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ABSTRACT

FIUSA, G. Geometric bounds for approximate quantum error correction and a
few words about holography. 2022. 126p. Dissertation (Master in Science) - Instituto
de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

In this work, we investigate some applications of quantum information theory motivated
by high-energy physics. There is strong evidence suggesting that entanglement is deeply
connected with the geometry of spacetime, which leads to surprising applications of
quantum information theory in the AdS/CFT correspondence and holography. We start by
reviewing the fundamental concepts of the AdS/CFT correspondence which play a key role
in bulk-boundary reconstruction, in particular, we explore some features which suggest that
one must interpret the encoding of information in the correspondence as a quantum error-
correcting code. We discuss the fundamentals of error correction, exploring the formalisms
of operator algebra and stabilizer codes. Then, we establish the concrete connection
between the two main concepts by showing examples of quantum error-correcting codes
that serve as a toy model for AdS/CFT. We illustrate how the 3-qutrit code and the
HaPPY code can be powerful tools to explore the correspondence analytically and to
solve apparent paradoxes. Following recent results, using quantum error correction, that
suggest an intrinsic incompatibility of quantum gravity with global symmetries, we explore
approximate error-correcting codes and asymmetric codes as a way to better understand
the consequences in a quantum resource-theoretic way. Finally, we discuss our original
contribution: geometric bounds for approximate quantum error correction. We calculate
our bounds for three typical quantum channels that model the lack of exactness in
error correction, namely, dephasing, depolarizing, and amplitude damping channels. The
implications of our bounds for AdS/CFT are somewhat elusive; nonetheless, we provide a
new approach to benchmark approximations in error correction performance, which may
be of high interest for AdS/CFT and its corresponding absence of global symmetries.

Keywords: Quantum error correction. Quantum information theory. Quantum resource

theory. AdS/CFT.





RESUMO

FIUSA, G. Desigualdades geométricas para correção de erros aproximada e
algumas palavras sobre holografia. 2022. 126p. Dissertação (Mestrado em
Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Neste trabalho, investigamos algumas aplicações de teoria de informação quântica moti-
vadas pela física de altas energias. Há fortes evidências apontando uma profunda conexão
entre emaranhamento e a geometria do espaço-tempo, nos levando à aplicações surpreen-
dentes de teoria de informação quântica na correspondência AdS/CFT e em holografia.
Iniciamos com uma revisão dos conceitos fundamentais acerca da correspondência AdS/CFT
no tocante à reconstrução bulk-boundary, em particular, exploramos alguns aspectos que
sugerem que a codificação de informação na correspondência é análoga ao que ocorre
em códigos de correção de erros. Discutimos os fundamentos de correção de erros, explo-
rando os formalismos de álgebra de operadores e códigos de estabilizadores. Em seguida,
estabelecemos a relação concreta entre as duas ideias principais através de exemplos de
códigos de correção de erros que servem de toy model para AdS/CFT. Ilustramos como o
código de 3-qutrits e o código HaPPY podem ser ferramentas poderosas para explorar a
correspondência de forma analítica e para solucionar aparentes paradoxos. Seguindo resul-
tados recentes, usando de correção de erros, que sugerem uma incompatibilidade intrínseca
entre gravitação quântica e simetrias globais, exploramos correção de erros aproximada
e códigos com assimetria como uma forma de melhor entender as consequências sob o
ponto de vista de teorias quânticas de recursos. Por fim, discutimos nossa contribuição
original: desigualdades geométricas para correção de erros aproximada. Calculamos nossas
desigualdades para três canais quânticos típicos que modelam a falta de exatidão em
correção de erros, a saber, dephasing, depolarizing, e amplitude damping. As implicações
de nossas desigualdades para AdS/CFT permanecem difusas; de todo modo, fornecemos
uma nova abordagem para classificar o desempenho em códigos aproximados, o que pode
ser de elevado interesse para AdS/CFT e ausência de simetrias globais.

Palavras-chave: Correção de erros. Teoria de informação quântica. Teoria quântica de
recursos. AdS/CFT.
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1 INTRODUCTION AND MOTIVATION

“Porque é assim que é, renascendo das cinzas

Firme e forte, guerreiro de fé.”

Mano Brown

The quest for a unified description of Nature remains the biggest challenge for fun-

damental physics. All possible interactions are classified into four fundamental interactions

that govern the Universe. We have two very good theories that describe those fundamental

interactions, namely, the Standard Model (SM) of particle physics (1) which consists

of renormalizable quantum field theories describing electromagnetism, weak interactions

and strong interactions; and General Relativity (GR) which describes gravity. (2, 3) The

catch is that those two theories describe different objects on different scales; GR is neither

quantum nor renormalizable, and the SM deals with scales in which gravity is negligible.

Therefore, unifying those two theories under the same framework is a tall task.

The unification of all fundamental interactions has been restlessly pursued by

theoretical physicists over the past eighty years. In fact, even Albert Einstein himself

dedicated his later life to this mission; albeit unsuccessful, Einstein (once more) laid down

the path in which hordes of brilliant physicists would stroll. From the point of view of

understanding Nature in its most intimate settings, it is obvious why a unified description

of every possible interaction is of immense importance; nonetheless, there is more to it

than simply seeking beauty. There are extreme phenomena in our Universe that we cannot

describe with the theories we currently have, hence there are practical reasons why we

need a unified description. In particular, the two honorable mentions are the beginning of

the Universe (the Big Bang and early Universe cosmology) and the interior of black holes.

Among the candidates for the unification, there is a wonderful theory known as

string theory (4–7) which, funnily enough, was originally developed as a way to describe

strong interactions as one could model the flux tubes between quarks as a string of

gluon energy density between the quark pairs. (8–11) Things took a wild turn when it

was discovered in the ’70s that in the spectra of this theory there was a spin−2 boson,

affectionately named the “graviton”. With a few modifications, string theory could actually
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be used to describe gravity! (12,13) Yet another chapter in the history of unification was

written throughout the ’80s when it was discovered that string theory could be used as a

single framework to describe all particles and their interactions. (14–17) The pinnacle of

string theory came from an unpretentious conjecture: motivated by the pioneer study of

black hole entropy and microstates (18, 19), it was argued that a consistent unification of

quantum gravity must be described by an effective theory with one less dimension. (20,21)

The first concrete example of this conjecture was provided by Maldacena (22), culminating

in the exorbitantly famous AdS/CFT correspondence1, which consists of a correspondence

between two different physical theories, in particular, one string theory and one quantum

field theory. The stunning consequence is the fact that a theory that possesses gravity

can be described by a pure quantum field theory, in a sense, it suggests that gravity is an

emergent phenomenon from quantum degrees of freedom.

Up to this day, the AdS/CFT correspondence is the best description2 we have for

a unified theory of quantum gravity; although its general validity is still a conjecture,

there are several pieces of evidences in its favor. (23–26) In particular, it transcended

its original context of string theory and unification, as there are several applications of

AdS/CFT in various areas of physics. By fate’s sense of humor or divine inspiration, Ryu

and Takayanagi realized that entropy equals gravity in the context of the correspondence.

(27, 28) This brilliant insight opened the floodgates for other ideas concerning information

theory and quantum gravity. In particular, it took seventeen years for exceptionally clever

physicists to realize that the way information is encoded in the AdS/CFT correspondence

is precisely the way information is encoded in quantum error correction. (29–32) This

happy and fortuitous insight is the catalyst of the present work.

Taking a complete turnaround, the history of quantum error correction begins from

a much more practical standpoint. Quantum computers will promote a revolution just like

the advent of classical computers did, and thus are among the most awaited technological

advances of the present century. (33) The problem, however, is that quantum computers

1 The term “exorbitantly famous” is indeed appropriate. As of the time of writing, Maldacena’s
original paper has over 22000 citations according to the google scholar database.

2 The reader may think that this affirmation is somewhat pretentious. There are several reasons
why AdS/CFT is the current leading theory in the race for a complete theory of quantum
gravity. On top of that, string theorists are not particularly known for their humbleness, had
the author been an actual string theorist, he would have said that AdS/CFT is the only
consistent theory of quantum gravity.
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are difficult beasts to tame, as they strongly interact with the environment, losing the

stored information and having unreliable computations. (34,35) Given this context, the

theory of quantum error correction begins with the search for ways to protect information

stored and transmitted by quantum computers, this protection is accomplished through the

exploitation of redundancy. Given a piece of information, one seeks to store it redundantly

such that if an error occurs or some information is lost, the damaged piece is precisely the

redundant information; this way, the actual information stays pristine. (36–39)

As we shall see, the redundancy exploited in quantum error correction is somehow

a built-in feature of the AdS/CFT correspondence. The fact that quantum error correction

seems to be the way the Universe found to encode information in quantum gravity is

nothing short of a blissful miracle. Furthermore, the use of error correction methods in

AdS/CFT has proven over and over to be very fruitful in unveiling its layers and secrets.

A recent motivating example is the work by Harlow and Ooguri (40, 41) where it was

shown, using quantum error correction methods, that the AdS/CFT correspondence is

incompatible with global symmetries. That is quite the affirmation.

Motivated by this keen result, we reinterpret this statement under the light of

another famous result in error correction theory, the so-called Eastin-Knill theorem,

which states that quantum error-correcting codes cannot simultaneously recover errors

exactly, have continuous symmetries and a universal set of transversal gates. (42) In this

sense, global symmetries are not quite “incompatible” but rather “in conflict” with the

correspondence. This reinterpretation is supported and enhanced by the introduction of

quantum resource theories (43), which is a very general and powerful framework to deal

with quantum phenomena; employed in our context to quantify “approximate” quantum

error correction and “approximate symmetries”. (44–51) In our original contribution, we

propose a distance measure based on sub- and super-fidelities (52, 53) to bound and

quantify approximations in lack of exact error correction. The great advantage of our

proposal is the fact that it is significantly easier to calculate than the standard approach.

On top of that, it also defines a genuine metric and thus may be employed to explore

geometric properties.

The present work is inserted in this broad context. We studied and employed quan-

tum error correction methods and concepts motivated by the AdS/CFT correspondence

and quantum resource theories. As a twist of fate, our main result (the proposal and



18

calculation of distance measures based on sub- and super-fidelity) deals with “pure” error

correction, as its consequences for AdS/CFT remain somewhat elusive. Nonetheless, our

work sheds light on this incredibly active and perhaps exotic relation: information encoding

in quantum computers and Nature in its most fundamental constituents.

This dissertation is the result of sixteen months of work (including a global pan-

demic and coursework) and is organized as follows: in Chapter 2, we present a review

of the pertinent literature on the AdS/CFT correspondence, in particular, we discuss

reconstruction procedures which point out a redundancy structure just like in quantum

error correction. In Chapter 3, we present the fundamentals of error correction and its

main approaches, the idea is to rigorously provide substance to carry on the connections

with holography and AdS/CFT. In Chapter 4, we establish those connections by discussing

the quintessential Ryu-Takayanagi result, and the quantum error-correcting codes that

play a role in holography. We also discuss a recent result pointing out inconsistencies

between symmetries and AdS/CFT and use those to motivate the introduction of quantum

resource theories. In Chapter 5, we introduce quantum resource theories with particular

attention to the asymmetry resource theory, and how it can be used to systematically

approach the aforementioned inconsistency through the ideas of approximate quantum

error-correcting codes and asymmetric codes. In the end, we discuss our original proposal

of the distance measure based on sub- and super-fidelities, point out that they generate a

metric and thus can be used to study geometry, and obtain the closed-form expression

for common quantum channels that arise in the theory of error correction. Moreover, we

calculate those bounds numerically and discuss the obtained results. In Chapter 6, we

conclude giving a brief overview of the content of this dissertation and point out further

work.
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2 THE WORLD AS A HOLOGRAM: MEET THE ADS/CFT CORRESPONDENCE

“We don’t know how we can

Decode this anagram

We have lost our true selves

Within this hologram

Nothing is what it seems

Our soul is lost.”

Epica: A Profound Understanding of Reality

In this chapter, we review the AdS/CFT correspondence and its main properties

to provide solid ground in which we will develop its connections with quantum error

correction. This is done through error-correcting toy models which are complex enough to

capture meaningful physics but simple enough to be solvable. In particular, we talk about

two important reconstruction procedures, known as global and AdS-Rindler reconstruction.

In the end, we mention two apparent “paradoxes” that arise from the AdS/CFT descrip-

tion, rephrase them as puzzles and use them to motivate the quantum error correction

interpretation of AdS/CFT.

2.1 Motivating the correspondence

The idea of holographic principle (and holography) began in the ’70s with the works

of S. Hawking and J. Bekenstein. They showed that black holes are thermodynamical

objects that possess a well-defined entropy (18,19), given by

SBH = 4GM2

ℏc
= c3A

4ℏG ∼ A (2.1)

where A denotes the area of the black hole event horizon1. The remarkable property of the

black hole entropy is that it scales with the area of the horizon, rather than the volume, as

expected for a usual thermodynamical system. This way, the number of microstates of a

black hole grows with its area, which means that those microstates are somehow encoded

into the horizon area. That is the first realization of a so-called holographic principle.
1 The constants are denoted as usual: M is the mass of the black hole, G is Newton’s constant,

c is the speed of light and ℏ is Planck’s constant. Unless stated otherwise, we will take all of
those constants equal to one throughout the text.
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Motivated by this idea, L. Susskind and G. ’t Hooft conjectured (20, 21) that

a quantum theory of gravity must obey the holographic principle, that is, there must

be an effective field theory, living in a spacetime with one less spatial dimension than

the spacetime where the quantum gravity theory lives, that describes the same physical

phenomena. Although revolutionary, the ideas of Susskind and ’t Hooft were far from

being concrete, as they could not provide an example or how this holographic principle

would manifest in an actual theory.

A concrete manifestation of the holographic principle was provided a few years

later by Maldacena (22), he showed that a type IIB superstring theory compactified in

five spacetime dimensions (on an Anti de-Sitter background) as AdS5 × S5, which is a

theory of quantum gravity, is equivalent in the large N limit (where this theory is well

approximated by semiclassical gravity), to the N = 4 super Yang-Mills theory, which

is a supersymmetric conformal field theory in four spacetime dimensions. Apart from

providing a concrete example of the holographic principle, Maldacena also conjectured

that this duality relation between a quantum theory of gravity on an Anti de-Sitter (AdS)

background and a conformal field theory (CFT) is a generic property, and should be valid

for various theories.

Those ideas evolved into an incredibly active area of research, and although it is

still a conjecture, there is plenty of evidence in favor of its validity (for a review of the

main arguments, we refer to (23–26)) and applications in a wide variety of phenomena,

from heavy-ion collisions (54), quark-gluon plasma (55), and superconductivity (56) to

fluid dynamics. (57)

2.2 Anti de-Sitter spacetimes, the left side

In this section, we describe the basic ideas behind Anti de-Sitter spacetimes and

mention the important results for AdS/CFT, particularly in the context of symmetries.

For details of the derivations presented in this section, we refer to. (2, 3)

Einstein’s equation is the apex of General Relativity (GR), it is a tensor equation

that describes how energy and matter curve spacetime through precise geometric definitions.

It is given by

Rµν − 1
2Rgµν = 8πGTµν , (2.2)
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where Rµν denotes the Ricci tensor, R is the scalar curvature, gµν is the metric tensor, G

is Newton’s constant and Tµν is the energy-momentum tensor. The first claim is that AdS

spacetimes are solutions of Einstein’s equations. To show that, consider the Einstein-Hilbert

action (in arbitrary d spatial dimensions) with a cosmological constant

IEH = 1
16πGd+1

∫ √
−g(R − 2Λ)dd+1x, (2.3)

variations of the action with respect to the metric yields

δIEH

δgµν
= 0 → Rµν − 1

2Rgµν + Λgµν = 0 (2.4)

by contracting the result (2.4) with the metric tensor gµν , we arrive at the scalar curvature

R = 2(d+ 1)
d− 1 Λ. (2.5)

The scalar curvature is already enough to characterize the solutions. When R = 0, we

recover flat spacetime2, when R > 0, we obtain a de-Sitter solution and when R < 0, we

obtain an Anti de-Sitter solution, which is the solution we are interested in. A solution to

Einstein’s equation is said to be maximally symmetric if and only if the Riemann tensor

obeys

Rµναβ ∝ gµαgνβ − gµβgνα.

The AdS solution is indeed a maximally symmetric solution. (3)

There are two convenient coordinate systems for AdS spacetimes, the first one is

known as Poincaré coordinates (t, r, x1, ..., xd−2) and the line element is

ds2 = r2

ℓ2

(
−dt2 +

d−2∑
i

dx2
i

)
+ ℓ2

r2dr
2 (2.6)

where r ∈ [0,∞), t ∈ (−∞,+∞), and ℓ denotes the AdS radius; one drawback of this

choice of coordinates is that it does not cover the entire manifold. The second convenient

coordinate system is known as global coordinates3 (t, r,Ω1, ...,Ωd−2) and its line element

is given by

ds2 = −
(

1 + r2

ℓ2

)
dt2 + dr2(

1 + r2

ℓ2

) + r2dΩ2
d−2 (2.7)

2 We use flat spacetime and Minkowski spacetime as synonyms, and whenever necessary we
adopt a mostly plus convention to the metric signature. Einstein’s summation convention is
always implied.

3 Note that the (t, r) coordinates from Poincaré coordinates and from global coordinates are
different, we choose to denote them using the same letters for convenience. Most of the time,
global coordinates are more convenient because, unlike Poincaré coordinates, it covers the
entire manifold.
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where r ∈ [0,∞), t ∈ (−∞,+∞), and ℓ denotes the AdS radius. AdS spacetimes have two

remarkable properties which are cornerstones of the AdS/CFT correspondence. The first

one is the existence of a horizon at spatial infinity (r → ∞ in the global coordinates or

r → 0 in the Poincaré coordinates) which has topology R × Sd−1. The second property is

the fact that AdS spacetimes have SO(2, d−1) symmetry, the group acts transitively which

means that any two points are connected by a symmetry transformation and therefore the

space is homogeneous. Turns out that a (d− 1)-dimensional conformal field theory also

possesses SO(2, d− 1) symmetry, this happy coincidence indeed has profound implications

on the structure of the AdS/CFT correspondence.

2.3 Conformal Field Theories, the right side

In this section, we give a brief overview of what is a conformal field theory and

explore its symmetry properties, giving some intuition behind the relation between the

symmetries that are manifested in (d+ 1)-dimensional AdS spacetimes and d-dimensional

conformal field theories. We mention the main properties and results which are useful in

the context of AdS/CFT; for derivations and details, we refer to. (58,59)

Quantum Field Theory (QFT) is a mathematical framework used to describe

fundamental interactions of nature, and it is not an overstatement to say it is one of the

most accurate frameworks physicists have ever developed (60). QFTs work in accordance

with Special Relativity (SR) and thus are symmetric under Poincaré transformations4.

Conformal Field Theory (CFT) is a QFT that, in addition to Poincaré symmetry,

also possesses conformal symmetry, which can be divided into two categories, special

conformal transformations and dilations which are described by, respectively,

x′µ = xµ + aµx2

1 + a2x2 + 2aνxν
, x′µ = λxµ, (2.8)

where a2 = aµa
µ, aµ is a four-vector and λ is some parameter.

The symmetry group of a d-dimensional CFT is SO(2, d), the Lie algebra associated

with the group have generators which can be classified as rotations Jµν = i(xµ∂ν − xν∂µ),

translations Pµ = −i∂µ, dilations D = −ixµ∂µ, and special conformal transformations

Kµ = −2xµD + x2Pµ.
4 Poincaré transformations in the context of Special Relavitiy have nothing to do with the

Poincaré coordinates of AdS spacetimes we saw in the last section.
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From symmetry considerations, we see that there is already a relation between the

two sides of the correspondence. As we have seen, AdSd+1 is a homogeneous space as every

point can be mapped to another through symmetry transformations. On distance scales

which are much smaller than the AdS radius ℓ, the AdS space looks like a flat space R1,d,

and thus the isometries compose d + 1 translations, d(d − 1)/2 rotations and d boosts.

These symmetry transformations make up SO(2, d), which is the isometry group of AdSd+1.

However, as we have seen through the generators of the conformal algebra, this is also the

symmetry of the conformal group in d-dimensions. This way, from the CFT point of view,

the isometries of the AdS space are conformal symmetries. The extra dimension of the

AdS space is typically associated with scales in the CFT side (61), as conformal symmetry

is manifested as a symmetry of scales. On the AdS side, it is manifested as a symmetry

between different radial slices of the geometry.

In conformal field theories, one is typically interested in two objects of the theory,

namely, primary operators and correlation functions. Primary operators are local operators

defined as the lowest dimension operators in a given representation of the conformal

algebra, however, the practical reason why those are interesting is their transformation

properties: eiDξO(x)e−iDξ = eξ∆O(eξx), where D is the generator of dilations, ∆ is the

scaling dimension of the operator O(x) and ξ is some parameter. For the remaining of

this work, whenever a CFT operator is considered, it is taken to be a primary operator.

Correlation functions are the main object of study in quantum field theories, because a

number of important observables can be cast as sums of correlation functions, such as

scattering amplitudes and propagators. (60,62)

In CFTs, correlation functions are heavily constrained from the symmetry properties

of the theory, as the overall result must be symmetric under rotations, translations, dilations,

and special conformal transformations. For example, the two-point correlation function is

given by

⟨O1(x1)O2(x2)⟩ = k12

|x1 − x2|∆1+∆2
, (2.9)

where k12 is some constant, ∆1 and ∆2 are the scaling dimension of the operators O1 and

O2, respectively. Higher-point correlation functions have the same form as equation (2.9).

We will not reproduce higher-point functions because the notation and indexes get rather

cumbersome, the idea was to illustrate how those correlation functions behave.
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2.4 A precise correspondence

After a brief review of the properties and symmetries of AdS spacetimes and CFTs,

we are ready to present a more precise statement about the AdS/CFT correspondence and

to discuss two procedures known as global reconstruction and AdS-Rindler reconstruction.

Those reconstruction protocols will be of utmost importance when we rephrase and explore

AdS/CFT in the language of quantum error correction. From now on, we choose to work

with units such that the AdS radius ℓ is equal to one unless explicitly said otherwise.

The claim is (30): any conformal field theory on R × Sd−1 is equivalent to a theory

of quantum gravity in an asymptotically AdSd+1 ×M spacetime, where M is a compact

manifold.

