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ABSTRACT

MEIRELES, V.D. Disorder, low-energy excitations, and topology in the
Kitaev spin-liquid. 2022. 111p. Dissertation (Master of Science) - Instituto de Física de
São Carlos, Universidade de São Paulo, São Carlos, 2022.

Frustrated magnetism is a very active research topic in condensed matter physics. The
competition between different ground states often leads to a suppression of the ordering
temperature and opens up the possibility that novel states emerge. One state of particular
interest are the spin liquids, for which we find no broken symmetry down to T → 0,
where T is the temperature. Moreover, theses states show topological order and are
notable for their peculiar features, such as long-range entanglement and the emergence
of fractionalized excitations. The Kitaev model is a fascinating example of an exactly
solvable model displaying a spin-liquid ground state in two dimensions. In real materials,
however, deviations from the original Kitaev model are expected to appear, and we discuss
relevant perturbations here. In this work, we investigate the fate of Kitaev’s spin-liquid in
the presence of disorder – bond defects or vacancies – for an extended version of the model.
Considering static flux backgrounds, we observe a power-law divergence in the low-energy
limit of the density of states, with a non-universal exponent. We link this power-law
distribution of energy scales to weakly coupled droplets inside the bulk, in an uncanny
similarity to the Griffiths phase often present in the vicinity of disordered quantum phase
transitions. If time-reversal symmetry is broken, we find that power-law singularities
are tied to the destruction of the topological phase of the Kitaev model in the presence
of bond disorder alone. For weak to moderate site dilution, there is a transition from
this topologically trivial phase with power-law singularities to a topologically non-trivial
one. Therefore, diluted Kitaev materials are potential candidates to host Kitaev’s chiral
spin-liquid phase.

Keywords: Frustrated magnetism. Quantum spin liquids. Kitaev model. Griffiths phase.
Topological phases.





RESUMO

MEIRELES, V.D. Desordem, excitações de baixas energias, e topologia no
líquido de spin de Kitaev. 2022. 111p. Dissertação (Mestrado em Ciências) - Instituto
de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Magnetismo frustrado é um tópico de pesquisa muito ativo em física da matéria condensada.
A competição entre diferentes estados fundamentais muitas vezes leva a uma supressão da
temperatura de ordenamento e abre a possibilidade para a emergência de novos estados
da matéria. Um estado de particular interesse são os líquidos de spin, para os quais não
encontramos quebra de simetria em T → 0, onde T é a temperatura. Além disso, esses
estados apresentam ordem topológica e são notáveis por suas características peculiares,
como o emaranhamento de longo alcance e o surgimento de excitações fracionalizadas. O
modelo Kitaev é um exemplo fascinante de um modelo exatamente solúvel que exibe um
estado fundamental de líquido de spin em duas dimensões. Em materiais reais, no entanto,
espera-se que surjam desvios do modelo original de Kitaev. Neste trabalho, investigamos
o destino do líquido de spin de Kitaev na presença de desordem – defeitos nas ligações
ou vacâncias – para uma versão estendida do modelo. Considerando configurações de
fluxo estáticas, observamos uma divergência do tipo lei de potência no limite de baixas
energias da densidade de estados, com um expoente não universal. Associamos essa
distribuição da lei de potência nas escalas de energia à regiões fracamente acopladas dentro
do sistema, em uma surpreendente semelhança com a fase de Griffiths, frequentemente
encontrada nas redondezas de transições de fase quânticas desordenadas. No caso em que
a simetria de reversão temporal é quebrada, descobrimos que as singularidades do tipo
lei de potência estão ligadas à destruição da fase topológica do modelo de Kitaev, na
presença de desordem nas ligações apenas. Para uma diluição de sítios fraca a moderada,
há uma transição desta fase topologicamente trivial com singularidades de lei de potência
para uma fase topologicamente não trivial. Portanto, materiais de Kitaev diluídos são
potenciais candidatos para hospedar a fase de líquido de spin quiral de Kitaev.

Palavras-Chave: Magnetismo frustrado. Líquidos de spin quânticos. Modelo de Kitaev.
Fases de Griffiths. Fases topológicas.
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1 INTRODUCTION

Over the past decades, strong spin-orbit coupling (SOC) has been recognized as
a key ingredient to generate unconventional phases in condensed matter systems. In the
weakly correlated regime, for instance, it is now recognized that SOC plays a crucial role in
the realization of topologically non-trivial phases of matter, with time-reversal symmetric
(TRS) topological insulators as one of the most prominent examples.2,3 Towards the regime
of strong electronic correlations, a plethora of novel magnetic phases of matter can arise
from the interplay between the Coulomb interaction and SOC, such as spin-nematic orders
and quantum spin liquids (QSL).2,4 The latter was first theorized by Anderson in 1973,5

and consists of an exotic state of matter described by topological order, which can display
peculiar features, such as long-range entanglement and the emergence of fractionalized
excitations.6

At the forefront of this rapidly growing field is the search, and potential synthesis,
of compounds capable of displaying these novel phases of matter. Among a myriad of
possibilities, a special class of materials, the 4d and 5d transition metal compounds, has
played a central role in the search for the QSL phase. In these spin-orbital Mott insulators,
the combination of both strong spin-orbit coupling and strong electronic interactions
generate bond-dependent interactions between the local moments which introduces, or
enhances, magnetic frustration, giving rise to novel magnetic properties.2,7–12 Of primary
interest are the so-called Kitaev materials, which are systems hosting dominant Ising-like
bond-dependent interactions for local effective moments jeff = 1/2 in stacked honeycomb
planes,4,13–19 making 4d and 5d compounds strong candidates to the physical realization
of the much-celebrated Kitaev’s Honeycomb model.

As proposed by Kitaev in 2006,13 this model consists of a system of spin-1/2 degrees
of freedom on the honeycomb lattice, with bond-dependent exchanges. Notably, despite the
frustrated nature of the spin interactions, this model admits an exact solution. More specif-
ically, Kitaev exactly established the existence of a quantum spin liquid6,20,21 of gapless
Majorana fermions moving in a static Z2 flux background. Remarkably, an infinitesimally
small external magnetic field can open a gap in the Majorana spectrum, which generates
chiral Majorana edge modes with half-quantized thermal Hall conductance.13,22

The incredibly rich phenomenology associated with the Kitev model has motivated
an intensive search for Kitaev materials in recent years. Two relevant classes of materials
showing strong Kitaev interaction are the honeycomb iridates23,24 A2IrO3 (A = Li,Na)
and α-RuCl3.25–27 However, these compounds display long-ranged magnetic order at low–T ,
suggesting the presence of further magnetic interactions beyond Kitaev’s.28,29 Remarkably,
in α-RuCl3, this magnetic state can be suppressed by an external magnetic field.30–35
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It is replaced by an intermediary phase, sandwiched between the ordered state at low
fields and the high-field polarized state, which exhibits a half-quantized thermal Hall
conductance,36,37 as predicted by the pure Kitaev model.

Another relevant Kitaev material is H3LiIr2O6.1 Unlike the Li and Na iridates, this
material shows no magnetic order down to 50 mK, making it a prominent candidate to
realize the Kitaev spin-liquid phase. However, the experimental observations are at the
odds with the thermodynamic behavior of the Kitaev model:38–40 (i) the specific heat
diverges at low temperatures as C/T ∝ T−1/2, while the pure model predicts C/T ∝ T ;
(ii) the uniform magnetic susceptibility shows a similar divergence χ ∼ T−1/2, where the
expected behavior is a constant at low-T ; (iii) the 1/T1 NMR spin-relaxation rate has
a non-vanishing contribution down to low-temperatures, while the pure model displays
an exponential decay with the temperature. These observations indicate the existence
of considerable low-energy magnetic excitations. Recent studies suggests they can be
understood within Kitaev’s model if one takes into account the presence of defects in
H3LiIr2O6.41,42

In this context, our main goal in this work is to expand the current understanding
of the effects of disorder in the Kitaev spin liquid phase. This is mainly motivated by the
aforementioned H3LiIr2O6 phenomenology, where microscopic sources of disorder include
stacking faults43 and the random position of the H ions. Moreover, these motivations can
also be applied to diluted α-RuCl3. To study the effects of uncorrelated quenched disorder
in this model in a controlled fashion, we address separately the role of bond disorder
and site dilution (vacancies). In this investigation, we will be interested in analyzing the
disordered model from the perspective of the thermodynamic and dynamical quantities,
as well as the interplay between topology and disorder in the presence of an external
magnetic field. In this way, we organize this dissertation as follows:

• In Chapter 2 we present a review on the foundations and realizations of the Kitaev
Honeycomb model. We begin with the model’s exact solution, where some basic
notation and terminology are introduced. After discussing some key physical features
in the pure model, we move to a brief review on the topological features in the
presence of an external magnetic field. Next, we discuss the physical mechanism
responsible to the realization of the Kitaev model in real materials. In this context,
we argue that a realistic description of Kitaev materials should consider extensions
to the pure Kitaev exchange. We then finish by introducing an exactly solvable
minimal model intended to capture the effects of further spin exchanges.

• Chapter 3 is devoted to establish the methodology implemented to extract the
physical quantities in the disordered system, where the exact diagonalization method
is utilized. First, we present the calculation of the density of states (DOS), and its
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relation to the specific heat. In addition to the thermodynamics, we also calculate the
dynamic quantities, within adiabatic approximation. Finally, we show the methods
adopted to probe topology in the disordered system. Specifically, we choose the Bott
index formula to compute the topological invariant, which is complemented by an
analysis on the spectrum statistics to characterize the in-gap zero modes.

• In Chapter 4 we present our results for the extended model in the presence of
bond disorder. We show that strong disorder leads to a power-law divergence in the
low-energy density of states (DOS). Here, we link this important result with the
existence of rare regions in the sample.44 This key observation allows us to naturally
account for this power-law distribution of energy scales in terms of Griffiths-like
singularities45–49 without evoking the presence of random singlets.50–56 Finally, we
discuss the topological properties of the model in the presence of an external magnetic
field, where the presence of a robust power-law distribution at low fields is linked to
the destruction of the topological phase.

• In Chapter 5 we present the results for the diluted extended model. The power-law
behavior in the thermodynamic quantities is discussed again, where the Griffiths-
like argument is linked with the presence of unpaired spins. As we shall see, the
topological index is robust up to a critical value of dilution, depending on the flux
background. We discuss how this scenario suggests that the topological phase could
be detected experimentally in diluted samples.

• We conclude in Chapter 6 with a summary of our findings and a brief discussion on
possible future directions.





25

2 THE KITAEV HONEYCOMB MODEL AND ITS EXTENSIONS TO REAL
MATERIALS

2.1 The Kitaev honeycomb model

The Kitaev Honeycomb model13 consists of a system of spin-1/2 degrees of freedom
placed at the vertices of a honeycomb lattice, interacting via a Ising-like exchange between
the nearest-neighbors (NN). The special feature is that the model is designed to have a
bond-dependent structure, i.e., the relevant spin component in the exchange between NN
sites is determined by the connecting bond orientation. In the honeycomb lattice there are
3 distinct orientations, labeled as α = (x, y, z), as illustrated in Fig.1(a). In this notation,
the Kitaev Hamiltonian is written as

HK =
∑

α=(x,y,z)

∑
〈ij〉

Kασ
α
i σ

α
j , (2.1)

where Kα is the exchange energy along the α direction, and σα are Pauli matrices. Because
of this directional dependence, each spin has 3 competing interactions, which cannot be
simultaneously minimized in energy. For classical spins, such an exchange frustration leads
to a massive degenerate ground state,57 whereas in the quantum version, the ground state
is given by a single, highly entangled wave-function, constituting a quantum spin-liquid.6

Arguably, the most remarkable feature this model presents is the existence of an
exact solution. This is due to an extensive number of conserved quantities, as noted by
Kitaev.13 For every plaquette (hexagon) p on the lattice, one can construct the operator
Wp, defined as the product of all spins along the plaquette corners, as shown in Fig.1(b).
In the honeycomb lattice, the plaquette operator is written as

Wp = σxi σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6. (2.2)

Using the spin algebra, it is straightforward to show that, for all plaquettes, we have:

[Wp,Wp′ ] = 0 and [HK ,Wp] = 0 (2.3)

Then, we have a set of non-dynamical, commuting operators defined on each plaquette.
In addition, the operator Wp is Hermitian and unitary, as can be easily show by using
the algebra of Pauli matrices and noting that σαi = (σαi )† = (σαi )−1. So, we have W 2

p = 1,
with eigenvalues wp = ±1. The idea now is to separate the total Hilbert space H into
disjoint sectors, each of them corresponding to an eigenspace of Wp, which is an invariant
subspace of HK itself. Thus, we write the total Hilbert space as

H =
⊕
{wp}

H{wp}, (2.4)
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Figure 1 – (a) The Kitaev Honeycomb model. The 3 possible bond orientations are labeled
as x, y and z. The spins are coupled according to the corresponding orientation,
leading to a highly frustrated spin system. (b) The plaquette operator Wp,
defined as the product of spins around a hexagon p.

Source: By the author.

where H{wp} is the subspace where all plaquettes have the specific set of eigenvalues wp.
This procedure is the same as to block-diagonalizing the Hamiltonian into distinct sectors
given by wp. However, it turns out that this scheme is insufficient to solve the problem.
Although the partition of H had simplified our problem, each eigenspace, H{wp} is still
very large. By taking a lattice with N unit cells, we have dim(H ) = 22N . Since there are
∼ 2N different flux sectors, we have dim(H{wp}) ∼ 2N for each sector. Thus, the Hilbert
space still scales exponentially with the system size.

2.1.1 Majorana Fermions and the Z2 gauge theory

Motivated by the above problem, we now show how to write the spin degrees of
freedom in terms of Majorana fermions, following the Kitaev representation.13 A usual
approach when studying spin systems is to use the Abrikosov representation of spins,58

where a spin operator σαi is written as a combination of two complex fermions, d↑,i, d†↑,i
and d↓,i, d†↓,i, satisfying the usual fermionic algebra: {dα,i, d†β,i} = δαβ and {dα,i, dβ,i} = 0.
Here we take one step further, and define the following Majorana fermion representation:13

bxi = d†↑,i + d↑,i, byi = i
(
d†↑,i − d↑,i

)
bzi = d†↓,i + d↓,i, ci = i

(
d†↓,i − d↓,i

)
. (2.5)

Note that ci and bαi can be regarded as the real and imaginary parts of the complex
fermions dα,i. Therefore, the Majorana fermions obey the reality condition, (bαi )† = bαi and
(ci)† = ci, and satisfies the anticommutation relations

{bαi , b
β
j } = 2δαβδij; {ci, cj} = 2δij; {bαi , cj} = 0. (2.6)

Before we write the spins in terms of the Majoranas in (2.5), it is important to take
a step back and check the Hilbert space dimensions. In the original spin-1/2 representation,
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the local Hilbert space is 2-dimensional. On the other hand, the nominal dimension of a
Majorana fermion is

√
2. Therefore, the 4 Majoranas act on an extended Fock space, with

dim= 4. Thus, with the above representation, we are working in an extended space, which
contains unphysical degrees of freedom. Keeping this problem in mind, we now represent
the spins in terms of Majoranas as

σαi = ibαi ci (2.7)

In order to check the consistency of this representation with the spin algebra, one can
write down the anti-commutation relations in terms of the Majorana operators. However,
a simpler way is to ask if the operators σαi satisfy the well know identity: σxi σ

y
i σ

z
i = i.

Using the Majorana algebra, we have

σxi σ
y
i σ

z
i = ibxi b

y
i b
z
i ci (2.8)

= iDi 6= i, (2.9)

where we introduced the operator Di ≡ bxi b
y
i b
z
i ci. It is now clear that in order to fulfill

the spin algebra, and to eliminate the spurious degrees of freedom, we need to introduce
a constraint for every site i, which defines the physical subspace F , equivalent to the
original Hilbert space H :

H ' F = {|Ψ〉 = Di |Ψ〉 , ∀i}. (2.10)

Now, it is easy to see that Di acts as an identity on states |Ψ〉 within the physical subspace,
and therefore the operator σαi reproduces the spin algebra when applied to the physical
states.

Figure 2 – Majorana representation of spins. The ci operators (yellow dots) are itinerant
Majorana fermions, hopping through the bonds uij formed by the bαi operators
(blue, red and green dots).

Source: By the author.

Finally, we can write the Kitaev Hamiltonian in the Majorana representation,
keeping in mind that after we obtain the solution, we need to eliminate the redundant
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degrees of freedom. By employing the representation (2.5), the Hamiltonian takes the
form:

HK = −
∑
〈ij〉α

Kα (ibαi ci)
(
ibαj cj

)
(2.11)

= −i
∑
〈ij〉α

Kαûijcicj, (2.12)

where we have introduced the bond operators ûij ≡ ibαi b
α
j . Using the Majorana algebra, it

is straightforward to show that

ûij = −ûji; û†ij = ûij; û2
ij = 1. (2.13)

The last of these properties tell us that the eigenvalues of ûij are uij = ±1. From the
Majorana algebra, and the above properties, we can see that the bond variables form a
set of integrals of motion: [HK , ûij] = 0; [ûij, ûkl] = 0, ∀ i. Consequently, we can split
the extended space into different eigenspaces of ûij, with each subspace corresponding
to a system with a fixed configuration of signs {uij}, which can be diagonalized, as HK

is quadratic in the Majorana fermions. However, the solutions |Ψu〉, obtained for a fixed
configuration {uij}, might not belong to the physical subspace. Indeed, from {Di, uij} = 0
we can see thatDi has the effect of changing the signs of the three eigenvalues uij emanating
from the site i. Then, the states |Ψu〉 are not necessarily physical, as they might not fulfill
the condition Di |Ψu〉 = |Ψu〉. To eliminate these unphysical states, we define the following
projector

P ≡
∏
i

1 +Di

2 . (2.14)

Here the product runs over all sites and acting with P on unphysical states yields zero.
From the above discussion, we now see that the variables uij do not have a direct physical
meaning. In fact, the true physical quantities are the plaquette operators, which are written
in terms of bond variables as

Wp =
∏
〈ij〉∈∂p

ûij (2.15)

= σx1D1σ
y
2D2σ

z
3D3σ

x
4D4σ

y
5D5σ

z
6D6. (2.16)

From [Wp, Di] = 0 and [HK ,Wp] = 0, it is evident that the plaquette operators in the
extended space form a set of conserved quantities. We can therefore obtain physical states
by just choosing a set of {uij} that obey the condition (2.15), for a given configuration of
signs on the plaquettes. From now on, we assume all states to be projected, because we
work within fixed Wp sectors.

