contained in this theory are not evident,
but if we expand the terms of Eq. (2.18), we arrive at
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L (0)
QCD = −1

4(∂µAν
a − ∂νAµ

a)(∂µA
a
ν − ∂νA

a
µ) +

∑
f

q̄f
α(iγµ∂µ −mf )qf

α

− gs

2 f
abc(∂µAµ

a − ∂νAµ
a)Ab

µA
c
ν − g2

s

2 f
abcfadeA

µ
bA

ν
cA

d
µA

e
ν (2.19)

+ gsA
µ
a

∑
f

q̄f
αγµ

(
λa

2

)
αβ

qf
β .

In the first line, one can observe the presence of terms that give rise to the propagators
of gluons and quarks, whereas in the second line, terms stemming from the non-abelian
character of this theory, which underlie the three- and four-legged interactions among
gluons, are evident. Lastly, in the third line, the color interaction term between quarks
and gluons is depicted.

These interactions can be encoded in the Feynman rules of this theory, as illustrated in
Figure 2.1, with the exception of interaction 2.1 d). This is because, in the case of QCD,
there is an additional complication related to a non-physical contribution that arises in
perturbative calculations due to complexities in the quantization of the theory, stemming
from the Aµ

a field having four Lorentz degrees of freedom, while the massless spin-1 gluon
possesses only two of them. The problem mainly appears in the component A0

a, which
does not satisfy the standard second quantization. One possible solution is to adopt a
non-covariant quantization, similar to the Gupta-Bleuler QED quantization (28), but this
trick increases the complexity of computations. The better way to solve this problem is
by introducing unphysical particles that cancel the unphysical spin contributions; these
particles are referred to as ghosts. These ghosts are spin-zero particles obeying Dirac
statistics and must be considered in the Lagrangian of the theory.

The first modification is to maintain covariant quantization, which can be preserved by
adding a gauge-fixing term LGF = −(∂µAµ

0 )(∂νA
ν
0)/ξ. The second one involves introducing

ghost dynamics to the gluon field through its kinematical term and coupling it with the
gluon field by employing modifications to the covariant derivative (25)

LQCD = L (0)
QCD − 1

ξ
(∂µAµ

0)(∂νA
ν
0) + (∂µc̄

a)(δac∂µ + gfabcAb
µ)cc.

Here, we denote the ghost field as ci, where i represents the color index.

2.3 Standard Model Lagrangian

The Lagrangian of the Standard Model, introduced in the 1970s (9,11,29), provides
a comprehensive formulation that explains the interactions among elementary particles
and the fundamental forces in particle physics. This theoretical framework has gained
universal acceptance due to its success in describing the behavior of subatomic particles
observed in experiments.
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Table 2.1 – Hypercharge of fermion families of equation 2.20

Li eRi
Qi uRi

dRi

Yf −1 −2 1/3 4/3 −2/3

Source: By the author.

One interesting aspect within the Standard Model that is relevant for the present work
is understanding why the Higgs boson does not directly interact with massless particles like
gluons. To investigate the decay of the Higgs boson into two gluons, it is essential to study
the matter fields within the Standard Model. These fields consist of three generations of
left-handed chiral leptons and quarks, known as weak isodublets. Additionally, there are
right-handed fermions, which are isospin singlets under weak interaction (30)

L1 =
νe

e−


L

, eR1 = e−
R, Q1 =

u
d


L

, uR1 = uR, dR1 = dR;

L2 =
νµ

µ−


L

, eR2 = µ−
R, Q2 =

c
s


L

, uR2 = cR, dR2 = sR;

L3 =
ντ

τ−


L

, eR3 = τ−
R , Q3 =

t
b


L

, uR3 = tR, dR3 = bR. (2.20)

In the provided context, left-handed or right-handed fermions fL/R are particles that
satisfy the following relation

fL,R = 1
2(1 ± γ5)f. (2.21)

The equation 2.21 involves the use of projection operators. The right-handed PR and
left-handed PL projection operators, denoted by PR = (1 + γ5)/2 and PL = (1 − γ5)/2
respectively, are applied to the fermion f to obtain the corresponding right-handed and
left-handed components. Here, γ5 ≡ iγ0γ1γ2γ3, and f represents the fermion field.

The electroweak interaction, defined in terms of on left-handed fermions, involves the
hypercharge number Yf of the fermion. The hypercharge is defined in terms of the third
component of weak isospin I3

f and electric charge Qf as follows

Yf = 2(Qf − I3
f ), (2.22)

where the third component of weak isospin is the projection of weak isospin in the z-
direction. Additionally, the theory necessitates the condition that the sum over fermion
families, with each sum component explicitly stated in the second row of table 2.1, must
be zero

∑
f

Yf =
∑

f

(
2Qf − 2I3

f

)
= 0, (2.23)

to cancel the chiral anomalies (31,32) of the theory.
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In the electroweak sector the gauge fields are Bµ and W i
µ, with i = 1,2,3. The next

topic to be mentioned is about the self-interaction between the gauge bosons, originating
from non-Abelian theories. If we denote the previously mentioned gauge fields as Vµ (both
Wµ and Aµ), with coupling gi, the non-Abelian nature of the algebra corresponding to
the symmetry groups of this interaction leads to self-interaction terms in these fields via
coupling with three and four gauge bosons.

As already demonstrated in QED and QCD, the conventional approach used for
employing the gauge principle is through the covariant derivative, resulting in a single
type of coupling between fermions and gauge fields of the form −giψ̄Vµγ

µψ, which couples
these two types of fields minimally. For instance, within the derivative

Dµψ =
(
∂µ − igsTaA

a
µ − i

2gW
a
µσ

a − i

2g
′Bµ

)
ψ, (2.24)

where gs, g, and g′ represent, respectively, the strong coupling and the W a
µ and Bµ

couplings. Here, σa are the Pauli matrices. With this in mind, it is possible to write the
Lagrangian of SM without the mass terms for the bosons and fermions as follows

L (0)
SM = − 1

4G
a
µνG

µν
a − 1

4W
a
µνW

µν
a − 1

4BµνB
µν + iL̄iDµγ

µLi + iēRi
Dµγ

µeRi
+

+ iQ̄iDµγ
µQi + iūRi

Dµγ
µuRi

+ id̄Ri
Dµγ

µdRi
. (2.25)

A crucial principle that must be addressed at this point is the gauge invariance of the
theory. The SM is constructed to be invariant under transformations of the product of
symmetry groups for each interaction group: SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Similarly to what was previously developed for QED, ignoring the fermion mass, we
can also do it for the SM lagrangian indicated by Eq. (2.41). Restricting only to the
electroweak sector of the standard model, the left-handed fermionic fields L(x) and the
right-handed ones R(x) transform as follows

L(x) → L′(x) = eiξa(x)σa/2 + iβ(x)YL(x),
R(x) → R′(x) = eiβ(x)YR(x).

In this expression, ξa(x) is a phase parameter of the SU(2) group and carries the dependence
on spacetime coordinates, while β(x) parametrizes the transformations of the U(1) group.
These changes in the fields give rise to a gauge transformation similar to the minimal
coupling observed in QED, as illustrated in Eq. (2.4)

W (x) → Wµ − 1
g
∂µξ(x) − ξ(x)Wµ, (2.26)

Bµ(x) → Bµ(x) − 1
g′∂µβ(x). (2.27)

Eq. (2.27) shares the same structure with (2.4), with a slight distinction as compared to
Eq. (2.26). An important fact to consider at this point in the development is that the



2.4. Higgs Mechanism 27

unification of the electromagnetic interaction with the weak force has not been discussed
yet. This relationship is achieved through the Weinberg-Salam (10,11) mixing

Aµ = sinθwW
3
µ + cosθwBµ, (2.28)

Zµ = cosθwW
3
µ − sinθwBµ. (2.29)

These equations allow the bosons Zµ and Aµ to be obtained through the fields of the
electroweak interaction and the mixing angle θw.

At this point, an interesting question arises. The invariance of the Lagrangian under
the mentioned transformations no longer holds true when adding mass terms to the
weak sector. In purely SU(3) QCD, gauge bosons are massless, while quark masses can
be introduced with a term of the form −mqψ̄ψ that respect the gauge invariance but
breaks the isospin symmetry. Other example can be visualized when we introduce terms
like 1

2M
2
VWµW

µ, knowing that the mass of this boson is experimentally observed, gauge
symmetry is broken. Taking QED as an example, a question in this context would be:
why do photons not possess a mass? Essentially, the reason is that Gauge symmetry is
explicitly broken by a photon mass term

1
2m

2
γAµA

µ → 1
2m

2
γ(Aµ − 1

e
∂µα)(Aµ − 1

e
∂µα), (2.30)

which is clearly not gauge invariant and would, therefore, break the electroweak symmetry
of the Lagrangian of the Standard Model. Similarly, when adding mass terms for fermions,
the isospin symmetry is broken.

So, despite Yang-Mills Theory elegantly describing the interactions of the Standard
Model, there remained the problem of finding a mechanism capable of assigning mass
to particles while preserving gauge symmetry. This mechanism is known as the Higgs
mechanism.

2.4 Higgs Mechanism

The mechanism that acts as the generator of mass for elementary particles is based on
spontaneous symmetry breaking. To better understand how this situation develops, it is
possible to analyze the Lagrangian of the purely electroweak sector along with the Higgs
Lagrangian

LEW = −1
4
(
W a

µν

)2
− 1

4B
2
µν + LH(Φ), (2.31)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεamnWm

µ W
n
ν , Bµν = ∂µBν − ∂νBµ. (2.32)

Here, the Higgs sector is represented by LH(Φ) and is essentially constituted by the
covariant derivative defined in (2.24) and the Higgs potential represented by the quadratic
and quartic terms in the Higgs field according to

LH = (DµΦ)†(DµΦ) +m2|Φ|2 − λ|Φ|4, (2.33)
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Figure 2.2 – Higgs potential with qualitative color distribution.

Source: By the author.

where the m2 is the mass parameter and λ is coupling. The Higgs field, denoted as Φ,
is a complex doublet with a hypercharge of 1, also known as the Higgs multiplet. This
field is responsible for generating masses for the gauge bosons of this interaction through
spontaneous symmetry breaking (SSB), which leads to a non-zero vacuum expectation
value. The field Φ is defined in terms of four other scalar fields

Φ =
ϕ+

ϕ0

 , (2.34)

two for the charged part ϕ+ and two for the neutral part ϕ0. The neutral component,
after symmetry breaking, introduces a perturbation in the form of a real field h(x) around
the vacuum expectation value v. This choice not only simplifies the representation of the
Higgs field but also aligns with the concept of unitary gauge, which basically chooses the
SU(2)L phase transformation ξa equal to zero

Φ = exp
{
i
σa

2 ξ
a(x)

} 0
v + h(x)

 ξa=0−→ 1√
2

 0
v + h(x)

 , (2.35)

enabling an analysis of quantized excitations above the true vacuum state along the radial
direction.

Within the Higgs sector, a kinematical component involves the covariant derivative,
and an interaction component is described by the Higgs potential, as can be visualized in
Figure (2.2). The potential is depicted in terms of the real and imaginary components of
the Higgs field. The red point on the figure indicates the chosen minimum of the potential,
a condition met when m2 < 0, leading to spontaneous symmetry breaking. Therefore,
adopting a unitary gauge permits the analysis of quantized excitations solely above the
real vacuum state in the radial direction, denoted by the black arrows. This limitation
arises due to the presence of infinitely degenerate vacua connected by rotational symmetry
within the potential.
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In light of SSB, the Higgs sector Lagrangian can be reformulated as follows

LH = 1
2(∂µh)2 + g

8(W 1
µ + iW 2

µ)(W 1
µ − iW 2

µ)(v + h)2 + 1
8(gW 3

µ − g′Bµ)2(v + h)2 − V (Φ),

where the second term in the previous equation allows for the identification of bosons that
possess charge

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), (2.36)

where tanθw = g′/g. In order to rewrite the Higgs Lagrangian by expanding the quadratic
terms and already considering equations (2.36) and (2.29), resulting in (33)

LH = 1
2 (∂µh)2 − λv2h2 − λvh3 − 1

4λh
4 + 1

4g
2v2W−

µ W
µ+ + g2v2

8cos2θw

ZµZ
µ

+ 1
2g

2vW−
µ W

µ+h+ g2

4cos2θw

ZµZ
µvh+ g2

8cos2θw

ZµZ
µh2 + 1

4g
2W−

µ W
µ+h2. (2.37)

Therefore, the Lagrangian provides the way in which gauge bosons interact with the Higgs
boson, shown in the second line of Eq. (2.37), in addition to the mass terms of the gauge
bosons that arise after spontaneous symmetry breaking, which in this context is known as
the Higgs mechanism. An interesting point to note in this Lagrangian is the presence of 3-
and 4-legged self-interaction terms for the physical Higgs field. These terms contribute to
the self-energies of this field and are responsible for assigning mass to the Higgs boson (34).

2.5 Yukawa Coupling

The Yukawa coupling (35) describes the strength of the interaction between a scalar
or pseudoscalar field with a fermionic field. In the context of the SM of particle physics,
Yukawa couplings play a crucial role in explaining the masses of elementary particles
through the coupling of the Higgs field Φ and the fermionic fields. These couplings
are governed by the usual constraints, such as the requirement of gauge invariance and
renormalizability (36,37).

The Yukawa Lagrangian density is given by (32)

LYukawa = −λeL̄ΦeR − λdQ̄ΦdR − λuQ̄Φ̃uR + h.c. (2.38)

where λi is the Yukawa coupling constant, and Φ̃ = iσ2Φ† has hypercharge Y = −1.
To elucidate the origin of mass, consider the vacuum expectation value of the scalar

field Φ, denoted as v, which is non-zero due to the breaking of electroweak symmetry
according to the Eq. (2.35). By substituting Φ with v + h, where h is the Higgs boson,
the Yukawa Lagrangian density can be expanded as follows

LYukawa = − 1√
2
λe(ν̄e, ēL)

 0
v + h

 eR + · · ·

= −
(

1 + h

v

)
λev√

2
ēLeR + h.c + · · ·. (2.39)
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In this expanded form (2.39), it is evident, following the same development for all terms
of Eq. (2.38), that the mass terms are

me = λev√
2
, mu = λuv√

2
, md = λdv√

2
. (2.40)

Therefore, at this point, we have a mechanism for generating mass for gauge bosons of
weak interaction and also for fermions, in order to preserve the gauge symmetry of the
theory. This occurs through the spontaneous breaking of the SU(2) × U(1) symmetry.
With the elements discussed so far, it is possible to rewrite the Lagrangian of the Standard
Model

LSM = − 1
4G

a
µνG

µν
a − 1

4W
a
µνW

µν
a − 1

4BµνB
µν + iL̄iDµγ

µLi + iēRi
Dµγ

µeRi
+

+ iQ̄iDµγ
µQi + iūRi

Dµγ
µuRi

+ id̄Ri
Dµγ

µdRi

− λeL̄ΦeR − λdQ̄ΦdR − λuQ̄Φ̃uR + h.c.
+ (DµΦ)†(DµΦ) +m2|Φ|2 − λ|Φ|4. (2.41)

With the interactions of the Higgs boson discussed in relation to other particles in the
standard model, we can understand why this boson does not directly interact with gluons
or photons. The Higgs boson, denoted as h, does not couple to massless particles. However,
one of the primary methods of detecting the Higgs is through the decay process h → γγ,
or via one of the most prominent decay channels of the Higgs boson, which is the decay
h → gg. These two processes occur through a loop involving other particles that interact
with the Higgs boson, particularly, weak interaction bosons and quarks. This specific class
of interaction shall be elucidated in Chapter 3.

2.6 Aspects of QCD Renormalization

The observable quantities in Quantum Field Theory (QFT) are mainly cross sections
and decays rates, which depend on the square of transition amplitudes. Their computation
can be expressed in terms of vacuum expectation values of the time-ordered product of
n-point function which go under the name of Green functions (38)

G(x1, x2,..., xn) ≡ ⟨Ω|T{ϕ(x1),ϕ(x2),...,ϕ(xn)}|Ω⟩, (2.42)

where |Ω⟩ stands for the non-perturbative vacuum, i.e., the ground state of a full Hamil-
tonian of the theory in Heisenberg representation, such as H|Ω⟩ = 0. The field ϕ(xn)
is a generic field. This Green function contains, in perturbation theory, all diagrams,
connected and disconnected. To eliminate the disconnected vacuum diagrams which do
not contribute to S-matrix elements, it is necessary to use the Gell-Mann-Low theorem (6)

Gc(x1, x2,..., xn) =
⟨0|T{ϕ(0)(x1), ϕ(0)(x2),..., ϕ(0)(xn)exp

[
i
∫

d4xL (0)
int (x)

]
}|0⟩

⟨0|T{exp
[
i
∫

d4xL (0)
int (x)

]
}|0⟩

. (2.43)
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Where the subscript c indicates connected diagrams, and Lint represents the interaction
part of the Lagrangian density. Furthermore, the denominator eliminates all disconnected
diagrams from the numerator. In this context, “connected” implies that every segment of
the diagram is linked to at least one of the external legs. The function Gc(x1, x2, ..., xn)
can be affected by divergences that can be initially analyzed through the superficial degree
of divergence.

For exploring the emergence of infinities, we can start by considering a Lagrangian (38)

L = L0 +
∑

i

giLi, (2.44)

with a free part L0, which is the sum of kinematic terms, and an interaction part Li and
coupling given by gi. We will make the assumption here that Li(x) has fi fermionic fields,
bi bosonic fields, and ∂i partial derivatives, which have, respectively, dimensions of M3/2,
M , and M . In this context, it is useful to employ dimensional analysis to L , which must
have dimension [L (x)] = M4, and as a direct consequence, the dimension of the coupling
is

[gi] = M4−di , (2.45)

with
di ≡ 3

2fi + bi + ∂i; (2.46)

which has a huge importance in the analysis of the superficial degree of divergence (D).
This quantity D is defined as the power of momentum k in the numerator (that comes
from vertices) minus the power of k in the denominator (due to the propagator).

After the derivation of Feynman rules according section 2.3, the amplitudes of these
diagrams can be built, and these amplitudes are, in most cases, divergent. One tool to
analyze this behavior is computing D by employing the external (internal) bosons ϕe (ϕi)
and external (internal) fermions ψe (ψi), along with the total vertex number. According
to (38)

D = −
∑

i

ni(4 − di) −
(3

2ψe + ϕe − 4
)
, (2.47)

where the value of D defines the type of contribution, whether finite or not, to the given
process. If D = 0, 1, 2, 3, . . ., the contribution is logarithmically, linearly, quadratically,
or cubically divergent, respectively. It is also possible to have a negative value of D . In
these cases, we say that the contribution is superficially convergent, implying that the
momentum integral can be either finite or not. In fact, there are proofs that a Feynman
diagram provides a finite contribution to the S-matrix if this and all sub-diagrams (higher
orders) are superficially convergent.

In the Eq. (2.47), it is evident that couplings satisfying 4 − di ≥ 0 are necessary
to observe a finite number of superficially divergent diagrams. Fortunately, QCD is
renormalizable — essentially implying that the infinite quantities can be absorbed by
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Figure 2.3 – Contributions of self-interaction of the quarks present in the Dyson series. The
rightmost loops represent the 1-particle irreducible (1PI) contributions of the
propagator.

Source: By the author.

redefining a finite number of coupling constants and masses. Moreover, its superficial
degree of divergence is

DQCD = 4 − 3
2ψe − ϕe. (2.48)

The main point in this section is how to treat the divergences from quark and gluon
self-energies. By employing the superficial degree of divergence in these cases, we obtain

ψe = 2, ϕe = 0 ⇒ D = 1, Deff = 0, (2.49)

for the quark self-energy and

ψe = 0, ϕe = 2 ⇒ D = 2, Deff = 0, (2.50)

for the gluon self-energy. Here, Deff represents the effective degree of divergence that
remains after the computation. Generally, certain Green functions are necessarily propor-
tional to powers of external momenta or masses, which decrease the degree of divergence.
For example, in the quark self-energy, terms such as p and m are present. On the other
hand, the gluon self-energy contains the term (kµkν − k2gµν), which ultimately leads to a
divergence degree of zero in the final result.

2.6.1 Quark Self-Energy

Before probing into the modifications of the gluon propagator due to self-energy
corrections, it is essential to examine a renormalization case in QCD where it will be
necessary to introduce specific renormalization constants Zm and Zg for the quark mass m
and the coupling g, respectively. In this context, the relevant Green function is expressed
in momentum space as follows (39)

Sαβ(p) = −i
∫
d4x eip·x⟨0|Tqα(x)q̄β(0)ei

∫
d4zLint(z)|0⟩, (2.51)

where α and β are the color indices, and Lint is the interaction part of the Lagrangian.
The most general form of the quark propagator, considering irreducible bubble diagrams
as shown on the right-hand side of Figure 2.3, can be expressed as a Dyson series

Sαβ(q2) = δαβS
(0)(q2) − δαβS

(0)(q2)Σ(q2)S(0)(q2) + · · ·. (2.52)
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Figure 2.4 – Feynman diagram showing the first-order quark propagator correction.

Source: By the author.