In other words, the correspondence is an equivalence between two distinct physical

theories. As such, we may view the correspondence as an isomorphism between two Hilbert

spaces

Φ : HAdS → HCF T . (2.10)

This interpretation suggests that there is a way to map observables from one side of the

correspondence to the other; indeed, although incomplete, this collection of maps which

tells us how to go from one side to the other is known as the dictionary. Exploring this

dictionary will be the main focus of the remaining of this section. From this point onward,

we will frequently refer to the theory that lives in AdS background as the bulk theory

and the CFT theory that lives in flat background as the boundary theory, for a graphical

representation, see Figure 1.

Before discussing how to relate observables from the bulk to the boundary, we

ought to discuss which conformal field theories are dual to “semiclassical” gravity theories,

where the AdS radius ℓ is much larger than the Planck length ℓP , and the string coupling

gS is small. Whenever this regime is satisfied, the gravity in the bulk theory (originally

described by superstring theory) can be approximately described by Einstein gravity. It is

hard to further enhance our dictionary without formulating a precise set of rules in which

we have a CFT dual to a semiclassical theory of gravity, since we do not know which

observables to study in a quantum theory of gravity in the scales of Planck length. We say

that a d-dimensional CFT has a semiclassical dual near the vacuum if, for a given finite

set of conformal operators {Oi}, a local effective bulk action Ieff [ϕi,Λ] and a finite set of



25

Figure 1 – Illustration of the AdS/CFT correspondence. The bulk corresponds to the
theory that lives in the AdS background, which is represented by the hyperbolic
tesselation. The boundary corresponds to the conformal field theory which lives
in a flat background. The time coordinate is also represented, for each fixed
time; there is a static time-slice of the bulk and boundary.
Source: JAHN. (63)

bulk fields {ϕi}, the following approximately holds (30):

⟨Oi1(t1)Oi2(t2)...Oin(tn)⟩CF T ≃
∫
eiIeff [ϕi,Λ]Oi1(t1)Oi2(t2)...Oin(tn) Dϕi (2.11)

where Λ is some convenient cutoff. The semiclassical limit is also associated with the large

N limit, where N denotes the parameter of the internal symmetry Lie group. As long as

equation (2.11) is satisfied, the superstring theory in the bulk is weakly coupled and can

be described classically.

One aspect which is important when considering a one-to-one relation between

operators on the AdS side and the CFT side is locality. A rigorous set of rules describing

the mechanism behind the emergence of bulk locality remains elusive, however, locality

near the boundary is manifested through the following relation (64,65)

lim
r→∞

r∆ϕ(r, x) = O(x), (2.12)

since the CFT respects locality (it is a quantum field theory afterall), this relation manifestly

respects locality in the x directions. However, the radial direction is more complicated,
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when we naively consider locality in the radial direction and try to relate bulk operators

with boundary operators, we run into the so-called “radial commutativity puzzle”. For

now, we limit our discussion to methods of relating bulk operators to boundary operators,

later on, this puzzle will play an important role.

One concrete approach to relate fields in the AdS background with operators in

the CFT, not necessarily in the limit where a point in the bulk approaches the boundary,

is due to Witten (66), where the claim is that the partition functions are equivalent

Zbulk[ϕ] ≡ Zboundary[O]. (2.13)

Taking the boundary value of a bulk field ϕ to be ϕ̃, the bulk configuration of ϕ may be

determined by a boundary value problem from a given ϕ̃ according to the prescription

(2.12). Furthermore, the bulk action then follows from

Zbulk[ϕ] ≡ Zbulk[ϕ̃] =
〈

exp
∫
ϕ̃O ddx

〉
. (2.14)

Interestingly, the bulk partition function (after some algebraic work) from equation (2.14)

provides the relation ∆(∆ − d) = m2 between the scaling dimension ∆ of the conformal

operator O, the mass m of the scalar bulk field ϕ and the spacetime dimension d. This

relation serves not only as evidence, where it explicitly relates quantities associated with

asymptotic bulk fields and conformal operators as well as a consistency condition that

must be satisfied by the two sides of the correspondence.

2.5 Global reconstruction

The first reconstruction procedure we explore is known as global AdS reconstruc-

tion5, which was first proposed in (67) and enhanced in. (68, 69) We work in global

coordinates (2.7) in the AdS space. The idea is to describe a formula for the bulk operator

ϕ(x) in the boundary in terms of non-local operators in the CFT as if the bulk operator is

“smeared out” in the boundary. In practice, one construct operators in the CFT which

obey the equations of motion of the bulk with the boundary conditions given by equation

(2.12). The first step is to solve the bulk equations of motion for a scalar field ϕ(x) in the

curved background:

∇2ϕ = 1√
−g

∂µ(
√

−ggµν∂νϕ) = m2ϕ. (2.15)

5 The global reconstruction procedure is sometimes called the HKLL procedure, where the
letters are an acronym for the names of the authors.
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with the boundary condition given by equation (2.12). The solution for the equations of

motion can be written as6

ϕ(x) =
∫
R×Sd−1

K(x;Y )O(Y ) dY, (2.16)

where the integration is carried over the conformal boundary, and the function K(x;Y ) is

known as the smearing function, it essentially links the boundary operator with the bulk

field in a way that it obeys the bulk equations of motion and recovers precisely equation

(2.12) as we take x going to the boundary. For details of this derivation, see Appendix

A. This boundary-value problem is not a usual one, the reason is that the existence of a

solution and its uniqueness is not guaranteed7. In a special case (pure AdS), one can find

an explicit solution for the smearing function, the procedure, however, is quite complicated

and out of the scope of this text, for that, we refer to the aforementioned papers where

this method was developed. (67–69)

The smearing function can be chosen in a way that it only has support when the

separation between the bulk coordinate x and the boundary coordinate Y is spacelike, in

other words, when x and Y are in the same Cauchy time-slice. For the case of AdS3, we

refer to Figure 2, where the point x is represented by an integral over the region that is

shaded green and Σ represents the Cauchy time-slice in which x belongs.

One subtlety associated with this reconstruction process is the fact that as long

as we have the representation (2.16) which connects bulk fields with boundary operators,

we may rewrite the operators in the boundary in a single Cauchy time-slice Σ using the

Heisenberg picture with the Hamiltonian that characterizes the CFT. (29) An interesting

but somewhat problematic property that arises from this procedure is that if one takes

a bulk field close to the boundary, the corresponding single-time CFT representation

will still involve operators with support on the entire time-slice Σ. The reason why this

is indeed a flaw will be made clear later, for now, it suffices to say that this motivates

another reconstruction procedure which has a CFT representation of the bulk fields whose

boundary support gets smaller as the bulk field gets closer to the boundary. This new

procedure is called “AdS-Rindler” reconstruction.

6 From now on, lowercase letters represent bulk coordinates and uppercase letters represent
boundary coordinates.

7 In fact, that is an interesting open problem for mathematicians interested in partial differential
equations.
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Figure 2 – Global reconstruction procedure in AdS3. The integration is carried over the
shaded green region and the CFT representation of a bulk field in x has support
over the whole boundary of the time-slice Σ.
Source: ALMHEIRI. (29)

2.6 AdS-Rindler reconstruction

In the global reconstruction picture, a bulk field ϕ(x) has a CFT representation

which has support on an entire boundary time-slice Σ. In this section, we explore the

AdS-Rindler reconstruction procedure, where the spatial support of a CFT representation

is restricted to some subregion A of a boundary time-slice. The AdS-Rindler is the first

manifestation we encounter of the principle of subregion duality (70, 71), that is, a spatial

subregion of the boundary CFT which has enough information to completely determine a

corresponding subregion of the bulk.

The mechanism in which the reconstruction is based is the same for the global case,

we construct operators in the CFT which obey the equations of motion of the bulk with the

boundary conditions set by equation (2.12). The difference is that instead of integrating

over the whole conformal boundary, we restrict our integration to a region D[A], called

the domain of dependence of A, which is defined as the set of points in the boundary in

which if a causal curve passes through any of those points it also must intersect A. This
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amounts to solving

ϕ(x) =
∫

D[A]
K̃(x;Y )O(Y )dY (2.17)

where K̃(x;Y ) is a smearing function8. For the AdS3 case, the procedure is illustrated in

Figure 3, where the region of integration of equation (2.17), i.e. the domain of dependence

D[A], is shaded green.

For any boundary region A, one can consider its bulk causal future J +[A], which

is defined as the set of causally connected bulk points to a region A, analogously, one

defines the bulk causal past J −[A]. By “causally connected” we mean points that can be

connected to (or from) region A by bulk causal curves, which are curves whose tangent

vector is null or timelike at all points. The causal wedge of a region A (72,73) is defined as

the intersection between the region’s bulk causal future and past, that is,

WC [A] := J +[A] ∩ J −[A]. (2.18)

The causal wedge of a region A is illustrated in Figure 3 as the region between D[A] (the

green shaded region) and the dotted lines, what determines the endpoint of the dotted

lines is a surface (or a geodesic in the case of AdS3) called the Ryu-Takayanagi surface,

which we shall discuss in Chapter 4. The claim is that the construction of representations

in the boundary of the bulk fields can be implemented purely within the causal wedge,

that is, for any bulk field ϕ(x) with x ∈ WC [A], we obtain a representation of ϕ(x) in the

boundary region A through equation (2.17), with the integration carried over D[A] instead

of the whole conformal boundary. It is now clear that the AdS-Rindler reconstruction has

the property that only a small boundary region A localized close to x is needed to obtain

the CFT representation of ϕ(x).

AdS-Rindler reconstruction satisfies the property we were looking for in a recon-

struction procedure, namely that the boundary support gets smaller as the bulk field gets

closer to the boundary. This property, which motivated the procedure in the first place,

has a staggering feature: a given bulk field operator ϕ(x) lies in many different causal

wedges and thus has different boundary representations according to which causal wedge

one chooses. In particular, one pathological case is such that one chooses three equal causal

wedges in a way that the whole boundary is covered, however, a bulk field in the center
8 The smearing function of the global reconstruction is, in general, different from the smearing

function of the AdS-Rindler reconstruction, hence why we denote the latter using a tilde.
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Figure 3 – AdS-Rindler reconstruction procedure in AdS3. The integration is carried over
the shaded green region, which represents the domain of dependence of region
A. The causal wedge WC [A] of the region A lies between the dotted lines and
D[A]. As the point x gets closer to the boundary, only a small region A is
needed to obtain the boundary representation of a bulk field localized in x.
Source: Adapted from ALMHEIRI. (29)

of the AdS space cannot be reconstructed in any of the three wedges. It is clear that if

we have information about the entire boundary we should be able to obtain a boundary

representation of any bulk field, according to the global and AdS-Rindler reconstruction

protocols. This apparent paradox is known as the “ABC puzzle” and has an enormous

impact when we reinterpret the AdS/CFT correspondence in the language of quantum

error correction later on.

2.7 Two puzzles to be solved

In the previous sections, as we described the properties of AdS/CFT and the recon-

struction methods, we stumbled across two features that are in apparent contradiction with

the expected properties. We called the first contradictory feature the “radial commutativity

puzzle” and the second one the “ABC puzzle”. We will discuss them in detail and use

them as motivation to reinterpret AdS/CFT in the language of quantum error correction.

In advance, although those puzzles are apparently paradoxical, they present no problem in

the description of AdS/CFT, they are just unexpected features that can be reinterpreted
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under the light of quantum error correction.

2.7.1 The radial commutativity puzzle

Before discussing the puzzle in our setting, consider first a quantum field theory

without gravity. In a usual QFT, we have causality, which means that we cannot instan-

taneously influence physical phenomena which is spacelike separated from where we are.

Causality is enforced by locality, as physical phenomena in a QFT are always local. The

statement of locality is: if we take any two operators O1(X) and O2(Y ) in the QFT, as

long as they are spacelike separated, that is, X2 − Y 2 > 0, they commute, which means

that [O1(X),O2(Y )] = 0.

We expect that this statement also holds for the bulk theory in AdS/CFT, because

the bulk is well described by quantum field theory weakly coupled to semiclassical gravity,

and therefore causality holds. Indeed, let us consider that this property is present in the

bulk. Then, we have an operator ϕ(x) in the bulk and a local boundary operator O(Y )

which are in the same time-slice Σ, this setup is illustrated in Figure 4.

Figure 4 – Schematic representation of AdS/CFT where we have a bulk operator ϕ(x)
and a local boundary operator O(Y ) in the same time-slice Σ (shaded light
blue). The time coordinate points upwards, for each fixed time value, we have
a time-slice similar to Σ.
Source: By the author.

Given that causality holds in the bulk, the statement becomes: if a bulk operator

ϕ(x) and a local boundary operator O(Y ) are in the same time-slice Σ, they are spacelike
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separated in the radial direction and x2 − Y 2 > 0, furthermore, from causality, they

must commute, which means that [ϕ(x),O(Y )] = 0. In this case, when we consider the

commutation relation between ϕ(x) and O(Y ), we should think of ϕ(x) as a highly non-

local operator in the CFT, whose relation to the bulk is given by the boundary conditions

(2.12) and the global/AdS-Rindler reconstruction equations (2.16, 2.17). This way, the

commutation relation statement is actually a statement purely about the CFT, which

says that a non-local and complicated CFT operator ϕ(x) commutes with a local operator

O(Y ) of the CFT.

However, the statement presented in the previous paragraph contradicts a very

important feature of any QFT, the so-called time-slice axiom (74), which states, using

Schur’s lemma, that any operator commuting with all local operators at a fixed time must

be trivial, i.e, a complex number proportional to the identity9. As the boundary CFT

is indeed a quantum field theory, it must satisfy the time-slice axiom, and therefore the

causality statement cannot be true.

There seems to be a way to guarantee that causality and the time-slice axiom are

both satisfied. The solution is trivial, literally. If every bulk operator ϕ(x) is the identity,

no problem in the commutation relations arises from causality, and it satisfies the time-slice

axiom. The problem is physical: if that were the case, why would holography be interesting

in the first place? There is a way to circumvent this issue, the actual solution of this puzzle

lies in the interpretation that the structure of AdS/CFT is a quantum error-correcting

code. For now, we claim that this puzzle is not a problem as is it perfectly solvable within

the context of quantum error correction. (29, 30) We will explore this consideration in

Chapter 4.

2.7.2 The ABC puzzle

The ABC puzzle is another apparently paradoxical feature that arose when we

discussed the AdS-Rindler reconstruction. The idea is to consider a single fixed time-slice

with a bulk operator ϕ(x) in the center and to divide the boundary into three equal regions,

A, B, and C; each region has a corresponding causal wedge WC [A], WC [B], and WC [C].

9 A more concrete way to see this is to consider a n-spin chain in a one-dimensional manifold,
we may consider the set of products of Pauli operators {1, X, Y, Z}⊗n, this set form a basis
of all operators in the Hilbert space of the spin chain, therefore, any operator commuting
with all these products must be proportional to the identity.
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We show the three regions and their respective causal wedges in Figure 5.

Figure 5 – Fixed time-slice where the boundary is divided in three equal regions, labelled
A, B and C. Each region has its respective causal wedge. The bulk operator
ϕ(x) in the center does not belong to any causal wedge, this is the core of the
ABC puzzle.
Source: Adapted from HARLOW. (32)

The ABC puzzle arises from the fact that the bulk operator ϕ(x) does not lie

within any of the three causal wedges from the boundary regions. As we have seen in the

discussion about AdS-Rindler, a necessary condition to obtain a CFT representation of

a bulk field in a given boundary region is that the bulk field must lie within the causal

wedge of that boundary region. This is not the case in our setup.

This means that the bulk field ϕ(x) has no representation in A, B or C, however,

if we take the union of any two regions, for instance, A ∪ B, we have a situation where

A ∪B = C̄, where C̄ denotes the complement of C, in this case, the causal wedge of C̄ is

the entire time-slice excluding the causal wedge of C, therefore ϕ(x) ∈ WC [A∪B] and the

bulk field has a CFT representation in A ∪B.

The puzzling feature of this argument is that we can take the union of any two

regions and the bulk field ϕ(x) will always be in the causal wedge of the union, this means

that we could obtain three different representations in the boundary, ϕA∪B, ϕB∪C , and ϕC∪A

of the same bulk operator. How are we supposed to use the AdS-Rindler reconstruction to

obtain a CFT representation of a bulk operator if we obtain different operators depending

on what we arbitrarily call region A, B, and C? Another question one may ask concerning

the same result is where is the information that characterizes the operator in the center

located in the CFT?
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Turns out that, just like the radial commutativity puzzle, the ABC puzzle also

has a very neat solution when we rephrase those properties from AdS/CFT in terms of

quantum error correction. Once again, for now, we claim that the ABC puzzle is not a

problem within our description as it is perfectly solvable in quantum error correction

(29,30), as we will see in Chapter 4.
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3 CORRECTING QUANTUM ERRORS AND ALL THAT

“To be an Error and to be Cast out is part of God’s Design.”

William Blake

In this chapter, we review the fundamentals of quantum error correction, its main

properties and important examples. This chapter is intended to provide intuition and solid

ground in which we will connect the ideas of quantum error correction with holography

later. The theory of quantum error correction is very technical and has a large number

of definitions, theorems, and important bounds. The motivation behind this chapter is

twofold: in one hand, we lay down useful tools which will be applied later when we discuss

connections between quantum information theory and holography. On the other hand,

there is beauty to be appreciated on the formalisms themselves, in particular if one is

interested in realizability of quantum technologies. It is worth mentioning that research

in quantum error correction has been incredibly active as it is among the main research

programs of the so-called NISQ1 era. (33) For an excellent review on the contents of this

chapter, we refer to. (34,35,75–77)

3.1 An error correction primer

The key word when we think about error correction is redundancy, one way or

another, every error correction method described in this chapter will amount to redundancy.

However, what exactly do we mean by redundancy?

Imagine you want to send a message to your friend through the mail, but it is an

important message of your thoughts concerning whether or not Brazil will win its sixth

world cup this year (2022), and you do not want the message to be lost. How can you

protect the message? No matter how you look at it, the message you send cannot convey

more information than the number of bits of information it has, and every single piece

of information you want to send is important. Now, imagine you send more information

than you intended to, if some bits of information get lost in the transmission process and

you are lucky enough, the lost words may be exactly the extra ones you added. Thus, the
1 Acronym coined by John Preskill to describe “Noisy Intermediate-Scale Quantum”.
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information you wanted to convey is not lost, since the damaged part was unnecessary in

the first place. But how can you guarantee that errors will only affect the extra pieces? This

procedure is precisely what error correction intends to do: add redundancy to the message

in a way that if something goes wrong, the extra redundant information is damaged in a

way that the original message can be recovered by the receiver.

Whenever we are dealing with classical information, this procedure is simpler. Let

us say that our information is composed of classical bits, and we wish to send a single

bit 0. Instead of simply sending it, we add redundancy in our message by sending 000

instead. An error in the transmission process may happen, say one of the bits is flipped

and the received message is 100. Nonetheless, the receiver will still understand that the

original message was 0 as long as there is a majority vote previously combined. Had we not

included this redundancy, the received message could have been simply 1 and the receiver

would be completely lost. This procedure is, of course, not infallible, we could be unlucky

in a way that two bits were flipped and the message was corrupted regardless. We could

increase the amount of redundancy to make sure that this would not happen, however,

there is some cost associated with sending more and more redundancy. This intuitively

describes a sort of balance between how protected the message must be and how much

redundancy one is willing to insert.

When we are dealing with quantum information, this procedure must be revised.

The reason is that there exists a no-go theorem known as the no cloning theorem which

states that one cannot create independent and identical copies of a given quantum state.

This way, our strategy no longer works and we must think of something else. The idea is to

still use redundancy but to encode information that we wish to protect into a subspace that

carries larger amounts of information, in a way that if some error occurs, it only affects

information outside the protected subspace. The encoding procedure is done through clever

use of quantum properties, such as entanglement and coherence.

To motivate and give intuition behind the mechanism in which this encoding

procedure and how redundancy works for quantum information, we briefly talk about

Shor’s code. Later on, we will see that there exist general formalisms in which quantum

error correction is rigorously defined with a large degree of generality.
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3.1.1 A motivating example: Shor’s code

Imagine Luíza wishes to send Vitor2 a message that consists of a single qubit and

she wants to protect the message. In Shor’s code (36), the idea is to encode the localized

information of this single qubit in a non-local way on nine qubits, this way, if some error

occurs in the transmission of the message, the receiver has enough information to detect

and correct the error. In practice, we define a subspace, called the code subspace or logical

subspace3, and write its basis elements as a combination of the nine qubits as follows:

|0⟩ → |0̃⟩ = (|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩),

|1⟩ → |1̃⟩ = (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩).

Instead of sending a single qubit, Luíza sends nine qubits and once Vitor gets the message,

depending on which combination was sent, he knows whether she sent a |0̃⟩, and thus the

original message was |0⟩, or |1̃⟩ and therefore the original message was |1⟩. This procedure

loosely defines a code.

How does this code detect and correct errors? The idea is to exploit the fact that

the valid codewords all have the same terms in each block of three qubits as well as

the same sign between each block. To detect an error, it suffices to compare the signs

between the three blocks and if the qubits that belong to the same block are in the same

combination of states. For instance, let us imagine that Luíza sent a message and Vitor

got the following information:

|ψ⟩ = (|100⟩ + |011⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩),

whenever he makes a comparison between the states on the first block, he will detect that

a qubit was “flipped”. This procedure is performed through measurements of the syndrome.

Heuristically, Vitor starts by comparing the first to the second, they are different, and

since this is not true for a valid codeword, he already knows an error occurred in either

the first or the second qubit. To certify where the error occurred, he compares the first

with the third; if they are different, it means that the error is in the first one, if they are

equal, the error must be on the second qubit. Another possibility would be that an error
2 The vast majority of quantum information theorists would call them Alice and Bob. As

an act of rebellion, we have decided to change the names in honor of two names which are
important for the author.

3 Elements that belong to a code subspace are called codewords or logical elements.
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introduces some (−1) phase between the blocks of qubits, resulting in

|0̃⟩ → (|000⟩ − |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩),

|1̃⟩ → (|000⟩ + |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩).

The approach to detect such error is also to make comparisons between blocks4, as the

valid codewords all have the same sign. Vitor compares the sign of the first with the

second, and then with the third. This way, he detects in which block the phase error

occurred. Another possibility is to consider what would happen if both errors occurred

simultaneously. As they are independent, the algorithm to detect and correct would be

simply comparing the qubits within the blocks, and comparing the signs between blocks,

that is, a superposition of the previous two detection methods.

The application of the superposition principle is fundamental and can be further

generalized in our context. As we have seen, from simple errors such as “flipping” a qubit

or introducing a phase, there could be more complex errors which are a combination of

those simpler ones. The error detection and correction procedures follow the same pattern,

once we break down complicated errors into simpler ones, correcting those is enough to

recover the original message. In particular, the action of “flipping” a qubit is precisely

what happens if we acted with a σx in our basis element, introducing this phase amounts

to the action of σz, and so on. If we can define a basis for errors, every possible error that

could happen in our code is a mere combination of basis elements, once we figure out how

our code detects and corrects5 each error from the basis, our code becomes robust against

any kind of error.