From this discussion, we can now interpret the solution of the Kitaev model as a Z2

gauge theory.13,59 Because different configurations of {uij} can generate the same physical
configuration of eigenvalues {Wp}, one can interpret redundancy in the bond variables as
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a Z2 gauge theory. On the other hand, the plaquette operators are recognized as the fluxes,
which are gauge invariant. From now on, we will use this terminology, where for a given
flux sector, i.e., a configuration of {Wp}, one can pick a gauge of {uij}, and then proceed
to diagonalize the Hamiltonian. As a final remark, we notice that different flux sectors are
physically distinct from each other. Consequently, the flux degrees of freedom influence
the physical properties of the Kitaev model. Therefore the spins are fractionalized into
fluxes and Majoranas.

2.1.2 Ground State and Phase diagram

Now that we have established the basic terminology the Kitaev model, we can
proceed with its diagonalization. As discussed above, we have now a theory of itinerant
Majorana fermions, hopping in a static bond configuration, described by the Hamiltonian

HK = − i4
∑
〈ij〉

Aijcicj; Aij =

2Kαuij if (i, j) is along α

0 otherwise.
(2.17)

Here the factor 2 comes from the counting of bonds (i, j) and (j, i). In a generic (periodic)
flux sector the Majorana unit cell is enlarged in order to accommodate the periodic gauge
configuration {uij}. Therefore, for each flux sector we label the honeycomb sites as (ri, λ),
where ri is the position of the j-th Majorana unit cell, with i = 1, . . . , N and λ = 1, . . . , Ns

labels the position of a given site within the Majorana unit cell.60

To diagonalize the model, we first take the Fourier transform of the Majorana
operators:

ci,λ = 1√
N

∑
k
eik·rick,λ; λ = 1, . . . , Ns (2.18)

Note that due to the condition c†k′,µ = c−k′,µ, the momentum space operators do not obey
the canonical anti-commutation relations: {ck,λ, ck′,µ} = δλµδk,−k′ . Here we can use a useful
trick to avoid this complication. By cutting the Brillouin zone into two halves, and using
c†k′,µ = c−k′,µ, we can write the expansion as

ci,λ = 1√
N

∑
k∈HBZ

eik·rick,λ + e−ik·ric†k,λ; λ = 1, . . . , Ns (2.19)

where HBZ stands for the half of the Brillouin zone, and −k is defined on the other half.
Substituting (2.19) into the Hamiltonian we obtain

HK = i

4
1
N

∑
k,k′

∑
ij

∑
λ,λ′

Aλλ
′

ij

[
ck′,λ′eik

′·ri + c†k′,λ′e−ik
′·ri
] [
ck,λe

ik·rj + c†k,λe
−ik·rj

]
. (2.20)

Now we recall that Aij depends only on the relative distance between two sites. By
introducing δ ≡ ri − rj , we can write the matrix elements as Aλλ′

δ . Using this notation, we
can write the following form of HK :

HK = 1
2
∑

k

∑
λ,λ′

c−k,λ A
λλ′(k) ck,λ, (2.21)
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where Aλλ′(k) is the Fourier transform of the matrix Aij, and it is written as

Aλλ
′(k) = i

∑
δ

Aλλ
′

δ eik·δ, Aλλ
′(k) =

[
Aλ

′λ(k)
]∗

(2.22)

Then, after establishing a periodic bond configuration, in a given flux sector, we only need
to diagonalize the matrix Aλλ′(k) to find the Majorana band structure.

Now, with this scheme prepared, we can ask which of the infinite possible flux
sectors corresponds to the ground state. To solve this, we have to determine the flux
configuration that minimizes the ground state energy. In general, one solve this by a direct
numerical evaluation of possible realizations.13 However, for the simplest form of the model
discussed so far, a theorem by Lieb61 states that in a translationally invariant system the
ground state is flux free, i.e. Wp = +1, ∀p, which we refer to as the 0-flux sector.

Another important observation is that the global ground state energy does not
depend on the signs of the exchanges Kα, because any change of sign is compensated by
changing the corresponding variables uij (see Fig. 3 (a)). This is true even if the bond
variables uij are fixed, since the gauge invariant quantities Wp remains frozen after the
transformation, and we can return to the original uij values by a gauge transformation.
Therefore it does not matter if the exchanges are ferromagnetic (FM) or antiferromagnetic
(AF) for the pure Kitaev Hamiltonian.13

Figure 3 – (a) Invariance of the flux sector under the change of the Kα signal. Here we
show the Kz exchange as a representative case. (b) The 0-flux unit-cell, defined
by the honeycomb lattice vectors, a1 = (1,

√
3))/2 and a2 = (−1,

√
3)/2. We set

the lattice spacing a = 1.(c) Phases of Kitaev Model. We can see the existence
of 3 gapped phases, and a gapless one. The gap opens as soon as Kα exceeds
the sum of the remaining two.

Source: By the author.

Now, we can find the spectrum of Majoranas in the ground state, by just choosing
the a gauge where uij = +1, ∀ 〈i, j〉. This configuration of bonds is periodic, which allows
us to use the generic scheme proposed at the beginning of this section. Indeed, the 0-flux
sector unit cell is the same as the Honeycomb lattice, and then Ns = 2 (sublattice 1 and
2). Now, the calculation is exactly the same as the diagonalization of the tight-biding
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model on a Honeycomb lattice,62 where we have the following elements of Aλλ′(k):

A12(k) = f(k) = 2i(Kz +Kxe
−ik·a1 +Kye

−ik·a2 (2.23)
A11(k) = 0 (2.24)

with A12(k) = [A21(k)]∗, A11(k) = A12(k). The Hamiltonian, in its matrix form, is written
as

H = 1
2
∑

k

(
c−k,1 c−k,2

) 0 f(k)
−f ∗(k) 0

ck,1

ck,2

 . (2.25)

The Majorana spectrum is finally given by the eigenvalues of this matrix,

E(k) = |f(k)|, (2.26)

where f(k) is given by (2.23). By solving f(k) = 0, it can be shown that the spectrum is
gapless only if the Kα’s are chosen such that the triangular inequality holds:13

|Kα| ≤ |Kβ|+ |Kγ|, (2.27)

which is valid for any permutation of (α, β, γ). This relation allows us to construct the
phase diagram of the model as depicted in Fig.3(c). We can see that there are 3 gapped
phases and a gapless one, around the isotropic point Kx = Ky = Kz. In the gapless phase
B the low energy spectrum is linear, forming Dirac cones at the high symmetry points
K and K′, in the same way as the graphene.62 Note, however, that we can only have a
single Dirac cone if k ∈ HBZ, or two halves of the Dirac cones if we are working within
the entire BZ. On the other hand, the gapped phases Aα are topologically distinct to the
B phase and are equivalent to the toric code model.13,63 We will not study this limit in
this work, as we are going to consider only the isotropic point Kα = K, ∀α, that is, the
center of the B phase.

As the low-energy dispersion of Majoranas follows a graphene-like behavior, it is
very tempting to make use of the well-known phenomenology of graphene62 as an analogy
to the ground state of the Kitaev model. However, this approach is rather naive, as we
cannot ignore the fractionalized nature of our solution. Indeed, a spin flip creates (or
destroys) two fluxes in the adjacent plaquettes, by flipping the bond uij∗, as depicted in
Fig.4(b). Therefore, the Z2 fluxes constitute another type of physical excitation in this
system, in the form of a flux-pair. This excitation is gapped, with the energy gap ∆2f

given by the energy difference of a state with and without the flux pair. As we will discuss
in the following chapters, the flux pair gap plays an essential role in the calculation of
dynamical quantities in the Kitaev model.64,65

∗ This comes from the fact that any spin σαj anti-commutes with exactly two plaquette
operators.
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Figure 4 – (a) The Brillouin zone, defined by the reciprocal vectors b1 = π(1,
√

3) and
b2 = π(−1,

√
3). In the isotropic limit, the low energy bands are given by

Dirac cones, situated at the high symmetry points K and K′. If all the BZ is
considered, we can discard the lower band. (b) Creation of a flux pair excitation
by applying σαj . (c) Creation of two flux-pair excitations by considering (i, j)
beyond NN in the spin-spin correlation function. In this case, the mixing of
flux sectors yields a vanishing static correlation.

Source: By the author.

As a final remark, let us discuss briefly the spin correlations in the Kitaev model.
To evaluate the static spin-spin correlation,

〈
σαi σ

β
i

〉
, we need to act a spin σβi onto the

0-flux ground state. As discussed in the paragraph above, this leads to the creation of a flux
pair excitation, leading us to different flux sector. In order to have a non-zero correlation,
the application of the second spin must destroy the flux pair previously created, to have a
non-zero overlap with the original flux state (see Fig. 4(c) for a case which violates this
condition). This is the case only if α = β and i is at least a first neighbor of j. Thus, the
static correlation reads as66 〈

σαi σ
β
j

〉
∝ δ〈ij〉αδα,β (2.28)

This ultra short-ranged correlation implies that no magnetic ordering is found in the
Kitaev model. This is one of the reasons why the ground state of this system consists of a
Z2 quantum spin-liquid.59,66 In addition, we notice that the Majorana spectrum is gapless,
and therefore the ultra short-ranged correlations comes from the presence of the gapped
flux excitations, due to the fractionalization.

2.2 Topology in the Kitaev Honeycomb model

2.2.1 Effective Hamiltonian

In this section we consider the presence of a uniform magnetic h = (hx, hy, hz),
which is coupled to the spin degrees of freedom via a Zeeman term

H = HK −
∑
j

h · σj, (2.29)

where HK is the pure unperturbed Kitaev Hamiltonian. The problem when dealing with
such a perturbation is the lost of integrability, as the Zemman term couples the bαi and
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ci Majoranas. Consequently, the Z2 fluxes become dynamical, and we cannot employ the
Hilbert space partition scheme presented previously. However, it is possible to treat the
magnetic field perturbatively, in such a way that we can use the Majorana representation
to write an effective quadratic Hamiltonian, which preserves the exact solution.13

To achieve this, we must assume the field magnitude to be smaller than the flux
excitation energy, that is h < ∆2f . In this limit, the leading relevant perturbation has the
form of a three-spin interaction13†:

H(3)
eff ∼ κ

∑
〈〈i,j,k〉〉

σxi σ
y
jσ

z
k. (2.30)

Here we have introduced the parameter κ, defined as hxhyhz/∆2f . This contribution
explicitly breaks time-reversal symmetry, capturing the essence of the Zeeman term. In
addition, we can see the existence of two possible three-spin configurations that are
described by the Hamiltonian (2.30), as illustrated in Fig. 5, which we refer to as the (a)
and (b) configurations.

Figure 5 – Representation of the only two possible contributions coming from 3rd order
perturbation. (a) In this configuration, the 3 spin interaction gives rise to a
quartic fermion term, which is irrelevant. (b) This contribution results in a
bilinear next-neighbor fermion interaction, which can be diagonalized.

Source: By the author.

In the Majorana representation (2.7), the three-spin interaction becomes

σxi σ
y
jσ

z
k = (ibxi ci)

(
ibyj cj

)
(ibzkck) (2.31)

= ibxi b
y
j b
z
kcicjck. (2.32)

Let us focus now on the first configuration, depicted in Fig. 5(a). Here the sites (i, j, k)
shares the same neighbor, l. It is possible then to rewrite this contribution in terms of bond
operators uij coming from the site l. Using the definitions of Di and uij: Di = bxi b

y
i b
z
i ci

and ûij ≡ ibαi b
α
j , together with the property bαi bαi = 1, the effective Hamiltonian in the

† See the appendix A for a derivation of this effective Hamiltonian.
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configuration (a) takes the form:

H(a) ∝ i(bxl bxl ) bxi (b
y
l b
y
l ) b

y
j (bzl bzl ) bzk(clcl)cicjck

= iDlûliûljcicjckcl (2.33)

This is a 4 fermion interaction, which in principle spoils the integrability of the model. How-
ever, this contribution can be ignored because the gapless majorana phase is perturbatively
stable with relation to interactions.67–69

Now we consider configuration (b). From Fig.5(b) we see that k is a common
neighbor of i and j. Thus, we can write this contribution in terms of bond operators
coming from the site k. Proceeding with the same steps used in (2.33), the (b) configuration
gives the following contribution

H(b) = iDkûikûkjcicj. (2.34)

This is a bilinear term describing a next-nearest neighbor (NNN) Majorana hopping,
mediated by the bond operators connecting the sites (i, j), as depicted in Fig.6(b). Note
that Dk = 1 in the physical subspace, so we can ignore this operator in (2.34). Now we
have the final form of the Kitaev model in the presence of an external field, described by
the effective Hamiltonian:

Heff = HK − iκ
∑
〈〈i,j〉〉

uikukjcicj, (2.35)

where HK is defined in (2.1). From this point, we refer to the effective three-spin interaction
as the κ term or the κ interaction.

Figure 6 – The six next-nearest neighbors, ni, i = 1, 6, are located at ±a1, ±a2 and
±(a1− a2). (b) The link orientation of the NN hoppings and the chiral pattern
of the NNN hoppings, resembling the Haldane model on the Honeycomb lattice.

Source: By the author.

2.2.2 Topology and Chiral QSL

Now we can explore how the κ term can alter the basic properties of the Kitaev
model, as presented in Sec.2.1. First, to ensure that Aij = −Aji, we need to establish
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an orientation convention for the uij variables‡. Here we impose that uij is positive if i
belongs to the sublattice 1 and j to the sublattice 2(see Fig. 6(b)). As the κ term preserves
translation symmetry, the diagonalization follows the same procedure presented in Sec.
2.1.2, where the only difference is the presence of the NNN chiral hoppings, depicted in
Fig. 6(b). Now, the matrix elements Aλλ′(k) are:

A12(k) = f(k) = 2iK(1 + e−ik·a1 + e−ik·a2) (2.36)
A11(k) = g(k) = 2iκ

(
1 + eik·(a1−a2) − e−ik·(a1−a2) + eik·a2 − e−ik·a2 − eik·a1 + e−ik·a1

)
= 4κ [sin(k · a1)− sin(k · (a1 − a2))− sin(k · a2)] (2.37)

with A12(k) = [A21(k)]∗, A11(k) = A12(k). Now, the Hamiltonian takes the following
matrix form:

H = 1
2
∑

k

(
c−k,1 c−k,2

) g(k) f(k)
−f ∗(k) −g(k)

ck,1

ck,2

 . (2.38)

Diagonalizing the matrix A(k) in (2.38) yields the following Majorana band structure:

E(k) = ±
√
|f(k)|2 + g(k) (2.39)

The Majorana excitations are gapped now, with an energy gap given by ∆κ = 6
√

3κ,
around the Dirac points K and K′. Most importantly, however, is the fact that this is a
topological gap, as we have broken TRS explicitly. Indeed, one shall notice the resemblance
of the chiral NNN hopping structure with the Haldane model in the honeycomb lattice,
a prototypical model of topological insulators.70 However, a more careful and generic
treatment71,72 leads us to the conclusion that (2.35) falls into the same topological class as
a p+ ip topological superconductor,3,73 where g(k) plays the role of the superconducting
gap§.

Accordingly, it is possible to identify a topological index to our extended model. In
a translation invariant system, this index is defined as the Chern Number .74 This quantity
corresponds to the following integral over the first Brillouin zone:3

C = 1
4π

∫
dkxdky

(
∂m
∂kx

× ∂m
∂ky

)
·m , (2.40)

where the vector field m(k) is defined via m(k) · σ = −sgn(iA(k)), and A(k) is defined
in (2.38). Here we recognize the integrand as the Berry curvature75 of the eigenfunctions
of the filled band. From this geometric perspective, it can be shown that C is indeed an
integer,76 given by the sign of the Majorana gap ∆κ:13

C ≡ sgn(∆κ) = sgn(κ) = ±1 (2.41)
‡ Although this condition is just a formality for the pure model, for the κ term the sign

convention plays an important role, because of its chiral structure.
§ This conclusion is more evident when writing the Kitaev model in terms of complex fermions,

which leads to a Bogoliubov-de Gennes form, as presented in Section 3.1.1.
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As a consequence, we now expect gapless edge modes to appear in an open system
in the presence of h, in a similar fashion to what is observed in the integer quantum Hall
effect.77 These edge modes follow a well-defined chirality, determined by the sign of κ.
Moreover, they are expected to be robust in the presence of microscopic details, such as
disorder and further perturbations, evidencing the topological nature of 2.35.

However, unlike the quantum Hall effect, these edge modes carry energy, instead of
charge. This happens due to the charge-free nature of the Majorana excitations and opens
the possibility of a thermal transport measurement. Indeed, these Majorana edge modes
can be probed via a half-integer thermal Hall effect experiment,13,36 where the thermal
Hall conductivity is given by13

kxy
T

= 1
2

(
πk2

b

6~

)
(2.42)

The reason to expect a half-integer factor is that a complex fermion is composed of a pair
of Majoranas, which means that a single Majorana mode carries half degrees of freedom of
a complex fermion. Therefore, this measurement proposal provides a unique signature of
the fractionalized nature of the Kitaev spin-liquid.

2.3 Real Materials and Extensions

2.3.1 Microscopic origin of the spin-1/2 Kitaev exchange

The astonishingly rich phenomenology associated with the Kitaev model has sparked
very intensive efforts towards its realization in the real world. Much of this interest is
motivated by long-standing quests in condensed matter physics, such as the realization of
the spin-liquid phase in real materials6 and the direct probing of its fractionalized nature,59

as well as the possible experimental observation of Majorana fermions.78,79 Moreover, there
is a strong interest coming from possible applications to quantum computation,80 as first
proposed by Kitaev himself.13

The conceptualization of real materials displaying the Kitaev exchange is a chal-
lenging task, mainly due to its rather artificial, bond-dependent form. However, some hints
were already available at the time Kitaev proposed his model. This form of exchange falls
into the family of compass models,8 i.e., models where the coupling between internal spins
is directional dependent. These were proposed as minimal models to describe interactions
between orbital degrees of freedom in strongly correlated materials, in the pioneering work
by Kugel and Khomskii.81 In this perspective, it is very suggesting that orbital effects and
electronic correlations are important ingredients in the realization of the Kitaev exchange.
The remaining piece in this puzzle is to consider the effects of relativistic spin-orbit coupling
(SOC), as pointed out in the seminal work by Jackeli and Khaliulin.7,14 In their work, they
proposed a physical mechanism responsible for the emergence of the Kitaev exchange in
Mott insulators with strong SOC, combined with geometry arguments.
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More specifically, they considered 4d5 and 5d5 transition metal compounds. In these
materials, the transition metal ions are surrounded by an octahedral cage of nonmagnetic
anions (usually oxygen ions), as depicted in Fig.7. In this configuration, the partially
filled d orbital is subject to an effective crystal field due to the octahedral environment.
Consequently, the 5-fold degeneracy of the d orbital is split into a low-energy triplet, the
t2g manifold, and a high-energy doublet, the eg manifold.82 While the eg configuration is
empty, the t2g-orbital is occupied by 5 electrons. This partially filled configuration can be
viewed as a single hole with an effective orbital angular momentum l = 1.17

Figure 7 – The splitting of the local d5 orbitals. The combined effect of the crystal field,
spin-orbit coupling and strong electronic correlations leads to the formation of
an effective j = 1/2 Mott insulator. In the octahedral cage illustration, the red
dots at the vertices are nonmagnetic ions, while the large blue dot at the center
is the transition metal ion. The dashed lines represents the two exchange paths
between the jeff = 1/2 states.