This series considers the one-particle irreducible diagram (1P1), which cannot be split into
two different diagrams by removing one line. In Eq. (2.52), S(0)(q2) represents the bare
quark propagator (39)

S
(0)
αβ (q2) = q +m

q2 −m2 + iε
. (2.53)

Summing the terms in Eq. (2.52), it simplifies to

iS(p) = i
1

p−m− Σ(p) + iε
. (2.54)

The modification in the quark’s self-energy up to order αs is indicated in Figure 2.4 and is
given by (39)

Σ(1)(p) = ig2
sCF

∫ dDk

(2π)D

[γµ(p− k +m)γν ]
k2[(p− k)2 −m2]

[
gµν − (1 − ξ)kµν

k2

]
. (2.55)

Here gs represents the QCD coupling. In order for the coupling of the theory to be
dimensionless, a scale parameter µ−2ε is introduced, and the integrals are solved using
methods outlined in chapter 3. It is necessary to separate Σ(p) into two parts

Σ(p) = pΣp +mΣm(p), (2.56)

where each component requires solving different loop computations (38), yielding the
results (39)

Σ(1)
p (p) = ξ

CF

4
αs

π

[
−1
ε

+ lnm
2

µ2 − 1 − m2

p2 +
(

1 − m4

p4

)
ln
(

1 − p2

m2

)]
, (2.57)

Σ(1)
m (p) = CF

4
αs

π

[
(3 − ξ)

(
1
ε

− lnm
2

µ2

)
− 4 + 2ξ − (3 + ξ)

(
1 − m2

p2

)
ln
(

1 − p2

m2

)]
.

(2.58)
In these equations, αs ≡ g2

sµ
−2ε/4π. Note that these equations exhibit the expected

behavior for Green functions as they are analytical functions of p2 for p2 < m2. However,
as ε → 0, the quantities become infinite, requiring renormalization.
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As QCD is a renormalizable theory, all Green functions in this theory must remain
finite after redefining the parameters in the Lagrangian. These redefinitions should cancel
the divergences arising from loop corrections to these Green functions. In the framework of
Quantum Field Theory, physical quantities in nature do not depend on the renormalization
scheme; this independence must be analyzed through the renormalization group. To
discuss the renormalization group equation, it is necessary to define how the renormalized
quantities are related to the bare quantities

qα(x) = Z
1/2
2F q

R
α (x) and also m = Zmm

R. (2.59)

Here, the quantities on the right-hand side are the renormalized quantities, while those
on the left-hand side are referred to as bare quantities.The factor 1/2 appears in Z2F

because of the bilinear form ψ̄Γψ in the terms of the Lagrangian, where Γ is a 4 × 4
matrix. The difference between these quantities lies in the renormalization constants,
which are quantities representable in perturbation theory, canceling the divergences order
by order (39)

Z2F = 1 + αs

π
Z

(1)
2F + O(α2

s), Zm = 1 + αs

π
Z(1)

m + O(α2
s). (2.60)

By considering the inverse of the quark propagator, the renormalization constants give
rise to additional terms originating from both the kinetic and mass components of the
QCD Lagrangian

S−1(p) = p+ pZ
(1)
2F

αs

π
−mR −mR(Z(1)

m + Z
(1)
2F )αs

π
− pΣ(1)

p (p) −mRΣ(1)
m (p). (2.61)

Requiring this expression to be finite, in conjunction with the outcomes from Eq. (2.57),
results in

Z(1)
m = −3

4CF
1
ε̂
, and Z

(1)
2F = −ξCF

4
1
ε̂
. (2.62)

This holds true for the MS scheme, commonly known as the modified minimal subtrac-
tion scheme. Minimal subtraction schemes involve removing the 1/ε term that appears
in the final result of loop integrals. The main difference between MS and MS is that in
the latter, only the singular term as ε → 0 is removed, whereas in the modified scheme,
certain constants such as ln(4π) and the Euler-Mascheroni constant γ are also subtracted
along with the divergent part.

2.6.2 Resummed Gluon Propagator

The most general form of the gluon propagator is similar to Eq. (2.52). Despite the
difference in the nature of the particles, the Dyson series has the same structure. The
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free gluon propagator will be denoted by D(0)µν , and the gluon self-energy as Πλρ(k).
Furthermore, in this case, we will multiply the Dyson series by a four-momentum kµ, since
this can produce a huge simplification in computations

ikµD
µν(k) = ikµD

µν(k) + ikµD
µλ(k)Πλρ(k)iDρν(k) + · · · (2.63)

To develop the Eq. (2.63), we can employ the Slanov-Taylor identity (38)

kµkνD
µν
ab = kµkνD

(0)µν
ab (k), (2.64)

which basically state that in perturbation theory, the non-transverse part of the gluon
propagator is equal to the non-transverse part the free propagator. Taking into account
the condition (2.64), Eq. (2.63) can be reformulated as

ikµD
(0)µλ[iΠλρ(k)]

{
iD(0)ρν(k) + iD(0)ρτ (k) [iΠλρ(k)] iD(0)σν + · · ·

}
, (2.65)

and as a direct consequence, it is possible to write

−ξ 1
k2 + iη

kλiΠλρ(k)iDρν = 0, (2.66)

which leads to the following relation

kµΠµν = kνΠµν = 0. (2.67)

Furthermore, the correlation function can be written in the Lorentz invariant form, which
will be useful for scrutinizing the h → gg process using the low-energy theorem, as
demonstrated in Chapter 3, where the correlator is written with the following Lorentz-
invariant structure

Πµν = [kµkν − k2gµν ]Π(k2), (2.68)

which is justified by effective superficial degree of divergence beeing zero. Taking these
things into consideration, we were able to write the propagator equation in a more simplified
way than before

iDµν = iD(0)µν(k) + iD(0)µλ[iΠλρ(k)]iDρν(k). (2.69)

In this context, it is necessary to use the equation for the free gluon propagator

iD
(0)µν
ab = δabi

[
−gµν + (1 − ξ) kµkν

k2 + iη

]
, (2.70)

in addition to the condition (2.67) in Eq. (2.69), to arrive at

Dµν(k2) =
[(

−gµν + kµkν

k2

)
1

1 + Π(k2) − ξ
kµkν

k2

]
1
k2 , (2.71)

which is a fundamental component for exploring the two-gluon correlator, as will be shown
later.
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2.7 The Renormalization Group: Coupling and Mass Evolution

The exploration of the differential form of renormalization invariance began with Stu-
eckelberg and Perterman (40), as well as Gell-Mann and Low (6). Then, the investigation
into scaling in quantum field theory, driven by experimental observations of Bjorken scaling
in deep inelastic scattering during electron-proton collisions, led to the development of the
Callan-Symanzik equations (41,42). These equations serve as potent tools for examining
the constraints imposed by renormalization invariance on the behavior of Green’s functions
at small distances.

The physical quantities in nature do not depend on the renormalization scheme, in
other words, there exists a unique value for these quantities. However, from the perspective
of QFT the Green functions will be denoted as Γ ≡ Γ(q, αs,m), where q represents the
external momentum, are constructed in a way that ensures this independence through the
Renormalization Group Equation, which exhibits invariance under the renormalization
group.

Let us choose two renormalization schemes R and R′. The renormalized Green functions
ΓR and ΓR′ are

ΓR = Z(R)Γ,
ΓR′ = Z(R′)Γ, (2.72)

where the two schemes can be related through the parameter Z(R′,R) as

ΓR′ = Z(R′,R)ΓR, (2.73)

where
Z(R′,R) = Z(R′)/Z(R). (2.74)

At this point, we will consider arbitrary schemes R and R′. Additionally, we will introduce
a third scheme, denoted as R′′, such as to satisfy the composition structure

Z(R′′,R) = Z(R′′,R′)Z(R′,R). (2.75)

To each element Z(R′,R), we can associate an inverse and a unite element, respectively (38,
39)

Z−1(R′,R) = Z(R,R′), Z(R,R) = 1.

Here, we can clearly see that the group has forbidden some schemes by the composition
rule since Z(Ri,Rj)Z(Rk,Re) is not an element of the group unless the product rule is
respected, i.e., in the case where Rj = Rk. Therefore, not any renormalization scheme will
be possible for a quantity in QFT, only those that satisfy the groupoid structure presented
here are allowed.
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Besides the renormalization scheme, it is important to investigate the variation of
quantities as the renormalization scale µ changes. A physical observable must be invariant
under this quantity since it is arbitrarily introduced in the regularization process, and this
invariance is encoded in the equation

µ
d

dµ
Γ(q, as,m) =

{
µ
∂

∂µ
+ µ

das

dµ

∂

∂as

+ µ
dm

dµ

∂

∂m

}
Γ(q, αs,m) = 0, (2.76)

So that, from the Eq. (2.76), it is possible to define the functions

γ(as) ≡ − µ

m

dm

dµ
=

∞∑
n=1

γna
n
s , (2.77)

which is known as the anomalous dimension, and

β(as) ≡ −µdas

dµ
=

∞∑
n=1

βna
n+1
s , (2.78)

is called the Beta function. Both functions take into account the dependence of quantities
on the renormalization parameter. Then, replacing these functions in Eq. (2.76) makes
it possible to write the full renormalization equation, known as the Callan–Symanzik
equation

[
µ
∂

∂µ
− β(as)

∂

∂as

− γ(as)m
∂

∂m

]
Γ(q, αs,m) = 0. (2.79)

Currently, the β and γ functions are known up to O(a5
s) (43).

In order to show how these functions work, starting with the quark mass, it can be
integrated employing separation of variables∫ m(µ2)

m(µ1)

dm

m
= lnm(µ2)

m(µ1)
= −

∫ µ2

µ1

dµ

µ
γ(as) =

∫ as(µ2)

as(µ1)
das

γ(as)
β(as)

, (2.80)

wich can be written as

m(µ2) = m(µ1)exp
[∫ as(µ2)

as(µ1)
das

γm(as)
β(as)

]
. (2.81)

The β and γm functions are invariant with respect to the quark mass. In fact, due to
these properties, the ratio of the masses m(µ1)/m(µ2) is invariant. On the other hand,
the effect on the evolution of the top-quark mass does not have a significant impact on
the decay of the Higgs boson into two gluons (15) and can be neglected.

Furthermore, the function β(as) can also be obtained by solving the differential equation∫ as(µs)

as(µ1)

da
β(as)

= −
∫ µs

µ1

dµ
µ

= lnµ1

µ2
,

which for one loop can be solved analytically∫ as(µ2)

as(µ1)

das

β1a2
s

= 1
β1

[
1

as(µ1)
− 1
as(µ2)

]
= lnµ1

µ2
, (2.82)
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where the coupling can be rewritten as

as(µ2) = as(µ1)
1 − as(µ1)β1ln(µ1/µ2)

. (2.83)

From this equation, it becomes evident that at high energies, quarks exhibit the pheno-
menon of asymptotic freedom (44, 45), behaving as if they are freely moving particles.
However, in the low-energy regime, the coupling becomes significantly large, approaching
infinity at the Landau pole. The evolution profile of αs(Q) is depicted in Figure 2.5,
displaying the global average of the coupling at the mass of the Z0 boson along with its
corresponding error. At low values of Q, only a few determinations are available, whereas
in the regime where Q ≫ ΛQCD, numerous extractions are provided.

The β(as) function is currently known up to five loops, thanks to the work by Baikov
et al.(43), which employs a different convention for the derivative. In our convention,
according to Eq. (2.78), the coefficients in terms of nf are

β1 = 11
2 − nf

3 , β2 = 51
4 − 19

12nf , β3 = 2857
64 − 5033

576 nf + 325
1728n

2
f ,

β4 = 149753
768 − 891

32 ζ3 −
(1078361

20736 + 1627
864 ζ3

)
nf +

(50065
20736 + 809

1296ζ3

)
n2

f + 1093
93312n

3
f ,

β5 =8157455
8192 + 621885

1024 ζ3 − 88209
1024 ζ4 − 144045

256 ζ5

−
(336460813

995328 + 1202791
10368 ζ3 − 33935

3072 ζ4 − 1358995
13824 ζ5

)
nf

+
(25960913

995328 + 698531
41472 ζ3 − 5263

2304ζ4 − 5965
648 ζ5

)
n2

f

−
( 630559

2985984
24361
62208ζ3 − 809

6912ζ4 − 115
1152ζ5

)
n3

f +
( 1205

1492992 − 19
5184ζ3

)
n4

f . (2.84)

Through the result obtained from Eq. (2.83), it is possible to determine the QCD scale
parameter

Λ1-loop
QCD = µe− 1

β1as(µ) .

In the first instance, it is important to note that dΛ
dµ

= 0, and therefore, the QCD scale
parameter is scale-invariant; however, it is not invariant under the renormalization scheme,
since it explicitly shows the dependence on αs. The same applies to the generalization of
Λ to more loops (47), which employs the definition

1
β̃(as)

= 1
β(as)

− 1
β1a2

s

+ β2

β2
1as

, (2.85)

this variable change ensures that this alteration (2.85) remains nonsingular as as approaches
zero for generalization

Λ = µe− 1
β1as [as(µ)]

− β2
β2

1 exp
(∫ as(µ)

0
da 1
β̃(a)

)
, (2.86)
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Figure 2.5 – The MS scheme determinations of αs(Q), as cataloged by the Particle Data Group,
are illustrated. The solid lines signify the outcomes derived from solving the
renormalization group equation with the five-loop β function, employing the global
average of αs(mZ) the initial condition.

Source: Adapted from ZYLA et al. (46).

which is still valid for more than two loops. Furthermore, note that this equation is still
scale-invariant but not renormalization scheme invariant.

In this work, we will employ variations of the renormalization scheme. To understand
this idea, we can start with a general case that could represent, e.g., a change from MS to
MS. In one of them, we define the reference coupling as, and in the other, the modified
coupling âs. The transition between these two schemes is given in perturbation theory as
follows

âs = as + c1a
2
s + c2a

3
s + c3a

4
s + · · · (2.87)

A well-known result, attributed to Celmaster and Gonsalves (48), guarantees that the
relation between Λ and Λ̂ in the two different schemes is quite straightforward, relying
solely on the first non-trivial coefficient, c1 and the first coefficient of the β function

Λ̂ = Λec1/β1 , (2.88)

where we introduce a new scheme parameter C = −2c1/β1. This allows us to write

Λ̂ = Λe−C/2. (2.89)

This parameter C is of fundamental importance in this work, as it parameterizes the
relationship between different couplings as(µ) and âs(µ). In order to obtain the relation
between these couplings for any nf value, we will investigate the relation for a general β
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Figure 2.6 – Graphics of strong coupling evaluated at the τ lepton mass â(mτ ) as a function of
parameter C. Here, the yellow band represents the αs uncertainty.

Source: Adapted from BOITO et al.(23).

function, i.e., independent of conventions. We can start with the following relation (23)
1
âs

+ β2

β1
ln âs − β1

2 C = 1
as

+ β2

β1
ln as − β1

∫ as

0

da
β̃(a)

. (2.90)

The equation 2.90 must be solved iteratively in perturbation theory, and the left-side
logarithmic term was included to match the right-side logarithmic term, ensuring that
no undesirable logarithmic terms are present in the perturbation series. Additionally, the
relation between the coupling in a general scheme, aQ, and the coupling in the MS scheme,
given by â ≡ âC=0, is as follows (23)

1
as

= 1
âs

+ β2

β1
ln âs

as

+ β1

∫ as

0

da
β̃(a)

. (2.91)

In the iterative sense its possible, at the first level, to take as ≈ âs in Eq. (2.91). Further-
more, this involves considering all the terms of the function β(a) that are currently known,
as specified by Eq. (2.84). Then, in this first approximation

1
as

= 1
âs

+ β1

∫ âs

0

da
β̃(a)

, (2.92)

where it still needs to be expanded in a Taylor series to obtain a series for as in terms of
âs. The exact solution takes the form

1
as

= 1
âs

+ β1

âs

(
β2

2
β3

1
− β3

β2
1

)
+ âs(µ)2

(
− β3

2
2β4

1
+ β2β3

β3
1

− β4

2β2
1

)
+

+ âs(µ)3
(

−β2
2β3

β4
1

+ β4
2

3β5
1

+ 2β2β4

3β3
1

+ β2
3

3β3
1

− β5

3β2
1

)

+ âs(µ)4
(
β3

2β3

β5
1

− 3β2
2β4

4β4
1

− β5
2

4β6
1

− 3β2β
2
3

4β4
1

+ β2β5

2β3
1

+ β3β4

2β3
1

)
+ O(â5

s)
. (2.93)
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Therefore, when we expand the Eq. (2.93) we obtain the following relation

as(µ) = âs(µ) + âs(µ)3
(
β3

β1
− β2

2
β2

1

)
+ · · ·.

The idea is to substitute this result into Eq. (2.91) iteratively until reaching the outcome

as = âs + â3
s

(
β3

β1
− β2

2
β2

1

)
+ â4

s

(
β4

2β1
− β3

2
2β3

1

)
+

+ â5
s

(
−3β2

2β3

β3
1

+ 7β4
2

6β4
1

− β2β4

6β2
1

+ 5β2
3

3β2
1

+ β5

3β1

)
+ O(â6

s). (2.94)

Using the last equation, we can derive the successive relation between the coupling âs at
arbitrary C and as

âs = as − 23
12Ca

2
s +

( 17521
152352 − 29

12C + 529
144C

2
)
a3

s +
(

1075144295
756884736 − 138625

39744 C + 3335
288 C

2

− 12167
1728 C

3 − 11027
2484 ζ3

)
a4

s +
[

1743062365679
278533582848 −

(1998367067
197448192 − 11027

648 ζ3

)
C + 380833

13824 C
2

199433
5184 C3 + 279841

20736 C
4 + 2149885883

65816064 ζ3 + 11027
1728 ζ4 + 11976865

476928 ζ5

]
a5

s + · · ·. (2.95)

Where ζn = ∑∞
k=1 k

−s is the Riemann zeta function. Futhermore, is possible to get the
reverse transformation

as = âs − 23
12Câ

2
s −

( 17521
152352 − 29

12C − 529
144C

2
)
â3

s −
(

1075144295
756884736 − 63215

26496C − 3335
288 C

2

− 12167
1728 C

3 − 11027
2484 ζ3

)
â4

s −
[

1743062365679
278533582848 +

(778160225
98724096 − 11027

324 ζ3

)
C − 164135

6912 C2

− 199433
5184 C3 − 279841

20736 C
4 − 2149885883

65816064 ζ3 + 11027
1728 ζ4 + 11976865

476928 ζ5

]
â5

s + · · ·. (2.96)

It is possible to variably adjust the renormalization scheme to transform the series to
be more perturbative or less perturbative, according to the Figure 2.6, which shows in
practice the change of the coupling âs(mτ ) in terms of the C parameter. Here, it will
be employed to investigate how the two-gluon correlator (39) changes in relation to the
variation of the parameter C. Since, in the large-β0 limit, as will be discussed later, only
the first coefficient of the function β(a) is considered, which simplifies the scheme variation,
the relation between schemes is simplified, and all terms β≥2 in Eq. (2.94) vanish.
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3 Decay of the Higgs into Two Gluons

In the context of the Standard Model, the Higgs boson predominantly decays into
bottom quarks h → bb̄. Another significant hadronic decay channel occurs through h → gg,
where the interaction between the Higgs and gluons is mainly mediated by the top quark
within the SM framework. To compute higher-order QCD corrections for this process, an
effective theory known as the heavy-top limit is employed, integrating out the top quark.
The use of this effective theory is justified by the hierarchy mt ≫ mh.

In perturbative QCD, the decay width Γ(h → gg) begins at α2
s and is currently known

up to order α6
s (15) in the heavy-top limit. This represents corrections up to the next-

to-next-to-next-to-next-to-leading order (N4LO). However, despite efforts to obtain the
result at N4LO, the perturbative series in αs exhibits instabilities due to the choice of
renormalization scale, and the hierarchy of different terms is not very well understood.
In fact, this series is possibly one of the most problematic series known in perturbative
QCD. It has an intrinsic uncertainty of approximately 1%, related to the truncation at
α6

s (15, 49). This uncertainty is highly significant and needs to be reduced for a future
collider, such as the FCC-ee.

In the scenario where the top-quark mass is significantly larger than the Higgs mass
(mt → ∞) and there are nf massless flavors, the decay process of the Higgs boson into
two gluons can be computed using the effective Lagrangian formalism

L = LQCD(nf ) − 21/2G
1/2
F C1hG

a
µνG

µν
a . (3.1)

In this expression, GF represents the Fermi constant, and the second term on the right-
hand side of the equation is responsible for the effective coupling between the Higgs boson
and gluons. The effective coupling C1, or Wilson coefficient, accounts for the dependence
on the top-quark mass and short-distance αs corrections. We can extract the formula for
the decay width of the Higgs into two gluons from the Eq. (3.1), employing the optical
theorem, resulting in (15)

Γ(H → gg) =
√

2GF

mh

|C1|2 ImΠG2(−s− iδ), (3.2)

where δ represents an infinitesimal parameter and the decay is evaluated at s = m2
h. It

is essential to mention that the standard method for deriving the Wilson coefficient is
through a Low-Energy Theorem (LET). The imaginary part of the two-point correlation
function of gluons is scrutinized in Ref. (15) through the optical theorem. Both of these
theorems will be discussed in the next section.
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Figure 3.1 – Feynman diagrams for the h → gg process in leading order.