A convenient basis for the errors in Shor’s code are Pauli matrices plus the identity,

that is, every error is a combination of the elements {σx, σy, σz,1}. The most general

element of the code subspace can be written as

|Ψ̃⟩ = α|0̃⟩ + β|1̃⟩ (3.1)
4 As a rule of thumb, whenever we are interested in detecting errors, we always should look

for comparative measurements, such as whether or not the signs are the same, or whether
or not the qubits are in the same superposition. Note that what we measure directly is the
syndrome, as it is a (degenerate) observable that gives us partial information. We do not
measure the code itself directly, because the superposition structure would be destroyed.

5 The “correction” part of this error-correcting code is simple as long as each error is a Pauli
matrix. As each Pauli matrix square is the identity, once the error is detected, it suffices to
apply the same Pauli matrix at the pertinent qubit.



39

where α, β ∈ R, this codeword is robust against the most general error possible

|Ψ̃⟩ → aσxi|Ψ̃⟩ + bσyj|Ψ̃⟩ + cσzk|Ψ̃⟩ + d|Ψ̃⟩. (3.2)

where a, b, c, d ∈ R and the second index in each sigma matrix denotes which qubit the

error is acting upon, e.g. σxi is a σx acting on the i-th qubit (i runs from 1 to 9).

3.1.2 A note on conventions and generalities

In this subsection, we establish notation conventions and general properties of the

types of systems we will be dealing with.

We will always consider finite dimensional Hilbert spaces denoting them by H. The

set of linear bounded operators on H is denoted by L(H), and we denote general operators

using uppercase latin letters, such as X, Y, ... ∈ L(H). The set of density operators on H

is denoted by L1(H), and we use lowercase greek letters to denote density operators, such

as ρ, σ, τ, ... ∈ L1(H). As a reminder, a density operator is Hermitian (ρ = ρ†), has trace

equals unity (trρ = 1) and is positive semi-definite (ρ ≥ 0). The last condition may also

be cast as its eigenvalues are always non-negative, i.e. are such that trρ2 = ∑
k λ

2
k ≤ 1,

the inequality saturates for pure states, as they can be written in the form ρ = |ψ⟩⟨ψ|

and thus have only one eigenvalue which is equal to unity. The quantity trρ2 is called the

purity, as it characterizes whether or not the corresponding quantum state is pure or has

statistical mixture. In particular, for d-dimensional Hilbert spaces (d is finite, which is our

case) the purity also has a lower bound given by 1/d, which is saturated for the maximally

mixed state ρ = 1d/d.

As we sketched, the overall idea of quantum error correction is to protect information

contained in the code subspace or the logical subspace, which we will denote as Hcode or

HL, depending on the context. Elements which belong to Hcode are known as codewords or

logical elements and a basis for Hcode is called a code basis or logical basis.

A code that is used to encode k qubits in n qubits will have a total of 2k codewords

that define a basis which corresponds to the basis of the original states. This result is

valid for a general case, had we considered a qudit code, we would have dk instead. Any

logical element may be written as a linear combination of elements of the logical basis.

The distance between two codewords is defined as the number of places in which they

differ. For example, the distance between codewords (1, 1, 0, 0) and (0, 1, 0, 1) is 2. The
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distance of a code is defined as the mininum distance between any two codewords. Another

way to measure the distance of the code is to consider d = 2t + 1, where t denotes the

number of errors that the code can correct.

In general, we need to address only the elements that compose an error basis. It is

convenient to consider Pauli matrices as an error basis for a large number of codes. The

weight of an operator which is a tensor product of Pauli matrices is the number of qubits

(or qudits) in which it differs from identity, e.g. an error of the form σx ⊗ 1 ⊗ 1 which acts

on three qubits has weight one since it differs from the identity in one element. The set of

all operators whose structure is a tensor product of Pauli matrices (with a possible overall

factor of −1 and ±i) constitutes a group G under multiplication. This group plays a key

role in Stabilizer quantum error correction, as we shall see.

In the previous subsection, we briefly stated that error detection methods can be

done only through comparative measurements, which is accomplished by the syndrome.

The idea is to perform a measurement that does not disturb the information in the encoded

state, but rather retrieves information about the error. The syndrome measurement is

projective, which means that it projects the error in a error basis (combination of Pauli

matrices and the identity) which then allows the correction by employing the corresponding

Pauli operators on the damaged qubits. This measurement provides information about

which error happened but does not provide information about the encoded qubit itself,

hence preserving the superposition structure.

In some error-correcting codes, it is required to have a more robust formalism. We

will be frequently dealing with three quantum channels, which are completely positive and

trace-preserving (CPTP) maps. The first quantum channel is the encoding channel, denoted

by E , which models the encoding of information in the quantum error-correcting code,

sometimes, this channel is loosely called “code”. CPTP maps admit a sum representation,

in the Schrödinger picture, given by

E(ρ) =
∑

a

KaρK
†
a (3.3)

where Ka are called Kraus operators. Those Kraus operators are typically called operation

elements in the context of error correction. In the Heisenberg picture, the corresponding

map is the Hilbert-Schmidt dual E†, which has sum representation given by

E†(ρ) =
∑

a

K†aρKa. (3.4)
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The second quantum channel often considered is the noise channel, denoted by N , which

models the action of noise in the information. Given that noise channels are CPTP maps,

they also possess a sum representation like equations (3.3, 3.4), with Kraus operators

denoted by Na. The third quantum channel that plays a key role in error correction is

called the recovery channel, which models the recovery process from the physical to the

logical subspace. Just as before, the recovery map is also a CPTP map that admits sum

decomposition, with Kraus operators denoted by Ra. For convenience, we will sometimes

denote the CPTP maps and their sum decompositions from equations (3.3) and (3.4) as

E(ρ) ∼ {Ea} and E†(ρ) ∼ {E†a}, respectively. It is also worth mentioning that sometimes

we consider the encoding channel and the noise channel to be a single quantum channel,

i.e., we consider a “redefinintion” given by E := N ◦ E .

Another concept which will be used throughout this chapter is of an unital map,

which means that

E†(1) = 1. (3.5)

In Heisenberg’s representation, the condition of an unital map is equivalent to the condition

of trace-preserving. Unless said otherwise, the quantum channels E , N , and R are taken

to be unital.

We will often consider that the Hilbert space H has a decomposition structure

given by H = (A⊗B) ⊕C, and we will say that a quantum system A ⊂ H is a subsystem

of H that plays a role in its decomposition structure. In a few circumstances, we will also

consider the systems A and B to have their own decomposition structure, which means

that the Hilbert space has an even more general decomposition as H = ⊕
k (Ak ⊗Bk) ⊕C.

Such decomposition arises when we treat operator algebras, therefore, it is pertinent to

precisely define the concept of an algebra.

Definition 3.1 (Algebra). Let F be a field (such as R,C, ...) and A be a vector space

equipped with a closed binary operation (denoted by ·). We say A is an algebra over F if,

∀ X, Y, Z ∈ A and ∀ α, β ∈ F, the following conditions are true:

(X + Y ) · Z = X · Z + Y · Z

Z · (X + Y ) = Z ·X + Z · Y

(αX) · (βY ) = αβ(X · Y ).



42

An algebra is commutative or Abelian if, ∀ X, Y ∈ A, X · Y = Y ·X. If the algebra is not

commutative, it is called non-commutative or non-Abelian.

For our intentions and purposes, we will consider the elements X, Y, Z of an algebra

to be operators and we will be talking about an algebra of operators, and we will denote it

by A. To be precise, as our Hilbert space H is finite dimensional and our algebra will be

closed under Hermitian conjugation, we will be dealing with C∗-algebras or von Neumann

algebras, however, we will refer to them simply as algebras.

3.2 Standard Quantum Error Correction

The standard model of quantum error correction (QEC) is a quantum error-

correcting code formalism developed in (38,39,78) which consists of a CPTP noise map E ,

a CPTP recovery map R and a code subspace Hcode, with E , R ∈ L(H) and Hcode ⊂ H.

We say that a code subspace is correctable with respect to E if

(R ◦ E)ρ = ρ, ∀ ρ = PCρPC ∈ Hcode, (3.6)

where PC denotes the code projector, i.e., the projector of H into Hcode.

The CPTP maps have a sum decomposition which plays an important role in

standard QEC, there is one subtlety involved in the representation, namely, that it is

non-unique. For instance, consider the Schrödinger sum representation of the noise:

E(ρ) =
∑

a

EaρE
†
a

there is another decomposition which expresses the same exact noise operator, e.g.,

E(ρ) = ∑
b FbρF

†
b . The catch is, if a noise map indeed has different representations, then

they are related through scalars uab which satisfy Fb = ∑
ab ubaEa.

Now let us explore how this formalism allows us to identify and correct errors. The

first step is to consider the conditions in which we could guarantee that we have a recovery

map R that we can act on our system after an error E occurred. In other words, we want

to know which conditions are sufficient and enough for equation (3.6).

Consider two operation elements Ea and Eb acting on different codewords |ψi⟩ and

|ψj⟩. We must be able to distinguish between those errors acting on two different codewords,

otherwise, we cannot correct them. The only way to guarantee distinguishability is if
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Ea|ψi⟩ and Eb|ψj⟩ are orthogonal, this already gives us a hint:

⟨ψi|E†aEb|ψj⟩ = 0, ∀ |ψi⟩, |ψj⟩ ∈ Hcode, ∀ a, b; i ̸= j. (3.7)

Nevertheless, this condition is not sufficient. Whenever we make a measurement to discover

the error, it must have a comparative nature and we must not learn anything about the

state itself, if we did, we would break the superposition and the entanglement structure

of the code. As a consequence, to learn about the error and the operation elements, we

should obtain a quantity that must be independent of the codeword choice. The clear

candidate is

⟨ψi|E†aEb|ψi⟩ = ⟨ψj|E†aEb|ψj⟩ = ⟨ψk|E†aEb|ψk⟩ = ... ∀ |ψℓ⟩ ∈ Hcode (3.8)

By combining the orthogonality and the codeword invariance conditions we do indeed

obtain a condition that is both sufficient and necessary. The only way to simultaneously

satisfy equations (3.7) and (3.8) is through:

⟨ψi|E†aEb|ψj⟩ = λabδij, ∀ a, b, (3.9)

or in terms of the projection operators onto the code subspace

PCE
†
aEbPC = λabPC ∀ a, b, (3.10)

where λab is a Hermitian matrix with complex entries. The conditions (3.10) are called

the Laflamme-Knill conditions. Note that they are independent of the operator sum

representation of E .

Overall, a code has a CPTP recovery map R that corrects the code subspace from

the noise map E if and only if the Laflamme-Knill conditions (3.10) are satisfied.

3.3 Noiseless subsystems

Apart from the standard model of quantum error correction, there is another

important classes of codes, namely, noiseless subsystem codes. (79–84) The way this class

of models work is somewhat different from the standard model, as the aim is to explore

the underlying algebraic structure.

The model consists of a CPTP operation E ∼ {Ea} on H, and an algebra A

generated by those operation elements. As a finite dimensional C∗-algebra, A admits an
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unique decomposition, up to unitary equivalence, as

A ≃
⊕

J

MmJ
⊗ 1nJ

(3.11)

where MmJ
represents the full (mJ ×mJ)-matrix algebra and 1nJ

is the nJ -dimensional

identity. The algebraic structure induces a natural decomposition of the Hilbert space

H =
⊕

J

AJ ⊗BJ (3.12)

where AJ represents the “noisy subsystems” with dim(AJ) = mJ and BJ represents the

“noiseless subsystems” with dim(BJ) = nJ .

The noise commutant (denoted by A′) of an algebra A is defined as the subset of

elements such that

A′ =
{
ρ ∈ L1(H) : Eρ = ρE, ∀ E ∈ {Ea, E

†
a}
}
, (3.13)

whenever E is an unital map, all states encoded in A′ are immune to errors of E , that is,

the noise commutant is equivalent to the fixed points of the map E :

A′ = fix(E) =
{
σ ∈ L1(H) : E(σ) =

∑
a

EaσE
†
a = σ

}
. (3.14)

In this sense, it would be more suitable to classify noiseless subsystem models as “quantum

error prevention” rather than quantum error correction. Anyhow, the idea is to encode

the information we wish to protect in the noiseless subsystem, this way, we guarantee that

it will be preserved regardless of noise.

3.4 Operator Algebra Quantum Error Correction

Operator Algebra Quantum Error Correction (OAQEC) is formalism of quantum

error-correcting codes developed in. (85–88) On top of allowing the construction of more

general codes, this class also recovers the standard quantum error correction and the

noiseless subsystem models. As we shall see in Chapter 4, it is also a natural language for

holographic quantum error-correcting codes.

First, we will address a question we have been postponing: Why operator algebras?

To answer this question, we will need to recover a few important concepts. In the Heisenberg

picture, an operator X ∼ {Xa} evolves according to a CP unital map E† ∼ {Ea}.

If Xa = E†(Xa), ∀ a, the statistical information regarding operator X is conserved
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by the noise. On the other hand, if X defines a standard projective measurement, i.e.

X = ∑
a paXa, X

2
a = Xa, ∀ a, then the projectors Xa linearly span the algebra they

generate, which means that the map E conserves an entire commutative algebra. In

this sense, focusing on the correction (or prevention) of sets of operators that belong to

an algebra structure is sufficient for the study of all correctable projective observables.

Furthermore, it also allows for a complete characterization of those observables.

When we consider operator quantum error correction, rather than asking for the

conditions of equation (3.6), we get a generalization where the procedure of having a

recovery CPTP map R which nullifies the action of a noise E is necessary only on a subset

of states, in other words, it suffices

(R ◦ E)(ρ⊗ σ) = ρ⊗ τ, ∀ ρ, σ, τ ∈ Hcode (3.15)

this new condition is equivalent to the correction of some special types of algebras, as we

shall see. In general, every algebra of observables induces the decomposition structure of

the Hilbert space

H =
d⊕

k=1
(Ak ⊗Bk) ⊕ C. (3.16)

Each operator X ∈ A have C in its kernel and acts irreducibly on each share Ak, while

trivially acting on Bk; this means that the corresponding algebra decomposes as

A =
d⊕

k=1
[L(Ak) ⊗ 1Bk

] ⊕ 0C (3.17)

where L(Ak) is the set of all linear and bounded operators on Ak, 1Bk
is the identity

operator on Bk. Whenever we consider the standard QEC framework, we deal with codes

whose algebra consists of a single share L(A)⊗1B, with dim(B) = 1. Whereas the Operator

QEC framework deals with subsystem codes for general subsystems A and B.

The framework of OAQEC works better with the Heisenberg picture because we

do not have to deal with the representation theory of the underlying algebra6. Evolution

is dictated through the unital CP map E† ∼ {Ea}, if for each value of a there exists an

operator Ya such that Xa = E†(Ya), then all statistical information regarding the operator

has been conserved by the noise, which means that

tr(ρXa) = tr[ρE†(Ya)] = tr[E(ρ)Ya]. (3.18)
6 It should be noted that this is a mere convenient choice, we could do exactly the same in

Schrödinger picture, however, that would require careful treatment of representation theory
which is beyond the scope of the present work. For a treatment on representation theory, see
e.g. (89)



46

To correct E , we need a CPTP recovery map R such that

R†(Xa) = Ya (3.19)

(R ◦ E)†Xa = (E† ◦ R†)Xa = Xa (3.20)

whenever the recovery map exists, we say that the operator Xa is correctable for E and is

conserved by R ◦ E . If X2
a = Xa, then R ◦ E conserves the entire Abelian algebra.

We have briefly sketched the concept of conservation of operators and algebras, we

wish to give it a more rigorous treatment. An observable X is conserved by E in Hcode if

PCE†(Xa)PC = PCXaPC , ∀ a, (3.21)

where PC is the projector of H into Hcode. More generally, an algebra A is conserved by E

for states in Hcode if

PCE†(X)PC = PCXPC , ∀ X ∈ A. (3.22)

Note that the conservation of an algebra (3.22) is a generalization of noiseless subsystems,

to see that, it suffices to choose an operator X⊗ 1 and apply the criteria (87,88). This way,

any subalgebra A of L(Hcode) for which every operator X ∈ A satisfy the conservation

criteria (3.22) is a direct sum of noiseless subsystems.

We can also consider the generalization for correctability of algebras in the context

of OAQEC. We say that an algebra A is correctable for the noise E on states in Hcode if

there exists an recovery map R such that

PC(R ◦ E)†(X)PC = PCXPC , ∀ X ∈ A. (3.23)

This condition generalizes the concept of correctability of the standard QEC model, as

in that case we were dealing with simple algebras whose structure was L(A) ⊗ 1B. This

definition of correctability is valid for any finite-dimensional algebra. In our case, the

projector PC does not necessarily belong to the algebras.

Up to this point, we have shown why it is important to take a step forward and

to consider operator algebras, and how OAQEC works in practice. However, as in the

standard QEC case, we need a set of conditions to guarantee the existence of the recovery

map R given a noise E . When we go to the operator level, the following conditions certify

whether or not a given subalgebra is conserved and correctable with respect to E .
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Theorem 3.2. A subalgebra A of L(Hcode) is conserved in all states of Hcode by the noise

E if and only if

[EaPC , X] = 0, ∀Ea, ∀ X ∈ A. (3.24)

In other words, an algebra on a code subspace is conserved when the elements of the

algebra commute with the noise generators, restricted to the code subspace.

Theorem 3.3. A subalgebra A of L(Hcode) is correctable on Hcode for the noise E if and

only if

[PCE
†
aEbPC , X] = 0, ∀ Ea, Eb ∀ X ∈ A. (3.25)

As before, the correctability condition is built upon orthogonal errors, which enables

their distinguishability, and codeword invariance. Note that the algebra elements commute

with the errors in both conservation and correction criterias for Hcode. For a proof of those

theorems, we refer to the aforementioned references where this formalism was originally

developed. (85–88)

3.5 Stabilizer codes

Stabilizer codes is a remarkable class of quantum error-correcting codes, proposed

in. (37) Its inherent structure allows for the realization of efficient codes and construction

of complicated codes out of simpler ones. In particular, stabilizer codes have been receiving

a lot of attention because they can be used for fault-tolerant quantum computing (90–93),

thus having a large interest in applications on the feasibility of quantum computation and

quantum technologies in the NISQ era. (33)

This new class of codes have the same principles as before, we are looking to

somehow encode redundant information and adopt a protocol (consisting of recovery

maps, commutation relations, and so forth) to recover and protect the information. So

far, we dealt with very general conditions for error-correction and error prevention. Our

exposure will be somewhat technical, and thus, we first revisit Shor’s code and lay down

the concepts using an example, and then we generalize. After doing so, we go back to an

important example, the 5-qubit code, which has applications in holography and AdS/CFT.

(29–31,63)
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3.5.1 Shor’s code revisited

In Shor’s code, the idea is to encode one qubit worth of information into nine qubits

and send the message consisting of nine qubits instead. The way to detect and correct

errors was to compare the superpositions of the qubits in the same block and to compare

the different signs between different blocks, accomplished through syndrome measurements.

Since the code corrects any one-qubit error, we have t = 1 and distance d = 3.

We mentioned that the single-qubit flip error was the action of a σx, and the relative

phase changing the sign between two blocks was the action of a σz. Turns out that the

comparison procedure (for the detection of both kinds of errors) can be expressed in terms

of combinations of Pauli matrices. For instance, detecting a qubit flip error is equivalent

to measuring the eigenvalues of σz1σz2 and σz1σz3. If the first two qubits are in the same

state, the eigenvalue of σz1σz2 is +1, otherwise, it is −1. Similarly, one interprets the

eigenvalues of σz1σz3. The sign comparison procedure can also be cast in this language. It

is equivalent to measuring the eigenvalues of σx1σx2σx3σx4σx5σx6 and σx1σx2σx3σx7σx8σx9.

If the signs agree, the eigenvalue is +1; if they don’t, the eigenvalue is −1.

This way, we may construct several operators such that we can completely identify

every possible error in order to correct it. For Shor’s code, those operators are displayed

on the table below, where it indicates how each Mi operator is composed.

M1 σz σz 1 1 1 1 1 1 1

M2 σz 1 σz 1 1 1 1 1 1

M3 1 1 1 σz σz 1 1 1 1

M4 1 1 1 σz 1 σz 1 1 1

M5 1 1 1 1 1 1 σz σz 1

M6 1 1 1 1 1 1 σz 1 σz

M7 σx σx σx σx σx σx 1 1 1

M8 σx σx σx 1 1 1 σx σx σx

For instance,

M1 = σz ⊗ σz ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1.

The two basis codewords in Shor’s code |0̃⟩ and |1̃⟩ are eigenvectors of all eight Mi operators

with eigenvalue +1. In this sense, any operator which leaves the codewords invariant can
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be written as a combination of those eight operators. The set of operators that fix the

codewords |0̃⟩ and |1̃⟩ have a group structure which is called the stabilizer group S of

the code, or the stabilizer of the code, for short. The Mi operators are generators of the

stabilizer S. In other words, the operators Mi leave the code subspace invariant.

The generators of S have a special property: to detect errors in a stabilizer code, it

is enough to measure the eigenvalues of the stabilizer generators, if every single one of

them yields +1, that means no error occurred. If one yields −1, we are capable of pointing

out which error occurred. For instance, let us imagine we measure M1, as it anti-commutes

with σx1 and σx2, if one of those two errors occurred, by the resulting eigenvalue we would

be able to tell; whereas if let us say σx7 occurred, we could not tell, since σx7 commutes

with M1. We would need another stabilizer generator to detect this error. Generally, if we

consider an arbitrary error E and a stabilizer generator Mi ∈ S, the stabilizer element

can detect the error as long as they anti-commute. Once the error is detected, we apply

the pertinent Pauli matrices (each Pauli matrix squared is the identity) and recover the

message, thus correcting the error.

3.5.2 Going back to general stabilizer codes

A stabilizer code is characterized by its stabilizer S, which is an Abelian subgroup

of G7, and the code subspace Hcode which is fixed by S. The group G has some useful

properties which S inherits:

• σx, σy and σz are unitary, thus every element of G and S is unitary;

• σx, σy, σz are Hermitian, which means that if A ∈ G, then A† ∈ G;

• σx, σy and σz commute while acting in the same qubit and anti-commute while acting

in different qubits. This means that every element in G and S either commutes or

anti-commutes.

