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Implementation and simulation of drift-diffusion models for organic
mixed conductor devices

São Carlos
2022





ANDRES DAVID PEÑA UNIGARRO
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Original Version

São Carlos
2022



I AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR
PARTIAL COPIES OF THIS DOCUMENT, BY CONVENTIONAL OR ELECTRONIC
MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED.

Peña Unigarro, Andres David
   Implementation and simulation of drift-diffusion
models for organic mixed conductor devices / Andres David
Peña Unigarro; advisor Florian Steffen  Günther; co-
advisor Gregório Couto Faria -- São Carlos 2022.
   84 p.

    Dissertation (Master's degree - Graduate Program in
Theoretical and Experimental Physics) -- Instituto de
Física de São Carlos, Universidade de São Paulo - Brasil ,
2022.

   1. Finite differences. 2. OECT. 3. Organic
electronics. 4. Drift-diffusion. I. Günther, Florian
Steffen , advisor. II. Faria, Gregório Couto, co-advisor.
III. Title.



 
 
 
 

FOLHA DE APROVAÇÃO 
 
 

Andres David Peña Unigarro 

 
 

Dissertação apresentada ao Instituto de 
Física de São Carlos da Universidade 
de São Paulo para obtenção do título 
de Mestre em Ciências. Área de 
Concentração: Física Teórica e 
Experimental. 
 
 

 
Aprovado(a) em: 09/05/2022 
 
 
 

Comissão Julgadora 
 
 
 

Dr(a). Florian Steffen Günther 

Instituição: (IFSC/USP) 

 

 

Dr(a). Lucas Fugikawa Santos 

Instituição: (UNESP/Rio Claro) 

 

 

Dr(a). Douglas José Coutinho 

Instituição: (UTFPR/Curitiba) 

 





Acknowledgements

The realization of this work was possible thanks to the contributions of many people, to whom

I would like to give my most sincere acknowledgement. Each one was part of this important

process, and contributed directly or indirectly to this step of my academic life. I would first like

to thank my supervisor Florian Günther, who guided throughout this work, and whose support

and dedication made me persist and always seek the best of myself. Much more than an advisor,

he was a friend, and also a counselor, who made the realization and completion of this project

possible.

I want to thanks to Gregorio Faria for the advice and mainly for the trust given to me, for

his constant support during this important step in my life and for giving me the opportunity to

be part of the polymer research group.

I am especially grateful to the São Carlos Institute of Physics for providing the financial

support and making possible the execution of my master’s project.

Furthermore, I am thankful to the friends I made during my master’s period, with which

shared good times in these two years. Although many people were present during this important

time in my life, a special thanks goes to German, James, Rafael, Laureano, Bianca. Thank you

for the support and the good times shared. All the talks and experiences during this time made

my time in Brazil very pleasant and enriching. I will remember every moment shared with

much affection and gratitude.

Finally, I would like to thank my family members. Particularly, to my parents and brother,

who helped me and gave me constant support in all my decisions. Also, for the trust that

my family placed in me during my academic career, which encouraged me to overcome the

challenges that arose during this process. Last but not least, I also want to thank Alejandra

for the constant affection, patience and support with me during this time. Her unconditional

disposition and motivation were key to overcome the different challenges and difficulties that

appeared during this time.





Abstract

PEÑA UNIGARRO, A.D.Implementation and simulation of drift-diffusion models for or-
ganic mixed conductor devices. 2022. 84p. Dissertation (Master of science) - Physics Institute

of São Carlos, University of São Paulo, São Carlos, 2022.

In the past years, organic electrochemical transistors (OECTs) have emerged as potential trans-

ducers in applications that require the conversion of ion fluxes to electronic current. For the

rational optimization and understanding of the fundamentals of OECTs and OECT-based ap-

plications, however, it is essential to have theoretical models capable to predict experimental

data. Within drift-diffusion models, ion flux from the electrolyte into the organic semiconduct-

ing layer is considered to take place due to the action of an electrical field, but also because

of diffusion processes generated by the concentration gradients. The governing equation of

the drift-diffusion model is the Nernst-Planck equation. Thus, in this project, a numerical ap-

proach is followed in order to solve the Nernst-Planck equation in one dimension, and model

the ion migration from the electrolyte to the semiconductor. To evaluate the accuracy of the

implementation, standard boundary conditions used in the literature to solve analytically the

drift-diffusion equations were considered. In doing so, the numerical results were in good

agreement with the analytical solutions, achieving maximum errors in the order of 1%. Aim-

ing to a better representation of OECTs, closed boundary conditions are considered. Here, the

temporal evolution of the concentration profiles showed a convergence to an exponential steady

state distribution, which is in good agreement with the result expected theoretically. A further

situation investigated was the consideration of a non-uniform electric field acting on the system,

assumed to be finite in the electrolyte region and zero in the semiconductor. This consideration

impacts principally the temporal evolution of the concentration in each region. In order to con-

sider the distinct compositions in electrolytes and semiconductors, different values of diffusion

coefficients were introduced for each region. This extension has visible impacts in the time

that the system needs to achieve the steady state. Moreover, the introduction of the chemical

potential gradient as the driving force of diffusion leaded to significant variations in the results

obtained with the model. Here, the so-called “uphill” diffusion reported in the literature was

observed. With the numerical approach, it was possible to consider different types of pulsed

gate voltages, which allowed to simulate the charge and discharge processes of OECTs. For all

cases, oscillatory curves similar to experimental measurements were obtained. Therefore, the

numerical approach allowed to go beyond the analytical description, and develop an extensive

investigation of the impact that different considerations have in the results.

Keywords: Finite differences. Organic electronics. Drift-diffusion. OECT.





Resumo

PEÑA UNIGARRO, A.D.Implementação e simulação de modelos drift-diffusion para dis-
positivos de condutores orgânicos mistos. 2022. 84p. Dissertação (Mestrado em Ciências) -

Instituto de Fı́sica de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Nos últimos anos, os transistores eletroquı́micos orgânicos (OECTs) surgiram como transdu-

tores em aplicações que requerem a conversão de fluxos iônicos em corrente eletrônica. Para a

otimização e compreensão dos fundamentos das OECTs e suas aplicações, é essencial ter mod-

elos teóricos capazes de prever dados experimentais. Nos modelos de drift-diffusion, o fluxo de

ı́ons do eletrólito para a camada semicondutora orgânica é considerado como tendo lugar dev-

ido à ação de um campo elétrico, mas também devido aos processos de difusão gerados pelos

gradientes de concentração. A equação governante do modelo de drift-diffusion é a equação

de Nernst-Planck. Assim, neste projeto, uma abordagem numérica é seguida para resolver a

equação de Nernst-Planck em uma dimensão e modelar a migração iônica do eletrólito para

o semicondutor. Para avaliar a precisão da implementação, foram consideradas as condições

de contorno padrão utilizadas na literatura para resolver analiticamente as equações de drift-

diffusion. Ao fazê-lo, os resultados numéricos obtidos mostraram boa concordância com as

soluções analı́ticas, alcançando erros no ordem de 1%. Visando uma melhor representação das

OECTs, são consideradas as condições de contorno fechado. Aqui, a evolução temporal dos per-

fis de concentração mostraram uma convergência para uma distribuição exponencial no estado

estacionário, que está em boa concordância com o resultado esperado teoricamente. Adicional-

mente, foi considerado um campo elétrico não uniforme atuando sobre o sistema, assumido

como finito na região do eletrolito e zero no semicondutor. Esta consideração afeta principal-

mente a evolução temporal da concentração em cada região. Com o objetivo de considerar as

composições distintas em eletrólitos e semicondutores, foram introduzidos diferentes valores

de coeficientes de difusão para cada região. Esta extensão tem impactos visı́veis no tempo que

o sistema precisa para alcançar o estado estacionário. Além disso, a introdução do gradiente

do potencial quı́mico como a força responsável da difusão dos ı́ons levou a variações significa-

tivas nos resultados obtidos com o modelo. Aqui, a chamada difusão “scendente” relatada na

literatura foi observada. Com a abordagem numérica, foi possı́vel considerar diferentes tipos de

tensões pulsadas no eletrodo da porta, o que permitiu simular os processos de carga e descarga

dos OECTs. Para todos os casos, foram obtidas curvas oscilatórias semelhantes às medidas ex-

perimentais. Portanto, a abordagem numérica permitiu ir além da descrição analı́tica, e desen-

volver uma extensa investigação do impacto que diferentes considerações têm nos resultados.

Palavras-chave: Diferenças finitas. Eletrônica orgânica. Drift-diffusion. OECT.
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1 Introduction

1.1 Conducting Polymers

Polymers are organic macromolecules composed by long carbon-chain, formed by monomeric

units linked through covalent bonds.1 Due to their chemical properties, common polymers,

such as polyethylene, are normally used in the industry as electrical and thermal insulators.2

On the other hand, the so-called semiconducting polymers (SCPs) have gained increasing at-

tention, as they represent a good alternative to their inorganic counterparts.3, 4 The key char-

acteristic in SCPs is an alternating single and double bonds in the backbone, which leads

to the formation of a delocalized π-system that enables the electronic transport through the

material.1, 5 To efficiently increase the electronic transport in these materials, however, the

energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccu-

pied molecular orbital (LUMO) should be reduced. As the polymers can be easily oxidized

(or reduced), doping protocols are commonly used to increase the conductivity (σ) by several

orders of magnitude.6 In some cases, the conductivity exceeded the range of semiconduc-

tors (10−6 S m−1 < σ < 10−2 S m−1), reaching the performance of metallic semiconductors

(102 S m−1 < σ < 108 S m−1).7, 8 Due to the importance of this discovery, Alan MacDiarmid,

Hideki Shirakawa and Alan J. Heeger were honored with the Nobel Prize in chemistry in 2000.9

Since then, the study of SCPs has generated entirely new scientific concepts, as well as the po-

tential for new technologies.

Among the diverse pallet of SCPs, polythiophene and its derivatives are extensively stud-

ied for their environmental, thermal stability and overall good processability.10, 11 These ma-

terials are widely used for the fabrication of non-linear optical devices, photochromic mod-

ules, polymer LEDs, among others.12–17 The highly stable conductive polycation Poly(3,4-

etilenodioxitiophene) (PEDOT) is an important derivative of polythiophene, and it has been

studied intensively in the last decades.18–23 The main problem of this polymer, however, is

its insolubility in water. Nevertheless, this was successfully overcome by the addition of the

polyanion Poly(estirenosulfonate) (PSS) as a counter ion into the PEDOT matrix.10 The poly-

mer PEDOT:PSS (see Figure 1.1(a)) present different properties, such as good film forming

ability, intrinsically high work function and good physical and chemical stability in air.23 Fur-

ther, conductivities from 10−2 S cm−1 up to 103 S cm−1 have been reported in the literature,23

turning PEDOT:PSS in one of the most successfully used materials in terms of practical appli-

cations.23–26 Besides PEDOT:PSS, polymer Poly(3-hexylthiophene) (P3HT) (see Figure 1.1(b))

is another polythiophene derivative with applications focused on its opto-electronic properties.

P3HT is also a prototype material among SCPs, due to its wide availability, low production cost,

well-known morphology and easy processability.10, 27, 28



14

(a) (b)
Figure 1.1 - Chemical structure of (a) PEDOT:PSS and (b) P3HT.
Source: Adapted from GUEYE;29 JIANG.30

1.2 Organic Electronics
The various advances in semiconducting polymers gave rise to a new field of research, named

Organic Electronics.31 This new active subject covers several topics in physics, chemistry, engi-

neering and material science, specifically, materials development, fabrication process, devices

design and modeling, device characterization to name a few.32 Interest in organic electronic

materials, and in particular their potential for low-cost fabrication, led to the development of

applications widely used today such as Organic Field Effect Transistors (OFETs),33, 34 Organic

Solar Cells (OSCs),27 Organic Light Emitting Diodes (OLEDs),35 and recently Organic Elec-

trochemical Transistors (OECTs).36

The OECTs were developed by Wrighton et al.,37 who presented in the 80s the first organic

electrochemical transistor as an alternative to the regular transistors technology existing at that

time. After this first seminal paper, OECTs became very popular in academia, being applied

as the platform base of numerous applications, e.g., circuit elements,38 neuromorphic devices,39

and bioelectronics applications,24 among others.38–43 In an OECT, the SCP is in direct contact

with an electrolyte, in which an electrode called gate is immersed. Two further electrodes

(source and drain) are bridged by the organic semiconductor film, defining the channel, through

which electric current flows. The application of a gate voltage generates ion migration from

the electrolyte to the semiconductor film, which cause variations in the doping state of the

SCP, modifying its conductivity.44, 45 The drain current in the channel between source and drain

electrodes depends on the quantity of mobile charge carriers (i.e., holes or electrons), and can be

modulated by the voltage applied to the gate (VG).36 During OECT operation, two regimes can

be identified. On the one hand, the transient response is observed when doping (or de-doping)

of the semiconductor material is still in progress (the electrolyte still exchange ions with the

polymer bulk). On the other hand, the steady state response occurs when the channel has been

completely charged with ions coming from the electrolyte, and the redox processes inside the

material no longer takes place.

In order to keep improving the performance of organic electronic devices (and SCPs alike),
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however, it is essential to keep exploring and developing new characterization and data process-

ing methods. In terms of modelling efforts, there have been a large number of models seeking

to simulate the process occurring inside on a OECT.46–57 Nevertheless, the rich theory of the

ionic-electronic conductivity is still not well understood. Most models available in the liter-

ature considers the ion flux coming from the electrolyte to the organic semiconductor simply

a consequence of the applied electric field. More recently, several approaches based on drift-

diffusion models were suggested, which consider an additional contribution due to the diffusion

process. This affects ion motion and consequently the flux created in the electrolyte-channel

interface, which is essential to describe the transient behavior of OECTs. In the drift-diffusion

based models, the governing equation is the so-called Nernst-Planck equation, for which an

analytical solution can be defined under certain conditions. The simplifications needed to an-

alytically solve the drift-diffusion equations, however, usually decrease the generality of the

solution, and limit the results to specific cases.58 Thus, the major aim of this work is to develop

a one dimensional numerical model based on drift-diffusion capable of simulate OECTs.

1.3 Objectives & Outline
Considering standard conditions, a numerical approach will be developed in order to solve

approximately in one dimension the equations involved in the drift-diffusion model. Since

boundary conditions are fundamental to properly represent a realistic device, the implementa-

tion of various boundary conditions and their impact on the concentration profile, ion flux at

the electrolyte-semiconductor interface and the drain current must be analyzed. As previously

mentioned, the conditions assumed to obtain an analytic solution do not always represent a

realistic system. Therefore, one objective of this project will be to overcome the limitations

of the analytical description, and investigate the impact that additional considerations have in

the results. In doing so, challenges like numeric errors and an increase in the computational

resources may arise. Thus, it is expected to identify as well the advantages and limitations of

the numerical approach.

The objectives of this work can be grouped into four main parts:

1. To formulate and implement a numerical model capable of solving approximately the

drift-diffusion equations with minimized errors.

2. To validate the numerical results by comparing them with the analytical solutions reported

in the literature.

3. To use the numerical model to investigate situations that go beyond the analytical descrip-

tion.

