
UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE FÍSICA DE SÃO CARLOS

Tiago Martinelli

Causal modeling in high-order scenarios: unfolding

mechanisms by moving across scales

São Carlos

2023





Tiago Martinelli

Causal modeling in high-order scenarios: unfolding
mechanisms by moving across scales

Thesis presented to the Graduate Program
in Physics at the Instituto de Física de São
Carlos da Universidade de São Paulo, to
obtain the degree of Doctor in Science.

Concentration area: Theoretical and
Experimental Physics

Advisor: Prof. Dr. Francisco Aparecido
Rodrigues

Coadvisor: Prof. Dr. Diogo de Oliveira Soares
Pinto

Corrected version

(Original version available on the Program Unit)

São Carlos

2023



I AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR
PARTIAL COPIES OF THIS DOCUMENT, BY CONVENTIONAL OR ELECTRONIC
MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED.

Martinelli, Tiago
   Causal modeling in high-order scenarios: unfolding 
mechanisms by moving across scales / Tiago Martinelli;
advisor Francisco Aparecido Rodrigues; co-advisor Diogo
de Oliveira Soares Pinto - corrected version -- São
Carlos 2023.
   91 p.

   Thesis (Doctorate - Graduate Program in Theoretical
and Experimental Physics) -- Instituto de Física de São
Carlos, Universidade de São Paulo - Brasil , 2023.

   1. Causal modeling. 2. Emergent phenomena. 3.
Multivariate information theory. I. Rodrigues, Francisco
Aparecido, advisor. II. Pinto, Diogo de Oliveira Soares,
co-advisor. III. Title.



To my parents Paulo and Sandra.





ACKNOWLEDGEMENTS

To my advisor Prof. Francisco A. Rodrigues for his vote of confidence given to a
student lost in doubt about pursuing a more applied doctorate instead of a fundamentalist
one. And showing me Pearl’s book in our first meeting resulted in this work. I hope I did
not fall too short of your expectations. Thanks for the almost fatherly concerns regarding
my future academic career.

To my co-supervisor Prof. Diogo O. Soares-Pinto allowing our relationship to go
beyond the purely academic realm and thus sharing many worldviews. Thanks for the
bureaucratic help allowing me to worry only about doing science.

To my parents, Paulo and Sandra, for their unrestricted love and dedication, fun-
damental ingredients for me to have the necessary strength and foundation to obtain all
the achievements, including this one; for understanding my often “absent” behavior, which
attests to the affection and comfort they provide me, without which the dedication to my
“inner world”, necessary for my career, would not be possible. Love you.

To my brother Igor for his spontaneity and practicality, that always is an example
of antagonism to my personality.

To my “dinosaurs” friends Matheus, Chris, and Alex, who have been with me since
undergraduate and have collaborated professionally and personally throughout this doc-
torate. Matheus, dedicated time to several difficult moments. Chris for various technical
discussions and pointing out several times when I accumulated a lot of information but
transmitted it through a very noisy channel. To Alex, for the moments when every ten
words I spoke, he laughed eleven.

To Kirstin for being my first contributor and helping me to leave the abstract
realm of causality and discuss its mundane usefulness. To Thomas for helping me with
the review of papers and this thesis. Also, for his helpful bits of advice in academic life.

To Professor Yamir Moreno for the opportunity to develop research in his COSNET
group. For the hospitality and opportunities given throughout this year abroad.

To the various Spanish colleagues, I had the opportunity to meet and provide
a pleasant environment during my scholarship abroad. In particular, Carlos, Alfonso,
Alberto, Ari and Mario.

To Gabi, who has been a supportive presence throughout a significant portion of
my academic journey. While our paths may have diverged in life, I am thankful for the
memories we shared and the impact you had on this period of my life.

To the committee members for their availability and patience in carefully reading
and analyzing this work.



To CNPq (Grant No. 140665/2018-8) for the financial support during the first year
of my Ph.D. and to FAPESP (Grants No. 2018/12072-0 and 2020/04543-2) for the total
financial support afterward.

To the people who directly or indirectly contributed to the realization of this goal.



ABSTRACT

MARTINELLI, T. Causal modeling in high-order scenarios: unfolding
mechanisms by moving across scales. 2023. 91p. Thesis (Doctor in Science) - Instituto de
Física de São Carlos, Universidade de São Paulo, São Carlos, 2023.

The big data era advanced the possibility of studying emergent phenomena in the real
world, often occurring by systems with high-order, non-trivial interactions. One of the
main questions for these complex systems is to understand how their collective organiza-
tion influences the dynamic processes. Although such a study is fundamental to develop-
ing the policies of controlling dynamical processes from changes in the network structure,
in practice, the only information available is multivariate data recorded from variables
with unknown topology. Such a scenario can be explored using information theory and
causality tools to quantify an individual’s influence and infer a causal structure among
them. In other words, we can make reverse engineering to obtain a causal model via data.
However, a methodology to deal with emergent causes when extracting information is an
open question. If not performed correctly, it can compromise basic assumptions in causal
modeling resulting in a spurious view of the organization of complex systems. This thesis
is dedicated to investigating fundamental problems regarding the capture of emergence
phenomena from high-order complex systems joining techniques from causal manipula-
tive approaches and multivariate information theory. Based on our results, we defend a
paradigm shift when dealing with multivariate data in causal modeling by considering
the task of a system description by moving scales as a fundamental issue instead of a
mathematical artifice.

Keywords: Causal modeling. Multivariate information theory. Emergent phenomena.





RESUMO

MARTINELLI, T. Modelagem causal em cenários de alta ordem: revelando
mecanismos movendo-se através de escalas. 2023. 91p. Tese (Doutorado em
Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2023.

A era do big data avançou a possibilidade de estudar fenômenos emergentes no mundo
real, muitas vezes ocorrendo por sistemas com interações não triviais de alta ordem. Uma
das principais questões para esses sistemas complexos é entender como sua organização
coletiva influencia os processos dinâmicos. Embora tal estudo seja fundamental para de-
senvolver a política de controle de processos dinâmicos a partir de mudanças na estrutura
da rede, na prática, a única informação disponível são dados multivariados registrados de
variáveis com topologia desconhecida. Tal cenário pode ser explorado usando a teoria da
informação e ferramentas de causalidade para quantificar a influência de um indivíduo
e inferir uma estrutura causal entre eles. Em outras palavras, podemos fazer engenharia
reversa para obter um modelo causal via dados. No entanto, uma metodologia para lidar
com causas emergentes ao extrair informações é uma questão em aberto. Se não executada
corretamente, pode comprometer suposições básicas na modelagem causal, resultando em
uma visão espúria da organização de sistemas complexos. Esta tese é dedicada à investigar
problemas fundamentais relacionados a captura de fenômenos de emergência em sistemas
complexos de alta ordem conciliando técnicas de teorias de causalidade e informação mul-
tivariada. Com base em nossos resultados, defendemos uma mudança de paradigma ao
lidar com dados multivariados na modelagem causal, considerando a tarefa de descrição
de um sistema ao mover escalas como uma questão fundamental ao invés de um artifício
matemático.

Palavras-chave: Modelagem causal. Teoria de informação multivariada. Fenômenos emer-
gentes.
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1 INTRODUCTION

Causation-based formalisms aim to entail a more fundamental structure on models
than an inference based only on statistical relations. Consider a three-node model of
possible causal relationships among them, see in Fig.1. Suppose that we have data records
from processes X and Y only. Suppose also that two things always happen: first, the
hidden node Z (unknown in the data’s record) influences X by a COPY operation; second,
Z influences Y , showing that X and Y share redundant information about Y . Such a
model is quite general since it can also include more interesting cases: that both X and
Z synergically influence Y but neither X nor Z provide a specific influence on their own.
The latter is an example of dependent (synergic) causes raising an emergent phenomenon.

Z

Y

X

Figure 1 – Graphical model of causal relationships among, nodes X and Y , and
the confounder (hidden) node Z. The great benefit of manipulative
approaches to causation is to provide techniques to decide if an arrow
is really a cause or only a correlation. (1, 2)
Source: By the author.

Now, imagine an ensemble of nodes X influencing another ensemble Y with a large
number of dependent causal influences. Identifying and distinguishing the different con-
tributions of causal information due to unique against redundant/synergic contributions
among them could allow, e.g., to understand better how collective information in the
brain contributes to consciousness experience. (3) Besides brain networks, the application
domains of synergic causes can also be found in social cognitive phenomena (4), gene reg-
ulatory networks (5), and others whose behavior emerges spontaneously from numerous
interactions that are not known a priori.

The characterization of information from dependent relationships in causal model-
ing is an open question in the literature. (6–8) Such a problem is linked with the partition
of high-order1 statistical dependencies in complex systems since without statistical de-
pendency there is no causal dependency. (1) The answer to this problem, then, relies on
the intersection of three wide areas: complex systems, causality, and information theories.

The purpose of this thesis is to contribute with an information-theoretic method-

1 We will reserve the term high-order for any complex system that has non-pairwise relation-
ships.
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ology to deal with data in the presence of high-order phenomena and noise2. We want to
defend the following statement,

PROBLEM STATEMENT

To characterize coarse-grainings (Fig.2) as useful strategies to unfold causal mechanisms
when dealing with data from complex scenarios in the presence of emergent phenomena.




X1
X2
...

Xn




U V
downward causation

causal influence




Y1
Y2
...

Yn




Figure 2 – Coarse-graining3 the ensembles X,Y into macro variables U, V , re-
spectively, can show more causal influence beyond micro (individual)
components. We will say that we have emergent phenomena when
either downward causation (macro-micro causal influence) or causal
decoupling (macro-macro causal influence) happens.
Source: Adapted from ROSAS et al.(9)

In Sec.1.1, we demonstrate how the rise of emergent phenomena in science and
its need for a formal methodology raised the fields of our interest. In Sec.1.2 we list our
contributions in such field and how this text is organized.

1.1 Statement and motivation

Sixty years ago, digital computers made
information readable. Twenty years ago, the in-
ternet made it reachable. Ten years ago, the
first search engine crawlers made it a single
database. Now, Google and like-minded com-
panies are sifting through the most measured
age in history, treating this massive corpus as
a laboratory of the human condition. They are
the children of the petabyte age. (10)
2 We will use the term noise to refer to any type of correlation in the data that disrupt the

ability to capture meaningful information.
3 A commonly known example of coarse-graining is in thermodynamics when a macroscale is

used, such as the temperature and its relation with the motion of individual particles. The
collection of all possible microstates, combinations of particle kinetic energy, is simplified into
a single macrostate, temperature. In this case, the mapping of individual particles’ states to
the whole’s temperature is done via a function (average) of kinetic energy.
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Every day, we create 2.5 quintillion bytes4 of data. This data comes from every-
where: sensors used to gather climate information, posts to social media sites, digital pic-
tures, and stock market records, to name a few. This data is big data.(11) This information
era has made possible the storage and analysis of big data to deepen our understanding
of the emergence phenomena that are at the core of complex systems.(9, 12)

1.1.1 Emergence: unpredictability or irreducibility

Could Laplace’s demons exist?

The term emergence was coined in 1875 by the philosopher G. H. Lewes. (13) It
comes from the Latin verb emergo which means to arise, to rise up, to come up, or to
come forth. In Lewes’ work, three essential features of emergence are laid out. First, it is a
theory about the structure of the natural world; therefore, it has ramifications concerning
the unity of science; second, it is a relation between the whole-parts properties; third, the
question of emergence is related to the question of the possibility of reduction5.

Figure 3 – Reductionist paradigm.
Source: HOEL. (14)

From the reductionist point of
view, a biologist studying a cell is
really referring to some astronomi-
cally complex constellation of quarks,
see Fig.3. The reductionist philosophy
can be stated clearly using the ter-
minology of information theory: com-
pression of information. Macroscales
are useful coarse-grainings being loss-
less representations of the information
contained in the respective structure.
Their usefulness stems from the neces-
sity of compression in communication
because all systems have limited band-
width6 (14). When moving up in scale,
the runtime to simulate the full system

decreases.
4 US-based scale defines a quintillion as 1 followed by 18 zeros. British-based scales as 1 followed

by 30 zeros. As the source was Forbes magazine, based in New Jersey, we will keep the former.
5 As we will see during text, the final framework which will rise align with these conditions.
6 Bandwidth’s limit refers to the capacity of a system to transmit data. If these limits are not

in place, the device can overload its processing capacity making the system unpredictable.
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Given that all systems are describable at the physical microscale, what possible
extra gain is there for any coarse-grained macroscale? It would seem natural that some
form of Occam’s razor applies. That is, the higher-scale descriptions are not necessary
at a fundamental level. Unless, the fact that something is irreducible means it exhibits
some causal novelty, or it contains physical principles not derivable from lower scales. To
capture this difference between irreducible and unpredictability, the philosopher David
Chalmers (15) drew the distinction between weak and strong emergence.

Weak emergence concerns the type of emergence in which the notions of complex-
ity, self-organization, and non-linearity are central. The core of this position is that a
property is emergent if it is systemic, in the sense that none of its smaller parts share,
and it is unpredictable given the properties and the laws governing the lower level, the
domain from which it emerged. For instance, artificial agents created in Conway’s cel-
ebrated Game of Life (GoL) (16) simple rules result in highly complex behavior, with
recognizable self-sustaining structures, see Fig.4.

Figure 4 – Gosper glider gun shooting gliders. Simple local rules determine whether a
given cell of a 2D grid will be ON (black squares) or OFF (white squares)
based on the number of ON cells in its immediate neighborhood.
Source: CONWAY’S. (17)

Central to the idea of ontological autonomy of emergence is the concept of causal
novelty. (13) The principle of strong emergence states that at certain levels of physical
complexity, new properties appear that are not found in the parts of the object they
emerge from, and cannot be reduced to the fundamental matter from which they emerge.
This means that emergent properties have new abilities to cause events that are not
explainable by the properties of their underlying parts. Strong emergence, therefore, in-
volves new fundamental properties and new fundamental laws of emergence that involve
downward causation, meaning that macroscopic levels can cause events at the microscopic
level.

While weak emergence is commonly accepted by some in the scientific community,
it is not well-suited to address questions about emergence in situations where the focus is
on relationships between parts and wholes. (9) Part of the difficulty in building a deeper
understanding of strong emergence was to find a causal role for the macroscales of a
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system. (18) But a way forward is to consider this issue not from the metaphysical point
of view but rather as a problem of causal model choice across scales.

Introduced and refined by Hoel and colleagues (19–21), their work on causal emer-
gence aims to show analytically that macroscopic observables can sometimes exhibit more
causal power than microscopic variables. Quantifying the causal power in the micro-to-
macro change can be done by combining mathematical tools from information and causal
theories, the latter understood within the framework of Pearl’s and Woodward’s manip-
ulative approach to quantify causation. (1, 2, 22)

Hoel’s method is based on a coarse-graining mappingM : X → V relating macro
variables U, V ∈ V to the micro ensembles X,Y ∈ X , such that H(V) < H(X )7. Causal
emergence is declared when the dependency between U and V is stronger than the one
between X and Y. To measure this strength the framework focuses on a causal capacity,
where the distribution P (X) in Fig.5 is chosen to be the maximum entropy distribution
PHmax(X), see App.A.2 for further details. Then, the causal capacity searches for the
maximum coarse-grained effective information (EI):

CC := max
M∈M

EI, EI := I(ID;ED). (1.1)

aiming to reduce the uncertainty about the future of the system between a manipulated
distribution, P (ID), on the sources set X and its resultant effect distribution, P (ED), on
the target set Y, see Fig.6.

Channel p(y|x)Encoder Decoder
x

Message Message‘

y

Figure 5 – We can define the capacity of channels to transmit a message encoded as infor-
mation in some probability distribution P (X) as C = maxP (X) I(X;Y ), where
I(X;Y ) := H(X) − H(X|Y ) is the mutual information and H(·) Shannon’s
entropy. Shannon recognized that the encoding of information for transmission
over the channel could change P (X): therefore, due to the natural noise, the
channels’ capacity is approached by using error-correcting codes to approxi-
mate the received message’, decoded from information P (Y ), to the original
one. (23)
Source: By the author.

7 We will consider dynamical systems as temporal Markov chains of order 1 where Y ≡ Xt+1

and V ≡ Ut+1 having, then, a stationary distribution.
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...

external agent
manippulation




X̂1
X̂2
...

X̂n




Û V
macro influence

micro influence




Y1
Y2
...

Yn




Figure 6 – The manipulative theories of causation argue that to assess the causal structure
of a system one has to analyze its response in intervened/manipulated causal
models. An external agent “set” a variable X to a specific value, represented
above by X̂, destroying all incoming influences on it. The causal effect then is
the impact from X̂ to Y codified by P (Y|X̂). (24) By setting the entire X and
weighting it according to the maximal entropic distribution P (ID) = PHmax(X̂),
we can measure the (micro) causal influence on the resultant effect distribution
on Y given by ED =

∑
P (Y|X̂)PHmax(X̂) using mutual information. Apply-

ing the same reasoning in coarse-grained variables we have the macro causal
influence.
Source: By the author.

1.1.2 Agents, special sciences, and multi-information

“If it isn’t literally true that my wanting is causally

responsible for my reaching and my itching is causally

responsible for my scratching. . . if none of that is

literally true, then practically everything I believe about

anything is false and it’s the end of the world.”