Source: By the author.

Now, we can consider the effects of strong SOC. In this situation, the eg-orbital
remains unaffected, while the effective l = 1 angular momentum of the t2g-orbital couples
to the spin s = 1/2 of the electrons via HSOC = λLt2g · S, producing another degeneracy
lifting, as depicted in Fig.7. This splitting results into a filled jeff = 3/2 quartet and a
high-energy jeff = 1/2 doublet with a single hole. The splitting between these levels is of
the order λ. Therefore, if the on-site Coulomb repulsion (Hubbard U) is at least of the
order of the bandwidth of the jeff = 1/2 band, the low energy degrees of freedom are the
local jeff = 1/2 magnetic moments, which are explicitly given by17

∣∣∣j1/2
〉

=


1√
3 (− |xy, ↑〉 − i |xz, ↓〉 − |yz, ↓〉) , (mj = +1/2)

1√
3 (|xy, ↓〉+ i |xz, ↑〉+ |yz, ↑〉) , (mj = −1/2).

(2.43)

As the SOC constant λ is proportional to Z,2 where Z is the atomic number of the ion,
the jeff = 1/2 degrees of freedom are expected to be stable for heavy transition metal ions,
such as Iridium and Ruthenium atoms.

Because of the spin-orbital nature of the interactions between jeff = 1/2 moments,
we expect a highly anisotropic spin exchange. In general, we can write such a generic
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exchange in the following form:17

H =
∑
ij

JijSi · Sj + Dij · (Si × Sj) + Si · Γij · Sj. (2.44)

Here we have the Heisenberg (Jij) and the Dzyaloshinskii-Moriya (Dij) interactions, along
with the symmetric Γij pseudo-dipolar tensor contribution. In order to have the Kitaev
exchange, we need to impose that Jij and Dij vanishes for every bond, while the only
non-zero components in H are the diagonal elements of Γij. We are going to focus on the
limit where inversion symmetry is not broken, and therefore Dij = 0 always.

It is possible to achieve Jij = 0 for a particular geometry, as shown by Jackeli and
Khaliullin. If the octahedral cage is displayed in a edge-sharing configuration (see Fig.
7), all the leading contributions (∼ t2/U) vanishes, i.e., the Heisenberg and interaction
is zero. Moreover, they showed that the only surviving contributions in the next-leading
order (∼ t2JH/U

2) are the diagonal components of the Γij matrix, which is exactly the
desired Kitaev exchange. The edge-sharing geometry is essential to achieve result due to
the existence of two exchange paths between the jeff = 1/2 states (see Fig.7), which leads
to the destructive interference of all leading contributions.

Since the proposal of this mechanism, several theoretical and experimental works
were devoted to the search and realization of strong spin-orbit coupled Mott insulators, with
the final aim to realize the Kitaev physics. Indeed, in their own work, Jackeli and Khaliullin
proposed that honeycomb iridates, such as Na2IrO3 and Li2IrO3, are candidates to host the
Kitaev exchange.14 In the following years, various compounds were proposed as candidate
Kitaev materials, such the Ruthenium-based α-RuCl325 and even 3D hyperhoneycomb
compounds, such as β−Li2IrO3.83

2.3.2 Further exchanges and real materials

While the Jackeli-Khaliulin mechanism presents a plausible and elegant way to
realize the Kitaev exchange in real materials, a more accurate approach is to consider
extensions and deviations to this scenario, to fully describe the phenomenology of Kitaev
materials. For instance, we need to take into account the local distortions of the crystal
field and also the possibility of a direct d − d hopping between the transition metal
ions. Moreover, for heavy 4d and 5d compounds, the overlap between spatially extended
d-orbitals can generate relevant long-range interactions beyond nearest neighbors.17

Therefore, to write a realistic spin model, we need to include additional interactions
which are allowed by the local symmetries. For the honeycomb lattice, the most generic
spin interaction between two sites, i and j, is given by17,84

Hα
ij =JijSi · Sj +KijS

α
i S

α
j + Γij

(
Sγi S

β
j + Sβi S

γ
j

)
+

+ Γ′ij
(
Sαi S

γ
j + Sαi S

β
j + Sγi S

α
j + Sβi S

α
j

)
, (2.45)
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where {α, β, γ} are permutations of {x, y, z}. Along with the Kitaev term, we now have
the Heisenberg (J) and the off-diagonal interactions (Γ and Γ′). Depending on the context,
more simplified versions of this model can be considered, such as the Heisenberg-Kitaev
model (Γ = Γ′ = 0), as proposed by Chaloupka, Jackeli and Khaliullin in the context of
honeycomb Iridates.15 Another minimal model that can be considered is the JKΓ−model
(Γ′ = 0), in the situation where the distortions of the octahedral cage can be neglected
and the Γ′ term is small.84,85

Regardless of the specific form of the extended model, a generic behavior expected
in candidate Kitaev materials is the dominance of the Kitaev exchange against other
contributions. Still, the presence of these interactions modify the basic physical prop-
erties of the system when compared to the pure Kitaev model. The Heisenberg-Kitaev
model is a notorious example, as it presents a very rich phase diagram of magnetically
ordered states at sufficiently low temperatures, which was verified by different numerical
calculations.15,16,86,87 Moreover, various Kitaev materials, such as α-RuCl3and Na2IrO3,
were shown to display magnetic ordering at low temperatures.88,89 This scenario strongly
indicates that extra exchanges work to stabilize these ordered states, which in turn poses
a major challenge in the realization of the bare Kitaev model. Notwithstanding, the hunt
for the Kitaev spin-liquid is very active, with some promising paths to its realization
being proposed over the past few years. One interesting route is to suppress the additional
exchange terms by applying an external magnetic field.32,36,90,91 This approach has gained
much attention in the context of α-RuCl3, after the apparent detection of the half-integer
quantum Hall effect in this compound under an external field.32,36 Notice that due to
its topological nature, the Kitaev spin liquid is oblivious to further exchanges once it is
stabilized.

Another promising approach has been considered very recently, in the context of
honeycomb Iridates. The idea is to replace the alkali atoms (Li or Na) with a lighter
one, with the aim to enhance magnetic disorder in the material, making Hydrogen-based
Iridates natural candidates.4 This proposal was brought to reality after Kitagawa and
colleagues successfully synthesized the honeycomb Iridate H3LiIr2O6.1 This material is
notorious due to the total absence of magnetic ordering up to 50mK, making this a
very promising spin-liquid candidate. However, its basic properties are at odds with the
thermodynamic behavior of the clean Kitaev model:38–40 (i) the specific heat diverges at
low−T as C/T ∝ T−1/2; (ii) the uniform magnetic susceptibility shows a similar, albeit
milder, divergence χ ∼ T−1/2; (iii) the 1/T1 NMR spin-relaxation rate has a non-vanishing
contribution down to low-temperatures and the Knight shift is almost flat in this region.
All these results point to an appreciable amount of low-energy excitations, which is not
expected in the pure model.

After the H3LiIr2O6 results came out, some attempts were made in order to explain
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Figure 8 – Experimental data of H3LiIr2O6. (a) C/T versus T for various values of the
magnetic field. For B = 0, the low-T regime is a power-law divergence on the
form T−1/2. This divergence is suppressed for non-zero values of B. The inset
shows the scaling C/T ∼ B−3/2T , for T 6 B. (b) The static spin susceptibility,
χ(T ). This observable displays similar power-law behavior, χ(T ) ∼ T−1/2,
which is less pronounced in the experimental range.(b) The NMR relaxation
rate, 1/(T1T ). The almost constant behavior at low-T indicates the presence of
low-energy spin excitations.

Source: KITAGAWA et al.1

its phenomenology41,42,92,93 and current consensus is that structural disorder plays an
important role in this compound, such as stacking faults,1,93 and the random position of
the H atoms.94 Therefore, a minimal model should consider both the effects of non-Kitaev
interactions and structural defects, as we present in the following sections.

2.3.3 Extended Kitaev model

Once the importance of adding extra interactions to the Kitaev model was under-
stood, it became necessary to develop new theoretical and numerical approaches to unveil
the physics of Kitaev materials. The reason behind this is due to the loss of integrability in
the presence of further exchanges, as the Majorana representation fails to give a quadratic
Hamiltonian with static fluxes. On the computational side, a wide range of techniques have
provided useful insights on the Kitaev physics beyond the integrable limit, including exact
diagonalization,15,16,95 density matrix renormalization group,96,97 Tensor Networks,98,99

Machine learning methods,100,101 and more prominently, several variations of Monte Carlo
methods.39,102,103

In this work, we are going to consider a simple approximation based on the
Majorana representation. The general idea is to consider the first non-trivial contributions
coming from the perturbation expansion of the J,Γ and Γ′ interactions, assuming that
we do not leave the 0-flux ground state, in the same way as for the magnetic field, in
section 2.2. To further simplify our analysis, we can proceed with a more universal scheme,
instead of working directly with the non-Kitaev interactions, we seek quadratic Majorana
contributions that are consistent with the symmetries of the Kitaev Hamiltonian.104 Using
this procedure, Zhang and colleagues were able to propose the leading time-reversal
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symmetric contributions given in terms of a 4-spin interaction,105

H3 = K3
∑

(ijkl)αβγ
σαi σ

γ
j σ

α
kσ

γ
l +K ′3

∑
(ijkl)αβα

σαi σ
γ
j σ

γ
kσ

α
l , (2.46)

where (ijkl)αβγ and (ijkl)αβα are paths consisting of three links (see Figures 9(c) and
37(a)) and (α, β, γ) is a permutation of (xyz) in each term. It is important to stress that
TRS breaking contributions are also allowed in this scheme, coming from possible crossed
terms between non-kitaev interactions and the magnetic field, for instance.106 However,
our intention in this work is to study the possible effects of the simplest contribution
coming from non-Kitaev interactions. Therefore, we will stick ourselves to TR symmetric
contributions only. Moreover, we will retain our analysis to a qualitative level, and then,
we can choose a single contribution from (2.46), namely the K ′3 interaction. The reason to
choose this term specifically is due to a more intricate structure of the K3 term in the
language of Majoranas, as we discuss in the appendix B.

Now, by assuming the K ′3 as our only perturbation, we can employ the Majorana
representation, (2.7), which gives us the following form of H3:

H3 = K ′3
∑

(ijkl)αβγ
(ibαi ci)(ib

γ
j cj)(ib

γ
kck)(ibαl cl). (2.47)

Now, we use (bαi )2 = 1 along with the physical space constraint Di = bαi b
β
i b
γ
i ci = 1,

allowing us to write σαi = ibαi ci = −ibβi b
γ
i . Using this alternative expression for σαi and

the definition of the link operators ûαij = ibαi ci, we can finally write the Hamiltonian as a
quadratic Majorana interaction,

H3 = K ′3
∑

(ijkl)αγα
(ibαi ci)(−ibαj b

β
j )(−ibαk b

β
k)(ibαl cl) (2.48)

= iK ′3
∑

(ijkl)αγα
(ibαi bαj )(ibβkb

β
j )(ibαk bαl )cicl (2.49)

= iK ′3
∑

(ijkl)αγα
ûαijû

β
jkû

α
klcicl. (2.50)

It is possible to see that H3 gives rise to a third neighbor¶ Majorana interaction, with
the contribution from three consecutive bonds along the path (ijkl)αβα. In fact, this
construction leads to general terms on the form Hr which contains r+1 spin operators and
then breaks TRS for even r, while preserving TRS for odd r. In the language of Majoranas,
this gives rise to quadratic Hamiltonians with r consecutive bond operators. The κ-term,
for instance, is the simplest contribution beyond the Kitaev Hamiltonian, with two bond
operators. Accordingly, the next contribution must have a 3-bond structure, making the
K ′3 term a natural extension in this language.
¶ Here we use the Manhattan distance to calculate the relative positions between two sites.
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Figure 9 – The 3 terms of the extended Kitaev model. (a) The Kitaev term. (b) The
simplest perturbation is the TRS breaking κ−term, with a 2-bond structure.
A representative path is highlighted with its respective sites, (ijk). (c) The
K ′3 term. This is the natural continuation beyond the κ interaction, due to its
3-bond structure. We highlight a representative (ijkl) path in orange.

Source: By the author.

The full Hamiltonian, including the pure Kitaev term HK , and the κ term reads as

H = −iK
∑
〈ij〉

uijcicj − iκ
∑
〈〈i,j〉〉

uikukjcicj + iK ′3
∑

(ijkl)αβγ
uαiju

β
kju

α
klcicl. (2.51)

Even in the presence of K ′3, the Z2 bond variables are preserved, and therefore the fluxes
are frozen, allowing us to diagonalize (2.51) in the same way presented in the previous
sections. However, the K ′3 contribution is not completely trivial, as it changes two major
characteristics of the system. First, we cannot set the equivalence between the sign of K
and uij, due to the 3-bond structure of K ′3. Therefore, there is a distinction between FM
(K > 0) and AF (K < 0) Kitaev exchanges. In our work, we will be concerned only with
AF interactions, for the sake of simplicity. Secondly, in contrast to the pure Kitaev model,
where the ground state is the zero-flux configuration due to the Lieb theorem, the presence
of K ′3 might change the ground state sector.105 For the K ′3 term only, with AF Kitaev
exchange, we find that for K ′3 & K/8 the ground state comprises one flux per plaquette,
i.e. Wp = −1 for all plaquettes (see appendix B), but we do not explore in detail this
transition in this work.
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3 EXACT DIAGONALIZATION OF THE DISORDERED KITAEV MODEL

As discussed in the previous chapter, the possible realization of the Kitaev quantum
spin liquid in real compounds, such as α-RuCl3 and Li2IrO3 has attracted a lot of attention
from both theoretical and experimental perspectives. Specifically, we are mainly inspired
by the recent observations on the hydrogen intercalated iridate H3LiIr2O6 and in a smaller
degree by doped α-RuCl3∗. Much of the enthusiasm to study the physical properties of
these materials comes from its intriguing phenomenology, which is caused by the presence
of defects (Sec. 2.3.2 ). Moreover, beyond this specific experimental motivation, there
exists a general interest to understand how a QSL responds to different forms of quenched
disorder, which can be relevant to other real materials.

Given these motivations, we aim to present in this chapter the general framework
in which we work to explore the effects of disorder in the Kitaev quantum spin liquid. Here
we describe the numerical procedure to diagonalize the model and extract its physical
quantities, with some preliminary results. The main results are shown in Chapters 4 and 5.

3.1 Exact diagonalization

We start from the extended Kitaev model written in terms of Majorana fermions,
defined in Eq. (2.51). To study the effects of uncorrelated disorder in this model in a
controlled fashion, we address separately the role of two types of defects: bond disorder and
site dilution (vacancies). The first case, of bond randomness, is generically implemented
in our model by setting K → Kij, where Kij is a random variable following a given
distribution. For the sake of simplicity, we are only concerned with the simple case of
binary bond disorder, i.e., where K → K ± δK. In the case of site dilution, we remove a
randomly distributed concentration of sites, where for each removed site, all of its couplings
are turned off. Further details on each case are given in the Chapters 4 and 5.

In all of our calculations, we consider frozen flux configurations, so the problem is
exactly solvable regardless of the presence and type of disorder. However, when we put
disorder on top of the clean system, translation symmetry is lost, which makes it impossible
for us to diagonalize the system in the reciprocal space, as presented in section 2.1.2.
Therefore, we diagonalize the model for finite clusters with linear size L (and N = 2L2

sites) with periodic boundary conditions (PBC). We repeat the procedure for several
realizations of disorder, where each realization account for a unique H, with a given

∗ This class of Kitaev materials is more involved because the ground-state is ordered and the
putative QSL requires large dilutions and/or fields. Therefore, it is unclear from the outset if
our approach is valid.
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distribution of couplings or vacancies. Finally, each physical observable is averaged over
the disorder realizations.

Figure 10 – The two types of disorder which we consider in this work. (a) A realization
of binary bond disorder. In this illustration, the strong bonds (K + δK) are
depicted as the bold solid links, while the weak bonds (K − δK) are the thin
dashed links. (b) A realization of site dilution. In this figure, the removed sites
are depicted as the red dots, where the filled and empty dots refer to different
sublattices (A and B).

Source: By the author.

3.1.1 Bogoliubov transformation

To diagonalize the system in real space, for a particular configuration of bond
variables uij, it is useful to rewrite Eq.(2.51) in the following matrix form:

H = i

2
(
cA cB

) F M

−MT −D

cA
cB

 , (3.1)

where cA(B) denote the N−component vectors cr,A(B) for a lattice with N = L2 unit cells.
The matrix Mij = Kuij −K ′3uαilu

β
klu

α
kj defines the hopping between different sublattices.

The hopping in the same sublattice is represented by the matrix elements Fik = κuαiju
β
kj

and Dik = κuαiju
β
kj. Note that we generically have F 6= D due to the sublattice symmetry

breaking induced by a generic flux configuration.

Now, we want to bring this Hamiltonian into its canonical form. To accomplish this,
we introduce the complex fermion operators d and d†, which are related to the Majorana
fermions by d = (cA + icB) /2 and d† = (cA − icB) /2 (Sec. 2.1). In this complex fermion
basis, the Hamiltonian assumes the Bogoliubov de-Gennes form65,107

H = 1
2
(
d† d

) h ∆
∆† −hT

 d
d†

 , (3.2)

with the N ×N matrices ∆ and h defined in terms of M , D, and F as

∆ = (MT −M) + i(F +D), (3.3)
h = (M +MT ) + i(F −D). (3.4)
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To bring the matrix in Eq.(3.2) into its diagonal form, we define the unitary
transformation W , which is the matrix representation of the Bogoliubov transformation.107

W

 h ∆
∆† −hT

W † =
E 0

0 −E

 , (3.5)

Here E is the N ×N matrix with the positive eigenvalues Eν stored in descending order.
From this construction, it is clear that W † is the matrix with the eigenvectors ψν stored
columnwise as W † =

(
ψN ψN−1 . . . ψ1

)
. The list of positive eigenvalues (EN , . . . , E1)

and the matrix W † consist as our numerical output from the exact diagonalization.

