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ABSTRACT

GOETTEMS, E. I. On the physics of dissipative systems: classical dynamics
and quantum dissipative adaptation. 2024. 162p. Thesis (Doctor in
Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2024.

The study of dissipative systems holds significant interest in physics. This thesis aims to
explore these phenomena in both classical and quantum regimes. In the first part, we uti-
lize the system-reservoir approach to investigate the dynamics of two Brownian particles
immersed in the same bath. Two methods are employed to address this problem: one with
bilinear coupling and the other with nonlinear coupling between the particles and the
bath. The extension of the system to include two particles with bilinear coupling yields
unphysical results, such as free-particle motion for the relative coordinate and a lack of
interaction between closely spaced particles. To address this issue, authors have been in-
troduced an exponential coupling. In this work, we propose a method to reconcile both
linear and nonlinear couplings. We demonstrate how to derive the same nonlinear dissi-
pation rates starting from the bilinear Lagrangian, achieved through a modified spectral
function that explicitly depends on the distance between the particles. Additionally, we
implement a modified spectral function to mitigate anomalous diffusion observed in the
standard nonlinear model, along with a phenomenological model describing hydrodynamic
interaction between a pair of Brownian particles in a viscous fluid. In the quantum regime,
we adopt the same system-reservoir approach to investigate the dissipative adaptation hy-
pothesis proposed by Jeremy England. This hypothesis proposes a general thermodynamic
mechanism that explains the self-organization of systems through the dissipation of work
absorbed from an external drive. In the second part of this thesis, we explore the quan-
tum dynamics of systems subjected to an external drive, evaluating the thermodynamic
quantities of a self-organization process. To do so, we utilize a time-dependent spin-boson
Hamiltonian that characterizes a particle subject to a metastable double potential with
time-dependent parameters controlling the asymmetry of the wells. Our objective is to
demonstrate that the asymmetric potential can localize the particle in the unstable side
of the well and verify that this transition results in the highest energy absorption. In con-
clusion, we propose further investigations into the driven spin-boson model to establish a
comprehensive theory of the system’s evolution and its thermodynamic implications.

Keywords: spectral function; Brownian motion; dissipative adaptation; thermodynamics;
asymmetric potential.





RESUMO

GOETTEMS, E. I. Sobre a física dos sistemas dissipativos: dinâmica clássica e
adaptação dissipativa quântica. 2024. 162p. Tese (Doutorado em
Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2024.

Os estudos de sistemas dissipativos são de grande interesse na física. Nesta tese, temos
como objetivo explorar esse fenômeno tanto nos regimes clássico quanto quântico. Na
primeira parte, utilizamos a abordagem sistema-reservatório para investigar a dinâmica
de duas partículas Brownianas imersas no mesmo reservatório. Existem duas maneiras de
abordar esse problema: um com acoplamento linear e outro com acoplemnto não linear en-
tre as partículas e o banho. A extensão do sistema de interesse para incluir duas partículas
com o acoplamento bilinear resulta em resultados não físicos, como movimento de partícu-
las livres para a coordenada relativa e a ausência de efeitos entre partículas próximas umas
das outras. Para abordar esses problemas, na literatura é empregado um acoplamento ex-
ponencial entre partícula e banho. Neste trabalho, propomos uma maneira de reconciliar
os acoplamentos bilinear e não linear. Demonstramos como derivar as mesmas taxas de
dissipação não linear a partir da Lagrangiana bilinear. Fizemos isso por meio de uma
função espectral modificada que depende explicitamente da distância entre as partículas.
Além disso, implementamos uma função espectral modificada para evitar a difusão anô-
mala observada no modelo não linear usual, juntamente com modelo fenomenológica que
descreve a interação hidrodinâmica entre um par de partículas Brownianas em um fluido
viscoso. No regime quântico, adotamos a mesma abordagem de sistema-reservatório para
investigar a hipótese de adaptação dissipativa proposta por Jeremy England. Essa hipótese
propôe m mecanismo termodinâmico geral que explica a auto-organização de sistemas por
meio da dissipação de trabalho absorvido de uma fonte externa. Nesta segunda parte da
tese, exploramos a dinâmica quântica de sistemas sujeitos a uma força externa, avaliando
as grandezas termodinâmicas de um processo de auto-organização. Para isso, utilizamos
um Hamiltoniano spin-boson dependente do tempo que caracteriza uma partícula sujeita
a um potencial duplo metastável com parâmetro dependente do tempo que controla a
assimetria dos poços. Nosso interesse é mostrar que o potencial assimétrico é capaz de
localizar a partícula no lado instável do poço e verificar que esta transição resulta na
maior absorção de energia. Em conclusão, propomos investigações adicionais no mod-
elo de spin-boson dirigido, a fim de estabelecer uma teoria mais abrangente de como os
sistemas evoluem e suas implicações termodinâmicas.

Palavras-chave: função espectral; movimento Browniano; adaptação dissipativa; ter-
modinâmica; potencial assimétrico.
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1 INTRODUCTION

The exploration of dynamics in physics has always offered a vast realm for investi-
gations. Since the introduction of Newton´s laws of motion in the XVII century, studies of
the way objects move have been a central focus in physics. In our daily lives, movements
that cease when energy flow stops are witnessed - a phenomenon explained by dissipa-
tion (1). Therefore, understanding the physical system’s dynamics is fundamental across
several areas of physics, spanning both classical and quantum regimes.

The theoretical description of dissipative systems often involves an open system
interacting with its environment through collisions or other means, facilitating energy
exchanges (2). Microscopic theoretical models have been proposed towards descriptions
of dissipation in classical (3, 4) and quantum systems (5,6).

Brownian motion is the most widely studied example of dissipative dynamics out-
of-equilibrium (1, 7). Such a dynamic phenomenon describes a particle in a fluid known
as thermal bath, which consists of many smaller particles. The suspended particles are
typically much heavier than the medium ones. It is a random dynamics that depends
on the characteristics of the fluid, such as viscosity. Since the complete dynamics of the
particles in the thermal bath cannot be described, its statistical properties and stochastic
theory can be used for modeling Brownian motion.

The theoretical approach that describes that phenomenon is the Langevin equation

mq̈ + ηq̇ + V (q) = f(t), (1.1)

where q is the position coordinate, m is the mass of the particle, η is the damping coeffi-
cient, and V (q) is an external potential. When an ensemble of identically prepared systems
initially in thermal equilibrium and for high temperatures is considered, the fluctuating
force, f(t), satisfies relations ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = 2ηkBT δ(t− t′), characteristic
of white noise∗. In the absence of an external force applied to the particle (f(t) = 0), the
average velocity ⟨q̇⟩ of this dynamic system is null and its variance ⟨q̇2⟩ is finite.

When a single Brownian particle is dealt with in the classical regime, both linear
and nonlinear couplings result in equations of motion that describe the same dynamics
for the Brownian particle in appropriate limits †. However, when the system of interest
is extended to two Brownian particles, the most intuitive method - considering a bilinear
coupling between the particles and a bath of oscillators - leads to an unphysical behavior,
∗ Null average and a memoryless process translate these statistical properties, indicating no

correlation between fluctuating forces for times distinct to the characteristic time, t′, i.e.,
collisions between particles are independent.

† Ohmic limit and V (x) = 0.
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which includes a free-particle motion for the relative coordinate and the absence of mutual
effects between particles closer to each other, as stated by Duarte and Caldeira (8). The
authors proposed a nonlinear system-reservoir coupling of an imaginary exponential type
to address those issues.

The original insight for the use of the system-reservoir approach was the explana-
tion of an otherwise intractable interaction with a complex environment. Ref.(8) provides
an extension of that conventional approach to multiple particles; however, its results are
still under debate. Some parameters, such as dissipation rate, require a clear explanation;
therefore, researchers have investigated the relevance of environment-induced effects in
various contexts, including biologically-inspired problems (9,10), non-Markovianity (11),
synchronization (12), quantum entanglement (13–16), among others.

The study in Ref.(8) was expanded into two particles in the present research,
addressing a gap in the literature on bilinear Hamiltonian and equations of motions,
which carry physical significance. The extension introduces a modified spectral function
explicitly dependent on the relative distance between the two Brownian particles. Our
method offers a versatile approach to constructing a phenomenological model for non-
linear environment-induced forces. As an application, the way to avoid the anomalous
diffusion resulting from the standard nonlinear model is discussed (8) and how to phe-
nomenologically model hydrodynamic interactions between a pair of Brownian particles
in a viscous fluid is demonstrated (17).

Whereas the nonlinear model for two Brownian particles yields valuable equations
of motion (8), the bilinear approach remains significant in both experimental and the-
oretical investigations. Recent demonstrations of environment-induced entanglement in
the optical domain are related to the linear model results (18). Moreover, the linearity of
the Hamiltonian system enables the model to be solvable in both quantum and classical
regimes.

The importance of linearity can be highlighted, as in Ref.(19), in which the authors
adopted a method that relied on an ansatz and the model’s linearity to characterize
entropy production by a quantum Brownian particle. By expanding the ansatz to multiple
quantum Brownian particles, it could contribute to the research in the field of far-from-
equilibrium thermodynamics of quantum many-body dissipative systems (20–22).

Researchers have extensively studied the model involving one Brownian particle
in a set of harmonic oscillators. They have adopted it from optics, where light reflects
and transmits through two mirrors, but interaction with the environment leads to energy
loss. The coupling between internal and external electromagnetic fields, described by
normal modes, explains such a energy loss. Each mode behaves like a harmonic oscillator,
influencing energy loss over time and harmonic oscillators are treated as linearly coupled in
amplitudes (23). The equations of motion resulting from the approach, under appropriate
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limits, resemble Eq.(1.1), which describes the instantaneous interaction between particle
and reservoir.

Despite our application of the classical regime to Brownian particles in the con-
text of irreversible processes, Eq.(1.1) has also been used to describe the dynamics of the
magnetic flux in a SQUID‡ ring (23, 24). A classical single Brownian particle equation
of motion can mathematically describe the magnetic flux, ϕ, trapped in the ring. Conse-
quently, a similar Langevin equation can be derived for this quantum system (23), given
by

Cϕ̈+ ϕ̇

R
+ U ′(ϕ) = If (t), (1.2)

where C represents capacitance, R is resistance, U stands for potential, and If is a fluctu-
ating current with properties such that ⟨If (t)⟩ = 0 and ⟨If (t)If (t′)⟩ = 2kBTR

−1δ(t − t′)
(25).

The way the systems evolve during dissipative processes must be examined to-
wards the description of a general approach to dissipation in quantum mechanics (25).
Researchers have considered two methods to generalize this study to quantum Brownian
particles.

An approach involves the search for new quantization schemes and the other relies
on the fact no system in nature is fully isolated. Therefore, researchers can consider a
system of interest coupled with a bath or reservoir responsible for energy flow and where
dissipation occurs. The latter approach, known as the system-reservoir approach, has been
adopted for handling Hamiltonian systems.

The system and the environment can be considered isolated and can be quanti-
fied. Additionally, the interaction between the system of interest and the reservoir can
be modelled considering the environment a set of non-interacting harmonic oscillators.
Consequently, Langevin equation can be reproduced for the variable that describes the
dynamics of the system of interest in appropriate limits.

Vernon first proposed a simple way to describe the bath (26), conceptualized as a
set of an infinite number of harmonic oscillators coupled to the system of interest. The
Hamiltonian of the total system can be written as

HSR = HS(x, p) +HR(Rk, pk) +HI(x,Rk), (1.3)

where HS represents the Hamiltonian of the system of interest, with x and p correspond-
ing to coordinate and momentum, respectively, HR describes the bath formed by many
harmonic oscillators, with Rk and pk being coordinate and momenta, and HI denotes the

‡ Superconducting quantum interference device, where quantum tunneling can be observed on
a macroscopic scale.
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coupling between the system of interest and the reservoir, i.e., their interaction, which
involves the coordinate of the system of interest, x, and the coordinate of the bath, Rk.

The framework has proven useful across classical and quantum domains (1, 7, 25)
and can be applied to cases in which particles and the environment are linearly cou-
pled, including strongly damped systems such as Caldeira-Leggett model. Under certain
conditions, the model can accurately replicate Brownian motion in the classical regime.
Initially, it addressed the quantum dissipative tunneling problem using the Brownian
motion paradigm (23).

The system-reservoir Hamiltonian, denoted as HSR, is expressed as

HSR = p2

2m + V (x) +
N∑

k=1

 p2
k

2mk

+ mkω
2
k

2

(
Rk −

Ck

mkω2
k

x

)2
 , (1.4)

where the particle has mass m and momentum p, situated in a potential V at posi-
tion x. The bath comprises N harmonic oscillators with ωk frequencies, mk masses, and
pk,momenta, located at positions Rk. Ck depend on the specifics of the coupling between
the particle and the bath.

Towards extending the study of dissipation to quantum systems, this research
explores the concept of dissipative adaptation. The hypothesis, first proposed for the
classical regime (27), is a generalization of Boltzmann distribution for non-equilibrium
systems. Valente (21) derived the quantum extension of the hypothesis for a Λ model§.
The present thesis investigates the driven spin-boson model and its connections with
thermodynamic quantities for exploring the concept of dissipative adaptation in the driven
spin-boson system.

As addressed in (28), the spin-boson model has been extensively investigated and
continues to be a focal point of research. It is considered a representative example of an
open quantum system, designated as a system in contact with an environment capable
of exchanging energy with the surrounding medium (29–34). This theoretical framework
describes the interaction of a single spin (qubit) with a dissipative environment character-
ized by an infinite number of bosonic modes. The model holds significance across various
domains of physics and chemistry, finding applications in electron tunneling (29, 30), ex-
citation transport within biological complexes (31,32), advancements in superconducting
qubit technologies (33,34), among others.

In addition to reconciling both nonlinear and linear coupling with a proposed
modified spectral function, our primary goal is to address the following question: Is it
possible to demonstrate whether an asymmetric perturbation can cause a particle to
localize in one of the potential well bottoms? If so, what is the system’s energy analysis
(dissipated work)?
§ Λ model is a three-level system with one excited state and two nondegenerate ground ones.
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Thesis outline

This thesis investigates the dissipation of classical and quantum systems and,
therefore, was divided into two main research parts, namely, classical and quantum dy-
namics. The former, focused on two Brownian particles with a nonlinear response theory,
have resulted in a paper published in a peer-reviewed journal (22).

The second part is devoted to a study of quantum dissipative systems, specifi-
cally exploring the driven spin-boson model and the dynamics of bistable quantum sys-
tems through the path integral formalism towards identifying non-equilibrium localization
phenomena and their relation to thermodynamic quantities, such as work.

The thesis is structured as follows: Chapter 2 addresses standard bilinear (Sec.
2.1) and nonlinear models (Sec. 2.2) for the obtaining of Langevin equations of motion
for two Brownian particles as the system of interest. Moreover, the dynamics containing a
nonlinear dissipative force is derived from bilinear Lagrangian (Sec. 2.3). The method pro-
poses a spectral function that depends on the relative distance between the particles. The
approach opens path for the description of diverse scenarios, such as discussions on how to
avoid the anomalous diffusion that appears in the standard nonlinear model (Sec. 2.3.2).
Additionally, the application of the approach is explored towards the modelling of a pair
of Brownian particles sharing the same hydrodynamic environment (Sec. 2.3.3).

Chapter 3 delves into a study of the quantum dynamics of Brownian particles (Sec.
3.1) and introduces the formalism of the path integral (Sec. 3.2), which plays a crucial
role in deriving the dynamics of such systems.

Chapter 4 details dissipative adaptation by firstly introducing the key concepts of
equilibrium (Sec. 4.1) and out-of-equilibrium systems (Sec. 4.2). It then briefly overviews
how to derive England’s equation for the hypothesis of the nonequilibrium thermodynam-
ics mechanism known as dissipative adaptation and then revises the quantum version of
that notion for a three-level system (Sec. 4.4).

Chapter 5 presents the system and models addressed towards reporting the results
for the driven spin-boson model, which include the two-level systems in a double-well
potential with a specific focus on the spin-boson model (Sec. 5.1).

Chapter 6 introduces our model, which involves the application of a time-dependent
bias to a spin-boson model using the path integral formalism (Sec. 6.1.1). Towards ver-
ifying the possibility of organizing the system in such a non-equilibrium state, not only
is the thermodynamic analysis of the dissipative system explored (Sec. 6.3), but also the
transition probability is derived from a ground state to an excited one (Sec. 6.5)

Finally, Chapter 7 reports the findings and some open questions. The Appendices
provide some of the detailed derivations.
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2 CLASSICAL DYNAMICS

Both approaches, linear and nonlinear couplings, have extensively explored the
study of a Brownian particle coupled to a bath of independent harmonic oscillators (8,
23,25,35). However, the development of a system-reservoir approach for multiple particles
in a collective environment is not straightforward and researchers have put proposed
conflicting models to tackle the problem.

This chapter revisits the equations of motion for two Brownian particles with the
use of linear and nonlinear coupling between the particles and bath of oscillators. The
first two sections report on the Brownian particles being coupled to only the bath and not
to each other and the statistical properties of the fluctuating forces that lead to distinct
dynamics are briefly reviewed. The third section is devoted to the results. The dynamics of
two Brownian particles are obtained with no exponential coupling, avoiding the coupling
solely to the center of mass (14). Although, in the last section, a Lagrangian with a
direct coupling term between the particles was chosen, it can be made null for recovering
Langevin-like equations of motion. The modification does not alter the invariance of the
Langragian presented in Ref.(14). The way a bilinear model can obtain the nonlinear
dissipation term ηe[u(t)] from a nonlinear coupling approach is highlighted in the first
part of the thesis.

2.1 Standard bilinear model

Researchers have extensively explored the usual Caldeira-Leggett model, which
bilinearly couples the position coordinates of a Brownian particle to the position coordi-
nates of the bath, in both classical and quantum regimes (1, 13, 25, 36, 37). However, its
extension for multiple Brownian particles is not straightforward, since some unphysical
effects may emerge (8,25).

An explicit Lagrangian must be formulated for the total system for the obtaining
of Langevin equation in the appropriate limit. For the bilinear model, the Lagrangian of
two classical Brownian particles immersed in a same environment reads (8),

L = m

2 (ẋ2
1 + ẋ2

2)− V (x1)− V (x2) +
N∑

k=1

mk

2 (Ṙ2
k − w2

kR
2
k)

−
N∑

k=1
Rk

(
C

(1)
k x1 + C

(2)
k x2

)
−

N∑
k=1

(
C

(1)
k x1 + C

(2)
k x2

)2

2mkw2
k

.

(2.1)

The system of interest, which consists of the two Brownian particles, has two independent
degrees of freedom, where ẋi and xi (i = 1, 2) are the velocity and the positions of the
particles, respectively, and m is mass. The bath is a collection of non-interacting harmonic
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oscillators, with Ṙk and Rk representing the velocity and position of the k-th harmonic
oscillator, respectively, with frequency ωk and mass mk.

A linear coupling was assumed in the particle’s position between each Brownian
particle and oscillators, with distinct coupling strengths C(i)

k so that the particles can be
distinguished and the local and non-local effects can be separable. According to Ref.(8),
the local effect describes the energy dissipation of each particle. In contrast, the so-called
non-local effect mediates the interaction between the particles∗. The last term of the
Lagrangian is a counterterm inserted for generating the environment-induced adjustment
of the external potential †.

Such a microscopic model, from which the Langevin-like equation was recovered,
was adopted. A bath was chosen as a set of harmonic oscillators because they are precisely
solvable in both classical and quantum regimes. The choice for modelling the thermal bath
is justified by techniques like Raman spectroscopy, a type of vibrational spectroscopy‡. Re-
searchers have revealed the harmonic oscillator’s behavior is consistent with the molecule’s
quantized vibrational energy levels (38, 39) and a quantum optical application in which
the bath comprises a set of harmonic oscillators representing the light field quantized can
be obtained (40,41).

Euler-Lagrange equations§ (42) can be derived for both system and bath calculat-
ing

mẍi + dV (xi)
dxi

+
N∑

k=1

C(i)
k Rk + C

(i)
k

mkω2
k

(C(1)
k x1 + C

(2)
k x2)

 = 0

N∑
k=1

(
mkR̈k +mkω

2
kRk + C

(1)
k x1 + C

(2)
k x2

)
= 0,

where, i = 1, 2. The latter can be solved by Laplace transform method (43), from which
the definition of the fluctuating force and the dissipation term can be addressed according
to the relation with the system’s variables. Solving the bath coordinate equation leads to
relation

Rk(s) =
N∑

k=1

 sRk(0)
s2 + ω2

k

+ Ṙk(0)
s2 + ω2

k

− (C(1)
k x1(s) + C

(2)
k x2(s))

mk(s2 + ω2
k)

 . (2.2)

∗ Although called the same way as in quantum mechanics, terms local and non-local here
represent the interaction between the particles mediated by the bath not in the sense of
representing quantum effects, such as locality.

† The counterterm guarantees the translational invariance of the Lagrangian.
‡ Used for the analysis of molecular vibrations.
§ The variational invariance of the (Hamilton’s Principle) is imposed for the obtaining of Euler-

Lagrange equations of motion.
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Applying the Laplace transform results in

Rk(t) =
N∑

k=1

 1
2πi

∫ σ+i∞

σ−i∞

[
sRk(0) + Ṙk(0)

s2 + ω2
k

]
estds− 1

2πimk

∫ σ+i∞

σ−i∞

(C(1)
k x1(s) + C

(2)
k x2(s))

s2 + ω2
k

estds

 ,
(2.3)

where identity 1
s2+ω2

k
≡ 1

ω2
k

(
1− s2

s2+ω2
k

)
can be used so that

Rk(t) =
N∑

k=1

(
1

2πi

∫ σ+i∞

σ−i∞

[
sRk(0) + Ṙk(0)

s2 + ω2
k

]
estds−

(
C

(1)
k x1(t) + C

(2)
k x2(t)

)
mkω2

k

+ d

dt

[
1

2πmkω2
k

∫ σ+i∞

σ−i∞

s

s2 + ω2
k

(
C

(1)
k x1(s) + C

(2)
k x2(s)

)
estds

])

=
N∑

k=1

(
1

2πi

∫ σ+i∞

σ−i∞

[
sRk(0) + Ṙk(0)

s2 + ω2
k

]
estds−

(
C

(1)
k x1(t) + C

(2)
k x2(t)

)
mkω2

k

+ d

dt

[
1

mkω2
k

∫ t

0
cosωk(t− t′)

(
C

(1)
k x1(t′) + C

(2)
k x2(t′)

)
dt′
])

.

Therefore,

Rk(t) =
N∑

k=1

(
Rk(0) cosωkt+ Ṙk(0)

ωk

sinωkt−

(
C

(1)
k x1(t) + C

(2)
k x2(t)

)
mkω2

k

+ cosωkt

mkω2
k

(
C

(1)
k x1(0) + C

(2)
k x2(0)

)
+ 1
mkω2

k

∫ t

0
cosωk(t− t′)

(
C

(1)
k ẋ1(t′) + C

(2)
k ẋ2(t′)

)
dt′
)
.

(2.4)

The above equation is derived from the convolution theorem and Laplace transform of
trigonometric functions (cosine and sine) (43).

Replacing Rk(t) into the equation for the i-th particle leads to the equation of
motion

mẍi + dV (xi)
dxi

+
N∑

k=1

C
(i)2
k

mkω2
k

∫ t

0
cosωk(t− t′)ẋi(t′)dt′

+
N∑

k=1

C
(i)
k C

(j)
k

mkω2
k

∫ t

0
cosωk(t− t′)ẋj(t′)dt′ = fi(t),

where fi(t) can be interpreted as the fluctuating force determined by the initial conditions
of the bath,

fi(t) = −
∑

k

C
(i)
k

[
Ṙk(0)sinωkt

ωk

+ R̃k(0) cosωkt
]
, (2.5)

where R̃k(0) = Rk(0) +
(
C

(1)
k x1(0) + C

(2)
k x2(0)

)
/(mkω

2
k).

mk, ωk, and Ck must be specified for each oscillator for characterizing the bath.
A single parameter that includes all those variables would be convenient; therefore, the
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bath’s spectral density, J(ω), related to the normal modes of the bath and its interaction
with the Brownian particles is introduced. In other words, those functions assign a weight
to the influence of a given frequency of the bath spectrum on the motion of the Brownian
particles (25,44).

The sum can be replaced in J(ω) with an integral for a large number of bath’s
harmonic oscillators, thus making the spectral density continuous in ω, called Ohmic
spectral function. Considering a continuum frequency limit for the spectrum of the bath
implies smooth functions, hence, linear in ω. Below is the expression for the spectral
density;

J(ω) = π

2

N∑
k=1

C2
k

mkω2
k

δ(ω − ωk) ≡ η ωΘ(Ω− ω). (2.6)

High-frequency cutoff Ω is the bath’s characteristic frequency (45,46). It sets the timescale
of the microscopic motion of the environment’s components (25) and also avoids diver-
gence in the force-force correlation function for high frequencies (47). Here, Θ represents
the Heaviside step function.

Regarding the dissipation term, the distribution of oscillators is similar to that pro-
posed by Leggett (48), according to which the bath represents a homogeneous medium¶;
consequently, the same effect is expected on each particle. Moreover, the recovery of a
linear dependence of the velocity term is expected in the Langevin-like equation (44).
Assuming an Ohmic bath with the usual spectral function for each particle as

Ji(ω) = π

2

N∑
k=1

C
(i)2
k

mkwk

δ(ω − ωk) = ηi ωΘ(Ω− ω), (2.7)

and a mixed spectral function,

J12(ω) = π

2

N∑
k=1

C
(1)
k C

(2)
k

mkwk

δ(ω − ωk) = η12 ωΘ(Ω− ω). (2.8)

The latter describes the interaction between the particles. Those expressions introduce
dissipation rates ηi and η12. Although the particles do not have direct coupling between
them, the bath is responsible for creating this interaction, leading to an interaction be-
tween the particles induced by the bath. The function provides satisfactory equations of
motion, eliminating the distance effects; however, it must be apparent so as to justify the
mixed dissipation term, for example, via response theory.

Setting new variables as q = (x1+x2)
2 and u = x1 − x2 as the center of mass and

relative coordinates and for V (xi) = 0, then Langevin-like equations can be derived

mq̈(t) + (η + η12)q̇(t) = fq(t),
mü(t) + (η − η12)u̇(t) = fu(t),

(2.9)

¶ The effects of bath on both particles separately are expected to be on average the same.



35

where fq(t) and fu(t) are interpreted as the fluctuating forces for the center of mass and
the relative coordinates, respectively, as follows

fq(t) = f1(t) + f2(t)
2 = −

N∑
k=1

(C(1)
k + C

(2)
k )

2

(
Ṙk(0)sinwkt

wk

+ R̃k(0) coswkt
)
, (2.10)

fu(t) = f1(t)− f2(t) =
N∑

k=1
(C(1)

k − C
(2)
k )

(
Ṙk(0)sinwkt

wk

+ R̃k(0) coswkt
)
. (2.11)

The statistical properties of those forces depend on the initial state of the total system.

Some consequences of those results were discussed in Ref. (8). However, some of
the must be focused on here. If a same coupling is assumed for each particle and bath
(C(1)

k = C
(2)
k )‖, dissipation and fluctuating force for the relative coordinate vanish, once

η = η12 and fu(t) = 0 leading to free-particle motion for the relative coordinate given by

ü(t) = 0. (2.12)

Even for nonidentical couplings (C(1)
k ̸= C

(2)
k ), η12 is independent of the particles’s rela-

tive distance, showing an instantaneous interaction between spatially separated elements,
although Eq.(2.8) is not distance-dependent.

As stated in Ref.(8), such undesired characteristics result from the lack of an ad-
equate length scale for environment-mediated phenomena, which are supposed to appear
in a real physical system (49). The authors in Ref. (8) introduced a nonlinear coupling
between system and bath to account for proper dynamics features.

2.2 Standard nonlinear model

Caldeira-Leggett model can be extended for two particles through a symmetric
Lagrangian

L = m

2 (ẋ2
1 + ẋ2

2) + 1
2

N∑
k=1

mk

(
ṘkṘ−k − ω2

kRkR−k

)

− 1
2

N∑
k=1

[(C−k(x1) + C−k(x2))Rk + (Ck(x1) + Ck(x2))R−k] .
(2.13)

The system of interest remains the same; however, the bath is a symmetrized collection
of harmonic oscillators. Such symmetrization in k can be used, as stated in Ref. (8, 44)
due to the maintenance of the Lagrangian invariance.

The coupling between the bath and the particles is nonlinear in the bath coordi-
nates,

Ck(x) = κke
ikx. (2.14)

‖ It is a reasonable assumption regarding the case of two close particles in a same environment.
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The choice of an exponential coupling parameter guarantees the translational invariance
of the Lagrangian. When the particle is dislocated a distance d, then

C−k(x+ d)Rk = C−k(x)e−ikdRk.

New variables can be defined for the bath coordinate as R̃k = e−ikdRk, preserving the
invariance of the Lagrangian. The authors in Ref. (8) considered symmetrization and
exponential coupling a way to guarantee homogeneity and translational invariance.

Therefore, the nonlinear model does not require a counterterm because of the
coupling chosen. Eq.(2.13) can provide dissipative equations of motion on the variable of
the particles - see Ref. (1,44) for a detailed derivation for equations of motion of one and
two particles.

Index k now has dimensions of [L]−1, which explains why it introduces the required
length scale. Not only does this type of coupling (Eq.(2.14)) guarantee Lagrangian trans-
lational invariance, but it also has an experimental justification. As an example, such
coupling appears in the polaron problem (1) and also with interactions in a fermionic
bath (45,46).

Techniques similar to those addressed in the previous subsection lead to the fol-
lowing particles’ equations of motion (8):

mẍi(t) +
N∑

k=1

k2κkκ−k

mkω2
k

(∫ t

0
cos k(xi(t)− xi(t′)) cosωk(t− t′)ẋi(t′)dt′

+
∫ t

0
cos k(xi(t)− xj(t′)) cosωk(t− t′)ẋj(t′)dt′

)

+
N∑

k=1

kκkκ−k

mkω2
k

sin k(xi(t)− xj(t)) = Fi(t),

where i ̸= j = 1, 2 and Fi(t) can be interpreted as the fluctuating force. The nonlinear
dissipation kernel can be identified as

K(r, τ) =
N∑

k=1

k2κkκ−k

mkω2
k

cos kr cosωkτ , (2.15)

which shows the interaction between the particles and the environment (8), as well as a
potential term

V (r(t)) = −
N∑

k=1

κkκ−k

mkω2
k

cos kr(t). (2.16)

Finally, the equations of motion can be written as

mẍi(t) +
∫ t

0
K(xi(t)− xi(t′), t− t′)ẋi(t′)dt′ +

∫ t

0
K(xi(t)− xj(t′), t− t′)ẋj(t′)dt′

+ ∂

∂xi

V (xi(t)− xj(t)) = Fi(t).
(2.17)
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Linear response theory expresses kernel and potential as a function of the imag-
inary part of the dynamical response of the environment oscillators, which is given by
Imχ(i)

k (ω) = (π/2mkωk)δ(ω − ωk). Studies such as (45,46) exemplified this concept:

K(r, τ) =
N∑

k=1

∫ ∞

0
dω 2 k2κkκ−k

Imχ(i)
k (ω)
πω

cosωkτ cos kr, (2.18)

and

V (r(t)) = −
N∑

k=1

∫ ∞

0
dω 2 κkκ−k

Imχ(i)
k (ω)
πω

cos kr(t), (2.19)

which assumes the transformation of a discrete set of oscillators into a continuum. Bath
is here considered a collection of damped harmonic oscillators. Therefore, delta function
is modified to a Lorentzian that peaks around ωk for an analysis of the long time limit,
in which a low frequency is compared to the cutoff frequency. The Ohmic limit in which
Imχ(i)

k (ω) ∝ ω has been assumed (8,44–46) is

Imχ(i)
k ≈ f̃(k) ω Θ(Ω− ω). (2.20)

This Ohmic approximation introduces a high-frequency cutoff Ω as the characteristic
frequency of the bath. The choice of the Ohmic limit enables a separation between time
and length scales, which is fundamental for the analysis. A dynamical response function
χ

(i)
k from a harmonic oscillator with wave number k as a kernel component was used.