— Jerry Fodor (25)

In parallel to the program of explaining emergence in causal roots as discussed
in Sec.1.1.1, the advances of special sciences and the central role played by agents8 in
these theories challenged the reductionist thinking with Putnam’s arguments for multiple
realizability. (26) The multiply-realizable property says that different microscopic scales,
laws, or mechanisms may lead to the same agent behavior9.

In an attempt to formalize the specialty of agents (intelligent behaviors), psychol-
ogists have argued that a clue could be in analyzing the agent whose adaptive behavior
is contingent on multiple signals that interact in complex ways.(4) Indeed, this view was

8 Agents are generally somewhere above biological mechanisms but below economics on the
ladder, Fig.3.

9 If agents are multiply realizable, then any attempts to link the unique properties of agents
to some unique property of microscopic physics are doomed to underdetermination. This
culminated in Fodor’s argument for the autonomy of the special sciences. (27)
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proposed by cognitive scientists as a theory of information processing capturing how com-
binations of inputs contribute to the final output. (28) The candidate from which to build
such a general theory has been the mutual information, see Fig.7.

X4

X2

X3

Y1X1

Y4

Y3

Y2

IM??

Figure 7 – Aiming to expand the concept of mutual information, the multivariate for-
malisms work in the informational space of the sources and targets {X;Y} 7→
I(X;Y) describing emergent phenomena through the informational map IM.
The goal is to isolate the synergic behavior imposing constraints when quan-
tifying the mutual information. (29–32)
Source: By the author.

To illustrate, let’s consider an example that embodies the notion of emergent
behavior due to systemic, not individual information. (9) For simplicity, we assume that
at the initial time, the system is found in a random configuration, i.e. PX(xinit.) =

1
2n

.

Example 1.1 (n-bit XOR)

Consider a system where the parity of X determines Y, i.e., Y2 =
∑n

i=1Xi mod 2

is the “n-bit” XOR, and Yj for j ̸= 2 is a fair coin flip independent of X (see Fig.8).

Xn

X2

Y1X1

Yn

Y2

...
...

...

XOR

Figure 8 – System’s parity determines one element only.
Source: By the author.

In this scenario X predicts Y2 with perfect accuracy, while it can be verified that
Xi |= Yj for all j ∈ {1, 3, . . . , n}. In informational terms, one has that I(Xi, Y2) = 0

but I(X, Y2) ̸= 0: the entire system has an effect over a particular element under
the proposed evolution rule, even though such an effect cannot be attributed to any
individual part. (32)

Despite some efforts to isolate the “systemic” contribution, much of the last half-century
has been spent struggling to expand the concept of mutual information to multivariate
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systems allowing negative information without clear interpretations. (33,34) To overcome
it, a nonnegative decomposition of mutual information was proposed under the name of
partial information decomposition (PID). (30)

Essentially, the PID formalism provides a method by which the mutual information
between the joint state of n sources variables and m target variables10 can be decomposed,

I(X;Y) = Red(X;Y) + Uni(X;Y) + Syn(X;Y). (1.2)

Eq.1.2 proposes the following interpretability for the map M from Fig.7: the Red term
means the information about Y that is redundantly shared (i.e. an observer could learn
the same information about Y examining any element in this set) among the elements in
a well-defined set R(X)11, Uni refers to the information about Y that is uniquely present
in independent sources Xi’s, and Syn is the information about Y that is only unfolded by
the joint states of elements inside the power set 2X considered together.

As we will see, this approach provides a formal mathematical structure for the
joint set Red ∪ Uni ∪ Syn as well as interpretable quantities (partial atoms above) suited
to the study of complex information processing. To illustrate, consider the most simple
scenario where X = {X1, X2} and Y = Y we can illustrate the partial atoms in the
diagram of Fig.9.

Red

Syn

Un1 Un2

I(X1; Y) I(X2; Y)

I(X1, X2; Y)

Figure 9 – The Red set (red region) has a single element: the information about Y an
observer could learn the same information about Y examining either X1 or X2.
The Uni set has two elements: Uni (white regions) representing the information
about Y that is uniquely present in Xi and not in Xj, j = {1, 2}. And, Syn
(blue region) a single element: the information about Y that is only unfolded
by the joint states of X1 and X2.
Source: By the author.

An inconvenience of such a structure is that the number of atoms, the cardinality of
Red ∪ Un ∪ Syn, grows super-exponentially with the number of sources.(30) A recent and
promising idea put forward by Rosas & Mediano (9) is to coarse-grain the decomposition

10 The formalism was expanded to multi-target settings under the name of ΦID. (32)
11 Later we will provide a mathematical definition for R. From now we are interested in the

conceptual idea of formalism.
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according to some specific criteria preserving the interpretability synergy, redundancy,
and unique information12. This allows us to formulate coarse-grained PID decompositions
in Eq.1.2 with a small number of atoms that scale linearly with the system’s size.

Based on this PID extension, recent investigations purpose to quantify how effec-
tively an agent utilizes information in conscious processing. (3) Giving further support
through previous studies using PID where the importance of synergistic information pro-
cessing in intelligent decision-making has been demonstrated, as seen in strategic behavior
in games such as poker.(4)

1.2 Contributions and text organization

One of the gains of the EI-approach is that it proposes an explanation of how
multiply-realizable entities can play a more significant role: through error-correction in
causal relationships, making them more informative than their underlying microscale.
(35) Despite that, by computing mutual information terms using maximum entropy dis-
tributions the approach account for potential transitions the system could do. This is not
well-suited to analyze dynamic systems where such transitions can never occur. (36, 37)
Also, the way to build the coarse-granings (mappingsM) is uncleared for general systems.
It would be interesting to use informational criteria agnostic to the system’s knowledge.

In light of that, a conciliation with Equation 1.2 could be convenient since both seek
to look for a similar answer, that is, to explain emergent phenomena by using informational
quantifiers. Whilst PID seems at first glance to define precisely the specific contributions
from sources to targets, Eq.(1.2), it remains open the task of incorporating it in the causal
machinery among the relationships between X and Y. In this text we put forward some
results in order to narrow the gap between these two approaches by showing how one
can benefit from the other, aiming to deal with the concept of emergence based on causal
information. Based on our investigations we had the main results,

FIRST CONTRIBUTION

Merge concepts from causation theories and multivariate information theory in order
to characterize emergent phenomena. (https://arxiv.org/abs/2203.10665)

SECOND CONTRIBUTION

Show evidencies where coarse-grainings preserve emergent phenomena (when present)
and eliminate redundancy revealing causally-relevant information. (To be published.)

Also, during the course of this thesis, we had the opportunity to study others
topics not incorporated in this text. As part of this work appeared in the following works:

12 As we will show later, we have used similar reasoning in our results.
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• Quantifying quantum reference frames in composed systems: Local, global, and mu-
tual asymmetries. Tiago Martinelli and Diogo O. Soares-Pinto, Phys. Rev. A 99,
042124, 2019. https://doi.org/10.1103/PhysRevA.99.042124;

• Data Study Group team. Data Study Group Final Report: UK Dementia Research
Institute. Using machine learning to improve sleep habits in Dementia patients.
Zenodo. 2022.https://doi.org/10.5281/zenodo.6798769;

• Roster KO, Martinelli T, Connaughton C, Santillana M, Rodrigues F. Estimating
the impact of the COVID-19 pandemic on dengue in Brazil. (Preprint). 2023. doi:
https://doi.org/10.21203/rs.3.rs-2548491/v1.

• Martinelli T, Aleta A, Rodrigues F, Moreno Yamir. An informational approach to
uncover the age group interactions in epidemic spreading from macro analysis. 2023.
http://arxiv.org/abs/2306.00852.

1.2.1 Text organization

The present dissertation was organized as follows: this chapter 1 introduced and
motivated our problem of interest; chapter 2 gives a contextualization from the area
of causal inference. Introduces quickly the role of causality in science focusing on an
overview of the manipulative approaches from Pearl and Woodward. (22, 24) We finalize
this part by highlighting two points: emergent causes raise the need to deal with stochastic
interventions, these which cannot be described in terms of atomic ones as delineated by
the do-operator (1,38); and, we argue that EI-approach for causal emergence can be seen
as a methodology to find the appropriate level of granularity in causal models, which in
Woodward’s terms it gives the better causal explanation where concepts can be guaranteed
in order to apply a manipulative approach.

In chapter 3 we start giving an overview of the PID framework. We clarify the
importance of the background context to capture pure synergism in terms of the condi-
tioning operation in mutual information. In what follows, we make use of simple simulated
systems, focusing on higher-order interactions, to show quantitatively that genuine causal
synergism violates the causal faithfulness assumption and how redundant-dominated sys-
tems recover faithfulness due to spuriousness while promoting the failure of causal mini-
mality assumption promoting poor causal models (FIRST CONTRIBUTION). This ob-
servation caves the path for a coarse-grained approach to causal modeling. Then, we point
out how PID quantifiers can have a causal interpretation by using non-atomical interven-
tions. Finally, we show that the EI measure can be justified in terms of PID by preserving
synergism and reducing redundancy (SECOND CONTRIBUTION). Chapter 4 concludes
the text by delineating questions to answer in future work.
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2 ACCESSING CAUSATION IN THE BIG DATA AGE

Order is not sufficient. What is required, is something much more complex.

It is order entering upon novelty; so that the massiveness of order does not

degenerate into mere repetition; and so that the novelty is always reflected

upon the background of the system.

A. N. Whitehead on “Ideal Opposites” in Process and Reality.

Attempts to analyze causation in the processes of nature come back to the 17th
century. A notable philosopher was David Hume, who stipulated that causes are invariably
followed by their effects:

“We may define a cause to be an object, followed by another, and where all
the objects similar to the first, are followed by objects similar to the second.
(39)”

Such causality view, in terms of invariable patterns of succession, started the program
referred to as regularity theories of causation. As the area was being developed several
well-known problems were faced culminating in the probabilistic approaches to causation.
To name a few: the inability to handle spurious correlations and the failure of physical
determinism. The former is probably the greatest source of attraction for probabilistic
theories of causation. (24, 40) For the latter, if an event E is not determined to occur
then no other event E ′ can be a sufficient condition for E arising imperfect regularities.
For this reason, many philosophers desire to develop a theory of causation that does not
presuppose determinism.(41)

Probabilistic theories of causation did much to illuminate the relationship between
causation and probability. However, despite the mathematical framework, and points of
contact with statistics and experimental methodology, it did not give rise to any new
computational tools or suggest any new methods for detecting causal relationships.(42)
For this reason, the program has largely been supplanted by the causal modeling tools
described in the following sections 2.1, 2.2 and 2.4. Within causal modeling programs, the
most significant works are those developed in computer science, Pearl (1), and philosophy,
Spirtes et al. (43) The work of Woodward (2,22) is also significant for us since it aims to
establish a broader philosophical foundation for the concept of intervention, which serves
as the basis for a manipulable/interventionist theory of causation. As we will argue, this
interventionist character is crucial to deal with the concept of emergent causes.

Manipulability theories state that an event C is considered a cause of another event
E only when manipulating C can be used to control E. Pearl and Woodward are known
for their support of interventionist causation. (41) Pearl’s approach emphasizes using
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global network constraints to correctly identify local causal relations, while Woodward’s
approach emphasizes using local manipulation to identify single causal relations that
together compose global causal structures, see Fig.10. It has been argued in the literature
(44) that these distinct perspectives have, indeed, a complementary relationship.

Woodward

Pearl

Global constraints Local manipulation

Figure 10 – Pearl’s focus is on leveraging global network constraints to correctly
identify local causal relations, left-hand side (l.h.s) → right-hand
side (r.h.s.) Woodward’s focus is on the use of local manipulation to
identify single causal relations that then compose into global causal
structures, l.h.s ← r.h.s.
Source: By the author.

In this chapter, we begin by briefly reviewing probabilistic causation and its re-
placement by manipulative approaches, as outlined in HITCHCOCK.(42) We then present
Pearl’s framework for causal modeling and its significance for enabling interventionism.
In what follows, we dedicate some space to discussing information-based causation mea-
sures and how they exploit the concept of non-atomic interventions. We highlight that
such measures are useful to examine Woodward’s philosophical approach to causation
clarifying precisely the range of interventions and background conditions to reveal causal
relationships. This allows us for a discussion of causal models across different scales, which,
when not done correctly, can lead to misinterpretation of significant physical phenomena
such as emergent causes. Regarding emergence, we emphasize that the condition of faith-
fulness/stability is crucial in this aspect. Finally, we suggest that EI’s approach can be
seen as a first step towards an informational-based methodological approach for finding
the optimal causal model scale in Woodward’s sense.

2.1 A historical path through causality

Probabilistic theories of causation propose that causes alter the probability of their
effects. An effect may still occur without a cause or fail to occur with its presence. For
example, smoking increases the probability of developing lung cancer, even though some
smokers do not develop lung cancer. Therefore, smoking is a cause of lung cancer, not
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because all smokers develop it, but because smokers are more likely to develop it than
non-smokers.(41)

To model systems that do not follow a deterministic behavior, the language of
stochastic processes is useful. The shift towards probabilistic theories of causation moves
away from deterministic settings and causes relationships to take on a probabilistic form,
instead of the traditional “all-or-nothing” approach. Consider the following premise:

If event C happens today, then event E will happen tomorrow.

Mathematically:

The conditional probability of event C happening given that E happened
before C is 1,

P (E|C) = 1. (2.1)

In real science, however, things are rarely represented as Eq.(2.1). Normally, scientific
laws take a probabilistic form:

If event C happens today, then event E is very likely to happen tomorrow.

P (E|C) > 1− ϵ, ∀ϵ ∈ [0, 1]. (2.2)

One could even have a weaker statement:

If event C happens today, then event E is more likely to happen tomorrow.

P (E|C) > P (E), (2.3)

with this equation being the first establishment at a probabilistic theory of causation (42).
However, Eq.(2.3) raises some troubles with spurious correlations as discussed by Hans
Reichenbach.

2.1.1 The Hans Reichenbach’s Common Cause Principle

Suppose that events C and E are positively correlated, i.e., that

P (C|E) > P (C) (2.4)

But suppose that neither C nor E is a cause of the other. This is the situation shown in
Fig.11 below.
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barometric
pressure

storm
column o f
mercury

Figure 11 – Here, the variable C is represented by the drop in the level of mercury in
a barometer, and variable E is the occurrence of a storm. The atmospheric
pressure, variable B, is referred to as a common cause (confounding factor).
Source: Adapted from HITCHCOCK. (41)

Reichenbach sustained that there will be a common cause, B, of C and E, satisfying
the following conditions (the symbol ¬ stands for the logical negation):

(Reichenbach) Common Cause Principle

1 P (C,E|B) = P (C|B)P (E|B);
2 P (C,E|¬B) = P (C|¬B)P (E|¬B);
3 P (C|B) > P (C|¬B);
4 P (E|B) > P (E|¬B).

The idea here of that all kinds of correlations between C and E are causally present in
a common cause. Conditions 1 and 2 stipulate that B and ¬B screen off C from E.
Conditions 3 and 4 follow from B being a cause of C and a cause of E. With these
conditions, Eq.(2.4) is mathematically entailed using 1 until 4 . Therefore, probabilistic
correlations that are not the result of one event causing another (missing arrow between
C and E) are derived from probabilistic correlations that do result from a common causal
relationship (B). (42)

2.1.2 The raise of manipulative theories

Manipulative theories argue that without semantics there is no reason to assume
that purely probabilistic information should support causal reasoning. The relationship
“a cause C raises the probability of its effect E” is manipulative in nature, and cannot be
captured in the language of probability theory. Therefore, inequalities such as:

P (E|C) > P (E) (2.5)

are misguided from the start since manipulative raising cannot be reduced to observational
raising. The correct inequality, according to a manipulative theory, should read:

P (E|do(C)) > P (E) (2.6)
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where do(C) stands for an external agent manipulating on C (remember the discussion
involving Fig.6 in introduction). The conditional probability P (E|C) represents a proba-
bility resulting from a passive observation of C, and rarely coincides with P (E|do(C)). In
the example of Fig.11, an observation of the falling barometer indicates a higher proba-
bility of a storm, but it does not directly cause the storm. If manipulating the barometer
could affect the probability of a storm, then the falling barometer would be considered a
cause of the storm.

From here on, we denote random variables with capital letters, X, and their as-
sociated outcomes using lower case, x ∈ X where X is the space of realizations. Random
vectors, of size n, will be denoted by bold capital letters, X = {X[n]}1.

2.2 Pearl’s diagrams as the oracle for interventions

Pearl developed his formalism while writing artificial intelligence programs. He
aimed to capture how we learn about the world with only limited actions in a noisy envi-
ronment.(44) The process of searching for relevant probabilistic data can be exceptionally
arduous, even for basic environmental models2. Pearl showed that by identifying condi-
tional (in-)dependencies, a Bayesian network or a directed acyclic graph (DAG) (defined
formally in the next section) provides a possibility for representing a joint probability dis-
tribution P in a more compact form.(1) Afterward, by noting the earliest attempt, due to
the geneticist Sewall Wright who makes use of diagrams linking the notion of probabilistic
dependence to one of the causal mechanisms, Pearl formalized the language of diagrams
utilizing DAGs to uncover explicitly causal structure.