4. To investigate the viability of numerical solutions and identify the advantages and limita-

tions of this approach.
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This work is organized as follows: In the next chapter, the theoretical relevant background

is briefly presented. In particular, in Section 2.1 the fundamental considerations of drift and

diffusion as well as the equations involved are introduced. Section 2.2 gives an overview on

the different models reported in the literature to describe OECTs. In particular, the Bernards-

Malliaras model, the Faria-Duong model and the Coppedé model are discussed. Further, in

Section 2.3.6 an introduction of numerical methods used to approximate the solution for the

partial differential equations are described. Basic concepts of finite differences and numerical

approaches are also mentioned in this section.

In Chapter 3, details on the computation and implementation are presented and discussed.

Moreover, a brief description of each situation investigated with the model, and the method used

to ensure reliable results are presented in this section.

Chapter 4 summarizes the obtained results and their discussions in line with the objectives

stated in the Section 1.3. Section 4.1 presents a validation of the implementation by consider-

ing standard conditions, for which an analytical solution exist. The accuracy of the numerical

solution and the interpretation of the conditions assumed are also analyzed and discussed. In

Section 4.2, closed boundary conditions are introduced and its effect in the flux at the interface

and the drain current is investigated. Then, in the Section 4.3, Section 4.4, Section 4.5 and

Section 4.6, an analysis of the impact on the results when different versions of the model is

presented. In particular, the conditions implemented include a non-uniform electric field, dif-

ferent diffusion coefficients in the electrolyte and the semiconductor region, the introduction

of the chemical potential and a time dependent gate voltage. Finally, in Chapter 5 the work is

summarized and concluded. Moreover, the perspectives for future works are given.
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2 Theoretical Background

2.1 Ionic Transport

Diffusion

When particles are suspended in a liquid (or gas), their movement constantly undergo small,

random fluctuations due to collisions with the surrounding particles. Such behavior is named

Brownian motion in honor to the biologist Robert Brown, the first scientist to study such fluc-

tuations.59 In a given medium, if a number of particles are subjected to an unbiased Brownian

motion, i.e., there is no preferred direction to the random oscillations, over a period of time,

the particles will tend to spread evenly throughout that medium.60, 61 In order to understand

the random motions inside the system, it would be of interest to study the individual paths of

such particles, within a liquid media. The problem, however, is way too complex for a practical

solution. Through Newton’s laws of motion, for instance, the knowledge of the position and

velocity of each of the particles are needed, which in normal situations is very difficult to ob-

tain. Therefore, it is useful to use approaches that allows treating the system macroscopically.

In 1855, by analogy with the theory of heat conduction, Adolf Fick described the properties of

aqueous diffusion with the formulation of his first law, which is expressed as:62

~JD(r, t) = −D∇ψ(r, t) , (2.1)

where D is the diffusion coefficient and ψ(r, t) is the time dependent concentration. The first

Fick’s law states, therefore, that the diffusion process is a net migration of particles in the op-

posite direction of concentration gradient, i.e., they go from regions of higher concentration

to regions of lower concentrations (see Figure 2.1). Therefore, diffusion can be considered a

macroscopic manifestation of the Brownian motion. In order to ensure the total number of par-

ticles conservation, the expression usually named as Fick’s second law62, 64 can be introduced,

Figure 2.1 - Schematic of diffusion process.
Source: Adapted from KRAUME.63
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which is expressed as: (
∂ψ

∂t

)
= −∇ · ~J . (2.2)

The Fick’s laws are the basis for the treatment of many time-dependent transport problems,

such as the gas exchange through cell membranes65 or charge transport inside electrochemical

systems,66 and are normally used to determine diffusion coefficients.64

Drift

According to Newton’s equation, a particle changes its movement upon an applied force. For in-

stance, in the presence of an electric field, charged species will move in response to the Coulomb

force exerted by the field. This drift flux can be expressed as:

~JE(r, t) = χzeψ(r, t) ~E(r) , (2.3)

where χ is the ionic mobility, ψ the ion concentration, z the charge number (or valence) of

the specie studied, e the charge of an electron and ~E the field applied. Note that with σ =

χzeψ(~r, t), Equation (2.3) resamples Ohm’s law.

Nernst-Planck Equation

In general, a complete description of the transport of charged particles would have contributions

of diffusion and drift factors. In this case, the governing equation is the so-called Nernst-Planck

equation,67, 68 which for a charged specie i is given by:

~Ji = J iD + J iE = −D∇ψi + χzeψi ~E . (2.4)

Although Nernst recognized that mobilities and diffusion coefficients present similar proper-

ties, it was only until 1905 that an expression relating diffusion coefficient D and ionic mobility

χ was established by Albert Einstein.69 Such expression is given by:

D = χkBT
a. (2.5)

where kB is the Boltzmann constant and T a the absolute temperature. In consequence, Equa-

tion (2.4) can be written as:

~Ji = J iD + J iE = −D∇ψi +
zeD

kBT a
ψi ~E . (2.6)

In this description, the flux density has contributions from the diffusion processes and the

drift due to the electric field. Equation (2.6) along with Fick’s second law (see Eq. (2.2)) form

a system of nonlinear partial differential equations that compose a set of equations describing

the basis of drift-diffusion theory.53, 70, 71 The substitution of Eq. (2.6) into Eq. (2.2), leads to
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the governing equation for drift-diffusion, which in one dimension is given by:

∂ψi
∂t

= D
∂2ψi
∂x2

− β ∂

∂x
(ψiE) , (2.7)

where the parameter β is defined as

β =
zeD

kBT a
. (2.8)

Equation (2.7) is a well-known differential equation in the literature, and its analytical solu-

tion can be calculated for different initial and boundary conditions.58

Chemical potential

In thermodynamics, the chemical potential accounts for the variation in a thermodynamic state

function when changes in the number of molecules are produced.72 Depending on the experi-

mental conditions, the characteristic thermodynamic state function is either Gibbs energy (G),

enthalpy (H), Helmholtz energy (A), or the internal energy (U). Thus, for a system with N

components, the chemical potential µi of a species i may be expressed as:73

µ ≡
(
∂G

∂ni

)
T a,p,nj 6=i

=

(
∂A

∂ni

)
T a,ν,nj 6=i

=

(
∂U

∂ni

)
s,ν,nj 6=i

=

(
∂H

∂ni

)
S,p,nj 6=i

, (2.9)

where ni is the number of moles of specie i , T a the absolute temperature, P the pressure, S the

entropy and ν the volume. Using this description, the changes in the free energy of a system

due to addition or subtraction of particles can be investigated. For ideal systems, the chemical

potential may be written in function of the concentration as:

µ(x, t) = µ0(x) +RT a ln(ψ(x, t)) , (2.10)

where µ0 is the reference or standard chemical potential.72 In physics, rather than determine

the absolute value of a potential, e.g., electrical or gravitational, in a given state, the potential

difference in relation to a reference state is measured or calculated. Therefore, the chemical po-

tential is calculated considering µ0 as the reference value. When pure elements and compounds

at 298 K and 1 bar are considered, the reference potential can be considered equal to zero.72

Initially, in the diffusion theory developed by Fick, it was established that the diffusion flux

depends on the concentration gradient.62 In a more accurate description, however, one should

consider that the diffusion processes are driven by the chemical potential gradients instead.74, 75

In such description, the flux of the specie i due to diffusion in one dimension is given by:

J iD = −Bψi
∂µi
∂x

, (2.11)

where B is a constant related to the mobility of the particles.72 Thus, the gradient of the chemi-

cal potential is known to be the driving force for pure diffusion. Therefore, at equilibrium, i.e.,
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J iD = 0, the chemical potential µi must achieve a constant value throughout the system. The

application of the derivative to the Equation (2.10) leads to:

J iD = −BRT a∂ψi
∂x

. (2.12)

By analogy with the first Fick’s law (see Equation (2.1)), it is concluded that D = BRT a.

Thus, a relationship between the first Fick’s law, and the phenomenological treatment of a

transport process is found through a chemical potential formulation. In drift-diffusion case, the

one dimensional flux generated for the motion of the charged specie i is given by:

Ji = −Bψi
∂µi
∂x

+
zeD

kBT a
ψiE . (2.13)

Using the definitions R = NAkB, F = eNA (where NA is the Avogadro’s number), and the

relation D = BRT a, Equation (2.13) can be expressed as follows:

Ji = − D

RT a
ψi
∂µi
∂x

, (2.14)

where µi is the electrochemical potential defined as:

µi(x) = µi(x) + eFV (x) . (2.15)

Here, the derivative of the electric potential V (x) defines the electric field applied to the system.

2.2 Organic Electrochemical Transistors

2.2.1 Working mechanism

The invention of the transistor represents an inflection point in the history of the microelec-

tronics. Its optimization and miniaturization led to the integrated circuits, which are actually

present in almost every electronic device. With the advancing in the organic electronics, along

the researches related to the conducting polymers, different options were developed in order to

complement the inorganic components in the transistors. As outlined in the introduction, a tran-

sistor is a device in which a current can be modulated via an electrical signal. In an OECT, this

modulation is achieved making use of the ability of conjugated polymers to change the electrical

conductivity by doping.5 The typical architecture of an OECT is depicted in Figure 2.2.

In regular OECTs, an organic semiconductor material interconnects two electrodes, which

are usually referred to as source and drain. This forms the channel through which an electric

current ID flows once a potential difference VD is applied between these two contacts. The or-

ganic semiconductor is in contact with an electrolyte, in which a third electrode, so-called gate,

is immersed. Typically, an electrolyte is a liquid or a viscous gel that possesses mobile ions.

Upon an application of a gate voltage (VG), ions migrate from the electrolyte into the organic
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Figure 2.2 - Typical structure of an OECT.
Source: By the author.

material, resulting in variations in the doping state of the conjugated polymer. Consequently,

the channel conductivity is changed depending on VG.

In general, there are two operation modes of OECTs, depending on the initial doping level

of the SCP. A pristine conjugated polymer, such as P3HT, for instance, possesses a low con-

ductivity due to its small charge carrier concentration. Upon application of a gate voltage, ions

from the electrolyte swells the bulk of the SCP, rising its doping level, yielding an increase

in conductivity and consequently an electric current.76, 77 This operation mode of OECTs are

refereed to as accumulation mode OECTs.36 On the other hand, a pre-doped organic semicon-

ductor can also be used. In this case, its doping state is reduced when a gate voltage is applied.

One famous representative of such a material is the p-type semiconductor PEDOT:PSS, which

is used in many types of organic electronic devices.18–21, 42, 43 In this polymer blend, the conju-

gated polymer PEDOT is in a p-doped state, counter balanced by the negative PSS units (see

Figure 1.1(a)). Such an OECT is referred to as depletion mode OECT (Figure 2.3), which due to

its wide use, represent one of the most studied types of OECTs.36 Although the models reported

in the literature mostly describe depletion mode OECTs, the theory can be easily extended to

(a) ON state (b) OFF state
Figure 2.3 - Representation of (a) ON and (b) OFF states for an OECT working on depletion mode.
Source: By the author.
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the description of devices working in accumulation mode as well.71 Hence, the focus of this

work will be mainly on the description of depletion mode OECTs.

In order to model an OECT, it is meaningful to reduce the spatial degrees of freedom. The

simplification to a two-dimensional representation, as depicted in Figure 2.2, is rather straight-

forward. Nevertheless, describing this scenario remains a complex problem. For this reason,

more practical approach have already been discussed in literature, where the problem is fur-

ther reduced to one dimension.44, 53, 54, 56, 78–80 In 2007, D. Bernards and G. Malliaras44 reported

the first of such formulations, which became the standard capacitive models broadly used to

extract device and materials parameters for OECTs in the steady state. Later, G. C. Faria and

D. Duong extended the concept introduced by Bernard and Malliaras in order to improve the

description of transient behavior of OECTs.56 Both of these models, however, mostly consider

the ion migration due to the applied gate voltage, but do not consider diffusion processes. More

refined models, which consider both drift and diffusion processes are recently formulated, es-

pecially to describe the transient characteristics of OECTs.51, 53, 81 For example, Coppedé et al.

used an analytical solution of the drift-diffusion equation to obtain a model where the ion dif-

fusion coefficient remained the only unknown parameter. Fitting experimental data with their

model, allowed to investigate the impact of different ionic species in the output characteristics

of OECTs.53 Nevertheless, the Coppedé’s model is limited by the boundary conditions used

to solve analytically the drift-diffusion equation, which do not represent properly an OECT.

Although several advances have been developed in the field, the rich nature of the mixed con-

duction in conjugated polymers is still far from been completely understood. Therefore, further

research is needed to articulate design parameters for high performance OECT materials. In the

following, the Bernards-Malliaras model, the Faria-Doung model and the Coppedé model will

be reviewed in more detail.

2.2.2 Bernards-Malliaras model

Although other device models were previously proposed,47, 48 the Bernards-Malliaras (BM)

model was one of the first capacitive models that is largely used up to today for extracting

characteristic parameters of OECTs. The starting point of the model is considering Ohm’s

law82 to express the current density in the semiconducting channel:

J(y) = σ
dV (y)

dy
= eχeρ

dV (y)

dy
. (2.16)

Here, σ is the conductivity, e is the elementary charge, χe and ρ are the mobility and den-

sity of the charge carriers, i.e., holes or electrons, respectively. Moreover, V (y) is the electric

potential along the transistor channel.

In a PEDOT:PSS based OECTs, the semiconducting material possesses an intrinsic hole

concentration ρ0. Hence, without gate voltage (VG), electronic current can flow through the

channel. When VG > 0, ions are injected from the electrolyte into the semiconductor volume
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ν, compensating the PSS anions in the channel. To maintain the electrical neutrality, the film

is de-doped, which means that the holes extracted are not replenished. Therefore, ρ can be

expressed in dependence of the total charge Q of cations that migrates from the electrolyte to

the channel by the following empirical expression:

ρ(Q) = ρ0(1− Q

eρ0ν
) . (2.17)

In the case when VG = 0, meaning that Q = 0, Eq. (2.17) yields ρ = ρ0, i.e., the material

has its intrinsic conductivity. In the limit when Q = qρ0ν, the polymer is fully de-doped and

the charge density vanishes. Equation (2.17) can be inserted in Eq. (2.16), leading to:

J(y) = eχeρ0(1− Q

eρ0ν
)
dV (y)

dy
. (2.18)

Steady State

With the aim to find an expression for Q(Vg), the Bernards-Malliaras model divide the semi-

conductor channel into slices of size dy. This reduces the 2D picture into a simple 1D problem.