Source: By the author.

3.1 Higgs Decay into Two Gluons at LO

When studying the decay process of the Higgs boson into two gluons, it is crucial to
note that the interaction between the Higgs boson and gauge fields is determined by the
mass of the involved field. As a result, at the tree level, the Higgs boson does not directly
interact with gluons, as we already mentioned. In the leading order of this decay, a loop
involving quarks occurs, as depicted in the diagrams shown in Figure 3.1.

It is important to note, however, that the inclusion of identical particles as final states
requires considering another diagram that we need to consider the u-channel contribution
as well. This can be achieved by reversing the direction of quarks in the loop. To calculate
the decay width of diagram a) seen in Figure 3.1, it is necessary to write the amplitude
using Feynman rules (50), resulting in

M = −g2
s i
mq

v
εa

µ,r2ε
b
ν,r3

(
λa

2

)
δ′γ′

(
λb

2

)
γδ′
δδδ′δγ′σδσγ

∫ d4k

(2π)4
Tr[(k − p3 +mq)γν(k +mq)γµ(k + p2 +mq)]

[(k − p3)2 −m2
q + iε](k2 −m2

t + iε)[(k + p2)2 −m2
q + iε] . (3.3)

Here, the variables εi, and λi represent, respectively, the polarization of gluons, and the
generators of the su(3) algebra in this equation. The Kronecker deltas included in the
amplitude correspond to the conservation constraint of quark color charge in the absence
of any interaction. When all deltas are collectively imposed, what remains is just a color
charge conservation delta δab

M = −g2
s i
mq

2v ε
a
µ,r2ε

b
ν,r3δab

∫ d4k

(2π)4
Tr[(k − p3 +mq)γν(k +mq)γµ(k + p2 +mq)]

[(k − p3)2 −m2
q + iε](k2 −m2

q + iε)[(k + p2)2 −m2
q + iε]

= −g2
s i
mq

2v ε
a
µ,r2ε

b
ν,r3δab I

µν , (3.4)

where Iµν is the integral over the momentum k. At this point, certain procedures need
to be taken into account. The first one involves simplifying the complicated form of the
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numerator of the integrand. Solving the trace of the numerator can be tedious. In the case
of Eq. (3.3), handling the trace is not very difficult. However, in general, computations
involving higher-order loops are performed with the help of FORM (51–54). The FORM code
for our calculation is displayed in Appendix C, and the final result for the numerator can
be expressed as

nµν = 4mq[pµ
3p

ν
2 + 4kµkν − 2kµpν

3 + 2pµ
2k

ν − pµ
2p

ν
3 + gµν(m2

q − p2p3) − gµνk2]. (3.5)

The second step is to employ Feynman parametrization (55). This parametrization of
the denominator terms Aj, where j = 1,2,3, in terms of new variables x, y, and z is given
by

1
A1A2A3

=
∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1) 2

[A1x+ A2y + A3z]3
. (3.6)

For simplicity, we can denote the denominator as D = [A1x + A2y + A3z], where A1 =
k2 −m2, A2 = (k + p2)2 −m2, and A3 = (k − p3)2 −m2. This allows us to simplify the
denominator terms as

D = (k2 −m2)x+ (k2 + 2kp2 + p2
2︸︷︷︸

0

−m2)y + (k2 − 2kp3 + p2
3︸︷︷︸

0

−m2)z. (3.7)

The vanishing terms occur because the gluons in the final states are on-shell. Therefore,
considering the constraint imposed by the parametrization, x+ y + z = 1, it suffices to
factor out k2 − m2 in Eq. (3.7), denote 2(p2 · p3)yz − m2 → −a2, and finally perform a
change of variable from k → k − p2y + p3z, reducing the problem to the calculation of the
following integral

Iµν =
∫ 1

0
dy
∫ 1−y

0
dz
∫ d4k

(2π)4
8mq n

µν

(k2 − a2)3 . (3.8)

An important consideration at this point is that the change of variable in the denominator
must also have an effect on the numerator

nµν = 4kµkν − gµνk2 + pµ
3p

ν
2(1 − 4yz) + pµ

2p
ν
3(−1 − 4yz + 2y + 2z) + pµ

3p
ν
3(4z2 − 2z)

+ pµ
2p

ν
2(4y2 − 2y) + gµν(m2 − p2 · p3 + 2p2 · p3yz). (3.9)

Taking this change into account, the first two terms of nµν show signs of potentially leading
to ultraviolet divergences in the final result. Despite these divergences “canceling out”
after Passarino-Veltman reduction (56), which essentially states that the loop integral of
terms involving kµkν is proportional to gµνk

2, regularization becomes necessary. In this
work, dimensional regularization will be used, which isolates the divergence in the ε → 0
limit and allows us to apply renormalization, in this case, the minimal subtraction scheme.
Thus, for integrals exhibiting the aforementioned divergence, we will solve them as

G(D,α, β, a2) ≡
∫ dDk

(2π)D

(k2)α

(k2 − a2)β
. (3.10)
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Then, after doing the computations in Appendix D, we arrive at the master integral (34)

G(D,α, β, a2) = i(−a2)α−β(a2)D/2

(4π)D/2
Γ(β − α−D/2)Γ(α +D/2)

Γ(β)Γ(D/2) . (3.11)

At this point, by solving the integral of the first two terms of Eq. (3.8), which are the
integral of the terms kµkν −gµνk2, we simply need to use the condition required by Lorentz
invariance to arrive at

Im =
∫ dDk

(2π)D

4kµkν − gµνk2

(k2 − a2)3 = gµν

D
G(D,α,β,a2) − gµνG(D,α,β,a2). (3.12)

Here, the index m in Eq. (3.12) refers to the master, due to the use of the Eq. (3.11), and
it is possible to identify α = 1 and β = 3 from the integral (3.8). Therefore, by directly
substituting the master integral structure (3.11) into the relation (3.12) and utilizing the
fact that Γ(D/2 + 1) = (D/2)Γ(D/2), we arrive at

Im(D,1,3,a2) =
( 4
D

− 1
)
gµν i

(4π)D/2 (a2)D/2
(
D

4

)
Γ(2 −D/2). (3.13)

Next, we proceed with the expansion around D = 4 + 2ε in order to combine the
terms of Eq. (3.13) and take the limit ε → 0, leading to the cancellation of the divergence.
Additionally, it is important to note that all terms in nµν that do not depend on kµ

contribute a finite value, G(4,0,3,a2). Thus, the remaining terms in the momentum
integral (3.8) are as follows

G(4,0,3,a2) = −i
32π2

1
a2 and

∫ dDk

(2π)D

4kµkν − gµνk2

(k2 − a2)3 = i

32π2 g
µν .

Resuming the discussion of the integral (3.8) and proceeding to simplify the terms, the
subsequent step involves solving this integral with respect to the Feynman parameters

Iµν = i8mq

32π2

∫ 1

0

∫ 1−y

0
dydz(−α−2)

[
pµ

3p
ν
2(1 − 4yz) + pµ

2p
ν
3(−1 − 4yz + 2y + 2z)

+ pµ
3p

ν
3(4z2 − 2z)] + pµ

2p
ν
2(4y2 − 2y) + gµν(−p2p3 + 4p2p3yz)

]
.

At this stage, we use the on-shell condition for the transversality of gluons (εa
µ,ri
pµ

i = 0),
resulting in the simplification of the expression to the following remaining term

Iµν = i8m
32π2 [pµ

3p
ν
2 − gµνp2p3]

∫ 1

0

∫ 1−y

0

dydz

−a2 (1 − 4yz),

where we will denote the double integrals as

S =
∫ 1

0

∫ 1−y

0

dydz

−a2 (1 − 4yz). (3.14)

With this definition, we can arrive at the following conclusion

M(1) = g2
s

m2
q

8π2v
εa

µ,r2ε
b
ν,r3δab (pµ

3p
ν
2 − gµνp2 · p3)S.
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Figure 3.2 – a) A Feynman diagram of leading order for the decay h → gg, where the top-quark
is dominant in the loop. b) Diagram in effective theory, where the top quark is
considered very heavy.

Source: By the author.

However, as mentioned before, it is necessary to consider a second contribution that takes
into account the exchange of gluon momenta in the final state, resulting in a new amplitude
M(2) with the same structure as Eq. (3.3), but with the corresponding sign changes in the
quark momenta in the propagators as shown by the Figure 3.1. To evaluate the integral
for this new case, it is possible to employ the same methods described earlier. Upon
calculating the numerator, we obtain the following result

nµν = 4mq(pµ
3p

ν
2 + 4kµkν + 2kµpµ

2k
ν) − pµ

2p
ν
3 + gµν(m2

q − p2 · p3 − k2),

which has the same structure as Eq. (3.5), but with some signs flipped. However, it is
important to note that the flipped signs accompany the odd terms in kµ, which would
result in a vanishing integral. Therefore, the results of the second diagram of Figure 3.1b
are the same, and all we get is a factor of 2.

To obtain the decay width, we need to square the amplitude, considering the sum over
all colors and polarizations
∑
a,b

∑
r2,r3

4|M(1)|2 = 4g4
s

(
m2

q

8π2v

)2

gµλgνρ (pµ
3p

ν
2 − gµνp2 · p3)

(
pλ

3p
ρ
2 − gλρp2 · p3

)
|S|2. (3.15)

With the relation (3.15) in mind, it suffices to use the fact that the sum multiplied by color
delta square, equals eight, and the orthogonality relation between gluon polarizations,
when summed over r1 and r2, should be gµλgνρ. Consequently, in the end, we end up with
an expression for the amplitude in terms of the integral S

|Aq|2 =
∑

|Mtotal|2 = g4
s

m2
q

v2π4 (p2 · p3)2|S|2, (3.16)

where p2 · p3 = m2
h/2. In the Eq. (3.16) we will only consider the top-quark mass mt, since

the top has the biggest mass and consequently the largest contribution to the S integral
defined as

S = 1
m2

t

∫ 1

0

∫ 1−y

0
dydz

1 − 4yz
m2

h

m2
t
yz − 1

,
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so that defining τ = (mh/mt)2 and expanding the integrand for a large top-quark mass,
the integral S can be written as

S = 1
m2

t

(
−1

3 − 7
360τ − 1

504τ
2 − 13

50400τ
3 + O(τ 4)

)
. (3.17)

Based on this result, the decay h → gg is obtained by employing |Aq|2 in the expression for
the two-body decay width. Therefore, in the limit where the top-quark mass is considered
infinite and expanding in m−1

t , we arrive at

Γ(h → gg) = m3
h

8πv2

(
αs

π

)2 1
9

(
1 + 7

60τ + 1543
100800τ

2 + 113
50400τ

3 + · · ·
)

(3.18)

= Γ0(1 + 0.061 + 0.0058 + 0.0042 + · · ·), (3.19)

where the first order τ correction terms in Eq. (3.18) accounting for only 6% of the
leading-order result. The Eq. (3.18) represents a transition from a) to b) in Figure 3.2,
since the first term of the expansion (3.18) is the first term of the Wilson coefficients,
which is shown in part b) of this figure. In the limit where τ = 0, we can define the
leading-order h → gg coefficient as

Γ0 = m3
h

72πv2

(
αs

π

)2

, (3.20)

which depends on α2
s and, consequently, on the renormalization scale.

3.2 The Low-Energy Theorem: A Higher-Order Perspective

The Wilson coefficient C1, associated with the effective coupling of the Higgs with the
two gluons, can be determined using a method widely explored in the literature, known as
the Low-Energy Theorem (LET) (57). This theorem can be derived from the decoupling
relation that connects the strong coupling value in a theory with nf light flavors to the
coupling with nf + 1 flavors through the decoupling relation ζg (43,57), as follows

ζ2
g (µ,mQ, α

(nf )
s ) = α

(nf +1)
s

α
(nf )
s (µ)

= 1 +
∑
k=2

dk[α(nf )
s (µ)]k−1, (3.21)

where the coefficients dk contain powers of logarithmic, such as logk(µ/m2
Q(µ)), with the

quark mass mQ(µ) obtained in the MS renormalization scheme. Then, one way to obtain
the Wilson coefficient based on the decoupling relation is through the derivative of the
decoupling relation with respect to mass. This implies that the most complicated part
of ζ2

g , the constant terms implicit in coefficients dk, does not contribute to the Wilson
coefficients (43). This is possible due to the LET which, although not proven here, can be
motivated as shown below.
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Figure 3.3 – Schematic representation of the Low-Energy Theorem for the Yukawa coupling
example.

Source: By the author.

The low-energy theorem addresses loop contributions from the top quark by constructing
an effective Lagrangian in which the top quark is integrated out. This integration can be
approached by considering either a massless Higgs boson or, equivalently, an immensely
heavy top quark. The theorem, initially proposed in Refs. (58–60), relates amplitudes of
processes that differ solely due to the emission of a Higgs boson with zero momentum.
One example motivated by the Yukawa coupling involves the coupling of a Higgs boson
to a fermion with mass mf and modifies the Lagrangian by considering the following
substitution of the fermion mass

m0
Q → m0

Q

(
1 + h0

v0

)
, (3.22)

where the quantities in the bare Lagrangian are represented with indices 0. This substitution
leads to a relationship between two diagrams, as shown in Figure 3.3, where it is possible
to see on the left-hand side of the equation a fermion emitting a Higgs boson with
momentum q equal to zero. This condition for the Higgs boson does not change the
structure propagator × vertices × propagator, and this can be written as the derivative of
the fermion propagator with respect to mass times a constant. In Figure 3.3, the relation
between the condition with and without the coupling of a Higgs field with zero momentum
q is (30)

lim
q→0

M(X → Y + h) =
m0

Q

v0

∂

∂m0
Q

M(X → Y ). (3.23)

Nonetheless, when investigating higher orders, a subtlety arises. When renormalizing the
hff̄ interaction, a problem emerges that demands correction: the counterterm for the
Yukawa coupling is not the vertex with a subtraction at zero momentum transfer. Instead,
it is determined by the counterterms for the fermion mass Zm and the quark wave function
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renormalization constant Z2, according to (30)

L0 = −m0Q̄0Q0
h

v
= −mQQ̄Q

h

v
+ ZhQQmQQ̄Q

h

v
, (3.24)

with ZhQQ = 1 − Z2Zm as detailed in the references (36, 37). The correction involves
replacing the differentiation with respect to the bare mass with differentiation with respect
to the renormalized mass, considering the mass relation between the renormalized and
non-renormalized masses (32)

m0
∂

∂m0
= mQ

(1 + γm)
∂

∂mQ

, (3.25)

where γm is the anomalous dimension of the fermion mass defined in Chapter 2.
The LET approach (43) allows us to evaluate how the decay of the Higgs into two

gluons depends on the renormalization scale through C1(µ). This dependence involves the
top-quark mass m(µ) and also the coupling αs(µ). A first step to achieve this evolution is
the determination of the Wilson coefficients themselves, obtained through decoupling

C1 = −1
2m

2
t

∂

∂m2
t

lnζ2
g (µ,α(nf )

s ,mt), (3.26)

where ζ2
g can be obtained from the Eq. (3.21), and as we will see in Chapter 3.1, the

dominant quark in this process is the top quark, with mass mt.
The analytic expression for C1 up to N4LO has been provided in Ref. (15) as a function

of the renormalization scale µ = µt, where µt = mt(µt) is the scale-invariant (SI) top-quark
mass, i.e., the MS mass evaluated at the scale µt. These coefficients for the top-quark
mass on-shell, called the OS scheme, were also presented. The series for the coefficient C1

can be written as follows

C1,X = −1
3as

(
1 +

∑
n=1

cn,Xa
n
s (µ2)

)
, (3.27)

where as = αs/(4π), and X represents the mass scheme employed. The series coefficients
for these quantities can be found in (15). In this dissertation, we will use the coefficients

c1 = 11, c2 = 2777
18 + 19Lt + nf

(
−67

6 + 16
3 Lt

)
;

which is not explicitly dependent on the scheme; the dependence is only introduced in the
logarithm Lt = ln(µ2/m2

t ). The N3LO and N4LO terms depend on the adopted scheme.
The next coefficients in the SI scheme are

c
(SI)
3 = −2892659

648 + 897943
144 ζ3 + 4834

9 Lt + 209L2
t

+ nf

(40291
324 − 110779

216 ζ3 + 2912
27 Lt + 46L2

t

)
+ n2

f

(
−6865

486 + 77
27Lt − 32

9 L
2
t

)
;
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Figure 3.4 – Schematic representation, in the limit mt → ∞, of the optical theorem.

Source: By the author.

and the coefficient c(SI)
4 can be found in Appendix B. Here, the an function is defined as

an = Lin(1/2) = ∑∞
k=1(2kkn)−1, while ζ represents the Riemann ζ-function. Furthermore,

we will explore the OS scheme. The coefficients in this prescription are (15)

c
(OS)
3 = c

(SI)
3 + 608

3 + nf

(512
9

)
; (3.28)

c
(OS)
4 = c

(SI)
4 + 297587

27 + 1216ζ2

3 − 304
3 ζ3 + 1216

3 ζ2 ln 2 + 6688Lt

+ nf

(189238
81 + 416

3 ζ2 − 256
9 ζ3 + 1024

9 ζ2 ln 2 + 1472Lt

)
+ n2

f

(
−4352

81 − 512
9 ζ2 − 1024

9 Lt

)
. (3.29)

The decay of the Higgs into two gluons contains the imaginary parts of the two-point
scalar gluonium correlator. To understand this fact one uses the optical theorem. This
theorem can assume distinct expressions if we consider, for example, two particles in the
initial state. The theorem takes the form of scattering. On the other hand, for the h → gg

process, we are dealing with one particle in the initial state. Thus, considering this initial
particle as a, the optical theorem simply states (34)

−2Im
(∑

n

Mi→i

)
= 2

√
k2
∑

n

Γ(a → n) = 2
√
k2 Γ(a → all), (3.30)

where k is the four-momentum and Γ(a → all) is the total decay width. The
√
k2 in

Eq. (3.30) is necessary because the left-hand side of this equation has the self-energy
amplitude of a given particle a, which in general is off-shell, i.e., k2 ̸= m2

a.
In our specific case of interest, it is possible to say that Γh→gg ∝ ImΠG2 , as depicted

in Figure 3.4, linking a Higgs self-energy diagram through a gluon loop to the squared
amplitude of the decay h → gg. It is essential to emphasize at this point that the coupling
between the Higgs and gluons in the figure is already the effective coupling C1.

In Ref. (15), the method used to compute the imaginary part of the gluonium correlator
involves the use of the following relation

ImΠG2(−s− iδ) = ImeiπεLΠG2 = sin(πεL)ΠG2(s), (3.31)
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where L is the number of loops and ε = (4 − D)/2. Thus, the finite part of ΠG2(s) is
proportional to 1/ϵ, since the Taylor expansion of sin(πεL) is indicated by

sin(πεL) = Lπε
(

1 − 1
3!(Lπε)

2 + 1
5!(Lπε)

4 + · · ·
)
. (3.32)

In general terms, computing ΠG2 entails a higher computational cost due to the presence
of diagrams with quartic divergence. To rearrange the infrared divergences, the superficial
degree of divergence discussed in Chapter 2 must be logarithmic. This is achieved by
considering the fourth coefficient in the Taylor expansion of all diagrams in terms of the
external momentum q and by employing the operator

1
4!q

µ1qµ2qµ3qµ4
∂

∂qµ1

∂

∂qµ2

∂

∂qµ3

∂

∂qµ4
(Diagrams)

∣∣∣∣∣
q=0

. (3.33)

The computational implementation, realized in references (15,53), carried out in this work
involves the use of QGRAF (61), which is subsequently processed in a FORM (51–54)
program that automatically classifies the color factor and the topology of the diagram.
This is very useful for computational optimization because diagrams with the same color
factor, topology, and maximum power nl are classified into a category of diagrams called
meta-diagrams. In the context of ΠG2 , employing this method results in 1 meta diagram at
the one-loop level, 5 at the two-loop level, 38 at the three-loop level, 394 at the four-loop
level, and 6405 at the five-loop level. This illustrates the challenge of obtaining the
coefficients for this decay at high orders in perturbation theory.