As S is Abelian, {−1,±i} /∈ S. The code subspace is invariant under the action of

any M ∈ S and has dimension 2k. In other words, if M ∈ S, |ψi⟩ ∈ Hcode and {M,E} = 0,

then the action of the stabilizer element after an error E occured is ME|ψi⟩ = −EM |ψi⟩ =

7 Recall that G is the group of operators whose structure is a tensor product of Pauli matrices
under multiplication.



50

−E|ψi⟩. This allows us to conclude:

⟨ψi|E|ψj⟩ = ⟨ψi|ME|ψj⟩ = −⟨ψi|E|ψj⟩ = 0, (3.26)

thus the code satisfies the condition (3.7) whenever we take E = E†aEb. This means

that stabilizer codes satisfy the condition we required that errors must be orthogonal to

guarantee they are distinguishable. In order to recover Laflamme-Knill conditions (3.10) for

stabilizer codes, it remains to show codeword invariance, which means that the errors can

be corrected regardless of the codeword choice. However, as long as the anti-commutation

is satisfied, {M,E} = 0, the condition (3.26) is indeed independent of the codeword choice,

since ⟨ψi|E|ψi⟩ = ⟨ψj|E|ψj⟩. Furthermore, as we have seen, to accomodate both conditions,

it suffices to consider

⟨ψi|E†aEb|ψj⟩ = λabδij, (3.27)

which are the Laflamme-Knill conditions. (39) As long as E†aEb, ∀ Ea, Eb, anti-commutes

with some element of S, the Laflamme-Knill conditions are satisfied and the code can

correct for the set of errors.

There are some subtleties associated with the elements of S. It is an Abelian

subgroup, which means that every element of S commutes with each other. As it is a

group, the identity must be in S, and it also commutes with everything. Note, however,

that the identity is incorporated in the error basis and thus is an error itself. How can we

make sense of that?

There are no problems with having an error that belongs to the stabilizer group,

this motivates two new definitions. The centralizer of S, denoted C(S), is defined as the

set of all elements in G that commutes with all of S. The normalizer of S, denoted N(S),

is defined as the set of all elements in G that fix S under conjugation, in other words

A†MA = ±A†AM = ±M, ∀ A ∈ G,M ∈ S. (3.28)

In our case, the centralizer and the normalizer of S are the same, this is a consequence

of the structure and properties of G and S. Since −1 /∈ S, every element A ∈ N(S) also

commutes with every element in S, and thus A ∈ C(S).

If E ∈ [N(S) −S], then the error E rearranges elements in the code subspace Hcode

in a closed fashion, which means that the error acting on a codeword is still a codeword.
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Consider M ∈ S and |ψ⟩ ∈ Hcode, then

ME|ψ⟩ = EM |ψ⟩ = E|ψ⟩ (3.29)

which means that E|ψ⟩ ∈ Hcode. However, note that because E /∈ S, there is some state in

the code subspace which is not fixed by E.

By taking into consideration those subtleties associated with the normalizer and

the centralizer of the code, and by addressing the question of elements that are errors and

belong to S, we can state a more precise notion. A quantum code with stabilizer S will

detect all errors E that are either in S or anti-commute with some element of S. More

precisely, the error can be detected as long as E ∈ S ∪ [G−N(S)].

The distance d of a code is a synonym to how many qubits can be protected by

the code. In stabilizer codes, however, there is a convenient way to cast this concept as

an upper bound: the code has distance d if and only if the set [N(S) − S] contains no

elements whose weight is less than d.

3.5.3 The 5-qubit code

In the study of stabilizer quantum error-correcting codes, the 5-qubit code is one

of the fundamental cornerstones. It has many useful properties, the most notable one is

the fact that this is the smallest code that corrects a single qubit error. (94) This code is

also cyclic, which means that the stabilizer and the codewords are invariant under cyclic

permutations of the qubits. On top of that, it also has a holographic interpretation with

profound applications in AdS/CFT and quantum gravity.

The 5-qubit code encodes one qubit into five qubits. As we have seen, the funda-

mental concept to characterize stabilizer codes is the elements that generate the stabilizer

group. For this code, those are shown in the table below.

M1 σx σz σz σx 1

M2 1 σx σz σz σx

M3 σx 1 σx σz σz

M4 σz σx 1 σx σz

The code subspace of the encoded qubit has a basis that consists of two codewords,

|0̃⟩ and |1̃⟩. The logical basis elements can be generated, up to normalization, from the
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five physical qubits and the stabilizer generators as follows:

|0̃⟩ =
∑

M∈S

M |00000⟩ (3.30)

where the sum goes through every possible combination of the four stabilizer generators,

in this case, a total of 16. That is,

|0̃⟩ = |00000⟩ +M1|00000⟩ +M2|00000⟩ +M3|00000⟩ +M4|00000⟩

+M1M2|00000⟩ +M1M3|00000⟩ +M1M4|00000⟩ +M2M3|00000⟩

+M2M4|00000⟩ +M3M4|00000⟩ +M1M2M3|00000⟩ +M1M2M4|00000⟩

+M1M3M4|00000⟩ +M2M3M4|00000⟩ +M1M2M3M4|00000⟩,

by applying the combinations of Pauli operators in the qubits, we calculate explicitly

obtaining

|0̃⟩ = |00000⟩ + |10010⟩ + |01001⟩ + |10100⟩ + |01010⟩

− |11011⟩ − |00110⟩ − |11000⟩ − |11101⟩ − |00011⟩ − |11110⟩

− |01111⟩ − |10001⟩ − |01100⟩ − |10111⟩ + |00101⟩.

In principle, we could do the same procedure and obtain |1̃⟩ as a sum over the stabilizer

generators and the corresponding physical states. However, there is a much simpler way

to do so. Note that for the physical qubits, the action of σx is precisely to flip the qubit,

i.e., |1⟩ = σx|0⟩. For the 5-qubit code, this property is carried over to the logical subspace,

that is

|1̃⟩ = σxσxσxσxσx|0̃⟩ (3.31)

where instead of a single Pauli operator, we must replace it by five, since the logical states

are five-qubit states. It is important to note that this is not general, but rather a specific

feature of the 5-qubit code. Explicitly,

|1̃⟩ = |11111⟩ + |01101⟩ + |10110⟩ + |01011⟩ + |10101⟩

− |00100⟩ − |11001⟩ − |00111⟩ − |00010⟩ − |11100⟩ − |00001⟩

− |10000⟩ − |01110⟩ − |10011⟩ − |01000⟩ + |11010⟩.

The idea is to calculate the commutation relations of the errors E with elements of S, as

long as E ∈ S ∪ [G − N(S)], this code is capable of detecting the error. Note that this
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code has distance d = 3 given its code subspace structure. For instance, one could check

that operators such as σy1σz4σy3 are in the normalizer of S but are not in S itself, i.e., are

in [N(S) − S]. Error operators with weight higher than 3 surpasses the distance of the

code and thus cannot be detected.

In a more concrete sense, let us consider an example. Say that a single-qubit error

σx occurred in the first qubit. The first step is to calculate the commutation relations with

the stabilizer generators:

[σx1111, σxσzσzσx1] = 0,

[σx1111,1σxσzσzσx] = 0,

[σx1111, σx1σxσzσz] = 0,

[σx1111, σzσx1σxσz] ̸= 0.

For the error-correction procedure itself, we recognize the syndrome and apply the operation

to correct the error. In our example, the error commuted with every generator except M4,

which means that the syndrome is 0001. The error-correction protocol associated with

a syndrome 0001 is to apply σx on the first qubit. (75, 77) Since σ2
x = 1, whenever we

reapply the Pauli matrix, we recover the original message.

3.6 Outlook

In this chapter, we reviewed the basics of different quantum error correction

approaches. We began by motivating quantum error correction as a tool to protect quantum

information, used Shor’s code to illustrate the main ideas behind the error-detection and

error-correction mechanisms. Albeit simple, Shor’s code has several interesting properties

which allow one to concrete see quantum error correction in action without having to

worry too much with definitions and concepts.

After motivating, we explored standard quantum error correction, which consists of

a code where one is interested in the sufficient and necessary conditions for the existence

of a map that could recover the message from any errors. Following, we studied noiseless

subsystems; the idea behind those codes is the use of algebraic structures of the operators

in view of exploring a subsystem that is immune to errors.

We followed our discussion by exploring two of the most important quantum error-

correcting code models: Operator Algebra Quantum Error Correction and Stabilizer Error
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Correction. The former consists of a generalization of the previously discussed models.

The idea is to go to the operator level and explore algebraic properties underlying the

Hilbert space structure in a way that the code protects a subalgebra of the code’s full

logical algebra. We saw how those generalizations recover the previous models under the

correct circumstances. Apart from being a clear generalization, and thus having more

general applicability, OAQEC also provides a natural approach to codes that possess a

holographic interpretation, as we will see later.

Stabilizer codes, on the other hand, work somewhat differently from OAQEC

despite having the same purpose: protecting quantum information through redundancy

and wise use of Hilbert space properties. The idea here is to define a group called the

stabilizer group, which consists of operators whose commutation relation with the errors

tell us whether or not the code is capable of detecting and correcting them. This class

of codes found great success in applications, in particular, stabilizer codes have been

one of the most explored topics within quantum computing research lately, in particular,

they seem to be a very solid candidate to push further noisy intermediate-scale quantum

computers. The fact that those codes found large success in fault-tolerant computation as

well as holography reveals how versatile they are.
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4 HOLOGRAPHY MEETS QUANTUM INFORMATION

“Unforeseen surprises are the rule in science, not the exception.

Remember: Stuff happens.”

Leonard Susskind

In this chapter, we establish the connection between holography and quantum

error correction. As we previously mentioned, it seems that AdS/CFT has some built-in

redundancy in its description and thus cannot realize an isomorphism as one would like

to. We will argue that, rather than a problem, this redundancy is a feature of AdS/CFT

that appears whenever we understand the correspondence through the lenses of quantum

error correction. Instead of paradoxes, we have rich features which can be deeply explored.

We begin the chapter by presenting the groundbreaking result of Ryu and Takayanagi

which relates entanglement entropy with spacetime geometry, the vast majority of ideas

relating quantum information theory with holography are built upon this famous result.

Following, we present the 3-qutrit and the HaPPY codes and how they can be used to

solve the paradoxes and further explore the correspondence. In the end, we discuss recent

work which uses error correction to point out incompatibilities between global symmetries

and the AdS/CFT correspondence structure. We propose a slightly different view of the

incompatibility and use it to motivate the introduction of quantum resource theories in

the next chapter.

4.1 Entanglement Entropy and the legendary Ryu-Takayanagi formula

The first remarkable result which connects quantum information theory and gravity

is the Ryu-Takayanagi formula (27, 28). This result states that we can calculate the

entanglement entropy of the CFT on a boundary region by calculating the area of a

minimal surface related to the bulk AdS theory. The physical consequences are endless,

and the overall idea can be roughly thought of as entropy equals geometry.

First, let us begin by stating what we mean by entanglement entropy. Say that we

have a system at zero temperature whose ground state can be described by the pure state
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|Ψ⟩. The corresponding density matrix ρ ∈ L1(H) is

ρ = |Ψ⟩⟨Ψ|. (4.1)

Since it describes a pure state, the von Neumann entropy is zero S = −tr(ρ log ρ) = 0.

Now, say that we divide our system into two subsystems, A and B. The corresponding

Hilbert space is split into two subspaces H = HA ⊗ HB. The reduced density matrix of

subsystem A is given by

ρA = trBρ, (4.2)

where the partial trace is taken over the degrees of freedom of subsystem B. As such, the

entanglement entropy of the subsystem A is the von Neumann entropy of the reduced

density matrix,

SA = −trA(ρA log ρA). (4.3)

The entanglement entropy (4.3) quantifies how entangled a given wavefunction such as

|Ψ⟩ is. It is a legitimate entropy measure, as it satisfies subadditivity as well as strong

subadditivity; for other useful properties of the entanglement entropy, see e.g. (34).

The Ryu-Takayanagi proposal goes as follows: define the entanglement entropy

SA in a CFT on a spacetime R × Sd (or R1,d) for a subsystem A which has an arbitrary

(d− 1)-dimensional boundary ∂A ∈ Sd (or ∈ Rd). Then, the entanglement entropy may

be evaluated as

SA = area(γA)
4G(d+2)

N

(4.4)

where γA is the d-dimensional static minimal surface whose boundary is ∂A. γA belongs

to the AdSd+2 space; G(d+2)
N is the (d+ 2)-dimensional Newton’s constant.

The above statement is the original formulation of the Ryu-Takayanagi result, and

despite its gargantuan success, it has some clear drawbacks. First of all, this result is

static, as we have implicitly fixed a time t and chosen a timeslice Σ. The evolution of

the system imposes that ρ → ρ(t) and thus the entanglement entropy and its evaluation

through equation (4.3) must evolve with time. Furthermore, the way the Ryu-Takayanagi

result is stated so far is only valid in the semiclassical limit (2.11), where we have taken N

to be large, the string coupling gS to be very small and the AdS radius ℓ to be much larger

than the Planck length. Not everything is lost, however, as there has been several works

addressing both drawbacks, in particular, its covariant formulation (sometimes called the

HRT formula) (95), and its validity beyond the aforementioned limits. (96–100)
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Nonetheless, the Ryu-Takayanagi result also plays a key role in quantum error

correction. The direct relation between the result and error correction was first explored

by Harlow. (32) Moreover, the Ryu-Takayanagi formula also has direct consequences on

AdS-Rindler reconstruction, in particular, the Ryu-Takayanagi surface (or geodesic in the

case of AdS3) can be used to determine the causal wedge of a given boundary region. This

allows us to sharpen up the construction of the causal wedge in a more applicable way.

Figure 6 – AdS3 setup where we have a boundary region A and its corresponding Ryu-
Takayanagi geodesic γA. The region limited by the boundary region and the
geodesic is precisely the causal wedge of A (shaded red). The error correction
interpretation is due to the fact that a bulk operator ϕ(x) can be reconstructed
in A regardless of the information contained in Ā, therefore, one could erase
the entire boundary region Ā and still be able to reconstruct ϕ(x). In other
words, ϕ(x) is protected against erasures of Ā. Conversely, ϕ(y) is protected
against erasures of A.
Source: Adapted from HARLOW. (32)

Additionally, it also offers a clearer error correction interpretation. For example,

consider the system disposed in Figure 6, the causal wedge associated with the boundary

region A (shaded red in the Figure) is the region delimited by A and the Ryu-Takayanagi

geodesic γA. The error correction interpretation arises from the fact that the bulk field

ϕ(x) is within the causal wedge of A, and thus can be reconstructed in A. However, the

bulk field ϕ(y) is outside the wedge and may not be reconstructed in A. In other words,

the information in the causal wedge of A is protected against erasures over the boundary

region Ā, because the bulk field ϕ(x) can be reconstructed regardless of what information

lies in Ā. This feature is a manifestation of the subregion duality we have encountered in

the AdS-Rindler reconstruction. The Ryu-Takayanagi geodesic is precisely what determines
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the boundary of one wedge to the other, also note that γA = γĀ.

Beyond error correction, the Ryu-Takayanagi result is the “Rosetta Stone” for

several important applications and insights for quantum gravity and quantum information.

Particularly, in the ER=EPR proposal of Maldacena and Susskind (101, 102), and the

Black Hole Information Paradox. (103–106) Those proposals are very exciting as it not only

is a paradigm shift where one takes gravity to be emergent out of quantum information,

but also an incredibly active area of research.

4.2 Holographic codes that correct quantum errors

In this section we begin our discussion of quantum error-correcting codes in

AdS/CFT, those ideas will permeate the rest of the Chapter and, to some extent, the rest

of this work. Holographic codes are nothing but usual quantum error-correcting codes

employed in a seemingly exotic context where we reinterpret some of its features. The way

error correction works for holographic codes is the same as typical codes, i.e. following

the procedures described in Chapter 3. Those codes can be thought of as toy models for

the correspondence as well as tools to elucidate and solve the puzzles we have discussed.

The literature on holographic codes has been rapidly increasing, and many new models

and codes have been proposed with varying degrees of success. It is beyond the scope of

this work to promote a broad discussion of all models, instead, we focus on the two most

consolidated ones with the idea of discussing the recent results by Harlow and Ooguri

(40, 41) that suggest that quantum gravity (and its incarnation through AdS/CFT) is

incompatible with global symmetries.

4.2.1 Solving puzzles and paradoxes with the 3-qutrit code

The first code we will discuss was originally proposed in (29), the idea is to protect

the information of a single qutrit by encoding it into the non-local structure of three

qutrits. A qutrit is a three-level system and its basis can be identified with the states

{|0⟩, |1⟩, |2⟩}. In error correction terminology, we encode a logical qutrit into three physical

qutrits, and the logical basis will exploit the entanglement between the physical qutrits:

|ψ⟩ =
2∑

k=0
ck|k⟩ → |ψ̃⟩ =

2∑
k=0

ck|k̃⟩ (4.5)

where |k⟩ is a basis for the 27-dimensional Hilbert space H spanned by the three physical

qutrits, and |k̃⟩ is a basis for the 3-dimensional subspace Hcode spanned by the logical
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qutrit. The logical basis is explicitly given by

|0̃⟩ = 1√
3

(|000⟩ + |111⟩ + |222⟩),

|1̃⟩ = 1√
3

(|012⟩ + |120⟩ + |201⟩),

|2̃⟩ = 1√
3

(|021⟩ + |102⟩ + |210⟩).

The code subspace is symmetric under permutation of its basis elements. Note that any

logical state |ψ̃⟩ ∈ Hcode is highly entangled, and the reduced density matrix of any of the

qutrits is given by

(ρ)1 = tr23(ρ̃) = (ρ)2 = (ρ)3 = 1
3 (|0⟩⟨0| + |1⟩⟨1| + |2⟩⟨2|) ,

that is, a maximally mixed state which means that any single qutrit has no information at all

about the encoded message. The claim is any two qutrits have complete information about

the encoded message, thus a single qutrit may be completely erased without damaging the

encoded information.

Let us say that the third qutrit was lost in the process. There exists a unitary

operation whose support is only the first and second qutrits that accomplish the following:

U12|k̃⟩ = |k⟩1 ⊗ |χ⟩23, |χ⟩23 = 1√
3

(|00⟩ + |11⟩ + |22⟩), (4.6)

it acts upon any basis element of the code subspace and recovers the corresponding physical

basis element overwriting what was stored in the first qutrit, while the second and the

third will be in a entangled state. As the encoded message is a combination of the basis

elements |k̃⟩, it follows

U12|ψ̃⟩ = |ψ⟩1 ⊗ |χ⟩23, ρ̃ = U †12(ρ1 ⊗ |χ⟩⟨χ|23)U12, (4.7)

in words, the unitary acts in the first and second qutrits of the code and recovers the

original message in the first qutrit. The remaining second and third qutrits are in the

entangled state |χ⟩23. This means that losing the third qutrit was not a problem at all, as

the encoded information could be recovered using the unitary whose support is only the

first and the second qutrits. In this model, the unitary U12 is simply a permutation, and

its explicit form is given by

|00⟩ → |00⟩ |11⟩ → |01⟩ |22⟩ → |02⟩

|01⟩ → |12⟩ |12⟩ → |10⟩ |20⟩ → |11⟩

|02⟩ → |21⟩ |10⟩ → |22⟩ |21⟩ → |20⟩.
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For details on the explicit calculations of the recovery procedure, see Appendix B. In this

particular case, we considered that the third qutrit was lost and thus we could only work

with the first and the second ones. However, given the permutation symmetry structure

of Hcode, it is clear that we could also apply a unitary U13 with support on the first and

third qutrits or U23 with support on the second and third qutrits.

On top of recovering the encoded information, it is also desirable to perform

operations. Imagine we want to implement a general and linear transformation like

O|k⟩ = (O)jk|j⟩ as a logical operator Õ acting on the code subspace as

Õ|k̃⟩ = (O)jk|j̃⟩;

generally speaking, this operator is not unique and has support on all three qutrits1,

however, we can construct it in a way that we force it to operate only on the two qutrits

that were not lost. Considering the case where the third qutrit was lost, we can be clever

and construct the operator

Õ → Õ12 = U †12OU12, (4.8)

with support only on the first and second qutrits. The idea is to recover the encoded

message with the unitary U12, act with the desired operator O, and then encode back

the message through U †12. This ensures that we obtain the matrix elements (O)jk for the

logical operator Õ. Note that we can also construct other operators manipulating the

support depending on which qutrit was lost, that is, Õ13 and Õ23, and obtain the same

matrix elements (O)jk.

The operators Õ12, Õ13 and Õ23 act distinctly in the Hilbert space of the three

qutrits but act the same way in the code subspace. In other words, we have a logical

operator that has three different representations as physical operators with different

supports. Such situation precisely resembles the “ABC puzzle”, where we had a bulk

field that had three different boundary representations. Indeed, the 3-qutrit code may

be thought of as a toy model for AdS/CFT because of how redundancy is explored in

those two contexts. We interpret the boundary degrees of freedom as very coarse-grained

in the three physical qutrits, the bulk operator is associated with the encoded logical

qutrit, and the three boundary reconstructions ϕA∪B, ϕB∪C , ϕC∪A are akin to the three
1 Note that the notation (O)jk indicate matrix elements, rather than which qutrits are being

dealt with.
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implementations Õ12, Õ13, Õ23 of the logical operator Õ. For a graphical representation,

see Figure 7.

Figure 7 – The 3-qutrit code as a toy model for the AdS/CFT correspondence. The left
figure is the ABC puzzle setup, where the boundary is divided into three
regions and there is a bulk field in the center. The right figure is the 3-qutrit
interpretation, where the magenta dots represent the physical qutrits which
are interpreted as very coarse-grained CFT degrees of freedom, and the cyan
dot in the middle represents the logical (encoded) qutrit and is interpreted as
the bulk field operator ϕ(x).
Source: Adapted from HARLOW. (30)

Furthermore, the 3-qutrit code also provides insight in how information is recovered

in the ABC puzzle setup. A single physical qutrit does not have enough information to

restore the information of the encoded logical qutrit, just like the causal wedge of a single

boundary region does not have enough information to reconstruct the bulk field ϕ(x).

However, if we take any two qutrits, we have enough information to completely restore

the information; whereas if we take the union of any two boundary regions, the bulk field

will be within the corresponding causal wedge and thus can be reconstructed. In other

words, from subregion duality, the 3-qutrit code protects the information against erasure

of one qutrit just like the bulk field is protected against erasure of any single boundary

region in the ABC puzzle setup.