Wright’s ideas came back to the 1920’s (45, 46) to express mathematically the
common understanding that symptoms do not cause diseases. If X stands for a disease
variable and Y stands for a certain symptom variable of the disease, Wright would write
a linear equation:

Y = βX + UY , (2.7)

with X and Y standing for the disease’s and symptom’s severity, respectively, and UY

standing for all unknown factors that could affect Y . In interpreting this equation one
should think of a physical process whereby nature examines the values of x and uY and,
accordingly, assigns variable Y the value y = βx+uY . Similarly, to explain the occurrence
of disease X, one could write X = UX , where UX stands for all factors affecting X.

Wright added path diagrams to his equation to depict the inherent directionality
of the process. In these diagrams, arrows are drawn from causes to their effects, and the

1 We will make use of the shorthand notation [n] := {1, . . . , n}.
2 Suppose that one has a table of statistical data of a set containing n variables. If each

variable has k possible values, then to exactly specify a probability distribution over all
possible combinations of values in the model, one needs kn − 1 parameters.
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lack of an arrow implies that Nature assigns values to one variable without considering
the other. (47) For example, the absence of an arrow from Y to X represents the claim
that symptom Y is not among the factors UX which affect disease X, see Fig.(12-a). The
variables UX and UY , known as exogenous variables, represent background factors that
the modeler chooses to leave unexplained. These factors influence, but are not influenced
by the other variables, known as endogenous variables, in the model. If a correlation is
believed to exist between the exogenous variables UX and UY , it is common to connect
them with a dashed double arrow, as shown in Fig.(12-b). The generalization to nonlinear
systems of equations can be seen in Fig.(13-a).

UX UY

X Y

UX UY

X Y

x = uX

y = βx + uY

(a) (b) (c)

Figure 12 – A simple equation model (c), and its possible associated path dia-
grams (a) and (b). Unobserved exogenous variables (U(·)) are con-
nected by dashed arrows. Missing double dashed arrows between UX

and UY (a), represent the assumption of the covariance among two
random variables be zero, Cov(UX , UY ) = 0 against Cov(UX , UY ) ̸=
0 in (b) where Cov represents the covariance between two random
variables.
Source: By the author.

Notably, and probably the reason for their success in causal modeling, path dia-
grams provide a formal interpretation and symbolic machinery for analyzing manipulated
relationships of the type: “Y would be y had X been x0 in situation U = u”, denoted
Yx0(u) = y. Here U represents the vector of all exogenous variables. The key idea is to
interpret the phrase “had X been x0” as an instruction to modify the original model and
replace the equation for X by a constant x0, yielding the sub-model, Fig.(13-b).

x = fX(uX)
y = fY(x, uY)

(a)

UX UY

X Y

(b)x0

x = x0

y = fY(x0, uY)

UX UY

X Y

Figure 13 – (a) The path diagram associated with its model’s equations. (b)
The perturbed diagram associated with the modified model, Yx0 ,
representing the intervention do(X = x0). The graphical effect of
intervening on a variable is the rupture of all arrows pointing to it.
Source: By the author.
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This replacement permits the constant x0 to differ from the actual value of X

without rendering the system of equations inconsistent, thus yielding a formal interpreta-
tion of interventions/counterfactuals in multi-stage models. For example, to compute the
effect of setting x to x0, also called the causal effect of x on Y , denoted P (Y |do(X = x0))

or, generically, P (Y |do(x0)), we solve equation Fig.(13-b) for Y in terms of the exoge-
nous variables, yielding Yx0 = fY (x0, uY ), and average over uY . In this simple system,
the answer can be obtained without knowing the form of the function fY (x0, uY ) or the
distribution P (uY ) and is given by: P (Yx0) = P (Y |do(X = x0)) = P (Y |x0) which is com-
putable from observed samples of P (x, y). This result hinges on the assumption that UX ,
and UY are mutually independent on the topology of the graph, i.e., Cov(UX , UY ) = 0.

We can discuss more examples to get a feel of the do operator to reveal causal
information when we roll two dices or we study the influence of smoking on lung can-
cer as seen below. Indeed, example 2.2 elucidates to us that, without causal semantics,
purely probabilistic information can give wrong data interpretation according to Eq.(2.12).
The observational probability P (cancer|(smoking)) = 85.25% says wrongly that smoking
“causes´´ cancer while the interventional P (cancer|do(smoking)) = 47.5% reveals that
this is not true. The explanation here could be an unknown genetic factor encoded in the
unmeasured confounder U inflating P (cancer|(smoking)).

Example 2.1 (Rolling two dices (38))

Let us consider the structural model representing the setting when two dice are
rolled but only the sum and the difference of their values are observed:

M =




X = UX + UY

Y = UX − UY

(2.8)

and P (Uα = i) = 1/6, α = {X, Y }, i = {1, . . . , 6}. Consider the different dice config-
urations compatible with Y = 0: (UX , UY ) = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
Since each of the U ’s realization happens with probability 1/36, the event of the dif-
ference between the first and second dice being zero (Y = 0) occurs with probability
1/6.
If we know that the sum of the two dice is two, i.e., X = 2, the probability of the
difference of the two dice being zero (Y = 0) becomes certain (probability 1). This is
because the only event that is compatible with (X = 2, Y = 0) is (UX = 1, UY = 1).
So the knowledge of X = 2 makes the relationship between X and Y deterministic.
Now, suppose that the observer decides to misreport the sum of the two dice as 2,
which can be written as submodelMX=2:

MX=2 =




X = 2

YX=2 = UX − UY

(2.9)
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while P (UX , UY ) remains unchanged. Note that YX=2 is the same as Y ; in other
words, misreporting the sum of the two dice will not change their difference. This
entails the following probabilistic invariance,

P (Y = 0|do(X = 2)) = P (Y = 0). (2.10)

In fact, the distribution of Y when X is fixed to X = 2 remains the same as
before, i.e., P (Y = 0|do(X = 2)) = 1/6. We saw above that knowing that the
sum was two meant that, with probability one, their difference had to be zero,
P (Y = 0|X = 2) = 1. On the other hand, intervening on X will not change Y ’s
distribution, Eq.(2.10); in other words, X does not have a causal effect on Y .

Example 2.2 (Smoking & lung cancer (1))

Let us now examine some hypothetical data to understand how the distinction be-
tween observations and interventions can lead to different conclusions about causal-
ity. Consider a toy structural model expressed in the causal diagram of Fig.14 with
data:

1. 47.5% of the population are nonsmokers with no tar in their lungs, and 10%
of these get cancer;

2. 2.5% are smokers with no tar, and 90% get cancer;

3. 2.5% are nonsmokers with tar, and 5% get cancer;

4. 47.5% are smokers with tar, and 85% get cancer.

U

YX Z

Figure 14 – Causal diagram G for the toy model. U ≡ hidden factor; X ≡ smoking;
Z ≡ tar in lungs; Y ≡ lung cancer.
Source: Adapted from PEARL. (1)

When the causal diagram satisfies some criterion relativea to (X, Y ) and if P (x, z) >

0, then the causal effect of X on Y is identifiable and is given by:

P(y|do(x0)) =
∑

z

P(z|x0)
∑

x′

P(y|x′, z)P(x′) (2.11)

P (cancer|do(smoking)) = 47.5% and P (cancer|(smoking)) = 85.25% (2.12)
a These are known as back-door and front-door criteria, see App.B.1 for further details.
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2.2.1 Causal Markov, Faithfulness, and Minimality

Pearl’s account of causality, which is based on probabilistic causal models (Def.2.1),
involves two premises: the causal Markov and faithfulness assumptions. These premises are
applied at both the graphical and statistical levels, and they serve as a global constraint to
ensure that the probability distributions are appropriate for describing causal structures.

The way to represent the causal structure among the causal processes behind
variables in X is by directed acyclic graphs (DAGs) G. Formally, a directed graph G is
a tuple on the variable set X and the set of ordered pairs (i, j) ∈ E of variables in X.
A path in a directed graph is a non-repeating sequence of arrows that have endpoints in
common. A directed path is a path in which all the arrows point in the same direction. A
directed graph is acyclic, and hence a DAG, if there is no directed path from a variable to
itself. The directionality encapsulates the cause-effect mechanism among nodes and the
acyclicity guarantees the impossibility to have effects before causes.

The relationships in the DAG are often described using the language of genealogy.
The node j is called a parent of the node i (the children) just in case there exists the
arrow j → i. If i is a parent of j, we call any other parent i′ of j the spouse of i. The
node i is called the descendant of j, (and i is called an ancestor of it) if there exists a
directed path i → · · · → j in G. The set of all parents, children, spouses, descendants,
and ancestors of i will be denoted, respectively, by PAi, CHi, SPi, DEi, and ANi.

Definition 2.1 (Causal Models)

A causal modelM is a 2-tuple ⟨Gu, Pu⟩, where Gu = (X, E) is directed acyclic graph
(DAG) with edges E that indicate the causal connections among a set of nodes X
and a given set of background conditions (state of exogenous variables) U = u
encoded in P (u). The nodes in Gu represent a set of associated random variables
with the probability function Pu = Pu(X) given by

Pu(X) =
∏

i

P (Xi|PAi), P (Xi|PAi) =
∑

ui

P (Xi|PAi, ui)P (ui). (2.13)

where PAi defines the parents for any node Xi ∈ X, see Fig.15-(B) for an illustration.
For a causal graph, there is the additional requirement that the edges E capture
causal dependencies (instead of only correlations) between nodesa,

P (X) =
∏

i

P (Xi|PAi) =
∏

i

P (Xi|do(PAi)). (2.14)

This means that the decomposition holds even if the parent variables are actively
set into their state as opposed to passively observed in that state, causal Markov
condition (CMCFactorization).(1, 38)
a The fact that the background variables U are conditioned to a particular state u

throughout the causal analysis they will, otherwise, not further considered in Pu(X).
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Remark 1. In some scenarios, causal sufficiency is a strong assumption. In that case,
causal diagrams are supplemented by semi-markovian models to account for the existence
of unobserved confounders (common causes). In that case, Eq.(2.14) can be achieved con-
sidering a specific ordering of the parents set. (38)

Pearl developed a criterion called directional separation (d-separation, for short) to
let us inspect graphically a causal model and to conclude when two random variables in the
model cannot tell us anything about the value of each other. Such criterion, which will be
called CMCd-separation states that d-separation is sufficient for conditional independence,

(Xi |= GY |Z) =⇒ (X |= PY |Z). (2.15)

The concept of d-separation is defined via the concept of blocked paths in a DAG. In
a DAG, a path between i1 and in is blocked by a set S (neither containing i1 nor in)
whenever there is a node ik in the path, such that one of the following possibilities holds:

(i) ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1;

(ii) ik−1 → ik ← ik+1 and neither ik nor DEik are in S.

We say that two disjoint subsets of vertices X and Y are d-separated by a third (also
disjoint) subset S if every path between nodes in X and Y is blocked by S. The set of all
nodes that d-separates X from Y is called the Markov Blanket of Y , denoted by MBY ,
see Fig.15-(B) for a graphical illustration.

MBY = PAY ∪ SPY ∪ CHY

Y

MBY

(B)(A)

MBY = PAY

Y

MBY

SPY;PAY; CHY

Figure 15 – Consider any set of (or single) nodes X, Y, Z in X denoted by white, red, and
colored nodes, respectively, in the figures above. Given a path X − −Y , the
node X is d-separated from Y given Z, denoted by X |= GY |Z if Z ∈ MBY .
Markov Blanket, MBY , for nodes: (A) time-ordered and (B) not time-ordered.
Source: By the author.
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It turns out that as long as the joint distribution has a density and causal sufficiency3 is
satisfied, CMCFactorization, eq.(2.14), and CMCd-separation, eq.(2.15), are equivalent. (40) In
that case, we will denote both conditions without the subscription, CMC.

Of interest to us will be dynamical causal models where a particular state of the
causal model corresponds to a system evolving over consecutive τ + 1 time steps for a
discrete dynamical system of interacting elements. For this we will define (7,21):

Definition 2.2 (Dynamical causal models)

A dynamical causal model Mt defines a partition of its nodes X ∈ X into k

temporally ordered steps, X = {Xt−1, Xt−2, . . . , Xt−k}, where PA(Xt−k) = ∅ and
the parents of each successive step are fully contained within the k previous step,
PA(Xt) ⊆ Xt−τ , τ = {1, . . . , k}. Because time is explicit in G and we assume that
there is no instantaneous causationa, then the earlier variables, Xt−τ , influence the
later variables, Xt. Together, these assumptions imply that,

P (Xt|Xt−τ ) =
∏

i

P (X
(i)
t |X(i)

t−τ ) =
∏

i

P (X
(i)
t |do(X(i)

t−τ )), (2.16)

i.e., nodes at time t are conditionally independent given the state of the nodes at
time t− τ .
a We assume here that U contains all relevant background variables, any statistical

dependencies between Xt−τ and Xt are causal dependencies, and cannot be explained
by latent external variables (causal sufficiency condition). This avoids “instantaneous
causation” between variables meaning that Mt fulfills the temporal Markov property.
(48)

Remark 2. Note that for dynamical causal modelsMt, due to time-ordering in the vari-
ables, the Markov blanket of a target is given by its parent’s set solely, see Fig.15-(A).

Example 2.3 (Directed Ising model)

An example of a dynamical causal model with k = 1 (Markov systems with one step
memory) is a directed Ising model where the system of n+1 spins with Hamiltonians
having only interactions of order 2,

H2(X, Y ) = −Y
n∑

i=1

JiXi, (2.17)

where Ji are the interaction coefficients and Xi is in the past of Xn+1 ≡ Y .

3 The causal sufficiency condition assumes that U contains all relevant background variables,
any statistical dependencies among measured variables are causal dependencies, and cannot
be explained by latent external variables.(7)
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2.2.2 Faithfulness and Minimality

So far, we discussed the causal Markov conditions, which enables us to read off
statistical independencies from the graph structure. The opposite direction allows us to
infer graphical dependencies from statistics present in data. Such assumptions are known
as Faithfulness and Minimality.

Definition 2.3 (Faithfulness & Minimality)

Consider the causal modelM = ⟨P,G⟩, the target Y and all disjoint subsets of nodes
(or single nodes) X, Y, Z in the DAG G with the symbols |= P and |= G standing for
conditional statistical independence and d-separation, see Fig.15. Assume that the
joint distribution has a probability distribution P . Then,
(CF) P is faithful with respect to the DAG G if: (Xi |= PY |Z) =⇒ (X |= GY |Z).
Faithfulness is an ad-hoc assumption claiming the opposite of the causal Markov
assumption, Eq.(2.15);
(CM) P satisfies causal minimality with respect to G if it is Markovian with respect
to G, but not to any proper subgrapha of G.
a Let G = (V, E) be a graph with V := (1, . . . , n) and corresponding random variables

X = (X1, . . . , Xn). A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and
E1 ⊆ E ; we then write G1 ≤ G. If additionally, E1 ⊂ E , then G1 is a proper subgraph
of G, G1 < G.

The principles of faithfulness and minimality can be clarified using Pearl’s analogy.
(1) Consider the picture of the chair in Fig.16. Suppose that, we have to decide between
two theories as follows:

T1: The object in the picture is a chair.
T2: The object in the picture is either a chair or two chairs positioned such
that one hides the other.

Figure 16 – Chair’s analogy to clarify the faithfulness/stability and minimality as princi-
ples in causal models.
Source: By the author.

The faithfulness principle rules out T2 a priori, saying that it would be quite unlikely two
objects align themselves so as to have one perfectly hide the other. Such an alignment
would be unstable relative to slight changes in environmental conditions. The minimality
principle prefers T1 over T2 because the set of positions composed of single objects is a
proper subset of positions composed of two or fewer objects and, unless we have evidence
to the contrary, we should prefer the more specific theory (Occam’s Razor).
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The following formulation can be shown as equivalent to Def.2.3 and is of further
help to our interests, see App.B.2 for the proof.

Definition 2.4 (Faithfulness & Minimality)

Since both (CF’) and (CM’) are causal links constraints due to statistical dependence
criteria, we can restate them using the mutual information quantity I(·):
(CF’) P is faithful with respect to the DAG G iff I(Xi;Y |Z) ̸= 0 ∀Z ⊂ PAY /∈ DEY ;
(CM’) P satisfies causal minimality with respect to G if and only if ∀Y , we have
that I(Xi;Y |PAY \Xi) ̸= 0, ∀Xi ∈ PAY .

X1

XN

Xi

YXi+1

...

...

Figure 17 – DAG G illustrating
the causal influence
from PAY = {X[n]}
to Y .
Source: By the au-
thor.

Consider the DAG from Fig.17. By choosing Z ≡
∅ in (CF’) we have that I(Xi;Y ) ̸= 0, i.e.,
node Xi ∀i presents an observable effect regard-
less of the information about other causal parents
{X1, . . . , Xi−1, Xi+1, . . . , Xn} (49) — stable under the
background parents (the reason that is also called sta-
bility, Def.2.4.1 from PEARL(1)). On the other hand,
(CM’) says that a distribution is minimal with respect
to a causal graph if and only if there is no node that is
conditionally independent of any of its parents, given
the remaining parents. In some sense, all the parents
are “active” (40). Suppose now, we are given a causal
model, for example, in which causal minimality is vio-
lated. Then, one of the edges is “inactive”. This is in conflict with the definition of (CF’),
we have then

Proposition 2.1 (Faithfulness implies causal minimality)

If P is faithful and Markovian with respect to G, then causal minimality is satisfied.