Therefore, χ(i)
k is equivalent to the spectral function of the bilinear model, J(ω).

After those considerations, the nonlinear equations of motion read

mq̈(t) + (η + ηe[u(t)]) q̇(t) = fq(t),
mü(t) + (η − ηe[u(t)]) u̇(t) + V

′

e (u(t)) = fu(t),
(2.21)

where

Ve(u) = − 2Ωη
πk2

0(k2
0u

2 + 1) , (2.22)

is an environment-induced potential that depends on the relative distance. Similarly,

ηe[u(t)] = η
(1− 3k2

0u
2)

(k2
0u

2 + 1)3 , (2.23)

represents a bath-mediated dissipation rate that also depends on relative distance.

A relation between the dissipation rate and the microscopic parameters of the bath
is defined as follows (44)

η =
N∑

k=1
k2κkκ−kf̃(k). (2.24)
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When the summation over k is turned into an integral, expression ∑
k → (L/2π)

∫
dk,

where L represents the system’s dimension, becomes valid. The change leads to the defi-
nition of function

ηg(k) ≡ L

2πκkκ−kf̃(k), (2.25)

such that
∫∞

0 dkg(k)k2 = 1. Many functions g(k) can be used and the same of Ref. (8)
was chosen in this study

g(k) = e−k/k0

2k3
0
, (2.26)

where k−1
0 determines the length scale of system and, for fermionic bath, for example, k0

is proportional to kF , which is the Fermi wave number (46,50).

The independent Brownian movement can be recovered for arbitrarily large dis-
tances whereas for particles close to each other (k0u << 1), the equations of motion de-
scribe a rich environment-induced behavior. The effective potential becomes a harmonic
potential,

V (k0u << 1) = −mω
2

2k2
0

+ mω2u2

2 , (2.27)

where ω =
√

4ηΩ
mπ

. Additionally, the equation of motion for the relative coordinate exhibits
the behavior of a harmonic oscillator.

Because both dissipative and fluctuating forces are finite for every finite u(t), the
free-particle anomaly found in the bilinear model is no longer present. The exponential
coupling for one particle for a long time and small distances limit recovers the same results
of the linear model (8).

The approach shows two dissipation terms, i.e., one due to the bath influence and
given by η, and another dependent on the relative distance between the two Brownian
particles, ηe[u(t)], known as the effective dissipation term. However, effective potential
Ve(u) between the particles, determined by the nonlinear coupling, would act as a binding
potential mediated by the bath.

The statistical properties of the fluctuating forces are such that (see Appendix C),

⟨fi(t)⟩ = ⟨fq(t)⟩ = ⟨fu(t)⟩ = 0
⟨fi(t)fi(t′)⟩ = 2ηkBTδ(t− t′),
⟨f1(t)f2(t′)⟩ = 2ηe[u(t)]kBTδ(t− t′),
⟨fq(t)fq(t′)⟩ = (η + ηe[u(t)])kBTδ(t− t′),
⟨fu(t)fu(t′)⟩ = 4(η − ηe[u(t)])kBTδ(t− t′),

which yield different shapes for the correlation functions, but do not invalidating the usual
fluctuation-dissipation theorem.
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The nonlinear coupling is responsible for the effective potential in the equations of
motion. The following section explores the consequences of those effective terms emerg-
ing from the derivation when a bilinear Lagrangian with a distance-dependent spectral
function is considered. A modified spectral function dependent on the relative distance
between the Brownian particles is suggested for the obtaining of the same dissipation
rates used in a nonlinear coupling approach, but now starting with a bilinear Lagrangian.

2.3 Nonlinear dissipation from a bilinear Lagrangian: modified spectral function

As discussed elsewhere, exponential coupling is an alternative to avoiding unphys-
ical results such as the ones from the bilinear coupling approach. Both bilinear (Eq.(2.9))
and nonlinear coupling models (Eq.(2.21)) were reviewed for the two Brownian particles
in previous sections.

The goal here is to achieve the dynamics of two Brownian particles without using
exponential coupling and coupling solely to the center of mass (14), which is important
for reconciling the nonlinear dissipation with the bilinear coupling model, even with a
linear Lagrangian.

The motivation for using a linear Lagrangian was reported at the opening of this
chapter and it must be again highlighted the calculations can be performed more efficiently
with linear systems. Some situations require linearity, as cited during the analysis of the
entanglement for multiple particles (19).

Let us start with a quadratic Lagrangian with harmonic potential, a counterterm,
and distinct coupling parameters (14)

L = m

2 (ẋ2
1 + ẋ2

2)−
1
2m(ω1x

2
1 + ω2x

2
2)−mc12x1x2

+
N∑

k=1

(
mkṘ

2
k

2 − mk

2 ω2
kR

2
k

)
−

N∑
k=1

(
C

(1)
k x1 + C

(2)
k x2

)
Rk

−
N∑

k=1

(
C

(1)
k x1 + C

(2)
k x2

)2

2mkω2
k

,

(2.28)

Since the choice of the potential does not matter for deriving the Langevin-like equa-
tion, the harmonic potential, usually reported in literature, is maintained. Additionally, a
coupling term, given by c12, between the particles can be considered, as stated in Ref.(14).

As discussed at the end of the section, c12 does not change the dynamics of the
two particles derived from the nonlinear coupling approach when reconciliation is dealt
with in the dissipation terms.

It must be emphasized that each particle is assumed to have a distinct coupling
parameterin (C(1)

k ̸= C
(2)
k ) for avoiding the anomalous free-particle motion for the relative

coordinate, as in Eq.(2.12), otherwise the bath decouples from u = x1 − x2.
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The following equations of motion for the particles can be obtained by a similar
calculation previously conducted

mẍi + dV (xi)
dxi

+mc12xj +
N∑

k=1

C
(i)2
k

mkω2
k

∫ t

0
cosωk(t− t′)ẋi(t′)dt′

+
N∑

k=1

C
(i)
k C

(j)
k

mkω2
k

∫ t

0
cosωk(t− t′)ẋj(t′)dt′ = fi(t),

(2.29)

where i ̸= j = 1, 2, and fi(t) can be interpreted again as the fluctuating force,

fi(t) = −
N∑

k=1
C

(i)
k

[
Ṙk(0)sinωkt

ωk

+ R̃k(0) cosωkt
]
, (2.30)

where R̃k(0) is defined as R̃k(0) = Rk(0) +
(
C

(1)
k x1(0) + C

(2)
k x2(0)

)
/(mkω

2
k).

The equations of motion are rewritten for denoting the center of mass and relative
coordinates as

mq̈(t) + 1
2

(
dV (x1)
dx1

+ dV (x2)
dx2

)
+mc12q(t) + 1

2

∫ t

0
[K1(t− t′)ẋ1(t′) +K2(t− t′)ẋ2(t′)] dt′

+
∫ t

0
Kij(t− t′)q̇(t′)dt′ = fq(t),

(2.31)

mü(t) +
(
dV (x1)
dx1

− dV (x2)
dx2

)
−mc12u(t) +

∫ t

0
[K1(t− t′)ẋ1(t′)−K2(t− t′)ẋ2(t′)] dt′

−
∫ t

0
Kij(t− t′)u̇(t′)dt′ = fu(t).

(2.32)

The dissipation kernels in Eqs. (2.31) and (2.32) are distinct from those in Ref. (8).
Here, the potential term mediated by the bath does not appear due to the characteristics of
our coupling and the translational invariance of the Lagrangian assumed, as in Ref. (8)∗∗.

The absence of spatial dependence in the environment-induced effects can be ob-
served in

Ki(t− t′) =
N∑

k=1
2 C(i)2

k

∞∫
0

dω
Imχ

(i)
k (ω)
πω

cosω(t− t′), (2.33)

Kij(t− t′) =
N∑

k=1
2 C(i)

k C
(j)
k

∞∫
0

dω
Imχ

(ij)
k (ω)
πω

cosω(t− t′), (2.34)

∗∗ In this reference, the counterterm was used to maintain the translational invariance of the
Lagrangian. Therefore, the effective potential term arises from the effect generated by the
bath, as explored in Sec. (2.1).
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where the kernels are expressed in terms of the imaginary part of the bath susceptibility
functions, as given by Eq.(2.18). Regarding the single-particle dissipation rates,

η ≡
N∑

k=1
C

(i)2
k f̃(k), (2.35)

where f̃(k) arises from the Ohmic approximation in Eq.(2.33), namely,

Imχ
(i)
k (ω) ≈ f̃(k) ω Θ(Ω− ω)

(similarly to Eq.(2.20)).∑k C
(i)2
k f̃(k) is replaced by η

∫
dk k2g(k), where g(k) = exp(−k/k0)/(2k3

0)
(as in Sec. 2.2), for obtaining the continuum limit.

Two-particle susceptibility χk is crucial in our derivation. The response theory
explains how the bath of oscillators responds to the time-dependent external influences of
two Brownian particles when the particles slightly affect the bath. The bath is assumed
large enough to have a continuous frequency distribution, which is a typical assumption
in open systems research. The mixed susceptibility must adhere to specific characteristics.

When two Brownian particles are sufficiently close, the environment acting on
each of them is assumed to be composed of the free environment dynamics plus the
perturbation of the other particle’s dynamics on that environment. In other words, when
two particles are close enough, each of them sees a structured environment, i.e., dressed
by the state of the other, and when they are far apart, they are no longer influenced by
each other. Therefore, our understanding translates into a response function that should
be dependent on the particle distance (or, more generally, the relative coordinate, u). The
most important assumption made in this first part of the thesis was the proposal of

Imχ
(ij)
k (ω) ≡ Imχ

(ij)
k (ω, u). (2.36)

Appendix B shows Imχ
(ij)
k (ω, u) results from a nonlinear response theory of the environ-

ment under the perturbation of the pair of particles.

The Ohmic regime is, again, assumed to be a linear function in ω, namely,

Imχ
(ij)
k (ω, u) ≈ h(k, u) ω Θ(Ω− ω). (2.37)

The bath-related length scale can be defined due to the specific choice for h(k, u). Starting
from a bilinear Lagrangian, the nonlinear dissipation rate can be recovered assuming

h(k, u) = F̃ (k)G(k, u). (2.38)

where F̃ (k) is similar to f̃(k) defined in Eq.(2.35) related to Eq.(2.24) and dependent only
on bath coordinates. Additionally, there is a distance-dependent term that whose specific
dependence or form are unknown.



42

Therefore,
ηeff [u] ≡ η

∫
dk geff(k)G(k, u) (2.39)

as the continuum limit of∑k C
(i)
k C

(j)
k F̃ (k)G(k, u). This summation is obtained by applying

Eqs. (2.38) and (2.37) to Eq. (2.34).

geff(k) ≡ k2g(k), (2.40)

was also defined since selecting G(k, u) = 1 enables the obtaining of the single-particle
dissipation rate††.

Using Eqs.(2.35) and (2.39) and taking Ω→∞ limit in Eqs.(2.33) and (2.34), the
dissipation kernels become

Ki(t− t′) = 2ηδ(t− t′), (2.41)
Kij(t− t′) = 2ηeff [u]δ(t− t′). (2.42)

The length scale is now explicit because of the kernel’s dependence on relative coordinate
u. The nonlinear dissipation force appearing in the equations of motion can be adjusted by
tuning G(k, u), whether to recover a particular theoretical model, or to explain a specific
experiment.

Finally, our equations of motion in the case of free Brownian particles, V (x1) =
V (x2) = 0, and c12 = 0, read

mq̈(t) + (η + ηeff [u]) q̇(t) = fq(t),
mü(t) + (η − ηeff [u]) u̇(t) = fu(t),

(2.43)

where the center of mass and relative fluctuating forces are, respectively, given by fq(t) =
(f1 + f2)/2 and fu(t) = f1 − f2.

Although nonlinear dissipation forces were found, our modified bilinear model was
unable to recover the effective bath-induced potential Ve(u) from Eq.(2.21). If a particular
experiment reveals bath-mediated conservative forces, the theoretical model should likely
begin with nonlinear system-bath coupling. As discussed in what follows, experiments
with Brownian particles immersed in a fluid whose dynamics show no effective potential
can be conducted. Therefore, our result can correctly make the connection with certain
experiments such as those that take hydrodynamic interactions into account.

Depending on the physical system being studied, the type of coupling (bilinear
or non-linear) between particle and thermal bath can be chosen. The choice depends on
the level of detail required to adequately describe the dynamics of the physical system.
On the one hand, linear coupling is used, for instance, in classical or quantum harmonic

†† ηeff [u] ≡ η
∫∞

0 dk geff(k) = η
∫∞

0 dk k2 e−k/k0
2k3

0
= η
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oscillators coupled to a thermal bath, or in optical tweezers experiments (51,52). On the
other hand, nonlinear coupling is adopted for studies of complex fluids and biological
systems where nonlinearity is in play (53,54).

Here, again, the limit of validity for the dissipation term is k0u << 1, as discussed
in Sec. 2.1. Indeed, for particles to be close to each other, the equations of motion written
above (Eq. 2.43) do not describe the correct physics, since the distance between the
particles is not taken into account.

This section provides a way to derive the equations of motion very similar to the
nonlinear approach by proposing a modified spectral function. The effective potential me-
diated by the bath has been eliminated, thus allowing specific interations to be recovered.
The proposal of modified spectral function distance-dependent leaves the Lagrangian ap-
proach free from any nonlinearity and complex insertion of terms, notwithstanding the
cost of redefining a spectral function dependent on the distance between the particles.

2.3.1 Recovery of dissipation rates

Our aim was to demonstrate a bilinear Lagrangian (14) can generate the same
dissipation rates as the one with a nonlinear coupling parameter, as in Ref. (8). The
previous subsection showed a partial nonlinear effect can be achieved by a constructed
spectral function. Similar equations of motion can be generated; however, our approach
cannot recover an effective potential mediated, mediated by the bath.

Equations of motion dependent on G(k, u) can be explicitly written adjusting it
in adequately for recovering nonlinear dissipation ηe[u] from Eq.(2.23) and taking

G(k, u) = cos(ku), (2.44)

which is used in Eq.(2.39), thus leading to

ηeff [u] = η
∫ ∞

0
dk k2 e

−k/k0

2k3
0

cos(ku) = η
(1− 3k2

0u
2)

(k2
0u

2 + 1)3 . (2.45)

As expected, ηeff [u] = ηe[u]. Consequently, the equations of motion can be written as
Eq.(2.21). Setting V (x1) = V (x2) = c12 = 0, the equations of motion can be recovered for
illustrating the similarities between both sets of equations clearly.

Taking the limit of long distances, k0u→∞, the effective dissipation vanishes and
the particles execute authentic Brownian motion

mq̈(t) + ηq̇(t) = fq(t),
mü(t) + ηu̇(t) = fu(t).

(2.46)

Our aim here was to derive a similar expression for the equations of motion for the parti-
cles. Other trigonometric functions G(k, u) could generate similar dissipation coefficients
with the same behavior.
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Constant dissipation rate η12 in Eq.(2.8), can also be recovered in the domain of
the standard bilinear model. By choosing G(k, u) = G0, which is a constant, then

ηeff [u] = η
∫ ∞

0
dk k2 e

−k/k0

2k3
0

G0 = ηG0 = η12. (2.47)

Eq.(2.9) is recovered again considering V (x1) = V (x2) = c12 = 0. Regarding dissipation,
our result can show a path that may connect the usual bilinear model to the nonlinear
one.
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Figure 1 – Spatial correlation for a) forces for both particles, b) center of mass forces,
and c) relative coordinate forces. Such correlation forces are distance-relative
dependent due to the dissipation rate. a) For small distances, the standard sin-
gle Brownian particle behavior is recoreved. Starting at approximately (

√
3)−1,

the correlation function becomes negative until reaching zero for particles too
far apart. b) Similar behavior as in a), now with correlation force in the in-
termediate distances. c) For small distances, correlation is zero, increasing for
intermediate distances until reaching two times the correlation force for a sin-
gle Brownian particle.

Source: By the author

A different equation of motion for the correlation force in terms of distance between
the particles was found for both center of mass and relative coordinates, as in Ref. (8).
White noise properties can be recovered with a relative distance-dependent term ηeff [u(t)],
as depicted in Figure 1, which shows a spatial anticorrelation behavior for f1(t) and f2(t).

Fig.1-a shows the correlation between the particle’s forces, which represents a
process of attraction and repulsion of the particles in function of the relative distance.
However, if the particles do not have charge or any external force, the process cannot be
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expected to occur (25,46). Although not our primary interest, the same behavior described
by our model can also be derived with the nonlinear coupling model (Sec.2.2).

Despite the avoidance of non-standard diffusion not being strictly essential, as
stated in the early models of Brownian motion, our approach enables the construction of
the usual diffusion behavior even for a two-particle scenario. The following subsections
provide examples of the applicability of the modified spectral function.

2.3.2 Avoidance of anomalous diffusion

The previous sections provided arguments to justify the definition of the distance-
dependent spectral function, which partially recovered the literature results for nonlinear
dynamics without using a specific coupling, thus leading to a general description for anal-
yses of different distance-dependent functions. Anomalous diffusion appears when some
nonlinearity is being dealt with. Here, the effects of a distinct choice of the distance-
dependent term are investigated towards the derivation of a different behavior that might
still work under the fluctuation-dissipation relation and eliminates the anomalous anti-
correlation effect.

The specific form of ηeff [u] in Eq.(2.45) promotes a deeper investigation of anoma-
lous diffusion, as discussed in Appendix C. The diffusion coefficients appear in the corre-
lation functions of Langevin forces as

⟨f1(t)f2(t′)⟩ = 2D12(u)δ(t− t′), (2.48)
⟨fu(t)fu(t′)⟩ = 2Du(u)δ(t− t′), and (2.49)
⟨fq(t)fq(t′)⟩ = 2Dq(u)δ(t− t′), (2.50)

and can be derived from the fluctuation-dissipation theorem (55,56), thus reading

D12(u) = ηeff [u]kBT. (2.51)

Similarly, for the center of mass and relative coordinates,

Dq(u) = (η + ηeff [u])kBT/2, (2.52)

and
Du(u) = 2(η − ηeff [u])kBT. (2.53)

Up to this point, the results showed the diffusion coefficients are nonlinear con-
cerning time. According to Fig. 1-a, the anomalous diffusion arises when

ηeff [|u|] > k−1
0 /
√

3] < 0, (2.54)

which, at intermediate separations, implies a decrease in diffusion coefficient Dq, along
with an anticorrelation (D12 < 0) between the Langevin forces acting on the particles.
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The anomalous diffusion, i.e., the coefficient with nonlinearity in time, is explored
in Appendix C. Interestingly, nonlinearity emerges due to ηeff. Since experiments for Brow-
nian particles in a same bath do not support that behavior, the generation of a positive
force correlation, avoiding the anticorrelation between Langevin forces for the particles,
is aimed at, by tunning function G(k, u).

Towards an experimental contrast, let us consider the spectral functions that model
the interaction of localized excitons with a bath of acoustic phonons (57,58). Such models
typically use Gaussian features, which motivate setting

G(k, u) = e−kk0u2
. (2.55)

The assumption results in an effective dissipation rate given by

ηeff [u] = η

(1 + k2
0u

2)3 . (2.56)

Eq.(2.55) guarantees the positivity ηeff [u] ≥ 0 and also recovers the independent Brownian
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Figure 2 – Spatial correlation for a) forces for both particles, b) center of mass forces,
and c) relative coordinate forces, with a Gaussian modified spectral function
(Eq.(2.56)). The Gaussian behavior is similar in all three plots. For small dis-
tances, the correlation force is the same of a single Brownian particle whereas
for long distances, it reaches a) zero correlation and b) half of the one for a
single Brownian particle. In c), for small distances, it is zero correlation, which
increases until two times the correlation force for a single Brownian particle
for long distances.

Source: By the author

motions of two arbitrarily distant particles (in the |u| → ∞ limit). In fact, any positive
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and convergent function (G(k, u) ≥ 0 and G(k, |u| → ∞) = 0) is sufficient to guarantee
ηeff [u] ≥ 0 and ηeff [|u| → ∞] = 0.

Figure 2 shows the behavior of the dissipation term as a function of the relative
coordinate. The anticorrelation behavior vanishes for the right choice of G(k, u) and the
noise correlation ⟨f1(t)f2(t)⟩ for short distances exhibits the standard Brownian behavior,
whereas for long distances, the normal diffusion is recovered (Fig. 2-a).

The choice for the spectral function may seem arbitrary at first. However, it casts a
deeper relation between other setups, from which the Brownian motion of several particles
can be derived in a different medium. Our choice was motivated by similar behaviors in
the hydrodynamic situation.

2.3.3 Hydrodynamics-inspired model

Despite many studies of Brownian motion and hydrodynamics effects, the liter-
ature reports no specific diffusion coefficient analysis in this context. In this sense, our
study can provide such a connection, taking into account a small change in the dependence
of the relative distance on the spectral function.

This section addresses a hydrodynamic application of the model towards a better
understanding of the reason for the distance-dependence choice of the spectral function.
This part of the research was based on Ref. (17), which studied the dynamics of N Brow-
nian particles with hydrodynamic interactions and proposed a method that simulates the
diffusive process of those particles in a fluid environment. In contrast to our description,
the authors studied Brownian particles in three dimensions and introduced a distance-
dependent friction tensor to support the hydrodynamics of interactions. The tensor, called
Oseen tensor, described diffusion, addressed in what follows.

In the classical Brownian motion theory, the particles of the surroundings are
typically much smaller than those of the system of interest. According to the literature,
fluid particles are usually neglected. However, in this section, our discussion is based on a
system with two Brownian particles immersed in a viscous fluid that is assumed to mediate
interactions between particles. As shown in Ref. (17), dissipative forces may depend on
the interparticle distance. Our analysis is restrited to the limit at which the radius of
each Brownian particle is smaller than their relative distance, i.e., the regime of validity
of Oseen tensor, which, for i ̸= j, is given by

Dij = kBT

8πκrij

(
I + r⃗ij r⃗ij

r2
ij

)
, (2.57)

where κ is the fluid viscosity, I is the identity matrix, r⃗ij is the center-to-center vector for
the particles, and rij = |r⃗ij|.

Our purpose is to indicate the correspondence between Refs. (17, 59) and our
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modified model of the spectral function. Therefore, let us recall the definition of diffusion
coefficient definition (Appendix C) and analyze Dij in configuration space, noticing it has
the dimension of the diffusion coefficient

[Dij] = [lenght]2
[time] ,

where the viscosity dimension is [κ] = [mass]/([lenght][time]). Here, [ηhydro
eff = [mass]/[time].

Since [κ][rij] = [mass]/[time] = [ηhydro
eff ], then

Dij = kBT

ηhydro
eff [r⃗ij]

,

where

ηhydro
eff [u⃗] = 8πκ|u⃗|

(
I + u⃗u⃗

u2

)−1

.

Furthermore, a one-dimensional limit of Brownian motion u⃗ = ux̂ can be assumed, leading
to |u⃗| = |u|, and I = 1. Then (

I + u⃗u⃗

u2

)
= 2.

In that case, an effective dissipation rate mediated by the hydrodynamic environment and
derived with the help of the fluctuation-dissipation relation (55) is given by

ηhydro
eff [u] = 4πκ|u| = γh|u|, (2.58)

where γh is a constant proportional to the solvent viscosity.

By contrast, no conservative forces emerge from the hydrodynamic environment,
i.e., the behavior of the hydrodynamic scenario discussed in Ref. (17) is more similar to
that of our modified bilinear model than to that of the standard nonlinear model (which
produces Ve(u), as shown in Eq.(2.22)). In other words, our modified spectral function
can generate a similar behavior when dealing with Brownian motion with a hydrodynamic
source.

The following linear distance-dependence function can be easily selected for the
derivation of a dissipation rate‡‡ similar to Eq.(2.58), which is proportional to relative
distance:

G(k, u) = k|u|, (2.59)

since

ηeff [u] = η
∫ ∞

0
dk k2 e

− k
k0

2k3
0
k|u| = γm|u|, (2.60)

‡‡ The effective potential term is not recovered with our modified bilinear model.
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with γm = 3ηk0.

As a result, a simple technique has been explored for mapping environment-
mediated hydrodynamic dissipation into a fictitious bath composed of a continuous set
of harmonic oscillators. The configuration space shows a correspondence between the
dimensions of Eqs. (2.58) and (2.60).

Nevertheless, the way to obtain Eqs. (2.56) and (2.60) from the standard nonlinear
model must be clarified, since the right choice for system-environment couplings as a
function of particle positions in the Lagrangian is not obvious. Up to this point, the
results have shown our method, which is the modified spectral function, is more accurate
and straightforward for handling such interactions.

The equations of motion can be recovered according to the same procedure re-
ported in the first two sections,

mq̈(t) + (η + 3ηk0|u|) q̇(t) = fq(t),
mü(t) + (η − 3ηk0|u|) u̇(t) = fu(t).

(2.61)

The fluctuating forces still retain the characteristics of white noise. The more significant
expressions for time correlation functions are

⟨f1(t)f2(t′)⟩ = 6kBTηk0|u|δ(t− t′),
⟨fq(t)fq(t′)⟩ = kBT [η + 3ηk0|u|] δ(t− t′),
⟨fu(t)fu(t′)⟩ = 4kBT [η − 3ηk0|u|] δ(t− t′).

(2.62)

According to the fluctuation-dissipation relation, the diffusion coefficient in velocity space
can be related to the time correlation function of the force by

⟨f(t)f(t′)⟩ = 2Dvδ(t− t′).

Therefore, the diffusion coefficient was analyzed for the particular choice of spectral func-
tion G(k, u) and the hydrodynamic behavior was recovered, as in Ref. (17)

D = 3ηk0|u|kBT. (2.63)

For long distances, the diffusion coefficients associated with the center of mass and
relative coordinates (Dq and Du Eq.(2.62)) tend to normal diffusion with a factor of two.
When the particles are close to each other, Dq is obtained as normal diffusion and Du

vanishes.

Our method shows a straightforward way to connect linear dynamics to the dif-
fusion coefficient due to the hydrodynamic interaction mediated by the bath. The units
of the coefficients can be analyzed towards the proposal of a G(k, u) with the same lin-
ear behavior in u, as in Ref. (17). An experimental result can be connected with our
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modified model and complementary studies of a three-dimensional equation of motion
for two particles can lead to a more evident agreement between our modified model and
hydrodynamics effects.
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3 QUANTUM DYNAMICS

The previous section discussed the classical dynamics of two Brownian particles
immersed in a fluid. This chapter addresses the quantum dynamics of those particles
using the path integral formalism. Quantum models often adopt approaches based on
quantum Langevin or quantum master equations to describe dissipation. However, such
approaches can treat only weakly damped systems. Low temperatures violate the con-
ditions of weak coupling systems, where tunneling transitions are permitted. The path
integral approach, therefore, is introduced, for it enables studies of quantum mechanical
dynamics at arbitrarily low temperatures and for arbitrarily strong damping (6).

3.1 Quantum Brownian motion

Many problems in quantum mechanics assume the system of interest is isolated,
which is not a realistic feature, since other aspects must be considered when the effect
of coupling with a bath is taken into account. As an example, the universe’s energy can
no longer be described by the sum of the energy of the individual components because
quantum systems are not extensive and Gibbs canonical ensemble cannot be applied (60).

Classically, the problem can be approached by Langevin equation (Eq.(1.1)), as
addressed in the previous section. The question arises during attempts to quantize a dis-
sipative system (61). The classical equations of motion can be usually generated by the
evolution of a Hamiltonian with canonical quantization procedures. However, no Hamil-
tonian generates Langevin equations without time dependence. Either new quantization
methods, or a system-reservoir approach can, therefore, be assumed. The latter is the
most usual and considers the dissipative system a system of interest in contact with a
thermal bath (or reservoir). Such a total composite system conserves energy and obeys
the usual rules of quantization. The environment dissipates transferred energy, prevent-
ing its return to the system of interest within a viable time. Consequently, the reservoir
model must be carefully selected towards ensuring the Langevin equation’s recovery in
the classical limit (1).

SQUID is a quantum example with a magnetic flux equation that behaves like a
classical Brownian particle∗. The superconductivity of electrons in the ring is a macro-
scopic variable that can be measured in laboratory, even though it has a quantum origin.
Caldeira and Leggett (23) used the Langevin equation mechanism to study tunneling in
a superconducting ring with a Josephson junction interruption. Figure 3 illustrates such
a system, where the superconducting ring is interrupted by a Josephson junction. By
∗ The momentum in time of magnetic flux (in the proper limits) is identical to that of a classical

Brownian particle
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Figure 3 – Representation of a SQUID, where I is the current.

Source: By the author

applying a current I through the device, half the current flows one way and half flows
another. The magnetic flux (ϕ) through the device establishes a phase difference between
the opposite sides of the ring (25).

3.2 Path integral representation of Quantum Mechanics

The concept of action is the center of the formulation of quantum mechanics
through Lagrange formalism of classical mechanics. The formulation avoids the use of
operators, although it does not necessarily simplify the solution of quantum mechanical
problems. Instead of the determination of the eigenfunctions of a Hamiltonian, a func-
tional integral, which directly produces the propagator required for the understanding of a
quantum system dynamics, must be assessed. Due to the close relationship between Feyn-
man’s formulation and classical mechanics, the path integral formalism often offers the
significant advantage of a more intuitive approach. This section provides a brief overview
of the path integral expression for the propagator of a quantum system, following the
derivation in Ref. (62).

Classically, the dynamics of a particle depend on the principle of minimal action,
and only one trajectory that the particle will follow, which is the one that extremize the
action. However, Kernel K(a, b) describes the quantum dynamics, which is the amplitude
between initial and final points (a and b, respectively) and can interpreted as the summa-
tion of all possible contributions to the trajectories between those points†. Such formalism
was named path integral, or Feynman approach, after the seminal work of Richard Feyn-
man in the 1940s (63, 64). Many other studies have, therefore, explored the approach.
Refs. (26, 65) must be highlighted, since they investigated the coupling of a system of
interest to a linear dissipative system.

Our main goal is to characterize the dynamics of a Brownian particle in a quantum

† Absolute square of a probability amplitude, P (b, a) = |K(a, b)|2.
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Figure 4 – Representation of classical and quantum paths in the phase space. For the
quantum regime, a Kernel accounts for all possible trajectories of the system.

Source: By the author

regime. A reduced description of the system is required, i.e., the dynamics of the reduced
state of the system is described so that the time evolution of the Brownian particle can
be evaluated (8). Feynman’s integral approach is applied for that purpose (26,66,67).