Following the notation used by Blaizot and Ripka in Ref.,107 we introduce the
N ×N Bogoliubov matrices X and Y , corresponding to the occupied and empty states,
respectively, so the operator W is written as

W =
X∗ Y ∗

Y X

 W † =
XT Y †

Y T X†

 (3.6)

Now, we can define the Bogoliubov quasiparticle operators f and f †, which are
related to d and d† via

dν =
∑
λ

XT
νλfλ + Y †νλf

†
λ, (3.7)

d†ν =
∑
λ

Y T
νλfλ +X†νλf

†
λ. (3.8)

Here Xνλ and Yνλ are the Bogoliubov matrices defined in (3.6). In terms of the Bogoliubov
quasiparticles, Eq. (3.1) becomes diagonal

H =
∑
ν

(
f †νfν −

1
2

)
Eν . (3.9)

Finally, the ground state is defined as the state with no quasiparticle excitations,
i.e. fν |0〉 = 0. From this definition, along with (3.9), we define the ground-state energy as
E0 = −1

2
∑
ν
Eν .

3.1.2 Fluxes

To perform the diagonalization of the complex fermion Hamiltonian in Eq.(3.2),
we first need to fix the link variables uij and work in a well-defined static flux sector, so
we can construct the submatrices in Eqs.(3.4) and (3.3).

As discussed in Sec.2.1.2, the flux configuration which minimizes the ground-state
energy E0 is the 0-flux sector, defined as the state where Wp = +1 for all hexagons (Fig.
11(a)). However, the situation is more complicated when disorder is introduced in the
system, and the 0-flux might not be the most competitive state anymore. Therefore, it
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Figure 11 – Flux sectors considered in this work. Red (blue) bonds correspond to uij =
−1(+1), and shaded (white) hexagons correspond to flux Wp = −1 (+1).
(a) 0-flux link configuration, (b) 1/2-flux link configuration, (c) 1-flux link
configuration, (d) a random-flux link configuration, and (e) a bound-flux link
configuration.

Source: By the author.

is instructive to explore other flux configurations in the presence of disorder. We note,
however, that our investigation here has a purely qualitative nature, so we do not exhaust
all possible flux configurations. Having this in mind, we pick three representative ordered
flux configurations: The 0-flux sector, the 1/2-flux sector,Wp = +1 for half of the hexagons
and Wp = −1 for the other half (Fig. 11(b)), and the 1-flux sector, Wp = −1 for all
hexagons (Fig. 11(c)). For K ′3 & 1/8 the ground state corresponds to the 1-flux state, in
the clean system.105 The 1/2-flux state is never a competitive ground state in the pristine
model for the parameters we use, but it is instructive to study it since it serves as the
periodic version of the random-flux state (to be defined in the next paragraph. See Fig.
11(d)). For the parameters we consider in this work, we do not observe a transition in the
flux sector as a function of κ. Physically, this suggests we work at weak to moderate fields.

In addition to the ordered sectors, we study the effects of disorder in the flux
configuration, by considering the random-flux sector (Fig. 11(d)). The idea here is to
mimic the effect of thermal fluctuations on the fluxes at low-T , as supported by Monte-
Carlo simulations.39 To numerically construct this state, we randomly assign uij = ±1
to each link with equal probability, where in average we have 〈Wp〉 = 0. An interesting
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way to explore how the random-flux sector can emerge from the 0-flux, 〈Wp〉 = 1, is to
change continuously the probability to flip a bond uij in the 0-flux sector. By diluting the
random-flux in this way, we can graph the average flux 〈Wp〉 as a function of the bond-flip
probability pflip, as in Fig. 12(a). From this exercise, see that pflip ≈ 0.3 already generates
a random-flux sector, so we can safely set pflip = 1/2 in our calculations, as expected.

Moreover, it is interesting to check how the flux gap evolves as we continuously
change 〈Wp〉 from the 0-flux to the random-flux limit. For this purpose, we calculate ∆2f

for several flux realizations with fixed pflip, where ∆2f ≡ Eflipped−Enon-flipped. Specifically, a
single z-bond is flipped at a random position. We plot the average value of ∆2f as a function
of 〈Wp〉 in Fig.12(b). It is clear from this analysis that, on average, ∆2f continuously
decreases as we decrease the average flux, until we reach the random-flux limit, where
∆2f = 0. This makes sense, since uij = ±1 are now random variables, and flipping a single
bond modifies 〈Wp〉 at order 1/N , which should not change the energy.

Finally, to calculate the physical quantities in the random-flux state, we need to
take the average over several random configurations, in the same fashion as we do for bond
disorder and vacancies, where each flux realization is static. Therefore, for every observable
in the random-flux, we take two independent averages, over the flux configurations, and
the disorder realizations.

Figure 12 – (a) The flux average 〈Wp〉 as a function of the bond flip probability pflip.
For pflip ≈ 0.3 we enter the into the random-flux regime, while pflip → 0
corresponds to the 0-flux limit. (b) The flux pair gap as a function of 〈Wp〉.
From a quadratic fit (solid line), we observe that the flux gap decreases like
∆2f ≈ ∆0 〈Wp〉 (1+〈Wp〉)/2 as we approach the random-flux, 〈Wp〉 = 0, where
∆2f = 0 on average. Here ∆0 stands for the 0-flux limit, ∆0 ≈ 0.27. For both
plots we considered the average over ∼ 100 realizations of random flux.

Source: By the author.

In the case of vacancies, we consider one additional flux sector, the bound-flux.
This configuration is motivated by the observation that, for a single impurity, the energy
is lowered by nucleating a flux in the extended plaquette formed by the vacancy108 (See
Fig. 13). We can understand this flux binding effect with a very simple argument. Let
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us consider a single isolated plaquette as the problem of Majorana fermions hopping on
a ring with l sites.3 The solution for this problem is straightforward, with the following
spectrum:

E(kn) = −2K cos(kn); kn =

 2πn/l for PBC

2π(n+ 1/2)/l for APBC,
(3.10)

where n is an integer, and the allowed wavevectors kn depend on the boundary conditions.
If we consider the 0-flux case, we have the usual periodic boundary conditions (PBC)(See
Fig.13(c)). On the other hand, if we pin a flux to the plaquette, we need to flip one bond,
uij = −1, which is the same to impose anti-periodic boundary conditions (APBC), as
illustrated in Fig.13(b). Finally, we calculate the ground state for each situation, which is
simply the sum of the occupied states in the half-filled band depicted in Fig.13(a). For
the extended plaquette around a diluted site, we have l = 12, and the energy difference
between the two cases is readily calculated as Ebound −E0 ≈ −0.51 < 0, which shows that
a flux indeed lowers the energy of a single plaquette.

Figure 13 – (a)The spectrum of a l = 12 ring of fermions, for both periodic and anti-
periodic boundary conditions. The filled markers indicate the occupied states,
while the empty states are indicated by the open markers. (b) The l = 12
plaquette for the bound-flux sector. The act to flip a bond (in red) is equivalent
to imposing APBC. (c) The l = 12 plaquette in the 0-flux. Here we have the
usual PBC. The dashed links in (b) and (c) indicate the bonds present in the
honeycomb lattice, which are ignored here.

Source: By the author.

This flux binding effect was shown analytically by Willans et al.,108 and was also
verified by numerical calculations,42 with the vacancy embedded in the full honeycomb
lattice. Therefore, it is natural to consider the situation where one flux is attached to
each extended plaquette for a finite concentration of vacancies in the lattice, which we
refer to as the bound-flux. To numerically construct the bound-flux sector, we follow the
prescription from Ref.42 After all vacancies positions are assigned, we randomly flip a
single bond around the l = 12 site plaquette surrounding each vacancy, see Fig. 35(b). This
binds a flux inside this plaquette. We then iteratively sweep over the lattice to guarantee
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that all hexagons not surrounding the defects encompass no flux. For a given vacancy
configuration, we repeat this procedure – starting at distinct random positions – until we
find a link configuration corresponding to a true bound-flux state.

Once we define the static flux configuration, we diagonalize the extended Kitaev
model and compute its ground state energy. The gauge sector with the smallest energy is
selected as the ground state. Although biased, this variational approach is numerically
efficient and exploits the integrability of the model. The results of this procedure are given
in Sec. 4.1 for bond disorder and Sec. 5.1 for vacancies.

3.2 Thermodynamics and dynamics

3.2.1 Density of States and Specific Heat

The first quantity we consider is the density of states (DOS), which is a useful
probe to characterize the physics of low-E Majorana excitations. The DOS can be seen as
the histogram of accessible states as a function of the energy and is directly calculated from
the eigenvalues Eν coming from the exact diagonalization. For each disorder realization,
the DOS is readily calculated as

ρ(E) = 1
N

∑
ν

δ(E − Eν) (3.11)

≈ 1
πN

∑
ν

γ

γ2 + (E − Eν)2 , (3.12)

where we have approximated the Dirac-delta function by a Lorentzian distribution. In our
calculations, we set the Lorentzian broadening around 10−3K. Again, we notice that ρ(E)
must be averaged over all disorder realizations, and flux configurations in the case of the
random-flux. We compute only the average DOS, since it is linked to the observables of
interest and we do not study Anderson localization effects.

In the clean system, the ground-state DOS has a graphene-like form, with a linear
low-E behavior: ρ(E) ∼ E. For our extended model, the 0-flux remains as the ground-state
in the presence of κ, and also for small values of K ′3. Therefore it is instructive to see how
this parameter affects the DOS. As shown in Fig.14(a), the DOS still presents a linear
behavior for a small K ′3 perturbation. The situation changes dramatically as soon as κ is
turned on, opening an energy gap ∆κ ∼ κ (Sec. 2.2.2). For the other ordered fluxes, the
results for the low-E regime are qualitatively the same, where the only difference is the
appearance of multiple bands, due to the enlargement of the Majorana unit cell.60,105,109

Beyond the ordered fluxes, it is instructive to study the effects of the random-flux
configuration on the DOS, in the absence of defects. This case is plotted in Fig. 14(b), for
different values of κ and K ′3. From this, we can see that if κ = 0, the DOS is flattened
in almost the whole energy range of allowed energies. For the TRS breaking case, we see
the appearance of two bands, which is reminiscent of the ordered limit of the 1/2-flux.109
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Figure 14 – The density of states in the absence of disorder, for different values of κ and
K ′3. (a) The 0-flux sector DOS. The shaded curve correspond to the pure
model (κ = K ′3 = 0). It is possible to see the linear low-E behavior for κ = 0.
For the TRS breaking case, κ 6= 0, we see the opening of the energy gap
∆κ. (b) The random-flux sector DOS. In this case, the flux disorder blurs
the Dirac-like spectrum, leading to a pile-up of low-E excitations, and the
destruction of the topological gap ∆κ. The DOS was averaged over ∼ 3× 103

realizations of flux.
Source: By the author.

Another important result is that ∆κ → 0 in the random flux, regardless of the microscopic
parameters. This gapless behavior will become an important property when studying
the topological features of the model (Sec. 3.3.1). Finally, we point out that in the very
small energy scales, there is an apparent power-law behavior for the DOS. This is a key
point to connect our minimal model with the observed H3LiIr2O6 phenomenology. We
will explore this feature in more detail in future chapters when the fully disordered system
is considered.

In addition to the DOS, it is also important to consider the specific heat, C(T ). In
the H3LiIr2O6 experiments, this thermodynamic quantity presents a divergence in the
form of a power-law C/T ∼ T−1/2,1 and would be interesting to verify if our disordered
model can reproduce this behavior, at least qualitatively. Although it is tempting to
employ simple thermodynamic calculations and extract C(T ) directly from the DOS, the
situation is quite intricate, due to the presence of the Z2 fluxes, which are thermally
activated at finite-T . One possible way to explore the thermodynamics of the Kitaev model
is via Monte-Carlo simulations,38,39,78,102 where a sampling over the flux configurations
is performed, and it is found that for T . ∆2f the fluxes starts to localize, up to a
point where all fluxes are frozen, and the low-T behavior of the system is dictated by the
Majorana fermions dispersion.

Given the above scenario, we can assume a low-T regime where the flux configuration
is frozen, allowing us to keep the exact diagonalization scheme presented so far. Because
the fluxes are static the specific heat is solely dependent on the Majorana excitations, so
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we can determine C(T ) from the DOS as usual,

C(T ) = ∂

∂T

∫
dE Eρ(E)f(E), (3.13)

where f(E) is the Fermi-Dirac distribution with the chemical potential pinned at zero:
f(E) = 1/

(
eE/T + 1

)
, since we map our spins into a half-filled Majorana fermion problem.

From the linear graphene-like dispersion seen in Fig.14(a), the specific heat for the clean
system is of the form C(T ) ∼ T 2. Finally, as we will see in future chapters, the DOS
in the presence of disorder displays either a power-law or a gapped behavior. Therefore,
because the specific heat is only determined by the DOS, from Eq.(3.13), its calculation
becomes redundant. So, we will only focus on the extraction of the density of states in the
disordered system.

3.2.2 Dynamical quantities

We now turn our attention to the dynamical properties of the Kitaev spin liquid.
More specifically, we focus on the calculation of the static spin susceptibility, χ(T ), and the
nuclear magnetic resonance (NMR) relaxation rate, 1/T1. These are important experimental
probes to characterize the nature of Kitaev candidate materials, such as H3LiIr2O6, as
discussed in Sec.2.3.2. We now describe the approximation we employ to calculate these
quantities in the disordered system, where the results are shown in Sec.4.3 and Sec.5.3.

The first step is to calculate the dynamical spin structure factor, which can be
directly probed via inelastic neutron scattering (INS) experiments,110 and is defined
by:65,110

S(q, ω) = 1
N

∑
ij

∑
αβ

e−iq·(ri−rj)Sαβij (ω), (3.14)

where Sαβij is the Fourier transform of the spin-spin correlation function:

Sαβij (ω) =
∫ ∞
−∞

dt eiωt
〈
σαi (t)σβj (0)

〉
. (3.15)

The expected value in this expression involves the application of a spin onto the
ground state. Therefore, by using the same flux selection rules discussed in Sec.2.1.2
(See Fig.4(b) and (c)), we conclude that the spin-spin correlation is ultra short-ranged,
with only on-site and nearest-neighbors correlations non-zero,66 and we choose q = 0, for
the sake of simplicity. Due to the C3 symmetry of the problem, we only calculate its zz
component (in the disordered case this symmetry holds after disorder averaging).

Conversely to the static correlations, the calculation of Sαβij (ω) is quite involved, due
to time dependence. As the fluxes are created, they locally change the Majoranas evolution,
leading to a non-equilibrium problem. As showed by Knolle et at., this is equivalent to
the well-known X-ray edge problem,111,112 and the calculation of Sαβij (ω) can be performed
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exactly for the clean system.64,65 The numerical calculation in this scheme is, however,
quite challenging because it requires the overlap between the original gauge configuration
and the new one with a flipped bond. To reduce the computational cost, we work within
the adiabatic approximation.41,65,113 In this approach, we assume this overlap to be always
finite and we perform all calculations in the new gauge configuration†. Therefore, it is
possible to show that Szz(q = 0, ω) takes the following form:65

Szz(q = 0, ω) =
∑
ν

δ(ω − Eν −∆2f )|Xνo|
2f(−Eν)

+
∑
ν

δ(ω + Eν −∆2f )|Yνo|
2f(Eν), (3.16)

where Xνo and Yνo are the Bogoliubov matrices defined in Eq.(3.6), and the index o specifies
the flipped bond position. The derivation of Eq.(3.16) is presented in the appendix C.

The static spin susceptibility can be obtained from Szz(q = 0, ω) via the fluctuation-
dissipation theorem58

χ(T ) =
∫ ∞
−∞

dω S(q = 0, ω) 1− e−ω/T
ω

. (3.17)

Substituting the Szz(q = 0, ω) expression in Eq.(3.16) in the above definition, we get the
final form of χ(T ),

χ(T ) =
∑
ν

|Xνo|
2f(−Eν)

1− e−(Eν+∆2f )/T

Eν + ∆2f
+ |Yνo|

2f(Eν)
1− e(Eν−∆2f )/T

−Eν + ∆2f
. (3.18)

In addition to the spin susceptibility, we also calculate the NMR relaxation rate,
1/T1. In an NMR experiment the sample is subject to magnetic pulse with an intensity
close to the nuclear spins resonance frequency, ω0. The spin of the nuclei couple to the
surrounding electronic spins via the hyperfine interaction.114,115 The transitions induced
by the hyperfine Hamiltonian modify the nuclear magnetization, by changing the spin
population on each level. The relaxation rate, 1/T1 is then defined as the decay rate in
which the longitudinal component of the nuclear magnetization reaches its equilibrium
value after the magnetic pulse is turned off.114

From this qualitative discussion, we can compute the relaxation rate as the spin-flip
decay rate provoked by the hyperfine interaction, which can be determined by Fermi’s
golden rule:58

1
T1
∝ 1

1− eω0/T

∑
q
|Aq|χ′′+−(q, ω0), (3.19)

where Aq is the hyperfine coupling, ω0 is the nuclear resonance frequency, and χ′′+−(q, ω0)
is the imaginary part of the dynamical susceptibility for the spin component transverse
† Recall that there is no orthogonality catastrophe for a graphene-like DOS
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to the applied field. From the theory of linear response, we can relate χ′′+−(q, ω0) the
dynamical structure factor as58

S+−(q, ω0) = 1
π(1− eω0/T )χ

′′
+−(q, ω0) (3.20)

where S+−(q, ω0) is the transverse component of the dynamical structure factor. However,
as aforementioned we only need to compute Szz, due to the C3 symmetry of the problem
and because the magnetization Mz is not conserved. In NMR experiments, ω0 is generally
much smaller than other energy scales,114 so we can set ω0 → 0. In addition, we assume
the hyperfine form factor Aq as a constant. Finally, the NMR relaxation rate can be easily
calculated in the adiabatic approximation as

1
T1
∝ Szz(q = 0, ω0)

∣∣∣∣
ω0→0

, (3.21)

where S(q = 0, ω0) is given by Eq.(3.16).

To calculate χ(T ) and 1/T1(T ) we need not only to diagonalize the system with
a bond flipped but also we need to know the value of the two flux gap ∆2f : the energy
difference between the configuration with a single link variable flipped with respect to the
reference gauge sector. The flux pair gap in the ground state is well known, with its value
given by ∆2f/K = 0.27. The other ordered sectors are also gapped, and the values of ∆2f

can be checked in Ref.13 In all random-flux calculations, we use the average value of ∆2f ,
instead of its value on each particular realization. In the absence of bond and site disorder,
we find ∆2f → 0 on average for the random-flux sector (See Fig. 12).

Before we explore the dynamics in the presence of disorder, it is instructive to
discuss the results for the clean system. Here we calculate both χ(T ) and 1/T1(T ) for the
0-flux and the random-flux, where the flux pair gap is given by ∆2f = 0.27 and ∆2f = 0,
respectively.