We get, then, the following picture of causation from Pearl’s schema. The basic ax-
ioms of probability theory let us derive conditional dependencies and independencies from
statistical data, and they set certain constraints on the conditional probability relations
among the variables that characterize the system data. As a result, we develop graphical
representations that are DAGs satisfying the global constraints — the causal Markov con-
dition and faithfulness/minimality. By assuming that they hold, we can provide a causal
interpretation of the Bayesian networks such that they are “oracles for interventions”.

By postulating that local interventions are possible, Pearl assumes that the act of
setting a variable to a determined value can deterministically override the causal mech-
anisms of the model. Thus, an intervention provides information by disrupting only the
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local mechanisms associated with that node. (44) It is an influence “that originates from
outside the probability space” of the model. (1)

The intervention replaces the original influencing causal mechanisms (parents)
with a mechanism that determines the effect variable value X = x with probability 1.
The graphical consequence is that arrows into the intervened variable are disrupted, and a
new probability distribution is associated with the perturbed graph. Such an intervention
is called an atomic intervention. Recall the joint distribution of the unperturbed graph is:

P (X1, . . . , Xn) =
∏

j

P (Xj|PAj). (2.18)

The joint distribution for a perturbed graph, for example, when Xj is set to x′
j, is:

P (X1, . . . , Xn|do(x′
j)) =

∏

i ̸=j

P (Xi|PAi) · δxj ,x′
j
. (2.19)

The term on the left is to be read as the joint probability over all the variables X1 to Xn,
given that we set the value of Xj to x′

j.

2.3 Assessing causal structure with information theory

The problem of quantifying causal influences has received considerable attention
starting in communities of epidemiology and economics by means of statistical methods,
those summarized in PEARL.(24) Later, a new information-theoretic (IT) paradigm,
measured in units of bits, appeared in the study of complex systems (50, 51), such as
neuroscience (52) and, recently, molecular biology. (53) Nonetheless, the difference in per-
spective between these two approaches is not clearly explained in the development of IT
methodologies.

To illustrate this difference, consider using a simple example of a two-node graph
X → Y , where X represents whether an individual has won the lottery and Y represents
that individual’s average monthly spending. A statistical measure such as the average
causal effect (ACE) would answer the question “What is the effect of winning the lottery
on spending?” by comparing the average spending of lottery winners (X = 1) and non-
winners (X = 0): E[Y |do(X = 1)] − E[Y |do(X = 0)]. We would expect this to be quite
large. On the other hand, an IT approach would quantify the effect of X on Y by the
mutual information (MI), I(X;Y ). Addressing a different question, “What is the effect
of the lottery on spending?” it considers the effect of the random variable representing
whether one wins the lottery on spending. However, as the odds of winning the lottery are
low, an IT measure indicates that the lottery has a negligible effect on spending. Therefore,
statistical measures consider the effect of a specific cause, whereas IT measures the effect
at a systemic level. (51)
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How to make information theory causal? Given the node Y and its parent set
PAY = {Xj}ni the object that plays a central role is the causal mutual information4:

I
(
X̂j;Y

)
:=

∑

x̂j

P (x̂j)
∑

y

P (y|x̂j) log2

[
P (y|x̂j)∑

x̂′
j
P
(
x̂′
j

)
P
(
y|x̂′

j

)
]
. (2.20)

This measure quantifies the number of bits of information conveyed by ‘doing’ X regarding
Y . Note that it is not a symmetric measure. Changes to X providing information about
Y , do not imply that changes to Y provide information about X, see Fig.18-(A). The use
of post-interventional distributions eliminates the effect of upstream dependencies of X,
thereby removing any relationship between X and Y caused by confounding variables.

By neglecting a crucial interacting factor, such as Z in Fig.18-(B), during an
intervention on X, we may find that the cause X has no causal influence. However,
controlling for a relevant background variable would make X causally influent. To express
the independence between X and Y when intervening on X potentially controlling some
background conditions Ẑ = (X̂2, X̂3, . . . , X̂n), we have the causal version of conditional
mutual information (CMI)5

I
(
X̂j;Y |Ẑ

)
:=

∑

ẑ

P (ẑ)
∑

x̂j

P (x̂j|ẑ)
∑

y

P (y|x̂j, ẑ) log2

[
P (y|x̂j, ẑ)∑

x̂′
j
P
(
x̂′
j|ẑ

)
P
(
y|x̂′

j, ẑ
)
]
,

(2.21)

(A) (B)

X

Y

Z
X

XOR

Z

Y

Figure 18 – (A) Intervening on X gives no information about Y since there is no causal
link between them: I(X̂;Y ) = 0 bit. By contrast, intervening on Z does
give information about Y : I(Ẑ;Y ) = 1 bit. Finally, intervening on Y does
not bring any information about the value of its cause Z: I(Ŷ ;Z) = 0 bit
reflecting the asymmetry of the measure. (B) Dependent causes X and Z with
a common effect Y where Z takes the value {0, 1} with equal probability
and X = COPY(Z). The law Y := X XORZ means that if X ̸= Z, then
Y = 1, otherwise Y = 0. As intervening on X depends on the value of Z,
Y takes values {0, 1} with equal probability resulting in I(X̂;Y ) = 0 bit.
However, when we control Z using an independent intervention, intervening
on X gives full control over the value of Y : I(X̂;Y |Ẑ) = 1 bit, assuming that
interventions to set X or Z to {0, 1} are equally likely.
Source: By the author.

4 To not overload, depending on the context, we will freely interchange the notation for inter-
ventions either as do(·) or as a hat on the variable in question, (̂·).

5 We can identify the conventional MI/CMI as Eqs.2.20/2.21 in the observational regime.
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Despite the example in Fig.18-(B), controlling for a background variable can also lead to
decreasing causal CMIs, which occur in communication scenarios that use redundancy,
see Example 2.4.

Example 2.4 (Error correcting code)

Let E and D be binary variables that we call encoder and decoder communicating
over a channel that consists of the bits B1, . . . , B2k+1 provided that E is uniformly
distributed. Using the simple repetition code, all Bj are just copies of E. Then D

is set to the logical value that is attained by the majority of Bj. This way, k errors
can be corrected, that is, removing k or less of the links Bj → D has no effect on
the joint distribution.

E

B1 B2 B2k+1

D

. . .

Figure 19 – Causal structure of an error-correcting scheme: the encoder generates
2k+1 bits from a single one. The decoder decodes the 2k+1 bit words
into a single bit again.
Source: JANZING.et al. (54)

Consider any Bi, Bj inside the majority set, then I(B̂i;D|B̂j) = 0 even though
I(B̂i1 ;D|B̂i2 , . . . , B̂ik) = 1 bit and I(B̂i1 ;D|B̂i2 , . . . , B̂il) = 0 with l ≥ k and im

representing any permutation of the indices i.

This highlights the following scenario: having full control over the parent set,
we can manipulate them in order to prevent any redundant information sharing. By
carefully selecting strategies for P (ID) we can, in principle, obtain accurate quanti-
fiers of emergent phenomena. Indeed, in example 2.4 above, if we consider P (ID) =

{0, . . . , 0, 1/(k + 1), . . . , 1/(k + 1)} with k zeros we avoid the redundancy and capture the down-
ward causation from the k + 1 nodes on D. We will give more examples in Secs.2.4 and
2.5 and expand the concept of redundancy in the next chapter.

2.3.1 Moving beyond atomic interventions

It is important to notice that causal MIs and CMIs in Eqs.(2.20) and (2.21)
are measured according to distributions of interventions or stochastic interventions (55),
P (ID) = {P (x̂), P (ẑ)}. One might accept that is natural to define P (Y |x̂), but not P (x̂).
To clarify the interpretation of these objects, remember that interventions override any
other causal influence on the manipulated variable and set its value with probability 1,
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see Eq.(2.19). Note that, the contribution of each individual value of a causal variable in
Eqs.(2.20) and (2.21) of that variable is its contribution to a weighted sum.

Therefore, the probabilities of particular interventions, e.g. P (x̂), can be thought of
as weights in an approach where measures like Eqs.(2.20), (2.21) assume the contributions
of each causal value are independent of the contribution of other causal values as the
examples in Fig.18. This last point should not be necessarily true since the interventional
probabilities can be chosen by weighting the contribution of each causal value (or each
arrow in the causal mapping) according to the better strategy for the external agent in
question being then a desirable feature of these objects. By rewriting MI as a Kullback-
Leibler divergence (see appendix A) in Eq.(2.20):

I
(
X̂j;Y

)
≡ EP̂

[
DKL

(
P (Y |x̂j)

∣∣∣
∣∣∣
∑

x̂′
j

P
(
x̂′
j

)
P
(
Y |x̂′

j

))]
, (2.22)

we can view the causal mutual information as an average over P̂ := P (x̂j)P (Y |x̂j)

comparing the effect of an atomic intervention x̂ with a stochastic (i.e. non-atomic) in-
tervention — a probability distribution over some applied set of them. Note that the
interventional distribution fixes P̂ , see Refs.(1, 55) for further discussions on stochastic
interventions.

There are many ways to weigh the causal contributions according to different
strategies. Here, to settle in stochastic interventions we list some of the options that
appeared in the literature.

1 Information Flow. Given that we can exchange intervention for observation we start
with P (ID) being chosen as the empirical distribution Pobs.(ID). Ay & Polani (50) used
this strategy where the goal was to measure causal influence ‘as it flows’ in a complex
system. In this case6,

P̂ ∼ P
(
x′
j

)
P
(
Y |x̂′

j

)
, {P

(
x̂′
j

)
} ∼ Pobs.(ID), (2.23)

and, can interpret Eq.(2.22) as an average over the P̂ comparing the causal effect of x on
Y with a counterfactual distribution wherein nature was allowed to run its course under
injection of noise7. The information flow addresses a very clear causal question: “How
much would we expect, on average, performing the atomic intervention P (Y |x̂) to change
the course of the counterfactual distribution

∑
x′
j
P
(
x′
j

)
P
(
Y |x̂′

j

)
?”

2 Causal strength. In order to measure the strength of causal arrows, or the flow of
causation on specific paths, Janzing et al.(54) introduced a communication scenario, where
6 When considering more controlled variables, the information flow has to be averaged accord-

ing to the probability that this flow occurs in the system.
7 Noise injection here is an atomic intervention, meaning it breaks all causal influences directly

impacting the manipulated variable and only those influences.
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edges in a DAG play the role of channels that can be locally corrupted by interventions.
This gives their interventional distribution as exhibited in Def.2.5, see Fig.20-(A) for an
illustration.

Definition 2.5 (Corrupting causal arrows (54))

Let ⟨G,P ⟩ be a causal model. Let S ⊂ G be a set of arrows. Set PAS
Y as the

set of those parents Xi of Y for which (PAS
Y , Y ) ∈ S and PAS

Y those for which
(PAS

Y , Y ) /∈ S. Then,

PS(Y |paSY ) :=
∑

paSY

P (Y |paSY , paSY )PΠ(paSY ), (2.24)

where PΠ(paSY ) denotes for a given Y the product of marginal distributions of all
variables in PAS

Y .

The causal strength CS is then defined as the average, over P̂ = P (paY ), of the relative
entropy distance between the empirical and the non-atomic intervention, Eq.(2.24),8

CS := EP̂

[
DKL

(
P (Y |paY )

∣∣∣
∣∣∣PS(Y |paY )

)]
. (2.25)

(A) (B)

P(ID)

Z

Y

X

P(ID)

Z

Y

X

P(I′D)

Figure 20 – (Information flow versus Causal strength) (A) Deletion of X → Y . The con-
ditional P (Y |X,Z) is weighting by P (ID) ≡ P (X). The interventional dis-
tribution reads PS =

∑
x′ P (y|z, x′)P (x′). (B) Deletion of {X → Y, Z →

Y }. The conditional P (Y |X,Z) is weighted with the product distribution
P (ID)P (I ′D) ≡ P (X)P (Z) instead of the joint P (X,Z) as in information
flow since the latter would require communication between the open ends.
We obtain PS =

∑
x′,z′ P (y|x′, z′)P (x′)P (z′).

Source: By the author.

Note that causal strength answers a slightly different question: “How much would we ex-
pect, on average, corrupting a subset S with the strategy given by Eq.(2.25) from the
parents PAY to change the empirical distribution P (Y |PAY )?” Therefore, even stochasti-
cally manipulating a subset S the quantifier CS has a systemic interpretation looking for
the change in the whole parent’s set PAY .
8 In Eq.(2.25), PS(Y |paY ) depends solely on the reduced set of parents paSY ≡ paY \ paSY only,

but for convenience of the notation we kept the formal dependence on all paY .



41

Remark 3. Note the difference between causal strength and information flow strategies.
When considering multiple sources interventions, causal strength is corrupted locally by
weighting using marginal empirical distributions from the sources instead of weighting
using joint empirical distributions used in information flow, see Fig.20-(B). Weighting
with marginal inputs is particularly relevant for the following example: let X and Z be
binary with X = Z and Y = X XORZ. Then, the cutting had no impact if we would keep
the dependencies. Indeed, in this case CX→Y = CZ→Y = 1 bit and IFX→Y = IFZ→Y = 0

bit with IF standing for information flow.

3 Causal specificity/Causal power/Effective information. Being rediscovered un-
der different names, such measures consider the probability of interventions satisfying
Jayne’s maximal entropy principle (56): stochastic interventions are assumed to be un-
correlated with any other non-downstream variables and are equiprobably distributed.
(53) In this case,

P̂ ∼ P
(
x̂′
j

)
P
(
Y |x̂′

j

)
, {P

(
x̂′
j

)
} ∼ PHmax(ID), (2.26)

since the maximum entropy distribution is maximally agnostic about the behavior of
the system, we can interpret Eq.(2.22) as a measure of capacity/power of the system
providing a baseline for comparing causal powers. (57) By writing the counterfactual
effect distribution as

P (ED) =
∑

x̂′∈ID

P (x̂′)P (Y |x̂′), (2.27)

we have, in a discrete finite system, the causal specificity (53), causal power (57), or
effective information (19,52) can be written in a compact way,

EI := I(ID;ED). (2.28)

In the next section, we will make use of Eq.(2.28) to clarify in a quantitative way
the philosophical path of causation taken by Woodward opening the door to talk about
causation across scales.

2.4 The James Woodward Criteria for Interventionist Causation

Woodward’s project aims to provide a clear and precise understanding of the
conditions under which manipulating variables can reveal causal relationships. This notion
aligns closely with Pearl’s calculus of interventions. These conditions set a local constraint,
meaning they only apply to a specific subset of variables, on the statistical dependencies
between interventions and relevant variables in the model.

According to Woodward,
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“X causes Y if and only if there are background circumstances B such that, if some
(single) intervention that changes the value of X (and no other variable) were to
occur in B, then Y or the probability distribution of Y would change”. (22)

The general idea is to find a variable I, which represents a way to modify the value
of the cause variable X, and that satisfies the following conditions to be considered an
intervention variable on X in relation to Y :

Definition 2.6 (Woodward’s interventions (2))

I1 I causes X;

I2 I breaks the relation between X and the rest of its causes. That is, X ceases
to depend on the values of other variables that cause X and instead depends only
on the value taken by I;

I3 Any directed path from I to Y goes through X. That is, I is not directly or
indirectly causally related to Y ;

I4 I has an origin independent of the variables that are being investigated. In
particular, I is statistically independent with any causes of Y that do not lie on the
causal path I −X − Y .

Some important consequences follow as a result of these conditions that provide a
more complete notion of causation according to the interventionist account and elucidate
better how the approach should deal with emergent phenomena as we exhibit in the
following two sections.

2.4.1 Invariance, stability, and modularity

Woodward’s criterion of causation relies on ‘change-relating’ generalizations, where
at least one intervention upon X will produce some change in Y . Change-relating gener-
alizations provide causal explanations by being invariant under interventions rather than
because they hold widely in nature. Then, the first natural condition is invariance under
intervention meaning simply that the relationship between variables X and Y continues
to have when interventions are made on X. Secondly, there will likewise be a range of
background conditions under which possible interventions on X will bring about relevant
changes in Y while other possible interventions will not. Intuitively, X is a stable cause9

of Y if it continues to cause Y across some range of values of other variables in B. Whilst
9 Note here, the slight distinction with Pearl’s definition of stability/faithfulness. Woodward

talks about stability in an interventional regime while Pearl discusses stability in a statistical
sense.
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invariance concerns the relationship between X and Y , stability concerns the relationship
between other variables and that relationship.