Each slice is represented by a simple equivalent circuit composed of a resistor Re and a capaci-

tor Cd in series to describe the ionic contribution of the device properties (see Figure 2.4). The

former describes the ionic resistivity of the electrolyte, and the latter is related to the accumu-

lation of charge in the channel. The amount of charge Q of ions entering the channel upon the

application of a gate voltage Vg can be estimated by:

Q(y) = Cd∆V (y) = cdWTdy[VG − V (y)] , (2.19)

where W is the channel width, T is the film thickness and ∆V is the potential difference be-

tween the gate electrode and transistor channel. Further, as the ions are absorbed in the volume,

it is more accurate to work with the volumetric capacitance cd ≡ Cd/v.83

Figure 2.4 - Equivalent circuit considered in the Bernards-Malliaras model.
Source: By the author.
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In electrochemical systems, a minimum value of voltage is necessary for oxidation (or re-

duction) to occur, named as threshold voltage (Vth). Bernards and Malliaras did not include this

in their model, since Vth is very small for PEDOT:PSS, and therefore, negligible. In devices

based on other kinds of materials, however, Vth might be relevant to consider.70, 71, 84 In order to

be more general, Equation (2.19) can be extended to:

Q(y) = cdWTdy[VG − Vth − V (y)] . (2.20)

Incorporating Eq. (2.20) in Eq. (2.18), the governing equation for the steady-state is obtained

as follows:

Jss(y) = eχeρ0

[
1− (VG − Vth − V (y))

Vp

]
dV (y)

dy
, (2.21)

where Vp ≡ eρ0
cd

is the pinch-off potential difference related with the saturation point of the

transistor and V (y) the electric potential inside the channel. In order to calculate the current at

the steady state Iss, the integration of the Equation (2.21) over the length of the semiconductor

is calculated, leading to:

Iss = G

[
1−

(VG − Vth − 1
2
VD)

Vp

]
VD . (2.22)

Here, G ≡ WT eχeρ0
L

is the intrinsic conductance of the organic semiconductor film, which

accounts for the ability of the material to conduct an electrical current. Equation (2.22) is the

Bernards-Malliaras equation for the OECT current operating in the steady state. The expres-

sions derived in BM model has been proven useful for its simplicity, and are commonly used to

extract device parameters and to fit device characteristics such as the merit factor χecd.85 Nev-

ertheless, the model fails to describe correctly the output characteristics of OECTs, principally

due to the square dependence on VD. The relation obtained for the source-drain current do not

lead to a constant current after the saturation. Thus, the equations are only valid until a satu-

ration voltage V sat
D defined by the vertexes of the parabola. Moreover, the model only depends

on the geometry of the semiconductor channel, but is completely independent of the nature and

characteristic of the electrolyte. Thus, any alteration in the electrolyte will not be reflected in

the principal results obtained with the model.

Transient Behavior

When VG is suddenly changed, the cations migrate from the electrolyte to the semiconductor,

and therefore, the channel charge variate as de-doping takes place. This process, however, takes

time. The OECT dynamic to reach a new steady state is called transient behavior. Thus, in

this situation, time-dependent current contribution associated with doping/de-doping processes

must be added to the current, which reflects the extraction of the holes that are not re-injected at

the source. For simplicity, in the model, the spatial variation of voltage and hole density within
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the channel is neglected. Instead, a correction factor f is introduced to account for the error

made when neglecting the spatial variation of the doping/de-doping process.44 Thus, under

these assumptions, the current density is reformulated as:

J(t) =
I(t)

WT
≈ eχeρ(t)

VD
L

+ fρL
dρ(t)

dt
, (2.23)

where ρ(t) is now the temporal dependent charge density and VD
L

the average electric field

within the channel. Depending on the magnitude of VD and VG, the ion flux coming from the

electrolyte into the channel is split between the source and drain electrodes. Normally, the

current value captured by the gate electrode defines the factor f , which usually ranges from 0

to 1
2
. In order to calculate the current for the depletion mode case, the Eq. (2.17) is plugged into

Eq. (2.23), obtaining:

I(t) = I1 + I2 = G

(
1− Q(t)

eρ0ν

)
VD − f

dQ(t)

dt
, (2.24)

where, Q(t) the number of ionic charges that the semiconducting channel uptakes over time.

For further developments, the model assumes two independent types of measurements: con-

stant gate current and constant gate voltage. The consideration of a constant gate current leads

to dQ(t)
dt

= Q(t)
t

= IG. This assumption, however, is an oversimplification, which may lead to

errors in the model results. Supposing that the transit time is τe = L2

χeVD
, allows replacing VD in

Equation (2.24), leading to:

I(t) = I0 − χe
VD
L2
Q(t)− fIG = I0 − t

IG
τe
− fIG , (2.25)

where I0 ≡ GVD is the initial source-drain current. Bernards and Malliaras applied the Equa-

tion (2.25) to constant gate current measurements and were able to extract the transit time τe of

their material.44 As discussed early, in the results obtained, intrinsic properties of the device,

such as the electrolyte nature and the electric field are not considered. In addition, the model

does not fully fit the experimental drain currents nor allows the quantitative extraction of useful

device characteristics and ionic impedances.71

2.2.3 Faria-Duong model

Equivalent circuits have been extensively used as a helpful tool in electronics to fit currents

and impedance responses of a variety of devices. In 2017, G.C. Faria and D. Duong proposed

an improvement to the transient Bernards-Malliaras model with the introduction of additional

parameters in the equivalent circuit (see Figure 2.5(a)). The so-called Faria-Duong model56

considers that the drain current ID(t) can be described as a composition of three contributing

currents (see Figure 2.5(b)), thus, ID may be defined as:

ID(t) = I0 − f ∗ IG(t) + ∆Ich = I0 − f ∗ IG(t)± gmVch(t) . (2.26)
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(a) (b)
Figure 2.5 - (a) Equivalent circuit considered in the model. (b) Representation of the three contributing currents

composing ID.
Source: Adapted from FARIA.56

In Eq. (2.26), I0 is the initial drain current before the application of a gate voltage. IG is

the ionic current moving from the gate electrode to the source and drain electrodes. Here, as

in the Bernards-Malliaras model, the f factor represents the fraction of ionic current that the

drain electrode uptakes. In addition, ∆Ich is the change in the channel current, gm = ∂ID
∂VG

the transconductance and Vch(t) the potential difference in the channel due to the doping/de-

doping processes of the active polymer. When a pulse is applied to the gate electrode, an ion

flux is generated in the direction of the polymeric film, therefore, creating the current IG. The

Figure 2.5(b) shows the representation of each contribution to the drain current.

For a given device, the values of I0 and gm can be obtained experimentally. To determine

the parameters IG(t) and Vch, however, the Faria-Duong model uses an equivalent circuit to rep-

resent the OECT. In difference to the Bernards-Malliaras model, the equivalent circuit proposed

uses a capacitor Cd in parallel with a resistor Rd. In the model, the capacitor and the resistor are

introduced in order to describe the electrolyte-channel interface and the possibility of charge

exchange between the ionic specie and the conjugated polymer, respectively. Additionally, a

resistor Rs is used to represent the resistance of the electrolytic solution. In their work, the

authors use the common approach of circuit analysis based on Laplace transform.86 Subse-

quently, impedance circuits composed by time dependent voltages and currents are converted to

the frequency domain s. Hence, the problem can be simplified and consequently solved using

algebraic manipulations, leading to:

Vch =
V0Rd

Rd +Rs

[
1− exp(−Rd +Rs

CdRdRs

t)

]
IG =

V0

Rd +Rs

+
V0Rd

Rs(Rd +Rs)
exp(−Rd +Rs

CdRdRs

)t

ID =I0 +
V0(gmRd − f)

Rd +Rs

− V0Rd(gmRs + f)

Rs(Rd +Rs)
exp(−Rd +Rs

CdRdRs

t) .

(2.27)
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Here, V0 is the value of the gate voltage applied. Faria et al. used Equation (2.27) to fit the

transient response of PEDOT:PSS-based OECT. The model allowed to extract the values of Rs,

Rd, Cd, and results useful in the determination of the f factor. Although the model allow to

accurately extracting device parameters, some conditions are not considered, e.g. the electric

field inside the device and the diffusion of ions into the channel.

2.2.4 Coppedé model

The OECT models introduced so far, mostly describe the ion migration from the electrolyte

to the semiconductor by capacitive models. The actual process, however, occurs due to the

drift and the diffusive movements of ions. Considering a constant electric field E and the same

diffusion coefficient D in all regions, the temporal evolution of the concentration is defined by

the Nernst-Planck equation (see Section (2.1)), which in one dimension is expressed as:

∂ψ

∂t
=
∂J

∂x
= −D∂

2ψ

∂x2
−D zeE

kBT a

∂ψ

∂x
. (2.28)

Recently, Coppedé et al. proposed a one dimensional model (see Figure 2.6(a)) that is

based on assuming specific initial and boundary conditions, for which an analytical solution of

Eq. (2.28) exists.58 In particular, the following conditions are considered:

ψ(x, t = 0) =ψ0 ; 0 < x < l

ψ(x = 0, t) =0 ; t > 0

ψ(∞, t) =0 ; t > 0 ,

(2.29)

Note that these conditions represent a special case for a more general issue (see Appendix A).

(a) (b)
Figure 2.6 - (a) Schematic of the system considered. (b) Temporal evolution of the concentration in the device.
Source: Adapted from COPPEDÉ.53
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In this situation, the solution is given by:58

ψ(x, t) =ψ0(Υ(x, t)− Ω(x, t))

Ω(x, t) =
1

2
erf

[
x− l − γt

2
√
Dt

]
+

1

2
eγx/Derf

[
x+ l + γt

2
√
Dt

]
Υ(x, t) =

1

2
erf

[
x− γt
2
√
Dt

]
+

1

2
eγx/Derf

[
x+ γt

2
√
Dt

]
,

(2.30)

erf(t) =
2√
π

∫ t

0

e−τ
2

dτ , (2.31)

where l is the electrolyte thickness and γ = zeD
kBT aE. The solution of Eq. (2.28) allow to de-

termine the total amount of charge Q(t) transported into the OECT semiconductor, which is

calculated from the flux at the electrolyte-semiconductor interface integrated over time. There-

fore, the charge is given by:

Q(t) = NAeS

∫ t

0

J(x = l, τ)dτ = NAeS

∫ t

0

(
γψ(l, τ)−D∂ψ

∂x
|x=l

)
dτ . (2.32)

Here NA is the Avogrado’s number, e the fundamental charge and S the cross-sectional

area of the electrolyte. Thus, from the Equation (2.32), it is established the dependence of

the charge entering into the semiconductor on the diffusion coefficient. Finally, in order to

describe the transient behavior of the drain current, the Bernards-Malliaras assumption is used

(see Section (2.2.2)), which is expressed as:

I(t) = G

(
1− Q(t)

eρ0ν

)
VD − f

dQ(t)

dt
, (2.33)

In their work, Coppedé, et al. used the model to calculate the density of ions injected into

the organic semiconductor (see Figure 2.6(b)). Further, data fitting, allowed them to investigate

different ionic species. This model, however, fails in the realistic representation of OECTs. For

example, the conditions expressed in Eq. (2.29) describe a situation where the boundaries of the

system are defined at the infinity, which is not the case observed experimentally. Additionally, a

constant electric field and the same diffusion coefficient in all regions must be taken into account

to have a solvable problem. Therefore, the analytical solution presented by Coppedé, et al. is

only capable of describing specific systems, limited by the considerations mentioned above.

Hence, in order to correctly modeling OECTs, additional methods must be implemented.

2.3 Numerical Methods

2.3.1 Partial Differential Equations

When processes in nature are modeled, the mathematical formulation often is expressed by

means of partial differential equations (PDEs). In order to define a PDE, let u = u(x1, x2, ..., xn)



29

be a function of n independent variables x1, ..., xn. A PDE, therefore, is an equation that may

contain the independent variables x1, ..., xn, the unknown function u and its partial derivatives

up to some order.87 In a general form, the PDEs can be expressed as:

F (x1, ..., xn, u, ux1 , ..., uxn , ux1x1 , ..., uxnxn) = 0 , (2.34)

where F is a given function and uxj = ∂u/∂xj , uxixj = ∂2u/∂xi∂xj (i, j = 1, ..., n) are the

partial derivatives of u. The order of PDE is defined by the order of the highest derivative which

appears in the equation. To solve the equation, it is necessary to find a function u such that the

substitution of u and its derivatives in Equation (2.34) fulfill the identity. Some examples of

PDEs used commonly in physics are:

utt − uxx =0 (wave equation) (2.35)

ut − uxx =0 (diffusion equation) (2.36)

uxx + uyy =0 (Laplace equation) (2.37)

In order to obtain a unique solution of PDE, a set of supplementary conditions must be

provided to determine the arbitrary functions, which results from integration of the PDE.87, 88

The supplementary conditions can be classified as boundary or initial conditions. An initial

condition is a requirement for which the dependent variable is specified at some initial state.

On the other hand, in boundary conditions, the dependent variable or its derivative must satisfy

well-defined requirement on the boundary of the domain of the PDE. Although the boundary

conditions used in science and engineering can take various forms, in general can be classified

under three types: Dirichlet, Neumann and Robin boundary conditions.89 If the dependent

variable along the boundary is defined, it is known as the Dirichlet type. When the gradient

of the dependent variable is specified along the boundary, it is called a Neumann boundary

condition. In the case where the condition is composed by a linear combination of the Dirichlet

and Neumann types, it is known as the Robin type.

In many cases, defining an analytical solution of the PDEs is not possible. Further, the

situations in which it is possible to obtain an analytical result are usually limited by specific

conditions, i.e., exist different solutions for different boundary or initial conditions. Therefore,

a viable alternative in order to solve PDEs is to use numerical methods. Numerical schemes

that are commonly used can be distinguished into three main classes: finite difference (FD)

methods, finite volume (FV) methods, and finite element (FE) methods. In the FD methods, the

solution domain is represented by a grid. At each grid point or node, the partial derivatives are

replaced by approximations in terms of the nodal values of the functions. On the other hand, in

the FV and FE methods, the governing equations are integrated over a finite number of volumes

or cells. As in this project we shall use the FD method for one dimension, some basic theory of
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this approach will be introduced in the following sections.

2.3.2 Grid Generation

The principal idea behind any numerical method is to discretize the domain where the system is

considered. In the FD description, the locations at which the variables are going to be calculated

are given by a discrete representation (grid) of the region defining the system domain. In this

case, the grid points are distributed along grid lines similarly to a Cartesian grid (see Figure 2.7).

Depending on the boundary conditions and the functions to be differentiated, uniformly or non-

uniformly spaced grid can be used to improve the accuracy of the approximations.

2.3.3 Finite Differences

Finite differences method can be considered to be the oldest approach for numerical solution of

PDEs, believed to have been introduced by Euler in the 18th century.90 In the FD formulation,

a relation between the variable value at each node and those at some of the neighboring nodes

provide the approximation for the derivative at that point. At the boundary nodes, some con-

ditions need to be defined in order to specify its values. Aiming to understand the idea behind

finite difference approximation, the derivative of a function f is defined as:(
∂f

∂x

)
x=xi

= lim
∆x→0

f(xi + ∆x)− f(xi)

∆x
. (2.38)

A graphical interpretation of Eq. (2.38) is presented in Figure 2.8 (black dashed line). There-

fore, the first derivative ∂f
∂x

evaluated at xi is the slope of the line tangent to the curve f(x) at that

point. In the FD description, three possible approximations for the derivative can be defined,

which for an evenly spaced grid are expressed in Eq. (2.39). The forward difference approxima-

tion calculates the derivative at the point xi by considering the slope of a line joining the point

Figure 2.7 - Example for a 2D Cartesian grid for finite differences.
Source: By the author.
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Figure 2.8 - Graphic representation of the derivative and its approximations.
Source: By the author.

xi and xi+1. If the points xi and xi−1 are considered, the derivative approximation is called

backward difference. Finally, the central difference takes in consideration the points xi+1 and

xi−1, lying on the opposite sides of the place at which the derivative is approximated. In the

Figure 2.8 can be observed that depending on what approximation is being used, the accuracy

of the result may change. Further, if an improvement in the quality of the approximation is

desired, the grid must be refined, i.e. additional points that are closer to each other must be

taken into account.90

(
df(xi)

dx

)
x=xi

≈


f(xi+1)−f(xi)

xi+1−xi Forward Difference
f(xi)−f(xi−1)

xi−xi−1
Backward Difference

f(xi+1)−f(xi−1)
xi+1−xi−1

Central Difference

(2.39)

In this project a non-uniform grid is implemented, therefore, the approximations for the

derivatives provided by the FD method use a variable ∆x.