Classically, a particle starts at point xa at time ta and ends at point xb at time tb,
i.e., it goes from a to b following the time-dependent position with properties of x(ta) = xa

and x(tb) = xb (67). As addressed elsewhere, in quantum mechanics, this dynamics is
described by a so-called Kernel K(a, b), differently from classical mechanics, in which
only one particular trajectory is determined by the so-called principle of least action. Still
in quantum mechanics, it is not a particular trajectory that extremizes the action that
will contribute for the dynamics, but all trajectories contribute to the quantum dynamics
of the particle (see Fig. 4), with equal magnitudes and different phases.

Such formalism emerged in the context of problems of infinite self-energy of the
electron. Feynman developed it to deal with non-relativistic quantum mechanics. The
action principle for quantum systems was studied so that classical mechanics could arise
as a particular case of quantum mechanics in specific limits‡(67). Appendix E reports some
of the details of the derivation for the action’s expression using that formalism for both
free harmonic oscillator (Appendix E.1) and driven harmonic oscillator (Appendix E.2).
Therefore, the formalism can also be used to deal with classical systems, but mainly for
calculating the action of the system. The path integral is a sum of all possible trajectories
that deviate a little from the trajectory that extremizes the action. On the other hand,
in quantum mechanics, the path integral formalism enables descriptions of a system’s
evolution by deriving the reduced density matrix by summing up all possible paths in
configuration space.

The Hamiltonian must be first specified for investigations of the reduced dynam-
ics by the path integral formalism. Following the reference for quantum Brownian mo-

‡ Classical limit ℏ → 0 when the only paths considered are the classical paths of the system
(68). The foundation of quantum effects lies in the fluctuations surrounding classical paths
(69).
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tion (25), the total Hamiltonian of the system-reservoir is given by

HSR = HS(x, p) +HR(Rk, pk) +HI(x,Rk),

where HS is the Hamiltonian of the system of interest and, in our case, the quantum
Brownian particle, with x and p representing the position and momentum coordinates of
the particle. HR is the environment or reservoir Hamiltonian, whose components consist
of momentum and position of a set of harmonic oscillators denoted as pk and Rk, respec-
tively. HI represents the interaction Hamiltonian, which includes the linear coupling in
the position coordinates of both environment and particle (see Eq.(1.4)). In what follows,
a general analytical solution for the reduced density matrix is derived - neither the system
of interest, nor bath was specified.

Since our interest is only in the temporal evolution of the particle, the degrees of
freedom of the environment, which are not accessed, can be traced out

ρS(t) = TrR[ρ(t)],

where the condition of separability of the initial state is considered for simplicity

ρ(0) = ρS(0)ρR(0). (3.1)

The condition encompasses the initial density operator of the particle and the bath density
operator, ρR(0) = Z−1

R e−HR/kBT §(44, 70). The initial state is assumed to have no interac-
tion between the bath and the particle at initial time t = 0. Therefore, the evolution of
the system-reservoir density operator is written as

ρ(t) = U(t)ρ(0)U †(t),

where U(t) = e− iHt
ℏ is the temporal evolution operator. The Hamiltonian of Caldeira-

Leggett model Eq.(1.4)¶ was used so that the dynamics of the system could be studied
from the initial time.

Path integral method can calculate the reduced density matrix of the system, which
involves the calculation of the matrix elements of the operators by summing all paths in
the space of configurations (66). The states of the system-reservoir are then defined as

|x,R⟩ = |x,R1, . . .⟩ ,

where the general bath vector is R = (R1, . . . , RN), representing all environment’s degrees
of freedom, and x is the particle’s position coordinate. Writing the evolution of the density
operator in the coordinate representation leads to

⟨x,R|ρ(t)|y,Q⟩ =
〈
x,R|U(t)ρ(0)U †(t)|y,Q

〉
.

§ Canonical density operator of the nonperturbed bath, with ZR representing the partition
function.

¶ HSR = p2

2m + V (x) +
∑N

k=1

[
p2

k
2mk

+ mkω2
k

2

(
Rk − Ck

mkω2
k
x

)2
]



55

The insertion of completeness relation
∫
dx |x⟩ ⟨x| = I results in

〈
x,R|U(t)Iρ(0)IU †(t)|y,Q

〉
=
∫
dx′dy′dR’dQ’ ⟨x,R|U(t)|x′,R’⟩

× ⟨x′,R’|ρ(0)|y′,Q’⟩

×
〈
y′,Q’|U †(t)|y,Q

〉
.

The path trajectories enables identifying the quantum propagator of the total system (see
Appendix D)

⟨x,R|U(t)|x′,R’⟩ ≡ K(x,R, t;x′,R’, 0) =
∫ ∫

Dx(t)DR(t)e i
ℏS[x(t),R(t)]

and
〈
y′,Q’|U †(t)|y,Q

〉
≡ K∗(y,Q, t; y′,Q’, 0) =

∫ ∫
Dy(t)DQ(t)e−i

ℏ S[y(t),Q(t)]

where the final points are x(t) = x, x(0) = x′, R(t) = R, R(0) = R’, y(t) = y, y(0) = y′,
Q(t) = Q, and Q(0) = Q’.

∫
Dx and

∫
Dy symbolically denote summation in function

space over all paths with the end-points held fixed. The Euclidean action is given by

SSR = SS + SR + SI =
∫ t

0
L(ẋ, x, t) dt′.

where L is the Lagrangian of the total system. The density operator is written as

⟨x,R|ρ(t)|y,Q⟩ =
∫
dx′dy′dR’dQ’K(x,R, t;x′,R’, 0) (3.2)

×K∗(y,Q, t; y′,Q’, 0) ⟨x′,R’|ρ(0)|y′,Q’⟩

The operator describes the total system. If the focus is only the system of interest, then
Eq.(3.2) can be integrated in all environment’s coordinates. Therefore, the so-called re-
duced density operator of the total system is described by

ρ̃(x, y, t) ≡
∫
dR ⟨x,R|ρ(t)|y,R⟩

=
∫
dx′dy′dR’dQ’dRK(x,R, t;x′,R’, 0)

×K∗(y,R, t; y′,Q’, 0) ⟨x′,R’|ρ(0)|y′,Q’⟩ .

(3.3)

The interaction between system of interest and environment is considered to be initially
in a separable state, as in Eq.(3.1). After t = 0, both system of interest and reservoir
change in time. Inserting Eq.(3.1) into Eq.(3.3) leads to

ρ̃(x, y, t) ≡
∫
dR ⟨x,R|ρ(t)|y,R⟩

=
∫
dx′dy′dR’dQ’dRK(x,R, t;x′,R’, 0)

×K∗(y,R, t; y′,Q’, 0) ⟨x′,R’|ρS(0)ρR(0)|y′,Q’⟩ ,
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and replacing the propagators and the action,

ρ̃(x, y, t) =
∫
dx′dy′dR’dQ’dR

∫ ∫
Dx(t)DR(t)e i

ℏS[x(t),R(t)]
∫ ∫

Dy(t)DQ(t)e−i
ℏ S[y(t),Q(t)]

× ⟨x′,R’|ρS(0)ρR(0)|y′,Q’⟩

=
∫
dx′dy′dR’dQ’dR

[∫ ∫
Dx(t)Dy(t)e i

ℏSS [x(t)]e
−i
ℏ SS [y(t)]

]
×
∫ ∫

DR(t)DQ(t)e i
ℏSI [x(t),R(t)]e

i
ℏSR[R(t)]e

−i
ℏ SI [y(t),Q(t)]e

−i
ℏ SR[Q(t)]

× ⟨x′,R’|ρS(0)ρR(0)|y′,Q’⟩ ,

the so-called Influence functional‖ is highlighted,

F [x, y] =
∫
dR’(t)dQ’(t)dR(t)ρR(R’,Q’, 0)

×
∫ ∫

DRDQe
i
ℏ (SI [x(t),R(t)]−SI [y(t),Q(t)]+SR[R(t)]−SR[Q(t)]).

(3.4)

In terms of operators, the above expression has the form

F [x, y] = TrR

(
ρRU

†
RI [y]URI [x]

)
, (3.5)

where URI = e−i(HR+HI)t/ℏ is the temporal evolution operator for environment’s and in-
teraction’s Hamiltonian. This functional is the average of the product of two evaluations
in time on the initial state of the environment, which is a property of the reservoir and its
influence on the system of interest. It provides a way to calculate the effect of an external
force or interaction, given by the environment Lagrangian, on the probability amplitude
of different paths (25). It also adds a nonlocal term∗∗ to the density operator, which is
the functional of the particle trajectory containing all bath information.

The behavior of the system can be evaluated in terms of a double integral of
trajectories as (67)

J (x, y, t;x′, y′, 0) =
∫ ∫

DxDye
i
ℏ (SS [x(t)]−SS [y(t)])F [x, y], (3.6)

called superpropagator, which controls the time evolution of the system’s reduced operator
density. There are two dynamical terms in the above expression, of which one refers to the
non-dissipative dynamics of the total system, e i

ℏ (SS [x(t)]−SS [y(t)]), and the other represents
the dissipative dynamics of the total system, F [x, y] (70).

Therefore,

ρ̃(x, y, t) =
∫
dx′dy′J (x, y, t;x′, y′, 0)ρS(x′, y′, 0). (3.7)

When no interaction is established between the system of interest and the reservoir, the
influence functional is equal to one.

‖ As usually described in the literature of path integral formalism(67).
∗∗ Represents the interaction taken far apart. The expression of non-local does not refer to the

meaning that appear in quantum mechanics.



57

The resulting expression is a general form for the reduced density operator of a
system of interest interacting with a reservoir. A minimal model where the environment
is considered a set of N non-interacting harmonic oscillators can now be defined and,
under certain conditions, reproduces the Brownian dynamics in the classical limit. First,
the expression of the reduced density matrix is evaluated through the calculation of the
influence functional, Eq.(3.4) with the use of an expression for the Lagrangian of the total
system (35):

L = LS + LR + LI (3.8)

= mẋ2

2 − V (x) +
∑

k

mkṘ
2
k

2 −
∑

k

mkω
2
k

2

(
Rk −

Ckx

mkω2
k

)2

. (3.9)

Details on the Gaussian integral calculations for the influence functional can be found in
Appendix F. The expression for the propagator of the k-th oscillator of the environment
when acting with external force Ck x(t) is then used, as in (25)

K
(k)
RI =

√
mkωk

2πiℏ sinωkt
exp

{
i

ℏ
S

(k)
cl

}
, (3.10)

where the k-th classical action is

S
(k)
cl = mkωk

2 sinωkt

[ (
R2

k +R
′2
k

)
cosωkt− 2RkR

′

k −
2CkRk

mkωk

∫ t

0
x(t′) sinωkt

′dt′

− 2CkR
′
k

mkωk

∫ t

0
x(t′) sinωk(t− t′)dt′ − 2C2

k

m2
kω

2
k

∫ t

0
dt′
∫ t′

0
dt′′x(t′)x(t′′)

× sinωk(t− t′) sinωkt
′′
]
.

(3.11)

The influence functional is obtained by averaging the product of two time evolu-
tions acting on the initial state of the environment. One of such evolutions represents the
environment’s response to the system of interest, whereas the other is its time-reversed
counterpart. Both histories (or trajectories) are essential to describe the time evolution
of the system’s reduced density operator. Additionally, they must be multiplied by one
another for all k and averaged over the initial environment state and the environment’s
initial state must be specified. Following the assumptions in Refs.(19,25,44), the environ-
ment is assumed to be in thermal equilibrium at temperature T . In this case, the initial
environment density operator can be expressed as (for details, see Appendix G)

ρR(R′, Q′, 0) =
∏
k

ρ
(k)
R (R′

k, Q
′

k, 0)

=
∏
k

mkωk

2πℏ sinh ( ℏωk

kBT
)

exp
{
− mkωk

2ℏ sinh ( ℏωk

kBT
)

[
(R′2

k +Q
′2
k ) cosh

(
ℏωk

kBT

)
− 2R′

kQ
′

k

]}
.

(3.12)
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Substituting the above expressions results in influence functional expression (Eq.(3.4)).
The superpropagator (Eq.(3.6)) can be written as

J (x, y, t;x′, y′, 0) =
∫ x

x′

∫ y

y′
Dx(t′)Dy(t′) exp

{
i

ℏ
(SS[x(t′)]− SS[y(t′)])

}
−
∫ t

0

∫ τ

0
dτdσ[x(τ)− y(τ)]αI(τ − σ)[x(σ) + y(σ)]

× exp−1
ℏ

∫ t

0

∫ τ

0
dτdσ[x(τ)− y(τ)]αR(τ − σ)[x(σ)− y(σ)],

(3.13)

where

αI(τ − σ) = −
∑

k

C2
k

2mkωk

sinωk(τ − σ)

αR(τ − σ) =
∑

k

C2
k

2mkωk

coth
(

ℏωk

2kBT

)
cosωk(τ − σ).

The damping function can be written as

η(τ − σ) = 2mγ(τ − σ) ≡
∑

k

C2
k

2mkω2
k

cosωk(τ − ω),

and the relation with αI is given by

αI(τ − ω) = dη(τ − ω)
dτ

.

Taking continuous limit ∑k →
∫
dω, as in Chapter 2, the above expression can be written

as

αI(τ − σ) = − 1
π

∫ Ω

0
dωη ω sinω(τ − σ),

αR(τ − σ) = 1
π

∫ Ω

0
dωη ω coth

(
ℏω

2kBT

)
cosω(τ − σ).

Inserting those above expressions in Eq.(3.6) and taking the appropriate limits††, the
propagator can be written in the semi-classical limit, where kBT ≫ ℏω for frequencies
ω ≪ Ω, as

J (x, y, t;x′, y′, 0) =
∫ x

x′

∫ y

y′
Dx(t′)Dy(t′)

× exp
{
i

ℏ

(
SS[x(t′)]− SS[y(t′)] + η

2

∫ t

0
(y(t′)− x(t′))(ẋ(t′) + ẏ(t′))

)}
× exp

{
−2ηkBT

ℏ2

∫ t

0
dτ [x(τ)− y(τ)]2

}
.

(3.14)

†† Ohmic limit;
Long time scale compared to cutoff frequency, i.e., t >> Ω−1, where t is the time interval;
The particles’ movements are confined to a limited space compared to the characteristic length
scale of the system, k−1

0 .
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The initial conditions can be then set for a system of interest and the reduced density
matrix is calculated. The expression for the reduced density matrix can be explicitly
evaluated for a system of interest composed of a Brownian particle, for example (see
Ref. (70)). Chapter 6 addresses the choice of a specific system of interest, namely, driven
spin-boson, and the derivation of the expression for the reduced density matrix.
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4 DISSIPATIVE ADAPTATION

This chapter introduces the hypothesis proposed by England in 2015 (Ref.(27)).
Firstly, it must be stressed discussions on whether biological processes are quantum or
not have still been held. Nevertheless, biology and open quantum systems have a clear
connection, since biological systems can be treated as systems of interest in contact with
an environment, which is responsible for the energy loss of those systems. Living organisms
require a continuous influx of free energy to sustain the non-equilibrium condition inherent
to life (32).

The dynamics of a collection of particles allowed to reach thermal equilibrium
show the energy of a given microscopic arrangement and the probability of observing the
system in that arrangement obey a simple exponential relationship known as Boltzmann
distribution. However, when those particles are driven away from equilibrium by forces
that perform work on the system over time, relating the likelihood of a given outcome
to a familiar thermodynamic quantity, as work or heat, becomes significantly more chal-
lenging. Therefore, the development of a general understanding of the thermodynamics
of such non-equilibrium scenarios might ultimately enable our controlling and imitating
the remarkable successes living things achieve in driven self-assembly (27).

Since living organisms seem to not obey the equilibrium thermodynamics physics,
the nonequilibrum regime must be studied for the understanding of the way life-like be-
haves. Boltzmann distribution is not valid for that regime, since the systems are evaluated
in finite time and with external forces acting on them. With this apparent connection to bi-
ological systems, England derived an expression called dissipative adaptation hypothesis,
which is a generalization of Boltzmann distribution for out-of-equilibrium systems. The
hypothesis provides a general thermodynamic mechanism that explains self-organization
in a broad class of driven classical systems. Specifically, the likelihood of a particular
structure emerging in non-equilibrium evolution is significantly influenced by the amount
of work absorption and dissipation heat during its evolution history.

The idea draws parallels with the understanding of evolutionary adaptation in bi-
ological contexts, i.e., structures formed far from equilibrium may exhibit characteristics
that seem specially conducive to efficient work absorption from the driving environment.
This perspective prompts a discussion on the relevance of the dissipative adaptation hy-
pothesis in the study of the physics of self-organization (71).

This chapter provides a brief overview of the hypothesis and the derivation of the
expression for it. The main concepts of equilibrium systems are reviewed and a general-
ization for out-of-equilibrium systems shows how the thermodynamics of such driven and
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time finite systems are connected when Boltzmann distribution is not valid. The connec-
tion with England’s equation is established, with a generalization of the distribution for
non-equilibrium systems, providing a way to connect living mechanics to thermodynamics
equations. The quantum version of the hypothesis, called quantum dissipative adaptation,
is discussed in the last sections of the chapter. Moreover, some quantum definitions of work
are provided towards a better understanding of the connection of transition probability
and thermodynamics quantities.

4.1 Systems in Equilibrium

Let us consider an assembly of particles in a system S in contact with a large envi-
ronment at temperature T . After a sufficiently long time (τ →∞), the system eventually
reaches equilibrium. The occupation probability of each state is given by an exponential
relation of energy, given by pn = exp{En/kBT}, where En is the energy of each state.
Supposing an initial state of system i and considering two final configurations of the sys-
tem, denoted as j and k, with energies Ej and Ek, respectively, their connection with
thermodynamic quantities can be evaluated. Therefore, the probability of reaching each
of those states is given by Boltzmann distribution (see Fig. 5)

p(j)
p(k) = exp

{
−Ej − Ek

kBT

}
. (4.1)

Figure 5 – In the classic scenario of equilibrium statistical mechanics, a system held in
contact with a thermal reservoir at temperature T for a long time τ loses all
memory of its starting state i and, consequently, the probabilities of micro-
scopic states j and k are an exponential function of their respective energies.
The probability distribution of each state is dictated by their energies.

Source: ENGLAND (27).
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After a very long time, an energy change occurs from a starting state (i) to an
ending one (j, for example) and will be equal to the heat released into the bath during
the process. Due to the first law of thermodynamics, which establishes the conservation
of energy, the heat released into the reservoir (∆Q) during a transition from one state to
another is equal and opposite to the change in internal energy (∆E) that occurs during
the process.

Systems in thermal equilibrium can be described when a system of interest is very
weakly connected to a heat bath at temperature T and the nature or exact duration of
the coupling to the bath is uncertain. Moreover, the limit of a very long time in which all
rapid events have occurred while the slower ones have not is considered (72).

The timescale of the process involved must be taken into account for the un-
derstanding of the thermalization process∗. As an example, quantum systems that will
equilibrate might exist, yet their equilibrating timescale is of the order of the Universe’s
age. Conversely, certain systems, such as glasses, may never relax to equilibrium, but,
instead, maintain metastable states characterized by prolonged lifetimes (73).

4.2 Out-of-equilibrium systems

Systems in equilibrium are the exception in nature, since most systems are out-of-
equilibrium and even living things are not in thermodynamic equilibrium. Two features
cause a system to be out-of-equilibrium: the first concerns the time necessary for a system
to equilibrate - if it is much longer than the accessible timescale, teq ≫ t, the system
never equilibrates; the other is related to driven systems on which an external force acts,
providing extra energy and resulting in non-equilibration.

This section explores systems in which time is finite and external forces can per-
form work on them (see Fig.6). Comprehension and analyses of such systems require two
fundamental physical principles, namely, time-reversal symmetry† and energy conserva-
tion‡ be considered (55,71).

Crooks’s theorem is presented towards the understanding of the derivation of Eng-
land’s expression. Thermal equilibrium systems consider the probabilities of states. On
the other hand, for non-equilibrium systems, probabilities of occupation of certain states,
as well as trajectories, i.e., sequences of states, are taken into account. Crooks’s relation
expresses the difference in sequences of states probabilities with forward and backward
probabilities distribution ratio.

∗ Systems that evolve to equilibrium states.
† When time is reversed, the laws of physics behave similarly.
‡ For closed systems, the system’s internal energy is described as ∆E = Q + W , where Q is
total heat transferred to the system during the process and W is total work applied on the
system.
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The next sections address a very brief derivation of the dissipative adaptation
expression with few details - the entire derivation can be seen in Refs.(27, 55, 71, 74, 75).
The generalization of the second law of thermodynamics and Crooks’s relation, presented
in what follows, were used for deriving England’s expression.

Figure 6 – The probability of finding a system in a given state depends on both its initial
condition and precisely the way it was driven. Expressing this probability dis-
tribution in terms of thermodynamic quantities poses a significant challenge,
since it involves not only the internal energy of the final states, but also the
work done by the drive during transitions between states.

Source: ENGLAND (27).

4.2.1 Crooks’s Theorem

In 199 9, Crooks (55) formulated an expression that combines time-reversal symme-
try and energy conservation, delineating the probabilities of different dynamic trajectories
that a thermal fluctuation within a system might follow.

The expression, Eq.(4.2), establishes a connection between the probabilities of
forward and backward paths, linking them to the heat released into the reservoir during
the forward trajectory (for details of the derivation, see Ref. (76)). The direction that
tends to evolve more heat into its surroundings is the one the system is more likely to
follow

π(γ)
π∗(γ∗) = exp

(
∆Q(γ)
kBT

)
(4.2)

where γ ≡ [x(t), v(t)] is the dynamical trajectory and the time-reversed one is given
by γ∗ ≡ [x(τ − t),−v(τ − t)]. π(γ) and π∗(γ∗) are forward and backward probabilities,
respectively, and ∆Q represents the heat exchanged during the forward trajectory.
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The expression above suggests forward microtrajectory γ is more probable than
its time-reversed counterpart γ∗ (backward). The difference in probability between those
trajectories is expressed exponentially, with the exponent determined by the amount of
heat released into the surrounding thermal reservoir during the forward path (∆Q(γ)).
According to the energy conservation law, the total heat ∆Q typically consists of two
components, namely, internal energy change ∆E within the system from initial to final
states and the work W performed by the applied field throughout the entire process (27).
Eq.(4.2) derives a generalization of the second law of thermodynamics for providing Eng-
land’s expression.

4.2.2 Generalization of the second law of thermodynamics

A general experimental scenario starting and ending in out-of-equilibrium must
be considered for the derivation of the second law of thermodynamics generalization.
Setting up a framework for analyzing how a system transitions between two states, defined
as X,X ′§ when subjected to an external driving force, with a particular frequency and
considering the probabilities of such transition, defined as πτ (X → X ′), occurring within a
finite time τ , backward probability is represented as π∗

τ (X ′ → X) and the generalization of
the second law of thermodynamics can be written combining the laws of thermodynamics¶

with Crooks’s relation (Eq.(4.2))‖

⟨W ⟩X→X′ − ⟨∆E⟩X→X′ + T∆Sint ≥ kBT ln
[
πτ (X → X ′)
π∗

τ (X ′ → X)

]
(4.4)

where ⟨. . .⟩X→X′ denotes averaging over repeated measurements of a transition from X to
X ′ states, ∆E represents the internal energy change, ∆S is the external entropy change,
and extra term W is the external work performed on the system.

§ Each of them with internal entropy SX
int and SX′

int and average internal energy given by ⟨E⟩X
and ⟨E⟩X′ . x is the starting state and X ′ is the ending one.

¶ First law: for closed systems ∆E = W +Q, ∆E is the system’s internal energy, W is the work
performed on the system, and Q is the heat absorbed by the system.
Second law: the entropy of every closed and isolated system increases monotonically ∆S ≥ 0.
The quantity of heat exchanged by the system during a reversible process at equilibrium
temperature T can be written as ∆S = ∆Qrev

kBT
.

Third law: the entropy change in any isothermal process approaches zero as the temperature
at which the process occurs approaches zero, i.e., (∆S)T →0 → 0.

‖ Combining the exponential properties of ex ≥ x + 1 and ⟨ex⟩ ≥ ⟨x⟩+ 1 and applying them to
Crooks’s relation, the generalization of the second law of thermodynamics can be derived as

∆Stotal ≥ ln π∗(γ∗)
π(γ) . (4.3)

Therefore, the more irreversible something, the larger the increase in the entropy of the uni-
verse.
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An irreversible process, in which the transition probability from X to X ′ states
is greater than the opposite, i.e., the forward transition probability is bigger than the
backward one, can be considered towards the understanding of the aforementioned equa-
tion. As the statistical irreversibility of a spontaneous process increases, leading to a
higher likelihood of transitioning from state X to state X ′ compared to the reverse un-
der specific non-equilibrium driving conditions, the minimum total entropy required also
increases. Increased irreversibility implies a greater amount of work done on the system
being dissipated rather than stored in the system (27).

4.3 Hypothesis of dissipative adaptation

The way to treat the thermodynamics of out-of-equilibrium systems has been ex-
tensively explored in the past few years (77–79). The hypothesis of dissipative adaptation
emerges towards a step forward in understanding the relation of Gibbs distribution for
those systems (27, 74) and aims to find a general principle applicable even to situations
far from equilibrium for providing insights or replicating the behavior of living organisms,
which are essentially out-of-equilibrium open systems.

In biology, the idea of adaptation has arisen from the fact certain configurations
are effective at absorbing energy from the environment and self-replicating, inheriting the
configuration from their parents and evolving to never returning to their initial one (e.g.,
a mammal will never become an embryo again) (80,81). In other words, a system efficient
in replication must be good at absorbing work from the environment.

Using that idea as the basis of adaptation in a physical system, England suggested
it might be true for any ensemble of atoms (82,83). The dissipative adaptation hypothesis
is the ability of a system to become very finely tuned to its out-of-equilibrium environment,
taking into account the history of absorption of work and heat dissipation during the
process (27, 74). Consequently, more organized states at the end of the process consume
the greater absorbed work. England basically generalized Boltzmann distribution so that
it can hold for out-of-equilibrium systems. What is essential for that hypothesis is the focus
is not on the probabilities of achieving certain states, but rather, on the probabilities of
the trajectories leading to those states.

Using Crooks’ relation, Jarzynski equality∗∗, and the generalization of the second
law of thermodynamics, England summed different possible microtrajectories and their

∗∗ Which relate the probability distribution of out-of-equilibrium values of work with free energy
difference,

〈
e−βWabs

〉
= e−β∆F , where ∆F is the free energy difference (27).
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associated probabilities (27,71)††, resulting in

πτ (i→ j)
πτ (i→ k) = exp

{
−∆Ejk

kBT

}
π∗

τ (j∗ → i∗)
π∗

τ (k∗ → i∗)

〈
e−W/(kBT )

〉
i→k

⟨e−W/(kBT )⟩i→j

(4.5)

The expression above describes the transition probabilities from initial state i to final
states j and k, i.e., within a classical theoretical framework, dissipative adaptation can
be understood through the demonstration of the way certain final states of the system
are statistically privileged as a result of having consumed more work.

The equation can be interpreted as the summation of the distinct pressures pushing
the systems towards particular outcomes (71). The probability ratio, Eq.(4.5) is expressed
through three terms detailed in what follows:

1. exp
{
−∆Ejk

kBT

}
enables the recovery of Boltzmann distribution. In the absence of an

external drive (W = 0) and for long times (t→∞), the second and third terms of
the right side equal one. As a result, the system in contact with a heat bath tends
towards thermal equilibrium.

2. π∗
τ (j∗→i∗)

π∗
τ (k∗→i∗) , called kinetic accessibility, indicates not all states are equally accessible

to each other on a finite timescale. The term can dominate in case of a kinetically
trapped system in a high-energy arrangement.

3. ⟨e
−W/(kBT )⟩

i→k

⟨e−W/(kBT )⟩
i→j

is a measure of reliable work absorption during the transition history.
The term dominates if transitioning from state i to state j absorbs plenty of work
with little fluctuation. The term takes into account the trajectories of the system.

As claimed by England, the equation elucidates the system’s ability for self-
organizing. Essentially, the system tends to settle into a particular state because that
state has proven stable through a history of work absorption. The equation summarizes
England’s dissipative adaptation hypothesis, which describes a general thermodynamic
mechanism for self-organization via dissipation of absorbed work under external driving
forces, applicable to out-of-equilibrium systems evaluated over finite time intervals. More
†† For an initial state i and two possible final states j, k, the probability ratio for each transition

is

πτ (i→ j)
π∗

τ (j∗ → i∗) = eβ∆Qij
diss ; πτ (i→ k)

π∗
τ (k∗ → i∗) = eβ∆Qik

diss .

Dividing the two expressions above and rearranging the parameter result in

πτ (i→ j)
πτ (i→ k) = π∗

τ (j∗ → i∗)
π∗

τ (k∗ → i∗)eβ(∆Qij
diss

−∆Qik
diss).

England’s expression can be derived through Jarzynski equality and the first law of thermo-
dynamics.
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adapted states, i.e., the most probable and longest-lasting ones, are typically those with
a history of higher work absorption followed by heat dissipation.

Whereas any changes to the system’s configuration may initially seem random,
the most enduring and irreversible ones occur when the system temporarily enhances its
capability of absorbing work and dissipating energy. Over time, only the memory of those
paths that involve energy dissipation will persist, resulting in the system appearing self-
organized in a state well-adapted to its environmental conditions. In essence, dissipative
adaptation can be conceptualized as a generalization of Boltzmann distribution for out-
of-equilibrium systems.

The essential aspect of irreversibility in such systems is important for the char-
acterization of a system that might exhibit the adaptation of a dissipative one. Towards
guaranteeing adaptation to those systems, the energy absorbed during the transition from
one state to another must be consumed after the process so that no more energy is used
by the system for returning to its initial configuration.

The hypothesis discussed here involves the idea that a classical particle solely
influenced by random thermal fluctuations may be unable to surpass an energy barrier.
However, when an external drive is introduced into the system, the particle can jump
over the barrier using the energy provided by the external source for the transition to
that other side. By the principle of conservation of energy, that energy is subsequently
dissipated and, consequently, the particle cannot revert to its initial state (Fig.7).

Figure 7 – Driven barrier hopping (for further details, see Ref. (27)).

Source: ENGLAND (27).

Another fundamental aspect of dissipative adaptation, which revolves around a
certain type of asymmetry, must be emphasized. When a system is subjected to symmetric
drive, regardless of the drive intensity, it will show equilibrium symmetrically. Therefore,
asymmetry in the drive induces population accumulation on one side of the potential
well, subsequently leading to adaptation. Such a characteristic is important for the driven
system explored in Chapter 6.



69

4.4 Quantum regime of dissipative adaptation

Introducing the hypothesis of dissipative adaptation to the quantum regime is a
natural progression. However, two main obstacles are encountered during the establish-
ment of a connection between nonequilibrium organization and thermodynamic quantities.
The first refers to limit T → 0, where quantum fluctuations become significant and neither
Crooks’s, nor dissipative adaptation hypothesis is valid. Consequently, directly translating
England’s expression, Eq.(4.5), to the quantum realm is not straightforward. The second
challenge is related to the definition of work in quantum regime. The following sections
detail those issues and provide a brief overview of both.

4.4.1 Quantum work

The definition of work in quantum mechanics is challenging and one of the many
questions that remain open in the field of quantum thermodynamics. Several authors have
tried to propose a suitable definition of work, as addressed in what follows.