Finally, for a given set of functional relations between a set of variables to correctly
represent the causal facts concerning some system, the interventionist account requires
that the functional relations are modular; that is, an intervention I on some variable X

does not alter the functional relation between the effect Y and any of its causes that are
not on a directed path from X to Y .(58) Modularity requires that some functional relation
is invariant and stable over some range of interventions and background conditions and
any other functional relations in the system remain unchanged when an intervention is
carried out. (59)

The concepts of invariance, stability, and modularity are relative. A causal rela-
tionship between X and Y may only hold under certain ranges of possible interventions
and background conditions. To represent causal relations, we must specify a level of gran-
ularity for the variables and relationships of a system such that: (i) we can intervene in
the system according to the above criteria, (ii) the functional relationships between the
variables are sufficiently modular, and (iii) there are appropriate ranges of invariance and
stability under which the functional relationships hold. These properties may appear at
finer or coarser levels of granularity. (44)

“The choice of grain associated with the causal analysis of a situation is inti-
mately related to the contrastive character of causal claims. As we alter the
grain, we alter the potential contrastive foci that are available”. (22)

The ability for a system to be specified by causal relationships depends on the level
of detail (coarse-graining) chosen. Indeed, a causal relationship may exist across a wide
range of invariance, but not provide the level of precision (bijectivity) associated with
the idea of specificity: “a functional relationship might be invariant and involve discrete
variables but not be 1 − 1 (injective) or onto (surjective)” – that is, it might fail to be
bijective. (22)

How to find the optimal level of causally-relevant details, then? We will defend
that the following information-based principle is a good way to formalize quantitatively
how Woodward’s mapping between the cause and effect should approximate a bijection,

Definition 2.7 (Causal explanatory power)

The causal explanatory power of a system is a search over coarse-grainings mappings
M for the system in a way that maximizes causal information, Eq.(2.22).

Note how the principle above remembers Eq.(1.1) from Introduction. The only change
is keeping free the strategy in quantifying causal information Eq.(2.22), in other words,
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without using the MEP on it. Indeed, we will discuss in the next chapter how this will be
important to analyze dynamical systems that cannot achieve the maximum probability
distribution. In what follows, in the rest of this chapter, we will assume systems where
maximum probability distribution exists and is given by the uniform one.

2.4.2 The specificity and proportionality in causal information

The intuitive idea behind causal information is that interventions on X can be
used to specify any one of a large number of values of Y , providing what Woodward
terms “fine-grained influence” (22) over the effect variable, see Fig.21.

x1

x2 y2

y1 x1

x2 y2

y1

(A) (B)

Figure 21 – Causal mappings showing a difference in bijection between causal values and
effect values. Complete ignorance is given by the maximum entropy dis-
tribution: H(Y ) = −∑2

i=1
1/2 log2(1/2) = 1 bit. (A) After knowing x1 or

x2, the effect is fully specified and the conditional entropy is H(Y |X̂) =
−∑2

i=1 p(x̂i)
∑2

j=1 p(yi|x̂j) log2 p(yi|x̂j) = −∑2
i=1

1/2
∑2

j=1 1 log2(1) = 0 bit.
The information gained by knowing the cause is I(X̂;Y ) = H(Y )−H(Y |X̂) =

1 bit. (B) Here, knowing x1 or x2 does not specifies the effect, I(X̂;Y ) = 0.
Source: By the author.

It is important to note that increasing the entropy of the cause variable will not
necessarily lead to an increase in causal information if it does not result in additional
entropy in the effect variable, as shown in Fig.22.

x4

x2

x3

y1

x1

y2

Figure 22 – Illustration of different values of the cause leading to the same outcome as in
Fig.21, H(Y ) = 1 bit. Despite two values of the cause leading to the same
effect, intervening to set the value of the cause fully specifies the value of the
effect as in Fig.21-(A). Then, the difference in uncertainty about the effect
between before and after intervening to set the value of the cause is the same:
I(X̂;Y ) = H(Y )−H(Y |X̂) = 1 bit.
Source: By the author.
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Whether a system can be specified at all as being constituted by causal relations
will depend upon the particular coarse-graining that is chosen. As Woodward points
out, simply increasing the number of values of a cause variable is not sufficient unless
these additional values are mapped onto distinct values of the effect. Such a fact implies
identifying the range of invariance from the respective cause, which involves aggregating
all values that make the same impact on the effect, as illustrated in Fig.23.

x4

x2

x3

y1

x1

y2

v1

v2 y2

y1

coarse-grainning

Figure 23 – The coarse-graining of the causal variable from Fig.22 reduces the entropy
from 2 bits to 1 bit. Yet, it maintains specificity, I(V̂ ;Y ) = H(Y )−H(Y |V̂ ) =
1 bit.
Source: By the author.

This brings us to the concept of proportionality: causes should be just enough for
their effects, “neither omitting too much relevant detail nor containing too much irrelevant
detail”. (22) To ensure that irrelevant information is not included, we can minimize the
entropy of the cause variable by grouping together values that have the same impact while
maintaining its specificity. (60)

In the last example, it is the values of one of the variables rather than the variables
themselves that are coarse-grained. Choosing how finely or coarsely to discretize one
variable and choosing which variables will be coarse-grained are different tasks aiming the
same goal. To illustrate, consider the XOR process where two sources {X,Z} regulates Y

with equal probabilities P (X) = P (Z) = 1/2 for all values of X and Z, see Fig.24.

The reason for the instability, Fig.24-(A), of the causal relationship between X

and Y in the presence of a background variable Z is their interdependence (synergism),
here captured by I(X̂;Y |Ẑ), Fig.24-(B), as we will demonstrate in the next chapter using
the PID formalism. By coarse-graining interdependent causes, Fig.24-(C), we can uncover
emergent influence. As the role of the environment becomes significant we have to define
properly the rules of coarse-grainings to avoid redundancy and preserve synergism in the
relationships among the causes, remember example 2.4. Based on this digression, then,
we justify the principle of causal explanatory power, Def.2.7, that operates at the whole
systemic level (causes & effects).
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x2, z2
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Figure 24 – Example of emergent causes X and Z where Y = X XOR Z and X,Z ∼
Ber(1/2). (A) If the background Z is not controlled, the cause X is totally
non-specific. Any intervention x̂1 or x̂2 can equiprobably lead to y1 or y2 giv-
ing I(X̂;Y ) = 0 (dashed line arrows). (B) Once we fixed the background,
represented by boxes, X is entirely specific: I(X̂;Y |Ẑ) = 1 (continuous line
arrows). (C) Coarse-graining variables accordingly can also give full speci-
ficity, I(V̂ ;Y ) = 1.
Source: By the author.

Woodward’s approach to causation begins with modular interventions and, uses
constraints on statistical relationships between the intervention variable, system variables,
and background variables to identify local causal connections. From there, one can de-
termine conditional dependencies and independences across a broader scope of variables
(global constraints) and then assemble the local causal relationships into DAGs.

This perspective offers a rich and fundamentally important structure to us. The
level of grain used to describe the model plays a crucial role in discussing causal relation-
ships, and regarding the description, some causal assumptions could fail as we will see
in the next chapter. In particular, we will see why both descriptions (B) and (C) from
Fig.24 do not remain causally optimal in more general scenarios.

2.5 Accessing causal structure in dynamical systems

Let us consider a device regularly recording data from a composed system of n
parts over time. We will consider two-time points of the evolution of the system, denoted
as t and t′, with t < t′ where the corresponding dynamics are encoded in the transition
probability P (Xt′|Xt). Consider a dynamical system with the temporal Markov property
of order 1. When the interventional distribution with maximal entropy, PHmax(ID), is
applied at the time step t, the distribution of states transitioned into at t′ = t+1, P (ED),
is given by Bayes’ rule which we will denote as before Y ≡ Xt′ .

Note that a transition probability matrix (TPM) can be obtained for a system
with specified elements and mechanisms provided that the probability distributions are
guaranteed. In this section and the next chapter, we will consider discrete dynamical sys-
tems where the maximal entropic distribution exists: such as systems of interconnected
logical gates, Markov chains defined as state transitions, or even Ising models. A virtue of
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EI is that it can quantify the causal architecture of the TPM in terms of meaningful com-
ponents of the dynamical system telling how effectively (deterministically and uniquely)
causes produce effects in the system, and how selectively causes can be identified from
effects.

2.5.1 The deterministic and degeneracy coefficients

Effective information (EI)/specificity can be rewritten as

EI = determinism− degeneracy. (2.29)

In this perspective, determinism is defined as the absence of randomness or noise in
causal relationships. It is determined by the level of certainty in state transitions that the
information gained provides:

determinism := log2(n)− Ex̂′∈ID
[
H(Y |x̂)

]
(2.30)

where, the expression inside the average in the second term,

H(Y |x̂) = −
∑

y∈Y

P (y|x̂) log2 P (y|x̂), (2.31)

is zero when a cause has only one possible effect, P (y|x̂) = 1, and maximal, log2 n, when
a cause can lead to any of n possible effects randomly. The determinism of a system is
defined as the degree to which a cause has a specific effect, see Fig.25 (shaded red region).

x2

x3

y1x1

yn

...
...

xn

y3

y2

Causes E f f ects

Degeneracy Determinism

Figure 25 – The relationship between a set of causes {xi} to a set of effects {yi} can be
evaluated in terms of determinism and degeneracy. Causes and effects are
assumed to be temporally ordered. High determinism refers to how certain
the cause x is to bring about the effect y (decrease of the red region). In
contrast, high degeneracy looks at whether multiple causes can lead to the
same effect (increase of the blue region).
Source: By the author.

Soft determinism is an indication of randomness or noise in the system. The dif-
ference between the maximum possible entropy and the actual entropy observed in the
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system gives a measure of how well we can predict the future of Y compared to the
worst-case scenario10.

The degeneracy coefficient of a system measures the degree to which certain effects
are more likely to occur than others. To define it, consider the entropic term,

H(ED) =
∑

x̂,y

P (x̂)P (y|x̂) log2
[∑

x̂′

P (x̂′)P (y|x̂′)

]
, (2.32)

which is zero when the probability of all effects are the same, regardless of the causes and
maximal when certain effects are favored because they are caused by a greater number of
causes, making those causes less essential, see Fig.25 (region blue). Then, the degeneracy
coefficient for the system is defined as:

degeneracy := log2(n)−H(ED). (2.33)

Degeneracy can be understood as the amount of information about the past that is lost
when multiple causes lead to the same effect. High degeneracy is an indication of attractor
dynamics. (20) To demonstrate the deterministic and degeneracy coefficients’ ability to
accurately quantify causal structure, consider the TPMs (t by t + 1) of three Markov
chains, each with n = 4 states [00, 01, 10, 11], see Fig.26.

From left to right in Fig.26 we have differences in EI due to decreasing determinism
and increasing degeneracy in the systems, respectively, with a value that ranges between
0 and 1. In the first model, every state ultimately determines both the past and future,
while the states of the second one only constrain the past and future to some degree. The
last model is not constrained at all, and the probability of any state-to-state transition
is 1/n. This affects the effective information values of the three models: EI(1) = 2 bits,
EI(2) = 1 bit, and EI(3) = 0 bits.

Note how determinism and degeneracy explain how causal specificity or EI ap-
proximates Woodward’s bijection concept for a good mapping describing the cause and
effect. The best scenario of explanation is when determinism is maximal and degeneracy
is minimal which corresponds to a bijective mapping, see yellow nodes in Fig.25. Also,
nonzero degeneracy implies in failure of an injective mapping. Despite that determin-
ism can be related to the question of “how surjective the map is”. Therefore, to achieve
Woodward’s criteria for an optimal description of a causal model – bijection – we should
search for a description where we maximize determinism while minimizing degeneracy.
Below, we show how coarse-grainings analysis across scales in dynamic systems answers
this question.

10 Note that, determinism considers the transitions of a cause to the effect set and not a specific
transition, although it is possible to calculate the contribution of each transition.
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Figure 26 – Markov chains with different levels of deterministic and degeneracy coeffi-
cients with their respective TPMs, representing probabilities in gray-scale.
Source: By the author.

2.5.2 Causal analysis across scales

A full micro causal model represents a system with the highest level of detail in
space and time for all elements and states, represented as micro = {X}. However, ac-
cording to Woodward’s framework, a causal model can be modeled at different levels of
detail or focus on different subsets. These levels are generated by features macro = {V }
calculated through P (Vt|Xt), which are based on the underlying system satisfying, then,
the supervenience condition: once the base level of detail is established, all higher-level
models are determined. This relationship can be expressed through statistical indepen-
dence between Vt and Xt′ when Xt is given, forming a Markov chain. (9) This includes
both deterministic processes where Vt = M(Xt) as well as coarse-grainings affected by
observational noise.

By evaluating the effective information EI overall levels of the coarseness of X, one
can identify the scale at which the model becomes more causally specific. This proposes a
method to identify the scale that contains the most explanation of the causal relationships
between the objects, measured in bits,

EI(macro)− EI(micro). (2.34)

To quantify EI(macro), we have to deal with macro interventions. A possible coarse-
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grained intervention strategy that we can choose is:

do
(
V = vj

)
:=

1

n

∑

xi∈vj

do
(
X = xi

)
. (2.35)

where n is the number of microstates xi mapped into V . In other words, a uniform average
over a set of micro-interventions. In Hoel’s analysis, causal emergence is claimed when the
macro-level EI beats the micro-level (19), i.e., when Eq.(2.34) is positive. See example
2.5 for an illustration.

Example 2.5 (Interconnected AND gates (19))

Consider the system of four binary elements X = {X1X2X3X4} in Fig.27-(top-left).
Each micro mechanism is an AND-gate (two inputs) over some intrinsic noise. The
16 × 16 TPM was constructed by setting the system into all possible microstates
from [0000] to [1111] with equal probability, Fig. 27-(top-right). At the micro level
X, effective information EI(X) = 1.15 bits, out of maximally 4 bits.
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system states (t0)
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(t −
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Macro TPM

Spatial Causal Emergence

X4

X1

X3

X2V1

V2

Micro mechanism (X1X2X3X4)

det = 1.35 deg = 0.2 EI = 1.15 bits

det = 1.56 deg = 0.01 EI = 1.55 bits

X4

X1

X3

X2 t\t+1 0 1
00 .7 .3
01 .7 .3
10 .7 .3
11 0 1

Macro mechanism (V1V2)

t\t+1 off on
off .91 .09
on 0 1

Figure 27 – Spatial causal emergence (counteracting indeterminism). (top-left) The
fine-graining X of the system is composed of identical noisy micro-
mechanisms. (top-right) The micro TPM. (bottom-left) The coarse-
graining V and its macro mechanism. (bottom-right) The macro TPM.
By raising determinism and reducing degeneracy, the macro beats the
micro: EI(macro)− EI(micro) = 0.40 bits.
Source: Adapted from HOEL; ALBANTAKIS; TONONI. (19)



51

The macro mechanism Fig.27-(bottom-left), composed of two elements {V1, V2},
each with states {on, off}, is a coarse-graining of X as defined by the mappingM
in Fig.28 for {X1, X2} to V1, ({X3, X4} to V2 is symmetric).

The 4×4 TPM in Fig.27-(bottom-right) was obtained by setting the system into all
possible macro states from [off, off] to [on, on] with equal probability. In the macro
level, EI(V) = 1.55 bits, higher than EI(X) = 1.15 bits demonstrating that in this
case, the macro constitutes the optimal causal model of the system. In this example,
the gain in EI at the macro level comes primarily (91%) from counteracting noise,
det(X)/ log2(16) = 0.34 and det(V)/ log2(4) = 0.78; and less so (9%) from reducing
degeneracy, deg(X)/ log2(16) = 0.05 and deg(V)/ log2(4) = 0.006.

01

00

10

11

(X1X2) (V1)

on

off

Figure 28 – MappingM.
Source: HOEL; ALBANTAKIS; TONONI. (19)

As we will discuss in the next chapter, we will reserve the term emergence for
processes where there exists informational synergism according to the PID formalism.
Then, we will argue based on the results of the next chapter that EI’s increase is not
solely due to capturing synergism but to noise reduction manifested by redundancy in the
systems. Indeed, the latter seems more crucial to raise the causal explanatory power for
the model in question.
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3 HIGH-ORDER INTERTENDENPENCIES BY THE CAUSAL LENS

Each in his own opinion
Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!”

John Godfrey Saxe’s in “The Blind Men and the Elephant”

In Pearl’s framework, a crucial task is discovering the DAGs structure to implement
manipulative techniques and uncover causality. This can be achieved by causal discovery
algorithms (CDTs) (1,43) and their variants incorporating dynamic causal models.(7,49,
61–66). To infer causal links from multivariate time-dependent data these algorithms rely
on conditional mutual information based on the concept of causal faithfulness/stability,
Def.2.4. (40,48,67) As already pointed out by James et al. (6), but not taken forward to the
causal concept, the mutual information analysis can be blinded to high-order interactions.
As we will prove, for synergic dependencies, causal faithfulness can be violated provoking
the failure of a huge class of CDTs.

Remember that, from Woodward’s path to capturing causal influence, the draw-
back of using mutual information (MI) for evaluating systems with more than two vari-
ables leads to a limited understanding of the distribution of information among dependent
causes, needing to incorporate the background context B to capture emergence by using
the conditional operation in MIs. In some scenarios, we saw the appearance of redundant
causes in B showing that the simple task of conditioning could fail according to the growth
of B. By applying coarse-grainings we argued that the size of B can be reduced while not
losing the capture of emergent properties as seen by using the EI approach. However,
when the coarse-graining mapping M is unknown, it is unclear how we should operate,
calling, then, for new informational techniques to investigate these multivariate scenarios.