2.3.4 First Derivative

Given a continuous differentiable one dimensional function f(x), the Taylor series in the vicin-

ity of xi can be expressed as:

f(x) = f(xi) +
∞∑
n=1

(x− xi)n

n!

(
dnf

dxn

)
x=xi

. (2.40)

Making use of the notation ∆xi+1 = xi+1 − xi and ∆xi = xi − xi−1 (see Figure 2.8), to

calculate the Taylor series for f(xi + ∆xi+1) and f(x−∆xi) about xi, the following results are
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obtained:

f(xi + ∆xi+1) =f(xi) +
∞∑
n=1

(∆xi+1)n

n!

(
dnf

dxn

)
x=xi

(2.41)

f(xi −∆xi) =f(xi) +
∞∑
n=1

(−1)n
(∆xi)

n

n!

(
dnf

dxn

)
x=xi

. (2.42)

The system composed by Eq. (2.41) and Eq. (2.42) can be solved to obtain an expression for
∂f
∂x

. Thus, the first derivative for a non-uniform grid, using central differences is defined as:(
df(x)

dx

)
x=xi

=
f(xi + ∆xi+1)(∆xi)

2 + f(xi)[(∆xi+1)2 − (∆xi)
2]− f(xi −∆xi)(∆xi+1)2

(∆xi+1)(∆xi)[∆xi + ∆xi+1]

− ∆xi+1∆xi
6

(
d3f(x)

dx3

)
x=xi

+ ...

(2.43)

The previous expression is exact if all the terms of the Taylor series on the right side are
considered. The higher order derivatives, however, are unknown. As the terms in the expansion
depend on the product (∆x)n

n!

(
∂nf
∂xn

)
(n = 3, 4...∞), and ∆x is usually a small quantity, the

higher order terms will be small if the derivatives of order greater than one are locally small.
Therefore, truncating Eq. (2.43) after the first order terms, leads to the approximation of the
first derivative as follows:(

df(x)

dx

)
x=xi

≈ f(xi + ∆xi+1)(∆xi)
2 + f(xi)[(∆xi+1)2 − (∆xi)

2]− f(xi −∆xi)(∆xi+1)2

(∆xi+1)(∆xi)[∆xi + ∆xi+1]
.

(2.44)

For the latest result, two data points are used to define the slope, which are xi + ∆xi+1 and

xi − ∆xi. In this case, the approximation possesses a second-order error. If more points are

considered, however, a result with a major order of accuracy may be obtained.90 Further, note

that if an evenly spaced grid is implemented, i.e. ∆xi+1 = ∆xi, Eq. (2.44) reduces to the central

difference relation expressed in Eq. (2.39).

2.3.5 Second Order Derivative

Many of the governing equations that describe physical processes like the heat equation, or the
wave equation involve second order partial derivatives. Therefore, aiming to find an expression
for the second order derivative, the Eq. (2.41) and Eq. (2.42) are used again. This time, the
system must be solved for ∂2f

∂x2
. Thus, the second derivative is expressed as:(

d2f(x)

dx2

)
x=xi

=
f(xi + ∆xi+1)(∆xi)− f(xi)(∆xi+1 −∆xi) + f(xi −∆xi)(∆xi+1)

1
2(∆xi+1)(∆xi)[(∆xi+1) + (∆xi)]

− ∆xi+1 −∆xi
3

(
d3f(x)

dx3

)
x=xi

+ ...

(2.45)
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The leading truncation error in this case is first order, but vanishes when the spacing be-
tween the points is uniform (∆xi+1 = ∆xi), turning, in this case, to a second-order accurate
approximation.90 By doing a truncation of the series, the approximation of the second order
derivative using central difference approximation is:(

d2f(x)

dx2

)
x=xi

≈ f(xi + ∆xi+1)(∆xi)− f(xi)(∆xi+1 −∆xi) + f(xi −∆xi)(∆xi+1)
1
2(∆xi+1)(∆xi)[(∆xi+1) + (∆xi)]

. (2.46)

Therefore, Eq. (2.44) and Eq. (2.46) provide the first and second derivative for the inner

points of the domain respectively. For the grid points located at the boundaries, additional

boundary conditions must be introduced in order to establish their values.

2.3.6 Numerical method to Solve PDEs
Various techniques can be used to solve the PDE that describes drift-diffusion processes. The
model developed in this work, however, is based on the so-called explicit method. Therefore,
it is appropriate to introduce and define the general aspects of this approach. In order to ap-
proximate a solution for the Nernst-Planck equation (see Eq. (2.7)), different approximations
for spatial and temporal derivatives are used. Here, the derivatives calculated for the points of
the spatial domain will be approximated using the central difference expressions derived pre-
viously. As mentioned earlier, in order to guarantee the correct representation of the system,
additional conditions must be imposed for the points located at the boundaries. On the other
hand, although exists several methods to evaluate approximately the temporal derivative, the
computational efforts needed to develop the calculation may increase, leading to larges times
to obtain a solution. Thus, results convenient to use the forward difference approximation (see
Eq. (2.39)) for temporal derivatives. Hence, when a constant electric field E is considered,
Eq. (2.7) can be approximated using finite differences as:

ψj+1
i − ψji

∆t
=D

ψji+1(∆xi)− ψji (∆xi+1 −∆xi) + ψji−1(∆xi+1)
1
2(∆xi+1)(∆xi)[(∆xi+1) + (∆xi)]

− γ
ψji+1(∆xi)

2 + ψji [(∆xi+1)2 − (∆xi)
2]− ψji−1(∆xi+1)2

(∆xi+1)(∆xi)[∆xi + ∆xi+1]
.

(2.47)

Here, γ = zeD
kBT aE, and the notation ψji is used to refer the concentration ψ(xi, tj) at the grid

point xi and time tj (i = 1, 2, ..., Nx; j = 0, 1, 2, ...Nt). Equation (2.47) can be solved for the
unknown ψj+1

i , leading to:
ψj+1
i = ηiψ

j
i+1 + αiψ

j
i + λiψ

j
i−1 , (2.48)

where ηi,αi and λi are parameters composed of D, γ, ∆xi, ∆xi+1 and ∆t. Note that in the

system represented by Eq. (2.48) there is one equation for each grid point xi. Besides, the con-

centration ψj+1
i defined at time tj+1 is calculated from the previous solution ψji , i.e. the solution

at any time is calculated directly from the concentration at the previous time step. To start the
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Figure 2.9 - Representation of the explicit method.
Source: By the author.

solution, therefore, an initial condition must be specified. When a problem approximated by

finite difference expresses the unknown in terms of the known values, it is defined as explicit

method (see Figure 2.9).

Equation (2.48) can be written in matrix notation as follows:

ψj+1
1

ψj+1
2

.

.

.

ψj+1
Nx−2

ψj+1
Nx−1


=



η1 α1 λ1 0 0 . . . 0 0

0 η2 α2 λ2 0 0 . . . 0

.

.

.

0 . . . 0 0 ηNx−2 αNx−2 λNx−2 0

0 0 . . . 0 0 ηNx−1 αNx−1 λNx−1





ψj1

ψj2

.

.

.

ψjNx−2

ψjNx−1


(2.49)

which in an abbreviated form will be:

sj+1 = Asj . (2.50)

Here, the vector sji represents the concentration at time tj . The values of ψ0 and ψNx that

represent the solution at the left and right boundary, respectively, are given at any time by

the boundary conditions imposed. In difference with Eq. (2.48) where scalar products and

additions have to be calculated to obtain the solution at each point xi, Eq. (2.50) allow estimate

ψj+1 with a single matrix multiplication. As computationally is more efficient to develop matrix

operations, expressing the problems as Eq. (2.50), optimizes the computational calculations and

reduce the time needed to obtain the solution.

It is important to mention that numerical solutions of the PDEs are only approximated so-

lutions. Therefore, the results obtained numerically may be affected due to errors related to

discretization or those that might be introduced in the course of development of the solution

algorithm. Moreover, numerical implementations should have certain properties such as stabil-

ity,91 which ensures that the solution method does not magnify the errors of the implementation.

In general, many solutions schemes require the time step be smaller than a certain limit, which

means that the value of ∆t is not an independent, arbitrary choice. The parameter ∆t, therefore,

is restricted to be equal to or less than a certain value prescribed by a stability criterion.91 If
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∆t takes values larger than the limit imposed by the stability condition, the calculations will

quickly go unstable, obtaining results such as infinity values. For problems influenced by the

boundary conditions, however, the stability is usually difficult to demonstrate. Thus, in order

to have a qualitative idea of the stability condition for the numerical implementation developed

in this work, the stability criterion for a pure diffusion process considering a uniform grid is

investigated in Appendix B. Here, the values of ∆t are found to be dependent on ∆x and the

diffusion coefficient D.
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3 Numerical model

As mentioned in Section 2.1, the analytical solution of the drift-diffusion equations have sig-

nificant limitations associated to the boundary conditions. Furthermore, to define a solution

in various situations, such as, non-uniform electric field, non-constant diffusion coefficient,

time dependent gate voltage, among others, is not possible. Therefore, exploring the numerical

approach to overcome the previously mentioned limitations represent a viable alternative for

solving the differential equations involved in the OECT problem. In the following sections, a

description of the model developed in this work will be discussed.

3.1 Grid generation
In Section 2.3, it was discussed that the error arising from finite difference approximation de-

pends on the product of ∆x
(
∂nf
∂xn

)
. Consequently, for a given ∆x, it is obvious that for larger

values of the derivatives, the error increases proportionally. Using this as motivation, non-

uniform grids, i.e., variable ∆x, are used for the numeric approximations. Aiming to develop a

non-uniform grid with total number of points Nx, an expression composed by a linear (flinear)

and a sigmoid function (fsig) is used. This relation is expressed as follows:

fgrid(i) = flinear(i) + fsig(i) = mi+
A

1 + e−ci
, (3.1)

where i = 1, 2, ..., Nx, m is the slope of the linear function and the constants A and c represent

the amplitude and the width of the sigmoid curve, respectively.

As presented in Figure 3.1(a), fgrid can be used to define the spatial domain representing

the OECT device, in which the electrolyte and semiconductor thickness has the value Te and

Tsc, respectively. In this case, the set of grid points {x0, x1, ..., x300} represents the system

domain, and each value of xi = f(i) (i = 0, 1, ..., 300) is given by Equation (3.1). Further, the

electrolyte-semiconductor interface is considered to be located at the grid point identified with

(a) (b)
Figure 3.1 - (a) Grid used in the simulation. (b) Values of ∆x for three grids considered in the simulations. Grid

1, Grid 2 and Grid 3 consider Tsc = 1 cm, Tsc = 0.1 cm and Tsc = 0.01 cm, respectively
Source: By the author.
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the index i = 150. Note from Fig. 3.1(a) that fgrid has a slower increase in its values around

the interface (i = 150), i.e., more points are considered in this region. This is clearly visible

in Figure 3.1(b), where the values of ∆x for three different grids are presented. Here, the grid

1, grid 2 and grid 3 refers to the cases in which the semiconductor thickness has a value of

Tsc = 1 cm, Tsc = 0.1 cm and Tsc = 0.03 cm, respectively. As observed in Figure 3.1(b), the

three grids are generated to have the minimum value of ∆x at the electrolyte-semiconductor

interface, where it is expected to have large values of the derivatives. By doing so, the error is

compensated. One may use, however, an evenly spaced grid considering the minimum value

of ∆x, and reduce the error arising from ∆x
(
∂nf
∂xn

)
for all region. Nevertheless, in order to

obtain smaller values of ∆x, more grid points have to be introduced. From the result expressed

in Eq. (2.48), it was discussed that for each grid point, exist one equation to be solved. Thus,

if more nodes are introduced, the number of calculations that have to be performed increases,

which leads to a growth in computational resources needed to obtain the solution. Therefore, the

implementation of this grid, allow us to compensate the error arising due to the large derivatives

at the electrolyte-semiconductor interface, but maintaining affordable computational times.

As discussed in Section 2.3.6, the value of ∆t that has to be used to obtain stable solutions

is not arbitrary. Rather, it may depend on the value of ∆xi and the diffusion coefficient D (see

Appendix B). For the numerical model developed in this work, ∆t = 10−3 s is the maximum

value for which a stable solution is obtained. To improve the accuracy in the temporal derivative,

however, a value of ∆t = 10−5 s is used in the simulations.

3.2 Flux and drain current calculation
Typical characterization of OECTs usually involves the experimental measurements of drain
current ID that flows between source and drain electrodes. Therefore, in order to properly sim-
ulate these devices, it is important to develop a study on the time evolution of the drain current.
Initially, in order to calculate the values of ID as a function of time, the one dimensional flux
at the electrolyte-semiconductor interface located at x = Te, has to be determined. According
to Fick’s second law (see Section (2.1)), the relation between temporal derivative of concen-
tration and the flux gradient is given by Equation (2.2). Thus, considering a one dimensional
system, if forward difference approximation (see Eq. (2.39)) for temporal derivative is used, the
integration of Eq. (2.2), leads to:∫ Te

0

(
∂ψ(x, t)

∂t

)
dx = −

∫ Te

0

(
∂J(x, t)

∂x

)
dx→

∫ Te

0

(
ψj+1 − ψj

∆t

)
dx = −J(x = Te, t) + J(x = 0, t) .

(3.2)

As for the situations treated in this work, the flux at the initial position J(0, t) = 0, the flux

at the interface can be expressed as:

Jx(x = Te, t) = −
∫ Te

0

(
ψj+1 − ψj

∆t

)
dx . (3.3)

The flux of ions towards the channel produce changes in the doping state of the material,
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creating a transient current ID. Therefore, in order to describe the transient behavior of OECTs,

the Bernards-Malliaras assumption is used to calculate the values of ID (see Section (2.2.2)).