In the classical regime, work is the transfer of energy that results from a force
applied over a distance, i.e., it is the product of the force applied to an object and the
distance over which it is applied. However, in the quantum regime, resulting from Heisen-
berg uncertainty principle, momentum and position cannot be determined simultaneously,
invalidating the aforementioned definition.

The definition of work in quantum thermodynamics is difficult, for it does not
fall into the category of observables‡‡, like position or momentum. Differently from those
quantities, work does not have a corresponding operator that can be easily explored within
the formalism of quantum mechanics (84). That is a problem, since quantum mechanics
relies on a clear connection between observables and measurement outcomes, and in the
context of thermodynamics, quantities like work and heat are associated with processes
rather than with static states. The integration of thermodynamics with quantum me-
chanics is challenging, since the usual framework of quantum mechanics may not directly
apply to those thermodynamics quantities.

Among the numerous definitions of work in quantum thermodynamics, one of the
most accepted is based on the two-point measurement (TPM) method. A way to define
work in a quantum regime is using the second law of thermodynamics. For a closed
quantum system, work can be written with two contributions, namely, heat transferred
between system-environment and internal energy change. Since heat cannot be considered
in a closed system, work can be defined as the difference of final and initial internal energies

‡‡ The observables of a physical system are quantities that can be measured and represented by
Hermitian operators.
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as

Wn→m = Em
f − En

i (4.6)

where Em
f is the m-th eigenenergy of the final system and En

i is the n-th eigenenergy of
the initial one.

In such a definition, two projective measures are performed at the protocol’s be-
ginning and end and quantum work is, therefore, defined as the difference in energy
eigenvalues between those two measures for a single realization. Its distribution can be
evaluated by repeating the TPM protocol (85–87). Such a definition is valid when there
is no coupling between system-environment and when the dynamics are unital§§.

Other definitions of quantum work can be used considering a quantum system
described by density matrix ρ. The mean value of an observable A can be

⟨A⟩ = Tr{ρA}. (4.7)

Therefore, the system’s internal energy is considered E = Tr{ρH}. The change in this
expression is

∆E = Tr{ρ(tf )H(tf )} − Tr{ρ(t0)H(t0)}. (4.8)

An infinitesimal change (∂)¶¶ in the internal energy associated with the temporal evolution
of the system leads to

∂E = ∂ Tr{ρ(t)H(t)} = Tr{∂ρ(t)H(t)}+ Tr{ρ(t)∂H(t)}. (4.9)

The change in the energy of state ρ is due to a change in the Hamiltonian by the
application of an external parameter, i.e., the change can be identified as a quantity of
work done during the system’s evolution. Alternatively, due to the dynamical change in
state ρ, i.e., a reconfiguration for the system that can be associated with heat, the work
done by the system and the heat absorbed are written as

∂Q ≡ Tr{ρ̇(t)H(t)}dt, (4.10)
∂W ≡ Tr

{
ρ(t)Ḣ(t)

}
dt. (4.11)

where dots represent derivation in time.

Furthermore, some authors may have used a definition based on classical work,
which is related to Heisenberg’s definition. The next section explores a reference for the
quantum dissipative adaptation, when this classical similar definition is adopted.
§§ The dynamics do not alter the populations of the density matrix.
¶¶ It is not an exact differential that guarantees those quantities of work and heat are not

observables.
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4.4.2 Quantum dissipative adaptation

As addressed in previous sections, the classical equation for the dissipative adap-
tation and Crooks’s relation are not well defined in the T = 0 limit. Valente et.al. (21)
employed a simpler system related to England’s barrier to derive the relation between
transition probability and thermodynamics quantities such as absorbed work from a sin-
gle photon pulse. The barrier was represented by a three-level system in Λ configuration.
The authors derived a relationship for the so-called quantum dissipative adaptation using
the system-environment approach, where the system is influenced by an external drive
characterized by a single photon pulse.

Figure 8 – Representation of quantum dissipative adaptation in Λ system with two ground
states, |a⟩ and |b⟩, and one excited state |e⟩. a) density operator of the system,
ρS, at time t = 0. Γa/b are the environment-induced spontaneous emission
rates and ωa/b are the transition frequencies. The initial state is a mixture
of the two lower energy eigenstates ρS(0) = p(0)

a |a⟩ ⟨a| + p
(0)
b |b⟩ ⟨b| at zero

temperature. b) A nonequilibrium environment composed of a single-photon
pulse |1a⟩, which serves as the work source, drives the system dynamics and
induces the time-dependent transition probability pa→b(t) from |a⟩ to |b⟩. The
backward transition probability (with a time-reversed pulse) p∗

b→a goes to zero
at zero temperature. c) the asymptotic state is pure, ρS(∞) = |b⟩ ⟨b|, i.e.,
the atoms arrange themselves spontaneously into an organized state, often
referred to as self-organization. The state is conditioned to maximizing the
work absorbed and the heat dissipated in the transition. The driven system
undergoes an irreversible self-organizing dynamics.

Source: VALENTE et al. (21).

Fig. 8 shows the driven system’s evolution. The excited state can spontaneously
decay to two possible lower states, mimicking an energy barrier. However, Λ system has
no tunneling parameter. Equation (4.12) describes a similar relation to England’s for
classical systems, associating the transition probability to the work done on the system
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by the driving source.

pa→b(∞) = Γb

Γa + Γb

⟨Wabs⟩a
ℏωa

, (4.12)

p∗
b→a(t) = 0. (4.13)

The expressions were analyzed for the limit of zero temperature. On the one hand,
the more the work on average absorbed and released by an atom for transitioning from
one configuration to another, the higher the probability transition for those states. On
the other hand, if the driving force is reversed in time, the system does not return to
the initial configuration, i.e., the backward transition probability is zero. The quotient
between the transitions probabilities undergoes a singularity, explaining why the T = 0
limit cannot be taken in England’s expression.

A more adapted quantum state (self-organized) is the one with the highest his-
torical of absorption of work followed by maximum heat dissipation. The relationship
between absorbed work and system behavior is established by calculating Schrodinger’s
equation for the entire system and deriving expressions for work and heat as consequences
of solving the equation. The work defined in this study is an analogue to the classical one
(some details on the definition and derivation of quantum work for this system can be
found in Appendix H). Therefore,

⟨Wabs⟩a = ⟨Qdiss⟩a + ⟨HS(∞)⟩ − ⟨HS(0)⟩ , (4.14)

where ⟨Qdiss⟩ represents the dissipated heat and ⟨HS(∞)⟩ and ⟨HS(0)⟩ denote the internal
energy of the system at final and initial states, respectively. Eq. (4.14) obeys the conser-
vation of energy principle, according to which the work done on the system is partially
dissipated as heat, while the remainder contributes to the change in the internal energy
of the system.

Such a three-level system with the drive as a single photon pulse does not ther-
malize and is always kept out-of-equilibrium. Another important aspect of dissipative
adaptation hypothesis in both classical and quantum regimes is the irreversibility of the
processes, as discussed in this chapter. The system must follow irreversible paths so that its
adaptation is in the highest work-absorbed state. In quantum regime, such irreversibility
became clear from the asymmetry in the probabilities transition in forward and backward
processes.

The main points in Ref.(21) refer to the absorption of work, which is not directly
associated with transitions from the lowest energy states to the highest ones. Although
the highest work absorbed by the photon in Λ system leads to a significant transition from
state |a⟩ to state |b⟩, it does not result in the most significant transition from state |a⟩
to state |e⟩. In other words, if the system is too excited, it does not necessarily maximize
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the absorbed work.Another important point is the work performed on the atom does
not depend on the energy gap between |a⟩ and |b⟩ states, suggesting the system’s ability
to absorb work is not solely determined by the energy difference between its initial and
final states. Those findings underscore one of the initial insights into the behavior of
dissipatively adapted systems in the quantum regime.

The next chapters explore other quantum systems towards deriving a concept
similar to quantum dissipative adaptation for a simpler system, specifically a two-level
system.
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5 TWO-LEVEL SYSTEMS IN A DOUBLE WELL POTENTIAL

So far, discussions on both classical and quantum dynamics of dissipative systems
have been explored and the hypothesis of dissipative adaptation was introduced in the
previous chapter for classical systems composed of a barrier and similarly for quantum
systems with a three-level system in Λ configuration.

Inspired by the bistable potential considered in England’s research (83), this chap-
ter analyzes the two-level system (TLS) in a double well potential coupled to a dissipative
environment. The model is a very successful open quantum system that has been investi-
gated over the past few years and whose dynamics has been adopted for studies of several
physical systems (e.g., superconducting devices with Josephson junctions (88), two-level
atoms in optical cavities (89), and semiconductor quantum dots (90), to name a few).

England numerically investigated driven disordered mechanical networks com-
posed of bistable springs and characterized by a multiple stable configuration resulting
from the dual stable rest lengths of each spring. The two wells have distinct frequen-
cies (ω0, ω1) and their results indicate presence of a specific range of forcing amplitudes,
wherein the attractor states of those driven disordered multistable mechanical networks
are finely tuned to exhibit low energy absorption from the external forcing pattern (see
Fig. 9) (83).

A TLS in a double well potential with a driven force, called driven spin-boson
model, investigated a quantum system that might exhibit the dissipative adaptation
mechanism in a more simpler configuration than the tree-level system in Ref.(21). The
symmetry of such potential is considered through an analysis of the separation between
the two well-parameter, ϵ. If a symmetric bistable potential is considered (ϵ = 0), then
the energy spectrum of the system is degenerate. On the other hand, if an asymmetric
double potential (ϵ ̸= 0) is taken into account, the energies are not degenerate and some
interesting features must appear, as discussed in chapter 6.

The temperature regime must be analyzed for the TLS validity. The model can be
seen as an approximation in Hilbert space associated with the bistable system, which can
be taken when the temperature is sufficiently low. Therefore, the system’s dynamics can
be confined to the subspace defined by the lowest doublet, composed of the eigenstates
{|g⟩ , |e⟩} of the bare Hamiltonian (Fig. 10)∗.

On the other hand, when temperatures approach the energy gap between lowest
and subsequent energy levels, the approximation of TLS becomes invalid and the com-
plex multilevel characteristics of the bistable potential become significant and cannot be

∗ |g⟩ denotes ground state and |e⟩ denotes excited state.
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Figure 9 – Reproduction of Fig. 1 from Ref. (83), where a one-dimensional bistable spring
is subjected to sinusoidal forcing at low (green), intermediate (blue), and high
(light blue) amplitudes. (a) The plot shows the average energy levels across
a forcing period for different amplitudes, where U(d) represents the bistable
spring potential. (b) The trajectory of the average spring length illustrates
distinct behaviors: remaining confined in the initial potential well (⟨d⟩ ≈ 1)
during low amplitudes (green), transitioning to the nonresonant potential well
(⟨d⟩ ≈ 3) for intermediate amplitudes (blue), and consistently oscillating be-
tween the two wells (⟨d⟩ ≈ 2) at high amplitudes (light blue).

Source: KEDIA et al. (83).

disregarded (91–94). Such a situation arises, for instance, in chemical processes, in which
the existence of a higher tunneling doublet under an effective potential barrier contributes
to activated rates at specific temperatures. TLS in a double well potential is of profound

Figure 10 – Representation of energy level as a function of bias ϵ.

Source: GRIGONI; HÄNGGI (95).

importance as the simplest fundamental model for the study of thermal relaxation and
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quantum tunneling phenomena in a number of physical and chemical systems, e.g., elec-
tron transfer reactions (96), proton tunneling (97,98), tunneling of Bose-Einstein conden-
sates (99, 100), superconducting quantum interference devices (SQUID’s) (28, 101, 102),
nuclear fusion (103), among others.

Fig. 11 (28, 47, 104) illustrates the model, where the quantum tunneling, repre-
sented by ∆, enables transition between the states in two dimensions. Moreover, if the
separation between the two minima of the double well, given by ϵ, is small enough and
the barrier is not too high, quantum mechanical tunneling can occur between the wells.

In classical regime, when barrier crossing is not driven by thermal effects, a particle
remains in a potential minimum indefinitely, differently from the quantum regime, in
which even at absolute zero temperature, the particle remains confined in one potential
well until tunneling allows escape.

Figure 11 – Representation of an asymmetric double well potential related to the sign of
the separation between the two minima of energy, denoted as ϵ. Each side
of the potential well has a specific frequency and energy, defined as ω+ and
ω−, for right and left sides, respectively. Whereas the eigenvalue of +q0/2
represents the right side, the eigenvalue of −q0/2 represents the left side.
Considering the particle starts on the left side of the well, a) if ϵ is positive,
the particle starts in the stable well and, b) if ϵ is negative, the particle starts
in the unstable well.

Source: By the author

A way to illustrate TLS in a double well potential dynamics is describing tunneling
in terms of localized basis, where left/right well states |L/R⟩ are combinations of |g⟩
(ground) and |e⟩ (excited) states† and spin operators can be written as σx = |R⟩ ⟨L| +
|L⟩ ⟨R| and σz = |R⟩ ⟨R| − |L⟩ ⟨L|. The position operator is given by q = q0σz/2 and
±q0/2 eigenvalues of q correspond to the positions of the localized states. Such states are
related to eigenstates (|g⟩ , |e⟩) of the Hamiltonian, respectively, through an orthogonal

† Refers to either a clockwise current, or a counterclockwise one within the superconducting
loop of a three-junction Josephson qubit, or more broadly, the qubit’s two logical states (105).
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transformation

|R⟩ = cos φ2 |g⟩+ sin φ2 |e⟩ (5.1)

|L⟩ = sin φ2 |g⟩ − cos φ2 |e⟩ (5.2)

where tanφ = −∆
ϵ
.

The double well is usually characterized by barrier height V0, separation ℏω0 be-
tween the ground state and the first excited state within each well, and an intrinsic
“detuning” energy ϵ between the ground states in the two wells. In V >> ℏω0 regime,
which is much greater than both ϵ and kBT , the system effectively resides within a two-
dimensional Hilbert space spanned by the two ground states (106).

For convention, if the particle starts the dynamics on the left side of the well
(ϵ > 0),i.e., the left well is lower and the particle is initially in the stable well‡. The
difference in the population of the two wells, given by ⟨σz⟩ = PR−PL, is positive, because
the population of the right well must be thermodynamically higher. Conversely, if the
sign of ϵ is negative, the particle starts the dynamics in the unstable well,i.e., the highest
state of the potential. (see Fig.11 for more details).

The dissipation process is included in TLS in a double well potential by linearly
coupling the system with a thermal reservoir. As aforementioned, the reservoir, or envi-
ronment, is modeled as a large set of harmonic oscillators initially in equilibrium. Using
this description for the environment, a dissipative TLS in a double well potential can
be equivalently represented as a versatile and well-studied spin-boson model (106, 107).
Since our aim is to study dissipative adaptation hypothesis in a simpler quantum system,
the dissipation included in TLS means an establishment of a clear connection with the
hypothesis. The lack of a crucial component in the study of TLS in a double well poten-
tial motivated the design of a model called driven spin-boson, described in the following
chapter.

The goal here is to show a system simpler than the one with three-level states and
analyze the possibility of finding the dissipative adaptation mechanics in it. Differently
from England’s and Valente’s studies, tunneling is taken into account in our proposed
quantum model§. Instead of a single path or trajectory to be followed by the particles to
reach the other side of the barrier, the system can tunnel through the wells; therefore,
several trajectories that are not classically accessible must be taken into account. Since
our interest is in investigating a quantum dissipative adaptation in such driven TLS, the
path integral formalism must be used, for it finds all possible trajectories the system may
follow for transitioning from one side to another of the well.

‡ It is the minimum of energy when the two sides of the wells are compared.
§ Driven spin-boson model, explored in chapter 6.
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This chapter introduces the dissipative TLS spin-boson model, covering the dy-
namics with path integral formalism for the case of asymmetric spin-boson (1,28).

5.1 Spin-boson model

Spin-boson model, which is a variant of Caldeira-Legget model, involves a spin or
a TLS in a double well potential interacting with a bosonic bath. In such systems, the
hopping dynamics between two trapped positions is well studied effects and is connected
by hopping amplitude ∆, under perturbation caused by coupling to the environment (34).
The environment can be considered with an Ohmic spectral function, as discussed pre-
viously in chapter 2. The theoretical analysis of spin-boson dynamics and path integral
approach was provided by Leggett et al. (28).

This section addresses the spin-boson dynamics, which is formally solved by a
path integral method. However, approximations must be invoked towards the derivation
of closed-form analytical results - the usual non-interacting blip approximation (NIBA) is
adopted in this study for an unbiased case (ϵ = 0), as reported at the end of the chapter.

Depending on various coupling regimes and system parameters, distinct spin dy-
namics can be found (see Fig.12). As an example, the localization of a particle¶ is per-
formed under specific conditions and, particularly, when the coupling strength, such as
dissipation to the bath, becomes strong, which is experimentally achievable (108,109). Fig-
ure 12 illustrates the difference in population over time in different regimes (110). Each
parameter regime exhibits characteristic dynamical behaviors, including localization, ex-
ponential or incoherent relaxation, exponential decay, and strongly or weakly damped
coherent oscillations (2, 28).

In a general scenario, if the particle is initially in the left-hand side well, the
probability of finding it again on the same side later depends on the hopping amplitude
and interaction with the environment. In the absence of bath and for very low dissipation
strengths and temperatures, TLS in a double well potential exhibits coherent oscillations
between the two wells, known as Rabi oscillations. Conversely, under sufficiently high
damping and/or temperatures, the dynamics become incoherent. Numerous studies have
explored the crossover between coherent-to-incoherent dynamics (1, 28).

Coherence is another characteristic dependent on the system’s parameters, partic-
ularly when the two states have equal energy (zero-energy bias or unbiased case ϵ = 0)
and there is either zero, or weak dissipation. Theoretical predictions suggest the system
will exhibit macroscopic quantum coherence at sufficiently low temperatures in such a

¶ A particle or a quantum state is predominantly confined to one of the two possible states (|L⟩
or |R⟩), despite the potential for quantum superposition or tunneling between those states.
The particle loses its ability to oscillate between the wells.
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scenario. However, coherence within the system diminishes as the temperature increases
and/or the level of dissipation strengthens (33).

Figure 12 – Qualitative behavior of spin dynamics in the three main regimes of the spin-
boson model with an Ohmic environment. Probability P (t) corresponds to
expectation value P (t) = ⟨σx(t)⟩, in the proposed systems, when initialized
to the +1 eigenstate of σx at t = 0.

Source: LEPPÄKANGAS et al. (34).

5.1.1 Quantum mechanical calculations

The following Hamiltonian describes TLS in a double well potential when totally
isolated from its environment (28), in localized basis |R/L⟩

HT LS = ℏ
2

(
∆(|R⟩ ⟨L|+ |L⟩ ⟨R|) + ϵ(|R⟩ ⟨R| − |L⟩ ⟨L|)

)
, (5.3)

and the Hamiltonian eigenvalues are given by

HT LS |n⟩ = En |n⟩ , (5.4)

En = ±ℏ
2
√

∆2 + ϵ2. (5.5)

The energy splitting between ground and excited states is E = E|e⟩ − E|g⟩ = ℏ
√

∆2 + ϵ2.

The transition probability expression is crucial for our analyses of the connec-
tion of a driven system and dissipative adaptation hypothesis. Using the usual quantum
mechanical calculations, with energy basis, the occupation probability is given by

PR(0) = 1 PR(t) = | ⟨R|Ψ(t)⟩ |2, (5.6)
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where the first expression means the system is initially on the right side of the well, and
the other expression is the probability of finding the system again on the same side at
time t later. In the localized basis, the probability of finding the system is written as

PR(t) = | ⟨R| exp{−it(∆σx + ϵσz)/2}|R⟩ |2. (5.7)

Using the following equality for the evolution operator in TLS in a double well potential

e−i(tE/2ℏ)( ℏϵ
E

σz+ ℏ∆
E

σx) = cos (tE/2ℏ)− i sin (tE/2ℏ)
(
ℏϵ
E
σz + ℏ∆

E
σx

)
. (5.8)

Therefore, the probability is

PR(t) = cos2 (Et/2ℏ) +
(
ℏϵ
E

)2

sin2 (Et/2ℏ). (5.9)

The same result can be recovered if the probability occupation is given by PL(0) = 1.
Therefore, the expression for the transition probability, following the same procedure, is

PL→R = PR→L =
(
ℏ∆
E

)2

sin2 (Et/2ℏ), (5.10)

which describes periodic sinusoidal motion between left and right states.

5.1.2 Path integral expression without dissipation

As aforementioned, the dynamics of a quantum system can be explained via path
integral formalism. Regarding spin-boson dynamics, since many trajectories not classically
accessible and quantum tunneling can occur, the formalism must again be implemented.
However, since the spin-boson model has no classical analogue, i.e., classical action is not
well-defined‖, the obtaining of dynamics is more difficult. The path integral expression for
the propagator can be constructed as follows: the occupation probability is

PR(t) =
∣∣∣〈R|e−iHT LSt/ℏ|R

〉∣∣∣2 = |K(R, t;R, 0)|2, (5.11)

which is expressed in terms of the propagator in the path integral formalism

K(R, t;R, 0) =
〈
R|eiHT LSt/ℏ|R

〉
=
∫
DσA[σ]. (5.12)

For a particle in a double-well potential, Feynman’s formula can be applied

K(qb, tb; qa, ta) =
∫ tb

ta

DqeiS[q]/ℏ ≡
∫
DqA[q]. (5.13)

For TLS in a double well potential Hamiltonian in its pseudo-spin form,

HT LS = −ℏ
2 (∆σx + ϵσz) , (5.14)

‖ Since spin-boson Lagrangian cannot be expressed in Lagrangian form, the action of the system
cannot be written in the usual form.
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therefore,

K(α, tb, R, t0) =
〈
R|e−iHT LS(tb−t0)/ℏ|R

〉
=

∑
l1,...,lN

N+1∏
n=1

K(ln, tn; ln−1, tn−1), (5.15)

where α = L,R. The initial conditions are the system is in |R⟩ at time ta = 0 and∑
lα=L,R |lα⟩ ⟨lα| = 1 is used together with α = lN+1, R = l0, and tb = t = tN+1.

Starting from the infinitesimal propagator

K(ln, tn; ln−1, tn−1) =
〈
ln|e−iHT LSτn/ℏ|ln

〉
= ⟨ln|1− iHT LSτn/ℏ|ln−1⟩ . (5.16)

leads to

⟨ln|1− iHT LSτn/ℏ|ln−1⟩ =


1 + iϵτn/2, ln = ln−1 = R,

1− iϵτn/2, ln = ln−1 = L,

i∆τn/2, ln ̸= ln−1.

(5.17)

Next, continuum limit N → ∞, i.e., τ → 0 is taken and K is rewritten as a series
expression in terms of number of tunneling transitions

K(R, t;R, 0) =
∫
DσA[σ] =

∞∑
m=0

K(m)(R, t;R, 0), (5.18)

for zero order

K(0)(R, t;R, 0) = lim
N→∞

N+1∏
n=1

K(R, tn;R, tn−1) = lim
N→∞

N+1∏
n=1

(
1 + i

ϵτn

2

)
= ei ϵt

2 , (5.19)

and for odd orders

K(2m+1)(R, t;R, 0) = 0. (5.20)

The second order has the form
j−1∏
n=1

K(R, tn;R, tn−1)K(L, tj;R, tj−1)
k−1∏

n=j+1
K(L, tn;L, tn−1)K(R, tk;L, tk−1)

N+1∏
n=k+1

K(R, tn;R, tn−1).

(5.21)

Taking limN→∞ results in

ei ϵ
2 tj−1

(
i
∆τj

2

)
e−i ϵ

2 (tk−1−tj)
(
i
∆τk

2

)
ei ϵ

2 (t−tk) (5.22)

and, finally, summing up all possible lj = lk = L

K(2)(R, t;R, 0) = lim
N→∞

N∑
k=2

k−1∑
j=1

ei ϵ
2 tj−1e−i ϵ

2 (tk−1−tj)ei ϵ
2 (t−tk)

(
i
∆
2

)2

τjτk, (5.23)
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or∗∗(111)

K(2)(R, t;R, 0) =
(
i
∆
2

)2 ∫ t

0
dt2

∫ t2

0
dt1e

i ϵ
2 (t1−t0)e−i ϵ

2 (t2−t1)ei ϵ
2 (t−t2). (5.24)

Summing all orders (t2m+1 = t) leads to

K(R, t;R, 0) =
∞∑

m=0

(
i
∆
2

)2m ∫ t

0
dt2m· · ·

∫ t2

0
dt1

m∏
j=0

ei ϵ
2 (t2j+1−t2j)

m∏
j=1

e−i ϵ
2 (t2j−t2j−1). (5.25)

Because the integrals are in convolutive form, Laplace transform (43) must be introduced,
thus obtaining

KRR(λ) =
∞∑

m=0

(
i
∆
2

)2m m∏
j=1

∫ ∞

0
dτje

−(λ+iϵ)τj

m∏
j=0

∫ ∞

0
dsje

−(λ−iϵ)sj , (5.26)

or

KRR(λ) =
∞∑

m=0

(
i
∆
2

)2m ( 1
λ+ iϵ/2

)m ( 1
λ− iϵ/2

)m+1

= 1
2

2λ+ iϵ

4λ2 + (E/ℏ)2 . (5.27)

Finally, the inverse Laplace transform can be performed:

K(R, t;R, 0) = 1
2πi

∫
C
dteλtKRR(λ), (5.28)

where C denotes Bromwich contour. Since the poles are in λ = ±iE/2ℏ, the final result
can be written as

K(R, t;R, 0) = cos
(
Et

2ℏ

)
+ i

ℏϵ
E

sin
(
Et

2ℏ

)
, (5.29)

which is in agreement with quantum mechanical calculations in localized basis Eq.(5.9)††.
∗∗ Given a function f(x), which is continuous in the [a, b] time interval, a definite integral can

be defined as ∫ b

a
f(x)dx,

which can be approximated by a Riemann sum as

n∑
i=1

f(xi)∆x,

where ∆x = (b − a)/n is the width of each interval, n is the number of intervals into which
range [a, b] is divided, and xi is a sample point in the interval. When n → ∞, then ∆x → 0
and Riemann sum approaches the exact value of the integral

lim
n→∞

n∑
i=1

f(xi)∆x =
∫ b

a
f(x)dx.

†† PR(t) = |K(R, t; R, 0)|2.



84

The next step is to return to the expression for PR(t). PR(t) = |K(R, t;R, 0)|2,
where K(R, t;R, 0) involves a double path integral over the two-state paths σ, σ′, which
is reintroduced:

PR(t) =
∫
Dσ

∫
Dσ′A[σ]A∗[σ′]. (5.30)

Evaluating the matrix elements of the infinitesimal density matrix

ρ(ln, l′n, tn; ln−1, l
′
n−1, tn−1) =

〈
ln|ρ(tn; ln−1, l

′
n−1, tn−1)|l′n

〉
= ⟨ln|(1− iHT LSτn/ℏ)|ln−1⟩

〈
l′n−1|(1 + iHT LSτn/ℏ)|l′n

〉
,

(5.31)

and using Eq.(5.17) lead to

ρ(ln, l′n, tn; ln−1, l
′
n−1, tn−1) =



1, ln = ln−1 = l′n = l′n−1 = L,

1− iϵτn, ln = ln−1 = L, l′n = l′n−1 = R,

1 + iϵτn, ln = ln−1 = R, l′n = l′n−1 = L+O(τ 2),

i∆τn/2, ln ̸= ln−1, l
′
n = l′n−1,

−i∆τn/2, ln = ln−1, l
′
n ̸= l′n−1,

0, ln ̸= ln−1, l
′
n ̸= l′n−1.

(5.32)

Introducing sojourns η(τ) = 1
2 [σ(τ) + σ′(τ)]‡‡ and blip paths ξ(τ) = 1

2 [σ(τ)− σ′(τ)]§§ and
identifying the four matrix elements of TLS in a double well potential density matrix η

diagonal states (LL, η = 1, RR, η = −1) and ξ off-diagonal states (LR, ξ = 1, RL,
ξ = −1) (107), then,

ρ(ln, l′n, tn; ln−1, l
′
n−1, tn−1) =



1, ln = ln−1 = l′n = l′n−1,

1− iϵτn, ξn = ξn−1 = −1,

1 + iϵτn, ξn = ξn−1 = 1,

i∆τn/2, ξn = ∓1, ηn−1 = ±1orηn = ±1, ξn−1 = ∓1,

−i∆τn/2, ξn = ±1, ηn−1 = ∓1orηn = ±1, ξn−1 = ±1,

0, ηn = ±1, ηn−1 = ∓1, orξn = ±1, ξn−1 = ∓1.
(5.33)

A generic double path over two-state paths σ and σ′ is transformed into a four-state path
over the four states of the reduced density matrix. The path consists of an alternating
sequence of sojourns and blips

PR(t) =
∫
Dη

∫
DξA[η, ξ]. (5.34)

‡‡ Time intervals spent in a diagonal ξ(τ) = 0 state (112).
§§ Time intervals spent in an off-diagonal η(τ) = 0 state (112).
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Taking continuum limit N →∞, i.e., τ → 0 and rewriting PR(t) as a series expression in
the number of tunneling transitions result in

PR(t) =
∫
DσA[σ]

∫
Dσ′A[σ′] =

∞∑
m=0

P
(m)
R (t) (5.35)

which, for zero order, is

P
(0)
R (t) = lim

N→∞

N+1∏
n=1

1 = 1, (5.36)

and, for odd orders, is

P
(2m+1)
R (t) = 0. (5.37)

Now, the second order becomes

P
(2)
R (t) = lim

N→∞

N∑
k=2

k−1∑
j=1

(
i∆
2

)
e−iξ ϵ

2 (tk−1−tj)
(
−i∆

2

)
τjτk. (5.38)

After summation over η = +1,−1, the series then reads

P (t) = 1 +
n=1∑
∞

(−∆2)n

2n

∫ t

0
dt2n

∫ t2n

0
dt2n−1· · ·

∫ t2

0
dt1

∑
{ξj=±1}

cos
 n∑

j=1
ϵξjτj

 (5.39)

= 2PR(t)− 1. (5.40)

Evaluating PR(t) upon the inverse Laplace transformation

PR(t) = 1
2πi

∫
C
dteλtPR(λ) (5.41)

leads to the same result of the quantum mechanical approach (Eq.(5.9))

PR(t) = cos2
(
Et

2ℏ

)
+
(
ℏϵ
E

)2

sin2
(
Et

2ℏ

)
. (5.42)

5.1.3 Influence of the environment

Since our focus is on studying dissipation in the spin-boson model, expressions
should be derived for the transition and occupation probabilities considering the influence
of the environment. As reported in the preceding sections, the influence of bath on the
spin system was neglected. Towards a realistic situation, such influence must be taken
into account, since it leads to decoherence and dissipation processes in the dynamics of
the total system (105).

The coupling of the particle with the environment being exclusively to σz, the
so-called “position coordinate”, means the interaction primarily affects the component of
the particle’s spin aligned with z-axis. This interaction opposes the tunneling effect, rep-
resented by σx, suggesting the environment tends to influence the system, thus preventing
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its ability to tunnel between the two states. Instead, the environment’s influence tends to
localize the system into one of the two wells, favoring one particular state over the other
(112).