For the static susceptibility (Fig.15(a)), both the 0-flux and random-flux follows
the expected Curie-Weiss law behavior at high-T , with χ(T ) ∼ 1/(4T ). On the other hand,
there is a discrepancy in the low-T regime. In this case, the 0-flux is constant, while the
random-flux diverges. We can qualitatively explain this scenario with a simple exercise.
Let us consider the low-E contribution to the temperature dependence on χ(T ). Because
we have two basic excitations, the Majoranas and the fluxes, the lowest energy scale in the
problem is the flux pair gap, ∆2f , as we set Eν → 0 for the Majoranas. In the adiabatic
approximation, Eq.(3.18), this limit gives the following contribution to χ(T )

χ(T ) ∝
[
Xo

∆2f

(
1− e−∆2f/T

2

)
+ Yo

∆2f

(
1− e−∆2f/T

2

)]
, (3.22)

where Xo and Yo are constants proportional to the spectral weight from the Bogoliubov
matrices. From this expression, it is easy to see that the low-T limit, T → 0, is given by

χ(T ) ∝ 1
∆2f

. (3.23)
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Figure 15 – (a) The static spin susceptibility for the clean system, in the log-log scale. For
the 0-flux, we see the constant behavior at low-T , due to the finite flux pair
gap ∆2f . For the random-flux, ∆2f → 0, which causes the apparent power-law
divergence in the low-T regime. For both cases, the high-T regime follows the
Curie law. (b) The NMR relaxation rate in the clean system, in the log-log
scale. For the 0-flux ∆2f 6= 0, so we have an exponential decay. The scale
was adjusted to highlight the discrepancy between the random and 0-flux
results. For the random-flux, 1/T1 is constant at T → 0, due to the gapless
flux excitations.

Source: By the author.

Although seemingly naive, this argument succeeds in explaining the low-T discrep-
ancy observed for χ(T ). It is clear now that the origin of this behavior can be traced back
to the flux pair gap. If ∆2f 6= 0, the susceptibility displays a constant low-T behavior,‡

which is the case for the 0-flux (Fig.15(a)), and for the other ordered fluxes as well. On
the other hand, if we set ∆2f → 0, the spin susceptibility diverges, which qualitatively
explains the random-flux scenario in Fig.15(a). A more careful analysis is presented in
Sec.4.4, where the divergence on χ(T ) is connected with the low-E DOS in the presence
of disorder.

Finally, we can use a similar argument to interpret the 1/T1 results presented
in Fig.15(b). Here we consider Eq.(3.16), where the energies E are filtered by the delta
distribution. If we assume ∆2f 6= 0, the temperature dependence on 1/T1 is proportional
to

1
T1
∝ 1
e−(ω0+∆2f ) + 1

∣∣∣∣
ω0→0

∝ e−∆2f/T . (3.24)

Therefore, the 0-flux sector must have an exponential decay, as presented in Fig.15(b).
From this argument, it is also easy to see that ∆2f → 0 gives us a constant relaxation
rate, as we checked for the random-flux. This constant behavior indicates a proliferation of
low-energy magnetic excitations, as observed in the H3LiIr2O6 experiment1,19 (Sec.2.3.2).
‡ This is analogous the Pauli paramagnetism, where here the flux gap plays the role of a finite

Fermi energy.116
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From this discussion, we conclude that because of the fractionalized nature of
the problem, the qualitative behavior of the dynamical quantities in the low-T regime is
dictated by the flux pair gap, ∆2f . Therefore, the calculation of ∆2f will become a key
piece of information to characterize the basic properties of the Kitaev spin liquid in the
presence of disorder, as we will explore in the following chapters.

3.3 Topology and edge modes

3.3.1 Bott Index

Without time-reversal symmetry, κ 6= 0, the extended Kitaev model is topologically
non-trivial in the clean limit.13,105,106 To characterize the distinct topological phases, we
calculate the Bott Index, which is equivalent to the Chern number (Eq.(2.40)) in periodic
systems.117–119 As we will see shortly, the Bott index relies only on the spatial structure of
the Hamiltonian, and therefore it is more conveniently implemented in systems lacking
translational invariance.117,120,121 The Bott Index is defined as:

B = 1
2π Im

{
Tr
[
log

(
V UV †U †

)]}
, (3.25)

where the matrices U and V are given by

Pe2πiRx/LP =
X∗ Y ∗

Y X

0 0
0 U

XT Y †

Y T X†

 , (3.26)

Pe2πiRy/LP =
X∗ Y ∗

Y X

0 0
0 V

XT Y †

Y T X†

 . (3.27)

Here, P is the projector onto the occupied states, P = ∑
Eν<0 |ψν〉 〈ψν |. In terms of the

Bogoliubov matrices, we can write P as

P =
X∗ Y ∗

Y X

0 0
0 1

XT Y †

Y T X†

 , (3.28)

withX and Y defined in (3.7). The operators Rx and Ry are diagonal matrices whose entries
correspond to the unit cell positions xi and yi, respectively. Mathematically speaking,
the Bott index measures the non-commutativity of a couple of unitary or almost unitary
matrices, U and V in this case.117 Physically speaking, this commutativity measure encodes
information about the localization properties of the system. It can be shown that the
existence of exponentially localized Wannier functions implies the vanishing of the Bott
index,122 which in turn implies the existence of a topologically trivial state.123

To increase the stability of the numerical algorithm, we perform a singular value
decomposition on U and V : U = ΣSΘ†, where S is diagonal, and Σ and Θ are unitary
matrices. With this, we redefine the projected matrices as Ũ ≡ ΣΘ†, which is equivalent
to a scaling transformation and does not change the Bott Index.121
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Figure 16 – Bott Index B as a function of κ for the clean case. We show results for different
ordered flux sectors in (a), where B is quantized. For the random-flux (b), the
curves depend on K ′3, and topology is lost. We considered L = 30 and average
over 100 link configurations for the random-flux case.

Source: By the author.

For the disordered system we calculate the Bott Index averaged over Ns samples,
B = ∑Ns

i=1 Bi/Ns, where Bi is the Bott index for a particular sample i. Our numerical
algorithm only returns values of Bi that are integers, reinforcing the robustness of the
method. Therefore, the averaged value of the Bott index corresponds to the proportion of
topologically non-trivial samples found for a particular set of parameters. As a benchmark,
we present results for the clean case in Fig. 16. For the 0-flux gauge, we get B = ±1. For
the 1-flux and 1/2-flux cases, see Fig. 11, we have B = ±2, as we have the contribution
from two filled bands.13,106,124 For the random-flux case, however, the averaged value
of B is no longer quantized, even in the absence of disorder in the bonds, δK = 0. We
interpret this result as the lack of a topological phase for this particular flux sector. This
is consistent with the absence of a topological gap in the DOS, Fig. 14

We can trace back the destruction of the topological phase in the random-flux
sector to the random orientation of the NNN hoppings induced by the random-flux gauge.
This happens because of the 2-bond structure of the κ term in (2.51), which picks the
signs of the random uij configuration, destroying its chiral pattern (See Fig.9). To better
understand how this affects the topological properties of the system, we propose the
following exercise. Instead of the random-flux sector, we consider the 0-flux in the presence
of a κ interaction with random orientations. This can be implemented by sorting the local
sign of NNN interactions in the same way as we do for the random-flux. The idea here is
to mimic the effects of random orientations in the κ-term provoked by the random-flux
gauge.

We diagonalize this system for several realizations of random orientations, and
different values of κ, so we can compute the DOS and the Bott index. Notably, the random
orientation closes the gap, regardless of the value of κ. In fact, the DOS in Fig.17(a)
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Figure 17 – (a) DOS for the Kitaev model with the random-κ term. Here we can see the
closing of the topological gap, for all κ 6= 0. (b) The normalized histogram of
the Bott index over Ns realizations of random signs. For all values of κ, the
average value of B is zero.

Source: By the author.

resembles very much the clean limit, with κ = 0. To further understand the fate of
topology in this system we consider the distribution of Bott index values for all realizations.
In Fig.17(b) we plot NB/Ns over the possible outcomes, B = 0,±1, where NB stands for
the number of realizations with a topological index equals to B and Ns is the number of
samples. We observe that the majority of samples returns B = 0, while the contributions
with B 6= 0 are approximately equal, so B = 0 on average. From this perspective, we
link the lack of topological phase in the random-flux to the random orientation of NNN
hoppings.

3.3.2 Level Statistics

As discussed briefly in section 2.2.2, the Kitaev model in the presence of a field,
κ 6= 0, hosts chiral edge modes, in resemblance to the quantum Hall effect.3 Due to its
experimental appeal,32,36 we are interested in further exploring the robustness of the edge
modes under the presence of disorder, beyond the topological number calculation presented
previously.

For the clean system, it is possible to extract the edge modes contribution to the
spectrum, by considering open boundary conditions(OBC). A simple way to implement
this is to cut the honeycomb lattice in such a way that only the lower half-plane is filled,
as illustrated in Fig.18(a). In this geometry, we impose PBC along the x-direction. By
performing the Fourier transform in the horizontal direction, Kitaev showed that the edge
modes spectrum for very small κ takes the approximate form: E(kx) ≈ 12κ sin(kx), with
kx ∈ [2π/3, 4π/3] (See Fig. 18(b)). Although this is just an approximation, this calculation
is capable to show an important qualitative feature of the spectrum in the topological
phase: the presence of an edge state inside the gap, with a well-defined chirality, which is
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Figure 18 – (a) The Kitaev honeycomb model with OBC in the y-direction. The lattice
fills the lower half-plane, giving rise to a chiral edge mode when κ 6= 0 (NNN
hoppings in red). (b) The spectrum for the system is depicted in (a). The
filled gray region corresponds to the bulk spectrum, with an energy gap given
by ∆κ. The in-gap edge mode is plotted in red.

Source: By the author.

labeled by a topological number B = 1.

However, in the disordered system, we lost translation symmetry, forbidding us to
employ the formulation presented in the above discussion. Although it is still possible to
numerically extract the edge modes with open boundary conditions, we take advantage of
the bulk-boundary correspondence,3 and focus our attention only on the bulk properties
of the system, by imposing PBC. In this sense, to probe the extent of the bulk states,
we employ a level statistics study of the spectrum.125 This is a well-established technique
from the theory of random matrices and is widely used in the context of localization,126–128

and disordered topological insulators.125,129,130 This investigation is particularly useful to
assess the stability of the topological gap in the Majorana spectrum in the presence of
disorder and complement the information coming from the Bott index. Specifically, we
compute the average of the level spacing ratio126

r̃ν = min(δν , δν−1)
max(δν , δν−1) = min

(
rν
rν−1

)
. (3.29)

Here δν = Eν+1 − Eν is the difference between two adjacent energy levels Eν from a given
disorder realization and rν = δν/δν−1. Notice that r̃ν is constrained to the interval [0, 1] by
definition.

For extended states, the ratio follows the Gaussian unitary ensemble (GUE) statis-
tics, given by the following distribution131

PGUE(r̃) = 81
√

3
4π

(r̃ + r̃2)2

(1 + r̃ + r̃2)4 , (3.30)

and the average value of r̃ is 〈r̃〉GUE ≈ 0.60266. On the other hand, exponentially localized
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Figure 19 – The distributions of the level spacing ratio r̃. The histogram of r̃ of an
extended state with an energy E follows the GUE distribution (dashed line).
For exponentially localized states, we expect the Poisson distribution (solid
line).

Source: By the author.

states follow the Poisson statistics,131

PPoisson(r̃) = 2
(1 + r̃)2 (3.31)

with 〈r̃〉Poisson ≈ 0.38629.131 The definition in Eq. (3.29) is particularly useful because it
avoids the definition of a local average level spacing. In practice, we calculate 〈r̃〉 at a
given energy E using a small energy window of 5 levels above and below E,125 so we can
plot 〈r̃〉 as a function of the energies. In addition, it is possible to plot the histogram of r̃ν
for a given energy, and compare it with the exact distributions plotted in Fig.19.
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4 BOND DISORDER IN THE KITAEV MODEL

We now add disorder to the model in Eq. (2.51). Specifically, we consider a binary
bond disorder for the Kitaev couplings setting K → K ± δK, with probability 0.5
to generate either a weak (K − δK) or a strong bond (K + δK) (See Fig.10(a)). For
simplicity, we assume the couplings κ and K ′3 to be homogeneous. In terms of Majorana
fermions, this problem translates into a random hopping problem on a bipartite lattice.
In this chapter, we present the results for the DOS, where the power-law observed in the
H3LiIr2O6 experiment1 is discussed. To further explore the effects of bond disorder on the
thermodynamic response, we also calculate the static uniform susceptibility and the NMR
relaxation rate, employing the adiabatic approximation. Finally, by calculating the Bott
index and the level statistics, we discuss the fate of the chiral edge modes in the presence
of bond disorder.

4.1 Fluxes and ground-state energy

Before we explore the thermodynamics and dynamics of the extended model in the
presence of disorder, we investigate how the ground state energy changes under variations
of the disorder strength, δK, for different flux sectors. This is an important step, as we
can select the energetically favorable flux configurations for a given set of parameters and
perform all subsequent calculations within this flux sector.

Therefore, after fixing the flux state and the disorder strength, we numerically
diagonalize the extended model for several bond disorder realizations and compute the
average ground state energy. In Fig. 20(a) we show the ground state energy as a function
of the bond disorder for different flux sectors for κ = K ′3 = 0. At weak disorder, the
0-flux state is the ground state, thus evolving adiabatically from the clean limit.13 On the
other hand, we find that the static flux configuration is sensitive to strong disorder.113

Specifically, we find that for δK & 0.6 the ground state energies of the different flux
sectors become comparable within error bars. This implies that ∆2f → 0 as δK → 1, per
recent Quantum Monte Carlo results in Refs.132,133 We interpret this result as a tendency
towards the random-flux state for strong disorder,113 so we consider this as a competitive
variational flux state. Moreover, we find this generic behavior remains valid for small
values of κ.

In addition, we investigate how the TR symmetric term, K ′3, changes the ground
state energy in the presence of bond disorder. For the clean system, we find a flux transition
around K ′3 = 1/8, from the 0-flux to the 1-flux configuration –as discussed in the Appendix
B– and it is natural to expect an approximately similar behavior for weak disorder.
However, this might not be true for the strong disorder regime. Therefore, we compute the
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ground state energy as a function of K ′3 for fixed bond disorder δK = 0.8, as presented
in Fig.20(b). Even in this limit, we observe a tendency towards the 1-flux state as K ′3
increases, which is reminiscent of the transition in the clean limit. Nevertheless, all energies
coincide within error bars for small values of K ′3, which again points to the random-flux
as a competitive state.

Figure 20 – (a) Ground state energy per site, E0, as a function of the bond disorder
strength δK for κ = K ′3 = 0. (b) E0 as a function of K ′3 for δK = 0.8 and
κ = 0. The dashed line indicates the flux transition in the clean system,
K ′3/K ≈ 1/8. We considered L = 30 and up to 3× 103 disorder realizations.

Source: By the author.

4.2 Results for the DOS: Power law divergence

In this section, we show the numerical results for the DOS in the presence of bond
disorder. From our analysis of the ground state energy presented in the previous section,
we focus our attention on the random-flux sector and compare it with the original ground
state, the 0-flux. The numerical procedure is described in Sec.3.2.1.

Before we show our numerical outcomes, it is useful to review some general aspects
concerning the DOS for disordered systems. In the 0-flux sector, our model is equivalent
to the problem of random hopping on a bipartite lattice for Dirac fermions.45 This is
a well-known problem, which has been widely studied for different symmetry classes in
various contexts in the last two decades.134–136 In the present particle-hole symmetric case,
for κ = K ′3 = 0, it is rigorously known that the density of states (DOS), Eq.(3.11), has a
low-E divergence

ρ(E) ∼ exp
(
−c |lnE|2/3

)
/E, (4.1)

where c is a positive constant.45 Nevertheless, this divergence occurs only at asymptotically
low-energy scales, eluding even large-scale numerical simulations.45 This fact probably
places it outside the experimentally accessible regimes for magnetic materials. Moreover,
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as reported in the previous section, strong disorder in the Kitaev model may also affect
the flux state, making this asymptotic scenario not too relevant for our analysis.

Figure 21 – (a)DOS as function of the energy for δK = 0.8. Inset: log-log plot showing the
power-law divergence at low-E. The full curves correspond to the random-flux,
while the 0-flux is represented by the dashed curves. The dot-dashed curves
are power-law fits that are shifted with respect to the original curves. (b)Non-
universal power-law exponent α for the extended Kitaev model, Eq. (2.51),
in the random-flux sector with bond disorder as a function of the disorder
strength δK. We observe α ≈ 0.13 for δK = 0. We consider different values of
κ and K ′3, L = 30, and 3× 103 disorder realizations.

Source: By the author.

The problem of bond disorder in the Kitaev honeycomb model has already been
addressed in previous numerical studies,41,92 where the divergence in the low energy DOS
was identified as a power-law distribution, in accordance with the H3LiIr2O6 phenomenology.
Here, we report the same qualitative behavior for the pure Kitaev model, and further
extend the analysis by considering the extended model in Eq.(2.51).

In Fig. 21(a) we show the the averaged low-E DOS for δK = 0.8. For K ′3 = κ = 0,
both the 0-flux and random-flux states produce the desired diverging power-law behavior at
low-E: ρ (E) ∼ E−α, in agreement with the results of Refs.41,92 First, we shall notice that
if one assumes that the flux degrees of freedom are frozen, it follows that C/T ∼ T−α,41,42

as observed in H3LiIr2O6.1 Furthermore, we point out that a pile-up of low energy states
is only seen for the 0-flux configuration in the strong disorder regime presented in Fig.
21(a), for κ = 0. If κ 6= 0, the 0-flux state displays a gap in the Majorana spectrum, which
is reminiscent of the topological gap present in the clean case.13

Meanwhile, the random-flux sector already displays a mild divergence for δK = 0,
as presented in Fig.14(b), highlighting the fact that the random-flux sector favors an
accumulation of low-E states even in the absence of disorder. In the strong disordered
case, we observe the power-law remains. However, from the inset in Fig.21(a), it is clear
that the power-law exponent α is non-universal and it depends continuously on the model



64 Chapter 4 Bond disorder in the Kitaev Model

parameters. In Fig.21(b) we show the non-universal power-law exponent α as a function
of δK/K and different values of κ and K ′3. We compute α by means of the maximum
likelihood estimator, as described in Appendix D. The evolution of α is sensitive to all
parameters, where its value increases with disorder and is suppressed by κ and K ′3. This is
in accordance with the power-law suppression observed for the H3LiIr2O6 in an external
field.1

4.3 Results for the dynamical quantities

As a preliminary step to the dynamical quantities calculations, we need to compute
the flux pair gap, ∆2f in the presence of bond disorder. The procedure, along with the
clean system results, is described in Sec.3.2.2. In Fig. 22(a), we present the average value
of ∆2f as a function of δK/K, for the pure Kitaev model: κ = K ′3 = 0. For this case, the
flux pair gap vanishes in the random-flux sector for all values of δK/K and we set ∆2f = 0
in our calculations. For the 0-flux sector, ∆2f is finite and approaches zero in the limit of
strong disorder, δK/K → 1,133,137 The vanishing of the flux gap in the strongly disordered
regime is consistent with our ground state energy calculations, Fig. 20.