3.3 Boundary Conditions

Usually, the conditions for which an analytical solution exists, do not always simulate the sce-

narios observed experimentally. For example, one of the various limitations of the analytic

solution for the drift-diffusion model used in the work of Coppedé53 is related to the boundary

conditions (see Section (2.2.4)). In one hand, the situation ψ(x = 0, t) = 0 is not necessarily

true for real devices, since the concentration, at least in the first time intervals, is distributed in

all the electrolyte region. On the other hand, the condition ψ(x =∞, t) = 0 establish a bound-

ary located at the infinity, i.e., the concentration can spread along an infinite system. In a real

device, however, a well-defined boundary given by the substrate is the case. Therefore, aiming

to improve the representation of OECTs using the drift-diffusion model, the implementation of

closed boundaries is investigated. These conditions are based on the assumption of zero flux at

the boundaries, and can be expressed as follows:

J(x = 0, t) =0

J(x = T, t) =0 .
(3.4)

Here, T is the total thickness of the system (electrolyte and semiconductor) considered. The

implementation of the previous conditions in the Nernst-Planck equation (see Section (2.28)) in

one dimension leads to:

∂ψ(x, t)

∂x
|x=0, T =

ze

kBT
E(x)ψ(x, t)|x=0, T , (3.5)

which establish a relation for the derivative of the concentration at the boundaries. If finite

differences (see Section 2.3.6) are used to express the derivative in the previous result, the grid

points located at the boundaries can be defined. In Figure 3.2 a schematic of the described

device is shown.

(a) (b)
Figure 3.2 - Schematics of the system with closed boundaries considered in the cases: (a) VG = 0 and (b) VG 6= 0.
Source: By the author.
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3.4 Non-uniform electric field
Due to the mixed conductive property of PEDOT:PSS,92 the electronic charge carriers within

the material react to any electric field applied to the semiconducting film. Following the

Born–Oppenheimer approximation,93 the movement of electronic charge carriers is much faster

than the diffusion motion of ions. In consequence, the electronic charges quickly rearrange

to compensate the electric field, and at any given time, the electronic distribution is immedi-

ately equilibrated. Therefore, as the electric field is given by E = dV
dx

, to have a null electric

field within the semiconductor film, the electric potential V (x) must be constant in this region,

(Figure 3.3), i.e. inside the semiconductor, the ions will move freely, and their motion will be

characterized only due to diffusion processes.46, 81 Considering a non-uniform electric field, the

Nernst-Planck equation in one dimension turns into:

∂ψ(x)

∂t
= D

∂2ψ(x)

∂x2
− βE(x)

∂ψ(x)

∂x
− βψ(x)

∂E(x)

∂x
, (3.6)

where β = zeD
kBT a and the electric potential is now given by

V (x) =


Ve(x) if 0 ≤ x ≤ Te

Vsc(x) if Te < x ≤ Tsc

. (3.7)

Here, Te and Tsc represent the thickness of the electrolyte and semiconductor, respectively.

When a non-uniform electric field is added into the model, however, several problems arise in

the numerical implementation. As in the interface, the finite difference approximation of the

derivative may consider the last value of Ve and the first one of Vsc (see Eq. (2.44)), the estima-

tion of E = dV
dx

lead to indeterminacies in this region. In consequence, the temporal evolution

of the concentration given by Eq. (3.6) is not well-defined at this point, which means that in-

formation of the concentration at the interface is being lost on each time step. Aiming to solve

Figure 3.3 - Gate Voltage considered.
Source: By the author.
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this problem, the addition by hand of the undefined interfacial contribution of the concentration

is proposed. To calculate the contribution of the concentration at the interface, the conservation

of the total number of particles is used as motivation. Since the particles entering the semi-

conductor must be the same as those leaving the electrolyte, if any concentration suffers from

an error (systematic or numerical), it will be reflected in the difference between the flux at the

interface. Then, once the quantity of missing concentration was determined, the concentration

profile can be corrected to fulfill the conservation criterion of total concentration. This correc-

tion can be implemented in various form, e.g., evenly in all the points, in the first grid point in

the semiconductor region, etc. It is important to mention, however, that each approach will have

an impact on the time-evolution of the concentration profile, and consequently on all further de-

rived quantities. As we are assuming an electric field acting only in the electrolyte, we propose

the missing concentration ψm as a unique contribution located at the interface (x = xint), which

diffuse towards the semiconductor region. In order to implement this assumption, the value of

concentration calculated was distributed on a Gaussian function centered at x = xint, which is

subsequently added to the semiconductor region. The choice of the Gaussian function is moti-

vated to the fact that this type of function is solution for the second Fick’s law (see Appendix C),

which describes the temporal evolution of diffusion processes (see Section 2.1). This solution

is expressed as:

ψm = Aexp(−(x− xint)2

4D∆t
) , (3.8)

where A is a normalization factor. It is observed that the width Γ of ψm is given by

Γ = 4
√
D∆t.94 Therefore, as Γ is proportional to the square root of ∆t, if ∆t → 0, the

whole concentration ψm is at the interface. In this way, the system was ensured to conserve the

concentration without loosing information at the electrolyte-semiconductor interface.

3.5 Materials properties and OECT characterization
Usually, the electrolyte and the semiconductor have different properties, like morphology and

structure. Therefore, intrinsic characteristics such as diffusion coefficient and the electrochem-

ical potential may have different values for each region. Therefore, the situation where the two

regions possess different diffusion coefficients is studied. As the diffusion coefficient describes

how ease the particles can move inside a material, the implementation of this extension may pro-

vide insights about on which region has the most influence on device functioning. Considering

the chemical potential as the driving force for diffusion, the flux coming from the electrolyte

will be estimated from Eq. (2.14). In order to reflect the distinct compositions of these two

materials, different values for the reference chemical potential µ0 will be considered for each

region.

Usually, in order to investigate the charge and discharge properties of an OECT, a pulsed

gate voltage is applied to the device. Therefore, in the numerical implementation is investigated
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the case in which a time dependent gate voltage is applied. Further, the numerical model allows

implementing various shapes of gate voltage and identify the impact of each one in the results.

3.6 Parameters and computational resources
The algorithm used to obtain the solutions was not parallelized, which means that the code runs

on a single CPU instead of spreading the work across multiple CPUs.

The different constant used in the simulations are deposited in Table 3.1. For the diffusion

coefficient, a value that allowed results to be obtained in viable times and that was close to the

typical diffusion coefficients for aqueous solutions reported in the literature95, 96 was used. As

previously mentioned, this work is focused on the study of OECTs working on depletion mode,

thus, the values for hole concentration and hole mobility used are based in the information

reported in the literature for PEDOT:PSS.44

Table 3.1 - Constants used in the simulations.

Constants
Concentration ψ0 1 mMol
Diffusion Coefficient D 5× 10−3 cm2s−1

Electrolyte Thickness Te 1 cm
Semiconductor Length L 0.1 cm
Semiconductor Width W 0.02 cm
Hole mobility χe 10−3 m2V−1s−1

Drain Voltage VD −0.1 V
Absolute Temperature T a 298 K
Initial Hole concentration ρ0 1020 cm−3

Source: By the author.

In consideration with the minimum values of ∆x obtained with the grids implemented, a

value ∆t = 10−5 s is used in the simulations. Using these constants, the calculations for a

device operating for 1500 s were performed over a range of 20-24 h. Additional relevant param-

eters treated in the simulations are inserted in Table 3.2. In particular, Te,Tsc were considered

according to the values used in Coppedé’s model.53

Table 3.2 - Parameters of the simulations.

Simulation Parameteres
Semiconductor Thickness Tsc 0.03 cm < Tsc < 1 cm
Time step ∆t 10−5 s
Gate Voltage VG 0 < VG < 100 mV

Source: By the author.
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4 Results

4.1 Validation of Numerical Implementation
In order to evaluate the performance and the accuracy of the numerical model and its imple-

mentation, a comparison to the analytical model suggested by Coppedé53 is now considered

(see Section 2.2.4). To do so, the same initial and boundary conditions are used, for which the

analytical solution (see Eq. (2.30)) of the Drift-diffusion equation holds. These are in partic-

ular ψ(x = 0, t) = 0 and ψ(x = ∞, t) = 0, a constant electric field at all locations x (with

strength of E = 5 mV cm−1) and the same diffusion coefficient D for both regions, electrolyte

and semiconductor. Moreover, it is assumed a constant concentration of particles (of amplitude

ψ0) in the electrolyte and no initial concentration in the semiconductor (Eq. (2.29)). Further

parameters that are relevant to the simulation are summarized in Table 3.1 and Table 3.2.

Figure 4.1(a) displays the temporal evolution of the concentration profile ψ(x). Within the

first 10 sec, the initial square-shaped profile turns into an asymmetric bell-shaped form. Due to

the drift, the maximum of the distribution moves in the direction of the electric field, whereas

simultaneously, the profile broadens because of the diffusion phenomena. As in Coppedé’s

work,53 in this section it is also considered the spatial domain of the device defined by 0 <

x < 2 cm. Note that over time, the total amount of concentration within the region considered

converges to zero. This is a consequence of the boundary condition at the right-hand side

(ψ(x = ∞, t) = 0), which suggest that the concentration can spread along a system with

infinite thickness, i.e., a non-zero flux at x = 2 cm is generated. Comparing the distribution

obtained numerically with that from the analytical solution, a qualitative good agreement is

observed for all times. Especially, the height and lateral position of the maximum as well as the

overall shape match very well.

In order to study the accuracy of the numerical implementation quantitatively, the mean

(a) (b)
Figure 4.1 - (a) Time evolution of analytical53 and numerical solutions. (b) Evolution of the deviation for grid 1

(0 < x < 2 cm), grid 2 (0 < x < 3 cm) and grid 3 (0 < x < 6 cm).
Source: By the author.
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deviation (ς) of the numerically obtained concentration profile ψn in relation to the analytical

solution ψa at the positions xi defined by the grid, is calculated. For this purpose, the following

expression is used:

ς =

√√√√ 1

Nx

Nx∑
i=1

(ψa(xi)− ψn(xi))2 . (4.1)

Figure 4.1(b) shows how ς develops with increasing simulation time t when a grid only

defined for 0 < x < 2 cm (blue line) is considered. For small times (t < 10 s) as well as for

long times (t > 1000 s), values of ς smaller than 9×10−3ψ0 are obtained. For t < 10 s, the time

is not enough to produce significant changes in the initial concentration, thus, the analytical and

numerical solutions are identical, leading to small values of ς . As observed from Figure 4.1(a),

for larger times (t > 1000 s), the solutions and consequently ς converge to zero. In between,

however, the deviation shows three maxima at about t = 20 s, t = 300 s and t = 1000 s. The first

one is associated to the numerical error that arises from the approximation of the derivative at the

interface for the given initial conditions. In the numerical representation, a sudden drop from ψ0

to 0 take place over a finite spacing defined by the grid. Therefore, the derivative approximations

defined in Section 2.3, remains finite, and consequently, generates large errors. This artifact, as

mentioned in Section 3.1, is reduced by using a denser grid in the interface region. The second

and third maximum of the deviation, on the other hand, arise due to the larger inaccuracy of

the numerical approximation of the derivate at the point located at the right boundary. For this

point, only the backward difference instead of the central difference method (see Eq. (2.39))

must be used. Hence, as soon as the numerical solution reaches points near x = 2 cm, this error

occurs and propagates into the whole region. In the time between the second and third maxima,

ς present a value close to zero, which occurs due to the transition from an overestimation to an

underestimation of the numerical result in relation to the analytical solution. This contribution

to ς , however, can easily be reduced by extending the simulation region to larger locations.

As shown in Figure 4.1(b), the second maximum of ς shifts to larger times and is reduced in

height when the simulation grid is extended to 3 cm (orange line). When the grid is extended

further (green line), the second maximum disappears, since the concentration vanishes before

the maximum reaches the out-most point at the right-hand side. The calculation of ς represents

an estimation of the error distribution between the two solutions. Therefore, considering the

absolute values of ς compared to the values of ψ0, it is found that the numerical implementation

yields quite small error. In particular, when a grid defined for 0 < x < 6 cm is used, maximum

values of ς in the order of ∼ 10−2ψ0 (1%) are obtained. This means that using the numerical

approach is sufficiently good to simulate the system.

Once the concentration has been calculated, the flux at the interface and consequently

the charge Q(t) that enters the channel (see Eq. (2.32)) can be estimated. As shown in Fig-

ure 4.2, three regions are identified in the temporal evolution of Q(t). In region I, defined for
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Figure 4.2 - Comparison between the numerical (dotted line) and analytical (solid line) results for charge Q(t)
entering in the channel.

Source: By the author.

0.01 < t < 10 s, a steep rise of Q(t) is observed. Then, for 10 < t < 400 s, Q(t) increases

at a slower rate in relation to the previous region. Further, the region II is characterized by an

inflection point that flattens the curve. For times in the interval 400 < t < 1500 s, the system

achieves a quasi-constant value of Q(t). At the beginning of OECT operation (region I), the

cations placed close to the electrolyte-semiconductor interface will move rapidly towards the

semiconductor due to the large concentration gradient near the interface (see Figure 4.1(a)). As

the concentration profile broadens due to diffusion, the quantity of ions reaching the semicon-

ductor decreases, which is reflected in the slower growth of Q(t). At the moment at which the

maximum concentration profile crosses the interface, an inflection point in Q(t) is observed.

At this point, most of the particle concentration is already in the channel. As a result, the flux

reduces and consequently Q(t) starts to converge. In the final interval, the flux vanishes, mean-

ing that a new steady state is achieved. From Figure 4.2 it is also visible the good agreement

between both numerical and analytical solutions.

As described in Section 2.2.2, the determination ofQ(t) allows one to study the drain current

ID by using of Bernard-Malliaras model. Aiming to a better interpretation of the results, each

of the two following terms composing the ID (see Equation (2.24)) are examined. The first

term I1(t) = G
(

1− Q(t)
eρ0ν

)
VD accounts to the charge Q(t) that de-dopes the semiconductor,

whereas the second term I2(t) = −f dQ(t)
dt

is defined by the temporal derivative of the charge

entering the material.

In Fig. 4.3, the temporal evolution of the change in ID is displayed, which is divided into

the same three regions defined for Q(t) (see Figure 4.2). In the first one, the values obtained

for ID show a rapid decreasing behavior dominated by I2, which arises from the strong growth

of Q(t) in the first 10 s. For the next 200 s, the variations in Q(t) occurs at a very slow rate,

which leads to the convergence of I2 to zero. Therefore, from this time, the evolution of the

drain current is principally dominated by I1, which causes a similar behavior to the obtained for
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Figure 4.3 - Drain current obtained and the contribution of each term in the Bernards-Malliaras assumption.44

Source: By the author.

Q(t) in regions II and III. As the system simulated represents a OECT that works on depletion

mode (see Section 2.2), at the beginning the semiconductor channel is p-doped, which leads

to the initial current observed in Fig. 4.3. When the cations enter the channel, the doping

state of the material is reduced, which leads to a decrease in the drain current. In the situation

simulated here, due to the open boundary condition, the steady state current is achieved once

all the cations migrate from the electrolyte to the semiconductor. When flux coming from the

electrolyte vanishes, changes in the doping level of the channel are no longer produced, leading

to the constant current observed. Again, the result presented in Fig. 4.3 allow to confirm the

good agreement between numerical and analytical results.