So far, we have discussed the interpretation of the 3-qutrit code as a toy model

for AdS/CFT, but how exactly does it solve the puzzles? In both the ABC and the

radial commutativity puzzles, the answer lies on the limits we have taken whenever we

discussed the global and AdS-Rindler reconstruction procedures (see equation (2.11) and

its discussion). The error correction interpretation comes from the redundancy which arises

when we consider a CFT region that corresponds to multiple wedges. On top of that, we
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also discussed that the kinds of CFTs we would be dealing with had a semiclassical dual

near the vacuum, in other words, we were working in the large N limit with small string

coupling gS and large AdS radius ℓ. When we take those three limits, we are selecting a

particular region of the entire Hilbert space of quantum gravity states, choosing those that

have a semiclassical dual. What happens is that by doing this selection, we are implicitly

defining a subspace that works just like a code subspace.

This way, whenever we use the AdS-Rindler procedure to reconstruct a bulk operator

in the boundary, we are implicitly dealing with error correction redundancies. This becomes

evident when we consider the ABC puzzle setup, where a single bulk operator can have

three different reconstructions. The solution of the ABC puzzle comes from the fact that

we are not dealing with the entire quantum gravity Hilbert space, but rather a code

subspace of it and thus it does not violate any sort of isomorphism structure. Furthermore,

the reconstructions ϕA∪B, ϕB∪C , ϕC∪A are different CFT operators that have the same

action on the code subspace, just like the logical operator Õ and its physical counterparts

Õ12, Õ13, Õ23 in the 3-qutrit code.

For the radial commutativity puzzle, the solution also resides in the fact that we

thought we were considering the full quantum gravity Hilbert space, when in fact we were

dealing with a code subspace of it. The “paradox” can be rephrased as

⟨ψ̃|[ϕ(x),O(Y )]|ψ̃⟩ = 0, ∀ |ψ̃⟩ ∈ Hcode, (4.9)

however, now there is no contradiction with the time-slice axiom because the operator ϕ(x)

commutes with the CFT operator O(Y ) only within the code subspace. The 3-qutrit code

can also be used to illustrate this “paradox”. Consider a logical operator Õ and a physical

operator X3 acting on the third qutrit. In principle, we have ⟨ψ̃|[Õ,X3]|ψ̃⟩ = 0, however,

this commutation is identically null because we could always choose Õ → Õ12 and then

the commutation would be between two operators that have no matching support. If we

choose an operator X1, we could employ Õ → Õ23 and repeat the process.

The 3-qutrit code is also a stabilizer code (see section 3.5) whose code subspace

may be defined as the simultaneous eigenspace of the set of stabilizer operators. For this
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particular code, the stabilizers are defined2 as

Mx = X ⊗X ⊗X, Mz = Z ⊗ Z ⊗ Z, (4.10)

where Mx commutes with Mz
3, which means that they can be simultaneously diagonalized.

Any non-trivial Pauli operator with weight-one must fail to commute with at least one of

the two stabilizers, as a consequence, no non-trivial operator with weight-one can preserve

the code subspace. Nonetheless, one can construct weight-two Pauli operators that do

commute with both Mx and Mz, thus preserving the code subspace, e.g.

XL = X ⊗X−1 ⊗ 1, ZL = Z ⊗ 1 ⊗ Z−1. (4.11)

Those operators act non-trivially and preserve the code subspace. In other words, XL

and ZL are non-trivial logical operators of the code, furthermore, they have the same

commutation relations as X and Z and thus generate the Pauli group acting upon

the encoded qutrit. Those considerations are precisely the stabilizer formulation of the

statement that we could create operators with different supports on the physical qutrits

but that acted in the same way on the code subspace.

4.2.2 Happiness is subjective, the HaPPY code is not

The second holographic quantum error-correcting code we discuss is known as the

HaPPY code (31), which bears one of the best acronyms4 in theoretical physics, and it

unfortunately does not have anything to do with the feeling of happiness5. This code is

actually a family of stabilizer codes (see section 3.5) that consists of a tensor network

structure6 whose building block is a specific kind of tensor with maximal entanglement

along any bipartition, this class of tensors is known as perfect tensors. The network of

perfect tensors give rise to an isometry from the bulk degrees of freedom to the boundary
2 X and Z denote a generalized version of the corresponding Pauli matrices, adapted to qutrits.

The tensor product structure indicates that we operate at each qutrit.
3 It is important to clarify that this property is valid for qutrits, but not qubits.
4 HaPPY stands for Harlow-Preskill-Pastawski-Yoshida which are the surnames of the authors

of the paper in which this code was proposed.
5 This statement is debatable, as the original article is one of the most relevant papers in

theoretical physics of the past decade, so it is safe to assume that it brought quite a bit of
happiness to the authors.

6 Tensor networks were originally developed as a tool for quantum many-body systems, however,
there are several interesting applications of those structures in connections of high-energy
physics and quantum information theory. It is beyond the scope of this work to give tensor
networks proper treatment, hence, we refer to the reviews. (107–110)
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degrees of freedom, thus establishing an isometry between two different Hilbert spaces.

Following the error correction language, bulk degrees of freedom can be identified as logical

degrees of freedom, likewise, boundary degrees of freedom can be identified as physical

degrees of freedom. Let us begin our discussion by precisely defining the notion of a tensor.

Definition 4.1. (Tensor). Say we have two Hilbert spaces denoted by HA and HB with

a basis |a⟩ and |b⟩ associated with them, respectively. A tensor is a linear map between

(different) Hilbert spaces that obeys

T : HA → HB; |a⟩ =
∑

b

|b⟩Tba. (4.12)

A tensor is said to be isometric if it preserves the inner product structure. This property

can be expressed as ∑
b

T †a′bTba = δa′a. (4.13)

Sometimes we will refer isometric tensors simply as isometries. Isometric tensors have the

“operator-pushing” property, that is, for any operator O and another equal norm operator

O′,

OT = TT †OT = T (T †OT ) = TO′, (4.14)

this property follows from equations (4.12) and (4.13). The operator-pushing property

(4.14) will be widely used in the AdS-Rindler reconstruction procedure for the HaPPY code.

The aforementioned property is represented in Figure 8, borrowing from the diagramatic

representation of tensor networks. We are now ready to define perfect tensors.

Figure 8 – Operator-pushing property of an isometric tensor T with a given operator O
and another equal norm operator O′.
Source: PASTAWSKI. (31)

Definition 4.2. (Perfect tensor). A tensor with 2n indices denoted Ta1a2...an...a2n is said to

be a perfect tensor if, for any bipartition of the indices into A and Ā with |A| ≤ |Ā|, the

tensor T is proportional to an isometric tensor from A to Ā.
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Where |A| denotes the cardinality of the set A. The bipartitions follow from the division of

the 2n indices of the tensor in a way that |A|+ |Ā| = 2n. We can also attribute the meaning

that T is a linear map from the span of indices in the subset A to the span of indices

in Ā. Furthermore, we will assume that each index ai (i = 0, ..., n) runs from 0, 1, ..., ζ;

in this case, ζ is called the bond dimension. One sufficient condition to assure that T is

indeed a perfect tensor is for it to be a unitary transformation when |A| = |Ā| = n, which

translates as the saturation of the inequality in the definition (4.2).

Now we explore how perfect tensors can be interpreted as error-correcting codes.

Then, we address the tensor network structure and its properties under the light of the

AdS/CFT correspondence. The code we discuss is an embedded version of the 5-qubit

code (see subsection 3.5.3) where we consider a 6-index perfect tensor. In other words, this

code consists of a 5-qubit code which encodes one logical qubit and has distance d = 3.

The encoding tensor is given by a map

T : H2 → H32

that is, the tensor is an isometry from the 2-dimensional Hilbert space of the encoded

logical qubit to the 32-dimensional Hilbert space of the five physical qubits. We can write

it explicitly as

|T ⟩ =
∑

abcdef

Tabcdef |abcdef⟩, (4.15)

and the stabilizer structure is such that

[Mi,Mj] = 0 ⇒ Mi|T ⟩ = |T ⟩, (4.16)

where the stabilizers of this code are given by

M1 σx σz σz σx 1 1

M2 1 σx σz σz σx 1

M3 σx 1 σx σz σz 1

M4 σz σx 1 σx σz 1

M5 σx σx σx σx σx σx

M6 σz σz σz σz σz σz

the way stabilizer codes work in terms of error detection and correction is through the

syndrome of the error, as we have discussed.
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Given the fundamental building blocks, which are the 6-index perfect tensors (5-

qubit codes), we shall describe the tensor networks consisting of those blocks, and how this

network can be interpreted holographically and may be used to perform the AdS-Rindler

reconstruction procedure.

The idea consists of a uniform tilling of the hyperbolic disc by attaching together

pentagons which represent the 5-qubit code, this way, each pentagon has other four adjacent

pentagons at each vertex. The perfect tensor with six legs is placed at each pentagon,

where each side of the pentagon represents one tensor that is being contracted and each

pentagon carries a free index tensor which is interpreted as the logical encoded qubit (that

is, the bulk index). For a schematic representation of this setup, see Figure 9.

Figure 9 – Schematic representation of the HaPPY code. Each blue pentagon is interpreted
as a 5-qubit quantum error-correcting code, each red dot is a free bulk (logical)
index. The white dots close to the boundary represent the physical uncontracted
qubits.
Source: Adapted from PASTAWSKI. (31)

The pentagon-tilling code is an isometry from the bulk to the boundary, this can

be seen by noting that in a given layer (we adopt the first layer to be the central pentagon,

the second layer to be the adjacent pentagons to the central one, and so forth), each tensor

is contracted with a maximum of two tensors from the previous layer, as a consequence,

each free index which represents the encoded qubit can be thought of as the input tensor,

which means that each layer describes an isometry. Given that layers define isometries,



67

and that contraction of isometries is a isometry itself, the contraction of the first layer

(that is, the central pentagon) with every layer until the boundary is reached is indeed an

isometry.

The entire network structure can be seen as the encoding of a quantum error-

correcting code. In particular, we can estimate how effective this code is when it comes

to encoding logical qubits into physical qubits. Each pentagon carries one logical qubit

(illustrated as the red dots inside each pentagon in Figure 9), and thus the number of

logical qubits is the number of pentagons of the network. The number of physical qubits

amounts to the uncontracted indices in the boundary (illustrated as the white dots in

Figure 9). According to a numerical argument laid down in (31), in the large limit of

layers, the ratio between logical and physical qubits converge to 1/
√

5.

Apart from the encoding of logical qubits, the HaPPY code has two important

features when it comes to holography. The first one is the fact that it satisfies a inequality

which may be thought of as a discretized version of the Ryu-Takayanagi result, yielding

SR ≤ |γR| log ζ, (4.17)

where γR denotes a cut throughout the network which splits it into two different (disjoint)

sets of perfect tensors, |γR| denotes the number of tensor legs that were cut through (which

is interpreted as the “discrete length”), and R denotes a CFT boundary region, interpreted

as a set of physical uncontracted legs. This cut is analogous to the “minimal area” or

“minimal length” of the continous Ryu-Takayanagi result. The proof concerning this result

is sketched in (31) and relies on sophisticated arguments from graph theory (111, 112)

which are beyond the scope of this work. For a illustration of this result in the HaPPY

code, see Figure 10.

The other important holographic feature of the HaPPY code concerns the explicit

AdS-Rindler reconstruction procedure (see section 2.6). The idea consists of exploiting

the perfect tensor structure and the operator-pushing property from equation (4.14), the

algorithm is roughly sketched at Figure 11.

We begin by coupling the free bulk (logical) index with an operator (represented

as the blue and green squares in Figure 11), and then use the operator-pushing property

of equation (4.14). Given the perfect tensor structure, the tensor is a unitary map that

maps any three tensor legs into the complementary set of three legs. Because of that, it



68

Figure 10 – The Ryu-Takayanagi geodesic γR depicted in the HaPPY tensor network in
green; |γR| is equal to the number of tensor legs it crosses. Each red dot
represents a bulk logical index, each black line represents a tensor contraction
of the physical qubits.
Source: Adapted from HARLOW. (30)

defines an isometry between any set of three input legs and a set of three output legs.

This algorithm is carried further down the layers of the network, using the fact that a

combination of isometries is also an isometry. This procedure also reproduces the “built-in

redundancy” of AdS/CFT; we could implement the same bulk operator but considering a

different set of three legs propagating throughout the network, as a result, we would reach

a different corresponding boundary region and thus a different boundary representation.

Overall, the boundary operator is obtained from the network structure together with the

isometric embedding of the free bulk (indices) into the code subspace which is associated

with the boundary Hilbert space. In other words, although we obtain different boundary

operators depending on which set of legs we choose, every boundary operator reconstructed

this way acts on the code subspace in the same way.

In terms of AdS/CFT, one often requires that only a subalgebra of operators must

be protected and reconstructed. For instance, following the two operators depicted in

Figure 11, say that we are interested only in the blue operator which acts upon the central

free bulk index. In this case, the boundary subregion associated with the green operator

could be completely erased and have all information lost, regardless, we would be able to

reconstruct the blue operator in the boundary without any problems. The converse is also

true, had our interest been on the green operator instead, the entire boundary region that
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Figure 11 – Explicit reconstruction in the HaPPY code. The blue and green squares
represent operators being coupled with the free bulk (logical) index. The
isometric perfect tensor structure is exploited in order to carry on with the
contractions.
Source: PASTAWSKI. (31)

supports the blue operator could be erased. Furthermore, there is an associated degree of

protection associated with how deep one operator is within the bulk. It is clear that if a

random piece of the boundary is lost, it is way more likely that the support of the green

operator will completely vanish than the support of the blue one. The framework that

rigorously describes the preservation of subalgebras of operators is the Operator Algebra

Quantum Error Correction (see section 3.4).

4.3 Symmetries in AdS/CFT

The concept of symmetry is one of the most important concepts in physics, partic-

ularly in the context of field theories. With that said, it is no surprise that symmetries

play a fundamental role in quantum gravity and the AdS/CFT correspondence. There

are conjectures about symmetries in quantum gravity that have become almost folklore

for theoretical physicists, in the sense that it is agreed that they are true but their proof

remains elusive. One striking conjecture with deep implications is that global symmetries

are incompatible with a consistent theory of quantum gravity. Recently, by using modern

tools from AdS/CFT and quantum error correction, Harlow and Ooguri (40,41) showed

that indeed global symmetries cannot exist in AdS/CFT. In this section, we will reproduce

their argument and propose a slightly different interpretation that, despite leading to
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the same conclusion, may be rephrased in terms of quantum resource theories and thus

explored in this context. First of all, we must precisely define what we mean by “global

symmetry”.

Definition 4.3 (Global symmetry). A quantum field theory has an (internal, zero-form)

global symmetry with symmetry group G if, on the manifold Rd, the following are true:

1. There exists a homeomorphism U(g) from G to the set of unitary operators on HRd ;

2. U †(g)A(R)U(g) = A(R), ∀ R ⊂ Rd, ∀ g ∈ G, where A(R) denotes a von Neumann

algebra on the region R;

3. ∀ g ̸= e, there exists an operator O(x) such that U †(g)O(x)U(g) ̸= O(x);

4. U †(g)Tµν(x)U(g) = Tµν(x), ∀ g ∈ G, where Tµν(x) denotes the energy momentum

tensor at a spacetime point x ∈ Rd.

The first condition requires the existence of the homeomorphism, one could ask for a

representation instead; however, representations must be continuous and therefore impose

a stronger requirement. The second requires that the algebra is conserved, that is, by

applying symmetry transformations we cannot increase or decrease the number of operators

that belong to the algebra. The third represents the uniqueness of the group element,

the homeomorphism is said to be faithful whenever this condition is satisfied. The last

condition implies conservation of the energy content, in a slightly more general fashion

than the typical criteria of commuting with the Hamiltonian. It is important to mention

that gauge symmetries do not satisfy this definition of “global symmetry”, there are several

subtleties associated with gauge symmetries in this context which are beyond the scope of

this work, one must take into consideration Wilson and ’t Hooft lines, as well as so-called

“operator dressings”.

The next important definition to carry on the argument concerns the so-called

splittability property of global symmetries. (113–115)

Definition 4.4 (Splittability). A given global symmetry is said to be splittable on an

arbitrary differential spatial manifold Σ if, ∀ R ⊂ Σ, ∀ g ∈ G, there exists a homeomorphism

U(g,R) such that

U †(g,R)OU(g,R) =


U †(g,Σ)OU(g,Σ), O ∈ A(R)

O, O ∈ A(int(Σ\R))
(4.18)
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where A denotes a von Neumann algebra and int(Σ\R) denotes the interior of the spatial

manifold Σ excluding the region R. As a consequence, if we have the union of disjoint

regions Ri, the symmetry operators can be written as

U(g,∪iRi) =
∏

i

U(g,Ri), (4.19)

this manifestation of splittability is essential for the argument.

Let us say we have an algebra of operators A on a bulk region a0 with a global

symmetry. The bulk homeomorphism is denoted by UL(g) and the AdS/CFT structure

implies that there exists a corresponding global symmetry homeomorphism UCF T (g)

that applies the symmetry transformation over an algebra of operators in the boundary.

Furthermore, the boundary CFT is indeed a quantum field theory and the definition of

splittability is satisfied, hence the CFT symmetry can be written as

UCF T (g) =
⊗

i

Wi(g), (4.20)

where each Wi(g) operator has support over a small boundary region Ai, we denote the

causal wedge of each Ai region as ai. The setup is shown in Figure 12.

The bulk operators are symmetric under a global transformation, and according

to Noether’s theorem, they must be charged as the symmetry has a Noether current

associated with it, given by

U(g,Σ) ∼ exp
(
iϵa
∫

Σ
⋆Ja

)
,

this implies that every bulk operator that belong to the algebra A(a0) is charged, and the

total charge of the global symmetry is Q. In the same way, it is expected that the global

symmetry on the CFT has the same charge Q, however, given the splittability condition,

this charge must be distributed over the CFT boundary regions Ai. Therefore, we should

expect Q = ∑
i Qi, where each Qi is associated with a corresponding boundary region Ai.

From the AdS-Rindler reconstruction procedure, we have seen that a necessary

condition for reconstruction of an operator is that it must lie within the causal wedge

of the associated boundary region, e.g., bulk operators in a1 can be reconstructed in the

boundary region A1. In our case, we may split the boundary k times in a way that not

a single charged operator from the algebra A(a0) is contained inside any causal wedge
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Figure 12 – Illustration of the setup regarding the incompatibility between global sym-
metries and AdS/CFT. The assumption is that there is an algebra A of
charged operators on a0, the corresponding global symmetry unitary on the
CFT is splittable and can be written as a tensor product ⊗iWi(g), where
each individual Wi(g) has support only on the corresponding Ai region of
the boundary. Each boundary region Ai is associated with a causal wedge
ai. Given the AdS-Rindler reconstruction procedure, there are no charged
operators in any causal wedge ai (i ̸= 0), and thus the total charge according
to the CFT side must be zero. This contradicts the fact that there exists an
algebra of charged operators in the bulk. As a consequence, global symmetries
cannot be compatible with the structure of the AdS/CFT correspondence.
Source: FAIST. (45)

from any of the {Ai} regions7. In other words, each boundary region Ai “sees” no charged

operators as there are indeed no charged operators on ai (i ̸= 0), and thus the individual

charge Qi of each boundary region Ai must be zero. As the global charge of the CFT

symmetry is the sum of the individual charges, and each charge is zero, we conclude that

the global charge is zero. This clearly contradicts the fact that there is a charged algebra

of operators in the bulk, and thus, one concludes that non-trivial global symmetries cannot

be consistent with the AdS/CFT structure.

This is the argument provided by Harlow and Ooguri, it relies on two important

assumptions that seem quite reasonable, namely, that AdS-Rindler reconstruction works

exactly and that the CFT operator is splittable. The error correction argument is present

in the AdS-Rindler reconstruction. We argued that there were no charged operators on any

7 This argument is robust in the sense that we can enlarge the bulk algebra as much as we want,
as long as it remains finite, because we can always split the boundary even more, certifying
that no bulk operators lie inside any causal wedge.
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causal wedges, which implied that the CFT operator was not charged, in contradiction

with the algebra of charged operators in the bulk. We like to think about this result in a

slightly different way, motivated by the so-called Eastin-Knill Theorem (42), which we

discuss next.

4.3.1 The Eastin-Knill result

This result is one of the central results of quantum error correction theory. In many

aspects, it is quite unfortunate because it is a no-go result (42) which severely constrains

what can be done in error correction.

Theorem 4.5. No quantum error-correcting code can exactly correct errors, possess a

continuous symmetry and implement a universal set of gates that act transversely on

physical qubits.

In other words, this result implies that we cannot build a quantum code that has the

three following properties simultaneously: exact error correction, continuous symmetries

and transversal gates. As such, in order to create quantum codes, we must give up on one of

those requirements. There are pros and cons to each requirement, however, some are more

impactful than others. In a nutshell, one does not want to give up on transversal gates,

because this condition is essential for assuring that errors will not propagate throughout

the computation, and this is precisely the idea behind fault tolerance. This way, it is clear

that one must give up on either exact error correction or continuous symmetries. There

have been several recent works (44–46,48,49) exploring both possibilities. In particular,

we use those ideas to motivate the introduction of quantum resource theories in the next

chapter, where we intend to study how the “lack of symmetry” and the “lack of exact

correction” can be rephrased in this context.

Going back to the holographic argument, we interpret that “global symmetries are

incompatible with AdS/CFT” is a particular realization of the Eastin-Knill theorem. In the

original argument, we had splittable CFT operators and exact AdS-Rindler reconstruction

which led to global symmetries being incompatible. However, we can reinterpret those

quantities in contrast to what the Eastin-Knill theorem proposes. The exact correction

part is analogous to the exact AdS-Rindler reconstruction, and the splittability condition

for the boundary symmetry is analogous to the transversal gate implementation. As a
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consequence, global symmetries are “incompatible”, just like continuous symmetries are

incompatible for a quantum code if we demand exact error correction and transversal gate

implementation.

The Harlow-Ooguri argument can, therefore, be seen as a version of the Eastin-Knill

theorem where they were not willing to give up on both exact AdS-Rindler reconstruction

(exact error correction) and splittability (transversal gates), and consequently, they were

left with the option that global symmetries (continuous symmetries) were no longer

possible.

It would be very interesting to study what could happen if, for instance, we had an

approximate version of AdS-Rindler reconstruction, would that allow global symmetries

(in some form, e.g. asymptotically)? What about a splittable CFT operator up to some

factor? With those questions in mind, we motivate the introduction of quantum resource

theories in Chapter 5 to study approximate error correction and asymmetry. Despite recent

progress (116,117), the regime of validity of the AdS-Rindler procedure is still unknown,

let alone if approximate AdS-Rindler works.
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5 USING RESOURCES TO OUR ADVANTAGE: A TESTIMONY FROM A QUAN-
TUM INFORMATION THEORIST

“Dream Team da rima, essa união me dá alta estima

Mestre das armas do microfone à esgrima

Vê se me entende, o estudante aprende

O professor ensina.”