Figure 22 – The flux pair gap ∆2f as a function of disorder for κ = K ′3 = 0. The dashed
line corresponds to its clean value, ∆2f ≈ 0.27K. (a) ∆2f as a function of the
strength of the bond disorder δK/K. (b) ∆2f as a function of K ′3/K for the
strong disordered scenario, δK/K = 0.8. Here we compare the 0-flux with the
1-flux sector. We considered L = 30 and 3× 103 realizations of disorder.

Source: By the author.

In the TR breaking case, κ 6= 0, we set the flux gap to the same values displayed
in Fig.22(a). Here we argue that, as κ does not change the flux state, ∆2f should be an
independent function of κ. On the other hand, the K ′3 term induces a flux transition, so it
is natural to inquire if ∆2f depends on K ′3. We therefore compute ∆2f for the random and
0-flux sectors, with strong disorder, δK/K = 0.8. In addition, we consider the flux pair
gap for the 1-flux sector, just for the sake of comparison, as this is the ground-state for
moderate values of K ′3 (see Fig.20(b)). In Fig.22(b) we observe that ∆2f is a decreasing
function of K ′3 in the 0-flux, where the gap is positive only for K ′3 . 1/8. This is again a
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reminiscent result of the flux transition in the clean system. As the value of K ′3 is increased,
the 0-flux sector becomes less favorable, which in turn makes the flux pair creation less
costly in energy. Beyond the transition point (K ′3 ≈ 1/8), the flux pair gap is naturally
negative, as the 1-flux sector is energetically favorable against the 0-flux. Finally, we find
that the random-flux sector still has a vanishing gap, regardless of the K ′3 value.

Now, with the values of ∆2f already extracted, we can employ the adiabatic
approximation (Sec.3.2.2) to compute the static spin susceptibility, χ(T ), given by Eq.(3.18)
and the NMR relaxation rate, 1/T1, as in Eq.(3.21). We show sample results for different
values of κ and K ′3 with δK = 0.8 in Fig. 23.

Figure 23 – Static uniform spin susceptibility(a) and NMR relaxation rate(b) as a function
of the temperature in a log-log plot for δK = 0.8. We consider the same
parameters in (a) and (b). The dot-dashed curves in (a) are power-law fits that
are shifted with respect to the original curves, and the full (dashed) curves
correspond to random (0)-flux. We considered L = 30 and 3× 103 realizations
of disorder.

Source: By the author.

In Fig. 23(a), the random-flux sector shows a diverging susceptibility χ ∼ T−α at
low-T , while the 0-flux state shows a finite χ at low-T . As discussed in Sec.3.2.2, we can
trace back these behaviors to the value of ∆2f . In the 0-flux state, ∆2f remains finite,
albeit smaller, for δK > 0,133,137 and the susceptibility goes to a constant for T < ∆2f . In
the random-flux state, ∆2f → 0 and we expect a divergence on the spin susceptibility, as
anticipated in Eq.3.23. More interesting, however, is the fact that χ (T ) follows ρ (E) at
low energies, so α is the same as in Fig.21(a), in line with the results for H3LiIr2O6.1 As
we shall see in next section, these observations can be explained with a single argument,
based on the presence of rare-regions in the bulk.

Finally, the NMR relaxation rate is presented in Fig.23(b). Here we adjust the
scale to highlight the discrepancy between the random and 0-flux results, as in the clean
case, Fig.15(b). As expected, the random-flux has a flat curve for 1/T1, which points to a
large amount of low-E magnetic excitations, as observed in the H3LiIr2O6 experiment.1

Meanwhile, the 0-flux display an exponential decay, as anticipated in Eq.(3.24). It is also
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possible to observe that in the K ′3 6= 0 case the curve is slightly dislocated from the other
two cases. This comes from the fact that ∆2f is not the same for K ′3 6= 0, which further
corroborates the qualitative expression of the NMR relaxation rate, 1/T1 ∼ e−∆2f/T .

4.4 Rare regions and Griffiths-like scenario

4.4.1 Rare regions and the origin of the power-law behavior

We now present a physical mechanism behind the singularities in the low-E DOS.
Power-law distributions of energy scales are commonly observed in the vicinity of quantum
critical points in disordered systems,44–49 in the so-called Griffiths phase. This phenomenon
is typically associated with statistically rare fluctuations caused by the presence of quenched
disorder, generally called rare regions. They were first observed in the context of the FM 2D
Ising model,138,139 and later with a variety of other physical systems.44,46–49 Even though
the Kitaev spin liquid displays no phase transition in 2D,39 we exploit this similarity with
the Griffiths phases and propose a rare region mechanism to explain the power-law in the
DOS.

We define a rare region as a droplet connected to the bulk through weak couplings
only, as illustrated in Fig. 24(a). Now, suppose a rare region of linear size `. The probability
of finding such a cluster inside the bulk is P (`) ∝ pb`, where b > 0 is a constant with
dimensions of the inverse of length and p is the probability of finding a single weak bond.
A more convenient form of P (`) is written as

P (`) ∝ exp [b ln (p) `]. (4.2)

To estimate the scaling of the Majorana excitation gap with its linear size `, we assume this
island is completely disconnected from the bulk. This simplification allows us the treat the
rare regions as a finite cluster of size ` and open boundary conditions. For bond-disorder,
this assumption is strictly valid in the limit δK/K → 1 whereas for spin dilution it is
readily realized. In this situation, a finite-size gap appears in the Majorana spectrum
∆ (`) ∝ exp [−a`], with a > 0 another constant. This gap comes from the hybridization of
the localized states at the edges of this cluster. Fig. 24(b) shows the scaling of the gap
with ` in a mono-log scale and the exponential decay is evident, for all flux sectors we
studied.

Now we can compute the contribution to the density of states coming from these
rare regions as

ρ (E) =
∫
d` P (`) δ (E −∆ (`)) ∼ E−α, (4.3)

with α = 1 + (b/a) ln (p). Therefore, weakly coupled clusters give rise to a power-law
singularity in the DOS. For even lower temperatures, we eventually flow away from this
crossover regime towards the asymptotic regime ρ(E) ∼ exp

(
−c |lnE|2/3

)
/E.45
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Figure 24 – (a) Sketch of a disorder-induced rare region (shaded area). The dashed orange
links represent the weak bonds connecting this droplet to the bulk. (b) Finite-
size energy gap ∆ for the Kitaev model as a function of the cluster size `
considering open boundary conditions. We consider different flux sectors in
the clean case. For the disordered case, δK = 0.5, we show the result for the
0-flux and average over 100 realizations of disorder.

Source: By the author.

The pure Kitaev model displays a phase transition as a function of the exchange
anisotropy.13 In our work, we consider only isotropic Kitaev exchange couplings, but
disorder renders them locally anisotropic. For instance, if a given site has two weak bonds
and one strong bond it could be locally inside the gapped phase of the pure Kitaev model
if δK > K/3. It is then natural to ask if taking into account disorder inside the rare
region would modify our argument qualitatively. We find that this is not the case, with
the finite-size energy gap still going exponentially to zero as the size of the rare region is
increased, Fig. 24(b). This result points towards the robustness of our argument. We leave
an in-depth study of the transition between the two phases in the Kitaev model in the
presence of disorder for future work.

4.4.2 The Griffiths-like scenario

Although the power-law derived in Eq.(4.3) is most likely a crossover regime,45

the fact that it emerges for distinct choices of disorder distributions41,42 suggests a more
general picture. Therefore, we extend this Griffiths phase analogy and calculate the leading
low-T contribution to several physical observables in the limit of T � ∆2f , such that we
can link the spin excitations solely to ρ (E). Such assumption is consistent with our results
for the random-flux sector, as ∆2f → 0.

As a first step to calculate the thermodynamic properties of the system in this
Griffiths-like scenario, we estimate the number of free clusters at finite temperature T :

n (T ) ∼
∫ T

0
ρ (E) dE ∼ T−α+1. (4.4)
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Each free cluster contributes ln(2) to the entropy, which leads to a finite low-T entropy
for the spins S ∼ n(T ) ln 2, with n(T ) given by the above expression. Therefore, we can
calculate the specific heat as

C/T = ∂S

∂T
∝ T−α, (4.5)

which is in agreement with the H3LiIr2O6 phenomenology, as we discussed in 4.2. Analo-
gously, the uniform spin susceptibility can be estimated from the number of free spins. As
the rare regions are basically independent, each of them contributes as a Curie-law to the
susceptibility, so we have

χ (T ) ∼ n (T ) /T ∼ T−α, (4.6)

which eventually overcomes any regular contribution from the bulk. This is again consistent
with the H3LiIr2O6 observations, and is corroborated by our numerical calculations,
Fig.23(a). The imaginary part of the dynamical susceptibility is given by

χ′′ (ω) ∼
∫
δ (ω − E) ρ (E) dE ∼ ω−α. (4.7)

Because the cluster excitations are essentially local, we may write the NMR spin-relaxation
rate 1/T1 as58 1/T1T ∼ χ′′ (ωo) /ωo ∼ ω−α−1

o , where ωo is the nuclear resonance frequency.
Therefore, 1/T1T remains finite down to very low-temperatures, as observed for the
random-flux sector, Fig.23(b).

We can also discuss another important result encountered in Ref.,1 the data scaling
of the specific heat as a function of the applied magnetic field B: C/T ∼ B−3/2T . This
scaling law occurs in a regime where T < B, which is different to the one considered so far.
Nevertheless, it is still interesting to see whether the Griffiths-like scenario is capable to
give the experimentally observed scaling for C/T . As T/B is small, we can set T ∼ ∆2f

as the low-energy scale in this regime. We then write13 κ ∼ B3/∆2
2f ∼ B3/T 2. Because

T � κ, we can treat this as a fermionic system, and employ a Sommerfeld-like expansion
for the specific heat: C/T ∼ ρ(κ), where κ plays the role of the Fermi energy EF . From
this, we find the following scaling

C/T ∼ κ−α ∼ B−3αT 2α, (4.8)

where we assumed the DOS to follow the power-law form ρ ∼ E−α. For α = 1/2, we obtain
the desired scaling, C/T ∼ B−3/2T , in agreement with the exponent found in Ref.1

Lastly, we can use the rare region argument to explain the non-universality of
the power-law exponent, Fig.21(b). As δK increases, the coupling of the rare regions
to the bulk is weakened and one may translate this effect into an enhancement of the
effective probability of finding a droplet of size `, which accounts for the enhancement of
α. In the Majorana language, κ and K ′3 correspond to second and third-neighbor hopping,
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respectively. Because these longer-range hopping amplitudes are not disordered, they
effectively increase the coupling of the rare regions to the bulk and thus decrease α. This is
qualitatively similar to the effect of long-range magnetic interactions in the usual Griffiths
scenario.46,48 For H3LiIr2O6, it was reported that α = 1/2.1 The Griffiths-like scenario
we propose implies that thermodynamics and local dynamics alone are insufficient to
conclusively pin down the minimum model for this Kitaev material since α is non-universal.
Further crucial information for H3LiIr2O6, and other Kitaev materials, comes from their
topological properties.

In summary, we conclude that a disordered extension of Kitaev’s spin liquid provides
a consistent scenario to the experimental results observed in H3LiIr2O6, once we combine
a power-law low-energy DOS with standard Griffiths-like arguments. However, as we shall
see in the next section, such a scenario is incompatible with a topological non-trivial phase,
for bond disorder alone, because it requires a random-flux state.

4.5 Topology in the disordered model

4.5.1 Bott Index

For our model, in the presence of bond disorder alone, the power-law behavior in
ρ(E) is robust only for the random-flux state. For the 0-flux state, the power-law disappears
as we switch on κ because the clean topological gap survives. This automatically implies
that the topological phase of the Kitaev model is stable for bond disorder provided the
clean gauge sector is preserved, which is true for weak to moderate disorder.

These two fluxes states also manifest differently in the topological properties of the
system. To capture a non-trivial topological phase, we compute the topological number via
the Bott index formula,117 as described in Sec.3.3.1. The average Bott index as a function
of δK/K is presented in Fig.25, for both the 0-flux and the random-flux sectors.

The 0-flux state shows a stable topological phase up to δK → 1, as B is pinned to
1 for all disorder realizations. This is due to the finite topological gap in the Majorana
spectrum present in ρ (E),132,137 as we have shown in Fig.21(a). This is similar to what is
observed in disordered two-dimensional disordered Chern insulators.125,129,140,141 In the
random-flux state, however, there is a pile-up of low-energy states even for δK = 0 and
the topological phase is trivially destroyed, for all δK. This is more evident if we notice
that all curves in Fig.25 for the random-flux depends on the microscopical details of the
model, κ and K ′3.

From this perspective, we conclude that disorder on the bonds alone is not capable
to destroy the topological phase in the Kitaev model. In contrast, topology is absent in
the random-flux in all instances, as previously discussed in Sec.3.3.1.
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Figure 25 – Average Bott index as a function of disorder. We consider different values of
κ and K ′3. The solid lines correspond to the random-flux sector, which is not
quantized. The dashed line represents the 0-flux sector, where all points are
pinned to B = 1.

Source: By the author.

4.5.2 Level spacing ratio

The robustness of the topological phase in our model reflects not only in a quantized
Bott index but also in the level spacing statistics. Here we complement the Bott index
results with an investigation of the level spacing statistics,125,126,131 following the methods
described in Sec. 3.3.2. Our results are displayed in Fig. 26 for the 0-flux sector and in Fig.
27 for the random-flux sector.

For the 0-flux we see that 〈r̃〉 touches the expected value for GUE statistics just
before the topological gap then drops abruptly inside it due to the absence of states in
this region (Fig. 26). While putative extended states for higher energies, E & 2K, are
suppressed with the disorder, the extended states close to the gap edge are remarkably
robust. We ascribe the shrinking of the topological gap with δK to the levitation and
annihilation mechanism first identified in disordered Chern insulators.140 Fig. 26(b) and (c)
exhibits the histogram of r̃ for an extended and a localized state, respectively. As expected,
the numerical outcomes are in accordance with the exact GUE and Poisson distributions.

For the random-flux state, the topological gap does not exist and there is no evidence
of extended states, except at E = 0, which is a special point in the model, even for this
gauge sector. We can understand this by connecting our model to the random bipartite
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Figure 26 – (a)Average level spacing ratio for the 0-flux sector, with bond disorder as a
function of the energy E for κ = 0.2K and different values of δK and K ′3.
The full and dashed curves correspond to K ′3 = 0.0 and K ′3 = 0.1, respectively.
(b)-(c) The smooth histogram of r̃ values at a given energy E. The value is
indicated by the arrow on the right for the extended state close to the gap
(plot (b)) and on the left for an approximate localized state (plot (c)). We
compare the histogram with the exact distributions.

Source: By the author.

Figure 27 – (a)Average level spacing ratio for the random-flux sector, with bond disorder
as a function of the energy E for κ = 0.2K and different values of δK and K ′3.
The full and dashed curves correspond to K ′3 = 0.0 and K ′3 = 0.1, respectively.
(b)-(c) The smooth histogram of r̃ values at a given energy E. The value is
indicated by the arrow on the right for the extended state at E = 0 (plot (b))
and on the left for an approximate localized state (plot (c)). We compare the
histogram with the exact distributions.

Source: By the author.

hopping problem again. For this class of models, it is known that as long as particle-hole
symmetry is not broken, there is always a delocalized state at E = 0, which does not
depend on the disorder strength.45,142 This is exactly our case, due to the symmetric bond
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disorder we consider. Also, we notice that even in the random-flux sector the sublattice
symmetry is preserved on average, so the argument still holds.

Lastly, we observe that a large portion of the spectrum touches the GUE statistics,
even in the random flux state. This is most likely a finite-size effect, where the correlation
length is of the order of the lattice size L. To confirm this hypothesis, one should employ
a finite-size scaling analysis. However, this is beyond the scope of the present work, as our
prime intention is to probe the existence of chiral edge modes.

Based on the results presented so far, we construct the following scenario for
topology in disordered Kitaev materials. Taking κ to mimic the effects of an external
magnetic field, the experimental results observed in H3LiIr2O6

1 can be described by the
extended Kitaev model, augmented by bond disorder, only if one assumes a random-flux
state,41,42 as we argued in Sec.4.4. This, in turn, implies that power-law singularities at
zero fields are associated with a topologically trivial phase in a finite field also displaying
power-law singularities, but with a reduced exponent.
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5 SITE DILUTION IN THE KITAEV MODEL

We now present the results for the extended Kitaev model in Eq. (2.51) in the
presence of vacancies. A vacancy is the absence of a site on the lattice, with all its
connections turned off. In practice, this can happen either in its literal sense, by deleting
an atom at a given site, or replacing a magnetic ion by a non-magnetic impurity. Here we
assume the former limiting case where the site is entirely removed from the lattice.

Therefore, we remove a fraction x of spins from the system and employ the exact
diagonalization described in Sec. 3.1. The removal of a site is equivalent to eliminating its
correspondent row/column in the Hamiltonian matrix in Eq.(3.1). Hence, by working in
this reduced dimensional space, we already eliminate trivial zero modes coming from the
deleted sites. In addition, we assume a compensated distribution of vacancies, by removing
exactly xN/2 spins from each sub-lattice. For the honeycomb lattice an imbalance on this
distribution leads to trivial zeros. We will return to this point later, when discussing the
low-E properties of the system. After the diagonalization, we compute the same physical
quantities considered in the case of bond-disorder and discuss our findings in comparison
to the H3LiIr2O6 phenomenology.

5.1 Fluxes and ground-state energy

In the same manner as performed in Sec.4.1, we begin with an investigation of the
ground state energy as a function of the disorder parameter, in this case, the dilution
concentration x. From this analysis, we can select the most favorable flux states, and then
calculate the thermodynamic and dynamical quantities of the diluted system.

Here we consider both the 0 and random-flux states, as in the bond-disordered
case. In addition to these configurations, we also consider the bound-flux sector.42,108 As
we discussed in Sec.3.1.2, in the limit x� 1, a vacancy binds a flux to it:108 as one loops
the impurity plaquette Wp = −1, Fig. 11(e). It is then natural to inquire whether this
configuration is favorable as we increase the dilution concentration, and also as we change
the parameters κ and K ′3. In Fig. 28(a) we show the ground-state energy as a function of
the vacancy concentration for κ = K ′3 = 0 and x . 0.1. The bound-flux and 0-flux states
have very similar energies, with a slight preference towards the bound-flux configuration,
thus confirming our expectations. On the other hand, the energy of the random-flux state
is not competitive in this range of moderate dilution, in agreement with Ref.42 Therefore,
we can discard this flux state in our subsequent calculations.