The attempt to establish foundations for a multivariate informational analysis
comes back to information theory originator Claude Shannon (68), who made use of
Garrett Birkhoff’s lattice theory (69, 70), a subclass of order theory1. Recently, these
ideas have been refined, and one particular formalism is gaining strength in the scientific
community, the Partial Information Decomposition (PID). (30) The multivariate analysis
1 Order theory is a branch which investigates the intuitive notion of order using binary rela-

tions.
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can be complex, in the sense that, one interest could be the informational contribution
from one source to many targets; many sources to one target; or, from many sources to
many targets, see Fig.29.

(a) one-to-many (b) many-to-one (c) many-to-many

Figure 29 – In the terminology of causation, scenarios (a) and (c) are examples of causal
decoupling and (b) downward causation, remember Fig.2.
Source: By the author.

In this chapter, motivated by the problem of identifying dependent causes, we
will center on the (b) many-to-one (downward causation) scenario. We will assume no
confounders among the parent set X being able to change the notation P (Y |X) and
P (Y |do(X)) freely when necessary. We will discuss briefly in Sec.3.4 how to operate when
this is not the case. We use simple simulated systems, including higher-order interactions
ones, to show quantitatively that genuine causal synergism violates faithfulness. We do so
by claiming the importance of the conditioning operation in mutual information to capture
pure synergism by formalizing such a concept using partial information decomposition
theory (PID). (30) Then, we connect this with the causal concepts of faithfulness and
minimality. (1)

By comparing different structural organizations of non-pairwise systems we also
show that causal faithfulness is recovered when redundancy dominates the system in
question. Such a phenomenon manifests when the conditional mutual information (CMI)
starts to fail, raising a trade-off between faithfulness and minimality in terms of levels of
redundancy and synergy. These results clarify a long-standing discussion about the regime
of the faithfulness condition for the traditional CDTs in high-order scenarios proposing a
review of them (7,49,61–66,71) when dealing with high-order interdependencies. All the
content of this chapter is new, which can be found in MARTINELLI et al. (72), except
Sec.3.4 which is part of an ongoing work.

Finally, in Sec.3.4, we argue how coarse-grainings should be done according to the
informational mapping constrained by PID: it preservers the synergic set while reducing
the redundant set. We give a “proof-of-principle” example showing how the EI quantifier
remains invariant using that reasoning. This gives an informational principle to operate on
higher scales in order to elucidate emergent phenomena and eliminate noise raised by un-
necessary redundancies. We dedicate the rest of this section to discussing how constraints
in the PID quantifiers can be seen as strategies of non-atomic interventions.
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3.1 Partial Information Decomposition

The relationship between parts and wholes is a fundamental aspect of nature,
present at all levels of space and time, from atoms in molecules to planets in solar systems.
It transcends just scientific fields and is commonly seen in everyday languages, such as
referring to a president as part of the government or a slice of cake as part of the whole
cake. Its widespread presence makes it an intuitive concept to understand.

Asking how to decompose joint mutual information into its components is similar
to asking “how to slice a cake?” There are multiple ways to do so and therefore, no single
answer to the question. To clarify the question, a criterion must be established for how the
joint mutual information should be decomposed. The work of Williams & Beer (30) was
to realize that such combinations of information should satisfy a parthood distribution
(73) f : 2[n] → {0, 1} s.t.,

1. f({∅}) = 0 (There is no information in the empty set);

2. f({1, . . . , n}) = 1 (All information is in the full set);

3. For any two collections of source indices a, b : a ⊆ b, then f(a) = 1 =⇒ f(b) = 1;

using conditions above it means that the number of atoms is equal to the number of
monotonic Boolean functions minus two. Such a sequence is a very famous sequence in
combinatorics called the Dedekind numbers which counts the number of antichains in a
distributive lattice (70), see Def.3.1.

The fact that antichains form a lattice (70) gives a natural hierarchical structure
of partial order over the elements of A(X),

∀α, β ∈ A(X), α ⪯ β ⇐⇒ (∀B ∈ β : ∃A ∈ α, A ⊆ B). (3.1)

Definition 3.1 (The lattice of antichain)

Consider the sources X = {X[n]}. The set

A(X) = {α ∈ P+(P+(X)) : A1 ̸⊂ A2, ∀A1, A2 ∈ α}, (3.2)

is called the lattice of antichains of the sources Xa where P+(S) = P(S) \ {∅}
denotes the set of nonempty subsets of S.
a Henceforth, we will denote sets of A(X), corresponding to collections of sources, omit-

ting the brackets with a dot separating the sets within an antichain, and the groups
of sources are represented by their variables with respective indices concatenated. For
example, X1 ·X2X3 represents the antichain {{X1}{X2, X3}}, see Fig.30.
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X1 · X2

X1 X2

Figure 30 – Illustration of antichains A(X) for: (A) X = {X1, X2} and (B) X =
{X1, X2, X3}.
Source: By the author.

The cardinality of A(X) for X = n is given by the (n − 2)-th Dedekind number,
which for n = 2, 3, 4, . . . is 1, 4, 18, 166, 7579, . . . being super-exponential according to |X|.

To attribute an informational character to A(X), one then assigns a quantity
of shared information to each element and defined by the mapping: α 7→ I∩(α;Y )2.
This should quantify the amount of information shared by each set of sources within
an antichain α about the target, see Fig.31. Using the parthood distribution conditions
Williams & Beer (30) proposed the following axioms that such a measure should follow3

(S) (symmetry) I∩(α;Y ) is unchanged under permutations of α;

(SR) (self-redundancy) I∩({α};Y ) = I({α};Y ), where {α} is a singleton;

(M) (monotonicity) I∩(α1;Y ) ≤ I∩(α2;Y ),∀α1 ⪯ α2.
2 The ∩ symbol refers to the idea that the redundant information of col-

lections {A1, A2, . . . , Am} captures intersecting information contained in
{A1, andA2, and . . . , andAm}.

3 Supported by the idea that any measure of redundancy as intersecting information should
satisfy the same basic properties of set intersection; namely, commutative (symmetric): X ∩
Y = Y ∩X; idempotent (self-intersection): X ∩X = X; and monotonic: (X1 ∩ . . . ∩Xk−1 ∩
Xk) ⊆ (X1 ∩ . . . ∩Xk−1) with equality if Xk−1 ⊆ Xk.



57

When ascending the lattice, the redundancy function I∩(α;Y ), monotonically increases,
being a cumulative measure of information where a higher element provides at least as
much information as a lower one. (30) The inverse of I∩(α;Y ) called the partial in-
formation functions (PI-functions) and denoted by I∂ measures the partial information
contributed uniquely by each particular element of A(X). This partial information will
form the atoms into which we decompose the total information that X provides about
Y . For a collection of sources α ∈ A(X), the PI-functions are defined implicitly by the
Möbius inverse of I∩,

I∂(α;Y ) = I∩(α;Y )−
∑

β≺α

I∂(β;Y ). (3.3)

Decomposing the MI into PI’s and applying this to the XOR process discussed above,
with X = {X1, X2} and a single target variable Y we have that,

I(X1;Y ) = I∂(X1;Y ) + I∂(X1 ·X2;Y ), (3.4)

I(X2;Y ) = I∂(X2;Y ) + I∂(X1 ·X2;Y ), (3.5)

I(X1, X2;Y ) = I∂(X1;Y ) + I∂(X2;Y ) + I∂(X1 ·X2;Y ) + I∂(X1X2;Y ) (3.6)

From the equations above we can see that the causal link in XOR process discussed above
from {X1, X2} to Y is due to the synergic term I∂(X1X2).

X1X2X3

X1X2 · X1X3 · X2X3

X1 · X2 · X3

X1X2 · X1X3

X1X2 · X2X3
X1X3 · X2X3

X1 · X2 X2 · X3
X1 · X3

X1 · X2X3
X2 · X1X3

X3 · X1X2

X1X2 X1X3
X2X3

X1
X2 X3

(A) (B)

X1X2

X1 · X2

X1 X2

Figure 31 – (red boxes) Cumulative partial atoms in I∩({{X1}}, Y ) for (A) X = {X1, X2}
and (B) X = {X1, X2, X3}.
Source: By the author.
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3.1.1 Isolating partial atoms

While the PID framework provides the structure on which information can be
decomposed, it fails to provide the specific keystone necessary to calculate it: the I∩ that
forms the base of the PI lattice. Indeed, Eqs.3.4, 3.5, and 3.6 form an under-determined
system of three equations with four unknown quantities. Given an appropriate function
with which to compute any of these three, the rest are trivial. Williams & Beer proposed
the specific information as a plausible function, denoted as IWB:

IWB({A1, A2, . . . , Ak};Y ) :=
∑

y∈Y

P (Y )min{I(A1; y), I(A2; y), . . . , I(Ak; y)}. (3.7)

The term minAi∈α I(Ai; y) calculates the minimal amount of information any Ai ∈ α ≡
{A1, A2, . . . , Ak} provides about the specific state Y = y. Across all y ∈ Y , IWB quantifies
the expected minimum amount of information that the atom α will unfold about Y , see
example 3.1 for an illustration.

Example 3.1 (Quantifying redundancy – disturbed XOR)

Consider the XOR operation discussed previously with some noise in source X2 ∼
Ber(p = 3/4) giving the output:

X1 X2 Y P

0 0 0 3⁄8
1 0 1 1⁄8
0 1 1 3⁄8
1 1 0 1⁄8

Using Eq.3.7 in Eqs.3.4, 3.5, and 3.6 we have that the disturbed XOR producesa:
I∂(X1X2;Y ) = 0.811 bits of synergy, and I∂(X1;Y ) = 0.188 of unique information
from X1.
a We used the dit (Discrete Information Theory) package (74) for the computation of

the partial atoms.

Remark 4. Even after extensive work, there is no general agreement with a particular
measure. (75,76) In what follows our results are flexible meaning that they do not depend
on a specific quantifier for partial atoms. Instead, we focus in to isolate groups of atoms
with common properties. This means that any quantifier that meets these properties can
be used.

Note that MI obviously satisfies the PID three axioms; it is well known that CMI does
not satisfy monotonicity (77) being difficult to isolate specific atoms in the informational
lattice. However, as we will show, CMI monotonically increase (decrease) high-order syn-
ergic (redundant) terms a key property, to explain faithfulness violation in the presence
of synergic properties.
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3.2 Emergent causes from partial atoms

The existence of the causal link in the XOR process, even though I(Xi;Y ) = 0 for
i = 1, 2, is known as a violation of the causal faithfulness condition, see Def.2.4. Note,
however, that the concept of causal minimality is still satisfied since conditional indepen-
dence plays a role here. Also, if P (X1) ̸= P (X2) as Example 3.1 above, faithfulness is not
violated anymore raising the common claim that its violations are rather pathological.
(7,49,66) Below, we consider a simple causal process showing that when studying syner-
gism, faithfulness violations are not rare corner cases, but can be prevalent in the space
of probability distributions.

Example 3.2 (Failure of faithfulness)

Consider X = {Xi}3i=1 as three independent binary sources and the target Y being
the logical OR process between X1 XOR X2 and X3 with probabilities distribution
varying according to 0 ≤ f ≤ 1 given by the table below:

X3
X2

YX1

Y = (X1 XOR X2) OR X3

X1 X2 X3 Y Prob.

0 0 0 0 f/8
1 0 0 1 f/8
0 1 0 1 3 f/8
1 1 0 0 3 f/8
0 0 1 1 (1− f )/8
1 0 1 1 (1− f )/8
0 1 1 1 3(1− f )/8
1 1 1 1 3(1− f )/8

By computing the MIs and CMI × f , see figure below, we can see that I(X2;Y ) = 0,
but I(X2;Y |X1, X3) ̸= 0 ,∀f > 0, showing a simple system where faithfulness is
violated but minimality is not, in a non-pathological way.
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Figure 32 – (left) I(Xi) for i = 1, 2, 3 and (right) I(X2|X1, X3) varying 0 ≤ f ≤ 1.
Source: MARTINELLI; SOARES-PINTO; RODRIGUES. (72)

In Example 3.2 the robustness of minimality inside the context of the synergism seems
to be related to the need to consider conditioned independencies. This point motivates us
to view the conditioning operation under the PID eyes. The natural question, therefore,
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raises: Is there a subset S(X) ⊂ A(X), in which its elements form a lattice such that one
can isolate only synergic nodes in S?

To do so, we will look deeper into the PID approach in the search for S(X). To start, we
propose Def.3.2 which gives a formal definition for S(X) allowing us to connect it with
the conditioning operation, Prop.3.1 with proof in App.C.

Definition 3.2 (The unique, redundant, and synergic sets)

Let be a set of sources X = {X[n]}, Z ⊆ X, and the downseta of Z inside A(X),
denoted by ↓Z. We say that the subset B(Z) ⊂ A(X), for k ∈ [n], is:

(a) unique: this set is represented by the singletons in ↓Z with size k = 1 (pairwise
behavior). In this case, we denote B(Z) ≡ U(Z);

(b) synergic of order k: this set is represented by the singletons in ↓Z with size
k > 1. Then, B(Z) ≡ S(k)(Z);

(c) redundant of order k: this set is represented by all non-singletons β =

{{B1}, {B2}, . . .} in ↓Z s.t. there exists at least one Bj ∈ β with size k. Then,
B(Z) ≡ R(k)(Z);

When considered all the orders k we will omit the superscript, having then S(X) =⋃
k S(k)(X) andR(X) =

⋃
kR(k)(X), respectively. Note that A(X) = U(X)⊔S(X)⊔

R(X). (For an illustration of these sets see Figs in App.C.1).
a The down set of α, ↓α, means that β ⪯ α,∀β ∈ ↓α where α, β ∈ A(X).

Proposition 3.1 (Synergic property of the conditioning set)

Consider a node Xj ∈ X, Z ⊆ X\Xj
where |Z| = k − 1 for k ∈ [n]. The CMI

I(Xj;Y | Z) captures the unique set U(Xj) and the synergic set S({Xj,Z}) =⋃
k S(k)({Xj,Z}). Furthermore, the set S(k)({Xj,Z}) increases monotonically on

I(Xj;Y | Z) according to |Z|.

To elucidate Prop.3.1 we consider a scenario where the non-pairwise relationships
between X and Y can be expressed as a Gibbs distribution (Full simulation details are
reported in App.C.1). To start, we show the importance of the conditioned set size, |Z|,
to capture information contribution from non-pairwise terms. To do so, we consider a
system of n+ 1 spins, with Hamiltonians having interactions only of order k,

Hk(X) = −Xn+1

∑

|α|=k−1

Jα
∏

i∈α

Xi, (3.8)

where Jα are the interaction coefficients and the sum runs over all collections of indices
α ⊆ [n] of cardinality |α| = k − 1.
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For these systems, we calculate the average normalized CMI, CMI, to measure
the strength of the high-order statistical effects beyond pairwise interactions (Fig.33).
Our results confirm that to get information from a causal influence of order k we have to
account for conditioned sets of proportional size. Furthermore, the pairwise interaction
regime is the only case where MIs (CMIs with |Z| = ∅) are nonzero showing the violation
of faithfulness for non-pairwise interactions.
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Figure 33 – Growth of the CMI according to the conditioned set size. Here, we consider
systems of size n+1 = 5 with interaction orders k = 2, 3, 4, 5 obeying Eq.(3.8)
where the last node, X5, was considered as a target. The calculation of the
CMI was made over all permutations of the set {Xi}4i=1 in the CMI formula.
Source: MARTINELLI; SOARES-PINTO; RODRIGUES. (72)

Note that, by viewing A(X) as a causal informational lattice, A(PAY ), where PAY ≡ X

emphasizes that X is the set of parents of Y , and using the terminology of Def.3.2 we
can identify the concepts of faithfulness and minimality in the PID language, see Prop.3.2
with proof in App.C.2. This allows us to clarify why faithfulness fails and minimality is
necessary to capture high-order causal dependencies.

Proposition 3.2 (Faithfulness & Minimality)

Consider X ∈ PAY , then the causal link X → Y satisfies,

(a) causal faithfulness if X has, necessarily, nonzero informational atoms be-
longing on U(X) or R(1)(X), i.e., are independent from the others parents;

(b) causal minimality if X has, necessarily, nonzero informational atoms be-
longing on U(X), S(k≥2)(X) or R(k≥2)(X) ∀k, i.e., could depend on the others
parents.
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Prop.3.2-(a,b) straightly enlighten in an informational way how minimality includes faith-
fulness. The set R(1)(X) can be viewed as having redundancy in the presence of faithful
causes, i.e., there exists B with |B| = 1, ∀β inR(2)(X), see Def.3.2-(b). On the other hand,
R(k≥1)(X) relaxes this requirement allowing redundancy among non-pairwise (synergic)
causes.