Sabotage

In this chapter, motivated by the results about global symmetries in AdS/CFT and

the Eastin-Knill theorem, we introduce the concept of quantum resource theories (QRTs)

and discuss how this framework may be employed to systematically characterize approx-

imations and asymmetry in quantum error correction. We also propose a new distance

measure based on sub- and super-fidelities which can be used to bound approximations in

quantum error correction. Beyond measuring distances, those bounds generate a legitimate

metric, which means that they can be employed to explore the underlying geometry. We

calculate our bounds for three quantum channels that commonly arise in the theory of

error correction: the dephasing, depolarizing, and the amplitude damping channels.

5.1 Quantum resource theories in a nutshell

Quantum resource theories are a robust and versatile framework to study generic

phenomena in quantum information theory. (43) The idea is to quantify a given desirable

quantum effect, develop protocols to manipulate such effects, and identify optimized

processes for certain applications. The methodology consists of classifying all possible

quantum states of the system into free states or resource states. Tied with free states,

there is a set of free operations that arise from natural physical constraints of the system.

The resource theory essentially tells us which state manipulation processes are possible

using certain restricted or free operations. There are several robust resource theories

that describe a large variety of phenomena, such as entanglement (118,119), coherence

(120), asymmetry and quantum reference frames (50, 51), non-locality (121), quantum

thermodynamics (122,123), and quantum channels. (47,124)

There are several advantages to reinterpreting the study of certain quantum
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phenomena in terms of resource theories. First of all, there are results, theorems and

corollaries which are valid for every resource theory, therefore, once it is shown that the

quantum phenomena can be cast as a resource theory, there is a large set of tools at

the disposal. Furthermore, it is possible to explore many emergent similarities between

different physical phenomena which, in principle, had no relation whatsoever, but once

they are rephrased as resource theories, similarities become evident. There is also very

rich literature exploring the relations between different resource theories, see for instance.

(125–129) From a practical standpoint, resource theories tell us how to quantify the amount

of resources and how to convert those into useful operations. Let us state precisely what

we mean by a quantum resource theory.

Definition 5.1. (Quantum Resource Theory). Let A and B denote two physical subsys-

tems, and HA, HB be their corresponding Hilbert spaces. Let Φ be a map that assigns a set

of completely positive and trace preserving (CPTP) maps, Φ(HA → HB) ⊂ L(HA → HB).

Let F be a map induced as F(H) := Φ(C → H) for an arbitrary Hilbert space H. If the

two following properties are satisfied,

1. For every physical subsystem A, 1A ∈ Φ(HA → HA);

2. For any three physical subsystems A, B, and C; σ ∈ Φ(HA → HB), Λ ∈ Φ(HB →

HC) ⇒ (σ ◦ Λ) ∈ Φ(HA → HC),

then the set (F ,Φ) is called a quantum resource theory.

The set F(H) ⊂ L1(H) defines the set of free states in H, and CPTP maps in

Φ(HA → HB) are called free operations. States that belong to L1(H)\F(H) are called

resource states in H. CPTP maps that do not belong in the set of free operations are

called dynamical resources or resource operations.

Although the definition of a QRT looks quite abstract at first glance, the two

requirements simply state that the identity is always a free state and that the composition

structure of CPTP maps is preserved, that is, the composition of free operations is also a

free operation. Operations are “free” in the sense that they may be realized any number of

times in any order and do not consume resources, at the same time, they cannot convert

any non-free state into a free state. For example, say we have two subsystems A and B, if
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ξ ∈ Φ(HA → HB) and ρ ∈ F(HA), then ξ(ρ) ∈ F(HB). This property is sometimes called

the golden rule of QRTs.

The structure presented so far is already robust enough to describe many different

phenomena. (130) Nonetheless, in the resource theories we are interested (asymmetry, and

to some extent, coherence), it is necessary to add an extra requirement related to a tensor

product structure.

Definition 5.2. (QRT with tensor product structure). A quantum resource theory (F ,Φ)

admits a tensor product structure if

1. For any three physical subsystems A, B, and C, and for ξ ∈ Φ(HA → HB), then

(1C ⊗ ξ) ∈ Φ(HCA → HCB), where 1C denotes the identity on subsystem C;

2. ∀ σ ∈ F(HB), the CPTP map ξρ = (ρ⊗ σ) is a free operation, that is,

ξρ ∈ Φ(HA → HAB);

3. ∀ H, the set Φ(H → R) is not empty.

Once again, those conditions are quite natural in the sense that those properties are

expected for a large number of physical phenomena. The first condition simply implies

that free operations remain free once they act only on a part of a joint system. One may

think of the first condition as if ξ ∈ Φ(HA → HB) and ξ′ ∈ Φ(H′A → H′B) are both free,

then (ξ⊗ ξ′) = (1B ⊗ ξ′) ◦ (ξ⊗ 1A) must be free. This follows from the definition of a QRT,

where the composition of free maps is also free and coupling a free map with the identity

is a free operation. The second condition requires that attaching an auxiliary subsystem is

a free operation and the third requires that discarding a subsystem is a free operation. A

practical way to rephrase the third condition is to recognize that the partial trace is a free

operation, following from the first and third properties of Definition 5.2. Now, we shall

explore a particular resource theory with rich applications in quantum error correction,

namely, the asymmetry resource theory.

5.2 The asymmetry resource theory

“Symmetric states are all alike; every asymmetric state is asymmetric in its own way.”

Anna Karenina (not quite)
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Given the general definitions of the previous section, we are now ready to explore

the resource theory of asymmetry, which is the resource-theoretic formulation of the study

of reference frames, symmetries and covariant operations. In particular, we want to explore

how asymmetry (or lack of symmetry) may be used in the context of error correction. The

discussion on quantum reference frames and symmetries begins with the dispute between

speakable and unspeakable information. (51)

Whenever we are dealing with speakable information, the means of encoding is

irrelevant to the information processing task at hand. For instance, in Shannon’s coding

theorem (131), it does not matter what the two values of 0 and 1 of a classical bit represent,

as the whole information can be transmitted simply by sharing strings of bits. A large

number of information processing tasks belong to this class.

Nonetheless, there are several information processing tasks of high interest which

cannot simply be stated in such a way. For example, synchronization of clocks or the

alignment of Cartesian frames. Say that we have two parties, which we will call Luíza and

Vitor. Say that Luíza wants to send Vitor information about her position (and they do

not share a pre-aligned reference frame), there is no way that Luíza can precisely describe

her position by just sending strings of classical bits of information. She must also include

some sort of system which points toward some direction and say her position in relation

to this direction; this system must have a degree of freedom that allows the encoding of

this information, for example, she cannot use a spherically symmetry system to “point” at

some direction. Those information processing tasks are called unspeakable.

There are two natural resource-theoretic approaches to describing speakable infor-

mation and unspeakable information. In the former case, one employs the resource theory

of coherence (120); in the latter, one employs the resource theory of asymmetry. (50) In

fact, as argued in (51, 132), one can transform unspeakable information into speakable

information through the insertion of a reference frame. The “unspeakable coherence”

resource theory1 is what we study next.

Consider two parties, Luíza and Vitor, that do not share a common reference frame.

Given a compact symmetry group G and unitary representations U(g), ∀ g ∈ G, such

1 Also known as asymmetry resource theory.
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that if ρ ∈ L1(H) is the density matrix that characterizes Luíza’s state, then

Ug(ρ) := U(g)ρU †(g) (5.1)

is the state described by Vitor. Suppose that Luíza has no information whatsoever about

g; her description of Vitor’s density matrix is obtained through the integration over all

possible g, in other words, over the Haar measure

G(ρ) =
∫

G
Ug(ρ) dg (5.2)

where dg denotes the Haar measure (for details, see Appendix C). For discrete groups, the

result is same but with a sum over g (for g = 1, ..., dim G) in place of the integration. The

map G(·) is called the G-twirling map and plays a key role in asymmetry resource theory.

The basic idea of asymmetry resource theory is that lack of a shared reference

frame naturally imposes a restriction on the types of states that Luíza can prepare in

relation to Vitor’s reference frame. In particular, she can only prepare states using the

G-twirling map, and states prepared this way constitute the free states of the resource

theory:

F(H) := {G(ρ) | ρ ∈ L1(H)}. (5.3)

States that satisfy the property ρ = G(ρ) are called G-invariant states. On top of

that, representation theory (89) may be used to further characterize free states of the

resource theory. Following (51), we may decompose the Hilbert space into its irreducible

representations as

H =
∑

k

Hk :=
∑

k

Mk ⊗ Nk, (5.4)

where Mk denotes the representation space and Nk denotes the multiplicity space. As an

example, we may take G = U(1). The unitary representation is simply Uθ = ein̂θ where

θ ∈ U(1) and n̂ denotes the number operator. All irreducible unitary representations of

U(1) can be labelled by the eigenvalue of the number operator, e.g. n ∈ N. In this case, a

pure state is given by |ψ⟩ = ∑
n

√
pn|n⟩ and the action of the G-twirling map produces

the state

G(|ψ⟩⟨ψ|) =
∑

n

pn|n⟩⟨n|. (5.5)

The form of this state points toward a so-called superselection rule which means that the

lack of a shared reference frame imposes a constrain on which sort of states Luíza can

prepare. For instance, Luíza cannot prepare states that are in a U(1)-coherent superposition
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in eigenstates of the number operator, because those cannot be generated through a G-

twirling map and thus are not free states.

Now we discuss how free operations are realized in the asymmetry resource theory.

Once again, we have our favorite players Luíza and Vitor. Say that Vitor possesses a

state σ ∈ L1(H) and Luíza wants to perform a CPTP operation ξ : L(H) → L(H) on her

reference frame. How does Luíza describe the initial and final states on her reference frame?

What about Vitor? In this setup, there are three quantities one would be interested:

• Luíza’s description of the initial state: U †g (σ);

• Luíza’s description of the final state: ξ ◦ U †g (σ);

• Final state relative to Vitor’s reference: Ug ◦ ξ ◦ U †g (σ);

in particular, Vitor and Luíza will agree upon the description of the CPTP map only if

her operation is of the form ∫
G

Ug ◦ ξ ◦ U †g dg (5.6)

which is precisely the description of Luíza’s operation from Vitor’s point of view if he does

not know which g ∈ G relates the two reference frames. Hence he must calculate the Haar

integral averaging over all possible group elements. Channels that satisfy the structure of

equation (5.6) are precisely the free operations of the asymmetry resource theory. In other

words, we can define the set of free operations as

Φ(H) := {ξ is CPTP | [ξ,Ug] = 0}. (5.7)

Quantum channels that satisfy the property ξ =
∫

G Ug ◦ξ ◦U †g dg are said to be G-covariant.

Up to this point we have considered channels whose input and output Hilbert

spaces have the same dimension, this is not a necessary condition, we can extend this

notion for Hilbert spaces of different dimensionalities (as long as they are finite). For

instance, a quantum channel ξ : HA → HB is said to be G-covariant with respect to the

unitary representations {UA(g)}g∈G and {UB(g)}g∈G of the Hilbert spaces HA and HB,

respectively, if

ξ ◦ UA
g = UB

g ◦ ξ, ∀ g ∈ G. (5.8)

This extension is particularly important in the context of quantum error correction, where

one deals with a physical Hilbert space and a logical Hilbert space with different dimensions.
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ρ Ug(ρ)

ξ(ρ) ξ ◦ Ug(ρ), Ug ◦ ξ(ρ)

g

Evolution Evolution

g

Figure 13 – Diagram which summarizes the asymmetry resource theory. Given a state
ρ, it can evolve under a CPTP map ξ or one could employ a symmetry
transformation according to a group G and its corresponding unitary Ug. If
the diagram commutes, then the ρ state is a free state and is G-invariant
whereas the quantum channel ξ is a free operation and is G-covariant.
Source: By the author.

In summary, in the asymmetry resource theory, the set of free states consists of the

states that are symmetric under the unitary transformations U(g) related to a symmetry

group G; the set of free operations consists of CPTP maps that are symmetric under

unitary compositions described by Ug which are related to a symmetry group. A schematic

representation of the asymmetry resource theory can be seen at Figure 13.

The introduction of an asymmetry resource theory is motivated by the description

of physical systems that lack a shared reference frame, however, applications of this

resource theory go well beyond the original context. In particular, we employ this resource

theory to study covariant and approximate quantum error-correcting codes in the next

section.

5.3 Covariant codes and approximate error correction

With the foundations of quantum resource theories and, in particular, the asym-

metry resource theory at hand, we are ready to enhance our discussion of quantum error

correction. Covariant codes are quantum codes that possess a symmetry transformation

on the logical subspace (or the logical subsystem) that is realized by a corresponding

symmetry on the physical space (or the physical subsystem). This is accomplished in a

fault-tolerant way through the transversal implementation of a universal set of logical

gates, because if one particular realization of the logical gate in the physical system is

faulty, the error does not propagate. Unfortunately, the Eastin-Knill theorem forbids such

realization if one demands exact error correction, therefore, the study of covariant codes is

inevitably tied down to the study of approximate error-correcting codes. We now precisely
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define what we mean by “covariant codes” and “approximate error correction”.

We employ a formalism that closely follows the Operator Algebra formalism (see

section 3.4), with a slightly different notation. A quantum error-correcting code consists

of a physical subsystem A (and its corresponding finite-dimensional Hilbert space HA)

which is the image of an CPTP map called the encoding channel that acts upon the logical

subsystem L (and its corresponding finite-dimensional Hilbert space HL). We assume that

the physical subsystem consists of n smaller subsystems such that A = ⊗n
i=1Ai. We denote

this encoding channel as EA←L and say that the code is covariant if

EA←L ◦ U θ
L = U θ

A ◦ EA←L (5.9)

where the symmetry unitaries act as U θ
L(·) = U θ

L(·)U θ†
L and U θ

A(·) = U θ
A(·)U θ†

A . Using the

exponential map, the unitaries can be written as U θ
L = e−iTLθ and U θ

A = e−iTAθ, where

TL is the generator of the symmetry over the logical subspace, TA is the generator of the

symmetry over the physical subsystem, and θ ∈ G is the group parameter. The covariance

condition from equation (5.9) may also be cast as

EA←L[UL(g)(·)U †L(g)] = UA(g)EA←L(·)U †A(g). (5.10)

In terms of the asymmetry resource theory (see section 5.2), free states are symmetric

states which means that they commute with the symmetry generators

[ρ, TL] = 0, [ρ, TA] = 0, (5.11)

and the free operations are symmetric operations, in the sense of equations (5.9, 5.10).

A covariant code is error-correcting if, given a CPTP map NA which acts upon

the physical subsystem A and models the noise, there exists another CPTP map RL←A

such that

RL←A ◦ NA ◦ EA←L = 1L. (5.12)

In practice, the Eastin-Knill theorem does not allow such codes to exist, and this is exactly

where approximate error correction enters. Instead of recovering precisely the logical

identity on equation (5.12), we have

RL←A ◦ NA ◦ EA←L = IL ̸= 1L. (5.13)
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The condition (5.13) is the statement of approximate error correction. The natural question

to ask is “how approximate” is the code? In other words, how far2 is the quantum channel IL

from the logical identity? In principle, there are several ways to quantify this approximation,

and the overwhelmingly popular approach in the literature (44,45,47,48) is through the

use of fidelity. We will call the typical procedure adopted in the literature as the “standard

approach”.

Fidelity is a measure of distinguishability between quantum states, formulated as

we know in (133,134), with its historic beginnings tracing back to. (135–137) Given two

quantum states ρ, σ ∈ L1(H), their fidelity is defined as

F (ρ, σ) :=
[
tr
(√√

ρσ
√
ρ
)]2

. (5.14)

The fidelity has the following several desirable properties (in what follows, we always take

∀ ρ, σ, τ, µ ∈ L1(H), ∀a ∈ [0, 1] ⊂ R):

1. Bounds: 0 ≤ F (ρ, σ) ≤ 1, with F (ρ, σ) = 1 ⇔ ρ = σ and F (ρ, σ) = 0 ⇔ the support

of ρ and σ are orthogonal;

2. Symmetry: F (ρ, σ) = F (σ, ρ);

3. Unitary invariance: F (ρ, σ) = F (UρU †, UσU †), ∀ U unitary;

4. Concavity: F (ρ, aσ + (1 − a)τ) ≥ aF (ρ, σ) + (1 − a)F (ρ, τ);

5. Multiplicativity: F (ρ⊗ σ, τ ⊗ µ) = F (ρ, τ)F (σ, µ);

6. Monotonicity: F (ρ, σ) ≤ F (E(ρ), E(σ)), ∀ E ∈ L(H) CPTP map.

In the standard approach, one defines the approximation error as

ϵ(IL,1L) :=
√

1 − F (IL,1L), (5.15)

that is, one calculates the square root of one minus the fidelity between the code IL and

the logical identity 1L acting implicitly in a quantum state. If the code recovers precisely

the logical identity, it means that the error correction is exact and thus the approximation

error (5.15) is zero. On the other hand, if somehow the code has an orthogonal support

with respect to the logical identity, the fidelity is zero and the approximation error is

maximum.
2 Note that in the definitions of covariant and approximate quantum error-correcting codes

there is an implicit quantum state under consideration. That is, we must have a logical state
ρL in which the channels EA←L, NA and RL←A will act upon.



84

Although the fidelity properties are quite useful which makes fidelity (and the

error approximation) good measures of quantum state distinguishability, there is a serious

drawback that severely hinders its applicability scope. The definition of fidelity (5.14)

requires the computation of square roots of Hermitian matrices in successive manner, this

way, it is necessary to at least diagonalize an Hermitian matrix twice. As a result, the

fidelity can rarely be evaluated, which means that the the standard approach to define the

error approximation is of little use. With that in mind, we propose a different approach to

quantify the error approximation which will be explored in the next section.

5.4 Geometric bounds for approximate quantum error correction

Given the difficulties associated with evaluating the fidelity generically, we propose

two new distance quantifiers for quantum channels. In our proposal, we make use of two

quantities originally proposed in (52,53) called the sub-fidelity and the super-fidelity. We

begin by considering the former, which is defined as

E(ρ, σ) := tr(ρσ) +
√

2(trρσ)2 − 2tr(ρσρσ), (5.16)

and the latter is defined as

G(ρ, σ) := tr(ρσ) +
√

(1 − trρ2)(1 − trσ2). (5.17)

The sub- and super-fidelities are lower- and upper-bounds to the fidelity, respectively:

E(ρ, σ) ≤ F (ρ, σ) ≤ G(ρ, σ), (5.18)

and they inherit the following desirable properties (in what follows, we always take

∀ ρ, σ, τ, µ ∈ L1(H),∀ a ∈ [0, 1] ⊂ R):

1. Bounds: 0 ≤ E(ρ, σ) ≤ 1 and 0 ≤ G(ρ, σ) ≤ 1;

2. Symmetry: E(ρ, σ) = E(σ, ρ) and G(ρ, σ) = G(σ, ρ);

3. Unitary invariance: E(ρ, σ) = E(UρU †, UσU †) and G(ρ, σ) = G(UρU †, UσU †), ∀ U

unitary;

4. Concavity: E(ρ, aσ+ (1 − a)τ) ≥ E(ρ, σ) + (1 − a)E(ρ, τ), and G(ρ, aσ+ (1 − a)τ) ≥

G(ρ, σ) + (1 − a)G(ρ, τ);

5. Multiplicativity:
• Sub-fidelity is sub-multiplicative: E(ρ⊗ σ, τ ⊗ µ) ≤ E(ρ, τ)E(σ, µ);
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• Super-fidelity is super-multiplicative: G(ρ⊗ σ, τ ⊗ µ) ≥ G(ρ, τ)G(σ, µ).

Given the definitions and properties of sub- and super-fidelity, we are now ready to discuss

our proposal of distance measures:

Dsub(IL,1L) :=
√

1 − E(RL←A ◦ NA ◦ EA←L,1L) (5.19)

Dsuper(IL,1L) :=
√

1 −G(RL←A ◦ NA ◦ EA←L,1L) (5.20)

where we are taking the quantum channels to act upon some implicit quantum state and

IL = RL←A ◦ NA ◦ EA←L.

The relation between the newly proposed distances and the standard approach

error approximation is obtained from the fidelity inequalities (5.18) and the definition of

the error approximation (5.15), which yields

Dsuper(IL,1L) ≤ ϵ(IL,1L) ≤ Dsub(IL,1L). (5.21)

Therefore, the distance measures based on the sub- and on the super-fidelity are upper-

and lower-bounds, respectively. The inequalities are saturated when the sub- and the

super-fidelity recover the fidelity. Overall, this happens if at least one of the states is

pure3 or if both states are single-qubit states4. For error-correction applications, both

conditions are in general not satisfied, which means that the distance measures provide

powerful bounds to the error approximation. The great advantage of our proposal over the

fidelity-based error is the fact that calculating Dsuper and Dsub require only the evaluation
3 Note that the fidelity can be written in terms of the eigenvalues of the matrix

√√
ρσ

√
ρ, in

particular, it follows √
F (ρ, σ) = tr

√√
ρσ

√
ρ =

N∑
i=1

ai,

by considering that trρσ = tr
√√

ρσ
√

ρ =
∑N

i=1 λ2
i and squaring the above result, we obtain

F (ρ, σ) = trρσ + 2
∑
i<j

aiaj

where ai with i = 1, ..., N denotes the eigenvalues. In the case where one of the states is
pure, the sum over i and j such that i < j has only a single term 2aiaj =

√
2det(ρσ) =√

2det(ρ)
√

2det(σ).
4 For single-qubit states, the density matrices will be two-dimensional, and e.g. in the case of

the super-fidelity which rely on the purity of the density matrices, we recover

G(ρ, σ) = tr(ρσ) +
√

1 − trρ2
√

1 − trσ2 = tr(ρσ) + 2
√

det(ρ)
√

det(σ) = F (ρ, σ).

A similar line of reasoning recovers the fidelity out of the sub-fidelity.



86

of three traces, which is astonishingly easier to compute than the squares roots of successive

diagonalization of Hermitian matrices.