In Fig. 28(b) we show the energy difference between the 0-flux and bound-flux states,
δE0, as a function of x for different κ values and K ′3 = 0. For our parameter range, there is
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Figure 28 – (a) E0 as a function of the vacancy concentration x for κ = K ′3 = 0. (b)
Difference between the ground state energy of the 0-flux and bound-flux
sectors, δE0 as a function of x for K ′3 = 0 and three values of κ. We considered
L = 30 and up to 3× 103 disorder realizations.

Source: By the author.

no change in the ground-state as a function of κ, suggesting the bound-flux as the ground
state for x . 0.1. This result remains the same for finite values of K ′3. Notwithstanding,
the energy difference between the two fluxes is rather small, δE0 ∼ 10−3K, regardless of
the parameter values. For this reason, we consider both the 0 and bound-flux sectors as
equally competitive states.

5.2 Results for the DOS

In this section, we discuss the fate of the DOS in the diluted Kitaev model, following
the numerical procedure described in Sec.3.2.1. From the ground state results presented in
the previous section, we select only the 0-flux and the bound-flux states to perform our
calculations.

The generic effects of vacancies in fermionic systems on the honeycomb lattice
have already been studied in several different contexts,142–146 and it is well-known that
site dilution tends to have a strong impact on the low-E DOS. This is indeed what
happens for the Kitaev honeycomb model, as verified in the recent work by Kao et al.,42

where a power-law distribution in the low-E DOS was found, in agreement with the
H3LiIr2O6 results.1 Here, we put forward a similar analysis for the extended model in
Eq.2.51, where we observe some of the basic features reported in Ref.42

In Fig. 29(a) we show the the averaged DOS for κ = K ′3 = 0 for different values
of dilution x. The curves for both flux sectors are similar, so we choose to show the
bound-flux only. Unlike the bond disordered case, a small dilution is sufficient to induce a
pile-up of low-energy states, similar to what is observed in graphene,142–145 independently
of the flux sector.42 In Fig. 29(b) we plot the low-energy part of the DOS, highlighting
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Figure 29 – (a) The average density of states for several values of vacancy concentration
x in the bound-flux sector. For E/K & 1 the DOS resembles very much the
clean limit. In the low-E limit, we observe a power-law behavior. (b)Low-
energy behavior of the density of states in a log-log plot. The dot-dashed lines
are power-law fits to the data. Inset: Non-universal power-law exponent α
as a function of x both for the 0-flux and bound-flux sectors. We consider
κ = K ′3 = 0, L = 30, and 103 disorder realizations.

Source: By the author.

its power-law behavior for the bound-flux sector. The inset shows α as a function of the
vacancy concentration x for both the bound-flux sector and the 0-flux sector. The behavior
in both cases is similar to the one in Fig. 21(b): α increases with x because the larger the
dilution, the larger are the odds of constructing a droplet of linear size ` disconnected
from the bulk. Similarly, we find that α is suppressed with longer range hopping.

A clearer distinction between the different gauge sectors emerges for κ 6= 0. In
Fig. 30 we show the DOS for the 0-flux(a) and the bound-flux(b) sectors, with κ = 0.1K,
K ′3 = 0, and several values of dilution x. In the 0-flux sector, the DOS value abruptly
drops close to the field gap in the clean case, ∆κ ∼ κ. However, we observe that vacancies
induce a pile-up of low-energy states inside this gap, so we have a pronounced power-law
divergence as in the κ = 0 case. In contrast, the bound-flux sector displays a more intricate
structure in its low-E DOS. For x . 0.05 we observe a localized level inside the clean gap,
at E/K ≈ 0.82. This state is clearly separated from the DOS peak at E = 0, and the
larger the κ, the more well-defined this state is. As we increase x we reduce the impurity
distance – its typical value scales as 1/

√
x – enhancing the overlap between these localized

states which gives rise to an “impurity band” inside the clean topological gap,42 similar to
what is observed in disordered Chern insulators.125,129,140 The resulting DOS then displays
a power-law singularity, as shown in the inset of Fig. 30(b). As we shall see in the next
sections, this discrepancy between the two flux sectors plays a major role in the fate of
the chiral edge modes in the diluted system.

As a final remark, we comment on the possible effects an imbalanced distribution
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Figure 30 – DOS as function of the energy for the 0-flux(a) and bound-flux(b) sectors,
with κ = 0.1K, K ′3 = 0 and several values of vacancy concentration x. The
dashed line indicates the topological gap ∆κ in the clean limit. The dot-dashed
line in (b) shows the localized level inside the gap. Inset(b): log-log plot
showing the power-law divergence at low-E for x ≥ 0.06. The dot-dashed
curves are fits assuming a power-law singularity, which are shifted for the sake
of presentation.

Source: By the author.

of vacancies can have on our results. As already mentioned, we assumed a compensated
distribution of vacancies, where the number of removed sites on each sublattice is given by
NA = NB = xN/2. One can argue that a more careful analysis should take into account
realizations with an imbalanced distribution of vacancies, where NA > NB and vice-versa.
For such imbalance, we always have a number NI = |NA −NB| of zero modes,3 which
can potentially alter the low-E DOS. However, this conclusion is only true for single
realizations of disorder. If we diagonalize several samples without any constraint, the
average number of sites on each sublattice is equal. This consequently results in the same
average DOS as plotted in Fig. 29 and Fig. 30.

However, it is important to notice that a local imbalance of sites is still possible,
even in the equally distributed case. As pointed out by Refs.,142,147 there exists a special
type of rare region on bipartite lattices, dubbed as R-type region. This consists of a droplet
where its boundary is made up of sites belonging to only one sublattice. Therefore, such
a subsystem must contain a number of zero modes proportional to its local sublattice
imbalance. The R-type regions contribute to the DOS peak at E = 0 regardless of the
flux sector, but we did not weight their individual contribution.

5.3 Results for the spin susceptibility

For the site dilution case, there are two contributions to ∆2f coming from the
paired and unpaired spins.133 An unpaired spin is located in a site that misses one bond
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due to the dilution of the nearest neighbor, as illustrated in Fig.31(a). For the paired spins,
we have ∆2f finite and slowly diminishing with the dilution x, Fig. 31(b). For the unpaired
spins, ∆2f = 0 by definition since there is no bond to flip. For x ≤ 0.1, we observe a
fraction of x unpaired spins, and (1− x) of paired spins. We also have orphan spins in our
system, spins missing all their nearest neighbors. In the current model, they are of order
O (10−3x), which implies that their contribution to the physical observables is negligible
in the experimentally relevant temperature range.

Figure 31 – (a) The unpaired spins around a vacancy. By removing a site (in gray), we
automatically leave its three nearest neighbors disconnected along one bond
(dashed lines). (b) The flux pair gap ∆2f as a function of x for κ = K ′3 = 0.
The dashed line corresponds to its clean value, ∆2f ≈ 0.27K. ∆2f = 0 for the
unpaired spins. We considered L = 30 and 3× 103 realizations of disorder.

Source: By the author.

As we have already emphasized, all qualitative features of the spin susceptibility
and the NMR relaxation rate in the adiabatic approximation can be traced back to the
flux pair gap. Therefore, before we show the results for the dynamical quantities, it is
useful to make some predictions using the results for ∆2f . If we ignore the contribution
from the orphan spins, the NMR relaxation rate can be simply expressed as the weighted
sum of the paired and unpaired contributions: 1/T1 = 1/T par

1 (1− x) + 1/T unp
1 x. Because

the paired spins are gapped (Fig.31(b)), they contribute as an exponential decay, while the
gapless unpaired spins have a constant relaxation rate. Therefore, we have the following
qualitative form of 1/T1 in the presence of vacancies

1
T1
∝ (1− x)e−∆2f/T + x. (5.1)

From this expression, it is evident that we still have a constant 1/T1 at a very low-T
regime, where the unpaired spins dominate, independently of the flux state.

The spin susceptibility can be estimated in the exact same way, by taking the
separate contributions from paired and unpaired spins: χ(T ) = (1− x)χpar(T ) + xχunp(T ).
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Again, each term contributes differently, depending on whether ∆2f is gapped or not.
Therefore, we write the static susceptibility as

χ(T ) ∝ (1− x) 1
∆2f

+ x T−α, (5.2)

where we have already assumed the power-law singularity for the ∆2f = 0 case, as in the
bond-disordered case. From this expression, we expect a divergence to appear at the very
low-T regime. In order to verify if the spin susceptibility follows this qualitative analysis,
we perform a full numerical computation of χ(T ).

Figure 32 – (a) Static uniform spin susceptibility as a function of the temperature in
the bound-flux sector for x = 0.04. We use a log-log plot scale. (b) Low-
temperature part of the uniform susceptibility χ(T ) as a function of the
temperature T in a log-log plot for several values of vacancy concentration x
in the bound-flux sector. We consider κ = K ′3 = 0. The dot-dashed lines are
power-law fits to the data, with power coming from Fig. 29(b). For both plots,
we consider L = 30, and 103 disorder realizations.

Source: By the author.

In Fig. 32(a) we show sample results for the static uniform spin susceptibility
χ (T ). We observe a mild increase in χ (T ) for the bound-flux, with similar results for
the 0-flux. A bona fide power-law divergence is present only at much lower temperatures.
This is more evident in Fig. 32(b), where we show the uniform susceptibility for the
bound-flux sector, which behaves as χ(T ) ∼ T−α at very low-T . As anticipated, the
contribution for this power-law tail comes from the unpaired spins because ∆2f = 0 for
these sites, Fig. 31(b). Since the density of unpaired spins increases as x, the singular
behavior becomes more pronounced at low-T and larger dilution. In these regimes, it
overcomes the regular contribution of the bulk spins. Experimentally, this should translate
into a milder divergence of the uniform susceptibility in comparison to the specific heat for
moderate values of x and not too low-T , Fig. 32(a). Finally, for the small dilution limit,
the overall contribution from unpaired spins is masked by the remaining 1− x fraction of
bulk spins which give a finite contribution to χ (T ) if T < ∆2f . This is also in line with
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the Knight shift measurements reported in:1 spins far away from the defects produce a
regular flat contribution to the local spin susceptibility, whereas spins around a vacancy
give a singular response.

The results of χ(T ) obtained within the adiabatic approximation agrees well with
the expected results based on our Griffiths-like arguments, suggesting this is a satisfactory
approach for the problem at hand. In fact, because the condition ∆2f = 0 is automatically
satisfied by these unpaired spins, the Griffiths-like scenario discussed previously applies
directly here, regardless of the considered static flux background.

As a closing remark, we stress that the asymptotic results for χ (T ) calculated in
Ref.108 – χ(T ) ∝ ln(1/T ) for the bound-flux and χ(T ) ∝ 1/(T ln(1/T )) for the 0-flux –
are only relevant for large fields, where the magnetic length is smaller than the typical
inter-impurity distance and the single vacancy limit holds.

5.4 Topology in the diluted system

5.4.1 Bott index and level spacing ratio

Now, we calculate the Bott index and the level spacing ratio to verify whether the
topological phase in the TRS breaking case survives against the presence of vacancies,
following the prescription in Sec. 3.3.1 and Sec. 3.3.2. Before we show the results for B, it
is useful to take a closer look at the DOS for κ 6= 0, Fig. 30. As in the bond disordered
case, we can link the power-law behavior in ρ(E) to a trivially topological phase. For
x 6 0.02 the peak at E = 0 is well separated from the gap, for both flux sectors. This may
be an indication that the topological phase can survive for a very small concentration of
vacancies. However, the bound-flux sector displays a more complex structure in its low-E
DOS, where we also observe the presence of a localized in-gap state for small dilutions.

To see the effects of the in-gap states on the topological properties of the system,
we compute the Bott index, Fig. 33. In the small κ regime, B is no longer quantized for
the 0-flux gauge for x > 0.02, as expected from our results for the DOS. Interestingly, in
the bound-flux state B remains pinned to an integer value for larger values of x, even
though the clean topological gap is the same. For small κ we find this critical value to
be x ≈ 0.05, but its exact value can change for moderate or very small values of κ. For
larger values of x, we interpret that the loss of quantization in both gauges comes from
the emergence of an impurity band inside the clean topological gap, similar to what is
observed in disordered Chern insulators.125,129,140

As anticipated, this extra robustness of the bound-flux state is rooted in the in-gap
state at finite energy shown in Fig. 30(b). Because this is a property of the Majorana
spectrum, it should be evident from the level statistics perspective. Therefore, we compute
the level spacing ratio for the bound-flux case, as shown in Fig. 34. For κ = 0.05K and
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Figure 33 – Bott index as a function of the dilution x, for different values of κ and K ′3.
The upper panel corresponds to the 0-flux values (dashed lines), while the
bound-flux (solid lines) results are displayed in the lower one.

Source: By the author.

K ′3 = 0.1K, the energy of the aforementioned localized state is close to the edge of the clean
topological gap and the topological phase survives only up to x ≈ 0.03. For κ = K ′3 = 0.1K,
there is a well-defined in-gap state at E ≈ 0.8K. As the impurity levels move initially into
this localized state, there is extra protection and the topological survives up to x ≈ 0.05.

Figure 34 – Average level spacing ratio in the bound-flux state as a function of the energy
E for K ′3 = 0.1K and several concentrations x. (a) κ = 0.1K. (b) κ = 0.05K.
We considered L = 30 and 3× 103 realizations of disorder.

Source: By the author.
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Contrary to the bond disordered case, we find that in diluted systems there is a
window where it is possible to link together the Griffiths-like scenario with a topologically
non-trivial phase if we assume the bound-flux sector. The presence of this topological
phase might be probed experimentally using the thermal Hall conductance.36,37,148 Despite
being challenging, these measurements could be relevant both to H3LiIr2O6

1 and Ir-doped
RuCl3.149

5.4.2 Majorana Zero Modes

From the Bott index results, complemented with a level statistics analysis, it
became clear that the extra robustness for the topological phase in the bound-flux state
comes from the fact that each vacancy binds a flux,108 which creates a localized level inside
the clean gap.

To understand the appearance of this in-gap state at finite energies it is sufficient
to study the problem of two vacancies placed in an otherwise 0-flux clean background.
We set these impurities at a distance L/2 apart, but our results are independent of this
distance as long as the impurities plaquettes do not share a common link.42 An impurity
plaquette with l = 12 sites is shown in Fig. 35(b). We consider two situations: the impurity
either binds a flux (bound-flux) or does not (0-flux). We then diagonalize Eq. (2.51) and
study its energy spectrum, Fig. 35(a). For the 0-flux state, there is an E = 0 state (a
Majorana zero mode) whereas for the bound-flux state the impurity energy is gapped.
This is the source of extra protection for the topological phase in the bound-flux sector.
Interestingly, the gap for the two impurities problem gives precisely the energy of the
in-gap state for our full numerics, Fig. 30(b).

The existence of an energy gap in the bound-flux state can be traced back to an
even simpler setup. Consider the impurity plaquette as a l = 12 tight-binding chain with
nearest-neighbor hopping only. The spectrum of this problem has a gap only if the chain
binds a flux. This can already be observed from our previous discussion on the bound-flux
sector, Eq. 3.10, and more clearly from Fig. 13. For finite x, the impurity states go into
this level, ensuring the localization of the impurity states around the vacancy for small x.

As x increases, the diluted impurity picture breaks down. In particular, the proba-
bility of finding a pair of neighboring vacancies becomes non-negligible. In this situation,
the length of the two-impurity plaquette is l = 14, Fig. 35(d). If we study the energies levels
of two pairs of neighboring impurities separated by a distance L/2, the result is reversed
with respect to the single vacancy case: the bound-flux state displays a Majorana zero
mode, whereas the 0-flux state shows a gap, Fig. 35(c). Ultimately, the topological phase is
destroyed with the increase of dilution for all gauge sectors and we observe ρ(E) ∼ E−α at
low-E. Nevertheless, the topological phase is particularly robust for the bound-flux state
at small x, and increasing κ helps stabilize it. This suggests that a topological phase could



82 Chapter 5 Site dilution in the Kitaev Model

Figure 35 – (a) Energy levels for a system with two vacancies placed at a distance L/2
apart. We show the spectrum for the 0-flux and bound-flux states. (b) l = 12
plaquette corresponding to a single vacancy. (c) Energy levels for a system with
two pairs of neighboring vacancies placed at a distance L/2 apart. We show
the spectrum for the 0-flux and bound-flux. (d) l = 14 plaquette corresponding
to a pair of neighboring vacancies. We considered κ = 0.1K and K ′3 = 0.0.

Source: By the author.

be stable in the diluted system for an external field that is large enough to quantize B for
a given x, but not too large as to move the system away from the bound-flux state.42,108

As a last remark, we notice that zero modes can also appear from other arrange-
ments, along with the l = 14 plaquette in Fig.35(d). This is particularly evident in the
high dilution limit, where the formation of larger clusters is more likely to happen. In
addition, we can also have zero modes from a local sublattice imbalance, that is, from
the R-type regions142,147 (Sec. 5.2). Ultimately, the stability of the in-gap state renders
the topology in the bound flux sector more robust, despite these many contributions to
the E = 0 state. This non trivial results highlights a general trend: topological phases in
interacting systems are more robust than in their non-interacting counterparts.
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6 CONCLUSION AND OUTLOOK

In this dissertation, we have investigated an extended Kitaev model in the presence
of defects, specifically either bond disorder or site dilution. Our main goal was to understand
some of the effects uncorrelated disorder can induce in the Kitaev spin liquid phase. In order
to have a broad view of the phenomenology of disordered Kitaev systems, we explored both
the thermodynamics and dynamical features of the system, along with an investigation of
the interplay of disorder and topology in the presence of an external field.

Following the methodology presented in Chapter 3, we first calculate the physical
quantities in the bond disorder case, as shown in Chapter 4. After establishing the
random-flux sector as the most competitive state in the strong disorder regime, Sec.4.1, we
calculate the DOS and the dynamical quantities. We observe the emergence of a singular
power-law density of states at low energies, in accordance with previous works.41,42 This
divergence has a non-universal exponent and it is more pronounced in the random-flux
sector, regardless of the values of the microscopic parameters. As we argued in Sec.3.2.1, if
one assumes the fluxes to be frozen, we recover the experimentally observed divergence for
the specific heat, C/T ∼ T−α. For the dynamic quantities, we observe a divergence on the
static spin susceptibility, χ(T ) ∼ T−α, with the same power-law as the one observed in
the DOS. On the other hand, the NMR relaxation rate is flat at low-T , in agreement with
the H3LiIr2O6 phenomenology. Both results can be traced back to the vanishing of the
flux pair gap in the random-flux configuration and the proliferation of Majorana modes at
low-E.

We then construct a phenomenological scenario for our numerical findings by
discussing this power-law distribution of energy scales in terms of a Griffiths-like phase.
Our results agree well with the experimental observations for H3LiIr2O6.1 From a theo-
retical perspective, this unanticipated link deserves further studies because the Griffiths
phenomenology also emerges naturally in a random-singlet phase.50–56 In the absence of
disorder, a valence-bond crystal and the Kitaev spin-liquid are separated by a quantum
phase transition.150,151 Our work points towards an interesting evolution of this critical
point with the disorder.