3.3 The illusion of faithfulness or the deluge of redundancy?

Here, we analyze deeper why faithfulness can become optimal because of spurious
correlations instead of genuine regularities. To answer this question, we fix the system size
and investigate how a change in the organization of the interactions impacts the structure
of the informational antichains and, consequently, the computation of MIs and CMIs. We
will consider Hamiltonians with interactions up to order k,

Hk(X) = −
n+1∑

i=1

JiXi −
n∑

i=1

n+1∑

j=i+1

JijXiXj −
∑

|α|=k

Jα
∏

i∈α

Xi, (3.9)

Firstly, we model non-pairwise components exclusively in the Hamiltonian, which
means that if a node has the interaction of order k, it cannot interact anymore, repre-
sented by the causal directed hyper-graph in Fig.(34)-A. For the second case, we relax the
exclusivity condition, represented graphically by a dense cloud of connectivity, Fig.(34)-B.
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Figure 34 – Simulation of two non-pairwise systems of size n+ 1 = 11 following Eq.(3.9)
with different organization. (A) This model has spins with only exclusive
interactions of order k = 3, 4, 5. (B) Here, we allowed all possible interactions
of order k = 3, . . . , 10. Again, the last spin, Xn+1, is the target node Y , and
the calculation of CMI was done as explained in the previous figure.
Source: MARTINELLI; SOARES-PINTO; RODRIGUES. (72)
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Our results show that when the Hamiltonian only possesses exclusive non-pairwise
interactions, faithfulness still fails in capturing causal influence. Also, the monotonic in-
crease of the CMI according to the conditioning set size is preserved showing how mini-
mality remains robust to identify high-order of synergism, Fig.34-(A). However, when we
relax the exclusivity condition, even without pairwise interactions, the MI’s are nonzero
anymore. More intriguing, faithfulness is satisfied while minimality fails being a contra-
diction according to Prop.15, Fig.34-(B).

We argue that such behavior is due to the appearance of a specific type of redun-
dancy, induced by the functional properties of the system. Indeed, as generated indepen-
dently, we would expected that I(Xi, Xj) = 0 for any sources Xi, Xj ∈ PAY , which is the
case for the system of Fig.34-(A). However, it occurs that in the system of Fig.34-(B),
we have I(Xi, Xj) ̸= 0. The existence of these correlations among the sources spuriously
inflates the calculation of MIs while it provokes the decrease of CMIs according to the
conditioning set size.

Such redundancy is similar to the concept of mechanistic nature. (78,79) In its sim-
plest form, this type of redundancy occurs when the sources are generated independently
and are related to the functional properties of the system as well. While its importance
has been recognized, how to define or quantify this type of redundancy inside PID is an
open question. (80)

Regarding that, we relax the strong synergism condition from Def.3.2 by consid-
ering the synergic dominant set as

Sd =
{
PY |X

∣∣∣∣Xi |= Y, ∀i ∈ [n].

}
. (3.10)

This set can be viewed as a stochastic mapping from X to Y . Such mapping can be
interpreted as unfolding information from the output Y using the dataset X while keep-
ing the constraints Xi |= Y, ∀i ∈ [n]. The redundancy dominant set, denoted by Rd, is
defined exactly as the complementary set of Sd in the respective antichain, see Fig.35
for an illustration. In Prop.C.2 from Appendix C.2 we showed that Rd encapsulates all
redundancies of order 1 (using the terminology of Def.3.2), which means single-source
redundancies being, then, a proposal to capture mechanistic redundancies.

Based on that and supported by previous work (81, 82) we can extend naturally
Eq.3.10 to the k-synergic dominant set considering high-orders constraints as follows,

Sd(k) =
{
PY |X

∣∣∣∣Xi |= Y |Z, Z ⊆ X\Xi
where |Z| = k − 1 ∀i ∈ [n]

}
. (3.11)

These mappings can be seen as k-unfaithful mappings since violate faithfulness condition
by construction, see Def.2.4-(FM’). This digression can be summarized in the following
result,
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Proposition 3.3 (Causal premises via Redundant/Synergic dominance)

The prevalence of synergic and redundant dominant sets, Sd and Rd, respectively,
in A(X) for high-order scenarios raise a trade-off between causal faithfulness and
causal minimality conditions.

Synergic
dominance

Redundancy
dominance

X3X2X1

X2X3X1X3
X1X2

X3 · X1X2
X2 · X1X3

X1 · X2X3

X1 · X3 X2 · X3X1 · X2

X1X3 · X2X3

X1X2 · X2X3
X1X2 · X1X3

X1 · X2 · X3

X1X2 · X1X3 · X2X3

X1X2X3

Figure 35 – Representation of the synergic and redundant dominant sets Sd and Rd in
the informational antichain A(X) for X = {X1, X2, X3}.
Source: By the author.

Hence, in light of Proposition 3.3, it can be concluded that redundant dominant systems
do not serve as optimal causal models. This is because faithfulness is achieved through
spurious correlations rather than the existence of significant causal patterns, despite the
violation of minimality.

As a final remark, we highlight that the reason for imposing the faithfulness as-
sumption is primarily that the probability of finding distributions that violate it for a
given graph G is extremely low, almost negligible. (43) However, when dealing with a
limited sample size, errors in estimation may occur. Robins et al. (83) demonstrated that
many causal discovery algorithms, and the PC algorithm in particular, are not uniformly
consistent due to the possibility of constructing a sequence of distributions that are faith-
ful but still very similar to an unfaithful distribution. (84)

Our mappings from Eq.3.11 are represented by the same Pseudo-Independent Re-
lations (PIR) in Def.3 from Lemeire et al.(85) where they also showed that PIR is one of
the main reasons for faithfulness failure. Therefore, it should be interesting to investigate
the prevalence in the space of probability distributions of the mappings from Eq.3.11
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from the high-order point of view according to the size of X. For this, we could study the
behavior of k-synergic capacities defined as

Sk(X;Y ) := sup
PY |X[n]

∈Sd(k)

I(X;Y ). (3.12)

which carries the principle of synergic disclosure (81): it is possible for X to carry infor-
mation about a feature Y while revealing no information about any of the constraints in
the dataset.

3.4 Towards an unifying framework

From Prop.3.3 we saw that redundancy dominant systems are not optimal causal
models since violating minimality despite faithfulness being satisfied. How the EI-approach,
which was designed to find optimal causal models, should behave in these scenarios? Here
we investigate it by analyzing the behavior of determinism and degeneracy coefficients,
Eqs.(3.13) and (3.14) below, respectively, for the systems of Fig.34. Based on simula-
tions, Sec.3.4.2, we will argue for a link between the degeneracy coefficient and redundant
dominated systems.

determinism := EP (x̂)

[
DKL

(
P (Y |x̂)

∣∣∣
∣∣∣P (x̂)

)]
, (3.13)

degeneracy := EP (x̂)

[
DKL

(∑

x̂′

P (x̂′)P (y|x̂′)
∣∣∣
∣∣∣P (x̂)

)]
. (3.14)

Note that Eqs.(3.13) and (3.14) above expand Eqs.2.30 and 2.33 in the sense that it is
relaxing P (x̂) to not be the maximum entropic distribution.

3.4.1 PID quantifiers as interventions

To tighten the link between the degeneracy coefficient and redundancy we should
be able to interpret PID quantifiers as interventional strategies. Indeed, the PID quan-
tifiers depend on the joint probability distribution P (X, Y ) which, at first instance,
makes not straight how to interpret them interventionally. However, note that P (X, Y ) =

P (Y |X)P (X). Even though the distribution P (Y |X) is built on purely observational
data generally understood in the Granger-causal sense, the P (X) is chosen according to
an agent’s strategies resembling distributions of interventions, Sec.2.3.1.

This is the case for the redundant measure IWB, Eq.(3.7), where we could interpret
as an agent choosing strategies to the family of specific mutual informations,

I(X; y), (3.15)

given by min{I(A1; y), I(A2; y), . . . , I(Ak; y)} where Ai are the elements of the informa-
tional antichain A(X) and averaged over P (Y ). Although the specific values {p(y)|xi)}4
4 Yet, we could go to the interventional regime, {p(y)|do(xi))} straightly when the presence of

confounders is relevant.
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are in the observational regime, the overall information measure is constrained by an
external agent’s strategy despite its non-straight character.

The same is true for synergic measures from PID literature (31,81), in particular,
for the k-synergic capacities, Eq.(3.11), where an external agent put constraints in order
to isolate synergic contributions from specific atoms in the informational antichain. Our
point is that if we interpret these strategies as non-atomic interventions, we can put
redundancy/synergic measures and causal measures as discussed in Sec.2.3.1 on an equal
level.

Now, if we come back to Eqs.(3.13) and (3.14) we have that maximum determinism
means P (Y |x̂) ∼ 1 for every x̂ while minimum degeneracy {P (y|x̂)} ∼ δx̂,x′ . We argue
that this is achievable when one reduces redundancy in the system and captures causallly-
relevant information (unique and synergic) as the examples in the next section.

3.4.2 Coarse-grainings strategies as the conversion of information

Analyzing the systems of Fig.34-(A), our findings are that due to the systemic
character, EI preserves synergism and remains constant across scales not differentiating
orders of synergic behavior (deg=0), see Table 1. This is because in this scenario we
have the contextual independence: Vi |= Y |Vj for i ̸= j = {1, 2, 3}, see Fig.36-top for
an illustration. Such search is revealed by applying coarse-grains in groups stable under
background contexts, remember Sec.2.4.2.

SPARSE CONNECTIONS

Table 1 – Calculation of Effective information (EI), determinism (det), and degeneracy
(deg) (average over 100 simulations) for the system of Fig.34-(A). Here, the
maximal entropic distribution is the uniform one, confirmed by the algorithm
of the dit package (74). The measures remain constant over the coarse-graining
strategies in Fig.36-(top).
Source: By the author.

(Jα = 0.2)
N EI det deg

4 0.06 0.06 1e-16
7 0.50 0.50 1e-14
11 0.93 0.93 1e-16

(Jα = 0.4)
N EI det deg

4 0.19 0.19 1e-16
7 0.76 0.76 1e-14
11 0.84 0.84 1e-16

For the case of redundancy dominance scenarios Fig.34-(B), we just analyzed the
micro case since the noisy character of the dynamics gave a non-simple rule for system
reduction. Despite that, as a proof-of-principle, we can see from Table 2 that det̸= 0 for
these systems revealing the possibility of the entropic reduction for the set X, see Fig.36-
(bottom). This non-zero degeneracy coefficient tells us that redundant-dominant systems
are not better explanatory in a causal sense. This is in accordance with our results from
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Sec.3.3 where we could see that these systems raise a contradiction in the causal premises
of prevalence of faithfulness with violation of minimality.

DENSE CONNECTIONS (proof-of-principle)

Table 2 – Calculation of Effective information (EI), determinism (det), and degeneracy
(deg) coefficients (average over 100 simulations) for the system of Fig.34-(B).
Here, the maximal entropic dynamics transitions do not converge to the uni-
form. To overcome it we constructed a baseline distribution that matches pair-
wise marginals with one another maximizing the total entropy using the dit
package (74). Due to the time complexity of the algorithm, we kept the inves-
tigation for N = 4, 5, 6.
Source: By the author.

(Jα = 0.2)
N EI det deg

4 0.16 0.20 0.04
5 0.27 0.33 0.06
6 0.40 0.46 0.06

(Jα = 0.4)
N EI det deg

4 0.36 0.58 0.22
5 0.52 0.31 0.29
6 0.63 0.91 0.28
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Figure 36 – Proposal of coarse-graining strategies for systems of Fig.34-(A) and (B).
Source: By the author.

Note that both systems are examples of downward causation mechanisms, in the
sense that a group of sources is influencing a single target. In this sense, the determinism
coefficient raises due to the size system instead of a reduction in transitions with the effects
repertoire. Therefore, causal emergence in EI’s approach can be seen as the conversion of
causally-irrelevant information in the form of redundancy (uncertainty of state transitions)
to causally-relevant information while keeping synergic influence during the procedure.
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4 CONCLUSION

The debate on causal emergence has led to the criticism that this concept is
not compatible with materialism (https://philpapers.org/browse/downward-causation),
as higher-level patterns are seen as just outcomes of dynamics at a lower level and there-
fore lack material instantiation and agency, making them uncausable. By using the frame-
work of elementary dynamical systems, BUTTERFIELD (86) defines emergence as any
kind of behavior that is novel in higher-level scales and reduction (coarse-grainings) as a
deduction. Then, he was able to deduce emergent behavior by taking the limit, N →∞,
for a given parameter N . However, the point here is that this infinite limit is not physically
real (87). Instead, he claims that emergence (novelty) occurs before we get to the limit,
i.e. for finite N . And it is this behavior which is physically real.

Our results in this thesis align with those argued by BUTTERFIELD, also simi-
larly discussed by FLACK (88) resolving this conflict by a causal-informational approach,
which defends how adaptive systems identify regularities by coarse-grainings and use them
to guide behavior. Indeed, in this work we:

1 Highlighted the use of non-atomic interventions to identify emergence in causal
modeling. Also, we identified the connection of the EI-approach with Woodward’s
task for finding the optimal explanatory causal model (Chapter 2.4);

2 Showed that faithfulness fails to capture synergism when the latter is appropriately
defined using PID. (72) And, its assumption in high-order scenarios is more related
to the appearance of spurious regularities than genuine causal influences where this
specific spuriousness can be linked with the concept of (mechanistic) redundancy
(Section 3.3);

3 We provide an interpretation in Pearls’s interventionist sense for the quantifiers of
redundancy/synergism in the PID framework (Section 3.4.1).

4 We connected the concept of effective information using PID according to levels of
redundant and synergic information (Section 3.4.2);

An important property of coarse-grainings is an integration over component be-
havior. As we showed, such property is the reason for producing emergent behavior and
is formally captured by the synergic atoms in the informational decomposition of the
background inputs (parents set). This can define an informational principle to identify
the coarse-grainings when the dynamical law is not known a priori or complicated in a
way such that the maximum entropic distribution is never achieved making the EI-based
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approach unsuitable for these scenarios. By doing so we can unfold causal mechanisms
according to the better explanatory scales where the premises are satisfied. Indeed, we can
see that causal emergence (in Hoel’s sense) cannot occur when only (noiseless) synergism
is dominant and can occur when redundancies are dominant in the system, Sec.3.4.2. Such
an argument is sustained in a recent data-driven analysis where only noise and redun-
dancies from the data are eliminated, without integrating the compressed inputs-outputs
(89). Even though this seems to reveal relevant causal information (physical patterns) we
should be careful since it also reveals an important point in the approach: the unnecessary
presence of high-order phenomena (synergic atoms in the PID sense).

A possible path to identify algorithmically the groups of synergic influence by
correct coarse-grainings strategies in the causal domain could be to incorporate the so-
called context-specific independence (CSI) (90), which is the independence that holds
in a certain value of conditioned variables, i.e., the context. It has been shown that the
presence and knowledge of such independence lead to more efficient probabilistic inference
by exploiting the local structure of the causal models. (91) The XOR operation follows
such relations. (92) Also, it allows the identification of causal effects, which would not be
possible without any information about CSI relationships. (93) Further investigations of
this approach as well others (94) to detect synergic causal influence in large data sets we
leave for future work.

Also, it would be interesting to investigate the concept of causal emergence in
the quantum realm. Since there, the concept of causality, as worked here, seems to suffer
a significant change giving interesting consequences in quantum information processing.
(95–97) A possible path could be to promote EI/PID formalisms to the quantum level
and to investigate the distinct learning phases of quantum neurons. This could answer
how synergic learning operates compare to similar classical investigations. (98–101)
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APPENDIX A – INFORMATION THEORY

A.1 Entropy, mutual information, and relative entropy

Information theory provides us with tools to measure uncertainty and to measure
the reduction of that uncertainty. Importantly, for our purposes, it tells us how information
about the value of one variable can reduce the uncertainty about the value of another,
related, variable. The simplest case occurs when a discrete variable has only two values,
which can then be known by answering a single question (e.g. by yes or no). The answer is
said to convey one unit of information (a bit). If the set of possible values for the variable
now contains 2n equally likely elements, we can remark that n dichotomous questions (n
bits) are needed to determine the actual value of the variable. The quantity of information
contained in knowing the actual value is thus n = log2(2

n). If we adopt a probabilistic
framework where each possible value has equal probability P = 1/2n, we can say that
knowing any actual value of the variable brings − log2(P ) bits of information. When the
values are not equiprobable, the average information gained by knowing the actual value
of the variable is measured as an average over the probabilities of the different values. This
quantity is the Shannon entropy of the probability distribution of the variable, defined
as:

H(X) = −
N∑

i=1

P (xi) logP (xi) (A.1)

where xi represent values of the variable X and N is the number of different values.
Entropy measures the uncertainty about the value of the variable and is always non-
negative.

A.1.1 Mutual Information

If X and Y are two random variables (with respectively N and M different values,
noted xi, yi, we can define the entropy of the couple (X, Y ):

H(X, Y ) = −
N∑

i=1

M∑

j=1

P (xi, yj) logP (xi, yj). (A.2)

With these two quantities, one is able to define the conditional entropy, representing the
amount of uncertainty remaining on Y when we already know X:

H(Y |X) = H(X, Y )−H(X) (A.3)

= −
N∑

i=1

M∑

j=1

P (xi)P (yj|xi) logP (yj|xi).
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And, in a similar way, the mutual information, that is, the amount of redundant informa-
tion present in X and Y is obtained by:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (A.4)

= −
N∑

i=1

M∑

j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
.