The Hamiltonian of the spin-boson model is given by

HSR = HS +HR +HI (5.43)

= ℏ
2 (∆σx + ϵσz) +

∑
k

(
mkωkx

2
k

2 + p2
k

2mk

)
+ q0σz

2
∑

k

Ckxk (5.44)

where xk, pk,mk, ωk are, respectively, coordinate, momentum, mass, and frequency of the
k-th harmonic oscillator representing the environment and q0 is a parameter that, in a
system with an extended coordinate, represents the distance between the two potential
minima. Constant Ck denotes the strength of the coupling of the system to the k-th
oscillator.

Studies on the dynamics of the spin-boson system involve various approximations.
Typically, when the system is weakly coupled to its environment, Born-Markov master
equation is commonly applied for describing the reduced density matrix. However, the
perturbative nature of the approach, which focuses on weak coupling, renders it unsuitable
for situations with strong coupling. In such cases, the real-time path integral method
becomes valuable, since it eliminates bath degrees of freedom, providing an exact formal
expression for the reduced density matrix. Although the expressions can be numerically
solved in specific instances, the task is challenging, particularly at long times, as claimed
by Ref. (47).

Dynamics can be analyzed through verifications of the reduced density matrix of
the total density matrix. System preparation involves activating the coupling between
the system and the bath, typically assumed to occur at time t0 ≤ 0. Subsequently, a
scenario where system has been maintained in a particular state for a long time, for
instance, σz = +1, is selected, allowing bath to equilibrate with the system. The selection
effectively implies t0 → ∞. Consequently, at time t = 0, the constraint is released and
the system evolves according to the spin-boson Hamiltonian¶¶ (112).

A system with a coordinate x(τ) begins with a value xi and the environment begins
in a state of thermal equilibrium - the probability p(xf , t) denotes the likelihood of the
systems reaching a coordinate xf at a later time t, regardless of the environment’s state
at that time. This probability is represented by element ρ(xf , xf , t) of the reduced density
matrix:

p(xf , t) =
∫
Dx(τ)

∫
Dy(τ ′)A[x(τ)]A∗[y(τ ′)]F [x(τ), y(τ ′)], (5.45)

where the double path integral runs over all paths x(τ), y(τ ′) such that x(t0) = y(t0) =
xi, x(t) = y(t) = xf . A[x(τ)] is the amplitude for the system to follow path x(τ) in the
¶¶ The assumption ensures the system begins evolving in a state of equilibrium.
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absence of the environment and quantity F [x(τ), y(τ)] is the influence functional that
expresses the effect of the environment.

For Gaussian statistics∗∗∗,

F [q, q′] = exp
{
−
∫ t

0
dt′
∫ t′

0
dt′′[q(t′)− q′(t′)][K(t′ − t′′)q(t′′)−K∗(t′ − t′′)q′(t′′)]

}
(5.46)

where K(t) ≡ ⟨ζ(t)ζ(0)⟩β represents the force autocorrelation function†††.

Regarding the two-state problem, variables x(τ) and y(τ) are limited to the dis-
crete values of ± q0

2 . Eq.(5.45) is, therefore, an integral that considers all possible pairs of
paths and each integral represents a transition between these two states (± q0

2 ). For our
purposes, it is more convenient to conceive it as an integral over a single path that jumps
between four states. Those paths can be fully described by specifying, for each time τ , pair
[x(τ), y(τ)]. Let us denote the states as A = +,+, B = +,−, C = −,+, and D = −,−,
where + = q0

2 and − = − q0
2 . States A and D correspond to the diagonal elements of

the reduced density matrix, whereas B and C correspond to the off-diagonal ones (as in
Fig.13). The integration over spin paths σ(t) can be denoted due to the adoption of the

Figure 13 – Descriptions of the double spin path via Feynman-Vernon formulation involve
classical variables η and ξ, which represent the spin paths and elements within
the spin (reduced) density matrix.

Source: HENRIET et al. (113).

spin-boson model, and, therefore, the components of the reduced density matrix are given
by 〈

σf |ρS(t)|σ′
f

〉
=
∫
Dσ(·)

∫
Dσ′(·)A[σ]A∗[σ′]F [σ, σ′]. (5.47)

∗∗∗ The path integrals for the bath oscillators in Eq.(3.4), which are exponentials of action func-
tional, SR + SI of the bath oscillators subjected to the influence of the particle, can be
analytically solved, since they are Gaussian integrals (1).

††† Where ζ(t) =
∑

k Ckxk(t) is the fluctuating force. Then,

⟨ζ(t)⟩ ζ(0)β = ℏ
π

∫ ∞

0
J(ω)cosh [ω(ℏβ/2− it)]

sinh (ℏβ/2) dω.
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The initial condition describes the preparation of the spin and defines σ(t) = σf and
σ′(t) = σi.

Amplitude A[σ] can be broken into small segments, each of length dt, towards its
understanding. The probability of finding the system still in the initial state, either + q0

2

(represented as |L⟩) or − q0
2 (represented as |R⟩), corresponds to e−i(ϵ/2ℏ)dt and ei(ϵ/2ℏ)dt,

respectively. However, the amplitude for switching between the two states (in either di-
rection) is i(∆/2)dt. Applying those instructions to the four-state path and neglecting
terms of order (dt)2, the amplitude of finding the system in the same state is repre-
sented by exp{−iϵξ(t)dt} (see Eq.(5.22)), whereas the probability of transitioning states
is iλ(∆/2)dt, where

λ =


0, for A←→ D and B ←→ C,

−1, for A←→ B and D ←→ C,

+1, for A←→ C and B ←→ D.

Therefore, the probability of jumping from a diagonal state to a diagonal one or jumping
from an off-diagonal state to an off-diagonal one is null. On the other hand, the probability
of jumping from blip to sojourn in subsequent states is +i∆

2 dt, and for the opposite, it is
+i∆

2 dt (95).

η and ξ introduced as symmetric and antisymmetric coordinates, measure qua-
siclassical propagation and deviation from the diagonal, respectively. Not only can the
influence functional be written as

F [ξ(s), η(s′)] = exp
{
− 1
π

∫ t

t0
ds
∫ s

t0
ds′[−iL1(s− s′)ξ(s)η(s′) + L2(s− s′)ξ(s)ξ(s′)]

}
(5.48)

where L1/2 is real and imaginary parts of the force autocorrelation function of the envi-
ronment, denoted as L2(t)− iL1(t),

L1(t) =
∫ ∞

0
dωJ(ω) sin (ωt) (5.49)

L2(t) =
∫ ∞

0
dωJ(ω) coth (βℏω/2) cos (ωt), (5.50)

but also the reduced density matrix is given by
〈
σf |ρS(t)|σ′

f

〉
=
∫
DξDη

∫
Dξ′Dη′A[ξ, η]A∗[ξ′, η′]F [ξ, η]. (5.51)

Let us consider a two-state system initially in a diagonal state of the density
matrix. It becomes evident that after an even number of transitions, it will revert to a
diagonal state, while after an odd number of transitions, it will assume an off-diagonal
state. Due to the sudden nature of the system’s transitions, a path involving 2n flips at
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times tj (j = 1, 2, . . . , 2n) can be parameterized in a general manner by

ξn(t′) =
n∑

j=1
ξj[θ(t′ − t2j−1)− θ(t′ − t2j)] (5.52)

ηn(t′) =
n∑

j=0
ηj[θ(t′ − t2j)− θ(t′ − t2j+1)] (5.53)

with t0 ≡ 0, t2n+1 ≡ t and where θ(t) represents the unit step function. Labels ξj = ±1
and ηj ± 1 distinguish the two off-diagonal and diagonal states of the density matrix,
respectively. Intervals t2j < t′ < t2j+1 are the sojourns and t2j−1 < t′ < t2j are the
blips (107). The sum over the system’s path histories is represented by

• the sum over all numbers n of flip pairs,

• the time-ordered integrations over 2n flip times {tj} within the given interval, and

• the sum over all arrangements {ξj} and {ηj} of the possible values ±1 of the indi-
vidual ξj and ηj.

The time integrations can be performed in the influence functional (see Appendix F)
leading to

Fn[ξj, ηj, tj] = exp
 i

π

2n∑
j>k≥0

ξjηkQ1(tj − tk)
 exp

 1
π

2n∑
j>k≥1

ξjξkQ2(tj − tk)
 (5.54)

where Q1/2(t) are the second integrals of L1/2(t), which, for an Ohmic spectral density,
are

Q1(t) = 2πα tan−1 (ωct) (5.55)

Q2(t) = πα ln (1 + ω2
c t

2) + 2πα ln
(
β

πt
sinh

(
πt

β

))
(5.56)

Whereas Q1 describes a coupling among the blip and all previous sojourn parts of the
path, term Q2 contains the interaction among all blips (including a self- interaction) (114).
All such elements together lead to the expression for the diagonal elements of the reduced
density matrix, which describe the probability of finding the system in state |L⟩ at time
t, in the form of a series in ∆2

⟨L|ρS(t)|L⟩ = 1 +
∞∑

n=1

(
i∆
2

)2n ∫ t

0
Dn{tj}

∑
{ξj ,ηj}

Fne
i
∑2n

j=1 ξjϵ(tj−tj−1), (5.57)

and, for the off-diagonal elements,

⟨L|ρS(t)|R⟩ = iξ2n

∞∑
n=1

(
i∆
2

)2n−1 ∫ t

0
Dn{tj}

∑
{ξj ,ηj}

Fne
i
∑2n

j=1 ξjϵ(tj−tj−1) (5.58)
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where the above abbreviated symbol was employed∫ t

0
Dn{tj} · · · =

∫ t

0
dt2n

∫ t2n

0
dt2n−1· · ·

∫ t2

0
dt1 . . . (5.59)

The establishment of the terminology for the upcoming chapter requires the bias con-
sidered be static, i.e., remain constant over time. Therefore, the symbol can be changed
to ϵ0, which still represents the same bias and the phase factor can be combined in the
representation of parameter ϕ(0)

n as

ϕ(0)
n =

2n∑
j=1

ξjϵ0(tj − tj−1). (5.60)

Obtaining an analytical expression for the path integral becomes challenging when dealing
with specific potentials due to the influence functional introducing time nonlocal correla-
tions. Consequently, some approximations must be made for proceeding.

5.1.4 Dynamics with NIBA

Approximations are used for the obtaining of a closed analytical form for the
dynamics result for the spin-boson model. This subsection briefly explores the non-
interacting blip approximation (NIBA), one of such approximations. In the case of an
unbiased spin-boson system (ϵ = 0), NIBA yields accurate dynamics. However, for biased
spin-boson systems (ϵ > 0) at low temperatures, NIBA is known to be inadequate. This
failure occurs because interblip interactions contribute significantly to the dissipative ef-
fects in the coupling strength (47,112,115). Our objective is to demonstrate achieving the
complete dynamics requires the use of approximations. Towards briefly illustrating this
point, one of such approximations will be demonstrated.

For unbiased spin-boson dynamics, the simplest approximation neglects nonlocal
correlations, particularly at high temperatures and/or strong coupling. This approxima-
tion, known as NIBA, is nonperturbative in the coupling, but perturbative in tunneling
element ∆ (28).

More specifically, NIBA relies on the premise the system’s average time spent in
a diagonal state of the reduced density matrix (a sojourn) is significantly longer than the
average time spent in an off-diagonal state (a blip). The assumption enables the neglect of
bath-induced correlations between different blip time intervals and specific blip-sojourn
correlations in the exact series expression. Formally, this approximation is derived by
neglecting the interblip correlations and all blip-sojourn correlations (1, 28).

The approximation is valid for large enough friction and/or high temperatures.
However, the specific form chosen for the spectral density of the environment influences
the range of validity. NIBA can be justified for any spectral density provided the system
shows overdamped exponential relaxation (116).
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The influence functional reduces to a factorized form of intrablip bath correlations
in which only the signs of the blip phase terms depend on the labels of the respective
preceding sojourns,

FNIBA
n = 2n−1[cos (πα)]n

n∏
j=1

exp
{
−Q2(t2j − t2j−1)

π

}
(5.61)

For further details on the derivation, see Appendix of Ref. (114).

5.1.5 Parameter analysis

Since the expression for spin-boson dynamics has been introduced in the context
of a time-independent Hamiltonian, where ϵ remains constant over time, its impact on
occupation probabilities due to parameters such as temperature of the environment, form
of the spectral density (subohmic, ohmic, or supraohmic), system’s coupling strength, and
tunneling rate ∆ can be briefly examined. Different dynamical behaviors emerge for each
parameter regime, as discussed in Sec. 5.1 (28).

The formalism of path integral enables the recovery of behaviors for the unbiased
case (25). In the absence of external driving (the scenario addressed up to this point
in the chapter), the analysis is conducted under the thermodynamic limit (N → ∞),
enabling the representation of spectral density function J(ω) as ωs with a high-frequency
cut-off. When s = 1, Ohmic dissipation is achieved and the quantum Langevin equation
governing the particle’s position operator dynamics features a memoryless damping kernel,
corresponding to frequency-independent damping. Under such conditions, since ℏ→ 0 in
the classical limit, the thermal bath transforms to a white noise source (117).

The way the expression for the transition probability depends on the different
range of parameters can be evaluated. As an example, when a very small static bias
ϵ ≈ 0 is set, the two wells have almost the same energy and the system can be considered
symmetric (unbiased case). The behavior is expected to be a coherent transition between
the two wells if the environment is not taken into consideration (J(ω) = 0). Therefore,
the path integral formulation is in accordance with perturbation theory,

PL→R = ⟨R|ρS(t)|R⟩ =
∞∑

n=1
(−1)n+1(∆)2n

∫ t

0
Dn{tj}

∑
{ξj}

1
∑
{ηj}

1 (5.62)

where ∑{ξj} 1 = 2n, and ∑
{ηj} 1 = 2n−1. Moreover,

∫ t
0 Dn{tj} = t2n

(2n)! and ρ(0) = |L⟩ ⟨L|.
Combining all elements,

PL→R = ⟨R|ρS(t)|R⟩ =
∞∑

n=1
(−1)n+1(∆t)2n 22n−1

(2n)! = sin2 (∆t) (5.63)
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In the intermediate analysis, when the static bias is of the same order of tunneling pa-
rameter ϵ = ∆, the behavior is

PL→R = ⟨R|ρS(t)|R⟩ =
∞∑

n=1
(−1)n+1(∆)2n

∫ t

0
Dn{tj}

∑
{ξj}

ei∆
∑2n

j=1 ξj(tj−tj−1) ∑
{ηj}

1 (5.64)

=
∞∑

n=1
(−1)n+1(∆)2n2n−1

∫ t

0
Dn{tj}

n∏
j=1

cos (∆(t2j − t2j−1)) (5.65)

Approximation ∏n
j=1 cos (∆(t2j − t2j−1)) ≈ 1 − 1

2∆2∑n
j=1(t2j − t2j−1)2 + O(t4) can be

assumed. If only terms up to second order in the perturbation (as in the time-dependent
perturbation theory) should be retained, then

PL→R = ⟨R|ρS(t)|R⟩ = sin2 ∆t− 1
2

∞∑
n=1

(−1)n+1(∆)2n22n−1
∫ t

0
Dn{tj}

n∑
j=1

∆2(tj − tj−1)2

(5.66)

In the lowest order, n = 1, PL→R(t) is reduced, rather than accelerated.

Nevertheless, in case of a very large static bias, i.e., the asymmetry of the system
is immense, a transition occurs for the lowest energy level of the system, and the particle
is localized on this side of the well.

Regarding the driving case ϵ(t), discussed in the next Chapter, the expressions
for the transition probability become challenging. Analyzing the parameters is not as
straightforward as it is for the unbiased case with NIBA approximation, as will be ob-
served.
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6 DRIVEN SPIN-BOSON MODEL AND DISSIPATIVE ADAPTATION HY-
POTHESIS

As discussed in the previous chapter, the hypothesis of dissipative adaptation was
studied in Λ atoms with a single photon pulse (21) in the quantum regime of the spin-
boson model. This chapter addresses the use of a simple system - a dissipative TLS with
a drive, i.e., a driven spin-boson system - for connecting the transition probability and
absorption of work throughout this process. A valid treatment can be applied for different
coupling regimes and temperatures for a TLS in a double well potential, following approx-
imations from the literature. The path integral formalism is discussed for a derivation of
the dynamics of such systems and the connection between the dissipative adaptation hy-
pothesis and the driven spin-boson system is established through a formalism outlined in
Ref.(118). Focusing on quantum regime and employing path integral formalism, this study
offers a framework that illustrates the intricate association of transition probabilities in
such driven systems with quantum work.

6.1 Perturbative driven Spin-boson model

Following Refs. (21,114), the quantum dynamics of systems under external driving
forces are analyzed towards assessments of the thermodynamic properties of the self-
organization process, as postulated by England’s hypothesis (27). A driven spin-boson
Hamiltonian, which describes a particle subjected to a double metastable potential whose
symmetry can vary with time, encoded by bias parameter ϵ(t) was adopted for that
purpose and is expressesed as

HSR = HS +HI +HR (6.1)

= ℏ∆
2 σx + ℏϵ(t)

2 σz + q0σz

2
∑

k

Ckxk +
∑

k

(
mkωkx

2
k

2 + p2
k

2mk

)
. (6.2)

The same parameters employed in the previous chapter, namely, xk, pk, mk, and
ωk, which denote coordinate, momentum, mass, and frequency of the k-th harmonic oscil-
lator representing the environment, respectively, were used in the expression. Additionally,
q0 is the distance between the two potential minima and Ck is the strength of the cou-
pling of the system to the k-th oscillator. The time-dependent bias parameter controls
the symmetry of the double well system represented by that model.

The Hamiltonian represents a symmetry double well in equilibrium, i.e., when the
system is undriven (unbiased case, i.e., ϵ(t) = 0). Consequently, the population difference
is zero (P (t) = ⟨σz⟩ = 0), resulting in an equal concentration of population on both sides
of the wells. On the other hand, our goal is to achieve accumulation of population on
one side of the wells, explicitly violating the equilibrium tendency. If ϵ positive is found,
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indicating the particle begins the dynamics on the unstable side of the well, the difference
in population is expected to be positive, for the population on the right side is higher than
that on the left side (see Fig.11). Conversely, a negative difference in population indicates
a violation in the equilibrium tendency of the system. In such a scenario, more energy is
concentrated in the left well than in the right one, contradicting the expectations from the
equilibrium thermodynamics process. Our objective is to study some driving mechanisms
in which that phenomenon can occur and their connection with quantum work quantity.

Such dynamics with a time-dependent Hamiltonian can be calculated by Schrödinger-
like equation

− i
ℏ
H(t)U(t, t) = d

dt
U(t, t′), (6.3)

where the initial condition is given by U(t = t′) = I, where evolution operator U associated
with the Hamiltonian can be written as

U(t, t′) = I− i

ℏ

∫ t

t′
d1 H(t1)U(t1, t0). (6.4)

Iterating the above expression for U(t1, t′) results in

U(t, t′) = I− i

ℏ

∫ t

t′
dt1 H(t1) +

(
− i
ℏ

)2 ∫ t

t′
dt1

∫ t1

t′
dt2 H(t1) H(t2) U(t2, t′). (6.5)

After n repetitions, the evolution operator can be represented by Dyson series

U(t, t′) = 1 +
∞∑

n=1

(−i/ℏ)n

n!

∫ t

t′
dt1· · ·

∫ t

t′
dtnH(t1) . . . H(tn). (6.6)

In situations that require the chronological sequence of operators H, the introduction of
T , a time-ordering operator, becomes necessary to guarantee a proper arrangement of
H’s. As an example, when n = 2, it functions as

T [H(t1)H(t2)] =

H(t1)H(t2), t1 > t2

H(t2)H(t1), t1 < t2,
(6.7)

where operators at earlier times are placed on the left side of those at later times.

Combining all the above elements, the expression for U(t, t′) results in

U(t, t′) = 1 +
∞∑

n=1

(−i/ℏ)n

n!

∫ t

t′
dt1· · ·

∫ t

t′
dtnT [H(t1) . . . H(tn)] (6.8)

or, symbolically,

U(t, t′) = T
{ ∞∑

n=0

(−i/ℏ)n

n!

(∫ t

t′
dt1H(t1)

)n
}

(6.9)

which can be clarified by expressing U as a time-ordering exponential

U(t, t′) = T
[
exp

{−i
ℏ

∫ t

t′
H(t1)dt1

}]
. (6.10)
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When the Hamiltonians for distinct times commute [H(t), H(t′)] = 0, Dyson series sim-
plifies to

U(t, t′) = e
−i
ℏ

∫ t

t′ H(t1)dt1 . (6.11)

The analysis of the dynamics of the driven spin-boson model can now be addressed through
the path integral formalism.

6.1.1 Path integral for the driven spin-boson model

The initial state was chosen to be in the left well, ρS(t0) = |0⟩ ⟨0| or, similarly,
ρS(t0) = |L⟩ ⟨L|, and the bath was in Gibbs state ρR(t0) = e−HR/T/Tr(e−HR/T ). Then, the
initial system-reservoir state is given by

ρ(t0) = ρS(t0)ρR(t0). (6.12)

As in many references from the literature, the system-reservoir is assumed to start the
dynamics in equilibrium and evolves with the bias, i.e., its symmetry depends on time.
Additionally, Ohmic spectral function is assumed,

J(ω) = π
∑

k

λ2
kδ(ω − ωk) = 2παωe−ω/ωc , (6.13)

with α ≥ 0 being the dimensionless parameter that describes the dissipation strength,
defined as

α ≡ ηq2
0/2πℏ. (6.14)

The study of the system’s dynamics requires the expression for the reduced den-
sity matrix, ρS(t) = TrRρ(t), be found by the formalism of path integrals proposed by
Feymann-Vernon, addressed in the previous chapters. The components of the reduced
density matrix, which was derived by the path integral formalism and was introduced in
the proceedings chapters, are given by

〈
σf |ρS(t)|σ′

f

〉
=
∫
Dσ(·)

∫
Dσ′(·)A[σ]A∗[σ′]F [σ, σ′]. (6.15)

When the time dependence becomes relevant, an important difference in amplitude
A[σ], which is an extra term, i.e., time-dependent bias ϵ(t), must be considered. The
derivation addressed in chapter 5 remains the same; however, the amplitude term can now
be split into two terms, of which one is the same was discussed in Section 5.1.3 and the
other is time-dependent. All contributions of the bias can be separated in amplitude B[σ]
and the contribution solely due to only the tunneling rate can be replaced in amplitude
A[σ].
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Therefore, B[σ] can be written as

B[σ] = exp
{
i
∫ t′

0
dt′ (ϵ0 + ϵ(t′))σ(t′)

}
(6.16)

which considers the historical influence of systematic bias force. The phase in the exponen-
tial receives contributions from both static bias ϵ0 and the time-dependent one. After all
components are assembled in the expression for the reduced density matrix and summing
n flips pairs, the phase can be written as

ϕn =
n∑

j=1
ξj[ϵ0(t2j − t2j−1) + g(t2j)− g(t2j−1)] = ϕ(0)

n + ϕ(1)
n (6.17)

where the external driving is described by function g(t) =
∫ t

0 dt
′ϵ(t′) and the static part of

the phase is equal to the one in Eq.(5.60)∗. The influence functional retains its form, as
depicted in Eq.(5.54), since no significant change occurs in the term. Once again, the sole
alteration lies in the time-dependent additional term of the encountered bias, denoted as
ϕ(1)

n .

By combining all factors and considering all possible arrangements of blips and
sojourns, as in Chapter 5, the joint probability emerges as the series in ∆ as

P (σ, t;σ′, 0) = δσ,σ′ + σσ′
∞∑

n=1

(
−∆

2

)2n ∫ t

0
Dn{tj}

∑
{ξj ,η′

j}
Fne

iΦn , (6.18)

where the prime in {ηj}′ indicates the outer sojourns are chosen according to the boundary
conditions, i.e., η0 = σ′ and ηn = σ.

Eq. (6.18) represents an expansion in even numbers of transitions among the four
states of the density matrix. Such transitions occur at times {tj} and the sum over {ξj}
and {ηj}′ takes into account all possible intermediate states for 2n transitions. As antici-
pated in Ref. (95), the expressions for the diagonal elements of ρS(t), which describe the
probability of finding the system in state |0⟩ at time t, are

⟨0|ρS(t)|0⟩ = 1 +
∞∑

n=1

(
i∆
2

)2n ∫ t

0
Dn{tj}

∑
{ξj ,ηj}

Fne
iϕn (6.19)

and the off-diagonal elements of ρS(t)

⟨0|ρS(t)|1⟩ = iξ2n

∞∑
n=1

(
i∆
2

)2n−1 ∫ t

0
Dn{tj}

∑
{ξj ,ηj}

Fne
iϕn . (6.20)

Our interest is in investigating the transition from the lowest energy side of the
well to the highest energy side, which is not achievable in an equilibrium system, i.e., with

∗ ϕ
(0)
n =

∑2n
j=1 ξjϵ0(tj − tj−1).
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no drive. Therefore, the final transition probability from a state starting on the left side
can be written as

PL→R(t) = −
∞∑

n=1

(
−∆

2

)2n ∫ t

0
Dn{tj}

∑
{ξj ,η′

j}
Fne

iϕn . (6.21)

In the usual spin-boson model, the exponential depends only on the static bias,
here defined as ϵ0 (see Eq.(5.58)), which is not governed by time. Consequently, the
relation between the asymmetries in that model was not taken into account, since the
static bias sets the symmetry of the two wells. Here, the difference can be evaluated when
such symmetry depends on time and varied for observations of the different behaviors of
the particle’s dynamics.

Although those expressions are exact, the analytical evaluation is specific to a
particular set of dissipation parameters and can be numerically computed for various
dissipation parameters and temperatures by a stochastic Schrödinger equation. Since our
interest is in the connection with the work done in the environment by the external drive,
that resolution will not be detailed.

The focus is in determining whether the drive can promote the population occu-
pation, which is not achievable in an equilibrium system. Therefore, since the concept
of dissipative adaptation in that specific model (driven spin-boson) will be explored, the
transition probabilities in terms of thermodynamic quantities, such as work, must be con-
sidered. Before diving into the analysis, let us revisit the discussion on how work is defined
in quantum thermodynamics and examine a path integral formalism for such a definition.

6.2 Thermodynamic quantities

As addressed in Sec. 4.4, the definition of thermodynamic quantities such as work
and heat in equilibrium systems is relatively straightforward and even more complex in ar-
bitrary non-equilibrium systems (7). The authors in Ref. (119) delved into the statistics of
work using Feynman’s path integral formalism and discussed the way usual thermodynam-
ics has been extended in recent years to incorporating stochastic thermodynamics (56),
wherein work and heat are characterized as trajectory functionals. However, since heat
and work are not directly observable, the extension does not provide a clear advantage for
the definition of those quantities in the quantum domain, where the concept of trajecto-
ries is not well-defined. Consequently, the definition of work in quantum systems typically
involves averages and statistical moments and aligns with classical notions in classical
limit (ℏ ≈ 0).

The authors demonstrated the definition of quantum work via path integral for-
malism within the framework of quantum thermodynamics, drawing inspiration from
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stochastic thermodynamics literature, but incorporating dissipative systems into their
analysis.

Classical stochastic thermodynamics, which is a relatively recent framework, ex-
pands the principles of thermodynamics beyond the traditional ensemble level to focusing
on individual trajectories. As an example, work can be formulated as a trajectory func-
tional; therefore, the first law of thermodynamics is reformulated via trajectories and the
second law is redefined as equalities, known as fluctuation theorems. The use of path
integral formalism for formulating fluctuation theorems in classical stochastic thermody-
namics resembles the path integral formalism in quantum mechanics. Therefore, during
the transition of classical stochastic thermodynamics to the quantum regime, the adoption
of path integral methods seems natural (118–120).

The quantum redefinition of work through path integral formalism aligns with
our objectives particularly for deriving the transition probability from the ground state
to an excited state associated with work absorption in the driven spin-boson system. It
seems pertinent to investigate the role of path integral formalism in defining work within
quantum thermodynamics.

Therefore, employing the work functional, the authors in Ref. (118) developed a
path integral formulation for work statistics involving a Hamiltonian of the system with
an arbitrary time-dependent potential denoted as V (λt, x), which drives the system out
of equilibrium and injects work into it,

HS(t) = p2

2m + V (λt, x), (6.22)

where time-dependence is specified by λt.

The TPM scheme defines quantum fluctuating work as the difference in the energies
measured at times t = 0 and t = τ ,

Wm,n = Em(λτ )− En(λ0). (6.23)

Therefore, the joint probability of observing such measured energies can be written as

p(n,m) = ⟨n(0)|ρS(0)|n(0)⟩ | ⟨m(τ)|US|n(0)⟩ |2

= pn| ⟨m(τ)|US|n(0)⟩ |2,

where |n(t)⟩ represents the n-th instantaneous energy eigenstate of the system at time t,
ρS(0) is the initial canonical density matrix of the system, and US = T {exp{(−i/ℏ)

∫ τ
0 dtHS(λt)}}

is the unitary operator evolution of the system. The work probability distribution is then
defined as

P (W ) =
∑
m,n

δ(W −Wm,n)p(m,n). (6.24)
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Figure 14 – Reproduction of a figure of Ref.(118) regarding contours of time-dependence
actions S1 and S2 in path integral formalism.

Source: FUNO; QUAN. (118).

Performing a Fourier transform, the characteristic function of work is

χW (ν) =
∫
dWP (W )eiνW = Tr[eiνHS(λτ )USe

−iνHS(λ0)ρS(0)U †
S]. (6.25)

Towards the path integral expression of the above equation, the following relations are
recalled: 〈

xf |USe
−iνHS(λ0)|xi

〉
=
∫
Dxe(i/ℏ)Sν

1 [x], (6.26)〈
yi|U †

Se
iνHS(λτ )|yf

〉
=
∫
Dye(−i/ℏ)Sν

2 [y], (6.27)

where the contours employed in the path integral treatment of the time-dependence of
actions are illustrated in Fig.14. Then,

χW (ν) =
∫
dxidyidxfdyfδ(xf − yf )

∫
Dx

∫
Dye(i/ℏ)(Sν

1 [x]−Sν
2 [y]) ⟨xi|ρS(0)|yi⟩ . (6.28)

Using identity (i/ℏ)Sν
1 [x] = (i/ℏ)Sν

2 [x] + iνWν [x] leads to

χW (ν) =
∫
dxidyidxfdyfδ(xf − yf )

∫
Dx

∫
Dye(i/ℏ)(Sν

2 [x]−Sν
2 [y]) ⟨xi|ρS(0)|yi⟩ eiνWν [x],

(6.29)

where the quantum work functional (see details of the derivation in Appendix I) is given
by

Wν [x] =
∫ τ

0
dt

1
ℏν

∫ ℏν

0
dsλ̇t

∂V [λt, x(t+ s)]
∂λt

, (6.30)

Eqs.(6.29) and (6.30) are equivalent to those derived by the TPM scheme. However,
some additional information on the intermediate quantum trajectories compared to TPM
protocol can be found in such a formulation of the quantum work functional.
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ℏ expansion can be performed in Eq.(6.30) and the quantum corrections to the
classical expression of the work functional are derived,

Wν [x] = Wcl[x] + iν

2 W
(1)
q [x] +O(ℏ2ν2), (6.31)

where the classical work functional is written as

Wcl[x] =
∫ τ

0
dtλ̇t

∂V [λt, x(t)]
∂λt

, (6.32)

and the first-order quantum correction is

W (1)
q [x] = −iℏ

∫ τ

0
dtẋ(t)λ̇t

∂2V [λt, x(t)]
∂λt∂x(t) (6.33)

In classical limit (ℏ→ 0), the quantum work functional reduces to the classical fluctuating
work.