4.2 Boundary Conditions

In Section 3.3, it was discussed that analytical solutions only holds for open boundary on the

right-hand side and zero-concentration at the left-hand side (see Eq. (2.30)). As shown in Sec-

tion 4.1, this condition results in a vanishing concentration for long times rather than a steady

state profile. Since this hardly represents a realistic situation, the numerical approach is now ap-

plied to closed boundaries using the conditions expressed in Eq. (3.4). As this implies variations

in both sides of the region considered, different consequences may arise due to the modification

of both boundary conditions. To analyze the impacts of each modification individually, two

cases are analyzed. In the case I, the zero flux condition at x = 2 cm is considered, but the

condition ψ(x = 0, t) = 0 for t > 0 is maintained. On the other hand, in case II, the boundary

conditions of the analytical model are substituted for the zero flux conditions. Therefore, in this

case, the system is considered to have closed boundaries, which means that the concentration

is confined. For the following calculations, a gate voltage VG = 5 mV, a constant concentra-

tion in the electrolyte with amplitude ψ0 and the same diffusion coefficient D in all regions are

considered.
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4.2.1 Case I

The temporal evolution of the concentration obtained for case I is presented in Figure 4.4(a).

Since the concentration cannot cross the boundary to the right, an accumulation is observed

in the semiconductor region. For larger times, however, a vanishing concentration within the

device region is still observed.

The comparison of the drain currents obtained with the solution of the Coppedé’s model53

and of the case I is presented in Figure 4.4(b). Initially, as the concentration takes some time

to achieve the boundary of the system, the two solutions are identical. Therefore, in the range

0.01 < t < 0.03 s, the closed boundary condition in the right-hand side has no impact on

the drain current. In the region II defined for 0.03 < t < 100 s, the implementation of the

right boundary produces bigger values of ID in relation to Coppedé’s solution. Here, as a

consequence of the accumulation on the semiconductor region, the concentration gradients are

smaller than in the open boundary case, which means that less charge is entering (and de-

doping) the channel. Surprisingly, for 100 < t < 1500 s, a raise in the drain current is observed.

The decrease of the concentration as well as the raise in the drain current for region III

presented in Fig. 4.4, result from the boundary conditions considered. As introduced in Sec-

tion 2.1, the Nernst-Planck equation defines the flux as a function of on the concentration and

its gradient. The condition ψ(x = 0, t) = 0, however, does not ensure a zero value for the

derivative at this point. As a result, a negative flux on the left side is created, i.e., ions may

leave the device region to the left side, resulting in the decreasing behavior of the concentration.

Further, the negative flux produce a reduction of the concentration in the whole region, leading

to an increase in the doping level of the semiconductor, and consequently, the growth of the

drain current observed in the results. This reinforces, that the conditions used in the Coppedé’s

model are not proper to describe the system.

(a) (b)
Figure 4.4 - (a) Temporal evolution of concentration in case I. (b) Comparison of ID between the results obtained

for open boundaries and in case I.
Source: By the author.
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4.2.2 Case II

Now, the case II previously mentioned is studied. Here, the zero-flux condition is implemented

for both sides of the system (see Section (3.4)). In Figure 4.5, the temporal evolution of the

concentration profiles for a system with closed boundaries is displayed. In this case, when the

device is simulated for a time t = 1500 s, a convergence into a steady state is observed. In

addition, a qualitative comparison with the analytical steady state solution (see Appendix D)

allow to observe a good agreement between the numerical model and the theory. In difference

to the results obtained when the conditions used in Coppedé’s work53 are implemented (see Fig-

ure 4.1(a)), the closed boundary condition ensure that the concentration remains in the desired

region. Therefore, the implementation of closed boundaries allows simulating the evolution of

the system from a transient behavior to a steady state.

Aiming to have a quantitative measurement of the quality in the results, the temporal evo-

lution of the quantity ∆ψ = |ψt−ψn|
Nx

is calculated. Here, ψt and ψn are the theoretical and

numerical results, respectively. In Figure 4.6 the temporal evolution of ∆ψ is presented. At the

beginning of the simulation, as ψt and ψn are very different, large values of ∆ψ are observed. As

the system converges to a steady state, however, the values of ∆ψ decreases. From Figure 4.6, a

convergence of ∆ψ to a constant curve is observed, which achieves values of ∼ 10−6ψ0 for all

grid points. Furthermore, the analysis of the temporal evolution of ∆ψ allow establishing that

the steady state concentration is reached for times t ≥ 1200 s, at which ∆ψ remains in a constant

Figure 4.5 - Temporal evolution of concentration considering closed boundaries.
Source: By the author.
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Figure 4.6 - Temporal evolution of ∆ψ.
Source: By the author.

shape. Then, from this time, the migration of cations towards the channel can be considered as

zero. The non-uniform distribution of ∆ψ is related to the errors introduced by the numerical

artifacts inherent to the methods used. Note that, as a consequence of the non-uniform grid,

at the electrolyte-semiconductor interface (x =1 cm), where the separation between the points

reaches the minimal value (see Section 2.3.6), ∆ψ decrease in magnitude. Overall, the results

obtained for ∆ψ are reasonable values that permit to confirm the high accuracy in the numerical

approximation.

Once the concentration is obtained, the flux at the interface is investigated. Figure 4.7(a)

allow to develop an analysis of the impact that the boundary conditions have in the flux. Due to

the logarithmic scale used in Figure 4.7(a), it is possible to identify that approximately for t >

500 s, the flux for open boundaries achieves an exponential profile. For the closed boundaries,

however, the exponential behavior occurs after the first 100 s. The result makes evident that

when closed boundaries are considered, the flux tends to zero faster than if open boundaries are

implemented. Further, it is established, as well, that the value for the flux at the steady state,

defined previously to occur at t = 1200 s, achieves values of the order ∼ 10−12 mol/cm2s.

Since in the open boundary case, the concentration has to spread over an infinitely long system,

the convergence to a steady distribution of concentration occurs in a very slow rate. On the

contrary, in the closed boundary case, the region allowed for the concentration to distribute is

well-defined, which, as observed in Figure 4.7(a), allows for the system to achieve the steady

state more quickly. Therefore, in relation to the flux, it is observed that boundary conditions

have considerable impact in the time that the system needs to achieve a steady state, in which

the flux vanishes.

As previously mentioned, the calculation of the flux allows to obtain the charge entering

the semiconductor and consequently the drain current that flows between source and drain elec-

trodes. Therefore, in order to establish the impact of the boundary conditions in the drain cur-
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(a) (b)
Figure 4.7 - (a) Flux at the interface and (b) drain current for open and closed boundary cases.
Source: By the author.

rent, a comparison between the currents ICBD and IOBD obtained for closed and open boundaries,

respectively, is developed.

From Figure 4.7(b), the same values for ICBD and IOBD can be observed in the interval 0.01 <

t < 0.02 s, which is related to the time that the concentration takes to feel the effect of the closed

boundaries. Here, in difference to the case I (see Figure 4.4(b)), the system takes less time to

be affected by the boundary conditions. For the rest of the time simulate (0.02 < t < 1500 s),

values of |ICBD | > |IOBD | are obtained. In the final interval, however, Figure 4.7(b) makes visible

that in difference to IOBD , the value of ICBD is almost constant for times t > 300 s. The result

|ICBD | > |IOBD | observed in regions II and III is related to the quantity of ions that enters the

channel. When closed boundaries are considered, the convergence of the system to a steady

state distribution causes some part of the concentration to remain in the electrolyte. In the open

boundary case, however, the concentration migrates from the electrolyte to the channel without

any restriction, leading to larger reduction in the doping state of the material, and therefore,

in IOBD . As discussed in the analysis of the flux, the system tends to achieve the steady state

faster in the closed boundary case, which was established to occur at t = 1200 s. Hence, if

closed boundaries are implemented, the doping level of the channel does not change anymore

for t > 1200 s, which leads to the constant current observed in the results. On the contrary, in

the open boundary case, the concentration continues migrating into the semiconductor, causing

variations in IOBD for longer times.

It is important to mention that the time at which the steady current is achieved with closed

boundaries is orders of magnitude larger than the obtained experimentally. This is caused by

the value of the semiconductor and electrolyte thickness considered in the simulations, which

in order to develop a comparison with the results obtained in the work of Coppedé is considered

Te = Tsc = 1 cm. As observed from the results, the boundary conditions have significant

effects in the drain current, especially related to its values and the time that it takes to go from

the initial state to the final steady state. At this point can be highlighted the importance to

consider the correct boundary conditions in order to obtain results consistent with the expected
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Figure 4.8 - Electric potential considered in the simulation.
Source: By the author.

experimentally. From this part, in all the results presented in the following sections, closed

boundaries are considered.

4.3 Non-uniform electric field
As mentioned in Section 3.4, due to mixed conductive properties of organic semiconductors, a

constant electric potential is generated inside the channel. Thus, in this section is considered

the electric potential presented in Figure 4.8. Here, the values VG = 70 mV, Tsc = 1 cm and

a constant cation concentration in the electrolyte of amplitude ψ0 are considered. Additional

relevant parameters are deposited in Table 3.1.

Once the electric field in one dimension is given by the derivative of the electric potential,

i.e., E = ∂V
∂x

, an electric field acting only in the region of the electrolyte is generated when this

condition is implemented. In this situation, a marked difference in the temporal evolution of the

concentration profiles for each region is observed (see Figure 4.9). In the electrolyte region, the

concentration tends to converge to an exponential profile, which, according to the theory, it is

the steady state solution for the Nernst-Planck equation (see Appendix D). As the electric field

Figure 4.9 - Temporal evolution of the concentration considering a non-uniform electric field.
Source: By the author.
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Figure 4.10 - Drain current obtained for uniform and non-uniform electric field cases.
Source: By the author.

in the semiconductor is zero, only diffusion processes are occurring within the material, which,

as observed in Figure 4.9, results in a constant distribution of the concentration at the steady

state.

Using the temporal evolution of the concentration, the charge entering the semiconductor,

and consequently the drain current that flows between source and drain electrodes, can be de-

termined. Therefore, in order to identify the impact of a non-uniform electric field, the drain

current ID is studied. As shown in Figure 4.10, for t < 60 s (region I), the transient behav-

ior of the current is similar to the obtained when a uniform field is considered. In the interval

60 < t < 1500 s, however, as the system approaches the steady state, differences between the

two results becomes more evident. Note that if a non-uniform electric field is implemented, the

drain current ID obtained at the steady state have bigger values than in the uniform electric field

case. This means that with a non-uniform electric field, the semiconductor is less de-doped.

4.3.1 Variation in semiconductor thickness

In order to complement the study of the impact of this extension in the system, different values

for the semiconductor thickness (Tsc) are considered. Here, Tsc varies from 0.03 cm to 1 cm.

From the result shown in Figure 4.11(a), the consequences that the variation of Tsc have in

the flux at the electrolyte-semiconductor interface, can be investigated. As displayed in Fig-

ure 4.11(a), the flux obtained with a uniform (solid line) and non-uniform (dotted line) electric

field behave similarly for the different values of Tsc, showing differences only at large values of

Tsc. For both cases, the reduction in Tsc, leads to a rapid convergence to steady state. This is

produced because, with smaller values of Tsc, the region at which the cation concentration has

to distribute is reduced, which makes the system able to reach the steady state faster.

Having the flux, the charge entering to the channel and consequently the drain current can

be investigated using the Bernards-Malliaras model (see Section 2.2.2). Thus, an analysis of

the drain current considering the variation in Tsc is developed. Figure 4.11(b) shows that for

thin semiconductors, uniform and non-uniform fields produce the same stationary current. With

large semiconductor thickness, however, bigger values of ∆ID = ID(t) − ID(0), are obtained
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(a) (b)
Figure 4.11 - (a) Flux at the interface and (b) change of ID at steady state as a function of the semiconductor

thickness Tsc.
Source: By the author.

when a uniform field is considered (see Figure 4.11(b)). Therefore, the consideration of a non-

uniform electric field impacts in the system mostly for channels with large thicknesses.

It is important to mention that electrolyte and semiconductor thicknesses considered in this

work were chosen to obtain qualitative results with affordable computation times. As proven in

Appendix B, if ∆x decrease, smaller values of ∆t must be considered, leading to an increase

in the computational efforts needed to obtain a solution. Due to the limitation in the compu-

tational resources, devices with the dimensions obtained experimentally were not considered

in this work. Therefore, the results discussed above provide a qualitative representation of the

impact that different conditions have in the OECT functioning according to the drift-diffusion

equations.

4.3.2 Variation of gate voltage

Now, a study of the drain current obtained at steady state (Isteady) as a function of the gate volt-

age VG is developed. As presented in Figure 4.12, three different values for the semiconductor

thickness are considered, which are Tsc = 1 cm, Tsc = 0.1 cm and Tsc = 0.03 cm. For the three

cases, with uniform and non-uniform electric field, it is observed that as VG grow, the current

at the steady state turns smaller. The growth of VG produces that the total quantity of ions that

migrates into the semiconductor increases, which produces a decrease in the final doping level

of the material, i.e., in Isteady. Considering a uniform electric field, however, it is observed that

for the three semiconductor thicknesses, Isteady seems to be more affected by the variations of

VG. In the case where Tsc = 1 cm, for 0 < VG < 30 mV, a linear behavior is observed (see

Figure 4.12(a)). For values VG > 30 mV, the decrease of the steady current slows down, which

occurs due to the total quantity of ions that de-dopes the material. As VG increases, the concen-

tration remaining in the electrolyte at the steady state decreases. Consequently, the variations in

the final doping level of the channel generated by the additional cations coming from the elec-

trolyte, becomes smaller, leading to the slow reduction in Isteady. In the cases that Tsc = 0.1 cm

and Tsc = 0.03 cm, as the conductance of the material depends on the geometry of the channel
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(a) (b)

(c)
Figure 4.12 - Steady state current as a function of gate voltage for semiconductor thicknesses of (a) 1 cm, (b)

0.1 cm and (c) 0.03 cm.
Source: By the author.

(see Section 2.2.2), the currents obtained are smaller than with Tsc = 1 cm. Further, a linear

behavior in relation to VG is observed for these two values of Tsc (see Figure 4.12(b) and Fig-

ure 4.12(c)). If Tsc is reduced, the quantity of cations that enters the channel until the system

achieves the steady state, decreases. For both cases (Tsc = 0.1 cm and Tsc = 0.03 cm), most of

the cations are in the electrolyte. Therefore, the linear reduction of Isteady will be observed until

the voltage is high enough to produce that most of the cations to be in the channel.

4.4 Non-constant Diffusion Coefficient
As introduced in Section 3.5, the different morphologies and compositions of the materials

produce variations in their characteristic parameters like the diffusion coefficient. Hence, dif-

ferent values for diffusion coefficients De and Dsc for the electrolyte and semiconductor region,

respectively, are considered. For the following results, the information of the Table 3.1, a semi-

conductor of length Tsc = 1 cm and the gate voltage represented in the Figure 4.8 are used.

Furthermore, a constant initial concentration with the value ψ0 in the electrolyte is implemented.

In Figure 4.13, the concentration profiles obtained for different combinations of De and Dsc

are displayed. The results represent the system at a time t = 1200 s, which is the time needed

for the reference case (Dsc = De) to achieve the steady state. In general, when a non-constant
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Figure 4.13 - Concentration profiles at t = 1200 s for various combinations of diffusion coefficients.
Source: By the author.

diffusion coefficient is considered, the time required for the system to reach the steady state

is affected. For all situations, the regions that present the smaller diffusion coefficient will

take more time to achieve the profile expected. If De < Dsc, the formation of the exponential

profile in the electrolyte due to the non-uniform electric field, is hindered. In the semiconductor,

however, although a constant distribution is achieved, the value obtained is smaller than in

the reference case, which reflects the difficulty of the ions to move within the electrolyte and

migrate to the channel. In the other case, when Dsc < De, the exponential profile is created

in the electrolyte, but the time is not enough for the system to achieve a constant concentration

in the semiconductor. Here, the cations have more difficulty to distribute uniformly inside the

organic semiconductor material.