Mutual information can be thought of as the amount of information that one variable, X,
contains about the other, Y (normalized variants of mutual information are available).
Conditional entropy is null, and mutual information is maximal when Y is completely
determined by X. Note that conditional entropy is generally asymmetric, H(X|Y ) ̸=
H(Y |X), while mutual information is always symmetric, I(X;Y ) = I(Y ;X).

A.1.2 Relative Entropy

Let’s examine two probability distributions, denoted as P and Q. Typically, P

represents the observed data, measurements, or a known probability distribution. On the
other hand, Q represents a theory, a model, a description, or an approximation of P . The
Kullback-Leibler divergence or relative entropy is a measure that quantifies the average
disparity in the number of bits needed to encode samples from P using a code optimized
for Q instead of one optimized for P .

For discrete probability distributions P and Q defined on the sample space X , the
relative entropy from Q to P is defined to be (23)

DKL(P ||Q) := −
N∑

i=1

P (xi) log
P (xi)

Q(xi)
. (A.5)

A.2 Maximum entropic principle

Among the most prominent principles to assign priors are the principle of insuffi-
cient reason (PIR) and the maximum entropic principle (MEP) (56). PIR assigns uniform
probabilities to a set of possible outcomes whenever the knowledge about the outcomes
is invariant under permutations. MEP, which generalizes PIR, chooses a prior that maxi-
mizes entropy subject to the known constraints. It is known that both principles result in
paradoxical probability updates for joint distributions of cause and effect. For a discussion
of it, we refer to JANZING. (102)

The principle of insufficient reason, also called Laplace’s principle of insufficient
reason or principle of indifference (56), states that in the absence of any relevant evi-
dence, agents should distribute their credence (or “degrees of belief”) equally among all
the possible outcomes under consideration. More explicitly, PIR advises considering all
possible alternatives in a random experiment equally likely. For the simple example where
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we know that one of n turns contains a ball, PIR considers each of the urns as an equally
likely location and assigns P (j) = 1/n for to each j = 1, . . . , n.

Inferring underdetermined probability distributions by maximizing entropy sub-
ject to the available information is a well-established principle in machine learning and
statistics, see, e.g., (103). The usual formal setting reads: Let us, for simplicity, assume
that X is a variable that attains values in some alphabet X . Assume the only information
available on P (X) is given by the expectations

∑
p(x)fj(X) = cj, with cj ∈ R, (A.6)

where fj are measurable functions. One constraint is always f0(X) = 1 and c0 = 1; that
is, we constrain that it must be a proper probability distribution and integrate (sum)
to 1. According to MEP, we would then choose the unique distribution maximizing the
Shannon entropy subject to the constraints A.6, which yields

p(x) = exp
(
−
∑

j

λjfj(x)− λ0 − 1
)
, (A.7)

with appropriate Lagrange multipliers λj. When we have the unconstrained condition,
fj = 0 for every j ̸= 0 we arrive in

p(x) = exp
(
− λ0 − 1

)
, subject to

∑
p(x) = 1, (A.8)

giving the uniform distribution as the solution.

A.3 No monotonicity of conditioning operation

Conditioning can either increase or decrease the mutual information between two
variables, so I(X;Y |Z) ̸≤ I(X;Y ), and I(X;Y |Z) ̸≥ I(X;Y ). To illustrate the last point,
consider the following two examples where conditioning has different effects. In both cases,
we will make use of the following equation

I(X;Y ) + I(Z;Y |X) = I(Z;Y ) + I(X;Y |Z). (A.9)

Increasing example: if we have some X, Y, Z such that I(Z;Y ) = 0 (which means
X and Y are independent variables), then Eq.(A.9) becomes: I(X;Y |Z) = I(X;Y ) +

I(Z;Y |X), so I(X;Y |Z)−I(X;Y ) = I(Z;Y |X) ≥ 0, which implies I(X;Y |Z) ≥ I(X;Y ).

Decreasing example: on the other hand, if we have a situation in which I(Z;Y |X) =

0, Eq.(A.9) becomes: I(X;Y ) = I(X;Z)+ I(X;Y |Z), which in implies that I(X;Y |Z) ≤
I(X;Y ).
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APPENDIX B – A BIT MORE ON CAUSALITY

B.1 Estimating causal effects

The Back-Door criterion and Front-Door criterion are two methods proposed by
Judea Pearl for determining causality from observational data (1). The Back-Door crite-
rion states that to identify the causal effect of a variable X on a variable Y , one must
control for all variables that affect both X and Y , also known as back-door variables. The
Front-Door criterion states that to identify the causal effect of a variable X on a variable
Y , one must adjust for an instrumental variable, which is a variable that affects only X

and Y , but not through any back-door variables.

Definition B.1 (Back-Door Criterion)

A set of variables Z satisfies the back-door criterion relative to an ordered pair of
variables (X, Y ) in a DAG G if:

1. no node in Z is a descendant of X; and

2. Z blocks every path between X and Y that contains an arrow into X.

When Z satisfies the back-door criterion, for instance:

P (Y = y|do(X = x0)) =
∑

z

P (z)P (Y |x0, z) (B.1)

Definition B.2 (Front-Door Criterion.)

A set of variables Z satisfies the front-door criterion relative to an ordered pair of
variables (X, Y ) in a DAG G if:

1. Z all directed paths from X to Y ;

2. there is no unblocked backdoor path from X to Z;

3. All back-door paths from Z to Y are blocked by X.
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When Z satisfies the front-door criterion relative to (X, Y ) and if P (x, z) > 0, then the
causal effect of X on Y is identifiable and is given by:

P (y|do(x0)) =
∑

z

P (z|x0)
∑

x′

P(y|x′, z)P(x′) (B.2)

B.2 Equivalence between defs. 2.3 and 2.4

Proof (Equivalence of causal Markov condition). Let’s apply (CF) in the DAG of Fig.17.
Notice that, it holds for any disjoint set X and Z, by choosing X ≡ Xi (a single node)
and Z ≡ ∅ we have that

(Xi |= PY ) =⇒ (Xi |= GY ), (B.3)

as i is arbitrary, (CF) holds for any single parent from PAY saying that faithfulness
ensures that every causal parent presents an observable effect regardless of the information
about other causal parents — stable under the background parents (the reason that is also
called stability, Def.2.4.1 from (1)). Therefore, the only way to violate (CF) in the DAG of
Fig.17 is by having X = Z1. Finally, by noting that X,Z ⊆ PAY , we have X ∩PAY = X

and Z ∩ PAY = Z, ending the proof.

Proof (Equivalence of causal minimality). Consider the random vector X = (X1, . . . , Xn)

and assume that the joint distribution P has a density with respect to a product measure.
Suppose that P is Markovian with respect to G. Then P satisfies causal minimality with
respect to G if and only if ∀Xj and ∀Xi ∈ PAj we have that

(
Xj ̸ |= PXi | PAj \Xi

)
.

(=⇒) Assume that causal minimality is not satisfied. Then, there are Xj and Xi ∈
PAXj

, such that P is also Markovian with respect to the graph obtained when removing
the edge Xi → Xj from G. This implies

(
Xj |= PXi | PAXj

\ Xi

)
, by the causal Markov

property.

(⇐=): If P has a density, then CMCFactorization is equivalent to CMCd-separation.
Assume now that Xi ∈ PAXj

and
(
Xj |= PXi | PAXj

\ Y
)
, which implies P (Xj | PAXj

) =

P (Xj | PAxj
\ Xi). Then, P (x) = P (Xj | PAXj

)
∏

k ̸=j P (Xk | PAXk
), which implies that

P is Markovian with respect to G without Y → Xj.

1 d-separation here is only possible by cutting the link between source and target or condi-
tioning on an equal source since the data is time-ordered and, therefore, the only set able to
d-separate any X from Y is the parents set PAY (1).
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APPENDIX C – CONDITIONING ANTICHAINS

Going to the PID in the multivariate case is not so straightforward. Indeed, adding
only one variable more is sufficient to see the failure of elimination of redundancy when
conditioning. Consider the three variable case, X = {X1, X2, X3}, then

I(X1;Y |X2, X3) = I(X1, X2, X3;Y )− I(X2, X3;Y ) (C.1)

= I∂(X1;Y ) + I∂(X1X2;Y ) + I∂(X1X3;Y ) + I∂(X1X2 ·X1X3;Y ).

From Eq.C.1, we can see that there is the existence of redundancy in the last term which
is not eliminated by the operation of conditioning, see Fig.38. This is because there are
new kinds of terms representing combinations of redundancy and synergy which are not
included in the down set1 of {X2, X3}, ↓{X2, X3}. On the other hand, we can see that all
orders of synergic atoms are included. Prop.C.1 formalizes it.

Proposition C.1 (PID view of conditioning operation)

Given the set X = {X1, X2, . . . , Xn} and Z ⊆ X\X and X ∈ X the PID view of
conditioning on Z the information between X and Y is given by

I(X;Y | Z) := I(X,Z;Y )− I(Z;Y )

=
∑

α∈↓{X,Z}

I∂(α;Y )−
∑

α∈↓Z

I∂(α;Y ) =
∑

α∈(↓Z)∁
I∂(α;Y ) (C.2)

where (↓Z)∁ is the complementary set of ↓Z given the particular subset of collections
of X used to build the information lattice, in this case, {X,Z}.

Proposition C.2 (The CMI and MI antichains)

Consider the informational antichain A(X) with X = {X1, X2, . . . , Xn}. The subset
of atoms computed by the MI, I(Xi;Y ), being denoted by AMI(X), captures all
redundant terms of the form {{Xi}, {A(X\Xi

)}}. On the other hand, the subset of the
CMI, I(Xi;Y |X\Xi

), denoted by ACMI(X\Xi
), captures redundant terms of the form

{A(Xi!, X\Xi
)} with the notation Xi! meaning that the term Xi is carried throughout

the atoms in the respective antichain. See Fig.39 for a graphical illustration.

1 the down set of α means that β ⪯ α for α, β ∈ A(X).
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C.1 Graphical illustration of Def.3.2 in informational antichains

X3
X2X1

X2X3X1X3
X1X2

X3 · X1X2
X2 · X1X3

X1 · X2X3

X1 · X3 X2 · X3X1 · X2

X1X3 · X2X3

X1X2 · X2X3
X1X2 · X1X3

X1 · X2 · X3

X1X2 · X1X3 · X2X3

X1X2X3

Figure 37 – Illustration of Def.1 for the
informational lattice A(X)
with X = {X1, X2, X3}.
Colored boxes explanation:
atoms inside R(X); atoms
inside U(X) and atoms
inside S(X).
Source: MARTINELLI;
SOARES-PINTO; RO-
DRIGUES. (72)

X3
X2X1

X2X3X1X3
X1X2

X3 · X1X2
X2 · X1X3

X1 · X2X3

X1 · X3 X2 · X3X1 · X2

X1X3·X2X3

X1X2·X2X3
X1X2·X1X3

X1 · X2 · X3

X1X2·X1X3·X2X3

X1X2X3

Figure 38 – Illustration of the effect of
conditioning the information
between X = {X1, X2, X3}
and target node Y on the el-
ement {X2X3} ∈ X− against
{X3} ∈ for informational
lattice A(X). Coloured boxes
explanation: goes away
when X1 | {X3}; + goes
away when X1 | {X2, X3};
remains when X1 | {X2, X3}.
Source: MARTINELLI;
SOARES-PINTO; RO-
DRIGUES. (72)

Proof. The proof can be done by noting that the down set ↓ Z ⊆ ↓ X is exactly a sub-
antichain of A(X) with elements of the form {A(Z!, X\Z)}. By applying the PID in
I(Xi;Y ) and I(Xi;Y |X\Xi

):

I(Xi;Y ) =
∑

α∈(↓Xi)

I∂(α;Y ), (C.3)

I(Xi;Y |X\Xi
) =

∑

α∈(↓X\Xi
)∁

I∂(α;Y ), (C.4)

we have that the only synergic element in Eq.C.3 is the singleton {{Xi}} and by the prop-
erty of being a down set and satisfying the condition of antichain, all the remaining terms
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are redundant of the form {{Xi}, {A(X\Xi
)}}. Now, for Eq.C.4, the sinergic elements

in Eq.C.3 are the all the singletons inside 2X \ 2(X\Xi
) where the notation 2Z means the

powerset of Z.

To illustrate, considering PAY ≡ X = {X1, X2, X3}, Xj ≡ X1, and Z = {X2, X3}
we have that I(X1;Y |Z) preserves the synergic atoms {{X1}, {{X1X2}}, {{X1X3}}, {{X1X2X3}}},
see Fig.39.

Finally, the redundant terms are the ones presented in A(X) not belonging into
the down set ↓ {X\Xi

}. These terms are exactly of the form {A(Xi!, X\Xi
)}.

X3
X2X1

X2X3X1X3
X1X2

X3 · X1X2
X2 · X1X3

X1 · X2X3

X1 · X3 X2 · X3X1 · X2

X1X3 · X2X3

X1X2 · X2X3
X1X2 · X1X3

X1 · X2 · X3

X1X2 · X1X3 · X2X3

X1X2X3

Figure 39 – Illustration of the ordered subsets AMI(X1) and ACMI(X\X1) constituted
by the atoms of partial information in MI and CMI (with the longest con-
ditioned) operations, respectively, for the set X = {X1, X2, X3}. Coloured
boxes explanation: + atoms inside ACMI(X\X1); + atoms inside
AMI(X1).
Source: MARTINELLI; SOARES-PINTO; RODRIGUES. (72)

C.2 Proofs of Props. 3.1 and 3.2

Proof (Proof of Prop.3.1). The first part was proven in Prop.C.2. Let’s show the syner-
gism monotonic increasing. That is, given I(Xj;Y |Z1) and I(Xj;Y |Z2), then

|Z1| ≤ |Z2| ⇒ |SCMI(Z1)| ≤ |SCMI(Z2)|, (C.5)

where SCMI(Z) denotes the set of all synergic atoms captured by CMI with conditioning
set Z. It says that the CMI with a large conditioned set has more synergic terms. This
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can be seen by noting that |SCMI(Z)| = |2Z \ 2(Z\Xj
)| ∝ 2Z grows exponentially according

to |Z|.
Also, the term of order S(k) is only captured when the conditioned Z set has size k − 2.
To clarify, if we choose Z2 = {X2, X3} as the example above and Z1 = {X2} we have
that I(X1;Y |Z1) preserves {{X1}, {{X1X2}}} and the synergic term of order k = 3,
S(3) ≡ {{X1X2X3}} (present in I(X1;Y |Z2)) is missing since |Z1| = 1 and we must have
a conditioned set of size k − 2 = 2 to capture this term.
The proof can be seen by noting that the cardinality of Z — which means conditioning on
higher nodes of the lattice — tells the order of synergic terms that I(Xj;Y | Z) includes.
Indeed, suppose that we want to include all synergic influence of orders ≤ n among Xj ∈ X

and n − 1 elements from X\Xj
on node Y . Then, w.l.o.g., note that I(Xj;Y | Z) with

Z := X\{Xj ,X1} and j ̸= 1 does not include any synergic informational atom with order n

of the type I∂(X1..Xj..Xn−1;Y ) because X1 was discarded. The argument is the same for
Z := X\{Xi,W},∀W ⊂ X.

Proof (Proof of Prop.3.2). Consider the joint distribution P given by the tuple (Y, PAY )

and the causal link of X ∈ PAY on Y .

(a) Suppose that X is faithful. By the correspondence I(X;Y |Z) = 0 ⇐⇒ (X |= PY |Z)
we have that I(X;Y ) ̸= 0, where we used K ≡ X and L ≡ ∅ in Def.2.4-(CF’).
And, using Eq.C.3 from Prop.C.2 we have that ∃α ̸= 0 such that α ∈ U(X) or
α ∈ R(1)(X);

(b) Now, suppose that X satisfies minimality. Then I(X;Y |PAY \X) ̸= 0 by Def.2.4-
(CM’) which give us the condition of Eq.C.3 from Prop.C.2 having that ∃α ̸= 0 such
that α ∈ {U(X),S(k>1)(X),R(k>1)(X)}.
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APPENDIX D – SIMULATION DETAILS

For Figs.33 and 34 the systems were of n + 1 spins, where Xi = {−1, 1} for
i = 1, . . . , n + 1 whose joint probability distributions can be expressed in the form
pXn+1(xn+1) = exp{Hk(Xn+1)}/Z, with β the inverse temperature choose as 1, Z the
normalization constant to make sure that the pXn+1 ’s are probabilities, and Hk(Xn+1) the
Hamiltonian function. In all simulations, all interaction coefficients J in the Hamiltonians
were generated i.i.d. from a uniform distribution weighted by the coefficient 0.2. Also, 100
Hamiltonians were sampled at random for each order k in every experiment.

It is worth mentioning that we have generated (holistic) synergy (75) of specific
orders using multivariate statistics from high-order terms in the system’s Hamiltonian and
the corresponding Boltzmann distribution to point out the failure of faithfulness when
(holistic) synergism is present due to high-order mechanisms.

We have fixed the system to have holistic synergy because one should have special
systems to give raise to non-holistic synergism from low order connections (104, 105).
Nonetheless, the faithfulness failure in the main text is due to high-order behaviors —
the need to go beyond pairwise statistics — which are present undoubtedly when the
data-generating process has higher-order interactions but is not restricted to it.