6.3 Relation between transition probability and work functional

This section investigates the feasibility of establishing a relationship between the
transition probability of moving from one side of the well to another and the work ex-
tracted during this process. Similarly to other studies on both classical and quantum
regime (21,27). Some simpler cases are analyzed and generalized for the entire dynamics.

The expression for the transition probabilities in the driven spin-boson model,
derived in the first section of this chapter, specifically the transition from ground state
to an excited one, was provided (Eq.(6.21)). Here, it is analyzed for the scenario when
n = 1; therefore,

PL→R(t) = ∆2

4

∫ t

0
dt2

∫ t2

0
dt1

∑
{ξ1,η′

1}
F1e

iϕ
ξ1
1 , (6.34)

where

ϕξ1
1 = ξ1[ϵ0(t2 − t1) + g(t2)− g(t1)] (6.35)

= ξ1

[
ϵ0(t2 − t1) +

∫ t2

t1
dtϵ(t)

]
. (6.36)

ϵ(t) represents the time-dependent drive of the system’s Hamiltonian,

HS(t) = H0 − ℏϵ(t)σz/2. (6.37)

Setting ξ1ϵ(t) ≡ −W (t) and differentiating both sides result in

− ξ1ϵ̇(t) = dW (t)/dt, (6.38)

−
∫ t

0
ξ1ϵ̇(t′)dt′ = W (t). (6.39)
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The latter expression is the integration over time.

Then, the crucial concept is to recognize that

ϕξ1
1 = ξ1ϵ0(t2 − t1)−

∫ t2

t1
W (t) dt (6.40)

where work-like function

W (t) ≡ −
∫ t

0
ξ1 ϵ̇(t) dt′, (6.41)

is defined, demonstrating the way work “W (t)” selects transition |L⟩ → |R⟩, as implied
by the dissipative adaptation hypothesis.

As reported in Refs. (118,120), the work functional has a semiclassical component
given by

Wcl =
∫ t

0
ḟ(t) ∂fH[f, x(t′)] dt′. (6.42)

In the driven TLS in a double well potential, where f(t) = ϵ(t) is the time-dependent
component, for ℏ = 1,

W T LS
cl =

∫ t

0
(−q0/a) ϵ̇ dt′. (6.43)

Decomposing
q0/a = η + ξ

leads to two contributions to the work performed in the system, namely,

W T LS
cl = −1

2

∫ t

0
ηϵ̇(t)− 1

2

∫ t

0
ξ ϵ̇(t) dt′ = W T LS

qs +W T LS
nonst (6.44)

where W T LS
qs describes a “quasi-static” contribution for energy variations due to diagonal

η states and W T LS
nonst describes a “nonstationary” contribution due to coherences ξ.

Only the nonstationary contribution of the work drives transitions in the driven
spin-boson model, since

W T LS
nonst = −

∫ t

0
ξ(t′) ϵ̇(t′) dt′ = W (t). (6.45)

A similar notion of quantum dissipative adaptation can be better evidenced by recalling
the sum over exponentials is a type of average over paths in Hilbert space

PL→R(t) =
∑

n

(−1)n+1
(
−∆
2

)2 ∫ t

0
Dn

n∏
j=1

〈
e

−i
∫ t2j

t2j−1
W

(j)
nonstdt′

〉
j

, (6.46)

where W (j)
nonst = −ξj ϵ(t), and

⟨•⟩j ≡
+1∑

ξj=−1
eiξjϵ0(t2j−t2j−1)QjHj • . (6.47)
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Nevertheless, the relation between transition probability and average work is not
sufficient to prove the driven spin-boson system exhibits dissipative adaptation, but sug-
gests the existence of a phenomenon resembling it. Consequently, an expression that
establishes a connection between the transition probability of moving from one side of
the well to the other and the work performed by the external drive can be formulated.
Our aim is to demonstrate the obtaining of that relation by the path integral formalism,
which also enabled the definition of a work functional.

The next section extends the idea to the expression of the reduced density matrix,
showing how to connect it with our definition of work function.

6.3.1 Density matrix in terms of work

Since the relation between transition probability and work functional was derived
in the previous section, here, the matrix elements are reformulated according to the defi-
nition of work provided in the preceding section.

As demonstrated in Eq.(6.46), both exponential of the Hamiltonian and that of
work are found within the framework of the path integral formalism. In contrast to
Schrödinger equation formalism, which exclusively incorporates the exponential of the
Hamiltonian, the establishment of a clear connection between work and path integral for-
malism becomes less straightforward. Schrödinger equation does not explicitly mention
work within its exponential representation, focusing solely on the system’s Hamiltonian.
It encapsulates the dynamics of the entire system and by racing out the environment’s
degrees of freedom, the density matrix of the system of interest is derived. Nevertheless,
the explicit manifestation of the expression for work remains absent, posing challenges for
the understanding of its relationship with that formalism.

As discussed in previous sections, a more direct link between work and the density
matrix arises when the path integral formalism is further employed, offering a clearer
understanding of their relationship. This is primarily due to the fact the path integral is
constructed using the exponential of the action, which encapsulates the trajectory integral.
Consequently, both energy and coordinates explicitly appear in those equations.

First, let us recall the joint probability is (95,107,114)

P (σ, t;σ′, 0) = δσ,σ′ + σσ′
∞∑

n=1

(
−∆2

4

)n ∫ t

0
Dn{tj}

∑
{ξj}

Qne
iϕn

∑
{ηj}′

Hn. (6.48)

Using Fn = QnHn, the expression of the influence functional is decomposed into two
terms, each expressed in terms of diagonal η states and coherence ξ. Phase ϕn receives
contributions from static ϕ(0)

n and time-dependent strain field ϕ(1)
n . Then,

ϕn = ϕ(0)
n + ϕ(1)

n , (6.49)
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Φ(0)
1 = ϵ0

n∑
j=1

ξj(t2j − t2j−1), (6.50)

Φ(1)
1 =

n∑
j=1

ξj[g(t2j)− g(t2j−1)], (6.51)

where

g(t2j)− g(t2j−1) =
∫ t2j

0
dt′ϵ(t′)−

∫ t2j−1

0
dt′ϵ(t′) (6.52)

=
∫ t2j

t2j−1
dt′ϵ(t′). (6.53)

Therefore,

Φ(1)
n =

n∑
j=1

ξj

∫ t2j

t2j−1
dt′ϵ(t′). (6.54)

Writing ϕ(1)
n in terms of work leads to

Φ(1)
n = −

∫ t2j

t2j−1
Wj(t)dt. (6.55)

The matrix elements can be given as

P (σ, t;σ′, 0) = δσ,σ′ + σσ′
∞∑

n=1

(
−∆2

4

)n ∫ t

0
Dn{tj}

∑
{ξj}

Qne
iϕ

(0)
n eiϕ

(1)
n
∑

{ηj}′

Hn (6.56)

= δσ,σ′ + σσ′
∞∑

n=1

(
−∆2

4

)n ∫ t

0
Dn{tj}

∑
{ξj}

Qne
iϕ

(0)
n e

−i
∫ t2j

t2j−1
Wj(t)dt ∑

{ηj}′

Hn.

(6.57)

Note the only contribution from work arises from the coherent elements. Furthermore,
if the bias lacks time-dependence, work vanishes and the results for the elements of the
reduced density matrix remain unchanged from the section solely featuring the static bias.

6.4 Relation of symmetric and asymmetric bias

Up to this point, the precise form of the time-dependent bias ϵ(t) has remained
unspecific. Previous derivations linking the reduced density matrix to work have relied on
a general bias of energy.

This section addresses a specific configuration of time dependence on the Hamil-
tonian and a comparative analysis between symmetric and asymmetric cases.

As discussed in chapter 4, in classical regime, the manifestation of dissipative
adaptation requires an inherent asymmetry between the wells within the system, which
underpins the system’s capacity to adjust itself in response to varying conditions. The
crucial question emerges: what distinguishes this asymmetry within the quantum domain?
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Towards addressing the issues, let us delve into the scenario below for investigating the
dynamic interaction between symmetric and asymmetric bias within a driven system.

The time-dependence of the bias parameter can be selected as an asymmetric
perturbation

ϵ(t) = ϵ0 + C sin2 (ωt), (6.58)

where C is a constant. Setting ϵ0 = 0 (static case) yields a sinusoidal time-dependent
bias and introduces a slight difference between the energy levels of the wells, ensuring the
energy level of the excited state (|R⟩) is always higher than or equal to that of the ground
state (|L⟩) in the absence of tunneling. Consequently, this perturbation consistently favors
one side of the well, with lower energy, making it asymmetric.

On the other hand, a straightforward trigonometric relationship reveals such a bias
can be expressed as a combination of a static bias and a symmetric one added together

sin2 (ωt) = 1− cos (2ωt)
2 .

Therefore, if a dynamically asymmetrical drive is chosen with no static bias (ϵ0 = 0), i.e.

ϵ(t) = C sin2 (ωt), (6.59)

it is equivalent to a static bias alongside a drive with a frequency twice as high

ϵ(t) = C
(1− cos (2ωt))

2 . (6.60)

Ultimately, the specific nature (symmetric or not) of the drive does not hold signif-
icant relevance in the context discussed here - what is important is the overall asymmetry,
which can arise from a combination of a static bias and a drive. As a result, such a bias
is expected to lead to non-equilibrium organization.

In fact, Ref.(121) indicates those outcomes have already been observed, although
typically within a limited range of parameters. This aspect is investigated and discussed
in the next section.

6.5 Non-equilibrium organization in the driven spin-boson model

In a TLS in a double well potential under usual circumstances, e.g., symmetric
case, the population is equally distributed in the two spin states due to the degeneracy
in their energy levels:

⟨σz(t −→∞)⟩ = 0. (6.61)

However, large quantum fluctuations of the bath induce a symmetry breaking at zero
temperature, leading to more population being localized at the initial spin state, i.e.,

⟨σz(t −→∞)⟩ ≠ 0. (6.62)
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Such a delocalization-localization transition is a purely quantum phenomenon, since no
thermal fluctuations exist at zero temperature, i.e., it can be ignored.

In the preceding chapters, the derivation of the expression for the transition proba-
bility associated with work during the process was accomplished through the path integral
formalism. This section explores a similar behavior displayed when the population is con-
centrated on the unconventional side of the wells, i.e., on the side that is not the system’s
lower energy state, consequently suppressing the tunneling rate.

Ref.(121) shows a narrow range of parameters in which the population is negative
in a stationary manner even with a positive ϵ. The authors experimentally implemented
a driven spin-boson model. The central question revolves around the extension to which
intense coherent driving influences a strongly dissipative system. They demonstrated the
drive strengthens the suppression of quantum coherence by the environment and that
adjusting the drive amplitude enables a transition from a coherent state to an incoherent
one.

The model adopted for that purpose was a superconducting qubit, specifically
a two-state system known as a flux qubit in a superconducting circuit consisting of a
loop interrupted by four Josephson junctions. The qubit is coupled to an electromag-
netic environment, which forms a bosonic one comprised of electromagnetic modes in
the superconducting transmission line. It is subjected to a strong continuous-wave drive
(coherent drive) applied through the transmission line. For further details on the exper-
imental setup, refer to Fig.(1) of Ref.(121). The drive’s frequency and amplitude can be
adjusted over a broad range and a weak probe additionally introduced demonstrated an
out-of-equilibrium detailed balance relation.

As in this doctoral thesis, spectral density corresponds to Ohmic damping. The
bias between the potential wells is given by

ϵ(t) = ϵ0 + ϵp cosωpt+ ϵd cosωdt, (6.63)

where ϵ0 represents the static component related to externally applied flux ϕϵ. Ref. (121)
reported an extra term due to the contribution of the probe, with ϵp representing the
amplitude and ωp denoting frequency. The third term accounts for the contribution of the
drive, with ϵd, ωd representing amplitude and frequency, respectively. The authors aimed
at the derivation of linear susceptibility (χ(ω)), which characterizes the qubit’s response
at the probe frequency.

Our aim is not to delve deeply into the technical details of that aspect, since
our focus is on the transient dynamics of the population difference, denoted as P (t),
in presence of drive only (ϵp = 0), which is pertinent to our objectives, i.e., connection
between transition probability from a ground state to a non-equilibrium state with work.

The dynamics of the susceptibility parameter can be analyzed by a generalized
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master equation that incorporates two non-equilibrium kernels, K+/−(t), which, in the
absence of a probe field, exhibit symmetry/antisymmetry concerning static bias ϵ0. The
Laplace space representation of kernel K+(λ) can be formulated as a Kf (λ) + Kb(λ)
combination of the non-equilibrium forward and backward kernels.

Figure 15 – Schematics of the double-well potential associated with the flux threading
through the qubit. When no external sources are present, the potential ex-
hibits symmetry, resulting in equal forward and backward tunneling rates
kf/b. Introducing a positive bias asymmetry ϵ accentuates forward tunneling,
which dominates over backward tunneling. In the experiment involving the
superconducting flux qubit, the coordinate associated with the double-well
potential is magnetic flux ϕ within the loop. Eigenstates |L/R⟩ of the flux
operator correspond to currents circulating clockwise and anticlockwise in the
superconducting loop, respectively.

Source: MAGAZZÙ et al. (121).

Kf/b(λ) = ∆
2

∫ ∞

0
dte−Q′(t−λt)J0[d(t)] cos [Q′′(t)∓ ϵ0t], (6.64)

with d(t) = 2ϵdω
−1
d sin (ωdt/2). Correlation function Q(t) = Q′(t) + iQ′′(t) describes the

environmental influence and is related to the noise and dissipation kernels (see section
5.1.3), which, under appropriate regimes, are given by

Q′(t) = 2α ln
[√

1 + ω2
c t

2 sinh (πt/ℏβ)
πt/ℏβ

]
, (6.65)

Q′′(t) = 2α arctan(ωct) (6.66)

The influence of the drive is captured by the time-dependent argument of Bessel function
of the first kind J0.

What particularly drew our focus in that article were the figures (3-c, d, g), which
were replicated in Fig.16. The plots illustrate the difficulty in identifying the parameter
region where population inversion occurs. Fig.16-c displays transient dynamics, where P (t)
shows a negative value when the static bias is zero and a small driven bias is applied.



107

Conversely, according to Fig.16-d, a population inversion between the double wells can
occur with a specific drive and appropriate parameters. Here, the static bias is of the
same order as the driven frequency. Additionally, Fig.16-g shows even with the drive, the
population difference vanishes for a large α.

The steady state population reaches the value of P0 = (Kf − Kb)/(Kf + Kb),
regardless of the initial preparation. Here, Kf/b = Kf/b(λ = 0) represent nonequilibrium
backward and forward rates. In the symmetric scenario illustrated in Fig. 16-c, where
backward and forward rates are identical, P0 = 0.

However, Fig. 16-d displays a distinct non-equilibrium phenomenon within the
region bounded by the initial zeros of J0 and J1, where steady-state qubit population P0

assumes a negative value, implying a higher population in the left state despite ϵ0 > 0.
The phenomenon is observable only within a narrow range of Fig.16-d for a positive and
stationary static bias of the order of the driven frequency, i.e., ϵ0 = ωd. Such a narrow
region was the target when the relation between transition probabilities and work was
derived. Despite the existence of a form of dissipative adaptation phenomenon for the
driven spin-boson model, addressing this specific portion of the possible spectrum proved
exceptionally challenging and a numerical analysis alone was insufficient to link dissipative
adaption phenomenon and driven spin-boson model. The origin of that behavior lies in
the effective detailed balance relation, expressed as

Kf = Kbeℏϵeff/kBT (6.67)

where ϵeff is the effective asymmetry which, in the absence of the drive, coincides with the
static one.

The authors demonstrated the population’s inversion is achievable for a very spe-
cific set of parameters and proposed the use of an external drive (coherent) for tunning
the direction of long-range electron chemical reactions, employing a drive-induced effective
bias originally proposed for Chemistry (122,123), as summarized in the next paragraphs.

Ref. (122) discussed the nonadiabatic regime of electron transfer reactions and how
they can be influenced by the implementation of a strong static electric field. The authors
derived a kinetic equation for a spin-boson model that relates the probability of finding
the system in the initial states to the rate constants for forward and back reactions. In
that mode, TLS is associated with electronic basis states corresponding to an electron
localized on the donor or acceptor site of an electron transfer complex. Solvent effects are
described as an ensemble of harmonic oscillators interacting with TLS.

A similar Hamiltonian adopted in this work was employed. In presence of a time-
dependent electric field (E(t) = E0 cos (ω0t)), perturbations appear in the asymptotic
populations of the base states of the spin-boson model. Therefore, the dynamics of the
spin-boson system depend intimately on both spectral density of the phonon bath and
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intensity and frequency of the applied laser field. An analysis of the equations revealed
forward and backward rate constants are strongly dependent on the applied field.

Ref. (123) studied the control of transfer rates through the implementation of a
periodic external drive. Once again, a driven TLS described by the spin-boson model was
adopted. The authors derived a master equation for expectation value σz using the path
integral technique, with energy bias

ϵ(t) = ϵ0 + ℏA cos (Ωt). (6.68)

As an example, they considered the long-range electron transfer in a donor-acceptor com-
plex embedded in a condensed medium and subjected to the influence of a strong external
field.

The results for the master equation can be interpreted as a superposition of the
transfer rates known from the conventional theory of electron transfer. An intriguing be-
havior is exhibited regarding apparent energy bias ϵeff, which can become negative under
specific choices of the external field’s amplitude and frequency. Consequently, the final
steady-state distribution of donor and acceptor levels may undergo inversion. Such a re-
markable non-equilibrium phenomenon stems from the destruction of the detailed balance
condition, a consequence of the presence of a strong periodic field. Ref. (122) partially
corroborates the findings concerning the equation of the effective rate constant and the
potential manipulation of the final level population by the external field, particularly in
the case of polar media.

The authors of Ref.(121) combined a static bias with an external drive to introduce
asymmetry for concentrating the populations on one of the sides of the wells. As discussed
in Section 6.4, such asymmetry plays a crucial role in observations of dissipative adap-
tation phenomenon. However, the non-equilibrium population’s inversion alone does not
prove dissipative adaptations observed in the driven spin-boson model, since the relation-
ship between absorbed work from the external drive and asymmetry of the system has not
been established yet. Still regarding Ref. (121), the interpretation of asymmetry remained
focused on the effective energy, which depends solely on the system configurations.

Despite the possible occurrence of population’s inversion, a non-equilibrium orga-
nization exists, since a purely kinetic or thermodynamic effect is still an open question.
Although Grifoni and collaborators provided indications of the organization being due to
the kinetic effect, our results in Eq.(6.46) suggest the opposite, indicating a thermody-
namic effect. Our aim is to examine whether this stationary regime is indeed associated
with positive work and if the supply of energy to the system (positive work rate) is truly
necessary for the phenomenon of dissipative adaptation to manifest. Regardless of the dy-
namical results achieved, the question on the thermodynamic aspect remains unanswered.

The literature reports debates on the organization phenomena. On the one hand



109

is the concept of kinetic asymmetry, as discussed in Ref. (124) and, on the other hand
is dissipative adaptation hypothesis put forward by England (Ref. (27)). According to
Ref. (124), the importance for cellular organization in biological systems, from the per-
spective of thermodynamic biochemistry, lies in the asymmetry of transition rates among
various configurations of a molecule rather than the work absorbed due to external driving
forces, which does not necessarily indicate work being done.

Regarding England’s hypothesis (Ref. (27), Sec.4.3), the consideration of the ki-
netic aspect is crucial. The second term of Eq.(4.5) explicitly depends on that asymmetry
and can dominate when a system is kinetically trapped in a high energy arrangement.
The relevance of England’s equation lies in the asymmetry dynamics and, specifically its
relation to trajectories.

An open question that extends beyond the scope of our specific research area still
remains and holds significance within the broader domain of biochemistry. It becomes
particularly relevant in light of studies such as Ref. (124), which demonstrated competing
effects (e.g., kinetic asymmetry versus thermodynamic effect of work absorption and heat
dissipation) can play equally important or even more significant roles. Understanding the
factors controlling enzyme chemotaxis, analogously to the mechanism by which bacteria
move in response to gradients of nutrient molecules, holds substantial utility in elucidating
the evolution of complex systems and determining system stability.

The authors explored the complexities of single enzyme chemotaxis, which involves
the establishment and sustenance of a non-equilibrium spatial distribution of an enzyme
driven by concentration gradients of the substrate and product of the catalyzed reaction.
Reaction-diffusion equations revealed the influence of kinetic asymmetry (difference in
transition state energies for dissociation/association of substrate and product) and diffu-
sion asymmetry on the determination of the direction of chemotaxis, either positive, or
negative. Interestingly, whereas dissipation remains a crucial element of nonequilibrium
phenomena, including chemotaxis, those systems do not evolve to extremizing dissipation;
rather, they tend to attain greater kinetic stability and accumulate in regions where their
effective diffusion coefficient is minimized.

Regarding thermodynamic or kinetic effects on the adaption of systems, the central
question revolves around whether the effective energy in driven spin-boson systems is
associated with positive work, as proposed by the dissipative adaptation theorem, or
whether it is the Kinetic effect that holds greater significance. Although the topic was
briefly addressed within the existing literature, ongoing research continues to more deeply
delve into the issue. The question remains unanswered within the confines of this thesis;
however, we are actively engaged in addressing this and other unresolved inquiries.

This thesis has not addressed the effects of the system’s adjustments to the con-
figuration where population inversion occurs affect average work, variance of work, or
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average exponential of work. The focus was on the existence of the dissipative adaptation
relationship for the driven spin-boson and the way it possibly relates to work and its rel-
evant parameters. The question on which relationship of the work parameter is accurate,
especially in scenarios involving quantum aspects, but also incorporates temperature, re-
mains unresolved. The dissipative fluctuation theorem suggests the exponential of work
is relevant, whereas the quantum dissipative adaptation theorem (21) proposes the aver-
age of W when the temperature is low enough. The answer to this question still requires
further investigations.
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Figure 16 – Reproduction of the colorplot in Fig.3(c, d, g) of Ref. (121). c, d Predicted
dynamics of P (t) with P (0) = 1. For Fig.c, (ϵd/∆)2 ≈ 12, and ϵ0 = 0, whereas
for Fig.d, ϵ0 = ωd. The values of the other parameters used in the simulations
are: ∆/2π = 7.23 GHz, α = 0.21, ωp/2π = 5.2 GHz, ωd/2π = 9 GHz, and
T = 175 mK. The probe is on-resonance with the undriven qubit at the
symmetry point. Fig.g Time evolution of P (t) calculated at the symmetry
point, ϵ0 = 0. The parameters are: ∆/2π = 8 GHz, α = 0.8, ωp/2π = 4 GHz,
ωd/2π = 3 GHz, and T = 90 mK. The selection of ωp and ωd exerts a minimal
impact on the qualitative characteristics of the driven spectra. ωc/2π = 65
GHz for the three plots.

Source: MAGAZZÙ et al. (121).
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7 CONCLUSIONS

This doctoral thesis explored classical and quantum dissipative models initially
revisiting bilinear and nonlinear models, which involve the behavior of two Brownian par-
ticles in a same environment. The discrepancy between those approaches was highlighted.
On the one hand, nonlinear system-reservoir couplings predict nonlinear dissipation and
an effective interaction potential between a pair of Brownian particles. On the other
hand, the standard bilinear model yields free-particle motion for the relative coordinate
and lacks mutual interactions between proximal particles.

Our research on the classical dynamics led to a significant finding, i.e., nonlinear
dissipation forces were derived from the bilinear model. Towards addressing such recon-
ciliation, a method that introduced a distance-dependent spectral function, establishing
a length scale for the Brownian particle dynamics, was developed - this approach served
as the foundation for its design. The standard bilinear model revealed incompatible with
the method and the nonlinear effective potential did not align with the bilinear model.
However, the nonlinear model successfully recovered dissipation rates, which was the goal
of this research.

The derived spectral function was modified for describing different scenarios based
on diffusion coefficients. As an example, the trigonometric function was transitioned to the
Gaussian one for avoiding anomalous diffusion and a phenomenological modified spectral
function was adopted to illustrate hydrodynamic correlations between two Brownian par-
ticles. Our results help express nonlinear dissipative forces in the dynamics of Brownian
particle pairs.

Such a distance-dependent spectral function can be further implemented for more
than two particles, which will involve considering the system of interest a bath of harmonic
oscillators and deriving the imaginary part of the susceptibility by nonlinear response
theory for each pair of particles. Another complementary avenue of research would be to
derive three-dimensional equations of motion for two Brownian particles and investigate
the correlation forces for determining whether the hydrodynamics extends even further
in such systems.

The second part of the thesis focused on the study of TLS in a double well po-
tential, with particular attention to the spin-boson model. The primary objective was to
establish a relationship between the transition probability and the work performed by an
external drive applied to the system. The study was inspired in the concept of dissipative
adaptation proposed by England, who aimed to gain insights into how living organisms
evolve in specific environments.
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The literature on the spin-boson model within the path integral formalism was
summarized and the adoption of such an approach was justified. Moreover, the driven
case of the model was investigated. England’s hypothesis was introduced in the classical
regime and a quantum derivation of a similar relationship was explored. The work func-
tional derivation proposed by Quan (118) derived the results, facilitating the expression
linking transition probability and work. However, the fact the driven spin-boson model
exhibits characteristics of dissipative adaptation cannot be stated. On the other hand,
the organization of the system, particularly the nonequilibrium localization of particles
within one side of the well, may occur only with the application of an external driving
force, and not necessary may represent the higher energy consumption in that quantum
system. Future studies aim to identify whether the driven spin-boson system exhibits
dissipative adaptation.

Although the thesis explored dissipative systems in both classical and quantum
regimes, specific questions still remain unanswered in both contexts. One of them regards
the experimental implementation of the proposed distance-dependent spectral function,
which was not discussed, but can be further and potentially explored. Linking techniques
such as optical tweezers might extend the approach to experimental settings (125–127).

Optical tweezers pioneered over two decades ago, using focused laser beams to
trap and manipulate microscopically small objects. The traps, formed when a laser beam
is tightly focused by a microscope objective, can hold small objects in three-dimensional
space (51, 52, 128, 129). An analogous experimental setup might involve the study of two
colloidal particles suspended in a fluid with a given potential. Colloidal particles, i.e., mi-
croscopic solid particles that equilibrate with the suspending fluid due to thermal energy,
offer a platform where their positions and motion can be precisely measured by optical
methods (130). Such an experimental setup provides a promising avenue for investigations
on the dynamics of dissipative systems in a controlled laboratory environment.

In function of the pairwise nature that frequently dictates effective interactions
among Brownian particles, our distance-dependent spectral function may find applicabil-
ity in scenarios involving a more significant number of Brownian particles sharing a same
environment, thus enabling characterizing entropy production in nonequilibrium dissi-
pative many-body systems and extending previous investigations conducted with single-
quantum Brownian particles (19).

In the context of quantum dissipative adaptation and the driven spin-boson model,
an ongoing debate persists within the literature concerning the relative significance of
thermodynamics compared to kinetic asymmetry in the evolutionary trajectories of living
organisms. The debate remains unresolved, with new elements being continually intro-
duced in studies exploring driven systems.

This doctoral thesis has opened up several avenues for further investigations, since
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the connection between dissipative adaptation and quantum correlations poses intriguing
questions. Entanglement suppression also questions the relationship between nonequilib-
rium states and fundamental quantum phenomena. Exploring dissipative self-assembly
and adaptation can enhance our comprehension of complex systems (131) and delving
into those research domains can unearth fresh perspectives on the dynamics of dissipative
systems, potentially paving the path for future breakthroughs and applications across
diverse scientific fields.
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APPENDIX A – TWO-TIME CORRELATION FUNCTIONS AND
FLUCTUATION-DISSIPATION THEOREM

This appendix provides a few steps for demonstrating the correlation force deriva-
tion by the fluctuation-dissipation theorem.

The following identities can be derived from the condition of thermal equilibrium,〈
R̃k(0)

〉
= 0,

〈
Ṙk(0)

〉
= 0, (A.1)〈

R̃k(0)Ṙk′(0)
〉

= 0,
〈
Ṙk(0)R̃k′(0)

〉
= 0, (A.2)〈

Ṙk(0)Ṙk′(0)
〉

= kBT

mk

δkk′ ,
〈
R̃k(0)R̃k′(0)

〉
= kBT

mkω2
k

δkk′ , (A.3)

where kB is Boltzmann constant. The formal expressions for the fluctuating forces, as
specified in the main text, are given by

fi(t) = −
∑

k

C
(i)
k

[
Ṙk(0)sinωkt

ωk

+ R̃k(0) cosωkt
]
, (A.4)

where the displaced equilibrium positions of the oscillators (due to their couplings with
the particles) are R̃k(0) = Rk(0) +

(
C

(i)
k xi(0) + C

(j)
k xj(0)

)
/(mkω

2
k). fq = (f1 + f2)/2 and

fu = f1−f2 were also defined and the general form for two-time correlation functions can
be obtained by the aforementioned expressions,

⟨fα(t)fβ(t′)⟩ = 2Dαβ(u)δ(t− t′), (A.5)

where Dαβ(u) is a type of diffusion coefficient that takes on a different form according to
the choice of forces dealt with. The continuum limit directly computed them, as in Chap.
2, leading to Eqs.(2.51), (2.53), and (2.52).

For completeness and emphasizing the general form of the fluctuation-dissipation
theorem, Eq. (A.5), the original statement of the theorem provided elsewhere is recalled;
For a free Brownian particle, Langevin equation states

mv̇(t) = −ηv(t) + f(t), (A.6)

where η is a friction coefficient and f(t) is a fluctuating force caused by particle impacts
with its surroundings. The fluctuating force satisfies

⟨f(t)⟩ = 0, and ⟨f(t)f(t′)⟩ = 2Dδ(t− t′), (A.7)

whereD can be considered a measure of the fluctuating force’s strength. The delta function
in time indicates there is no correlation between impacts at any distinct time intervals.
The solution for the linear, first-order, and inhomogeneous differential equation holds (7)

v(t) = e−ηt/mv(0) +
∫ t

0
dt′e−η(t−t′)/mf(t′)

m
. (A.8)
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The mean squared velocity can be calculated and analyzed over a long period of time,
therefore 〈

v2(∞)
〉

= D

ηm
. (A.9)

The equipartition theorem states ⟨v2⟩eq = kBT/m in thermal equilibrium. Therefore,

D = ηkBT. (A.10)

The fluctuation-dissipation theorem is a correspondence between strength D of
random noise, or fluctuating force, and magnitude η of friction, or dissipation rate, ex-
plaining why it is known as the fluctuation-dissipation theorem. It expresses the balance
between friction and noise required for a thermal equilibrium state at long times.



131

APPENDIX B – RESPONSE THEORY

This appendix provides a derivation of the response theory for single and two-
particles systems, encompassing both linear and nonlinear response theories (22). The
dependence of the spectral function on relative distance, defined in Eq.(2.36), is demon-
strated.