In Chapter 5, we performed the same calculations for another type of disorder,
vacancies. As we pointed out in Sec.3.1.2 and Sec.5.1, the most competitive state in the
diluted system is the Bound-flux sector, where one flux is attached to each vacancy.42,108

Because its energy difference with respect to the original ground state is very small, we
also considered the 0-flux sector in the subsequent calculations. In this case, the pile-up
of low-E states emerges for any dilution x, independent of the flux-sector.42 Again, the
power-law exponent is non-universal, although it shows similar behavior for both fluxes.



84 Chapter 6 Conclusion and outlook

Because of the presence of unpaired spins, we observe a mild increase in static susceptibility,
where a power-law divergence is present only at much lower temperatures. Finally, we
argue that a Griffiths-like argument can also be considered in this case, as the flux gap
vanishes for the contribution of the unpaired spin.

In the presence of a time-reversal breaking term, we find that the topological
properties of the system are sensitive both to the static flux background and to the
particular choice of disorder. For bond-disorder, the power-law singularities are robust
only if one assumes a random-flux background, which in turn implies the lack of a
topological spin-liquid phase. For small concentrations of vacancies, however, the power-
law singularities survive at weak external magnetic fields and are eventually quenched at
larger fields, where a topological phase with chiral Majorana edge modes emerges. The
stability of this topological phase comes from the fact that a vacancy binds a flux to it,
which helps protect the clean topological gap in the Majorana spectrum. We believe our
results can impact future theoretical and experimental research, as it indicates that diluted
Kitaev materials are good candidates to display Kitaev’s chiral spin-liquid phase in the
presence of weak to moderate magnetic fields.

We expect our results to hold in the experimentally relevant temperature range not
only for H3LiIr2O6

1 but also for other diluted Kitaev materials, such as the Iridates.152,153

However, the scenario constructed in this work is not the final tale of diluted Kitaev
materials. For instance, a recent experiment on the diluted RuCl3 showed that C/T and
χ(T ) diverge with different exponents, and no scaling on C/T was found.149 Therefore,
further theoretical investigations on the effects of disorder on Kitaev materials are required.
One possible path would be to consider the effects of perturbations beyond the integrable
point. In this case, a mean-field approach could be employed, along with more powerful
numerical techniques, such as Monte-Carlo methods.38,39,102,132,133 It is also promising to
investigate the dynamics of the flux background,154,155 and how it evolves with disorder.
Because the key experimental probe to capture topology is the thermal Hall effect, a great
deal of effort has been devoted to understand the phonon contribution to the thermal
transport and the interplay between phonons and Majoranas.156–159 Ultimately, this is a
problem which will be explored in great detail in the coming future. On the experimental
side there is the need of ever better samples and more precise measurements at low-T . On
the theory side, the ultimate goal is to determine a minimal model that captures the key
physics of disordered Kitaev QSL.
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APPENDIX A – DERIVATION OF THE κ INTERACTION

In this appendix, we present the derivation of effective the 3-spin interaction,
(2.30), from a perturbative expansion of the Zeeman term around the 0-flux sector. Such
expansion can be obtained by the general method of Green’s function. The green function,
or resolvent operator, is defined as58

Ĝ(E) = (E −H)−1 (A.1)

The matrix elements of this operator are conventionally expressed as (E − E0 − Σ(E)),
where Σ(E) is the self-energy, and the effective hamiltonian is given by Heff = H0 + Σ(E).
Neglecting the dependence of Σ(E) on E, we can write down the Dyson series for the
self-energy as58

Σ(E0) = Π0 (V + V G ′0(E0)V + V G ′0(E0)V G ′0(E0)V + . . . ) Π0, (A.2)

where Π0 is the projector to the ground state flux sector, V is the perturbation in (2.29)
and G ′0(E0) is the Green’s function of the excited states of the unperturbed system, given
by (E −H0)−1. Writing this expansion explicitly is a complicated task, and here we
use a qualitative argument, in order to avoid lengthy calculations. We assume that all
intermediate states involved have an energy ∆E ∼ ∆2f above the ground state.13 Then,
the unperturbed green function G ′0(E0) can be written as

G ′0(E0) = −1− Π0

∆2f
. (A.3)

Here the factor (1− Π0) ensures that G ′0(E0) refers only to excited states. With this form
of G ′0, we can easily expand the self-energy. The first-order term is

H
(1)
eff = Π0VΠ0 (A.4)

= −Π0

∑
i,α

hασ
α
i

Π0 = 0. (A.5)

This term vanishes since the application of a single spin changes the flux configura-
tion, as discussed in Sec. 2.1.2 (see Fig. 4(b)), and the projector Π0 is restricted to the
0-flux sector.

The second order term is expanded as

H
(2)
eff = Π0V G

′
0VΠ0 (A.6)

= −Π0

∑
i,α

hασ
α
i

 (1− Π0)
∆2f

∑
j,β

hβσ
β
j

Π0 (A.7)

= − 1
∆2f

Π0

 ∑
i,j;α,β

hαhβσ
α
i σ

β
j

Π0 + 1
∆2f

Π0

∑
i,α

hασ
α
i

Π0

∑
j,β

hβσ
β
j

Π0 (A.8)
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Note that the second term involves the first-order correction, which is zero. Then, the
second-order term is proportional to a product of two spins:

H
(2)
eff = − 1

∆2f
Π0

 ∑
i,j;α,β

hαhβσ
α
i σ

β
j

Π0. (A.9)

In order to remain in the zero-flux sector, we must destroy the flux pair created by the
first spin, by acting with the second one. This situation is only possible if α = β and if
i = j or i, j are nearest neighbors, as shown in Fig.36.

Figure 36 – Three possible contributions from (A.9), with α = β (z in this example). In
the situations depicted at (a) and (b), the flux pair is created and annihilated
right after, preserving the flux configuration. The last case mixes the flux
sector and vanishes when we apply the projector Π0.

Source: By the author.

Thus, the second term is written as

H
(2)
eff = 1

∆2f

∑
〈i,j〉α

h2
ασ

α
i σ

α
j + h2

∆2f
N (A.10)

Here 〈i, j〉α indicates nearest neighbors in the α-bond. The second term is originated
from the i = j contribution, where we have used σ2

i = 1, and then the sum over the
N sites is a constant term. This effective hamiltonian has the exactly same form as the
unperturbed Kitaev interaction, and then, its only effect is to renormalize the exchanges,
or the hoppings, when working with the Majorana representation, by a factor h2

α/∆2f , up
to an overall constant.

The first non-trivial term is the third-order one, which is expanded as

H
(3)
eff = Π0V G ′0V G ′0VΠ0 (A.11)

= Π0V V VΠ0 (A.12)

= 1
J2 Π0

 ∑
(α,β,γ)

∑
i,j,k

hαhβhγσ
α
i σ

β
j σ

γ
k

Π0, (A.13)

where we have ignored all terms involving Π0VΠ0 = 0. By applying the first two spins,
with α = β, the possible outcomes are depicted in Fig.36, where we have two pairs of
fluxes or no fluxes at all. Then, regardless of the direction γ it is impossible to stay in
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the zero-flux sector. The only remaining possibility is α 6= β 6= γ. Finally, we analyze the
possible contributions regarding the site indices. After the application of the first two
spins, we must have a pair of fluxes to be destroyed by the remaining operator. Therefore,
we are left with the two possibilities shown in Fig.5.
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APPENDIX B – SOME PROPERTIES OF THE K3 AND K ′3 TERMS

In this appendix, we give some extra details pertaining to the third neighbor
hopping terms, K3 and K ′3, introduced in Sec.2.3.3. From Eq.(2.46), the K3 term is written
as the 4-spin Hamiltonian

HK3 = K3
∑

(ijkl)αβγ
σαi σ

γ
j σ

α
kσ

γ
l , (B.1)

with the possible paths (ijkl)αβγ illustrated in Fig.37(a) . To write the above expression
in the Majorana language we follow the exact same steps presented for the K ′3 term in
Sec.2.3.3, so we get the following form of HK3

HK3 = iK3
∑

(ijkl)αβγ
ûαijû

β
kjû

γ
klcicl. (B.2)

A very interesting consequence of the K3 term is the fact that there are two possible
paths for the same hopping, as depicted in Fig. 37(a). These symmetry-related paths give
rise to a destructive interference every time we have a flux ( Wp = −1) passing through
a plaquette, as the flux operator depends on the link variables around the plaquette
(Eq.(2.15) ). Therefore, if we consider the 1-Flux configuration, the spectrum does not
depend on the K3 term. This situation gives rise to a window of K3 values where the
1-flux sector is energetically favorable in comparison to the zero-flux for the FM Kitaev
interaction, as reported in Ref.105

Figure 37 – (a) The structure of the third-neighbor interaction K3. The arrows indicate the
3 possible neighbors. In orange and purple, we highlight two symmetry-related
paths from site i to site l. (b) If a flux is pinned to the hexagon, the two paths
cancel each other, and there is no hopping between i and l. (c) For a 0-flux
case, there is no sign difference between the paths, so we have a constructive
interference pattern from i to l.

Source: By the author.

Surprisingly, there are no results in the current literature regarding the flux transi-
tions for the extended Kitaev model in Eq.(2.51) for the AFM case. Therefore, we give a
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simple variational argument to account for the flux transitions in this case, considering
the K ′3 and K3 terms independently. Instead of checking the energy for all the flux config-
urations in a Monte-Carlo simulation, we simply compute the ground-state energy for the
two opposite limits of the 0-flux and 1-flux. Because these are ordered flux configurations,
we can calculate the energy exactly, and the results are displayed in Fig.38.

Figure 38 – The ground state energy as a function of K ′3(a) and K3(b) for the 0-flux and
1-flux. In (a), we see a transition between the flux sectors for K ′3 & K/8,
while in (b) the ground-state remains in the 0-flux sector for all values of K3.
Notice that the 1-flux energy does not change as a function of K3, due to the
destructive interference pattern of hoppings.

Source: By the author.

For the K ′3 case, we see a transition around K ′3 & K/8, where the 1-flux sector
becomes energetically favorable. On the other hand, we find no transition between the
fluxes for the K3 term alone, and the 0-flux is the true ground-state for all ranges of
K3 values. We point out again that this is a rather simplified analysis, and the true
ground-state configuration must be checked via a Monte-Carlo sampling. Notwithstanding,
we still expect these results to be true for very small values of K3 and K ′3,
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APPENDIX C – THE ADIABATIC APPROXIMATION

In this appendix, we give further details on the adiabatic approximation employed
in the dynamical spin structure factor calculations in Sec.3.2.2.

Our starting point is the structure factor, which is given by the following expression:

S(q, ω) = 1
N

∑
i,j

∑
α,β

e−iq(ri−rj)
∫ ∞
−∞

dteiωt
〈
σαi (t)σβj (0)

〉
, (C.1)

where the expected value inside the integral is the usual spin-spin correlation function. As
discussed in Sec. 2.1.2, this calculation involves the creation of a flux pair, which changes
the Majoranas time evolution. Following Refs.,64,66 this can be translated into a local
quantum quench problem for Majorana fermions. This is explicitly written in terms of an
effective potential Vα which is responsible to flip a bond α in the unit cell i. Using the
Majorana representation, one can find the following form for the spin correlator:65

Sαβij (t) = 〈M0| eiH0tci e
−i(H0+Vα)tcj |M0〉 δαβδ〈ij〉α , (C.2)

where H0 is the Hamiltonian for the system without fluxes, H0 + Vα is the perturbed
Hamiltonian (with a flux pair), and |M0〉 is the ground state of the Majorana system. Here
we already take into account the flux selection rules, so we restrict the correlator up to NN
with the condition δαβδ〈ij〉α . Using the translational invariance of the 0-Flux sector, we can
see that there are only 4 distinct correlators, two on-site diagonal terms: SααAA, SααBB, and
two NN terms: SααAB, SααBA. Following Knolle et al.65 we use the notation cµ,r to indicate
the majorana operator at the sublattice µ = A,B on the unit cell r, which is choosen to
be r = 0, without loss of generality.

As a first step to calculate Eq.(C.2) it is intructive to look at the Lehmann
representation58 of Sααij (t). Here we introduce { ˜|λ〉} as the complete basis of many-body
eigenstates of the perturbed Hamiltonian Hα = H0 + Vα. By inserting the identity∑
λ̃

˜|λ〉 ˜〈λ| = 1 we have the following form for the SαβAB(t) term:

SααA0B0(t) = −i
∑
λ̃

eit(E0−EF
λ̃

) 〈M0| cA,0 ˜|λ〉 ˜〈λ|cB,0 |M0〉 , (C.3)

where EF
λ̃
are the many-body eigenenergies corresponding to the perturbed Hamiltonian.

By taking the Fourier transform of the above expression, we have:

SααA0B0(ω) = −2πi
∑
λ̃

〈M0| cA,0 ˜|λ〉 ˜〈λ|cB,0 |M0〉 δ
(
ω − (E0 − EF

λ̃ )
)

(C.4)

From this equation we can calculate the contribution coming from different number of
particles. The zero excitation is just the ground state |MF 〉 for the flipped bond sector,
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with energy EF
0 . The single particle excitation is written as |λ〉 = b†λ |MF 〉, with energy

EF
λ̃

= EF
λ . For two particle excitations we have |λ, λ′〉 = b†λb

†
λ′ |MF 〉 with Eλ̃ = EF

λ + EF
λ′ ,

and so on.

The procedure up to this point is quite general, and although one can calculate
explicitly the few-particle contributions, this operation is a bit cumbersome in our numerical
calculations, as we have to write the flipped bond ground state |MF 〉 in terms of our
original ground state, |M0〉. To avoid these overlap calculations, we consider a situation
where the potential Vα is switched on and off adiabatically, rather than a quantum quench.
In this situation one can show that the SαβAB(t) term from (C.2) acquires the more simplified
form:65

Sαα,adA0B0 (t) = −ieiE0t 〈MF | ci e−i(H0+Vα)tcj |MF 〉 . (C.5)

This expression is simpler to work with because we now have |MF 〉 in place of |M0〉.
Therefore the Lehmann representation for a single excitation is now:

Sαα,adA0B0 (ω) = −2πi
∑
λ

〈MF | cA,0b†λ |MF 〉 〈MF | bλcB,0 |MF 〉 δ
(
ω −∆2f − EF

λ

)
(C.6)

where ∆2f ≡ E0 − EF
0 is the pair flux gap. Our work now is reduced to calculate the

matrix elements 〈MF | cA,0b†λ |MF 〉 and 〈MF | bλcB,0 |MF 〉. Using the complex fermions in
(2.5) along with the Bogoliubov transformation in Eq. (3.7), we can write the majorana
operators in terms of the operators b and b†:

cA,0 =
∑
k

(XT
0k + Y T

0k)bk + (X†0k + Y †0k)b
†
k (C.7)

cB,0 = i
∑
k

(Y T
0k −XT

0k)bk + (X†0k − Y
†

0k)b
†
k (C.8)

Using the above expressions, the first matrix element in Eq.(C.6) is now written as

〈MF | cA,0 b†λ |MF 〉 =
∑
k

(XT
0k + Y T

0k) 〈MF | bkb†λ |MF 〉 (C.9)

= (Xλ0 + Yλ0) (C.10)

In the same way, we have the following expression for the second expected value in Eq.(C.6):

〈MF | bλcB,0 |MF 〉 =
∑
k

(X†0k − Y
†

0k) 〈MF | bλb†k |MF 〉 (C.11)

= (X∗λ0 − Y ∗λ0) (C.12)

Using these results, the expression in Eq.(C.6) is finally reduced to

SααA0B0(ω) = 2π
∑
λ

(Xλ0 + Yλ0)(X∗λ0 − Y ∗λ0) δ
(
ω −∆2f − EF

λ

)
(C.13)
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In order to write the q = 0 component of the spin structure factor, we must
consider the other contributions, SααAA, SααBB and SααBA. These can be computed with the
same procedure, leading to the following expressions:

SααA0A0(ω) = 2π
∑
λ

(Xλ0 + Yλ0)(X∗λ0 + Y ∗λ0) δ
(
ω −∆2f − EF

λ

)
(C.14)

SααB0B0(ω) = 2π
∑
λ

(Xλ0 − Yλ0)(X∗λ0 − Y ∗λ0) δ
(
ω −∆2f − EF

λ

)
(C.15)

SααB0A0(ω) = 2π
∑
λ

(Xλ0 − Yλ0)(X∗λ0 + Y ∗λ0) δ
(
ω −∆2f − EF

λ

)
(C.16)

Finally, by adding all contributions, all the crossed terms cancels out, along with
the contributions proportional to |Yλ0|2. The only remaining contributions are the |Xλ0|2

terms, so we can write the final expression of the spin structure factor as:

Sαα(q = 0, ω) = 8π
∑
λ

|Xλ0|2δ
(
ω −∆2f − EF

λ

)
. (C.17)

This expression can be easily generalized at finite temperature, as presented in Eq.(3.16).
As a final note, we drop the 8π normalization, for the sake of simplicity.
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APPENDIX D – DETAILS ON THE POWER LAW EXTRACTION

A key result of the current work is the presence of a power-law DOS at low-energies.
To extract the power-law exponent, we employ two complementary methods. First, we plot
the curves ρ(E) ∼ E−α on a log-log scale and get α as the slope of the linear regression to
the DOS curve. As an alternative approach, we extract α directly from the spectrum.160

We assume that the energy histogram, DOS, displays a power-law form in the
interval 0 < E < Emax, with Emax the upper cutoff energy below which the power-law
holds. Given a data set containing Nob observations E ≤ Emax, we would like to know the
value of α for the power-law model that is most likely to have generated this data:160

α = 1−
〈

ln
(
Emax

E

)〉−1

E≤Emax

, (D.1)

with the statistical error given by σα = α/
√
Nob. However, the greatest source of uncertainty

is the definition of Emax. A simple way to find its optimal value is to plot α×Emax, picking
Emax within an energy range where α is reasonably stable.

This method has proved to be quite satisfactory for our data. As an example, we
show the exponent extraction for the random-flux sector with bond disorder, Fig.39(a).
The values of α obtained from Eq. (D.1) fit well the DOS at low energy as shown in Fig.
39(b).

Figure 39 – (a) Power-law exponent α as function of the upper cutoff energy below which
the power-law holds Emax. We consider the random-flux sector and bond
disorder with κ = K ′3 = 0. The dashed lines indicate the optimal values of α
and Emax. (b) DOS in a log-log scale at low energies. The dot-dashed lines
are power-law fits, ρ(E) ∼ E−α, to the data with the exponent α extracted in
(a). The fits are shifted with respect to the DOS curves for the sake of clarity.
We considered L = 30 and 3× 103 realizations of disorder.

Source: By the author.
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