The imaginary part of the gluonium correlator can be written in perturbation theory
up to N4LO in terms of the coefficients gn (15)

4π
NAq4 ImΠG2(q2) ≡ G(q2) = 1 +

∑
n=1

gna
n
s , (3.34)

where NA = 8 is the number of generators for the SU(3) group. The coefficients gn in the
MS scheme are (15):

g1 = +73
3 CA − 14

3 nf ; (3.35)

g2 = +37631
54 C2

A − 242
3 C2

Aζ2 − 110C2
Aζ3 + nf

(
− 6665

27 CA

+ 88
3 CAζ2 − 4CAζ3 − 131

3 CF + 24CF ζ3

)
+ n2

f

(508
27 − 8

3ζ2

)
; (3.36)

g3 = +15420961
729 C3

A − 45056
9 C3

Aζ2 − 178156
27 C3

Aζ3 + 3080
3 C3

Aζ5

+ nf

(
−2670508

243 C2
A + 8084

3 C2
Aζ2 + 9772

9 C2
Aζ3 − 80

3 C
2
Aζ5 − 23221

9 CFCA

+572
3 CFCAζ2 + 1364CFCAζ3 + 160CFCAζ5 + 221

3 C2
F + 192C2

F ζ3 − 320C2
F ζ5

)
+ n2

f

(413308
243 CA − 1384

3 CAζ2 + 56
9 CAζ3 + 440CF − 104

3 CF ζ2 − 240CF ζ3

)
+ n3

f

(
−57016

729 + 224
9 ζ2 + 64

27ζ3

)
; (3.37)
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and the coefficient g4 can be found in Appendix B. In this context, CA and CF represent
the Casimir operators of the adjoint and fundamental representations of the Lie algebra,
CA = Nc and CF = (N2

c − 1)/2Nc, respectively. They are related as follows: [T a, T b]ij =
CF δij and facdf bcd = CAδ

ab.
The quartic Casimir dependences are denoted as dabcd

A and dabcd
F . To obtain Γh→gg(µ)

in perturbation theory in terms of nf , it is necessary to combine the coefficients of the
Wilson coefficients C1 with ImΠG2 according to Eq. (3.2). To achieve this, we use the
numerical values of the coefficients at each power of αn

s and re-expand the result. Keeping
this in mind, the fully symmetrical tensors (62)

dabcd
F = 1

6Tr
[
T aT bT cT d + T aT bT dT c + T aT bT cT d

+ T aT cT dT b + T aT dT bT c + T aT dT cT b
]
, (3.38)

must be employed. In the case of dabcd
A , only the matrices in Equation 3.38 change. Instead

of the fundamental representation, the adjoint generators must be employed, defined by
the matrices [Ca]bc ≡ −ifabc.

It is useful to evaluate the numerical values of the coefficient g4 given the product
between fully symmetric tensors. For this purpose, we employ properties for SU(Nc) that
basically state that (62)

dabcd
A dabcd

A

NA

= N2
c (N2

c + 36)
24 , (3.39)

dabcd
F dabcd

A

NA

= N2
c (N2

c + 6)
48 , (3.40)

dabcd
F dabcd

F

NA

= N4
c − 6N2

c + 18
96N2

c

. (3.41)

In QCD, where Nc = 3, possessing these relationships (3.41) allows us to explore the decay
h → gg numerically in perturbation theory by explicitly outlining the dependence on nf

of the series. This will be useful for our work later on.

3.3 Current Status of the Decay h → gg in Perturbation Theory

In reference (15), the Higgs decay into two gluons is determined up to order α6
s, exactly,

for different values of nf and different renormalization scale values for the quark top mass,
combining the Wilson Coefficients (3.27) and the imaginary part of ΠG2 (6.7) according
to (3.2), which can be evaluated analytically. However, here it will be presented numerically
in terms of each nf power through

Γ(nf )
h→gg(µi) = Γ0

∞∑
n=0

cnα
n
s = Γ0K

(nf )
µi

, (3.42)
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Figure 3.5 – Evolution of the Higgs decay into two gluons as a function of the renormalization
scale for nf = 5 in the MS and On-Shell top-quark mass.

Source: By the author.

where µi is the renormalization scale value of mt(µi). Two cases were evaluated here; the
first is for SI top-quark mass

Γ(nf )
h→gg(µt) = Γ0[1 + αs(7.55986 − 0.371362nf ) + α2

s

(
0.0913684n2

f − 4.81767nf + 37.378
)

+

+ α3
s

(
−0.017346n3

f + 1.70814n2
f − 34.5769nf + 144.901

)
+ α4

s

(
0.00258089n4

f − 0.440084n3
f + 16.5497n2

f − 178.799nf + 461.56
)

+ O(α5
s)],

and the second one is for the on-shell quark top mt = 173 GeV

Γ(nf )
h→gg(mt) = Γ0[1 + αs(7.55986 − 0.371362nf ) + α2

s

(
0.0913684n2

f − 4.82489nf + 37.3523
)

+

+ α3
s

(
−0.017346n3

f + 1.71005n2
f − 34.5639nf + 144.903

)
+ α4

s

(
0.00258089n4

f − 0.440714n3
f + 16.554n2

f − 178.466nf + 462.628
)

+ O(α5
s)]. (3.43)

The evolution of Eq. (3.43), for nf = 5, on the renormalization scale is indicated by
the plot in Figure 3.5 order by order in perturbation theory. This plot was generated
using the RunDec (63,64) Wolfram Mathematica package and reproduces the same result
obtained in Ref. (65).

In Chapter 6, we will explore the dependence on the number of flavors, as detailed in
Ref. (15), to estimate the first unknown coefficient of this decay in terms of nf .
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4 Gluonium Correlator: A Borel Space Perspective

In this chapter, general properties of perturbative series in QCD are discussed, mainly
in the context of the two-gluon correlator. The calculation of the correlator in the large-β0

limit is presented in the Borel plane. Additionally, methods for performing estimates of
higher-order coefficients are introduced.

4.1 Divergent Series

In QCD at high energies, physical quantities f(α) can be described using perturbation
theory, expressed as an expansion in terms of the coupling constant α of the theory.
Conceptually, this means constructing an interacting universe α ̸= 0 from a non-interacting
one α = 0. With each order in perturbation theory, more information about fundamental
interactions is revealed (66). However, knowing a quantity to all orders does not guarantee
exact knowledge of the observable. These series are divergent. The divergent behavior was
demonstrated by Dyson for QED (67), and it can also be extended to QCD. In addition to
being divergent, there is a conjecture regarding these series, essentially stating that such
series are asymptotic, meaning they must be truncated at a certain order in perturbation
theory corresponding to a good approximation of real value.

Despite this conjecture, the behavior of perturbative series is not completely understood,
as calculations at high orders come with a significant computational cost; thus, only the
first few coefficients are known. Increasing the order in perturbation theory leads to an
increase in the number of loops to be considered, as well as the number of diagrams. The
description of an asymptotic quantity f(α) in a region C of the complex α plane is given
by (22) ∣∣∣∣∣f(α) −

N∑
n=0

rnα
n

∣∣∣∣∣ < KN+1α
N+1, (4.1)

where for all α in C, the truncation error at order N must be of the order αN+1. In this
context, the coefficients of the series increase with KN ∼ N ! the factorial growth is not
suppressed by the αN power, and consequently, for large enough N this series diverges. In
other words, a series of this type must have a physical meaning up to a certain order N∗,
that is the minimal increment of the series, where the series should be truncated. Generally
this point is called of optimal truncation, and the numerical value of N∗ is proportional to
α−1, assuming that the coupling α > 0. In fact, for the QED where α ≈ 1/137 correspond
to a small number the divergence will dominate the series for N∗ ≈ 140. In QCD, the
coupling evaluated at the tau mass αs(mτ ) ≈ 0.3, which leads to an optimal truncation at
N∗ ≈ 3.
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In dealing with series whose coefficients grow factorially, one viable approach is the
application of Borel summation. Consider a power series

f(αs) = f(0) +
∞∑

n=0
fnα

n+1
s , (4.2)

which generally has a convergence radius equal to zero. The Borel transform of a series,
B[f ], can be defined as follows

B[f ] = f(0)δ(t) +
∞∑

n=0
fn
tn

n! , (4.3)

where t is referred to as the Borel variable. In the t−plane, the factorial growth of
coefficients is mitigated by the presence of n! in the denominator. The original series
can be recovered from the Borel transform through the inverse Borel transform, which is
essentially a Laplace transform of B[f ]. Typically, this transformation can be written as

f̃(αs) =
∫ ∞

0
dt e−t/αsB[f ](t), (4.4)

where generally it can be expressed in terms of the variable u = β0t as follows

f̃(αs) =
(

1
β0

)∫ ∞

0
du e−u/β0αsB[f ](u). (4.5)

Here we can divide the series of type f into two classifications. The first consists of series
that are Borel summable, meaning that the integral is well defined, without singularities
along the path u > 0, and the equation for B[f ] results in a real value. The second type
consists of series whose Borel transform has singularities along the integral path, and these
singularities introduce ambiguities in the Borel sum. Furthermore, to compute the inverse
of B[f ] in this case, it is necessary to choose an integration path, and this choice of path
affects the result of the integral.

In general, singularities in the Borel transform arise due to the factorial growth of
the coefficients fn, known as renormalons. An example is considering a growth of the
form (22)

fn ∼ K(p̃/β0)−nnbn!, (4.6)

whose Borel transform can be written as

B[f ] = KΓ(1 + b)
1 − u/(β0p)1+b

= KΓ(1 + b)21+b

(p̃− u)1+b
, (4.7)

which has a pole of multiplicity 1 + b at u = p̃, with p̃ = β0p. Suppose that the
transform has singularities at p̃1 and p̃2. These poles contribute to the asymptotic series
as (1/p̃n+1

1 + 1/p̃n+1
2 ), where n + 1 is the perturbative order. As a direct consequence,

if |p̃2| > |p̃1|, p̃1 has more effect on the series at higher orders. For this reason, the
nearest origin pole is the dominant renormalon. In this context, note that if p̃ < 0, the
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singularities appear on the negative real axis of the Borel plane are ultraviolet renormalons.
Consequently, in this regime the integral (4.5) exists and the series is Borel summable.
However, for p̃ > 0, the singularity introduces the aforementioned ambiguity, arising from
infrared renormalons. These ambiguities follow a power law proportional to the transferred
momentum Q2. To visualize this, suppose the Borel transform has a pole at u0 = β0t0 > 0.
The prescription adopted for the contour integral defines the value of the integral, but
the difference between the two contour prescriptions around the pole, although it has not
been demonstrated here, follows the rule (68)

δf̃ ∼
(

1
β0

)∮
C
du e−u/β0αs(Q)B[f ] ∼

(
ΛQCD

Q

)2u0

, (4.8)

where the contour C encloses the pole u0.
However, despite the result of Eq. (4.8), which essentially states that the singularity u0

produces an ambiguity in f̃ of (ΛQCD/Q)2u0 , there are nonperturbative sector ambiguities
that should produce a cancellation of this term (68).

4.2 Analytic Structure of ΠG2

We start our investigation of higher-order terms in the decay of the Higgs boson into
two gluons by examining the perturbative expansion of the two-gluon correlator ΠG2 . As
discussed in Chapter 3, the calculations of the h → gg decay are expressed in terms of
the imaginary part of this correlator. The main advantage of starting with this study is
that, in this case, the result in the large-β0 limit of QCD is known, providing valuable
information about the renormalons in the perturbative series. We can then use these
results as a laboratory for the methods we will employ later in the complete results for
Higgs decay into two gluons.

The investigation of the two-gluon correlator has revealed several theoretically inte-
resting aspects and has been explored in recent literature (69). One concrete case arises
when considering that the current behind in the correlator is associated with the gluonic
component of the QCD Lagrangian. This, in turn, is related to the energy-momentum
tensor of this theory, which in certain cases exhibits significant sensitivity to the variation
of the renormalization scale due to truncation (70). It is worth noting that this current
constitutes the gluonic contribution to the anomalous trace of the QCD energy-momentum
tensor, one of the factors responsible for the breaking of the theory’s conformal symme-
try (71). Finally, the expected value of these currents with respect to the nonperturbative
QCD vacuum (Ω) represents the gluon condensate, one of the fundamental parameters
within QCD sum rules, which has been recently investigated in the literature (72–74).
Furthermore, the two-gluon correlator plays a crucial role in investigating QCD sum rules
for glueballs, one of the yet-to-be-confirmed predictions of QCD, where it is possible to
form a bound state of gluons, giving rise to a new massive particle.
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The structure of the two-gluon correlator is given by

ΠG2(q2) = i
∫
d4xeiq·x ⟨Ω|T{JG(x)JG(0)}|Ω⟩ , (4.9)

where JG(x) = GµνG
µν(x) corresponds to the gluonic current, and q denotes the external

momentum, which in this case is associated with the Higgs boson mass. It is essential
to emphasize that the treatment employed in this work for this correlator from the
perspective of perturbative QCD (pQCD) involves investigating the asymptotic nature
of the quantity (4.9) encoded in its dominant renormalons. In general, as we discussed
previously, the renormalons associated with low-energy (IR) regions of Feynman diagrams
are responsible for introducing ambiguities in the Borel space, which require the choice
of a prescription for performing the Borel summation. These ambiguities are related to
higher-dimensional power corrections in the operator product expansion (OPE).

However, valuable information about the structure of the correlator and its behavior
at high orders in perturbation theory can be obtained from the large-β0 limit, which has
been recently employed in (17,19) to investigate higher-order terms in the Higgs decay
into quarks (bb̄) and two photons, where the quark correlator was explored. Thus, to
investigate the structure of the renormalons and the efficiency of the methods employed in
this work, the physical correlator or the Adler-type function, according to Eq. (4.12), will
be employed. Here we follow closely Ref. (71).

The significant difference compared to the QCD Adler function is that it is necessary
to employ three derivatives to eliminate the subtraction constants from Π̂G2(s), which
must be considered in the spectral approach as (71)

Π̂G2(s) = Π̂G2(0) + sΠ̂′
G2(0) + s2

2 Π̂′′
G2(0) + s3

∫ ρ̂G2(s′)
(s′)3(s′ − s− i0)ds′, (4.10)

where Π̂G2 represents an RGI (renormalization group invariant) quantity

Π̂β0
G2 =

(
β(as)
β1as

)2

Πβ0
G2 , (4.11)

and ρ̂G2 is the spectral function itself, obtained through the imaginary part of the correlator.
In this sense, to eliminate the subtraction constants and work with a physical quantity,
we will employ the physical correlator

D̂G2(s) ≡ −s d3

ds3 Π̂G2(s), (4.12)

known to all orders in the large-β0 limit, this will be further discussed in the next section.
In order to reproduce the results in the dominant order for D̂G2(s) obtained in Ref. (71),

it is possible to consider only the abelian terms of the QCD field tensor, giving rise to an
“abelian” current denoted as JA

G(x).
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Figure 4.1 – a) A representation of the gluon-gluon correlator, showing a loop of gluonic currents
in the non-perturbative QCD vacuum, where k1 = −k and k2 = −(k + q).
b) Diagram of the correlator in the large-β0 limit, where the gluon propagator is
replaced by the resummed propagator.

Source: By the author.

This current, although not yet renormalization group invariant (RGI), is positioned
in the correlator

ΠG2 = i
∫
d4xeiq·x ⟨Ω|TJA

G(x)JA
G(0)|Ω⟩ , (4.13)

which corresponds to the diagram in Figure (4.1) a). In this way, by writing JA
G in terms

of the gluonic field, we arrive at

JA
G(x) = [∂µAa

ν∂
µAνa − ∂µA

a
ν∂

νAµa − ∂νA
a
µ∂

µAνa + ∂νA
a
µ∂

νAµa](x). (4.14)

Hence, it is possible to simplify Eq. (4.14) by a simple index exchange and maintaining
the signs of the terms, which in this case are symmetric, arriving at the equations

JA
G(x) = [2∂µA

a
ν∂

µAνa − 2∂µA
a
ν∂

νAµa](x), (4.15)

JA
G(0) = [2∂ρA

b
σ∂

ρAσb − 2∂ρA
b
σ∂

σAρb](0). (4.16)

After that, the procedure consists of expanding the product of the gluonic currents in
terms of derivatives of the gluon field, so that both currents have the same structure.
Nevertheless, it is necessary to implement the temporal ordering of the expansion of the
product of the mentioned currents and perform all possible Wick’s contractions of the
operators, yielding multiplicity factors for some terms that must be taken into account.
After considering all the summed contributions, the result is

ΠG2 = −i(N2
c − 1)

∫ d4k

(2π)4
1

D1D2
[8(d− 2)(k · (k + q))2 + 8k2(k + q)2], (4.17)

where k and q represent the loop and external momenta, respectively. Additionally, the
denominators are written as D1 = −k2 and D2 = −(k + q)2, and the numerator will be
denoted as

I(k,q) = [8(d− 2)(k · (k + q))2 + 8k2(k + q)2]. (4.18)
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Furthermore, one must remember that

k · q = 1
2(−D2 +D1 − q2). (4.19)

Then, after writing the numerator in terms of D1 = k2
1 = −k2 and D2 = k2 = −(k+ p)2, it

is possible to perform the scalar one-loop integral by the master integrals method. So that
solving the integral (4.17) using the α-parametrization method developed in Appendix D,
one arrives at

ΠG2 = 2i(N2
c − 1)(d− 2)s2

(
µ2 e

γ

4π

)−ε iπd/2

(2π)d
(−s)−ε 2Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)(d− 3)(d− 4) , (4.20)

which can be expanded around ε = 0 to arrive at

ΠG2 = −(N2
c − 1)
4π s2

[
−1
ε

− 1 + ln(−s/µ2)
]
. (4.21)

The result (4.21) represents the LO correlator in QCD at the αs-plane.

4.3 Result for ΠG2 in the Large-β0 Limit

To work within the framework of the Borel transform employed in perturbative series,
the investigation of the asymptotic behavior of the two-gluon correlator can be performed
through the large-β0 limit (75). This limit is an extension of the large-nf limit. To
elucidate how things work, we can rewrite the aforementioned, Eq. (4.2), quantity f(αs) as

f(αs) = 1 +
∞∑

n=0

n∑
k=0

rn,kn
k
fα

n+1
s

= 1 + r0,0αs + (r1,1nf + r1,0)α2
s+

+ (r2,2n
2
f + r2,1nf + r2,0)α3

s + · · ·, (4.22)

where the coefficients with large power in the number of flavours is given by rn,n coefficient.
In the large-nf limit, the number of flavors, nf , is considered infinite, nf → ∞, while

the product αsnf ∼ O(1), so that αs ∼ 1/nf . In this limit, infinite bubbles of qq̄ are
evaluated. An individual fermion bubble contributes to the gluon with (22)

Π1(k2) = β0fαs

[
log

(
−k2

µ2

)
+ C

]
, (4.23)

where β0f = −nf/6π is the fermionic contribution to the leading β function coefficient, and
C is the same renormalization parameter already discussed in Chapter 2. The gluon-gluon
and ghost interactions are not considered in the large-nf limit since we only obtain terms
(αsnf )n, as other terms are suppressed by αs. In this limit, we can disregard the subleading
nf terms in Eq. (4.22), retaining only the coefficients rn,n in Eq. (4.22). The large-β0 limit
can be achieved after replacing the only fermionic contribution with the complete β0 term



4.3. Result for ΠG2 in the Large-β0 Limit 61

= +
αs nf

+...
(αs nf )

2

+

Figure 4.2 – Modification of the gluon propagator for the large-nf limit, considering only higher-
order terms in nf .

Source: By the author.

defined in Eq (2.84): β0f → β0f + β0A, where now the non-abelian term β0A is considered,
so that β0 > 0, and the features of QCD running coupling are recovered. This can be done
by replacing

nf → nf − 33
2 , (4.24)

in the coefficient β0f . This change directly affects the series coefficients, where the terms
rn,n are reproduced exactly at all orders in perturbation theory, while the non-abelian
terms are predicted. For example, considering the second-order coefficient in the large-nf ,
the non-abelianization procedure yields

r1,1nfα
2
s → (r1,1nf + r1,0)α2

s, (4.25)

where the large-β0 limit makes the prediction of r1,0 = −(33/2)r1,1. Then, the large-β0

limit is obtained by expanding in large-nf and employing the naive non-Abelianization
procedure, where nf dependence is replaced by the full QCD β0 term. This limit will be
used as a kind of laboratory to test our estimation methods. The higher-order coefficients
of Dβ0

G2 will be estimated using Padé approximants, which will be discussed later.The
accuracy of the estimates can provide the best method for the h → gg investigation.

In the large-β0 limit, the strategy for the calculation involves replacing the usual gluon
propagators with chains of quark bubbles with momentum k flowing through the gluon
(in addition to using the Ward-Takahashi identity qµΠνµ = 0 and employing the Landau
gauge ξ = 0), as indicated in Figure 4.2, which is the resummed gluon propagator

Dab
µν(k2) = −i δab

k2

(
gµν − kµkν

k2

)
1

1 + Π1(k2) + (−i)ξ kµkν

k4 , (4.26)

discussed in Chapter 2. To investigate how this replacement is done, we can start by the
development of the bubble chain in Eq. (4.26) times the QCD coupling αs(µ), which leads
to (68)

αs(k2)Dab
µν(k2) = −iδab

k2

(
kµkν

k2 − gµν

)
αs(µ2)

1 + β0fαs(µ2)ln(−k2/µ2e−C) . (4.27)

Then, it is possible to replace

αs(µ2)
1 + β0αsln(−k2/µ2e−C) =

∞∑
n=0

(αs)n+1(−β0)nlnn

(
− k2

µ2e−C

)
, (4.28)
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and taking the Borel transform of Eq. (4.27) taking into account the expansion of Eq. (4.28),
we arrive at

B[αsD
ab
µν ] = −iδab

k2

(
kµkν

k2 − gµν

)
exp

ln
(
µ2e−C

−k2

)−u


= − iδab

(k2)1+u

(
kµkν

k2 − gµν

)(
µ2e−C

)−u
, (4.29)

which basically states that the transition between the gluon-gluon correlator in QCD and
the large-β0 limit can be done simply by taking into account the change

−gµν

k2 + iη
→ (−µ2e−C)u −gµν

(k2 + iη)1+u
, (4.30)

where u is the Borel plane variable. Moreover, upon examining Eq. (4.26) in comparison
with the outcome of Eq. (4.29), it can be observed that

B

[
αs

(1 + Π(k2
j ))

]
=
(

−µ2

k2 e
−C

)uj

, (4.31)

which we will employ later in the calculation of the gluonic correlator. In this way, through
Eq. (4.30), the form of Πβ0

G2 in the Borel plane is obtained with the modification in the
powers of the denominators, effectively transitioning from Figure 4.1 a) to 4.1 b).