As previously mentioned, the temporal evolution of the concentration allows to investigate

the drain current that flows between source and drain electrodes. Thus, it is developed a qualita-

tive study of the impacts in the drain current when different values ofDe andDsc are considered.

For this purpose, two cases are analyzed, which are: Dsc < De and Dsc > De. For the former

(a) (b)
Figure 4.14 - Drain current for (a) fixed De but varying Dsc and (b) fixed Dsc but varying De.
Source: By the author.
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case, a fixed diffusion coefficient De = D (see Table 3.1) and a variable coefficient in the semi-

conductor given by Dsc = D
ω

, are used. Here, ω is a constant ranging from 1 to 100. For the

latter case, which considers Dsc > De, the coefficients are defined as: De = D
ω

, Dsc = D. As

observed in Figure 4.14, the reduction of both Dsc and De, leads to a shift of the drain current

curve to larger times, i.e., the time necessary to achieve the steady state current increases. How-

ever, the variation ofDe, leads to a larger shift of the curves, i.e., the variation ofDe impacts the

more in the evolution of the drain current from a transient behavior to the steady state. As the

ions have more difficulty to migrate from the electrolyte to the semiconductor, the rate at which

the de-doping processes occur decreases as De decrease. In the other case, if Dsc < De, the

ions affected are already inside the semiconductor. Then, as the cations have facility to passing

from the electrolyte to the semiconductor, the de-doping processes are less affected.

Here, the impact of the diffusion coefficient has been studied qualitatively in order to iden-

tify the variations that this assumption may cause in relevant quantities such as the drain current.

Therefore, although the dimensions and parameters used for the device materials may differ

from the ones obtained experimentally, the results provide insights of the possible effects in the

OECT functioning when different scenarios are considered.

4.5 Chemical Potential
In order to highlight the different properties of the electrolyte and the organic semiconductor,

the chemical potential as the driving force of diffusion is included into the numerical model.

Here, the semiconductor thickness is Tsc = 1 cm and the diffusion coefficient is equal in both

regions.

First, the discussion of this consideration starts with the analysis of the case in which the dif-

ference in the standard chemical potential (see Section 3.5) is ∆µ0 = µ0
sc− µ0

e = −3 kJ mol−1,

and no gate voltage is applied. In this case, the standard chemical potential in the organic semi-

conductor is smaller than in the electrolyte. Additionally, a constant initial concentration in all

regions is considered. As displayed in Figure 4.15(a), in consequence to consider only diffusion

processes, the steady state achieved is characterized by a constant concentration for each region.

In the semiconductor region, however, a bigger value of the concentration is observed, which

is a consequence of the chemical potential gradient generated by ∆µ0 (see Equation (2.11)).

Further, the introduction of the chemical potential generates a discontinuity in the concentra-

tion profile, which results from the so-called “uphill” diffusion75 (see Figure 4.15(a)). Note

that, although there exists a discontinuity in the concentration, at the steady state, the chemical

potential takes a constant value, i.e., the system achieves the equilibrium (see Figure 4.15(b)).

Now, if ∆µ0 = 3 kJ mol−1, the concentration profiles show opposite behavior in relation to the

previous case. Here, as shown in Figure 4.15(c) the “uphill” diffusion takes place in the direc-

tion of the electrolyte. Therefore, in the absence of an electric field, the value of ∆µ0 establish

the direction in which the ion migration occurs.

Once the implications of the introduction of the chemical potential were established, it is
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(a)

(b) (c)
Figure 4.15 - Temporal evolution of (a) the concentration and (b) chemical potential with ∆µ0 = −3 kJ mol−1.

(c) Temporal evolution of the concentration ∆µ0 = 3 kJ mol−1.
Source: By the author.

studied the case in which the gate voltage presented in Figure 4.8, i.e., a non-uniform electric

field is applied on the system. As normally, the excess of concentration is in the electrolyte,

for the following results, the concentration profile presented in Figure 4.16(a) is used as the

initial condition. Further, a value ∆µ0 = −3 kJ mol−1 is considered. In this case, as shown in

Figure 4.16(b), the discontinuity in the concentration observed previously is also obtained. As a

consequence of the electric field, however, the concentration profiles show a different behavior

for each region. In the electrolyte, the non-uniform electric field leads to the convergence of

the concentration to an exponential profile at the steady state. On the other hand, as in the

channel only diffusion process is occurring, the concentration converges to a constant value

(see Figure 4.16(b)). Note that, because of the gate voltage applied, the chemical potential

at the steady state is no longer uniform along the system (see Figure 4.16(c)). As introduced

in Section 2.1, in this scenario, the flux J is defined by the gradient of the electrochemical

potential. Hence, at steady state, i.e., J = 0, the chemical potential must cancel the contribution

associated with the electric potential at all points (see Figure 4.16(d)). From the above results,

therefore, it is concluded that the situations simulated with the numerical model agree with the

theory, which allows to confirm qualitatively the validity of the model.
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(a) (b)

(c) (d)
Figure 4.16 - (a) Initial concentration considered. (b) Temporal evolution of concentration and (c) chemical poten-

tial when a non-uniform electric field is applied. (d) Contribution of each term in the electrochemical
potential at steady state.

Source: By the author.

Now, using the information obtained from the temporal evolution of the concentration, the

time-dependent drain current ID is analyzed. In Figure 4.17(b), the comparison of the system

with ∆µ0 = −3 kJ mol−1 and ∆µ0 = 0 is presented. Here, it is observed that in region I,

the drain current obtained with ∆µ0 = −3 kJ mol−1 have larger values. During this interval,

the current I1 from the Bernards-Malliaras model (see Section 2.2.2) is equal in both cases

(see Figure 4.17(a)). Nevertheless, for ∆µ0 = −3 kJ mol−1, I2 shows bigger values, resulting

in the differences observed initially for ID. As the condition ∆µ0 = −3 kJ mol−1 enhances

the cation migration towards the channel, larger variations of the charge Q(t) that enters the

material are produced, which leads to the significant contributions of I2 observed in region I (see

Figure 4.17(a)). From 3 < t < 1500 s, the contribution of I2 converges to zero, and I1 defines

the evolution of the system. As displayed in Figure 4.17(b), from this time, ID turns smaller if

∆µ0 = −3 kJ mol−1. Since the chemical potential gradient created with ∆µ0 = −3 kJ mol−1,

generates that more cations enter the semiconductor, the doping level of the material is reduced,

and consequently a smaller drain current is obtained. Note that, although the stationary current

achieved in the two cases is different, the time that the system needs to achieve the steady state is

the same. Therefore, the variation of ∆µ0 affects principally the quantity of ions that de-dopes

the semiconductor, rather than the velocity at which the system converges to the steady state.

The temporal evolution of the ID, however, may depend on the value of ∆µ0 used. Thus, in
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(a) (b)
Figure 4.17 - (a) Comparison of I1 and I2. (b) Drain current obtained considering the chemical potential.
Source: By the author.

order to investigate this dependence, various values of ∆µ0 are considered. Here, ∆µ0 will take

values from −3 kJ mol−1 up to 1.8 kJ mol−1. Previously, it was discussed that in the absence

of an electric field, the value of ∆µ0 defines the direction of the ion migration within the sys-

tem. Therefore, if no gate voltage is applied, the system will achieve one different steady state

concentration for each value of ∆µ0 (see Figure 4.18(a)). In the case that ∆µ0 = 0, the con-

centration tends to achieve a uniform distribution through the system. Thus, in order to study

properly the dependence of the drain current on ∆µ0, the initial concentration considered for

each ∆µ0 is their respective steady state concentration with VG = 0, i.e., E = 0.

(a) (b)
Figure 4.18 - (a) Steady state concentration achieved for each value of ∆µ0. (b) Drain current obtained with

different values of ∆µ0.
Source: By the author.
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The different drain currents observed in Figure 4.18(b) at the beginning of the simulation,

result from the initial doping state of the semiconductor. As mentioned earlier, for each value

of ∆µ0, one different concentration is considered as the initial condition. Thus, in each situ-

ation, the concentration considered defines the initial doping level of the channel. As in the

cases where ∆µ0 < 0, most of the cations are initially located at the semiconductor (see Fig-

ure 4.18(a)), the doping level (i.e. conductivity) of the material is low, which results in the

small values of the initial current observed. When ∆µ0 > 0, most of the cations are in the

electrolyte, leading to a high doping level in the channel, and consequently large initial drain

currents. In difference to the case when ∆µ0 < 0, if ∆µ0 > 0 more cations are allowed to

enter the semiconductor in order to achieve the steady state. Therefore, the changes in the con-

ductivity, i.e., the drain current, are larger with ∆µ0 > 0. Similarly with the result presented

in Figure 4.16(c), although the variations of ∆µ0 impacts the stationary current, the time that

the system takes to achieve the steady state is not affected. Which confirms that, ∆µ0 has con-

sequences in the quantity of cations allowed to enter the semiconductor rather than in the time

needed to achieve the equilibrium state. It is important to mention that the values considered

here for ∆µ0, were assumed aiming to obtain qualitative results that allow to investigate the

impact of this parameter in the results. However, it is possible to calculate experimentally ∆µ0

using different techniques.97

4.6 Time dependent gate voltage
Usually, to characterize the transient behavior of OECTs, temporal measurements of charge

and discharge of the channel are developed applying a pulsed gate voltage. In this section,

therefore, the evolution of the drain current applying a time dependent gate voltage is studied.

The initial concentration showed in Figure 4.16(a), constant diffusion coefficient in all regions,

Tsc = 1 cm, a non-uniform electric field and the value ∆µ0 = −3 kJ mol−1 are considered for

the following calculations.

Initially, the square pulse displayed in Figure 4.19(a) is applied to the system. Note from

(a) (b)
Figure 4.19 - (a) Square pulse applied. (b) Drain current due to pulsed gate voltage.
Source: By the author.
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Figure 4.19(b), that in the first 400 s, as the gate voltage is zero, a slow reduction of the drain

current is observed, which results from the diffusion of ions coming from the electrolyte. Then,

for the next 400 s that the VG 6= 0, as the cations in the electrolyte are forced to enter the

semiconductor, the conductivity of the material, and consequently, the drain current decrease

even more until achieve a new steady state. At the time that VG is zero again, the system tend

to converge to the previous steady state, and therefore, the excess of ion concentration diffuse

in the direction of the electrolyte, leading to the increase in the conductivity of the material

observed for times 800 < t < 1200 s. From then, a periodic current is observed. These results

show a good qualitative agreement to the experimental measurements reported in literature.56, 98

An advantage of the numerical approach is that it allows to use any form of gate voltage.

Here, square, triangular (Figure 4.20(a)) and saw-tooth (Figure 4.20(b)) type pulses are used

to develop a study about the impact of each one in the drain current. If a triangular pulse is

applied, a softer oscillatory curve is obtained. In this case, however, it is observed that the

minimum drain current achieved is bigger in relation to the square pulse (see Figure 4.20(c)).

When a saw-tooth pulse is applied, the drain current curve becomes sharpest, but similarly to

the triangular pulse, the minimum current obtained is bigger than the obtained with the square

pulse. Differently to the square pulse, in the triangular and saw-tooth pulses, the slow growth in

the gate voltage causes that the movement of ions towards the channel to occur slowly as well.

(a) (b)

(c)
Figure 4.20 - (a) Triangular Pulse. (b) Sawtooth type pulse. (c) Drain current for each drain voltage.
Source: By the author.
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Figure 4.21 - Drain current for different values of Vg applying a square gate voltage.
Source: By the author.

Therefore, for these two pulses, the time is not enough for the system to achieve the new steady

state. Further, as in the square and saw-tooth pulse the potential is turned off periodically for

every 400 s, the behavior of the current for the two pulses at this time is very similar.

Now, square-type pulses with different amplitudes are used to investigate the behavior of the

drain current obtained. From Figure 4.21, it is observed that the drain current at the steady state

tends to decrease as the gate voltage increase. Here, each value of VG leads the system to reach

a different steady state, i.e., a different steady state drain current. The increase of VG cause that

the total quantity of cations entering and de-doping the channel increase as well, resulting in

smaller values of the steady state drain currents.

In the following, various values of ∆µ0 are considered to investigate its impact in the re-

sponse of the system to a pulsed gate voltage. Here, a square-type gate voltage and the values

of ∆µ0 in the range of −3 kJ mol−1 up to 1.8 kJ mol−1 are used. As mentioned in the previous

section, for each value of ∆µ0, distinct steady state concentrations are obtained in the absence

of a gate voltage. Therefore, for the following results, the initial conditions displayed in Fig-

ure 4.18(a) are used again. At the first 400 s that the pulse is in the OFF state, it is observed from

Figure 4.22 that for all values of ∆µ0, no changes in the drain current are generated. This is be-

cause the initial condition for each ∆µ0 is the steady state concentration obtained with VG = 0.

Hence, as the system is already in equilibrium, no migration of cations is produced. Then, for

the next 400 s that the gate voltage is activated, the reduction of the drain current due to the

drift of ions is observed. In Figure 4.22 can be seen that as ∆µ0 turns positive, the difference

between the initial and the final steady state value of the drain current increases. As previously

discussed, the initial concentration on every case defines the initial doping state of the channel.

Therefore, given that for the case in which ∆µ0 > 0, most of the concentration is initially in

the electrolyte, the quantity of cations that can migrate to the material under the application of

a gate voltage is bigger. For all cases, a periodic current is observed after the first 400 s. It is

important to mention that due to the thickness used for the semiconductor, the times considered
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Figure 4.22 - Drain current for different values of ∆µ0 using a square gate voltage.
Source: By the author.

for the pulses are orders of magnitude higher than those used experimentally. Therefore, these

studies provide qualitative results that allow to identify the possible impact of each situation in

the characterization of OECTs.
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5 Conclusions

Organic electrochemical transistors (OECTs) have evolved as fundamental devices for emerging

technologies. They have attracted widespread interest, accompanied by a steady improvement

in its performance. In order to get a more profound understanding of the underlying mecha-

nism, however, theoretical models capable to predict experimental data are still missing. In this

project, a numerical approach is followed to solve the Nernst-Planck equation in one dimen-

sion, and model the ion migration from the electrolyte to the semiconductor. This allowed to

elaborate an extensive study on the transient behavior of OECTs working in depletion mode.

In line with the objectives proposed in this project, to evaluate the accuracy of the imple-

mentation, standard boundary conditions used in the literature to solve analytically the drift-

diffusion equations were considered. In doing so, the numerical results were in good agreement

with the analytical solutions, achieving maximum errors of 1%. It was then discussed that these

boundary conditions do not represent properly OECTs, since they consider a semiconductor

layer with thickness tending to infinity, rather than a system with defined size. Aiming to simu-

late more accurately OECTs, boundary conditions which ensure a zero flux at finite boundaries

were implemented. When this closed boundaries were considered, the temporal evolution of the

concentration profiles showed a convergence to an exponential steady-state distribution, which

is in good agreement with the result expected theoretically. Therefore, the introduction of the

proper boundary conditions in the numerical implementation allowed to effectively describe the

transient behavior from an initial state to a final steady state. The impact of each boundary con-

dition in quantities like flux at the interface and the resulting drain current was investigated. In

difference to the open boundary case, closed boundaries yield an exponentially decaying flux.