B.1 Linear response theory of an environment perturbed by one particle

Ref. (25) was revisited towards a more detailed discussion on standard single-
particle response theory. The bath’s equation of motion for a single Brownian particle
with linear coupling is given by

mkR̈k +mkω
2
kRk − Ckx = 0. (B.1)

The Fourier transform of the susceptibility (response function) of Rk(t) to a stimulus x(t)
is

R̃k = − Ck

mk(ω2 − ω2
k) x̃(ω), (B.2)

for each mode with frequency ω. The effective collective coordinates of the environment
can be expressed as

Reff =
∑

k

CkR̃k(t), (B.3)

which corresponds to the expression

Reff = −
∑

k

C2
k

mk(ω2 − ω2
k) x̃(ω) (B.4)

= χenv(ω)x̃(ω), (B.5)

given in Ref. (25), where susceptibility χenv(ω) is defined as

χenv(ω) ≡ −
∑

k

C2
k

mk(ω2 − ω2
k) . (B.6)

The imaginary part of χenv(ω) stems from the usual replacement for causal responses,

ω ± ωk → ω ± ωk + iϵ (with ϵ→ 0), (B.7)

employing the following identity

1
ω ± ωk + iϵ

= P
( 1
ω ± ωk

)
− iπδ(ω ± ωk), (B.8)
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which yields

Im{χenv(ω)} ≡ χ
′′

env(ω) = π

2
∑

k

C
(1)2
k

mkωk

[δ(ω − ωk) + δ(ω + ωk)]. (B.9)

Since ω, ωk > 0, the spectral function can be written as

χ
′′

env(ω) = J(ω) = π

2
∑

k

C2
k

mkωk

δ(ω − ωk), (B.10)

in agreement with Eq.(2.7, thus concluding our review of the results on the response theory
for a single particle. In what follows is the derivation of the results for the two-particle
response theory.

B.2 Nonlinear response theory of an environment perturbed by a pair of particles
within the nonlinear coupling model

This section addresses the determination of the effective coordinate of environment
Reff , analogous to the one outlined in Eq. (B.3), especially in scenarios involving nonlinear
couplings between the system and the reservoir.

Let us start with the equations of motion for the bath with nonlinear coupling
between particles and bath given by

mkR̈−k +mkω
2
kR−k + C−k(x1) + C−k(x2) = 0, (B.11)

mkR̈k +mkω
2
kRk + Ck(x1) + Ck(x2) = 0, (B.12)

which implies Eq.(B.2) and Eq.(B.3) are no longer applied.

Function Ck(xi) non-linearly combines the Fourier components of a particle’s co-
ordinates, denoted as x̃i(ω). From a physical standpoint, if the environment exerts a
dissipative force on a pair of particles, i.e., a force that depends non-linearly on the in-
terparticle distance, in response, the particles will perturb the environment in a similar
non-linear fashion, thus leading to the non-linear dependence of Reff on the interparticle
distance.

Therefore, let us assume

Rk(t) = R̃k exp(−iωt), and (B.13)
Ck(x1) + Ck(x2) ≈ [Ck(x0

1) + Ck(x0
2)]e( − iωt). (B.14)

which can be interpreted as a quasi-static (Born-Oppenheimer) approximation under the
condition of the particles’ Brownian dynamics varying very slowly compared to the rapid
bath dynamics ω ≪ ωk). Consequently,

x0
i ≈ xi = xi(t), and (B.15)

exp(−iωt) ≈ 1. (B.16)
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Those approximations are analogous to the low-frequency limit commonly assumed
in the Ohmic regime.

R̃−k(ω) ≈ −C−k(x1) + C−k(x2)
mk(ω2 − ω2

k) , (B.17)

R̃k(ω) ≈ −Ck(x1) + Ck(x2)
mk(ω2 − ω2

k) , (B.18)

is then obtained by Fourier transform and the environment’s effective (collective) coordi-
nate can be written as

Reff =
∑

k

(
R̃k(C−k(x1) + C−k(x2)) + R̃−k(Ck(x1) + Ck(x2))

)
, (B.19)

which is a linear combination of R̃k’s with coefficients now given by C±k(xi).

Replacing R̃k and R̃−k,

Reff = −2
∑

k

[(C−k(x1) + C−k(x2))(Ck(x1) + Ck(x2))]
mk(ω2 − ω2

k) , (B.20)

and also replacing Ck(xi) = κke
ikxi lead to

Reff = −2
∑

k

κkκ−k

mk(ω2 − ω2
k)(1 + 2 cos ku). (B.21)

The series representations of 1 + 2 cosx can be used,

Reff = −2
∑

k

κkκ−k

mk(ω2 − ω2
k)

(
1 + 2

∞∑
n=0

(−1)n (ku)2n

(2n)!

)
(B.22)

= −4
∑

k

κkκ−k

mk(ω2 − ω2
k) − 4

∑
k

κkκ−k

mk(ω2 − ω2
k)

∞∑
n=1

(−1)n

(2n)! k
2nu2n−1u

Reff = χenv,cte(ω) + χenv,u(ω, u)u,

where

χenv,u(ω, u) = −4
∑

k

∞∑
n=1

(−1)n

(2n)! κkκ−kk
2nu2n−1

(
1

2mkωk(ω + ωk) −
1

2mkωk(ω − ωk)

)
.

(B.23)

The imaginary part of χenv,u(ω) using Eq.(B.7) and Eq.(B.8) is given by

Imχenv,u(ω, u) = χ
′′

env,u(ω, u) = 2π
∑

k

∞∑
n=1

(−1)n

(2n)! κkκ−kk
2nu2n−1 [δ(ω − ωk) + δ(ω + ωk)]

mkωk

,

(B.24)

since ω and ωk > 0, then

Ju(ω) = χ
′′

env,u(ω, u) = 2π
∑

k

∞∑
n=1

(−1)n

(2n)! κkκ−kk
2nu2n−1 δ(ω − ωk)

mkωk

, (B.25)

= π

2
∑

k

hnl(k, u)
mkωk

δ(ω − ωk), (B.26)
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with

hnl(k, u) = 4
∞∑

n=1

(−1)n

(2n)! κkκ−kk
2nu2n−1. (B.27)

Next, the derivation provided here is extended towards elucidating the physical
meaning of our nonlinear susceptibility, as introduced in Eq.(2.36).

B.3 Nonlinear response theory of an environment perturbed by a pair of particles
within the bilinear coupling model (modified bilinear model)

Drawing an analogy with the effective (collective) bath coordinate, as defined
in Eq.(B.20), a tangible physical interpretation to our nonlinear susceptibility can be
attributed, as expressed in Eq.(2.36).

The equations of motion for two Brownian particles with bilinear coupling model
are given by

mẍi +
∑

k

C
(i)
k Rk + C

(i)
k

mkω2
k

(C(1)
k x1 + C

(2)
k x2) = 0, (B.28)

∑
k

mkR̈k +mkω
2
kRk + C

(1)
k x1 + C

(2)
k x2 = 0. (B.29)

For each physical system that represents the reservoir there is a certain noise
characteristic of this reservoir whose Fourier transform provides a characteristic spectral
function.

Utilizing Fourier transform within the equations of motion for the bath directly
led to

R̃k(ω) = −(C(1)
k x1(ω) + C

(2)
k x2(ω))

mk(ω2 − ω2
k) ,

This was achieved by employing center of mass and relative coordinates

R̃k(q, u) = −
(c̄q + ∆cu

2 )
mk(ω2 − ω2

k) , (B.30)

with

c̄ = C
(1)
k + C

(2)
k , (B.31)

∆c = C
(1)
k − C

(2)
k . (B.32)

Instead of assuming nonlinearity originates solely from the nonlinear couplings
Ck(xi), as described in Eq.(B.20), the notion the collective coordinate inherently com-
prises a nonlinear amalgamation of bath modes is considered. Consequently, the collective
coordinate of the environment can be expressed as

Reff ≡
∑

k

(
C

(1)
k F

(1)
k [R̃k(q, u)] + C

(2)
k F

(2)
k [R̃k(q, u)]

)
, (B.33)



135

where functions F (i)
k [•] must be appropriately chosen so as to reproduce the phenomeno-

logical behavior of the system of interest. Without loss of generality, F (i)
k [•] can be ex-

panded in a power series as

F
(1)
k =

∞∑
n=0

F
(1)
k,n

[R̃k(q, u)]n
n! , and (B.34)

F
(2)
k =

∞∑
m=0

F
(2)
k,m

[R̃k(q, u)]m
m! . (B.35)

Assuming renormalizing F (1)
k,n and F

(2)
k,m results in

F
(1)
k,n = f

(1)
k,n(mk(ω2 − ω2

k))n−1, and (B.36)
F

(2)
k,m = f

(2)
k,m(mk(ω2 − ω2

k))m−1. (B.37)

Therefore,

Reff =
∑

k

C
(1)
k

( ∞∑
n=0

F
(1)
k,n

[R̃k(q, u)]n
n!

)
+
∑

k

C
(2)
k

( ∞∑
m=0

F
(2)
k,m

[R̃k(q, u)]m
m!

)
(B.38)

=
∑

k

C
(1)
k

( ∞∑
n=0

f
(1)
k,n(mk(ω2 − ω2

k))n−1 [R̃k(ω)]n
n!

)

+
∑

k

C
(2)
k

( ∞∑
m=0

f
(2)
k,m(mk(ω2 − ω2

k))m−1 [R̃k(ω)]m
m!

)

Reff = −
∑

k

1
mk(ω2 − ω2

k)

(
C

(1)
k

∞∑
n=0

(−1)n−1

n! f
(1)
k,n

[
c̄q + ∆cu2

]n

+
∑

k

C
(2)
k

∞∑
m=0

(−1)m−1

m! f
(2)
k,m

[
c̄q + ∆cu2

]m
)
. (B.39)

The formula of binomial expansion (a+ b)n = ∑n
p=0

(
n
p

)
an−p bp leads to

Reff = −
∑

k

1
mk(ω2 − ω2

k)

[
C

(1)
k

∞∑
n=0

(−1)n−1

n! f
(1)
k,n

n∑
p=0

(c̄q)n−p(∆cu2 )p

(
n

p

)
(B.40)

+
∑

k

C
(2)
k

∞∑
m=0

(−1)m−1

m! f
(2)
k,m

m∑
p′=0

(c̄q)m−p′(∆cu2 )p′
(
m

p′

)]

= −
∑

k

1
mk(ω2 − ω2

k)

∞∑
n′=0

(−1)n′−1

n′!
(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
(c̄q)n′−m′

(
∆cu2

)m′

= −
∑

k

1
mk(ω2 − ω2

k)

∞∑
n′=0

(−1)n′−1

n′!
(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

qn′−m′
um′

Reff =
∞∑

n′=0
αn′m′qn′−m′

um′
,

where, explicitly,

αn′m′ ≡ −
∑

k

(−1)n′−1

mk(ω2 − ω2
k)n!

(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

. (B.41)
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q-dependent and u-dependent systems can be distinguished,

Reff =
∞∑

n′=0

αn′m′

2 qn′−m′−1um′
q +

∞∑
n′=0

αn′m′

2 qn′−m′
um′−1u. (B.42)

Therefore,

Reff = χenv,q(ω, q, u)q + χenv,q,u(ω, u)u, (B.43)

where

χenv,q(ω, q, u) = −
∑
k,n′

(−1)n′−1

2mk(ω2 − ω2
k)n!

(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

qn′−m′−1um′
,

(B.44)

χenv,u(ω, q, u) = −
∑
k,n′

(−1)n′−1

2mk(ω2 − ω2
k)n!

(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

qn′−m′
um′−1.

(B.45)

The imaginary part of susceptibilities stems from Eq.(B.7) and Eq.(B.8) and provides

Im{χenv,q(ω, q, u)} ≡ χ
′′

env,q(ω, q, u) = π

2
∑

k

h′(k, q, u)
mkωk

(δ(ω − ωk) + δ(ω + ωk)) , (B.46)

Im{χenv,u(ω, q, u)} ≡ χ
′′

env,u(ω, q, u) = π

2
∑

k

h′′(k, q, u)
mkωk

(δ(ω − ωk) + δ(ω + ωk)) , (B.47)

where

h′(k, q, u) ≡
∑
n′

(−1)n′−1

2n!
(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

qn′−m′−1um′
,

(B.48)

and

h′′(k, q, u) =
∑
n′

(−1)n′−1

2n!
(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

qn′−m′
um′−1

(B.49)

was defined. Since ω and ωk > 0, only δ(ω−ωk) remains in the above equation. h′(k, q, u) =
h′′(k, q, u) might be assumed, resulting in q = u. Additionally, h′(k, q, u) = h′′(k, q, u) =
h(k, u) is selected as Eq.(2.37), leading to Imχ

(ij)
k (ω) = χ

′′
env(ω, q, u).

h(k, u) =
∑
n′

(−1)n′−1

2n!
(
C

(1)
k f

(1)
k,n′ + C

(2)
k f

(2)
k,n′

) n′∑
m′=0

(
n′

m′

)
c̄n′−m′

(
∆c
2

)m′

un′−1. (B.50)

The above equations illustrate the derivation of our distance-dependent suscepti-
bility, stemming from the application of a nonlinear response theory to a bath of oscillators
influenced by a pair of Brownian particles. If either the standard nonlinear coupling model,
or our bilinear model with a modified spectral function is considered, the bath of oscilla-
tors exhibits a nonlinear reaction when subjected to the disturbance induced by the pair
of Brownian particles.
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APPENDIX C – DIFFUSION COEFFICIENT

Some characteristics from the statistical analysis of the fluctuating forces, such as
diffusion coefficient, should be expanded, since some features are explored in Sec. 2.3.2.

Some fundamental concepts must also be investigated. A diffusion process can
be described as spread of the particles due to some difference in concentration, e.g., in
particles. The transport process enables the evolution of non-equilibrium systems towards
equilibrium (132), which can be determined through the diffusion equation in terms of
probability density function ρ(x, t). Fick’s law∗ and continuity equation† govern diffusion
equation

∂ρ(x, t)
∂t

= D̃
∂2

∂t2
ρ(x, t), (C.1)

where D̃ is diffusion constant, which governs the diffusion process in a non-uniform col-
loidal solution.

On the one hand, in 1905, Einstein derived diffusion coefficient (133), leading to
an explicit form connected to macroscopic characteristics, from which

D̃ = kBT

γ
, (C.2)

where γ = 6πnr is the inverse of the dissipation rate, with viscosity of fluid n and Brownian
particle radius r.

However, according to our description, the diffusion coefficient is the constant
appearing in the fluctuation of Langevin forces. Assuming the limit of one dimension in
Eq.(C.2) leads to our diffusion coefficient given by

D = ηkBT, (C.3)

where η is our dissipation rate, for close enough particles, the dissipation rate increases
with the distance because the effective area of the two Brownian particles also increases
due to the collisions with the fluid particles.

As an example (7, 134, 135), a one-dimensional free colloidal particle can be ana-
lyzed, resembling Eq.(1.1) in case of vanishing potential, V (q) = 0,

Mv̇ + γv = f(t).

Replacing velocity by the position derivative and multiplying it with the position result
in

Mx
dẋ

dt
+ γx

dx

dt
= xf(t).

∗ Linear relationship between ρ(x, t) and the current density of particles j.
† Conservation of number of particles.
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Using xdẋ
dt

= d(xẋ)
dt
− ẋ2 and taking the average over a large number of different particles,

the following mean squared displacement is derived:

M
d ⟨xẋ⟩
dt

−M
〈
ẋ2
〉

+ γ ⟨xẋ⟩ = ⟨xf(t)⟩ .

Applying equipartition theorem 1
2M ⟨ẋ

2⟩ = kBT
2M

and considering position and random
force are uncorrelated, ⟨xf(t)⟩ = ⟨x⟩ ⟨f(t)⟩ = 0, by integration, the equation can be
solved

⟨xẋ⟩ = kBT

γ
+ Ce−γt/M ,

where C is an arbitrary constant. Using ⟨xẋ⟩ = 1
2
d ⟨x2⟩
dt

and the initial condition of
x(0) = 0, the result for the mean squared displacement is recovered as

〈
x2(t)

〉
= 2kBT

γ

(
t− M

γ

(
1− e−γt/M

))
. (C.4)

For t≫ M
γ

, then

〈
x2
〉

= 2kBT

γ
t = 2D̃t, (C.5)

which reads the relation between the diffusion coefficient and the mean squared displace-
ment.

Up to this point, the discussion involved what is commonly known as normal
diffusion, which refers to the linear mean squared displacement behavior over time. The
normal diffusion assumes (136)

(i) the particles are independent,

(ii) consecutive displacements are uncorrelated,

(iii) the displacement’s distribution has finite variance.

In contrast, anomalous diffusion (137), from which at least one of the above as-
sumptions is not valid, can also be explored. A nonlinear growth for mean squared dis-
placement in time can be identified as (134,135,138–140)

〈
∆x2

〉
≃ Dαt

α


α < 1, sub-diffusion process,

α > 1, super-diffusion process,

α = 1, Brownian process.

(C.6)

Dα is the anomalous diffusion of dimension [lenght]2/[time]α. The behavior of anomalous
diffusion can be observed in both Biology (141–143) and Economics (144) contexts.
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APPENDIX D – PATH INTEGRAL FORMALISM

The focus here is on the evaluation of Kernel, which appears in the path integral
formalism (25). As addressed in the scope of this thesis, in classical mechanics, the path
taken by a particle extremizes the action, given by the integral of the Lagrangian of the
system

S =
∫ tb

ta

L(ẋ, x, t)dt,

with ta, tb as initial and final times. The path also satisfies the equation of motion

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0.

On the other hand, in quantum mechanics, the probability of transitioning from
an initial point to a final one is proportional to the square of the amplitude (see Sec. 3.2)
- this amplitude is the sum of the contributions from each path

K(b, a) =
∑

all paths
ϕ[x(t)],

where ϕ has a phase proportional to action ϕ[x(t)] = C eiS[x(t)]/ℏ, with constant C.

Utilizing an analog of the Riemann integral to define the summation across all
paths, choosing a subset of all paths, and dividing the time into steps of width ϵ result in
a set of values ti spaced in an interval ϵ between ta and tb values of time. For each time ti,
a point xi can be selected and, then, the sum is calculate performing a multiple integral
over all values of xi from i between 1 and N − 1, where

Nϵ = tb − ta,

ϵ = ti+1 − ti,

t0 = ta, tN = tb,

x0 = xa, xN = xb.

The resulting equation is

K(b, a) ∼
∫
. . .
∫ ∫

ϕ[x(t)]dx1dx2 . . . dxN−1.

Reducing the value of ϵ leads to a more representative sample of all paths between points
a and b. Since such a limit does not exist, a normalization factor must be defined, which,
for a specific Lagrangian, has a simple form. Specific factor A enables taking the limit
and writing

K(b, a) = lim
ϵ−→0

1
A

∫
. . .
∫ ∫

e(i/ℏ)S[b,a]dx1

A

dx2

A
. . .

dxN−1

A
.
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The sum over all paths can be rewritten as

K(b, a) =
∫ b

a
Dx(t)e(i/ℏ)S[b,a],

which is called a path integral.
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APPENDIX E – DERIVATION OF ACTION BY PATH INTEGRAL
FORMALISM

Examples of actions that can be derived from the path integral formalism in clas-
sical systems are explored in this appendix and the expressions for the kernels of free and
driven harmonic oscillators are derived with some details.

E.1 Free harmonic oscillator

The Lagrangian of the harmonic oscillator is given by

L = m

2 (ẋ2 − ω2x2), (E.1)

assuming tb − ta = T only for this exercise. From Euler Lagrange equation

d

dt

(
L

dẋ

)
− ∂L

∂x
= 0 =⇒ ẍ+ ω2x = 0, (E.2)

the solution for such differential equation is

x(t) = A cos(ωt) +B sin(ωt), (E.3)

where t = t′ − ta, implying the use of the difference as a parameter instead of t′ (time
from the real axis)∗, leading to conditions

x(0) = A cos(ω0) +B sin(ω0) = A = xa, (E.4)

x(T ) = A sin(ωT ) +B cos(ωT ) = xb =⇒ B = xb − xa cos(ωT )
sinωT , (E.5)

thus,

x(t) = xa cosωt+ xb − xa cosωT
sinωT sinωt. (E.6)

Taking the first derivative

ẋ(t) = −xaω sin(ωt) +
(
xb − xa cos(ωT )

sin(ωT )

)
ω cos(ωt), (E.7)

squaring it

ẋ2(t) = ω2(x2
a sin2(ωt) +B2 cos2(ωt)− 2xaB sin(ωt) cos(ωt)), (E.8)

and observing

ω2x2(t) = ω2(x2
a cos2(ωt) +B2 sin2(ωt) + 2xaB sin(ωt) cos(ωt)). (E.9)

∗ If t′ provides a solution, then any time shifting should also work for the real interval.
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Substituting the above expression into the action equation leads to

S = mω2

2

∫ T

0

[
xa(sin2 ωt− cos2 ωt) +B2(cos2 ωt− sin2 ωt)− 4xaB sinωt cosωt

]
dt.

(E.10)

Taking relation sin2 ωt − cos2 ωt = − cos 2ωt and sinωt cosωt = (sin 2ωt)/2 and
observing ∫ T

0
cos(2ωt)dt = sinωT cosωT

ω
, (E.11)∫ T

0
sin(2ωt)dt = sin2 ωT

ω
, (E.12)

the action is

S = mω

2

[
− x2

a sinωT cosωT +B2 sinωT cosωT − 2xaB sinωT
]

= mω

2

[
− x2

a sinωT cosωT + x2
b − 2xaxb cosωT + x2

a cos2 ωT

sin2 ωT
sinωT cosωT

− xaxb − x2
a cosωT

sinωT (2 sin2 ωT )
]

= mω

2 sinωT

[
− x2

a sin2 ωT cosωT + x2
b cosωT − 2xaxb cos2 ωT + x2

a cos3 ωT − 2xaxb sin2 ωT

+ 2x2
a sin2 ωT cosωT

]

= mω

2 sinωT

[
x2

a(cos3 ωT + sin2 ωT cosωT ) + x2
b cosωT − 2xaxb

]

S = mω

2 sinωT

[
(x2

a + x2
b) cos(ωT )− 2xaxb

]
. (E.13)

Now, the factor must be calculated for the path integral

K(b, a) = exp
[
i

ℏ
Scl

] ∫ 0

0
F(ta, tb)Dy(t), (E.14)

where Scl represents the action evaluated along the classical path and the prefactor for
an arbitrary quadratic Lagrangian is given by

F(ta, tb) =
∫ 0

0
exp

{[
i

ℏ

∫ tb

ta

a(t)ẏ2 + b(t)yẏ + c(t)y2dt
]}
Dy. (E.15)

Towards determining its shape for a free harmonic oscillator, a(t) = m/2, c(t) = mω2/2
and b(t) = d(t) = e(t) = f(t) = 0 is obtained in the generic quadratic Lagrangian

L = a(t)ẋ2 + b(t)ẋx+ c(t)x2 + d(t)ẋ+ e(t)x+ f(t), (E.16)
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where

F(ta, tb) = exp
{
i

ℏ

∫ tb

ta

a(t)ẏ2 + b(t)yẏ + c(t)y2dt

}
. (E.17)

Therefore, the prefactor becomes

F(ta, tb) =
∫ 0

0
exp

[∫ tb

ta

1
2mẏ

2 − 1
2mω

2y2dt
]
Dy. (E.18)

Still with the conventional derivation method outlined by Feynman (145), Fourier
series is employed to the equation. Since y(t) goes from 0 at t = 0 to 0 at t = tb− ta, then

y(t) =
∞∑

n=1
an sin nπt

T
. (E.19)

Applying the transformation to each term within the action integral,

m

2

∫ T

0
ẏ2dt = m

2

∞∑
n=1

∞∑
m=1

nπ

T

mπ

T
anam

∫ T

0
cos nπt

T
cos mπt

T
dt = m

2
T

2

∞∑
n=1

(
nπ

T

)2
a2

n,

(E.20)

where the potential energy term is

mω2

2

∫ T

0
y2dt = mω2

2

∞∑
n=1

∞∑
m=1

anam

∫ T

0
sin nπt

T
sin mπt

T
dt = mω2

2
T

2

∞∑
n=1

a2
n. (E.21)

Since time T is divided into discrete steps of length ϵ, coefficients an must be finite and
the path integral becomes

F(T ) = J
1
A

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
im

2ℏ
T

2

N∑
n=1

[(
nπ

T

)2
− ω2

]
a2

n

}
da1

A
. . .

daN

A
, (E.22)

where Jacobian factor, J , is not explicitly calculated. Since it does not depend on ω, a
trick must be adopted. From the previous equation,

∫ ∞

−∞
exp

{
im

2ℏ
T

2

(
n2π2

T 2 − ω
2
)
a2

n

}
dan

A
=
( 2
ϵT

)1/2 (n2π2

T 2 − ω
2
)−1/2

, (E.23)

where A = (2πiϵℏ/m)1/2 and i−1/2e−iπ/4 = 1 were used. Substituting the result leads to

F(T ) = J
(

m

2πiℏϵ

) N∏
n=1

( 2
ϵT

)N/2 (n2π2

T 2 − ω
2
)−N/2

. (E.24)

Next, the terms within the given expression are separated

F(T ) = C
N∏

n=1

(
1− ω2T 2

n2π2

)N/2

, (E.25)
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where C contains all terms that do not depend on ω. Although the limit in the expression
of F(T ) has been omitted, when it is taken for N −→∞ and ϵ −→ 0 in the above product
term, then

lim
N−→∞

N∏
n=1

(
1− ω2T 2

n2π2

)N/2

=
(sinωT

ωT

)−1/2
. (E.26)

As previously demonstrated, if ω = 0, the term should equate to 1 and F(T ) would
resemble that of the free particle, which is

F(T ) =
(

m

2πiℏT

)1/2
. (E.27)

For comparison purposes, for the harmonic oscillator,

F(T ) =
(

mω

2πiℏ sinωT

)1/2
. (E.28)

Therefore, the propagator for a free harmonic oscillator is given by

K(xb, T ;xa, 0) =
(

mω

2πiℏ sinωT

)1/2
exp

{
i

ℏ
mω

2 sinωT

[
(x2

a + x2
b) cos(ωT )− 2xaxb

]}
(E.29)

where T = tb − ta, as addressed elsewhere.

E.2 Driven harmonic oscillator

The Lagrangian for the driven harmonic oscillator is given by

L = 1
2mẋ

2 − 1
2mω

2x2 + f(t)x, (E.30)

where f(t) represents the external force acting on a particle of mass m. The equation of
motion is

ẍ+ ω2x = f(t)
m

, (E.31)

whose solution is given by x = xh + xp, where xh is the homogeneous solution and xp is
the particular one. The homogeneous solution stems from

ẍ+ ω2x = 0, (E.32)

which gives

xh = A cosωt+B sinωt (E.33)

where A and B are arbitrary constants.
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The other solution can be solved by Green’s function method, in which

d2G(t, t′)
dt2

+ ω2G(t, t′) = δ(t− t′), (E.34)

where G(t, t′) is Green’s function and t′ ∈ (t′−ε, t′ +ε). Next, the equation over the given
interval is integrated

∫ t′+ε

t′−ε

d2G(t, t′)
dt′2

dt′ + ω
∫ t′+ε

t′−ε
G(t, t′)dt′ =

∫ t′+ε

t′−ε
δ(t− t′)dt′ (E.35)

and analyzed term by term. For instance, by definition, Dirac’s
∫ t′+ε

t′−ε δ(t− t′)dt′ = 1. ω is
a continuous function in the entire interval of t. Since G(t, t′) is continuous at t = t′ by
construction, then

∫ t′+ε
t′−ε G(t, t′)dt′ = 0 in the limit of ε→ 0. Therefore,

lim
ε→0

[
dG(t, t′ + ε)

dt′
− dG(t, t′ − ε)

dt′

]
= 1, (E.36)

which reveals the derivative of Green’s function experiences a discontinuity of magnitude
1 at t′. By generality, xh(t) = Ax1(t) + Bx2(t); therefore, the general form of Green’s
function is written as

G(t, t′) = ax1(t) + bx2(t), t− t′ > 0, (E.37)
G(t, t′) = cx1(t) + dx2(t), t− t′ < 0. (E.38)

The relation of continuity of G and discontinuity of derivative of G at t′ yields

ax1(t′) + bx2(t′) = cx1(t′) + dx2(t′), (E.39)
aẋ1(t′) + bẋ2(t′) = cẋ1(t′) + dẋ2(t′) + 1. (E.40)

It is adjusted accordingly by

(a− c)x1(t′) + (b− d)x2(t′) = 0, (E.41)
(a− c)ẋ1(t′) + (b− d)ẋ2(t′) = 1. (E.42)

Solving a− c by Kramers’ method yields

(a− c) =

∣∣∣∣∣∣0 x2(t′)
1 ẋ2(t′)

∣∣∣∣∣∣∣∣∣∣∣∣x1(t′) x2(t′)
ẋ1(t′) ẋ2(t′)

∣∣∣∣∣∣
= −x2(t′)

W (t′) , (E.43)

where W (t′) = x1(t′)ẋ2(t′)− ẋ1(t′)x2(t′) is the Wronskian. Similarly

(b− d) = x1(t′)
W (t′) . (E.44)
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Those results are substituted in G(t, t′) leaving out c and d to be determined by
boundary conditions

G(t, t′) = cx1(t) + dx2(t)−
x1(t)x2(t′)− x2(t)x1(t′)

W (t′) , t− t′ > 0 (E.45)

G(t, t′) = cx1(t) + dx2(t), t− t′ < 0. (E.46)

Green’s function can be explicitly demonstrated by homogeneous solution

G(t, t′) = cA cosωt+ dB sinωt− AB[(cosωt)(sinωt′)− (sinωt)(cosωt′)]
ABω[(cosωt′)(cosωt′)− (− sinωt′)(sinωt′)] , t− t′ > 0

(E.47)

G(t, t′) = cA cosωt+ dB sinωt, t− t′ < 0.
(E.48)

Renaming the constants, C = cA and D = dB, and using some trigonometry relation
such as sin(a− b) = sin a cos− sin b cos a, lead to

G(t, t′) = C cosωt+D sinωt− 1
ω

sinω(t− t′), t− t′ > 0, (E.49)

G(t, t′) = C cosωt+D sinωt, t− t′ < 0. (E.50)

Since our interest is in the action, a two-point boundary condition is required and
also satisfies the inhomogeneous boundary condition mathematically. Besides the absence
of velocity information provided, there is a subtle aspect wherein xa = x(ta) and xb = x(tb)
are designated as initial and final conditions, thereby encapsulating the entire concept of
a trajectory.