Then, after writing the numerator in terms of D1 and D2 and the denominator with
modified exponents, it is possible to perform the one-loop integral of B[Πβ0

G2 ] using the
method of master integrals (76).

This procedure can be demonstrated in more detail by decomposing each current after
employing contributions from infinite quark bubbles. Considering a case with two gluonic
currents, the modification of the correlator is

Π̂β0
G2 = − i

π2 (N2
c − 1)

∫ d4k

(2π)4
I(k,q)
D1D2

[
αs

(1 + Π1(k2
1))

] [
αs

(1 + Π1(k2
2))

]
. (4.32)

In this context, we are considering a correlator invariant under the renormalization group,
denoted as Π̂β0

G2 . As mentioned earlier, in the large-β0 limit, only the first coefficient of
the beta function, β0, is taken into account. Therefore, in this case, a correlator invariant
under the renormalization group can be expressed as

Π̂β0
G2 =

(
β(as)
β0as

)2

Πβ0
G2 = a2

s Πβ0
G2 . (4.33)

Note that each αs has been strategically positioned in Eq. (4.32) to facilitate the develop-
ment of the integral later. To perform the Borel transform of Eq. (4.32), it is necessary to
have the relationship between the Borel transform of the products of two currents (77)

B

 2∏
j=1

αs

1 + Π(k2
j )

 = 2π
β0f

∫ u

0
du1du2 δ (u− u1 − u2)

2∏
j=1

B

[
αs

1 + Π1(k2
j )

]
(uj). (4.34)
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Thus, by substituting (4.34) into Eq. (4.32), one obtains

B[Πβ0
G2 ] = −2 i(N2

c − 1)
πβ0f

∫ u

0
du1 du2 δ (u− u1 − u2)

∫ d4k

(2π)4

2∏
j=1

I(k,q)
D1D2

B

[
αs

1 + Π1(k2
j )

]
.

As mentioned previously, the first term of the β function carries an index f indicating
fermionic contributions, and it is necessary to substitute it with the complete QCD β0, as
discussed at the beginning of this section. After that, one obtains

B[Πβ0
G2 ] = −i(N2

c − 1)
β0

(
µ2e−C

)u1+u2
∫ u

0
du1du2, δ(u− u1 − u2)

∫
d4k

I(k,q)
D1+u1

1 D1+u2
2

. (4.35)

This integral shows how the change in the power of D1 and D2 arises naturally after
applying the large-nf limit. Moving forward, dimensional regularization will be used to
solve the loop integrals, where each component of the integral encodes different powers of
the denominators with respect to u1 and u2. The next step is to expand the numerator
I(k,q), leading to∫

dDk
I(k,q)

D1+u1
1 D1+u2

2
= (D−2)[2G(u1 − 1,1 + u2) + 4G(u1,u2) + 2G(u1 + 1,u2 − 1)

+ 4G(u1,1 + u2) + 4G(u1 + 1,1 + u2)
+ 2G(u1 + 1,1 + u2)] + 8G(u1,u2). (4.36)

Here, each component of the integral (4.36) can be obtained from the next integral

G(n1,n2) =
∫ ddk

Dn1
1 Dn2

2
= iπd/2(−p2)d/2−n1−n2G̃(n1,n2), (4.37)

where the demonstration of this relation can be found in Appendix D.
Following the same prescription shown in detail in Ref. (76), after solving an integral

through the application of the delta function δ(u− u1 − u2), the result is

B[Πβ0
G2 ] = (N2

c − 1)
(2π)4β1f

(
µ2e−C

)u
∫ u

0
du1 σk(u1,u,s), (4.38)

where σk(u1,u,s) carries all contributions from the integral concerning the loop momentum.
Then, employing master integrals for the one-loop case and expanding around the

dimension D = 4 − 2ε, for ε → 0, one reaches the following result

σk(u,u1,s) = 6iπ2(−s) 1
2 (4−2u)f(u,u1)

Γ(u− 2)Γ(2 − u1)Γ(−u+ u1 + 2)
Γ(4 − u)Γ(u1 + 1)Γ(u− u1 + 1) , (4.39)

where the function f(u,u1) is

f(u,u1) = 4[u1(u− u1) + u] − 8(u+ 1) + 16.

Furthermore, to work with the physical correlator D̂G2 , one must take the third derivative
of Eq. (4.38) according to the definition in (4.12), taking advantage of the property of the



64 Chapter 4. Gluonium Correlator: A Borel Space Perspective

Borel transform that allows acting directly on the structure of the transformation, in this
case, on ΠG2 itself. Then, the Borel transform is given by

B[DG2 ] = −3(N2
c − 1)
π3β1

(
−s
µ2 e

C

)−u Γ(1 + u)
Γ(4 − u)

∫ u

0
du1f(u,u1)

Γ(2 − u1)Γ(2 − u+ u1)
Γ(1 + u1)Γ(1 + u− u1)

.

(4.40)

Recalling that C represents a constant that encodes the renormalization scheme initially
chosen as C = −5/3 for the MS scheme, we will employ this constant to explore the
perturbative structure of the Adler-type function. This exploration involves expanding
B[Dβ0

G2 ] within the framework of perturbation theory

B[Dβ0
G2 ] = (N2

c − 1)
π3β1

∞∑
n=0

anu
n+1. (4.41)

The relationship between the Borel transform B[Dβ0
G2 ] and the Adler-type function Dβ0

G2

is given by the Borel sum (22), which is essentially the Laplace transform of Eq. (4.41).
This finally gives the result in the αs-plane

Dβ0
G2(s) = (N2

c − 1)
2π2 a2

s(−s)
∞∑

n=0

(n+ 1)!
2n

an[β1as(−s)]n, (4.42)

where the coefficients an are known to all orders in perturbation theory (71). The
series (4.42) can be expanded as

Dβ0
G2(s) = (N2

c − 1)
2π2 a2

s

(
1 + 2as,r + 3.46a2

s,r + 5.29a3
s,r + 8.55a4

s,r + 12.57a5
s,r + · · ·

)
, (4.43)

where the expansion was realized in terms of the reduced coupling, defined here as
as,r = β1as.

4.3.1 Renormalons

The singularities of the Borel plane exhibit distinct effects depending on their proximity
to the origin of the plane. As was mentioned previously, renormalons in close proximity to
the origin are referred to as sub-dominant renormalons, whereas the closest one is termed
the dominant renormalon. The knowledge of the B[Dβ0

G2 ] behavior when the dominant and
sub-dominant renormalons are acting is important because these renormalons determine
the asymptotic behavior of that series. In the present case, the factor Γ(1+u) in Eq. (4.40)
shows ultraviolet renormalons for all negative integers u, as discussed in the Ref. (71).
The dominant UV renormalon at u = −1 generates a signal alternation for larger orders
in the perturbative series when we consider a general scheme parameter C, according to
the equation

B[Dβ0
G2 ](u) u→−1= −(N2

c − 1)
π3β0

493
3360e

C

(1 + u) . (4.44)
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Furthermore, it is possible to write down the behavior in the vicinity of other UV
renormalons

B[Dβ0
G2 ](u) u→UV= −(N2

c − 1)
π3β0

[ 493
3360e

C

(1 + u) +
172
1575e

2C

(2 + u) +
3723
49280e

3C

(3 + u) + · · ·
]
. (4.45)

On the other hand, the IR singularities are connected to power corrections in the OPE and
bring ambiguities to the Borel transform. When we take the limit limu→3 B[D̂] = −∞,
although the Borel plane in the large-β0 limit generally shows an IR renormalon at u = 2,
here the dominant UV renormalon is at u = 3. Given that the gluonium correlator is
itself of dimension four, the first contribution comes from the dimension-six operator
⟨Ω|gsf

abcGa
µνG

ν,b
λ Gλµ,c|Ω⟩. Exploring the Eq. (4.40) around dominant IR renormalon, we

have a logarithmic behavior (71)

B[Dβ0
G2 ](u) u→3= 3(N2

c − 1)
π3β0

e−3C ln
[
1 − u

3

]
. (4.46)

Furthermore, it is important to highlight that the Borel transform of B[D̂] has no singularity
for p ≥ 4; it only has branch cuts. This occurs due to the factor 1/Γ(4 − u) in Eq. (4.40),
which suppresses the logarithms ln[1 − u/p] by a factor of (p− u) (71).

4.4 Variation of the Renormalization Scheme

With the aim of probing the behavior of the two-gluon correlator in the large-β0 limit
with the variation of the renormalization scheme, which is encoded in C, we can explicitly
decompose B[D̂] into a component dependent on the renormalization scheme and another
independent of it, denoted as b(u), via the following relation (20)

B[D̂G2 ] = e−u Cb(u), (4.47)

this highlights the fact that the residues depend on the renormalization scheme parameter
C, while the positions of the renormalons remain invariant. Writing the Borel transform
of the physical correlator as in Eq. (4.47), it is observed that by performing the Borel
summation, the following relation can be obtained

D̂ =
∫ ∞

0
dt exp

[
−t
(

1
αC

s

+ β1C

2π

)]
b

(
β1t

2π

)
, (4.48)

if we denote αC
s = α̂, it is possible to write the relationship between the coupling constant

as a function of the scheme in terms of its value in the MS scheme
1
α̂

= 1
αMS

s

− β1C

2π . (4.49)

In light of the foregoing discussion in chapter 2, we can now explore the possibility
of adjusting the renormalization scheme to make our series more perturbative or less
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perturbative. The change of scheme in the large-β0 limit is simpler since the parameter to
be varied, C, is evident in the Borel space expansion given the exponencial dependence in
Eq. (4.47).

According to the definition adopted in (19) for the modification of the coupling,
using the MS scheme, it is sufficient by setting C = −5/3. However, to align with the
definitions employed in Chapter 2, a shift must be performed to parameterize the change
of renormalization scheme around C = 0, as indicated by Figure (2.6). This change is
specifically C → (δ + C), where δ = 5/3, and has already been done in the literature, as
outlined in Ref. (20). This results in

1
α̂s

= 1
αMS

s

− (δ + C) β1

2π , (4.50)

which can be rewritten as
1
âs,r

= 1
aMS

s,r

− (δ + C)
2 . (4.51)

At this point, we are using the convention as = αs/π and introducing the reduced coupling
as,r = β1as. With this in mind, one of the possibilities to be explored is finally to use more
positive or more negative values for C to assess the sensitivity of the series analyzed.

4.5 Conformal Mapping of the Borel Plane

Besides the variation of the renormalization scheme, the conformal mapping method
is also investigated in this work. The conformal mapping of the Borel plane has been
extensively explored in the context of both perturbative and non-perturbative QCD in the
references (66,73,78). These works provide discussions and various applications for the
conformal mapping of the Borel space, including the use of Padé approximants. Additi-
onally, as briefly discussed in the introduction, infrared renormalons are responsible for
introducing ambiguities in the Borel integral, which is related to the need for incorporating
new terms due to non-perturbative corrections. These corrections, exponentially suppres-
sed by the strong coupling, are referred to as power corrections and must be considered
in the expansion in the product of operators. However, conformal mapping may serve as
an alternative method to handle such power corrections (66). One of the most effective
techniques for improving the convergence of perturbative series in QCD is the use of
conformal mapping, previously applied to the Borel plane of the Adler function in the
reference (66). In this reference, it is demonstrated that there exists a transformation
that maps the singularities of the Borel plane onto a unit disk in the complex plane. This
arrangement places dominant renormalons on the real axis and the boundary of the disk,
creating a situation where none of them are privileged, this arrangement is called optimal
conformal mapping. The resulting expression for the transformation, given the positions
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Figure 4.3 – Position of renormalons after optimal mapping onto a unit circle in the w-plane.
Here, each red point represents the renormalons of B[D̂β0

G2 ].

Source: By the author.

of the dominant renormalons pUV and pIR, closest to the origin of the u-plane, is

w̃(u) =

√
1 − u/pUV −

√
1 − u/pIR√

1 − u/pUV +
√

1 − u/pIR
, (4.52)

where w is the variable in the mentioned complex plane, and u is the Borel variable. This
mapping can significantly enhance the convergence of the perturbative expansion of an
observable by reducing the influence of renormalons. Not only the dominant renormalons
but all renormalons are mapped onto the unit circle and equidistant from the origin.

The inverse of the optimal conformal mapping for the unit circle is given by

ũ(w) = 3w
(w − ξ1)(w − ξ2)

, (4.53)

where the poles are at ξ1 = (−1) 1
3 and ξ2 = −(−1) 2

3 . Through this inverse (4.53), we can
rewrite the Borel transform in terms of w instead of u. The procedure involves substituting
the Borel variable with the Taylor expansion of ũ(w) and truncating at a certain order.
After this variable change, the original series must be expanded again up to the last order
before truncation.

By rewriting the Borel Transform in terms of w, we can express the Borel transform of
the physical correlator function as a series in powers of w
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B[D̂] =
∞∑

n=0
cnw

n. (4.54)

The power series in w is less affected by renormalons, making it more stable than the
series in powers of u. In some cases, this may allow for better estimates of the coefficients
of the perturbative series.

4.6 Padé Approximants

To make predictions for the coefficients at high orders of Dβ0
G2 , both the variation of

the renormalization scheme and the conformal mapping will be evaluated in conjunction
with Padé approximants (PAs). The approximant PM

N is obtained through the ratio of
two polynomials of order M and N , given by

PM
N (u) = QM(z)

RN(z) = a0 + a1z + · · · + aMz
M

1 + b1z + · · · + bNzN
, (4.55)

a rational approximant that makes contact of order M+N with the Taylor series expansion
of a function in the complex plane around z = 0, for example

f(z) = 1 +
∞∑

n=0
fnz

n+1. (4.56)

For the sake of clarity, we can make an example to illustrate how this method works, i.e.,
applying a simple PA, P 1

1 , to a toy function f(z), that can be expanded in a Taylor series
as

f(z) =
√

1 − z2

(1 + 4z)2 ≈ 1 − 8z + 95
2 z

2 − 252z3 + 10047
8 z4 + O(z5). (4.57)

The Padé approximant idea is that the Eq. (4.55) can be expanded and the coefficients of
expansion in each perturbative order can be matched with the same order coefficient of
Eq. (4.57) such that the coefficients of Padé approximants are determined. Expanding the
approximant P 1

1 in a Taylor series, we arrive at

P 1
1 = a0 + a1z

1 + b1z
≈ a0 + (a1 − a0b1)z + (a0b

2
1 − a1b1)z2 + (a1b

2
1 − a0b

3
1)z3 + O(z4). (4.58)

When the Eq. (4.58) is matched to Eq. (4.57), it is possible to determine the coefficients
of P 1

1 as

a0 = 1, a1 = −33
16 , b1 = 95

16 . (4.59)

Consequently, we can construct the PA in terms of the computed coefficients

P 1
1 =

1 − 33
16z

1 + 95
16z

(4.60)
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Figure 4.4 – Graph depicting a comparison between the Padé approximants and the Taylor series
to approximate the function f(z) =

√
1 − z2/(1 + 4z)2, using the same amount of

information of f(z).

Source: By the author.

and compare the coefficients not used to construct the PA, producing predictions for the
next unknown coefficients

f(z) ≈ 1 − 8z + 47.50z2 − 252.00z3 + 1255.88z4 + · · ·, (4.61)
P 1

1 ≈ 1 − 8z + 47.50z2 − 282.03z3 + 1674.56z4 + · · ·. (4.62)

In this case, the order z3 coefficient in Eq. (4.62) was predicted with approximately
just 11% error, and the next-order coefficient was predicted with a 25% error. Another
important feature of PAs to be discussed here is the pole predictions of the f(z) function.
This function has a pole at z = −0.25, and analyzing the denominator of the approximant
P 1

1 it is possible to see that this function has a pole at z = −0.168, reproducing the pole
with a 33.6% error.

In Figure (4.4), it is possible to see how the PA, the dashed black curve, adjusts
to the original function f(z), represented by the purple curve, in contrast with the
truncated Taylor expansion of f(z) (the dashed cyan curve), where it is clear that the Padé
approximant presents a better adjustment to the original f(z) than the Taylor expansion,
relying on exactly the same amount of information.

Furthermore, in this work, a variant of the Padé approximant was employed, which is
the partial Padé approximants, which is defined as

PM
N,K(z) = QM

RN(z)TK(z) , (4.63)
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Figure 4.5 – Graph illustrating the relative error of the coefficients of f(z) estimated by P N
N (z)

concerning the number of coefficients M + N used for the estimates.

Source: By the author.

where the coefficients RN and QM are determined in the same way as explicitly explained
by Eq. (4.55), and the TK is a polynomial that encodes K zeros at the first K poles of the
function we are applying the method. The explicit structure of this approximant after
using the polynomial Tk form is

PM
N,K(z) = QM

RN(z)(z + z1)(z + z2)...(z + zK) , (4.64)

where zi, with i = 1,2...K, are the first zeros of TK(z). One way to analyze the estimates
made by Padé approximants is through the convergence of the approximant to the appro-
ximated function f(z). An important theorem in this context is Pomerenke’s theorem (79).

Pomerenke’s Theorem: Let f(z) be an analytic function at the origin and throughout
the entire z-plane except for a finite number of isolated poles and essential singularities.
Then we have:

lim
N→∞

P λN
N = f(z), (4.65)

provided that a compact set in the z-plane is taken and λ ̸= 0 and λ ̸= ∞.

It is still important to note that in light of Pomerenke’s theorem, it is possible in some
cases that even with the increase in the magnitude of M +N , there may be an increase
in the relative error. This behavior can occur because some zeros of the numerator and
denominator of the PA are close, which effectively acts as a reduction of order. This effect
is called defects or Froissart doublets (18).
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Figure 4.6 – Graph depicting that the PA P 30
30 reproduce cuts by accumulations of poles and zeros.

In this case, the approximants were employed for the function f(z) = log(1 − z).

Source: By the author.

In the case of interest in this work, in the large-β0 limit, the first (M +N) coefficients
must be known to allow for the prediction of the coefficient of order (M +N + 1) or higher.
Considering that the series shown by Eq. (4.41) starts at u, we can set a0 equal to zero for
any PA calculated in this work. By applying PAs to the Borel transform of Eq. (4.41), we
can obtain predictions for the higher-order coefficients of the two-gluon correlator in the
large-β0 limit. The results obtained from PAs are analyzed through the relative errors,
according to

σrel =
∣∣∣∣∣aP

n − an

an

∣∣∣∣∣, (4.66)

where aP
n refers to the estimated coefficient, while an represents the exact coefficient. This

will be investigated for all the estimation methods at the large-β0 limit used in this work,
both for the first and the second unknown coefficients.

Dlog Padé Approximant

As we mentioned, the investigation of the renormalon structure of the Borel transform
of the physical correlator shown in Eq. (4.41) reveals a cut for u ≥ 4 due to the suppression
of singularities in this region as discussed in (71). In order to investigate functions that
have cuts using Padé approximants, it is necessary to explore how these approximants
reproduce functions. A practical example involves applying the approximants to the
function log (1 + z), which exhibits a branch cut for z < −1. Figure (4.6) illustrates the
results for the polos and zeros of the Padé approximants for M = N = 30, based on
matching to the first 32 coefficients, many more than in the previously used examples at the
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beginning of the chapter. In the Figure (4.6), the poles and zeros of the Padé approximant
are shown overlaid, where it can be observed that Padé attempts to reproduce the branch
cut of the function through the accumulation of polos and zeros. A strategy to deal with
this structure is to employ Dlog Padé approximants (18). For instance, considering a
function that has cuts (18)

f(u) = A(u)
(p− u)γ

+B(u), (4.67)

where A(u) and B(u) are analytic functions at u = µ, but there are cuts resulting from
the singular structure of the denominator when γ is a non-integer number. According to
the method discussed in (18), instead of applying Padé approximants to the function f(u),
it is convenient to define another function, which for u close to p behaves as

F (u) = d

du
log[f(u)] ∼ γ

p− u
. (4.68)

The Padé approximants PM
N applied to the function F (u) produce an approximation for

the function f(u) that is not necessarily rational. Here, we denote this approximation as
DlogM

N (u) having the following structure

DlogM
N (u) = f(0)exp

[∫
du PM

N (u)
]
, (4.69)

where the normalization constant f(0) must be reintroduced due to the loss of a constant
in the differentiation process.
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5 Large-β0 Results

In this chapter, we will explore the accuracy of estimates for the physical correlator in
the large-β0 limit, Dβ0

G2 , using the Padé-Borel method, conformal mapping, and the change
of renormalization scheme. Here, several sequences of Padés were initially investigated in
the MS scheme with the purpose of finding an optimal method for making estimates in
QCD, beyond the large-β0 limit. As seen, in this limit, the quantity Dβ0

G2 was computed at
all orders in perturbation theory; nevertheless, the predictions of the sixth and seventh
coefficients will be denoted as the first and second unknown coefficients, respectively, with
reference to the challenges we encounter in complete QCD, where we know five coefficients
of the Higgs decay into two gluons — that is the range of known coefficients —, so that
this range corresponds to M + N = 5 coefficients necessary to make these predictions.
In addition, quantitative analyses were performed using relative error for our predictions
of Dβ0

G2 coefficients employing Padé approximants, allowing exploration of the error of
estimates in the αs-space.