This behavior is reflected in the drain current ID, which achieves a steady state faster when

closed boundaries are considered. Further, the value of ID at the steady-state showed different

values depending on the boundary conditions.

The mixed conductive property of the organic semiconductors, produces that the electronic

charge carriers within the material react to any electric field applied to the semiconducting film.

Following the Born–Oppenheimer approximation, the movement of electronic charge carriers is

much faster than the diffusion motion of ions. Consequently, the electronic charges are quickly

rearranged to compensate the electric field applied. Therefore, a non-uniform electric field,

which is finite in the electrolyte region and zero in the semiconductor, was added to the model.

However, the introduction of this condition produced an indeterminacy in the calculation of the

numerical derivatives at the interface, which leads to a lost in the information of the concentra-

tion at that point. Aiming to solve this problem, the addition of this concentration by hand was

proposed, which allowed to maintain the consistency in the results and ensure the conservation

of particles within the system. With the application of a non-uniform electric field, different

behaviors of the concentration were obtained in each region. On the one hand, an exponential
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profile was achieved in the electrolyte at the steady state. On the other hand, as in the semicon-

ductor only diffusion processes occur, a convergence to a constant concentration was observed.

Although similar behaviors were identified in the drain current for uniform and non-uniform

electric field, as the system approximate to the steady-state, a smaller value of ID was obtained

for the uniform electric field case. The analysis of various situations like different gate voltages

(VG), and different semiconductor thicknesses (Tsc) provided relevant information about the im-

plication of this condition. The study of ID at the steady state in function of the semiconductor

thickness, showed that for small Tsc, the results obtained were the same for both uniform and

non-uniform electric field. As the semiconductor thickness increases, however, a greater change

in the drain current was obtained in the uniform electric field case. For different values of VG, it

was observed that as the gate voltage increases, more cations enter to the semiconductor chan-

nel, leading to a large decrease in the doping level of the material, and consequently the steady

state drain current. For all gate voltages, the change in the drain current obtained for a uniform

electric field was smaller than with a non-uniform electric field.

In order to consider the distinct compositions in electrolytes and semiconductors, different

values of diffusion coefficients were introduced for each region. This extension has visible

impacts in the time that the system needs to achieve the steady state. Furthermore, it was

observed that the decrease in the diffusion coefficient of the electrolyte, have more impact in

the evolution of the system from a transient to a steady behavior.

The introduction of the chemical potential as the driving force of diffusion leaded to sig-

nificant variations in the results obtained with the model. Here, to reflect the distinction in the

properties of each material, different standard chemical potentials for the electrolyte and the

organic semiconductor region were considered. The implementation of this extension produced

the so-called “uphill” diffusion reported in the literature. In this situation, the results obtained

agreed with the theory, which allowed to confirm qualitatively the validity of the situations de-

scribed with the numerical implementation. Further, the drain current showed to be affected

when this consideration is introduced in the model.

Finally, a time dependent gate voltage was considered, which allowed to simulate a charge

and discharge processes of OECTs. Besides, with the numerical method, it was possible to

implement different types of pulsed potentials and investigate the impact of each one in the

currents obtained. For all cases, oscillatory curves similar to experimental measurements were

obtained.

As observed from previous discussion, the numerical approach allowed to investigate quali-

tatively several situations that goes beyond the analytical description. However, various limita-

tions were found along the development of this work. The principal limitation was associated to

computational resources required to obtain a solution in reasonable periods of time. For exam-

ple, although different semiconductor lengths were investigated, the dimensions of the devices

simulated are still orders of magnitude bigger than the obtained experimentally. According to

the stability condition of the numerical scheme, the consideration of smaller semiconductor and
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electrolyte thicknesses, i.e., ∆x, leads to the necessity to use smaller time steps ∆t. By do-

ing so, a considerable increase in the computational resources was generated in order to obtain

results in affordable times.

The results obtained with the numerical model presented in this dissertation, allowed to

obtain a description of the transient behavior of OECTs working in depletion mode. In the

previous results, the values of parameters such as diffusion coefficients and standard chemical

potentials, were assumed aiming to investigate qualitatively their impact on the results obtained

when the OECTs are simulated. However, several techniques reported in the literature,97, 99 may

be used to measure and calculate experimentally these parameters, and use them in the model.

Thus, it is important to combine efforts with experimental works to improve the modeling of

these devices. Aiming to overcome some limitations of this implementation, the algorithms

used here could be optimized, which may allow the simulation of devices with the proper di-

mensions. Further, it may be interesting to include additional conditions into the model. For

example, in all situations investigated in this work, only one ionic specie was considered in the

calculations. Thus, aiming to model more accurate situations, interaction between the two types

of ions and its impact in the results could be investigated. Besides, this model is based on one

dimensional equation. Therefore, to consider effects such as lateral ionic currents,51 to extend

the model to higher dimensions is still necessary. This extension could represent a relevant

improvement in the field of OECTs simulation.
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A Analytic solution of the Nernst-Planck equation

The analytic solution for Eq. (2.28) is well-defined in the literature for different situations.58

Here, the solution that represents the scenario simulated in Coppede’s model will be presented.

Therefore, the partial differential equation to be solved is expressed as follows (see Eq. (2.28)):

R
∂ψ

∂t
= D

∂2ψ

∂x2
− γ ∂ψ

∂x
. (A.1)

In order to obtain a solution for Eq. (A.1), the following boundary and initial conditions are

considered:

ψ(x, 0) =

ψ1 0 < x < x1

ψ2 x > x1

(A.2)

ψ(0, t) =

ψ0 0 < t < t0

0 t > t0
(A.3)

∂ψ

∂x
(∞, t) = 0 . (A.4)

In this case, the solution can be defined as:

ψ(x, t) =

ψ2 + (ψ1 − ψ2)A(x, t) + (ψ0 − ψ1) 0 < t < t0

ψ2 + (ψ1 − ψ2)A(x, t) + (ψ0 − ψ1)− ψ0B(t− t0) t > t0 ,
(A.5)

where

A(x, t) =
1

2
erfc

[
R(x− l)− γt

2
√
DRt

]
+

1

2
eγx/Derfc

[
R(x+ l) + γt

2
√
DRt

]
B(x, t) =

1

2
erfc

[
Rx− γt
2
√
DRt

]
+

1

2
eγx/Derfc

[
Rx+ γt

2
√
DRt

] (A.6)

erf(t) =
2√
π

∫ t

0

e−τ
2

dτ

erfc(t) = 1− erf(t) .
(A.7)

Solutions for a different set of boundary and initial conditions can be found in the work of
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Van Genuchten, et. al.58

B Stability Analysis for Fick’s Second Law

In this section, an analysis of the stability condition for the diffusion equation (see Section 2.1)

is developed. If an evenly spaced grid is considered, i.e. ∆xk+1 = ∆xk, Eq. (2.46) turns into:(
∂2f(x)

∂x2

)
x=xk

≈ f(xk + ∆xk+1)− 2f(xk) + f(xk −∆xk+1)

∆x2
. (B.1)

Using Eq. (B.1) and forward differences in time, the algebraic manipulation of second Fick’s

law (see Section 2.1) leads to:

ψl+1
k = ψlk +D

∆t

∆x2
(ψlk+1 − 2ψlk + ψlk−1) . (B.2)

Here, the notation ψlk = ψ(xk, tl) and ψlk±1 = ψ(xk ± ∆x, tl) is introduced. In order to

solve Eq. (B.2), the following solution is assumed:

ψlk = (ζ)leiε(k∆x) , (B.3)

where i =
√
−1 and ε is referred as the wavenumber of the solution mode, which can take

any value. In this solution, ζ raised to lth power is the unknown parameter that has to be

determined. If for any k, |ζ| > 1, it is said that the scheme is unstable, which means that the

previous expression will tend to infinity as the time index l is increases. The substitution of

Eq. (B.3) into Eq. (B.2) gives:

(ζ)l+1eiε(k∆x) = (ζ)leiε(k∆x) +D
∆t

∆x2
((ζ)leiε(k+1)∆x − 2(ζ)leiε(k∆x) + (ζ)leiε(k−1)∆x) . (B.4)

Dividing by (ζ)leiε(k∆x), the result may be expressed as follows:

ζ = 1 +D
∆t

∆x2
(eik∆x − 2 + e−ik∆x). (B.5)

Using the definition eik∆x + e−ik∆x = 2 cos(kx∆), the latest result turns into:

ζ = 1 +D
2∆t

∆x2
(cos(kx∆)− 1) . (B.6)

Here, it is observed that the maximum negative value that the second term on the right side

of Eq. (B.6) can achieve, is in the case that cos(kx∆) = −1. Therefore, in order to investigate
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in which cases the scheme is unstable, the conditions where ζ < −1 are analyzed. Thus, the

condition:

1− 4∆tD

∆x2
< −1 . (B.7)

leads to

∆t <
∆x2

2D
, (B.8)

which is the stability criterion for Fick’s second law when the explicit method considering a

uniform grid is implemented. From Eq. (B.8) it is observed that in this case, the parameter ∆t

depends on the values ∆x and D.

C Solution of Fick’s second law

For pure diffusion processes, the governing equation is defined by the second Fick’s law, which

may be expressed as (see Section 2.1):

∂ψ(x, t)

∂t
= D

∂2ψ(x, t)

∂x2
. (C.1)

Aiming to solve the previous equation, the boundary condition ψ(x → ±∞, t) = 0 for

t > 0 is implemented. As it is of interest to study the case presented in the Section 3.4, a

concentration contribution located at one single point x0 is considered. Thus, in this situation

results useful to define the initial condition as a delta distribution, i.e. ψ(x, 0) = δ(x − x0).

A well-known tool used to solve partial differential equations is the Fourier transform. Hence,

given a function ψ(x, t), the Fourier transform in relation to space gives a function ψ̂(ω, t) in

the space of frequency ω as follows:

F (ψ(x, t)) = ψ̂(ω, t) =
1√
2π

∫ ∞
−∞

ψ(x, t)e−ixωdx . (C.2)

For the spatial derivatives, the transform can be expressed as:

F

(
∂ψ(x, t)

∂x

)
=iωψ̂(ω, t) (C.3)

F

(
∂2ψ(x, t)

∂x2

)
=− ω2ψ̂(ω, t) . (C.4)

In addition, the calculation of the transform for the temporal derivative leads to:
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F

(
∂ψ(x, t)

∂t

)
=

1√
2π

∫ ∞
−∞

∂ψ(x, t)

∂t
e−ixωdx =

1√
2π

∂

∂t

∫ ∞
−∞

ψ(x, t)e−ixωdx =
∂

∂t
ψ̂(ω, t) .

(C.5)

Applying Fourier transform for the spatial coordinate to Eq. (2.2), it can be expressed as:

∂

∂t
ψ̂(ω, t) +Dω2ψ̂(ω, t) = 0 , (C.6)

which now is an ordinary differential equation in time for each value of ω. Multiplying both

sides by the integration factor eDω2t, Equation (C.6) turns into:

∂

∂t

(
eDω

2tψ̂(ω, t)
)

= 0 . (C.7)

If the latest result is integrated with respect to t but maintaining a fixed ω, it is obtained the

following result:

ψ̂(ω, 0)− eDω2tψ̂(ω, t) = 0⇒ ψ̂(ω, t) = ψ̂(ω, 0)e−Dω
2t , (C.8)

where, ψ̂(ω, 0) represents the transform of the initial condition ψ(x, 0) imposed on the system.

Using the definition of the Fourier transform for a delta function F (δ(x − x0)) = 1√
2π
e−ωix0 ,

the result may be expressed as follows:

ψ̂(ω, t) =
1√
2π
e−Dω

2te−ωix0 , (C.9)

Now, applying the inverse Fourier transform, the solution can be defined in the space domain

again. Thus, the following result is obtained:

ψ(x, t) = F−1(ψ̂(ω, t)) . (C.10)

From the definition of the inverse transform, ψ(x, t) is found to be:

ψ(x, t) =
1√
2π

∫ ∞
−∞

ψ̂(ω, t)eixωdω =
1

2π

∫ ∞
−∞

e−Dω
2te−ωix0eixωdω =

1

2π

∫ ∞
−∞

e−Dω
2t+i(x−x0)ω .dω

(C.11)

By doing algebraic manipulations of the exponent −Dω2t + i(x − x0)ω, one may express

it as

−Dt(ω2 − i(x− x0)

Dt
ω) = −Dt

(
ω2 − i(x− x0)

Dt
ω +

i2(x− x0)2

(2Dt)2
− i2(x− x0)2

(2Dt)2

)
= −(x− x0)2

4Dt
−Dt

(
ω − i(x− x0)

2Dt

)2

,
(C.12)

which allows to develop a change in the variables of the integration. Therefore:
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y =
√
Dt

(
ω − i(x− x0)

2Dt

)
⇒ dy =

√
Dtdω . (C.13)

Inserting the previous result in Equation (C.11) leads to:

ψ(x, t) =
1

2π
e−

(x−x0)
2

4Dt

∫ ∞
−∞

e−y
2 dy√

Dt
. (C.14)

As
∫∞
−∞ e

−y2dy =
√
π, the solution of Fick’s second law is:

ψ(x, t) =
1√

4πDt
e−

(x−x0)
2

4Dt , (C.15)

which is indeed the Eq. (3.8) in the main text.

D Steady-state solution for Drift-Diffusion

In the case at which a system has achieved the steady state, the concentration profile is no

longer changing, which means that ∂ψ
∂t

= 0. Therefore, in order to obtain the steady state

solution for the Nernst-Planck equation (see Eq. (2.1)), the condition ∂ψ
∂t

= 0 is implemented.

Thus, Equation (2.7) for a uniform electric field E is expressed as:

0 = −D(
∂2ψ

∂x2
− zeE

kBT a
∂ψ

∂x
) . (D.1)

Now, it is considered a solution for Equation (D.1) that has the form:

ψ = Aebx , (D.2)

where, A is a normalization factor and b is a constant to be determined. Inserting Eq. (D.2) in

Eq. (D.1), leads to:

0 = −b2ψ +
zeE

kBT a
bψ . (D.3)

Solving for b, it is obtained the following result:

b =
zeE

kBT
. (D.4)

Then, the function assumed for ψ solves the differential equation. Note that the solution de-

pends explicitly on the electric field applied. In order to determine the normalization factor A,

the conservation of the total number of particles is considered. Initially, the system has a con-

centration ψ0 = ψ(x, 0), which have to be conserved at all times. Therefore, the conservation

of particles for a system with length L establish that:
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∫ L

0

ψdx =

∫ L

0

ψ0dx = N0 = cte . (D.5)

The calculation of the integral on the left side of the previous relation leads to:

A

ω

[
ebL − 1

]
= N0 . (D.6)

Solving the latest result for A allow to obtain:

A =
b

[ebL − 1]
N0 . (D.7)

Therefore, the analytical solution for Nernst-Planck equation in the steady-state is estab-

lished as a function that presents an exponential profile.
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