Furthermore, the bound related to the super-fidelity is geometric in the sense

that it can be used to measure distances and legitimately define a metric. For three

arbitrary quantum states ρ, σ, τ ∈ L1(H), it satisfies Dsuper(ρ, σ) ≥ 0 and Dsuper(ρ, σ) = 0

if and only if ρ = σ, it is symmetric Dsuper(ρ, σ) = Dsuper(σ, ρ), and last but not least it

also satisfies the triangle inequality, Dsuper(ρ, τ) ≤ Dsuper(ρ, σ) + Dsuper(σ, τ). (52, 53) The

second property follow by construction for the distance measure based on the sub-fidelity,

however, the distance based on the sub-fidelity is not positive semi-definite and thus does

not define a metric.

From the fact that the distance measure based on the super-fidelity define a metric,

it would be quite interesting to further enhance this result and see if it can be extended

to differential or Riemannian geometry. If that were the case, it would be possible to

reinterpret the robust machinery of charts, covariant derivatives, connections, geodesics,

curvature, and fiber bundles using concepts from quantum error correction and information

geometry.

In a more concrete sense, an immediate and desirable result would be to test the

new bounds “in action” and see the results they yield. With that motivation, we calculated

both distance measures for three quantum channels that frequently arise in the theory of

error correction: dephasing, depolarizing, and amplitude damping channels. Those results

are discussed in the following section.

5.5 Computing bounds

In this section, we put our proposal to the test by evaluating it with regards to

three typical quantum channels which model the “failure” of exact error correction. In

general, our results are valid for any finite-dimensional system, beyond the usual use of

fidelity for qubit states (restricted to 2−dimensional density operators).

For numerical computations, we adopted the calculations for five qubits (as we have

seen, five is a magic number of qubits, motivated by the five-qubit code) whose Hilbert

space is 32−dimensional. We also must adopt a “test” state, which is the initial state

that the quantum channels will act upon. There are several choices, we take a state which
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interpolates, with a parameter λ, between an arbitrary pure state |ψ⟩ and a maximally

mixed state 1N/N (1N denotes the N ×N identity matrix) as follows

ρ = λ|ψ⟩⟨ψ| + (1 − λ)1N

N
, (5.22)

with λ ∈ [0, 1]. Clearly, for λ = 1 our test state becomes a pure state and for λ = 0 our

state becomes the maximally mixed state. As the pure state |ψ⟩ is arbitrary, we have taken

it to be a N -dimensional5 GHZ state (138,139)

|ψ⟩ = 1√
2

(|0⟩⊗n + |1⟩⊗n),

for five qubits (n = 5), the GHZ state becomes |ψ⟩ = (|00000⟩+ |11111⟩)/
√

2 and the corre-

sponding density matrix is 32 × 32, every matrix element is zero except ρ(1,1), ρ(32,32), ρ(1,32)

and ρ(32,1), which are 1/2. As a consequence, we take N = 32 and consider a 32 × 32

identity matrix composing the test state (5.22).

As we are dealing with a composite system, the sum operator representation (see

equation 3.3) adopted must be modified accordingly. The quantum channels have local

action, which means that they act only on a single qubit at any given time. For illustration

purposes, consider a bipartite system whose state is ρAB. The sum representation of a

local quantum channel E becomes

E(ρAB) =
∑
i,j

(KA
i ⊗ 1B)(1A ⊗KB

j )ρAB(1A ⊗KB
j )†(KA

i ⊗ 1B)†, (5.23)

where KA,B
i,j denotes the pertinent Kraus operators. The structure for a system composed

of n qubits with the local action of the quantum channel is a generalization of the result

(5.23), that is,

E(ρA1...An) =
∑

i1,...,in

(KA1
i1 ⊗ 1A2 ⊗ ...⊗ 1An)(1A1 ⊗KA2

i2 ⊗ ...⊗ 1An)...(1A1 ⊗ 1A2 ⊗ ...⊗KAn
in

)

× ρA1...An(1A1 ⊗ 1A2 ⊗ ...⊗KAn
in

)†...(1A1 ⊗KA2
i2 ⊗ ...⊗ 1An)†(KA1

i1 ⊗ 1A2 ⊗ ...⊗ 1An)†.

(5.24)

Hereinafter, our work consists of taking n = 5 (remember the five-qubit code) in

equation (5.24) and computing the distance measures based on the sub- and super-fidelities
5 Dear reader, be careful: n denotes the number of qubits we will be dealing with. N denotes

the dimension of the matrices and states we will be dealing with. They are connected through
2n = N . In our case, five-qubits (n = 5) and matrices which are 32 × 32 (N = 32). We would
like to stress that this choice is merely for numerical purposes, as our results are valid for
arbitrary n.
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(Dsub and Dsuper, respectively) for a given set of Kraus operators. The calculation of the

distance measures will provide us the geometric bounds for the error approximation. What

changes from one quantum channel to the other is precisely the set of Kraus operators.

5.5.1 Geometric bounds for the dephasing channel

We begin with the dephasing channel, as it is the one with the least Kraus operators

in the sum representation we choose. Our choice consists of taking

K0 =

 1 0

0
√

1 − p

 , K1 =

 0 0

0 √
p

 ,
where p ∈ [0, 1] denotes the probability of the channel affecting the system.

The result for the distance measure based on the sub-fidelity, considering five qubits

with local action of the dephasing channel and initial state interpolating between a pure

GHZ state and a maximally mixed state (5.22), is given by

Dsub(Edeph(ρ), ρ) = 1
8

[(
62 − 2

(
15 + 16

√
1 − p

)
λ2 − 1

2 {(−1 + λ)[−31

−31λ− (869 + 960
√

1 − p+ 16p)λ2 + (931 + 960
√

1 − p− 496p)λ3]
}1/2

]1/2
, (5.25)

and for the super-fidelity based measure we obtain

Dsuper(Edeph(ρ), ρ) = 1
4
√

2

√
31 − (15 + 16

√
1 − p)λ2 −

√
31(1 − λ2)

√
31 + (−31 + 16p)λ2.

(5.26)

Those results provide us bounds for the error approximation whenever we model the

resulting composition of quantum channels RL←A ◦ NA ◦ EA←L to be a dephasing channel.

For concreteness, we look for the numeric behavior of the geometric bounds,

equations (5.25, 5.26), with respect to the two free parameters: the mixture of the initial

state (parameter λ in equation 5.22) and the probability p (see Kraus operators of the

dephasing channel). The distance measure based on the sub-fidelity will provide us the

error upper-bound and the one based on super-fidelity the error lower-bound.

We start by considering variations of the geometric bounds with respect to the

mixture λ, to accomplish that, we fix p = 0.2 and run the numerical simulation, whose

result is shown in Figure 14.
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Error upper- bound

Error lower- bound
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Figure 14 – Bounds for the error approximation considering the dephasing channel. In this
realization, the mixture λ of the initial state is a free parameter whereas the
probability is fixed p = 0.2. The possible values for the error approximation
are shaded light blue.
Source: by the author.

For λ close to zero, the initial state is “almost” maximally mixed and the geometric

bounds are not very restrictive. On a second note, as λ goes to 1, the initial state becomes

more and more pure, to the point where it becomes a completely pure GHZ state for λ = 1.

As a consequence, the sub- and the super-fidelity become the fidelity, and the two bounds

converge to a single value.

The second analysis we employ concerns the behavior of the geometric bounds in

relation to the probability p that characterizes the quantum channel. In this instance, we

fix λ = 0.7 and run the numerical simulation, with result displayed in Figure 15.

Error upper- bound

Error lower- bound
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0.2

0.4
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0.8

Figure 15 – Bounds for the error approximation considering the dephasing channel. In
this realization, the probability p of the quantum channel is a free parameter
whereas the initial state mixture is fixed λ = 0.7. The possible values for the
error approximation are shaded light blue.
Source: by the author.



90

We observe that the probability “modulates” the possible numerical values for the

geometric bounds, but it is not possible to conclude whether or not the bounds are more

limiting in certain regions of values for p. Clearly, the numerical values for the bounds

increases as p increases, in other words, the error approximation gets higher as we take

larger values of p. This is precisely what one would expect from a practical point of view,

as the more likely errors are to occur, the more likely the final and initial states will be

distinct, which implies larger approximations because the error approximation is nothing

but a measure of how distinct two quantum states are.

Moreover, our result also satisfies another important eye-test: the value p = 0 is

equivalent to the channel not happening at all, which means that the sub-fidelity and the

super-fidelity are evaluated for two equal states. The super-fidelity for two equal states

is always one6, which implies that its associated geometric bound must be zero; this is

exactly the result we obtained. Unfortunately, the sub-fidelity is, in general, not equal

to one if the two states are equal and thus nothing can be said about its distance based

measure.

Given that the dephasing channel and our initial state rely solely on two parameters,

we can explore the resulting numerical bounds whilst we vary both simultaneously. By

letting both p and λ run from 0 to 1, we obtain the plot of Figure 16.

For a fixed p, the value of the mixture significantly changes the sharpness of the

geometric bounds; moreover, the two bounds converge to the same unique value whenever

λ = 1, this property is irrespective of p, but the value itself in which the bounds converge

depends on the value of p. In more geometrical terms, the two hyperplanes have a common

end-line (they intersect each other) whose value varies with p. On the other hand, the

range of possible values for the error approximation is influenced by the value of the

probability, in particular, smaller p allows for a range of smaller values; whereas as p goes

to 1, the allowed values increases, as it is more likely that errors will occur, resulting in

overall higher approximations.

6 It follows from the definition: G(ρ, ρ) = trρ2 +
√

1 − trρ2
√

1 − trρ2 ≡ 1.
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Figure 16 – Bounds for the error approximation considering the dephasing channel. In
this realization, both the probability p and the initial state mixture λ are
free parameters. The possible values for the error approximation are within
the volume delimited by the upper-bound hyperplane (orange) and the lower-
bound hyperplane (blue).
Source: by the author.

5.5.2 Geometric bounds for the depolarizing channel

The second quantum channel we consider is the depolarizing channel, whose Kraus

operators can be written as

K0 =
√

1 − 3p
4

 1 0

0 1

 , K1 =
√
p

4

 0 1

1 0

 ,

K2 =
√
p

4

 0 −i

i 0

 , K3 =
√
p

4

 1 0

0 −1

 ,

where p ∈ [0, 1] denotes the probability. It is worth mentioning that one could write the

Kraus operators compactly through the use of Pauli matrices.

We begin with the results for the geometric bounds as functions of the parameters

λ and p. Once again, we consider five qubits with initial state (5.22) and local action of
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the quantum channel. The distance measure based on the sub-fidelity is given by

Dsub(Edepo(ρ), ρ) = 1
16
[
248 − 248λ2 + 4p(1 + 47λ2) −

[
(−1 + λ)

(
4p(31 + 31λ+ 2293λ2

−2867λ3) + 124(−1 − λ− 59λ2 + 61λ3) + p2(−31 − 31λ− 2725λ2 + 4323λ3
)]1/2

]1/2
,

(5.27)

and the calculation for the super-fidelity yields

Dsuper(Edepo(ρ), ρ) = 1
8

[
62 + p− 62λ2 + 47pλ2 −

√
31(1 − λ2)

×
√

−124 (−1 + λ2) + 4p (1 + 47λ2) − p2(1 + 95λ2)
]1/2

. (5.28)

For the depolarizing quantum channel, the first numerical analysis we employ consists of

solving equations (5.27, 5.28) while varying λ from 0 to 1 with fixed value p = 0.2 for the

probability. The numerical experiment is illustrated in Figure 17.

Error upper- bound

Error lower- bound
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Figure 17 – Bounds for the error approximation considering the depolarizing channel. In
this realization, the mixture λ of the initial state is a free parameter whereas
the probability is fixed p = 0.2. The possible values for the error approximation
are shaded light blue.
Source: by the author.

The behavior of the geometric bounds for the depolarizing channel is quite similar

to the one for the dephasing channel. For small λ, which means an initial state close to

maximally mixed, the bounds are not restrictive at all; nonetheless, as the initial state

mixture goes towards 1, the bounds gets more and more restrictive, which implies that

the range of allowed values for the error approximation diminishes. In particular, the sub-

and super-fidelity based measures converge to the same value whenever the initial state

is completely pure. This is in accordance with the definition of sub- and super-fidelities,

as we have seen, whenever one of the two states is completely pure, they reduce to the

fidelity, which means that both bounds from equation (5.18) are saturated.
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Just like for the dephasing channel, it is also important to see the effect that the

probability p has over the geometric bounds. For that matter, we fix λ = 0.7 and vary p

from 0 to 1. The results are revealed in Figure 18.

Error upper- bound

Error lower- bound
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Figure 18 – Bounds for the error approximation considering the depolarizing channel. In
this realization, the probability p of the quantum channel is a free parameter
whereas the initial state mixture is fixed λ = 0.7. The possible values for the
error approximation are shaded light blue.
Source: by the author.

The effect that the probability has over the bounds is once again “modulating” the

possible numerical values. The overall effect is to increase the numerical values as we go

from a smaller probability to a higher probability of the quantum channel action. Such

result is expected, as the larger the value of p, the more likely the error to occur, and thus

more likely that the final state is different from the initial state. If we take p = 0, this

amounts to the channel not happening at all, as such, the final state will be exactly the

initial state, the super-fidelity is one and its associated distance measure is zero. This is

exactly what is observed. The sub-fidelity does not capture this behavior and we cannot

conclude anything else from the geometric upper-bound.

The icing on the cake of our analysis is understanding how the geometric bounds

vary when both parameters are free. We vary λ and p to obtain the numerical simulation

exhibited in Figure 19.
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Figure 19 – Bounds for the error approximation considering the depolarizing channel. In
this realization, both the probability p and the initial state mixture λ are
free parameters. The possible values for the error approximation are within
the volume delimited by the upper-bound hyperplane (orange) and the lower-
bound hyperplane (blue).
Source: by the author.

The behavior observed in the joint analysis is straightforward, for any fixed λ, we

obtain the influence of p on the bounds; for any fixed p, we obtain the influence of λ. The

remarkable features may all be recovered. For small λ, the bounds are not restrictive at

all and they become sharper as λ increases. For λ = 1, the two hyperplanes converge to a

line whose value depends solely on p. The features of p are also recovered: for p = 0, the

lower hyperplane indicates that the super-fidelity based measure is zero; for increasing p,

the overall range of values of the error approximation increases accordingly.

5.5.3 Geometric bounds for the amplitude damping channel

The third and last example we discuss is the amplitude damping channel. In the

sum representation, its Kraus operators are given by

K0 = √
p

 1 0

0
√

1 − γ

 , K1 = √
p

 0 √
γ

0 0

 ,

K2 =
√

1 − p

 √
1 − γ 0

0 1

 , K3 =
√

1 − p

 0 0
√
γ 0

 ,
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where p ∈ [0, 1] denotes the probability and γ ∈ [0, 1] denotes the “strength” of the

damping. The two main differences of this channel7 in comparison to the previous ones

we have discussed is the fact that it is not unital, which means that it does not map the

identity to itself, and that it has one extra free parameter.

The closed form for the sub-fidelity based measure, considering five qubits with

local action of the amplitude damping channel and initial state (5.22) is

Dsub(EAD(ρ), ρ) = 1
8

{
62 − 2(15 + 16

√
1 − γ − 8γ)λ2 − 1

2
[
(−1 + λ)

(
−64γλ2 [−7

+(15 + 8
√

1 − γ)λ
]

+ γ2
(
1 + 4(−1 + p)p+ λ+ 4(−1 + p)pλ+ (43 + 140(−1 + p)p)λ2

+(211 + 364(−1 + p)p)λ3
)

+ (−1 + λ)
[
31 + λ(62 + (931 + 960

√
1 − γ)λ)

])]1/2
}1/2

,

(5.29)

and the closed expression for the super-fidelity based distance measure is

Dsuper(EAD(ρ), ρ) = 1
4
√

2

{
31 + (−15 − 32

2
√

1 − γ + 8γ)λ2 −
√

31
√

1 − λ2

×
[
32γλ2 − 31(−1 + λ2) + γ2

(
−1 − 15λ2 − 4(−1 + p)p(1 + 7λ2)

)]1/2
}1/2

. (5.30)

In other words, equations (5.29, 5.30) provide bounds for the error approximation whenever

we model the resulting composition RL←A ◦NA ◦EA←L to be an amplitude damping channel

acting locally on the five-qubit code.

To obtain further insights from the analysis of the distance measures, we look

for the behavior of the upper- and lower-bounds of the error (see equation 5.21) varying

the initial state mixture λ and the strength of the channel (parameter γ of the Kraus

operators).

7 Sometimes the channel we are calling “amplitude damping” is referred to as “generalized
amplitude damping” in the literature. The “generalized” version, as the name suggests, is
more general hence why we have decided to use it. We could have called it “generalized” but
we have used this word way too many times thus far, so we have decided against its use in
the end.
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Error upper- bound
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0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure 20 – Bounds for the error approximation considering the amplitude damping chan-
nel. In this realization, the mixture λ of the initial state is a free parameter
whereas the probability and the strength are fixed p = 0.2, γ = 0.3. The
possible values for the error approximation are shaded light blue.
Source: by the author.

We begin by taking fixed p = 0.2 and γ = 0.3 and solving equations (5.29, 5.30)

with λ varying from 0 to 1. The numerical result is displayed in Figure 20. The behavior

observed once more follows similarly to the case of the other two quantum channels

previously analyzed. For a very mixed initial state, the error approximation is bounded

very broadly, as the initial state becomes closer to a pure state, the bounds become

tighter. This is a consequence of the fact that as the states become purer, the sub- and

super-fidelities become closer to the fidelity (in the limit case that the state is completely

pure, the sub- and super-fidelities recover precisely the fidelity), which is manifested as

sharper bounds for the error approximation.

Yet another interesting analysis is to observe how sensitive are the distance measures

with regards to the strength of the amplitude damping. In this realization, we let γ vary

from 0 to 1 and fix the probability p = 0.2 and the mixture λ = 0.5. The numerical results

are shown in Figure 21.

Although the bounds are clearly sensitive to the strength of the channel, their

tightness seems to not rely on this parameter, in stark contrast with the mixture chosen

for the initial state. The effect that the strength has over the bounds is to increase their

numerical value as the strength of the channel increases. This result is expected from an

intuitive perspective, as the stronger the action of the channel, the more likely that the

final state and the initial state differ significantly, yielding smaller values for the sub- and

super-fidelities, which in turn provides higher values for the bounds.
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Figure 21 – Bounds for the error approximation considering the amplitude damping chan-
nel. In this realization, the strength γ of the channel is a free parameter
whereas the probability and the initial state mixture are fixed p = 0.2, λ = 0.5.
The possible values for the error approximation are shaded light blue.
Source: by the author.

To finish our numerical analysis with glory, we ought to observe the effect of the

two parameters simultaneously. In the following simulation, we vary both λ and γ whereas

the probability is fixed p = 0.2. The results are displayed in Figure 22.

Figure 22 – Bounds for the error approximation considering the amplitude damping chan-
nel. In this realization, the only fixed parameter is the probability, taken to
be p = 0.2. The possible values for the error approximation are within the vol-
ume delimited by the upper-bound hyperplane (orange) and the lower-bound
hyperplane (blue).
Source: by the author.

As expected given the previous two numerical results: for a fixed λ, the strength
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of the channel has little influence in regards to the sharpness of the bounds. However,

for a fixed strength γ, the initial state mixture characterized by λ significantly alters the

geometric bounds. In particular, for an “almost” pure initial state, the bounds are much

tighter than for an “almost” maximally mixed state. Furthermore, for a completely pure

initial state, the bounds converge to a set of values that describe a line. The value in which

the bounds converge depends on the channel strength, but the fact that both bounds

converge to a unique value (for a fixed γ) is regardless of the channel strength.
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6 CONCLUSIONS AND FURTHER WORK

The Universe is indeed full of surprises. Who would have thought that the way

information is reliably encoded in quantum computers is also the way information is

encoded in quantum gravity? This somewhat exotic connection was the main motivation

behind this work.

We began by providing a review of the main concepts in AdS/CFT. Given the

fact that the original paper is the most cited in theoretical physics (as far as the authors

are concerned), the amount of information related to different applications and subtleties

of AdS/CFT is way beyond the scope of this work. This way, our brief review of the

subject has the ambition of pointing out why we need quantum error correction. We

accomplish that by exploring one facet of the correspondence: operator reconstruction.

As the AdS/CFT statement is of equivalence between different theories, it is natural

to ask what is the relation between objects of one theory to the other. In particular,

this relation is, supposedly, one-to-one. Turns out that the reconstruction procedures

developed in the literature (known as global and AdS-Rindler reconstructions) had an

annoying inconvenience: the one-to-one isomorphism was nowhere to be seen; there was

redundancy everywhere. To address this inconsistency properly, we argued that quantum

error correction is necessary.

We also provided a review of quantum error correction, presenting concepts and

formalizing results that were going to be used later. In particular, we illustrated the main

idea of redundancy through the simple Shor’s code. Following, we discussed the two most

common formalisms for quantum error correction, namely Operator Algebra Quantum

Error Correction and Stabilizer codes. Just like in the case of AdS/CFT, the study of

quantum error correction is an incredibly active area of research, and our brief review does

not nearly address everything that those formalisms have to offer. We limited ourselves to

the main concepts which would be useful in connections with holography.

Following, we connected the dots by exploring what quantum information theory

has to say in holography. The first result we discuss is the Ryu-Takayanagi formula which

was the first and arguably the most important result in this direction. Once the Achilles’

heel of AdS/CFT, redundancy became a desired good when it was realized that AdS/CFT



100

works just like an error-correcting code. There are several examples of how quantum error

correction can be used in AdS/CFT for various purposes. We presented two codes, the

3-qutrit and the HaPPY, which consists of stabilizer codes that are sufficient to solve the

puzzles that arose when we discussed the operator reconstruction procedures in holography.

As a further motivating example of how the relation between holography and

quantum error correction has been a formidable one, we explored the recent results of

Harlow and Ooguri that point out an intrinsic inconsistency between AdS/CFT and global

symmetries. As quantum information theorists, we understood those results under the

light of the Eastin-Knill theorem, which is a restricting no-go theorem that provides what

can and what cannot be done in quantum error-correcting codes. From the Eastin-Knill

result, there are two possibilities: either consider approximate quantum error-correcting

codes or asymmetric quantum error-correcting codes. In order to understand those ideas

more concretely, we employed the formalism of quantum resource theories.

Motivated by the use of resource theories in the context of error correction, we

delve deeper into approximate error correcting codes. Rather than asking for exact error

correction, one asks for recovery of the message up to some factor; despite being a clear

drawback, in some cases, it is enough for practical purposes and, on the other hand, one

can free itself from the no-go theorem of Eastin and Knill. There are several recent works in

the literature which propose different approaches to approximate error correction, however,

they all have one feature in common: the use of fidelities as a measure of quantum state

distinguishability.