5.1 Padé Approximants Results in the MS Scheme

In the present case, the constant in the numerator of the Padé approximant (a0) is
always zero because the series D̂G2 starts at α2

s, and thus the series in the Borel space
starts at u, as previously discussed in Chapter 4. Starting our investigation with Padés of
the family PN+1

N , which, since a0 = 0, requires 2N + 1 coefficients from the known series
to predict the 2N + 2 term. Then, a possible approximant to be considered in the final
estimates in the Borel space is P 3

2 , where it is necessary to fix a1, a2, a3, b1, and b2, that is,
five coefficients to realize predictions of the “missing” coefficients. The structure of P 3

2 (u)
applied to B[D̂β0

G2 ] is

P 3
2 (u) = u+ 0.999777u2 + 0.575925u3

(u− 1.84668 + 0.531324i)(u− 1.84668 − 0.531324i) , (5.1)

which makes possible the quantitative analysis through the comparison of the series

B[Dβ0
G2 ] ≈ u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.55870u6 + 0.30433u7 + · · ·,

P 3
2 (u) ≈ u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.662866u6 + 0.354161u7 + · · ·.

In which it is possible to see through the expansion of the approximant P 3
2 the predictions

in the Borel space, highlighted in blue, for the coefficients of order u6 and u7. After
returning to the αs-plane, it is possible to see that the approximant (5.1) provided an
estimate in the αs-plane for the coefficient c5 = 14.9145 compared to 12.5708 from the
exact series of the physical correlator in large-β0, while the prediction for the second
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Figure 5.1 – a) Relative error using the usual Padés in the MS scheme for the first unknown
coefficient. b) The same types of Padés are used, but for the second unknown
coefficient.

Source: By the author.

Table 5.1 – Estimates of the high-order coefficients of the physical correlator D̂(s) in the large-β0
limit.

c5 c6 c7 c8
Large-β0 12.5708 23.9659 29.4801 111.206
P 2

3 39.5066 354.986 2835.48 19399.8
P 3

2 14.9145 27.8902 55.0385 111.773
P 1

4 31.6985 223.809 1474.4 8227.42
P 4

1 16.5855 37.5203 97.0054 282.149

Source: By the author.

unknown coefficient was c6 = 27.8902 compared to 23.9659 from the original series, which
represents a good estimate. However, in this case, the renormalons are not reproduced
accurately, given that the poles of Eq. (5.1) are complex at u = 1.847 ± 0.531i.

A final estimate should be made considering the parameters estimated by various
families of Padés to avoid any kind of bias in the final estimate. Thus, it is necessary to
compare our estimates with the exact result in large-β0 to define an optimal method. In
this range of known coefficients, we should only consider the approximants P 3

2 , P 2
3 , P 1

4 ,
and P 4

1 . As we have already shown the structure of P 3
2 , we will also analyze the structure

of the next approximant

P 2
3 (u) = u− 0.800011u2

(u− 0.516271 ± 0.694675i)(u− 0.703407) . (5.2)

Note that despite P 2
3 presenting a pole at u = 0.703407, the dominant IR renormalon of

the series is at u = 3, as a consequence, this approximant does not capture the dominant
renormalons. This behavior may occur because Padés do not very well reproduce functions
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Figure 5.2 – a) Relative error using the Dlog Padé approximants as indicated in the legend. b)
The same type of approximants, but for the second unknown coefficient.

Source: By the author.

with cuts for low-order approximants, as the cut reproduction mechanism of Padés occurs
through the reproduction of nearby poles, as indicated by Figure (4.6). Therefore, better
reproduction of IR dominance should be expected employing Dlog Padé approximants.
On the other hand, there are still two remaining cases, P 4

1 and P 1
4 . In comparison with

P 4
1 , which only presents complex poles, P 1

4 predicts the unknown coefficients better, as
indicated by Table 5.1. In this table, it is possible to see that the approximants P 2

3 and
P 1

4 do not perform very well in terms of coefficient estimates. Furthermore, the results
obtained for the relative errors of the first unknown coefficient are shown in Figure (5.1),
further the result for the second unknown coefficient. Note that even with increasing
M +N magnitude there may be an increase in error, indicating a presence of Froissart
doublets.

5.2 Dlog Padé Approximants Results in the MS Scheme

Considering that the estimates by rational methods used in the previous section
showed considerable inaccuracies in estimating the first and second unknown coefficients,
one possibility is to employ other methods, such as the Dlog Padé presented earlier,
since B[D̂β0

G2 ] has a cut for u ≥ 4. Thus, for this range of interest, we have only a few
contributions for the diagonal and closest-to-diagonal approximants.

Here, it is important to emphasize the number of coefficients needed to make predictions,
since DlogM

N requires M +N + 2 coefficients from the series in the Borel space. However,
considering that here the first term of the series is always zero, we can state that DlogM

N

needs M +N + 1 coefficients from the original series, implying that in the case of DlogM
N

we have M +N = 4, since the range of interest already mentioned is equal to five. The
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Table 5.2 – Estimates, employing Dlog Padé, of the high-order coefficients of the physical
correlator D̂(s) in the large-β0 limit.

c5 c6 c7 c8
Large-β0 12.5708 23.9659 29.4801 111.206

Dlog2
2 11.8297 23.198 13.7274 137.399

Dlog1
3 22.8522 86.6234 289.498 848.03

Dlog3
1 11.7195 23.2299 11.3268 146.509

Source: By the author.

starting point for our analysis in this limit is the following approximant

Dlog3
1(u) = e0.0984417u2+2.31774uu

(u+ 0.76706)0.243724 , (5.3)

which makes possible the quantitative analysis through the comparison of the series

B[Dβ0
G2 ] ≈ u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.55870u6 + 0.30433u7 + · · ·,

Dlog3
1(u) ≈ u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.52085u6 + 0.294983u7 + · · ·;

where it is clear that it requires 5 known coefficients from the original series for predictions
when using DlogM

N , with M+N = 4. Furthermore, it is noted that the estimates highlighted
in blue, carried out by Dlog3

1(u), present a relative error of approximately 6.8% in the
order of u6 and 3.1% in the order of u7, representing very good estimates.

In addition to approximant (5.5), we also investigated other sequences

Dlog2
2(u) = u

(13.3261 − u)31.2172(u+ 0.786904)0.26956 , (5.4)

Dlog1
3(u) = e1.16494 tan−1(0.498765(2u+0.0799489))u

(1.17918 − u)0.990687 (u2 + 0.0799489u+ 1.00656)0.00465629 ; (5.5)

where the results of predictions can be found in Table 5.2. In this case, the approximants
Dlog2

2(u) and Dlog3
1(u) show superior estimates to all presented so far, while the poor

behavior of Dlog3
1 can be justified by the absence of reproduction of dominant renormalons,

as it shows a pair of complex poles and a pole at u = 1.17918 that does not reproduce
the main IR renormalon, On the other hand, Dlog1

3 brings, for the first time, a partial
reproduction of the dominant UV renormalon, presenting branch point at u = −0.76706.
The same occurs with Dlog2

2, which has a pole at u = −0.786904. Thus, a superiority is
detected in relation to the estimates in Table (5.3), especially in the approximants that
partially reproduce the pole at u = −1. In Figure (5.2), it is possible to see how the
relative error behaves with the variation of the number of coefficients needed to perform
the estimates. It can be noted that both for the prediction of the first and the second
coefficient, there is an increase in relative error for the number of necessary coefficients
equal to eleven. After scrutinizing the structure of Dlog6

4, a Froissart doublet was spotted,
with a zero at u = −4.84681 and a branch point at the u value.
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Figure 5.3 – a) Relative error using the indicated Padés, with C = 0, for the first unknown
coefficient. b) The same types of Padés are investigated, but for the second
unknown coefficient.

Source: By the author.

5.3 Variation of Renormalization Scheme

In the light of the formalism presented in Section 4.4 for the change of renormalization
scheme, one of the most interesting cases for investigation is to eliminate the exponential
dependence that accompanies the residues of the renormalons, which in this case should
be C = 0, resulting in the modification

D̂C=0
G2 ≈ â2

s,r(1 + 0.333âs,r + 0.542â2
s,r − 0.216â3

s,r + 1.351â4
s,r − 3.028â5

s,r + · · ·),

and as a consequence of this variation, the series assumes an oscillatory character in the
sign starting from â3

s,r. However, for the purpose of comparison with the results obtained
in the MS scheme, it is necessary to modify the value of âs,r according to the Eq. (4.51).
In this case, a Taylor expansion is required to connect with the original result

âs,r = as,r + a2
s,r

(
C + δ

2

)
+ a3

s,r

(
C + δ

2

)2

+ a4
s,r

(
C + δ

2

)3

+ a5
s,r

(
C + δ

2

)4

+ · · ·,

and later it is necessary to realize a re-expansion of the series, obtaining a new series in
terms of as,r; in addition, truncate this new series at the same order as the considered series
D̂C=0

G2 . The results of the approximants with a change of scheme show better estimates for
the coefficients of high orders of the series, which can be visualized in Figure 5.3, in contrast
with Figure 5.1. Through the comparison of these figures, one notes better results for C = 0
when compared with MS. No longer are there just a few exceptions of Padé sequences,
but rather a general behavior of all the approximants. Additionally, as can be observed in
the previous results, in some cases, a competition between the first and second unknown
coefficients, since sometimes the prediction of the second unknown coefficient is better
than the first. Furthermore, analyzing the results, it can be concluded that the sequences
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Table 5.3 – Estimates, employing Padé approximants, of the high-order coefficients of the
physical correlator D̂G2(u) in the large-β0 limit using C = 0 (C0) in comparison
with the MS scheme.

c5 c6 c7 c8
Large-β0 12.5708 23.9659 29.4801 111.206
P 3

2 [MS] 14.9145 27.8902 55.0385 111.773
P3

2[C0] 12.7113 23.9243 31.6375 105.424
P 2

3 [MS] 39.5066 354.986 2835.48 19399.8
P2

3[C0] 12.3925 23.1475 25.5251 100.432
P 1

4 [MS] 31.6985 223.809 1474.4 8227.42
P1

4[C0] 15.8487 42.3433 129.497 444.289
P 4

1 [MS] 16.5855 37.5203 97.0054 282.149
P4

1[C0] 5.45188 59.3355 -440.64 5170.61
Dlog2

2[MS] 11.8297 23.198 13.7274 137.399
Dlog2

2[C0] 12.0088 23.2941 17.4774 127.71
Dlog1

3[MS] 22.8522 86.6234 289.498 848.03
Dlog1

3[C0] 10.6654 20.3775 -16.5231 149.013
Dlog3

1[MS] 11.71950 23.2299 11.3268 146.509
Dlog3

1[C0] 11.71953 23.2299 11.3268 146.509

Source: By the author.

of approximants PN
N+1 and PN+1

N provide good estimates for the complete M +N = 5 and
also show competitive estimates for the first and second unknown coefficients.

In this way, through a case analysis, some results stand out and should be highlighted,
for example

P 3
2 [C0] = u+ 0.890676u2 + 0.15905u3

(u+ 1.04064)(u− 2.47768) , (5.6)

P 2
3 [C0] = u+ 0.746445u2

(u+ 0.999403)(u− 3.29969 ± 0.587629i) ; (5.7)

where the notation C0 refers to C = 0. This time, the results are better than the Padé
approximants for the MS scheme because eliminating the exponential dependence of
B[D̂(s)] = e−uCb(u) results in a modification of the residues of the poles but does not
change their positions. This change allows the approximants to more easily capture the
dominant renormalons. In the case of P 2

3 , despite having complex poles, the approximant
showed great success in estimates, as shown in Table 5.3, due to the excellent reproduction
of the pole at u = −0.999403. This is also demonstrated by P 3

2 , presenting a pole
at u = −1.04064. However, unlike the previous case, the IR renormalon is partially
reproduced by the pole at u = 2.47768, effectively resulting in insufficient performance for
estimating the second unknown coefficient of this series due to the competition between
renormalons.

Another possibility is to implement a scheme variation for the Dlog Padés to explore
the sensitivity of estimates to the variation of C. To do this, initially adopting the
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Figure 5.4 – a) Relative error using the indicated Dlog Padés, with C = 0, for the first unknown
coefficient. b) The same types of Padés are investigated, but for the second
unknown coefficient.

Source: By the author.

same procedure of eliminating the exponential dependence and analyzing Dlog2
2, Dlog1

3,
and Dlog3

1, similar to the previous case, a difference in estimates is observed due to
the modification in capturing renormalons. For instance, Dlog2

2 presented a pole at
u = −0.816492, being more faithful to the dominant UV renormalon than the estimate
made in the MS scheme

Dlog2
2(u) = u

(4.89044 − u)3.48797(u+ 0.816492)0.310177 .

On the other hand, Dlog1
3 reproduced exactly the same pole at u = −0.76706, while Dlog3

1

also shows a profile modification, maintaining the two complex poles. However, unlike the
previous case, it manages to provide an approximation for the dominant UV with the pole
at u = −0.702426. The general behavior at higher order can be visualized in Figure 5.4,
where it is possible to see that the Froissart doublet is still present for the approximant
Dlog6

4, with the number of necessary coefficients equal to eleven.

5.4 Conformal Mapping Results

Through the series in terms of a new variable, w, and employing the conformal mapping
defined by the Eq. (4.52), the Padé approximants can be constructed similarly to what
was done previously. However, the main interest in this procedure is to make estimates for
M +N = 5 in the αs space, which requires returning to this space after making estimates
in the w-plane.

One point to highlight in this part is that the best results for prediction in the w space
for the first unknown coefficient were obtained through PN

N+1 with M +N = 3, showing
a relative error of 0.53% for the fourth unknown coefficient of the series. However, the
same family of approximants exhibits a significant worsen for M + N equal to five. In
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Figure 5.5 – a) Relative error using the indicated Padés with C = 0 and optimal conformal
mapping for the first unknown coefficient. b) The same types of Padés are
investigated, but for the second unknown coefficient.

Source: By the author.

Figure (5.5), it is possible to see that the same general behavior can be observed for the
second unknown coefficient. The reduced accuracy of these estimates for M+N = 5 can be
explained by the presence of Froissart doublets, as P 2

3 (w) has a zero at w = −0.00947251
and a pole exactly at the same value, effectively reducing the order of the Padé.

On the other hand, the optimal behavior of P 1
2 can be explained by its structure

being the same as the inverse transformation ũ(w), leading its Taylor expansion to more
accurately reproduce the series in the w space, as its derivatives have the same structure.
The relative error is not invariant between the conformal plane and the Borel space;
consequently, relative errors in w do not, at first, correspond to a directly proportional
accuracy of estimates in the αs space.

To verify the mentioned behavior, it is sufficient to analyze the series produced as the
final result. Note that the blue coefficients represent the estimates initially done in the
conformal space. The first unknown coefficient has an absolute error of 96.61 and a relative
error of 3.94%, while the second unknown coefficient shows a significant deterioration
compared to the differences in estimates.

• The exact series B[D̂G2 ](w) and the approximated P 3
2 (w) in the conformal space

B[D̂](w) = 3w+ 21w2 + 98.25w3 + 344.669w4 + 996.557w5 + 2453.96w6 + 5287.38w7 + · · ·,

P 3
2 (w) = 3w + 21w2 + 98.25w3 + 344.669w4 + 996.557w5 + 2357.35w6 + 4008.89w7 + · · ·.

To return to the Borel space, one must employ the transformation w̃(u), expand in Taylor
series, and couple this expansion at each order of the previous series. This procedure
requires a coherent re-expansion, i.e., a coefficient of a certain order will affect another
order of the series. As a direct consequence of this, the relative error between the Borel
space and the conformal space is not invariant.
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Figure 5.6 – Position of renormalons after modifying the structure of mapping onto a unit circle
in the w-plane. Here, each red point represents the renormalons of B[D̂β0

G2 ].

Source: By the author.

• The exact series B[D̂G2 ](u) and the approximated B̃[D̂G2 ](u), in the Borel space

B[D̂](u) = u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.558704u6 + 0.304329u7 + · · ·,

B̃[D̂](u) = u+ 2u2 + 2.30556u3 + 1.76444u4 + 1.14045u5 + 0.426184u6−0.0152191u7 + · · ·.

On the other hand, to re-establish the connection with the original series as,r, we must
employ Borel transformation, where the coefficients of the Borel transform an are multiplied
by (n+ 1)!/2n. This leads to the invariance of the relative error between the two spaces.

• Exact series B[D̂] and approximated P 3
2 in the space as,r

D̂G2 = a2
s,r(1 + 2as,r + 3.458a2

s,r + 5.293a3
s,r + 8.553a4

s,r + 12.571a5
s,r + 23.966a6

s,r + · · ·),

D̃G2 = a2
s,r(1 + 2as,r + 3.458a2

s,r + 5.293a3
s,r + 8.553a4

s,r + 9.589a5
s,r−1.199a6

s,r + · · ·).

Note that the first unknown coefficient in the MS scheme was not reproduced with sufficient
accuracy compared to the predictions in the Borel plane, presented using C = 0 as shown
in Table 5.3. However, it exhibited comparable precision to the usual Padé applied directly
in Borel space, evaluated in the MS scheme. This indicates that the conformal mapping,
despite yielding extremely precise results in the range of M +N equal to 3, did not provide
more accurate results than the previous ones for M +N = 5.
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Figure 5.7 – Graphs showing the modification of the relative error with the variation of p,
approximating the IR renormalon from the origin.

Source: By the author.

One of the paths to follow in this case is to consider a modification of the structure
of the conformal mapping presented by the Eq. (5.8), in addition to the possibility of
changing the renormalization scheme as done previously, which leads us to a problem with
three parameters already introduced before in Eq. (4.52): C, pIR, and pUV. In principle,
following the prescription of Ref. (73), which practically maps the IR renormalons inside
the unit circle in the w space, the value of p indicates which value will be on the edge of
the disc. The implemented values for p are (3, 5, 10, 15) while pUV = −1, with the caveat
that the absence of IR renormalons beyond the dominant one is already known in the
present case. Then, the structure of this new conformal mapping is

w̃(u,p) =
√

1 + u−
√

1 − u/p
√

1 + u+
√

1 − u/p
. (5.8)

In the pursuit of improving the obtained results, one approach is to adopt various values
of C and p and analyze the relative error concerning the estimates. One of the most
interesting cases shown in Figure 5.7 refers to the successful estimation of the coefficient
for O(w4) and consequently for order O(α5

s) as mentioned. Based on this behavior, the
relative errors for this coefficient were analyzed, for C = 0 in conjunction with the variation
the structure of the conformal mapping to assess the sensitivity of our results in this range
for such variations, as indicated by Figure 5.7.

Analyzing the profile of results for the variation of p for C = −5/3, it is clear that
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Figure 5.8 – a)Relative error for the first unknown coefficient in the w-space for various Padé
families, using C = 0.26 with pUV = −1 and pIR = 3. b) The same prescription,
but for the second unknown coefficient.

Source: By the author.

the precision decreases for the coefficient of O(α6
s) with the increase of p. However, in

compensation, a significant improvement is observed for the approximant PN
N+1 with N = 2,

P 3
2 , due to the elimination of the Froissart doublet present at p = 3. However, the reduction

reaches a saturation, varying very little between Figure 5.7 c) and Figure 5.7 d), leading
us to conclude that there are not significant advantages of this method in contrast with
the others already implemented in this chapter. Furthermore, P 3

2 provided assessments for
the terms of order O(w4) with approximately 1.5% uncertainty. However, for the αs-plane,
the first unknown coefficient demonstrates a relative error of 22%, suggesting a significant
loss of precision between these spaces.

Another possibility is to prioritize the UV poles, given the cuts in the positive real
part in the Borel plane for B[D̂G2 ], in order to set pUV = p′ = −4 (lying on the edge of
the unit circle) while pIR = 3 is maintained fixed, according to equation

w̃(u) =

√
1 − u/p′ −

√
1 − u/3√

1 − u/p′ +
√

1 − u/3
. (5.9)

As such, the outcomes of this variation in mapping can be found in Table 5.4.