The two-point boundary condition is given by

G(ta, t′) = G(tb, t′) = 0, (E.51)

from which

G(tb, t′) = C cosωtb +D sinωtb −
1
ω

sinω(tb − t′) = 0, tb − t′ > 0, (E.52)

G(ta, t′) = C cosωta +D sinωta = 0, ta − t′ < 0. (E.53)

Therefore, C and D can be determined substituting the below equation†

C = −D sinωta
cosωta

, (E.54)

into

C cosωtb +D sinωtb −
1
ω

sinω(tb − t′) = 0, (E.55)

† However, ω ta ̸= (2n + 1)π/2 with n = 0, 1, 2... were assumed.
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results in

D = − 1
ω

sinω(tb − t′) cosωta
sinω(tb − ta) =⇒ C = 1

ω

sinω(tb − t′) sinωta
sinω(tb − ta) . (E.56)

The solution for C and D leads to the final form for Green’s function

G(t, t′) = 1
ω

sinω(tb − t′)
sinω(tb − ta) sinω(ta − t) + 1

ω
sinω(t− t′), t− t′ > 0, (E.57)

G(t, t′) = 1
ω

sinω(tb − t′)
sinω(tb − ta) sinω(ta − t), t− t′ < 0. (E.58)

Another situation, in which ω(tb − ta) ̸= 2nπ with n = 0, 1, 2, ..., is considered. In this
case, the solution of the equation of motion is represented by equation

x(t) = A cosωt+B sinωt+
∫ tb

ta

G(t, t′)f(t′)
m

dt′. (E.59)

Utilizing the different forms of G(t, t′) over the (ta, tb) interval, the equation above can be
expressed as

x(t) = A cosωt+B sinωt+
∫ t

ta

G(t, t′)f(t′)
m

dt′ +
∫ tb

t
G(t, t′)f(t′)

m
dt′. (E.60)

The third term on the left side of the equation is given at t− t′ > 0‡

∫ t

ta

G(t, t′)f(t′)
m

dt′ = 1
mω

∫ t

ta

[
sinω(tb − t′)
sinω(tb − ta) sinω(ta − t) + sinω(t− t′)

]
f(t′)dt′. (E.61)

The fourth term on the left side of the equation is given at interval t− t′ < 0∫ tb

t
G(t, t′)f(t′)

m
dt′ = 1

mω

[∫ tb

t

sinω(tb − t′)
sinω(tb − ta) sinω(ta − t)

]
f(t′)dt′ (E.62)

leading to the generic solution for the driven harmonic oscillator dynamics

x(t) = A cosωt+B sinωt+ 1
mω

sinω(ta − t)
sinω(tb − ta)

∫ tb

ta

sinω(tb − t′)f(t′)dt′ +
∫ t

ta

sinω(t− t′)
mω

f(t′)dt′.

(E.63)

Using boundary condition x(ta) = xa, x(tb) = xb yields

xa = A cosωta +B sinωta, (E.64)
xb = A cosωtb +B sinωtb. (E.65)

Applying Kramer’s method to solve for A and B

A =

∣∣∣∣∣∣xa sinωta
xb sinωtb

∣∣∣∣∣∣∣∣∣∣∣∣cosωta sinωta
cosωtb sinωtb

∣∣∣∣∣∣
= xa sinωtb − xb sinωta

sinω(tb − ta) , (E.66)

‡ Since t′ must be in interval [ta, t], the integration makes sense.
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B =

∣∣∣∣∣∣cosωta xa

cosωtb xb

∣∣∣∣∣∣∣∣∣∣∣∣cosωta sinωta
cosωtb sinωtb

∣∣∣∣∣∣
= xb cosωta − xa cosωtb

sinω(tb − ta) . (E.67)

After some arrangements and using sin(a− b) = sin (a) cos (b)− sin (b) cos (a),

x(t) = 1
sinω(tb − ta) [xa sinω(tb − t) + xb sinω(t− ta)]

+ 1
mω

[∫ t

ta

sinω(t− t′)f(t′)dt′ + sinω(ta − t)
sinω(tb − ta)

∫ tb

ta

sinω(tb − t′)f(t′)dt′
]

(E.68)

is found. Next, x is differentiated with respect to t and squared

ẋ(t) = ω

sinω(tb − ta) [−xa cosω(tb − t) + xb cosω(t− ta)]

+ 1
m

[∫ t

ta

cosω(t− t′)f(t′)dt′ −
(

cosω(ta − t)
sinω(tb − ta)

∫ tb

ta

sinω(tb − t′)f(t′)dt′
)]

. (E.69)

The action yields
S =

∫ tb

ta

(1
2mẋ

2 − 1
2mω

2x2 + f(t)x
)
dt, (E.70)

and using ∫ tb

ta

1
2mẋdt = m

2

(
xẋ
∣∣∣tb

ta
−
∫ tb

ta

xẍdt
)
. (E.71)

Therefore,

S = m

2 xẋ
∣∣∣tb

ta
−
∫ tb

ta

m

2 xẍ+ m

2 ω
2x2dt+

∫ tb

ta

f(t)xdt = m

2

(
x(tb)ẋ(tb)− x(ta)ẋ(ta)

)
+1

2

∫ tb

ta

f(t)x(t)dt

= m

2

{
ω

sinω(tb − ta)

[
− xbxa + x2

b cosω(tb − ta)
]
+xb

m

∫ tb

ta

cosω(tb − t′)f(t′)dt′

− xb

m

cosω(ta − tb)
sinω(tb − ta)

∫ tb

ta

sinω(tb − t′)f(t′)dt′ − ω

sinω(tb − ta)

[
− x2

a cosω(tb − ta) + xaxb

]

+ xa

m

[
1

sinω(tb − tb)

∫ tb

ta

sinω(tb − t′)f(t′)dt′
]}

+ 1
2 sinω(tb − ta)

[
xa

∫ tb

ta

sinω(tb − t)f(t)dt+ xb

∫ tb

ta

sinω(t− ta)f(t)dt
]

+ 1
2mω

[ ∫ tb

ta

∫ t

ta

sinω(t− t′)f(t′)f(t)dt′dt+
∫ tb

ta

sinω(ta − t)
sinω(tb − ta)f(t)dt

∫ tb

ta

sinω(tb − t′)f(t′)dt′
]

S = m

2

{
ω

sinω(tb − ta) [(x2
b + x2

a) cosω(tb − ta)− 2xbxa]
}

+ xb

2 sinω(tb − ta)

[∫ tb

ta

cosω(ta − tb) sinω(tb − t′)f(t′)dt′ +
∫ tb

ta

cosω(tb − t′)f(t′) sinω(tb − ta)dt′

+
∫ tb

ta

sinω(t− ta)f(t)dt
]

+ xa

sinω(tb − ta)

∫ tb

ta

sinω(tb − t)f(t)dt

+ 1
2mω

[ ∫ tb

ta

∫ t

ta

sinω(t− t′)f(t′)f(t)dt′dt+
∫ tb

ta

sinω(ta − t)
sinω(tb − ta)f(t)dt

∫ tb

ta

sinω(tb − t′)f(t′)dt′
]
.
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After the last equal sign, the functions are simplified inside square brackets[
cosω(ta − tb) sinω(tb − t) + cosω(tb − t) sinω(tb − ta) + sinω(t− ta)

]
= 2 sinω(t− ta).

After some more simplifications, the action can be rewritten as

S = mω

2 sinω(tb − ta)

{
(x2

b + x2
a) cosω(tb − ta)− 2xbxa + 2xb

mω

∫ tb

ta

sinω(t− ta)f(t)dt

+ 2xa

mω

∫ tb

ta

sinω(tb − t)f(t)dt− 2
m2ω2

∫ tb

ta

∫ t

ta

sinω(tb − t) sinω(t′ − ta)f(t)f(t′)dt′dt
}
.

(E.72)

As depicted in Eq. (E.28), the identical expression for the influence function is
found. Employing Eq. (E.14) leads to

K(xb, tb;xa, ta) =
(

mω

2πiℏ sinωT

)1/2

exp
{
i

ℏ
mω

2 sinω(tb − ta)

{
(x2

b + x2
a) cosω(tb − ta)

− 2xbxa + 2xb

mω

∫ tb

ta

sinω(t− ta)f(t)dt+ 2xa

mω

∫ tb

ta

sinω(tb − t)f(t)dt

− 2
m2ω2

∫ tb

ta

∫ t

ta

sinω(tb − t) sinω(t′ − ta)f(t)f(t′)dt′dt
}}

. (E.73)
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APPENDIX F – INFLUENCE FUNCTIONAL

This appendix addresses the derivation of the influence functional expression. The
term regarding the dissipative dynamics is the influence functional given by

F [x, y] =
∫
dRdR′dQ′ρR(R′,Q′, 0)

∫ R

R′

∫ Q

Q′
DRDQ exp

{
i

ℏ
[SSR[x,R]− SSR[y,Q]]

}

=
N∏

k=1

∫
dRkdR

′
kdQ

′
kρB(R′

k, Q
′
k, 0)

∫ Rk,Qk

R′
k

,Q′
k

DRk(t′)DQk(t′)

× exp i

ℏ
{SSR[x(t′), Rk(t′)]− SSR[y(t′), Qk(t′)]},

(F.1)

which is separable and can be expressed as the product of N influence functionals, of
which each corresponds to a particle interacting with the bath.

The path integrals of Eq.(F.1) can be evaluated, for the action of the system-
reservoir is known. Furthermore, since the classical Lagrangian embodies a harmonic
oscillator and the global system under study is linear, only the evaluation of the action
SSR along classical paths Rk of each oscillator in the thermal bath is required.

The Lagrangian is given by

L = LS + LR + LI

= mẋ2

2 − V (x) +
∑

k

mkṘ
2
k

2 −
∑

k

mkω
2
k

2

(
Rk −

Ckx

mkω2
k

)2

. (F.2)

Those classical paths are the solution of equation of motion Eq. F.3

d

dt

(
dLSR

dṘk

)
− dLSR

dRk

= 0,

R̈k + ω2
kRk = Ckx

mk

. (F.3)

The path integrals in Eq.(F.1) correspond to the kernel for a driven harmonic
oscillator, except for term (Ckx)2

2mkω2
k
. Such a contribution can be factored out of the path

integral because it contains no term that depends on the classical paths of the bath
oscillators. The solution of Eq.(F.3) can be split into a homogeneous solution and a
particular one Rk = Rh

k +Rp
k. The homogeneous solution stems from

R̈k + ω2
kRk = 0, (F.4)

which gives

Rh
k = A cos (ωt) +B sin (ωt), (F.5)
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where A and B are arbitrary constants.

The other solution can be solved by Green’s function method, in which

d2G(t, t′)
dt2

+ ω2
kG(t, t′) = δ(t− t′), (F.6)

where G(t, t′) is Green’s function and t′ ∈ (t′ − ε, t′ + ε), so that the equation can be
integrated around such an interval∫ t′+ε

t′−ε

d2G(t, t′)
dt′2

dt′ + ωk

∫ t′+ε

t′−ε
G(t, t′)dt′ =

∫ t′+ε

t′−ε
δ(t− t′)dt′. (F.7)

The equation is analyzed term by term. For instance, by definition, Dirac’s delta provides∫ t′+ε
t′−ε δ(t− t′)dt′ = 1 - ωk is a continuous function in the entire interval of t. Since G(t, t′)

is continuous at t = t′ by construction, then
∫ t′+ε

t′−ε G(t, t′)dt′ = 0 in the limit of ε → 0.
Therefore

lim
ε→0

[
dG(t, t′ + ε)

dt′
− dG(t, t′ − ε)

dt′

]
= 1. (F.8)

The above equations reveal the derivative of Green’s function experiences a dis-
continuity of magnitude 1 at t′. By generality, Rh

k(t) = AR
(1)
k (t)+BR(2)

k (t) and the general
form of Green’s function can be written as

G(t, t′) = aR
(1)
k (t) + bR

(2)
k (t), t− t′ > 0, (F.9)

G(t, t′) = cR
(1)
k (t) + dR

(2)
k (t), t− t′ < 0. (F.10)

The relation of continuity of G and discontinuity of derivative of G at t′ yields

aR
(1)
k (t′) +R

(2)
k (t′) = cR

(1)
k (t′) + dR

(2)
k (t′) (F.11)

aṘ
(1)
k (t′) + bṘ

(2)
k (t′) = cṘ

(1)
k (t′) + dṘ

(2)
k (t′) + 1, (F.12)

It is adjusted accordingly by

(a− c)R(1)
k (t′) + (b− d)R(2)

k (t′) = 0 (F.13)
(a− c)Ṙ(1)

k (t′) + (b− d)Ṙ(2)
k (t′) = 1. (F.14)

Solving a− c by Kramers’ method yields

(a− c) =

∣∣∣∣∣∣0 R
(2)
k (t′)

1 Ṙ
(2)
k (t′)

∣∣∣∣∣∣∣∣∣∣∣∣R
(1)
k (t′) R

(2)
k (t′)

Ṙ
(1)
k (t′) Ṙ

(2)
k (t′)

∣∣∣∣∣∣
= −R

(2)
k (t′)
W (t′) , (F.15)

where W (t′) = R
(1)
k (t′)Ṙ(2)

k (t′)− Ṙ(1)
k (t′)R(2)

k (t′) is the Wronskian. Similarly,

(b− d) = R
(1)
k (t′)
W (t′) . (F.16)
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Those results are substituted in G(t, t′) leaving out c and d to be determined by boundary
conditions

G(t, t′) = cR
(1)
k (t)−R(1)

k (t)R
(2)
k (t′)
W (t′) + dR

(2)
k (t) +R

(2)
k (t)R

(1)
k (t′)
W (t′) , t− t′ > 0,

(F.17)

G(t, t′) = cR
(1)
k (t) + dR

(2)
k (t)− R

(1)
k (t)R(2)

k (t′)−R(2)
k (t)R(1)

k (t′)
W (t′) , t− t′ > 0,

(F.18)

G(t, t′) = cR
(1)
k (t) + dR

(2)
k (t), t− t′ < 0.

(F.19)

Green’s function can be explicitly demonstrated by homogeneous solution

G(t, t′) = cA cosωkt+ dB sinωkt−
AB[(cosωkt)(sinωkt

′)− (sinωkt)(cosωkt
′)]

ABωk[(cosωkt′)(cosωkt′)− (− sinωkt′)(sinωkt′)]
,

t− t′ > 0,

G(t, t′) = cA cosωkt+ dB sinωkt, t− t′ < 0.

Renaming the constants, C = cA and D = dB, and using some trigonometry
relation such as sin(a− b) = sin (a) cos (b)− sin (b) cos (a), lead to

G(t, t′) = C cosωkt+D sinωkt−
1
ωk

sinωk(t− t′), t− t′ > 0, (F.20)

G(t, t′) = C cosωkt+D sinωkt, t− t′ < 0. (F.21)

Again, since our interest is in the action, a two-point boundary condition is re-
quired. Besides the absence of velocity information provided, there is a subtle aspect
wherein R

′
k = Rk(ta = 0) and Rk = Rk(tb = t) are designated as initial and final condi-

tions, thereby encapsulating the entire concept of a trajectory. The two-point boundary
condition is given by

G(ta, t′) = G(tb, t′) = 0, (F.22)

from which

G(tb, t′) = C cosωkt+D sinωkt−
1
ωk

sinωk(t− t′) = 0, t− t′ > 0,

G(ta, t′) = C = 0, t− t′ < 0,

C = 0 =⇒ D = 1
ωk

sin ωk(t−t′)
sin ωkt

. The solutions provide the final form for Green’s function

G(t, t′) = 0, t− t′ > 0, (F.23)

G(t, t′) = −sinωk(t− t′)
ωk

, t− t′ < 0. (F.24)
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Therefore, the solution to the equation of motion is

Rk(t) = A cosωkt+B sinωkt+ Ck

mk

∫ t

0
G(t, t′)x(t′)dt′. (F.25)

The different forms of G(t, t′) along (0, t) enable writing the solution for the driven har-
monic oscillator dynamics

Rk(t) = A cosωkt+B sinωkt+ Ck

mkωk

∫ t

0
sinωk(t− t′)x(t′)dt′, (F.26)

and employing boundary conditions

Rk(0) = R
′

k = A, (F.27)
Rk(t) = Rk = A cosωkt+B sinωkt (F.28)

then B = Rk−R
′
k cos ωkt

sin ωkt
. After some arrangements,

Rk(t) = 1
sinωkt

[
R

′

k sinω(t− t′) +Rk sinωk(t′)
]

(F.29)

+ Ck

mkωk

[∫ t

0
sinωk(t− t′)x(t′)dt′ −

∫ t

0
sinωk(t− t′′)x(t′′)dt′

]
(F.30)

is found.

Rk must be differentiated with respect to t and squared,

Ṙk(t) = ωk

sinωkt

[
−R′

k cosωk(t− t′) +Rk cosωkt
′
]

(F.31)

+ Ck

mk

[∫ t′

0
cosωk(t′ − t′′)x(t′′)dt′′ +

(
cosωkt

′

sinωkt

∫ t

0
sinωk(t− t′)x(t′)dt′

)]
. (F.32)

Let us focus on the action

S
(k)
cl =

∫ t

0

(
mk

2 Ṙ2
k −

mkω
2
k

2 R2
k + Ckx(t′)

)
dt′, (F.33)

which is rewritten as

S
(k)
cl = mkωk

2 sinωkt

[
(R2

k +R
′2
k ) cosωkt− 2RkR

′

k

]
+ RkCk

sinωkt

∫ t

0
sinωkt

′x(t′)dt′ (F.34)

+ R
′
kCk

sinωkt

∫ t

0
sinωk(t− t′)x(t′)dt′ − C2

k

mkωk sinωkt

∫ t

0

∫ t′

0
sinωk(t− t′) sinωkt

′′x(t′)x(t′′)dt′dt′′.

(F.35)

Moreover, for a Gaussian integral, the kernel is provided by

K(b, a) = e
i
ℏScl

∫ 0

0
F (ta, tb)Dy(t), (F.36)

where Scl represents the action evaluated along the classical path and the prefactor for
an arbitrary quadratic Lagrangian is given by

F (ta, tb) =
∫ 0

0
exp

{
i

ℏ

∫ tb

ta

a(t)ẏ2 + b(t)yẏ + c(t)y2dt
}
Dy. (F.37)
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Towards determining its shape for a free harmonic oscillator, a(t) = mk/2, c(t) = mkω
2
k/2

and b(t) = d(t) = e(t) = f(t) = 0 is defined in the above equation and our prefactor
becomes

F (ta, tb) =
∫ 0

0
exp

[∫ tb

ta

1
2mkẏ

2 − 1
2mkω

2
ky

2dt
]
Dy (F.38)

by Fourier series. Since y(t) goed from 0 at t = 0 to 0 at t = tb − ta and recalling ta = 0,
tb = t, it can be written as

y(t) =
∞∑

n=1
an sin

(
nπt

τ

)
. (F.39)

Time τ is divided into discrete steps of length ϵ and coefficients an are assumed to be
finite. Performing a transformation on each term of the action integral, the prefactor is

F (0, t) =
√

mkωk

2πiℏ sinωkt
. (F.40)

The result is the integrals below
∫ Rk

R′
k

DRk(t′) exp
{
i

ℏ
SSR[x(t′), Rk(t′)]

}
= K

(k)
SR =

√
mkωk

2πiℏ sinωkt
exp

{
i

ℏ
S

(k)
cl [x,Rk]

}
∫ Qk

Q′
k

DQk(t′) exp
{
− i
ℏ
SSR[y(t′), Qk(t′)]

}
= K

∗(k)
SR =

√
− mkωk

2πiℏ sinωkt
exp

{
− i
ℏ
S

(k)
cl [y,Qk]

}
.

Using the above expressions and the expression for the initial bath density operator
and after performing integrations over R′

k, Rk, Q′
k the influence functional reads

Fk[x, y] = exp
{
−iC

2
k

ℏ
(x′ + y′)

∫ t

0
dt′

cos (ωkt
′)

2mkω2
k

[x(t′)− y(t′)]
}

(F.41)

× exp
{
−iC

2
k

ℏ

∫ t

0

∫ t′

0
dt′dt′′

cosωk(t′ − t′′)
2mkω2

k

[ẋ(t′′) + ẏ(t′′)][x(t′)− y(t′)]
}

(F.42)

× exp
{
− C2

k

2ℏmkω2
k

∫ t

0

∫ t′

0
dt′dt′′ coth

(
ℏβωk

2

)
cosωk(t′ − t′′)[x(t′)− y(t′)][x(t′′)− y(t′′)]

}
.

(F.43)

The above expression describes the influence of k-th oscillator in the thermal bath on the
i-th oscillator in the system of interest.
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APPENDIX G – INITIAL ENVIRONMENT DENSITY OPERATOR

This appendix addresses the derivation of the density operator for the environment
at initial time. The expression for Kernel for a free harmonic oscillator was derived in the
previous appendices as

K(xb, tb;xa, ta) =
(

mω

2πiℏ sinωt

)1/2

exp
{
i

ℏ
mω

2 sinω(tb − ta)

[
(x2

b + x2
a) cosω(tb − ta)− 2xbxa

]}
.

(G.1)

Assuming the initial state of the environment is Gibbs state

ρR
G = e−HR/kBT

Z
, (G.2)

the imaginary time must be applied for deriving the correct kernel, hence, the expression
for the initial density operator for environment.

In the above equation, by substituting imaginary time β = it/ℏ (Wick’s rotation),
U(t) → ZρG

, where Z represents the partition function. Consequently, the driven term
becomes null. Evaluating the expression yields

i sin (ωt) = i sin
(
ωβℏ
i

)
= i

[
ei( ωβℏ

i
) − e−( ωβℏ

i
)

2i

]
= eωβℏ − e−ωβℏ

2 = sinh (ωβℏ), (G.3)

cos (ωt) = cos
(
ωβℏ
i

)
= ei( ωβℏ

i
) + e−( ωβℏ

i
)

2 = eωβℏ + e−ωβℏ

2 = cosh (ωβℏ), (G.4)

where β = 1
kBT

and substituting it into the expression for the kernel results in

K(xb, tb;xa, ta) =
(

mω

2πℏ sinh (ωβℏ)

)1/2

exp
{
− mω

2ℏ sinh (ωβℏ)

[
(x2

b + x2
a) cosh (ωβℏ)− 2xbxa

]}
.

(G.5)

Assuming Tr ρ = 1, the initial density operator can be written in the environment
coordinates as

ρG
R(R′, Q′) =

∑
j

ρ
(j)
R (R′, Q′, 0)

=
∑

j

mjωj

2πℏ sinh ( ℏωj

kBT
)

exp
− mjωj

2ℏ sinh ( ℏω
kBT

)

[
(R′2

j +Q
′2
j ) cosh

(
ℏω
kBT

)
− 2R′

jQ
′

j

].
(G.6)
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APPENDIX H – QUANTUM WORK OF A SINGLE PHOTON

The derivation presented here is based on Refs.(21,146,147).

Let us consider a global state of the atom-field system as

|ξ(t)⟩ = ψ(t) |e, 0⟩+
∑
ω

ϕω(t)a†
ω |g, 0⟩ , (H.1)

where |e, 0⟩ = |e⟩ ⊗ |0⟩ is the tensorial product between excited and vacuum states and
|g, 0⟩ = |g⟩ ⊗ |0⟩ is the tensorial product between ground and vacuum states. ψ(t) |e, 0⟩
is associated with the excited state of a two-level system, whereas ∑ω ϕω(t)a†

ω |g, 0⟩ is
associated with the ground state and the presence of the photon. ϕ(t) is the probability
amplitude to find the system in the excited state |e⟩. ϕω(t) is the probability amplitude
of occupation of each mode∗.

|0⟩ = ∏
ω |0ω⟩ is the vacuum state of the field in each mode of frequency ω with

creation operator a†
ω. Then,∑

ω

a†
ωaω |1⟩ ≡

∑
ω

a†
ωaω

∑
ω′
ϕω′(t)a†

ω′ |0⟩ = 1 |1⟩ , (H.2)

which implies superposition ∑ω ϕω(t)a†
ω |0⟩ ≡ |1⟩, i.e., this electromagnetic pulse contains

a single excitation.

From Eq.(H.1), the average dipole of an atom driven by a single-photon pulse is
zero, i.e., 〈

d̂(t)
〉

= ⟨ξ(t)| d̂ |ξ(t)⟩ = 0, (H.3)

where d̂ = deg(|e⟩ ⟨g| + |g⟩ ⟨e|) is the dipole operator and deg is the transition dipole
moment.

The combination of quantum thermodynamics and open quantum systems tech-
niques characterized the work performed by the electromagnetic field on the electric dipole
in Refs.(21,146,147).

The aforementioned relation implies the field does not perform work on the dipole,
recalling the electromagnetic theory predicts the classical field depends on time E(t) and
performs work in a classical dipole momentum with rate

Ẇcl = E(t)ḋ(t) (H.4)

where dots indicate time derivative. The quantum description of the electrical field is then

Ẇquant = E(t)
〈
∂td̂(t)

〉
, (H.5)

∗ which is initially normalized
∑

ω |ϕω(0)|2 = 1.
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since
〈
∂td̂(t)

〉
= 0, then Ẇ = 0. The following definition of work is adopted for circum-

venting that issue and obtaining a correct description of the dynamics:

⟨∆W ⟩ ≡
∫ tf

t0
dtTr

{
ρ(t)Ḣ(t)

}
, (H.6)

which, combined with the quantum open system out-of-equilibrium approach, can fully
describe the dynamics using a full quantum model.

The total Hamiltonian is given by

H = ℏω0σ+σ− +
∑
ω

ℏωa†
ω − iℏg

∑
ω

(aωσ+ − a†
ωσ−), (H.7)

where σ+ = σ†
− = |e⟩ ⟨g| and ωS(t) is the time-dependent frequency induced by the

incident field. The reduced two-level system state is ρS(t) = Trfield [|ξ(t)⟩ ⟨ξ(t)|] and the
evolution follows Schrodinger’s equation, which suggested the use of master equation

∂tρS(t) = − i
ℏ

[HS(t), ρS(t)] + Lt[ρS(t)]. (H.8)

The description provides the effective Hamiltonian of the system, given by

HS(t) = ℏωS(t)σ+σ−, (H.9)

emphasizing the non-unitary component of the master equation, then

Lt[ρS(t)] = Γ(t)
(
σ−ρS(t)σ+ −

1
2{σ+σ−, ρS(t)}

)
(H.10)

where {., .} is the anticommutator. Γ(t) is the time-dependent tunneling rate induced by
the pulse and Lt[ρS(t)] is the Lindblad form.

Inserting the two above expressions in the master equation, the solution of HS(t)
when ωS(t) = −Im[∂tψ(t)/ψ(t)] and Γ(t) = −2Re[∂tψ(t)/ψ(t)] is recovered. The expres-
sion for the quantum work done by a single photon pulse is written as

W ≡
∫ tf

t0
Tr{ρS(t)∂tHS(t)}dt = ℏ

∫ tf

t0
|ψ(t)|2(∂tωS(t))dt, (H.11)

and the heat involved in the process is

Q ≡
∫ tf

t0
Tr{∂tρS(t)HS(t)}dt = ℏ

∫ tf

t0
(∂t|ϕ(t)|2)ωS(t)dt. (H.12)

Work originates in the temporal dependence of ωS(t) and heat depends on a change in
the excitation probability of the two-level system |ψ(t)|2.

Unlike Ref.(147), Ref.(21) uses a definition of work compatible with the Heisenberg
representation. Where the definition of work in the Heisenberg picture and in the rotating-
wave approximation can be written as

⟨Wabs⟩a =
∫ ∞

0
⟨(∂(t))Ein(t)⟩ dt, (H.13)

where Ein(t) represents the driving field.
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APPENDIX I – DERIVATION OF FUNCTIONAL OF WORK

The derivation presented here is based on Ref.(118–120).

The characteristic function of work is written as

χW (ν) = Tr[USe
−iνHS(λ0)ρS(0)U †

Se
iνHS(λτ )], (I.1)

where U(τ) = T [exp(−iℏ
∫ τ

0 dtH(λτ ))] is the time evolution operator, [0, τ ] is the time
interval for controlled parameter λτ ,

HS = p2/2m+ V (λτ , x), (I.2)

is the Hamiltonian, and ρS(0) is the initial state of the system.

The following steps are taken for deriving the path integral expression as per the
reference:

〈
xf |USe

−iνHS(λ0)|xi

〉
=
∫
Dxe(i/ℏ)Sν

1 [x], (I.3)〈
yi|U †

Se
iνHS(λτ )|yf

〉
=
∫
Dye(−i/ℏ)Sν

2 [y]. (I.4)

Inserting the relation above into Eq.(I.1) and using identity
∫
dx |x⟩ ⟨x| = 1 lead to

χW (ν) =
∫
dxidx

′

idxfdx
′

fδ(xf − x
′

f ) |xf⟩USe
−iνHS(λ0) ⟨xi|xi⟩ ρS(0)

〈
x

′

i

∣∣∣x′

i

〉
USe

iνHS(λτ )
〈
x

′

f

∣∣∣
=
∫
dxidx

′

idxfdx
′

fδ(xf − x
′

f )DxDx′e(i/ℏ)(Sτ
1 [x]−Sτ

2 [x′])ρ(xi, x
′

i), (I.5)

where |xi⟩ ρS(0)
〈
x

′
i

∣∣∣ = ρ(xi, x
′
i) is the density operator in the coordinate representation

and the actions are defined as

Sτ
1 [x] = S1[x, τ ] =

∫ ℏν

0
dtL[λ0, x(t)] +

∫ τ+ℏν

ℏν
dtL[λt−ℏν , x(t)],

Sτ
2 [x] = S2[x′, τ ] =

∫ τ

0
dsL[λs, x

′(s)] +
∫ τ+ℏν

τ
dsL[λτ , x

′(s)]. (I.6)

This definition of action is inherently related to the definition that path integral
requires for the propagator. The derivation of a characteristic function that depends ex-
plicitly on the work requires the observation of the following identity:

i

ℏ
Sτ

1 [x] = i

ℏ
Sτ

2 [x] + iνWν [x]. (I.7)

Its validity can be verified by initially observing

i

ℏ
Sτ

1 [x, 0] = i

ℏ
Sτ

2 [x, 0] + iνWν [x, 0], (I.8)
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which leads to

iνWν [x, 0] = i

ℏ

[ ∫ ℏν

0
dtL[λ0, x(t)]−

∫ ℏν

0
dsL[λ0, x(s)]

]
= 0, (I.9)

since the system does not perform any work at time t = 0. On the other hand, if the
action derivative in time is taken, then

d

du
Sτ

1 [x, u] = L[λu, x(u+ ℏν)],
d

du
Sτ

2 [x, u] = L[λu, x(u+ ℏν)] +
∫ u+ℏν

u
λ̇u

δ

δλu

L[λu, x(s)]ds (I.10)

then

d

du
Sτ

2 [x, u] = d

du
Sτ

1 [x, u] +
∫ u+ℏν

u
λ̇u

δ

δλu

L[λu, x(s)]ds. (I.11)

Taking integral form 0 to τ again results in

Sτ
2 [x, τ ]− Sτ

2 [x, 0] = Sτ
1 [x, τ ]− Sτ

1 [x, 0] +
∫ τ

0

∫ u+ℏν

u
λ̇u

δ

δλu

L[λu, x(s)]dsdu,

Sτ
1 [x, τ ]− Sτ

2 [x, τ ] = Sτ
1 [x, 0]− Sτ

2 [x, 0]−
∫ τ

0

∫ u+ℏν

u
λ̇u

δ

δλu

L[λu, x(s)]dsdu,

S1[x, τ ]− S2[x, τ ] = −
∫ τ

0

∫ u+ℏν

u
λ̇u

δ

δλu

L[λu, x(s)]dsdu, (I.12)

If u = t is setting and performing substitution s → s + t on the right-hand side term
above, the work functional is defined as

Wν [x, τ ] = 1
ℏν

∫ τ

0

∫ ℏν

0
dsdtλ̇t

δ

δλt

L[λt, x(s+ t)]. (I.13)
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