To define an optimal method to be used, one possibility is the variation of C, which can
provide better estimates by more easily capturing the essence of dominant singularities in
the Borel space, masterfully reproducing the dominant UV renormalon as in the case of P 2

3

and P 2
3 , according to equations (5.6) and (5.7), by eliminating the exponential dependence

(C = 0). Based on this, we explore the behavior of estimates in the space of âs,r using
pIR = 3 with small variations around C = 0 to search for precise estimates in the range of
M +N equal to five.
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5.5 Final Large-β0 Results

With the purpose of assigning a final result in the large-β0 limit, it is important to
illustrate the possible traps that can appear when we are analyzing the sensitivity to
the renormalization parameter C. For example, Figure 5.8 indicates the results of the
Padé approximants employing the optimal conformal mapping and a very specific C value:
C = 0.26. The first coefficient corresponds to an estimate of c5 = 12.5675 with only 0.027%
error. Furthermore, analogous to the case of conformal mapping in the MS scheme for
different values of p, there is the presence of a Froissart doublet in the next order after an
optimal estimate, in this case at M +N = 7. Such estimates are visualized in Table 5.4.
This case is ideal to demonstrate that despite estimates for a range of approximants
providing very low relative errors, it does not mean that we should exclusively use them
in the final estimates for complete QCD to avoid biased final results.

Table 5.4 – Estimates, employing Pade approximants, of the high-order coefficients of the
physical correlator D̂β0

G2 in the large-β0 limit using C = 0.

c5 c6 c7 c8
Large-β0 12.5708 23.9659 29.4801 111.206

P3
2(u) 12.7113 23.9243 31.6375 105.424

P2
3(u) 12.3925 23.1475 25.5251 100.432

P1
4(u) 15.8487 42.3433 129.497 444.289

P4
1(u) 5.45188 59.3355 -440.64 5170.61

Dlog2
2(u) 12.0088 23.2941 17.4774 127.71

Dlog3
1(u) 10.6654 20.3775 -16.5231 149.013

Dlog1
3(u) 11.7195 23.2299 11.3268 146.509

P3
2(w) 12.9731 24.2721 35.7199 104.54

P2
3(w) 12.0595 22.3369 17.7071 95.0747

P4
1(w) 13.0785 24.5051 37.5133 106.374

P1
4(w) 12.1161 22.5123 19.0653 97.039

P3
2(w) 12.6538 23.7763 30.5381 104.274

P2
3(w) 12.1669 22.3384 19.9979 89.3471

P4
1(w) 11.8357 22.8947 16.2494 121.942

P1
4(w) 17.5705 58.5073 232.145 947.541

Source: By the author.

In order to determine the ultimate result for the large-β0 limit, the methodology
employed for assigning a definitive value to the estimates involves utilizing the arithmetic
mean as the central value. In this analysis, estimates through Padé approximants and
Dlog’s in Borel space were incorporated, in addition to optimal conformal mapping.
Furthermore, the mapping was still performed, emphasizing UV renormalons, which can
be found in Table 5.4. Additionally, the final systematic uncertainty is calculated as half
of the interval between the largest and smallest estimates.
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This results in a final estimate for the first and second “unknown” coefficients of

c5 = (12 ± 6), c6 = (29 ± 20); (5.10)

which provides good estimates when compared to the exact value of the coefficient.
However, from Table 5.4, we notice that estimates using the conformal mapping do not
show significant advantages over other estimates. Then, in full QCD, the renormalization
change is more complicated than the large-β0 limit. Then, one possibility also explored
here is to evaluate the estimates directly in the αs-plane along with the Padé-Borel method.
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6 Full QCD Results

In this chapter, we will present the results for the prediction of the first unknown
coefficient in perturbation theory of Higgs decay into two gluons. To illustrate how the
methods work, we will employ the PAs in the last known coefficient of ImΠG2 . We also
conducted a postdiction of the last known coefficient of Γh→gg to reiterate the validity of
our prediction methods. Finally, we investigate the sensitivity of the Higgs decay into two
gluons with respect to the renormalization parameter and its truncation error.

At this point in the study, we determine the error directly by estimating the first
unknown coefficient of the series through the use of Padé approximants and Dlog Padé
approximants, instead of scrutinizing the truncation error through the variation of the
renormalization parameter. To elucidate this choice, consider a physically meaningful
quantity in perturbation theory, evaluated at the scale µ = µ0 and starting at a power k0,
which can be written as

Γ(µ) =
∞∑

n=0
αn+k0

s (µ)
n−1∑
i=0

cn,i lni
(
µ2/Q2

)
. (6.1)

Often, this quantity is evaluated for µ2 = Q2, i.e., in this case, the logarithms are resummed
and the perturbative coefficients become independent of µ. The scale dependence can
be recovered by writing the coupling at a given scale αs(µ0) in terms of an expansion in
powers of αs(µ) using the beta function, so that after replacing each power of αs(µ0)n+k0

in Eq. (6.1), it is necessary to re-expand. For k0 = 0, one obtains the following recursive
relation for the coefficients (80)

cn,l(Q,µ) = 1
l

n−1∑
j=0

jβn−1−jcj,i−1, (6.2)

where one notes that only c0,n are scale-independent, while the others are linear combinati-
ons of coefficients of the type c0,n and the coefficients of the beta function. Therefore, the
c0,n are the independent coefficients that must be determined in loop calculations, while
the others are generated by the renormalization group. This is presented in Ref. (80) and
discussed in detail for different k0 values in Ref. (65).

Considering the behavior of perturbative series, as discussed in Chapter 4, the series in
Eq. (6.1) must be truncated at a certain order due to the Missing Higher-Order coefficients
(MHO). Assuming a scenario where non-perturbative effects are negligible, we can write

Γ(Q) =
k∑

n=0
cn(Q)αn+k0

s + ∆MHO, (6.3)

where the trucation error is

∆MHO =
k′∑

n=k+1
cn(Q)αn+k0

s . (6.4)
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Under the assumption that |ck+1| ≈ |ck|, it is possible to write (80)

∆MHO ≃ |ck+1|αk0+k+1
s . (6.5)

The prescription used here to evaluate the impact of ∆MHO on the observable, Γ, calculated
exactly up to order k (Γk), is as follows

Γ±
k = Γk ± ∆MHO

2 , (6.6)

where it is expected that the true value of this quantity is inside the range [Γ+
k ,Γ−

k ].
In other words, estimating the coefficient ck+1 means estimating, within the mentioned
approximation, the effects of MHOs. In this chapter, we will show this estimation of
truncation error for the decay h → gg using Padé approximants, analogous to what was
done in large-β0. In addition to testing the methods used in this part on the last known
coefficient of the decay of interest, a good estimate of the last known coefficient suggests
promising prospects for predicting unknown coefficients.

6.1 The Illustration of the Prediction Method

To elucidate the application of Padé approximants used in the final estimates for the
first unknown coefficient, we will exemplify a practical scenario by estimating the last
known coefficient of the two-gluon correlator in full QCD, as indicated in Eq. (6.7), since
this correlator is one of the ingredients in the description of the Higgs decay into two gluons,
as discussed in Chapter 3. As we already discussed, the coefficients of ImΠG2 exhibit a
dependence on nf . After testing the methods discussed in the previous chapter in the case
of full QCD, and given the fact that only limited information about the renormalons are
available in this case, it turned out that the optimal strategy involves the use of the nf

dependence of the perturbative coefficients. In this part of the work, the method that we
employ involves the estimation of coefficients at each power of nn

f , where n ranges from 0
to k, with k representing the highest exactly known power. Additionally, the method has
proven useful in predicting coefficients of the β(as) function, as shown in the Ref. (21).

Eq. (6.7) that describes the imaginary part of the gluonium correlator times a factor of
4π/NAq

4, which is called G(q2), can be written as a function of nf through the numerical
calculation of coefficients g1, . . . , g4 in a series

G(q2) = 1 +
∑
n=1

gnα
n
s , (6.7)

given in Eq. (3.36) to (3.37), such that the result is (15)

G(q2) = 1 + (5.80916 − 0.371362nf )αs + (24.6184 − 3.98941nf + 0.0913684n2
f )α2

s

+ (82.3393 − 24.899nf + 1.49889n2
f − 0.017346n3

f )α3
s + (218.615 − 112.977nf+

+ 12.7653n2
f − 0.397864n3

f + 0.00258089n4
f )α4

s + O(α5
s). (6.8)
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Figure 6.1 – Polynomial fit (blue) to the results of g4 obtained with the PA P 1
2 in the range

1 ≤ nf ≤ 9.

Source: By the author.

Here, we are interested in showing how it is possible to predict each monomial of the
coefficient

g4 = g
(0)
4 + g

(1)
4 nf + g

(2)
4 n2

f + g
(3)
4 n3

f + g
(4)
4 n4

f

= 218.615 − 112.977nf + 12.7653n2
f − 0.397864n3

f + 0.00258089n4
f , (6.9)

where the g(n)
k denote the coefficient associated with the n-th power in nf of g4.

In Ref. (15), a fixed range is considered for the variation of the number of flavors
including values outside the physical limit nf ≤ 6, which is 1 ≤ nf ≤ 9, where nf is an
integer. The idea is to assume that we do not know the coefficient of the order α4

s and
then assess the robustness of our predictions. To do this, it is necessary to calculate the
function G(nf) within the mentioned interval and then apply the Padé approximant for
the following nf values

G(nf = 1) : 1 + 5.438αs + 20.720α2
s + 58.922α3

s + 118.008α4
s + · · · (6.10)

G(nf = 3) : 1 + 4.695αs + 13.472α2
s + 20.664α3

s − 15.9616α4
s + · · · (6.11)

G(nf = 5) : 1 + 3.952αs + 6.956α2
s − 6.852α3

s − 75.2574α4
s + · · · (6.12)

G(nf = 7) : 1 + 3.210αs + 1.170α2
s − 24.458α3

s − 76.9949α4
s + · · · (6.13)

G(nf = 9) : 1 + 2.467αs − 3.885α2
s − 32.987α3

s − 37.2983α4
s + · · ·; (6.14)

where the coefficients highlighted in blue will be postdicted. These postdictions make it
possible to assess each power of nf within the g4 coefficient. For the sake of simplicity, we
will consider for the moment the specific case of the Padé P 1

2 applied directly to the αs

series. Then, the first step is to build the Padé approximant, P 1
2 , for each of these series.
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Table 6.1 – Estimates for the monomials g
(n)
4 from the results of the polynomial fit displayed in

Fig. 6.1

g
(0)
4 g

(1)
4 g

(2)
4 g

(3)
4 g

(4)
4

g4 218.6149 -112.9771 12.7653 -0.3979 0.0026
P 1

2 202.6296 -111.9088 12.4642 -0.3435 0.0008

Source: By the author.

For example, for nf = 1, we have

P 1
2 (nf = 1) = 1 − 0.636248αs

1 − 6.07404αs + 12.3091α2
s

≈ 1 + 5.438αs + 20.720α2
s + 58.922α3

s + 102.846α4
s + · · ·. (6.15)

The coefficient in red in Eq. (6.15) provides a postdiction for the last known coefficient
of G(nf = 1) in Eq. 6.10. By following the same procedure for other values of nf , we
obtain the red points on the graph in Figure (6.1). The next step consists in fitting a
polynomial in powers of nf to these red points in order to extract the coefficients g(n)

4 of
the polynomial dependence on nf of Eq. (6.9), as shown in Table (6.1), of ImΠG2 in terms
of nf . The first three powers are very well estimated, while the n4

f power has an error of
70%. Certainly, this method has its advantages:

1. The exact calculations of observable quantities at higher orders are typically carried
out for each power of nf , as demonstrated in (15). Due to the complexity of the
exact calculation, the results of perturbative coefficients may be presented partially
in terms of powers of nf , e.g., the quantities evaluated in the large-β0 limit. This
allows our estimates to be used to fill this potential gap.

2. Enables the realization of a final estimate, for a given value of nf , with statistically
meaningful errors. It is possible to provide estimates with a Gaussian error, in
contrast to the estimates presented with flat distributions in Chapter 5.

In this context, it is important to note that the fit shown in Figure 6.1 passes almost
exactly through the points, and therefore, the intrinsic error is very small and can be
disregarded since it will be much smaller then the systematic error associated with the
PAs1.

6.2 Postdiction of the Last Known Coefficient of Γ(h → gg)

Here perform the postdiction of the last unknown coefficient associated with the process
h → gg in the OS scheme for the top-quark mass, utilizing various sequences of Padé
1 We are neglecting the potential correlation between g4(nf ).
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Figure 6.2 – Histogram of the distribution of the coefficient c4 for nf = 3, 5, 7.

Source: By the author.

approximants. This method is performed in a similar way to the one used for estimating
the last known coefficient of ImΠG2(s) for determining the coefficient of O(α4

s) in Eq. (3.43).
A successful estimation will enhance confidence in applying the same procedure to the
first unknown coefficient in this decay process. Here, the shape of the fit performed on the
estimates corresponds to that depicted in Figure 6.1; hence, we will omit it.

Padé approximants and Dlog Padés were used in the αs plane (Despite not having
information about the presence of cuts in αs-plane), but only Dlogs were applied in the
Borel space, since we expect the presence of branch cuts in the Borel space. The usual
PAs applied to Borel space are not taken into account in the final results since they
provide unstable estimates when compared with Dlog PAs, which are more trustworthy in
estimates in Borel space. The results of the estimates are shown in Table (6.2), and in
each power of nf , the approximants provide good estimates, except for Dlog1

2 in the n4
f

power, which exhibits a relative error of approximately 580%. Despite this large relative
error, to assign a final value for the estimate in each column of Table 6.2, the adopted
prescription to analyze the result in each nf power was to use as the mean as the central
value, resulting in mean ± error, where this error was obtained by using the maximum
spread divided by two, which represents a flat distribution. From there, we employ a
Monte Carlo simulation to produce estimates for the last known coefficient with a Gaussian
error, as we will discuss later.

Through the results indicated in Table 6.2, it is observed that it is not always the
approximants that yield optimal estimates for one or two powers of nf that will generate
highly accurate estimates for the remaining powers. For instance, Dlog1

2(αs) estimates very
well the coefficients c(0)

4 and c(1)
4 , while from c

(2)
4 to c(4)

4 , the approximant P2
3(αs) proves to

be superior.
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Table 6.2 – Estimates of c
(n)
4 for Γh→gg in the direct OS scheme from the αs plane with depen-

dence on nf .

c
(0)
4 c

(1)
4 c

(2)
4 c

(3)
4 c

(4)
4

exact:O(α4
s) 462.628 -178.466 16.554 -0.440714 0.00258089

P2
3(αs) 448.160 -176.024 16.5298 -0.427476 0.00244874

P3
2(αs) 440.527 -179.164 16.1610 -0.373381 0.00134397

Dlog1
2(αs) 464.098 -178.251 16.2964 -0.382359 0.00060855

Dlog2
1(u) 476.800 -176.054 16.8122 -0.366454 0.00021309

Dlog1
2(u) 482.224 -175.046 15.6677 -0.297499 0.01754420

Mean 462.362 -176.908 16.2934 -0.369434 0.00457879
Error 20.8485 2.0590 0.57225 0.0649885 0.00866555

Source: By the author.

Then, with the purpose of analyzing our final estimates, we can expand the factor K
in Γ(nf )

h→gg(µi) = Γ0K
(nf )
µi , since

Γ(nf )
h→gg(µi) = Γ0

∞∑
n=0

cnα
n
s = Γ0(c0 + c1αs + c2α

2
s + c3α

3
s + c4α

4
s + · · ·). (6.16)

Here, we are specially interested in the last known coefficient c4, in terms of the nf

c4 = c
(0)
4 + c

(1)
4 nf + c

(2)
4 n2

f + c
(3)
4 n3

f + c
(4)
4 n4

f + c
(4)
4 n4

f

= 462.628 − 178.466nf + 16.554n2
f − 0.440714n3

f + 0.00258089n4
f . (6.17)

Setting nf = 3,5,7 and OS top-quark mass mt = 164 GeV in Eq. (6.16), one obtains (15)

K
(3)
OS = 1 + 6.445775αs + 23.69992α2

s + 56.1329α3
s + 64.5259α4

s + · · ·, (6.18)
K

(5)
OS = 1 + 5.703052αs + 15.51204α2

s + 12.6660α3
s − 69.3287α4

s + · · ·, (6.19)
K

(7)
OS = 1 + 4.960329αs + 8.055116α2

s − 19.2021α3
s − 120.458α4

s + · · ·. (6.20)

The exact coefficients highlighted in blue in Eq. (6.18) to Eq. (6.20) will be postdicted with
Gaussian error. This error was propagated using the interval obtained for each monomial
in Table 6.2, evaluated with a flat distribution. Subsequently, the Monte Carlo simulation
was applied, generating the random samples and producing the final results with Gaussian
error for these coefficients

c4(3) = (62 ± 11), (6.21)
c4(5) = (−66 ± 15), (6.22)
c4(7) = (−102 ± 27); (6.23)

which provides excellent estimates for the last known coefficients, c4 ≡ c4(nf ) , indicated
in blue in Eq. (6.18) to Eq. (6.20). This offers promising prospects for predicting the first
unknown coefficient through this method.
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Furthermore, in Figure 6.2, it is observed that between nf = 5 and nf = 7, there is not
only a change in the sign of the coefficient, but also the profile of the error distribution
does not behave exactly like a Gaussian. Consequently, it is notable that the estimate
from Eq. (6.23) is inferior compared to the other evaluated flavor number values. This can
be explained by the greater uncertainty associated with the higher power of nf , so that
for larger values of the flavor number, the associated error is also greater.

6.3 Predictions for the Decay of the Higgs into Two Gluons.

Utilizing the methodologies established in the preceding sections, it becomes possible to
carry out the prediction of the first unknown coefficient of the decay h → gg in full QCD.
This process starting at α2

s and is known up to the order of α6
s, as detailed in Chapter 3.

In Ref. (15), this observable is calculated exactly up to O(α6
s) for several values of nf

and varying renormalization prescriptions of the top-quark mass. Two specific cases were
examined here: the first is for mt = mt(µt), also denominated as the Invariant Scale. The
second is for the On-Shell top-quark mass.

Here, the dependence on the number of flavors, detailed in Ref. (15), will be explored
to obtain an estimate of the first unknown coefficient of this decay in terms of nf , as
demonstrated in sections 6.1 and 6.2. In this case, the method involves performing a fit
of O(n5

f ) to the coefficientes obtained from the Padé and Dlog Padé approximants used in
each series for 1 ≤ nf ≤ 9 (15):

K
(1)
SI = 1 + 7.188498αs + 32.65167α2

s + 112.015α3
s + 298.873α4

s + · · ·,

K
(3)
SI = 1 + 6.445775αs + 23.74728α2

s + 56.0755α3
s + 62.4363α4

s + · · ·,

K
(5)
SI = 1 + 5.703052αs + 15.57384α2

s + 12.5520α3
s − 72.0916α4

s + · · ·,

K
(7)
SI = 1 + 4.960329αs + 8.131350α2

s − 19.3879α3
s − 123.853α4

s + · · ·,

K
(9)
SI = 1 + 4.217606αs + 1.419805α2

s − 40.5769α3
s − 110.998α4

s + · · ·;

where one can note the change in the sign of coefficients for the high nf values. To
predict the first unknown coefficient, the estimates were realized using PAs and Dlogs,
resulting in the predictions in Table 6.3. With these estimates, we realized fits for several
nf values for each approximant highlighted in Table 6.3. It becomes possible to predict
c5 at each power of nf according to Table 6.4. In this heavy-top limit, this nf value has
a phenomenological interest, since in this limit the top-quark decouples, resulting in an
effective theory with five light quarks. We are presenting these two tables explicitly to
enable a comparison between the prediction of c5 with Gaussian error and with error
following a flat distribution.

To extract an estimate of the first unknown coefficient of the Higgs decay into two
gluons, we will initially use the mean as the central value and the maximum spread divided
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Table 6.3 – Estimates of the first unknown coefficients of Γh→gg for the SI scheme and nf = 5.

c5 c6 c7 c8
P3

3(α) -282.884 -69.2993 2991.01 12188.1
P2

4(α) -283.644 -78.123 2940.87 12024.2
P4

2(α) -349.806 -701.351 131.018 5717.22
Dlog2

2(α) -306.838 -374.595 1129.76 5778.6
Dlog1

3(α) -306.366 -370.273 1146.45 5796.01
Dlog1

3(u) -341.994 164.456 6265.12 23159.5
Dlog3

1(u) -252.405 -22.2762 3426.09 673.295

Source: By the author.

Table 6.4 – Estimates of c
(n)
5 for Γh→gg for the SI scheme and with dependence on nf .

c
(0)
5 c

(1)
5 c

(2)
5 c

(3)
5 c

(4
5 c

(5)
5

P2
4(α) 1185.98 -714.314 109.252 -5.46443 0.0872611 -0.00026407

P4
2(α) 1149.18 -721.223 108.734 -5.47562 0.133105 -0.00317741

P3
3(α) 1206.95 -723.111 110.856 -5.65435 0.100096 -0.00046349

Dlog2
2(α) 1199.03 -723.733 109.152 -5.29382 0.0723541 0.00016264

Dlog1
3(α) 1198.49 -723.231 109.042 -5.29168 0.0702081 0.00090767

Dlog3
1(u) 1199.12 -720.727 107.516 -4.58872 0.03438771 0.00522560

Dlog1
3(u) 986.315 -689.671 105.704 -4.52435 -0.0470713 0.02320370

Mean 1160.72 -716.573 108.608 -5.18471 0.0643344 0.00365638
Error 110.318 17.031 2.576 0.565 0.0900882 0.01319060

Source: By the author.

by two as the error. By doing this, we arrive at

cSI
5 = (−303 ± 48). (6.24)

On the other hand, employing the average as the central value and maximum spread
divided by two as the error at each power of nf of the coefficients in Table 6.4, we perform
the Monte Carlo method to obtain a prediction with a Gaussian error, which is

c̃ SI
5 = (−304 ± 106), (6.25)

in which the increase in error is evident, but still, it represents a reasonable increment in
exchange for having errors with a much more precise statistical meaning and arguably
a more conservative result. Hence, we will prefer to work with estimates that possess
Gaussian error.

Having these estimates, we can calculate their impact on the Higgs boson decay width
into two gluons through the truncation error estimation and its renormalization scale
variation. To accomplish this, it is important to mention that physical quantities should
not depend on the renormalization scale µ; however, since we deal with truncated series in
perturbation theory, it is expected that there will be a residual scale dependence. Dealing
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Table 6.5 – Estimates of the first unknown coefficients of Γgg for the OS scheme and nf = 5.

c5 c6 c7 c8
P3

3(αs) -274.171 -69.2993 2991.01 12188.1
P2

4(αs) -274.25 -78.123 2940.87 12024.2
P4

2(αs) -336.639 -701.351 131.018 5717.22
Dlog2

2(αs) -296.502 -374.595 1129.76 5778.6
Dlog4

0(αs) -312.427 -370.273 1146.45 5796.01
Dlog3

1(u) -250.957 -407.398 154.452 4009.26
Dlog1

3(u) -302.14 -535.944 494.381 5308.12

Source: By the author.

Table 6.6 – Estimates of c
(n)
5 for Γh→gg for the OS scheme and with dependence on nf .

c
(0)
5 c

(1)
5 c

(2)
5 c

(3)
5 c

(4)
5 c

(5)
5

P2
4(αs) 1193.68 -713.079 109.107 -5.47292 0.0875461 -0.000264069

P4
2(αs) 1158.75 -719.432 108.74 -5.55621 0.14201 -0.00349669

P3
3(αs) 1210.37 -721.246 110.737 -5.66563 0.100782 -0.000480134

Dlog2
2(αs) 1205.83 -722.067 109.158 -5.36849 0.0812377 -0.000206527

Dlog4
0(αs) 1280.77 -729.095 106.412 -5.29845 0.0884474 -0.000317731

Dlog3
1(u) 1208.29 -720.11 107.687 -4.76849 0.0499473 0.00448315

Dlog1
3(u) 1137.74 -727.718 110.183 -4.75107 -0.0560376 0.0234065

Mean 1199.35 -721.821 108.861 -5.26875 0.0705618 0.0033035
Error 71.515 8.008 2.1625 0.45728 0.0990238 0.0134516

Source: By the author.

with the residual dependence of the renormalization scale in QFT analyzed through
perturbation theory remains a current challenge. There are some methods in the literature
intended to eliminate this dependence, such as the Principle of Maximum Conformality
(PMC) method (81,82). On the other hand, many authors argue that the dependence on
µ cannot be removed in an entirely unambiguous way (83,84).

The standard way to account for the effects of this dependence on physical quantities
Γ(µ) is through the variation of the renormalization scale. Typically, this variation is done
within an interval [Q/2, 2Q], where Q is the hard scale of the process. Since the factor of 2
is somewhat arbitrary, a more reasonable interval would be to consider [Q/ξ, ξQ], as done
in (85), with ξ being an integer greater than or equal to two. In a first moment, we are
only interested in the series error, so that the mt(µ) and αs(µ) errors will be considered
later. Based on the forecast indicated in Eq. (6.25), it is possible to analyze the impact of
this estimate on the decay of the Higgs into two gluons, resulting in

ΓSI
h→gg = Γ0(mh) [1.8463 ± (0.0028)series ± (0.0010)σ] . (6.26)

This result can be rewritten in terms of the uncertainties combined in quadrature

ΓSI
h→gg = Γ0(mh) [1.8463 ± 0.0030] . (6.27)
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Figure 6.3 – The graph above represents the evolution of Γh→gg in the renormalization scale,
presenting all orders known exactly currently, according to Ref. (15), and our
estimates for the N5LO contribution, within the interval: 1/2 < µ/mH < 2. The
one below represents the same but within a more reliable interval: 1/3 < µ/mH < 3.

Source: By the author.

Additionally, it is important to remember that the error associated with αs(µ) and mt(µ)
is not being taken into account in Eq. (6.26).

As mentioned in Chapter 3, we also investigated the OS scheme. The method employed
here involves using the same prescription as that used for the SI scheme, i.e., by estimating
the coefficients c5 and c̃5 are based on Tables 6.5 and 6.6. As a result, in this scheme, we
obtain

cOS
5 = (−292 ± 42), (6.28)
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and the estimate with Gaussian error is

c̃OS
5 = (−293 ± 78). (6.29)

Here, it is possible to note that the central values between Eq. (6.28) and (6.29) are prac-
tically the same, but the Gaussian error is larger than the error in Eq. (6.28). With these
perspectives, it is possible to compare the estimates in the different schemes prescriptions.
The first point is that both equations (6.29) and (6.25), have the same order of magnitude,
showing that the PAs and Dlog’s were not unstable in relation to small variations in the
coefficients’ magnitude due to changes in the top-quark mass scheme.

Furthermore, using the coefficient c̃5 as an estimate of truncation error, the decay
width is

ΓOS
h→gg = Γ0(mh) [1.8462 ± (0.0027)series ± (0.0007)σ] , (6.30)

where the uncertainties, as realized before, can be combined in quadrature

ΓOS
h→gg = Γ0(mh) [1.8462 ± 0.0028] . (6.31)

Here, one can observe smaller errors than the decay within the SI scheme of Eq. (6.26).
Additionally, another possibility is to explore the case where the estimate c̃5 is included

as an N5LO coefficient in the Higgs decay into two gluons, in terms of renormalization
scale evolution. In Figure 6.3, it is evident that the black solid line — representing the
partial sum with the central value of c̃5 — demonstrates a very weak dependence on the
scheme variation, appearing almost flat. The yellow band in the figure represents the
Gaussian error of the estimate.

Through the graph that considers the interval 1/3 < µ/mH < 3, a higher error is
observed due to the greater influence of the coefficient multiplying α7

s. For values of µ/mH

close to three, the coupling is very small, and the associated error has little influence. With
our estimate of the coefficient of order O(α7

s) it becomes clear that the renormalization
scale dependence is reduced, as expected by the renormalization group.





99

7 Conclusion

In this work, we studied the perturbative series for h → gg, with the objective of
understanding its truncation error by employing a model-independent estimation of yet
unknown higher-order coefficients. This was done with rational approximants, also known
as Padé approximants, in combination with the Borel transform of the series. Dlog Padé
approximants were also used in this context. In the present case, since in h → gg we do not
have the large-β0 result which serves as a laboratory to test the method, an intermediate
step that was used was to analyze the corrections to the gluon-gluon correlator, initially
obtained analytically at this limit in Ref. (71).

After the reproduction of the physical gluon-gluon correlator DG2 in the large-β0

limit (71), where we know the coefficients to all orders in perturbation theory, we were
able to explore the behavior of renormalons. The divergent profile of the series sets in
from the twelfth order in perturbation theory in powers of as,r = β1as, and therefore for
any nf . The poles identified in the Borel transform of D̂β0

G2 are located at all negative
integers, except for the logarithmic singularity at u = 3. From u ≥ 4, only cuts are found.
We explicitly state the form of the UV renormalons along with their respective residues
and verify that the dependence on the renormalization scheme affects only the values of
the residues, but not the position of the renormalons.

To analyze the gluon-gluon correlator in the large-β0 limit, we employed various methods
firstly applied in Dβ0

G2 , including Padé-Borel approximants, Dlog Padés in Borel space,
renormalization scheme change, and conformal mapping. Initially, the results obtained
from Padé approximants and Dlog Padés in the MS scheme revealed unsatisfactory
outcomes in the large-β0 limit. However, as shown in chapter 5, these approximants
attempt to reproduce UV renormalons. In this case, where C = −5/3, the residues of
these renormalons are suppressed, while the dominant IR is favored. One way to address
this issue is to eliminate the exponential dependence on C in the Borel transform through
a change in the renormalization scheme, leading to a modification in the coupling constant.
With this scheme change (C = 0), the results of Padé approximants and Dlog Padés
showed a significant improvement in precision in the estimates.

In this limit, we investigated the optimal conformal mapping in conjunction with
renormalization-scheme variation. We projected the Borel space onto a unit circle, where
the renormalons are situated. However, we observed an anomalous behavior in the relative
error in the w-space for estimates of the approximant P 1

2 , yielding highly accurate estimates.
Subsequently, we identified that the exceptional performance of P 1

2 stemmed from its
structural alignment with the inverse transformation ũ(w).

After adopting the prescriptions of varying the positions of the conformal mapping
parameters pIR and pUV in the w-plane highlighted throughout Chapter 5, the final result
for the estimates in the large-β0 limit, considered Padé approximants and Dlog Padés in
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the Borel space can be evaluated. These methods provided the estimate for the first and
second unknown coefficients of the physical gluon-gluon correlator in the large-β0 limit:
c5 = (12 ± 6) and c6 = (29 ± 20), where the relative deviation of the central value with
respect to the true value is approximately 5% for c5, while for c6 it is approximately 2%.
However, the uncertainty associated with predicting the coefficient c6 is higher than the
uncertainty of c5, as expected.

In the context of full QCD, where the decay h → gg is known up to the order of α6
s in

perturbation theory, we also employ Padé approximants to investigate terms at high orders.
However, even though the large-β0 limit guides the methods used, the optimal strategy in
this case turned out to rely on a different strategy, taking advantage of the nf dependence
of the coefficients. This involves making estimates of the coefficient at each power in the
massless flavors number nf . To achieve this, we start by evaluating the imaginary part of
the correlator of two gluons in the MS scheme. It was analyzed to motivate and illustrate
the methods employed in this stage of the work. The last known coefficient of ImΠG2 was
estimated using the Padé approximant P1

2 in the αs-plane, considering its dependence on
nf . In this step, it was exemplified how the fit is performed, considering a range outside
the physical limit: 1 ≤ nf ≤ 9, which provides estimates for the coefficients listed in
Table 6.1. For each integer value of nf in this range, an estimate is made, corresponding
to the red points in Figure 6.1.

After illustrating the method, we estimated the last known coefficient of ΓSI
h→gg for

nf = 3,5,7. The final result of the coefficients was evaluated with a Gaussian error.
Furthermore, when compared to exact values, we observed that the estimates were
excellent, suggesting promising prospects for estimating the first unknown coefficient of
this decay. For example, consider the scenario that corresponds to the physical decay
width for nf = 5. The calculated coefficient is c4(5) = (−66 ± 15), deviating slightly from
the exact value of c4 = −69.33, where the central value of estimates has a relative error of
approximately 5%.

Finally, with this method, estimates for the first unknown coefficient were made for
two different schemes of the top quark mass: the Scale Invariant (SI) scheme and the
On-shell (OS) scheme. We obtained, respectively

c̃ SI
5 = (−304 ± 106), c̃OS

5 = (−293 ± 78). (7.1)

Thus, we analyzed the impact of these estimates on the decay width for the SI scheme, as
our estimate is an evaluation of the truncation error for this quantity, according to

ΓSI
h→gg = Γ0(mh) [1.8463 ± (0.0028)series ± (0.0010)σ] , (7.2)

where “series” refers to the truncation error estimate, and σ represents the error of PAs.
For the OS scheme we obtained

ΓOS
h→gg = Γ0(mh) [1.8462 ± (0.0027)series ± (0.0007)σ] . (7.3)
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Furthermore, another possibility that we explored was to consider the estimate of
c5, with its respective error, as the N5LO coefficient to analyze the evolution with the
renormalization scale of the Higgs decay into two gluons. A very small variation of Γh→gg

was observed in the interval ξ < µ/mh < 1/ξ, for ξ = 2; while for ξ = 3 the central value
still varies very little, and the uncertainty associated with the estimate is more significant
for low values of µ/mh. This occurs because, in this regime, the value of αs(µ) is higher,
and therefore, the influence of the perturbative coefficient value is greater. Therefore, our
estimate is in accordance with what is expected physically for the quantity Γh→gg at high
orders, regarding the variation of the renormalization scale.

Our results show that the truncation error of series and the stabilization with respect
to variations in µ is under control. It is, however, important to increase the precision
in the determination of αs(µ), since if if the αs error is propagated (15, 86), it largely
dominates the final theoretical uncertainty of the decay width.
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Appendix A

To understand how the representation decompositions are carried out, the Young
tableaux method can be employed. This method provide a straightforward approach to
determining the dimensions of algebraic decompositions. To put this into practice, it is
necessary to follow the next steps:

Figure A. 1 – This figure represents the Young tableaux of different dimensions in terms of
(m1, m2) for the SU(3) group.

Source: By the author.

1. Each representation will be denoted by a number of rows and each row will contain
a number of boxes. The representation dimension will be determined by the value of
fundamental weights (m1,m2), with m1/2 beeing non-negative integers, where the
weight is written as λ = m1λ1 + m2λ2. Here the λ1 and λ2 are the fundamental
weights. For the SU(3) group, the fundamental representation is shown by the
Figure A. 1.

2. There are rules for the tensorial products between the representations. Considering
that the main goal is the decomposition of the products which correspond to a
reducible representation in others irreducible. The other are obtained via: combining
the boxes by always placing more squares above the rows, i.e., it is prohibited to
have a back row with a greater number of squares as is shown in the Figure A. 2.
The main objective was to combine the two columns on the left-hand side of the
equation and then create a product with the last one, primarily resulting in a singlet
state and proving that this state is possible.

3. Evaluate the dimension of representations dimDλ obtained in the final of this method.
To do this, simply employ the formula for the dimensionality of the SU(3) group,
which is given in terms of m1 and m2. In the context of Young diagrams, m1

represents how many more boxes the first row had than the second one, and m2

follows the same rule between the second and third row.
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⊗ ⊗ = ⊕ ⊕ ⊗

= ⊕...

⊕...

Figure A. 2 – This figure represents the Young Tableaux of a decomposition of three anti-triplet
products.

Source: By the author.

The underlying principle of this method lies in evaluating the dimensions of all possible
combinations. The approuch used here is employing the Weyl dimension formula (26)

dimDλ =
∏

αi>0[(m1 + 1)λ1 + (m2 + 1)λ2] · αi∏
α>0 δ · αi

, (4)

where δ is the dominant weights of the su(3) algebra, while αi, with i = 1,2,3 represents
the simple roots, which after making the product is structured as follows

dimDλ = 1
2(m1 + 1)(m2 + 1)(m1 +m2 + 2).

One interesting example is evaluate the possibility of the existence of a anti-baryon that
is a state made of three anti-quarks B̄ ∝ |q̄q̄q̄⟩ the Young table method. To verify if the
bound state of three anti-quarks, that is we can combine three anti-triplet representations
and scrutinize whether there is the presence of a singlet state in the final result. As it is
possible to see in Figure A. 2, the boxes are combined according to the rules established
earlier: first, two columns are combined, and later the other one. It is not necessary to
make all of these combinations to see that it will be possible to obtain an anti-baryon
state, as shown in the singlet diagram presented in the final result. It is sufficient to note
that in this last result, the difference between the number of boxes in each row is zero
(m1 = m2 = 0), indicating a singlet state.
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Appendix B

Last Known Wilson Coefficient C1

c
(SI)
4 = −854201072999
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Last Known Coefficient of Imaginary Part of ΠG2

g4 = +C4
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Appendix C

Form is a computational system designed to optimize calculations using machine
resources more fundamentally and compactly than other algebraic computing systems.
It will be employed for computing the numerator of h → gg process. After variables are
declared, the numerator can be obtained using the function Trace4,1, which makes all
contractions of γµ’s matrix and gives the final result as shown above by N.

FORM 4.2 (Sep 14 2017) 64-bits Run: Wed Oct 26 09:17:01 2022
Vectors k,p2,p3;
Symbols mt,i,gs,z,x;
Indices mu, nu, rho, teta, alfa,beta,gamma;
Local N = (g_(1,rho)*k(rho)- g_(1,beta)*p2(beta) + mt)*g_(1,mu)*(g_(1,teta)*
k(teta) + mt)*g_(1,nu)*(g_(1,alfa)*k(alfa)+ g_(1,gamma)*p3(gamma) + mt);
Trace4,1;
Print +s;
.End;

Time = 0.00 sec Generated terms = 21
N Terms in output = 8
Bytes used = 404

N =
+ 16*k(mu)*k(nu)*mt
+ 8*k(mu)*p3(nu)*mt
- 8*k(nu)*p2(mu)*mt
- 4*p2(mu)*p3(nu)*mt
+ 4*p2(nu)*p3(mu)*mt
+ 4*d_(mu,nu)*mt^3
- 4*d_(mu,nu)*k.k*mt
- 4*d_(mu,nu)*p2.p3*mt
;
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Appendix D

Wick Rotation

We need to work with Euclidean quantities, and therefore, we will perform a Wick
rotation (55). Essentially, what is realized is a shift k0 → ik0, and thus

k2 = −(k0
E)2 − k2

E ≡ −k2
E,

dk0 = idk0
E,

dDk = idDkE.

Here, kE is the Euclidean momentum. Then, consequently, the integral (8) can be rewritten
as

G(D,α,β, a2) = i(−1)α−β
∫ dDkE

(2π)D

(k2
E)α

(k2
E + a2)β

. (6)

The angular integral can be simply written as (34)∫
dΩd = 2πD/2

Γ(D/2) . (7)

With this last relationship (7), it is possible to rewrite Eq. (6) considering only a radial
integral in the momentum variable from zero to infinity

G(D,α, β, a2) = 2i(−1)α−β

(4π)D/2Γ(D/2)

∫ ∞

0
dkE

k2α+D−1
E

(k2
E + a2)β

. (8)

For practical reasons, we want to express the integral in terms of a variable that ranges
from 0 to 1. Thus, the chosen variable is

z ≡ a2

(k2
E + a2) → dz = − 2a2kE

(k2
E + a2)2dkE, (9)

where, in order to rewrite kE and dkE in terms of z, it is necessary to isolate these terms
in the previous equation, resulting in

kE =
[
a2

z
(1 − z)

]1/2

, dkE = −1
2dz(1 − z)−1/2(a−a)

(
a2

z

)3/2

. (10)

Then, it is sufficient to extend this structure to the integral (8) to arrive at

G(D,α, β, a2) = i(−1)α−β

(4π)D/2Γ(D/2)

∫ 1

0
dz(a2)α−β+D/2zβ−α−D/2−1(1 − z)α+D/2−1. (11)

This enables us to write (34)

G(D,α,β,a2) = i(−1)α−β(a2)α−β+D/2

(4π)D/2Γ(D/2) B(β − α−D/2, α+D/2), (12)

where B(m,n) is the beta function

B(m,n) =
∫ 1

0
dzzm−1(1 − z)n−1 = Γ(m)Γ(n)

Γ(n+m) . (13)
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Figure D. 3 – Topology of the one-loop massless propagator diagram.

Source: By the author.

With the objective of solving the loop integral in Figure D. 3, we arrive at(76)∫ ddk

Dn1
1 Dn2

2
= iπd/2(−p2)d/2−n1−n2G(n1, n2), D1 = −(k + p)2, D2 = −k2. (14)

Before developing G(n1, n2), it is necessary to introduce the so-called α-parametrization .
With this parametrization, we can rewrite the denominator of an integral as:

1
an

= 1
Γ(n)

∫ ∞

0
e−aααn−1dα. (15)

After employing Wick rotation in conjunction with the parametrization α for the integral,
one arrives at

G(n1,n2) = π−d/2

Γ(n1)Γ(n2)

∫
e−α1(k+p)−α2k2

αn1−1
1 αn2−1

2 dα1dα2d
dk, (16)

that one can still simplify the exponent through a change of variables in momentum

k′ = k + α1

α1 + α2
p, (17)

after making this change, the following result is obtained

G(n1,n2) = π−d/2

Γ(n1)Γ(n2)

∫
exp

[ −α1α2

α1 + α2

]
(α1 + α2)−d/2αn1−1

1 αn2−1
2 dα1dα2. (18)

Then, performing the variable changes α1 = ηx and α2 = η(1 − x), we arrive at

G(n1,n2) = 1
Γ(n1)Γ(n2)

∫ 1

0
xn1−1(1 − x)n2−1dx

∫ ∞

0
e−ηx(1−x)η−d/2+n1+n2−1dη

= Γ(−d/2 + n1 + n2)
Γ(n1)Γ(n2)

∫ 1

0
xd/2−n2−1(1 − x)d/2−n1−1dx. (19)

In which it is possible to use the Euler beta function discussed earlier, finally arriving at

G(n1,n2) = Γ(−d/2 + n1 + n2)Γ(d/2 − n1)Γ(d/2 − n2)
Γ(n1)Γ(n2)Γ(d− n1 − n2)

. (20)
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