The final goal of an error correcting code is to find a recovery channel such that the

recovered quantum state (after the action of some noise and encoding channels) is as close

as possible to the original state, the fidelity is employed in this context exactly as a way

to evaluate “how close is the recovered state to the original one”. Given that the fidelity

is equal to one if and only if both states are equal and zero if and only if the two states

have completely orthogonal support, it is necessary to take a complementary measure (one

minus the fidelity) to quantify the actual approximation; that is precisely what we called

the standard approach to the error approximation. As not everything that glitters is gold,

calculating fidelities for generic states is a tough task, as one must (at least) diagonalize a

Hermitian matrix twice in order to calculate the trace of its square root.
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Part of this work and our proposal emerge as a way to circumvent this issue. Instead

of using the fidelity to evaluate the distinguishability between the original state and the

recovered state, we take a step back and look into the sub- and super-fidelities which

are bounds for the fidelity. Although those quantities are “just” bounds, they have an

overwhelming advantage from the computational point of view: they require evaluating

only three traces. From the definition of our proposed distance measures, it is clear that the

sub-fidelity based provides the upper-bound to the standard error approximation whereas

the super-fidelity based provides the lower-bound. This way, rather than trying to evaluate

a complicated error approximation, we calculate its bounds in a much simpler fashion.

As a way to advocate for concreteness, we put our proposed bounds to the test

by calculating them for three quantum channels that frequently appear in the theory of

quantum error correction. The idea is to model the composition of the recovery, noise and

encoding channels as a single noisy channel (this is where the “approximate error correction”

resides, had we taken the identity instead, we would have exact error correction), which we

take to be the dephasing, depolarizing, and the amplitude damping channels. Although our

proposed bounds are valid for any finite-dimensional system and for any quantum state

(in particular, if one of the states in which we evaluate the sub- and super-fidelity is pure,

we recover the fidelity and our bounds simply become the standard error approximation),

to actually perform calculations we have to compromise. Motivated by the 5-qubit code,

we fix the number of qubits to be five and perform the quantum channels acting locally. It

is also necessary to consider an initial “test” state, which we take to be an interpolation

between a GHZ state and a maximally mixed state.

The numerical results we obtained displayed clear features that would be expected

for bounds on error approximation in the context of error correction. First of all, given

that our initial state interpolates between a pure state and a completely mixed state, we

need to address the behavior of our bounds in those two cases. For pure states, the bounds

converge to a unique value, this is what one would expect given that both the sub- and the

super-fidelity are reduced to the fidelity if one of the states in which they are evaluated is

pure. For completely mixed states, the result is quite the opposite. As a mixed state is the

“least pure” state possible, the bounds evaluated over the maximally mixed states are as

far as possible from each other, which results in a broader range of values for the error

approximation. Therefore, it is expected that the mixture which dictates the purity of the
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initial state severely modifies the bounds, with the bounds being much tighter for purer

states. This is exactly what we observed for the three channels we considered.

The second feature we recovered is the effect that the probability of the channel has

over the values for the bounds. Every quantum channel in the sum representation amounts

to evaluating a combination of Kraus operators. Any Kraus operator for noisy quantum

channels is characterized by a probability which indicates the likelihood of that quantum

channel performing a noisy operation. The intuitive behavior is that as we increase the

probability, the more likely the outcome is noisy, and the more likely that the final state is

distinct from the initial state. This amounts to smaller sub- and super-fidelities which in

turn amount to larger bounds. In other words, we expect that for lower probabilities, the

bounds for the error approximation are numerically smaller and for larger probabilities,

the bounds should be numerically greater. This is indeed what we obtained. Furthermore,

for null probability, one would expect the final and initial states to be exactly the same (as

there are no noisy operations), which means that the super-fidelity is one and its distance

measure is zero. Once again, this behavior was observed in our numerical results for the

three channels. The amplitude damping channel has one extra parameter which models

the strength of the damping, for smaller strength values, the numerical bounds for the

error are also smaller, and for increasing strength values, the numerical bounds increase

accordingly.

There is a “brave new world” waiting to be explored when it comes to those bounds.

As we mentioned, the bound related to the super-fidelity defines a genuine metric because

it satisfy the three following properties: positive semi-definiteness, symmetry and the

triangle inequality. Nonetheless, those requisites are concerning “metric” in the theory of

metric spaces. It would be of utmost interest to see whether or not this notion of metric

can be extended into the richer differential and Riemannian geometric notion of metric

tensors. If that were the case, there is vast uncharted territory; it would be possible to

use tools from differential geometry (covariant derivatives, geodesics, connections, fiber

bundles, and all that jazz) to explore this result. We hope to address this question soon,

and whether or not differential geometric tools can be used or will be useful at all only

time will tell.

A second path to glory consists of going back to our original motivation: what

about AdS/CFT? The logical concatenation of ideas is clear: beginning with the Harlow-
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Ooguri result, we like to think of it in terms of the Eastin-Knill theorem, as a way to

deal with this no-go theorem, we employ resource theories and consider approximate error

correction; turns out that the typical approaches are difficult to calculate because of the

fidelity, therefore, we propose a different approach by considering sub- and super-fidelity,

we propose and calculate distance measures for typical quantum channels and confirm

that they behave as expected (they even define a metric). Now what? How to close the

circle and interpret those bounds under the light of AdS/CFT? We also hope to address

those questions in future work.

There are a few other interesting questions whose answers would certainly enrich the

discussion. First of all, it would be interesting to further enhance the scope of applicability

of our bounds. So far, we performed calculations modelling the lack of exact error correction

by considering single quantum channels; what about the composition of more complicated

channels? What results would our bounds yield? To finalize, we save the best for last: how

tight are those bounds? Whenever one is dealing with bounds and inequalities, this is

the main question that has to be answered. In particular, it would be quite interesting to

know whether or not methods borrowed from information geometry and AdS/CFT may

play a role in this answer or give us a hint.
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APPENDIX A – EXPLICIT RECONSTRUCTION OF A BULK OPERATOR IN
ADS/CFT

In this appendix, we perform the explicit reconstruction of a bulk field using the

global reconstruction procedure (see section 2.5). For details, we refer to (30,67–69,117).

The problem amounts to computing the equations of motion in the AdS space and consider

the boundary conditions dictated by AdS/CFT.

We begin by considering the AdS space with global coordinates (equation 2.7 with

ℓ = 1)

ds2 = −
(
1 + r2

)
dt2 + dr2

1 + r2 + r2dΩ2
d−1, (A.1)

with r ∈ [0,+∞), t ∈ (−∞,+∞) and Ωd−1 denotes the round metric over the manifold

Sd−1. We shall consider a free scalar field for simplicity sake. The action is given by

I[ϕ] = −1
2

∫ √
−g(∂µϕ∂νϕg

µν +m2ϕ2) dd+1x, (A.2)

and the scalar field ϕ obeys the equations of motion, which is the Klein-Gordon equation

∇2ϕ = 1√
−g

∂µ(
√

−ggµν∂νϕ) = m2ϕ. (A.3)

We may choose the spherical harmonics as a basis for the solutions of the equations of

motion (A.3). In this case, we can write

cωℓm⃗(t, r,Ω) = Rωℓ(r)e−iωtYℓm⃗(Ω), (A.4)

where ω is associated with the frequency of the solution, ℓ and m⃗ are the quantum numbers

that characterize the solution, and Yℓm⃗(Ω) denote the spherical harmonics.

The radial component of the solution obeys the differential equation

(1 + r2)R′′ +
(
d− 1
r

(1 + r2) + 2r
)
R′ +

(
ω2

1 + r2 − ℓ(ℓ+ d− 2)
r2 −m2

)
R = 0, (A.5)

where the prime denotes derivative with respect to the variable r. This equation is generally

intractable, therefore we deal with the equation for small and large r. For small r, we

obtain

R′′ + d− 1
r

R′ − ℓ(ℓ+ d− 2)
r2 R = 0,
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and the solutions have the behavior

R(r) ∼ r−( d−2
2 )± 1

2

√
(d−2)2+4ℓ(ℓ+d−2). (A.6)

Meanwhile, for large r, we get

r2R′′ + (d+ 1)rR′ −m2R = 0

with solutions

R(r) ∼ r−( d
2±

1
2
√

d2+4m2). (A.7)

In general, we have the choice between the positive or negative solutions in equations (A.6,

A.7). Given the freedom of choice, we choose the positive solution for both. There are

some subtleties associated with the choice, however, for m2 ≥ 0 and d ≥ 2, the positive

choice is consistent. In other words, we take

Rωℓ(r) ∼ r−∆, (A.8)

∆ := d

2 + 1
2

√
d2 + 4m2. (A.9)

This way, the full solution in the Heisenberg representation of the free scalar can be

expanded into

ϕ(r; t,Ω) =
∑
nℓm⃗

(
cnℓm⃗anℓm⃗ + c∗nℓm⃗a

†
nℓm⃗

)
, (A.10)

where anℓm⃗ (a†nℓm⃗) denotes the annihilation (creation) operators that obey the commutation

relations described by [anℓm⃗ , a†nℓm⃗] = δnn′δℓℓ′δmm′ . The asymptotic behavior provides

the quantization of ∆ (see equation A.9) which implies a quantization relation for the

frequencies of the solutions, on top of that, it also provides the following relation

Rωℓ(r) = Anℓr
−∆(1 +O(1/r2) + ...).

The connection with the boundary operators comes from equation (2.12), by substituting

the results we have obtained, it follows

O(t,Ω) =
∑
nℓm⃗

(
Anℓe

−iωnℓtYℓm⃗(Ω)anℓm⃗ + A∗nℓe
iωnℓtY ∗ℓm⃗(Ω)a†nℓm⃗

)
, (A.11)

it is convenient to split the above result into the “positive” and “negative” parts

O+(t,Ω) =
∑
nℓm⃗

Anℓe
−iωnℓtYℓm⃗(Ω)anℓm⃗

O−(t,Ω) =
∑
nℓm⃗

A∗nℓe
iωnℓtY ∗ℓm⃗(Ω)a†nℓm⃗,
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calculating their respective Fourier transformations, it follows

anℓm⃗ = 1
Anℓ

∫ π

−π

∫
eiωnℓtY ∗ℓm⃗(Ω)O+(t,Ω) dΩdt, (A.12)

a†nℓm⃗ = 1
A∗nℓ

∫ π

−π

∫
e−iωnℓtYℓm⃗(Ω)O−(t,Ω) dΩdt. (A.13)

With the results of the cωℓm⃗ functions (see equation A.4) and the annihilation/creation op-

erators anℓm⃗ (see equation A.12), we can substitute both into the Heisenberg representation

of the scalar field (equation A.10), which yields

ϕ(r; t,Ω) =
∫ π

π

∫
K+(r, t,Ω; t′,Ω′)O+(t′,Ω′)dΩdt+

∫ π

π

∫
K−(r, t,Ω; t′,Ω′)O−(t′,Ω′)dΩ′dt′

(A.14)

where K+ and K− are the smearing functions and have explicit form given by

K+(r, t,Ω; t′,Ω′) :=
∑
nℓm⃗

1
A∗nℓ

cnℓm⃗(r, t,Ω)eiωnℓt′
Y ∗ℓm⃗(Ω′), (A.15)

K−(r, t,Ω; t′,Ω′) :=
∑
nℓm⃗

1
Anℓ

c∗nℓm⃗(r, t,Ω)e−iωnℓt′
Yℓm⃗(Ω′). (A.16)

This is the explicit reconstruction procedure for a given free scalar bulk field. Note that the

final result (equation A.14) is, up to differences in notation and conventions, the equation

of the global reconstruction (2.16) in the main text.
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APPENDIX B – 3-QUTRIT CODE STATES

In this appendix, we show the explicit recovery of the 3-qutrit code1. The logical

basis is given by

|0̃⟩ = 1√
3

(|000⟩ + |111⟩ + |222⟩),

|1̃⟩ = 1√
3

(|012⟩ + |120⟩ + |201⟩),

|2̃⟩ = 1√
3

(|021⟩ + |102⟩ + |210⟩).

A given logical state |ψ̃⟩ ∈ Hcode is simply a combination of the basis elements

|ψ̃⟩ = |000⟩+|111⟩ + |222⟩ + |012⟩ + |120⟩ + |201⟩ + |021⟩ + |102⟩ + |210⟩

ρ̃ = |ψ̃⟩⟨ψ̃| = |0̃⟩⟨0̃| + |1̃⟩⟨1̃| + |2̃⟩⟨2̃|,

by expanding the logical basis for the logical density matrix, we obtain

ρ̃ = (|000⟩⟨000| + |000⟩⟨111| + |000⟩⟨222| + |111⟩⟨000| + |111⟩⟨111| + |111⟩⟨222|

+ |222⟩⟨000| + |222⟩⟨111| + |222⟩⟨222|) + (|012⟩⟨012| + |012⟩⟨120| + |012⟩⟨201|

+ |120⟩⟨021| + |120⟩⟨120| + |120⟩⟨201| + |201⟩⟨012| + |201⟩⟨120| + |201⟩⟨201|)

+ (|021⟩⟨021| + |021⟩⟨102| + |021⟩⟨210| + |102⟩⟨021| + |102⟩⟨102| + |102⟩⟨210|

+ |210⟩⟨021| + |210⟩⟨102| + |210⟩⟨210|). (B.1)

Let us say that the third qutrit was erased. We will show explicitly how to recover

the physical basis by acting with the unitary U12 on each logical basis element. As any

message is linear combination of the physical basis elements, this procedure shows how to

reconstruct any message encoded. For the first basis element |0̃⟩, it follows

(U12 ⊗ I3)|0̃⟩ = |0⟩ ⊗ 1√
3

(|00⟩ + |11⟩ + |22⟩)

(U12 ⊗ I3)
1√
3

(|000⟩ + |111⟩ + |222⟩) = 1√
3

(|000⟩ + |011⟩ + |022⟩)

1√
3

(|000⟩ + |011⟩ + |022⟩) = 1√
3

(|000⟩ + |011⟩ + |022⟩),

1 Throughout this appendix, we will ignore numerical factors, as they are irrelevant for our
interests.
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for the second element |1̃⟩, we have

(U12 ⊗ I3)|1̃⟩ = |1⟩ ⊗ 1√
3

(|00⟩ + |11⟩ + |22⟩)

(U12 ⊗ I3)
1√
3

(|012⟩ + |120⟩ + |201⟩) = 1√
3

(|100⟩ + |111⟩ + |122⟩)

1√
3

(|122⟩ + |100⟩ + |111⟩) = 1√
3

(|100⟩ + |111⟩ + |122⟩),

and for the last element,

(U12 ⊗ I3)|2̃⟩ = |2⟩ ⊗ 1√
3

(|00⟩ + |11⟩ + |22⟩)

(U12 ⊗ I3)
1√
3

(|021⟩ + |102⟩ + |210⟩) = 1√
3

(|200⟩ + |211⟩ + |222⟩)

1√
3

(|211⟩ + |222⟩ + |200⟩) = 1√
3

(|200⟩ + |211⟩ + |222⟩).

It is also useful to consider the reconstruction procedure in terms of density matrices. The

reconstruction procedure for the logical density matrix (considering that the lost qutrit is

the third) goes as follow

ρ̃ = |ψ̃⟩⟨ψ̃| = U †12(|ψ⟩1 ⊗ |χ⟩23)(⟨ψ|1 ⊗ ⟨χ|23)U12

= U †12(ρ1 ⊗ |χ⟩⟨χ|23)U12. (B.2)

We want to show that equation (B.2) indeed recovers the full logical density matrix (B.1).

The first step is to calculate the tensor product ρ1 ⊗ |χ⟩⟨χ|23 and then act the permutation

unitaries. The reduced density matrix of any qutrit state is maximally mixed, and the |χ⟩

state must be entangled. In other words,

ρ1 = |0⟩⟨0| + |1⟩⟨1| + |2⟩⟨2|

|χ⟩⟨χ|23 = (|00⟩ + |11⟩ + |22⟩)(⟨00| + ⟨11| + ⟨22|)

= |00⟩⟨00| + |00⟩⟨11| + |00⟩⟨22| + |11⟩⟨00| + |11⟩⟨11|

+ |11⟩⟨22| + |22⟩⟨00| + |22⟩⟨11| + |22⟩⟨22|,

and the full tensor product is given by

ρ1 ⊗ |χ⟩⟨χ|23 = |000⟩⟨000| + |000⟩⟨011| + |000⟩⟨022| + |011⟩⟨000| + |011⟩⟨011| + |011⟩⟨022|

+ |022⟩⟨000| + |022⟩⟨011| + |022⟩⟨022| + |100⟩⟨100| + |100⟩⟨111| + |100⟩⟨122|

+ |111⟩⟨100| + |111⟩⟨111| + |111⟩⟨122| + |122⟩⟨100| + |122⟩⟨111| + |122⟩⟨122|

+ |200⟩⟨200| + |200⟩⟨211| + |200⟩⟨222| + |211⟩⟨200| + |211⟩⟨211| + |211⟩⟨222|

+ |222⟩⟨200| + |222⟩⟨211| + |222⟩⟨222|.
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Now it remains to act with the unitaries. There is an important subtlety in this process.

We have shown explicitly the unitary U12 acting on ket states, however, now we have U †12

acting on kets and U12 acting on bra states and it must be taken into consideration. As

the unitaries are simply permutations, their conjugate consists of inverting the map in a

one-to-one fashion. This way, we obtain for U †12

|00⟩ → |00⟩ |01⟩ → |11⟩ |02⟩ → |22⟩

|12⟩ → |01⟩ |10⟩ → |12⟩ |11⟩ → |20⟩

|21⟩ → |02⟩ |22⟩ → |10⟩ |20⟩ → |21⟩,

and for U12,

⟨00| → ⟨00| ⟨01| → ⟨11| ⟨02| → ⟨22|

⟨12| → ⟨01| ⟨10| → ⟨12| ⟨11| → ⟨20|

⟨21| → ⟨02| ⟨22| → ⟨10| ⟨20| → ⟨21|.

Given the explicit permutations stated above, now we act with them, obtaining

U †12(ρ1 ⊗ |χ⟩⟨χ|23)U12 = |000⟩⟨000| + |000⟩⟨111| + |000⟩⟨222| + |111⟩⟨000| + |111⟩⟨111|

+ |111⟩⟨222| + |222⟩⟨000| + |222⟩⟨111| + |222⟩⟨222| + |120⟩⟨120| + |120⟩⟨201|

+ |120⟩⟨012| + |201⟩⟨120| + |201⟩⟨201| + |201⟩⟨012| + |012⟩⟨120| + |012⟩⟨201|

+ |012⟩⟨012| + |210⟩⟨210| + |210⟩⟨210| + |210⟩⟨102| + |021⟩⟨210| + |021⟩⟨021|

+ |021⟩⟨102| + |102⟩⟨210| + |102⟩⟨021| + |102⟩⟨102|.

and it indeed precisely recovers the logical density matrix ρ̃ from equation (B.1).
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APPENDIX C – HAAR MEASURE AND INTEGRATION

In this appendix, we discuss the Haar measure and how to compute integrals using

such measure. This sort of integration arises very frequently in the context of resource

theories, in particular, in the case of asymmetry resource theories.

The idea is to establish a way to measure distances when considering group elements

g ∈ G. Consider a parametrization given by ξi from i = 1, 2, ..., n, where n denotes the

dimension of the group G. This way, the abstract integration over the group manifold may

be equipped with a parametrization, which in turn allow us to rewrite
∫

G
dg →

∫ √
η dnξi, (C.1)

where η = det(M) and M denotes the components of the matrix defined as

Mij = tr
(

(−i) ∂g
∂ξi

g−1(−i) ∂g
∂ξj

g−1
)
. (C.2)

Note that this definition has several useful properties, in particular, the terms ∂g
∂ξi g

−1 are

in Maurer-Cartan form and belong to the Lie algebra associated with G. On top of that,

if we choose an unitary representation, the matrix (C.2) will be Hermitian, to see that,

∂(gg−1) = ∂(1) = 0,

on the other hand, ∂(gg−1) = ∂gg−1 + g∂g−1 ⇒ ∂g−1 = −g−1∂gg−1. As we are dealing

with unitary representations, g† = g−1, therefore it follows
(

−i ∂g
∂ξi

g−1
)†

= ig

(
∂g−1

∂ξi

)
= −igg−1 ∂g

∂ξi
g−1 = −i ∂g

∂ξi
g−1, (C.3)

which leads to (Mij)† = Mij. Yet another property of the definition (C.2) is the fact that

it is invariant under left and right translations. Consider a fixed ḡ ∈ G and take g → gḡ.

It follows
∂g

∂ξi
g−1 → ∂(gḡ)

∂ξi
(gḡ)−1 = ∂g

∂ξi
ḡ(ḡ)−1g−1 = ∂g

∂ξi
g−1 (C.4)

and the argument for left-translation follows closely. Given those properties, the natural

definition of a line element is

ds2 = Mijξ
iξj. (C.5)



124

This is the general theory of Haar measure and Haar integration in a nutshell. For

concreteness’ sake, we will explore two examples which appear in our context (see sections

5.2 and 5.3).

Let us begin with G = U(1), arguably the simplest Lie group. The definition of

this group is such that we may parametrize it through g = exp(iθ). Once again, from the

group definition, the inverse of a given element is its complex conjugate, which implies

that g† = g−1. Now it remains to calculate the matrix elements of Mij, as the group is

one-dimensional, the family of parameters ξi are reduced to a single one denoted by θ. It

is necessary to compute only a single component

∂g

∂θ
= ieiθ → −i∂g

∂θ
g−1 = (−i)ieiθe−iθ = 1,

therefore,

Mij = Mθθ = tr(1) ⇒ √
η = 1,

consequently, ∫ √
η dnξi →

∫ 2π

0
dθ.

The normalization condition for a given function f = f(θ), assuming that the function

has “good properties” i.e. is of (at least) class C1, yields
∫ 2π

0 f(θ) dθ∫ 2π
0 dθ

= 1
2π

∫ 2π

0
f(θ) dθ. (C.6)

The second important example we ought to discuss is G = SU(2). First note that

there is an diffeomorphism (i.e. a smooth isomorphism between two differentiable manifolds)

between this group and the manifold1 S3. We can choose an unitary representation as

U =

 z1 z2

z3 z4

 , U † =

 z∗1 z∗3

z∗2 z∗4

 ,
1 This allow us to employ the following strategy to evaluate the Haar integration: complexify

the unitary representation by taking

U =
(

z1 iz2
iz∗2 z∗1

)
,

which in turn provides the constrain |z1|2 + |z2|2 = 1, where one could take z1 = x1 + ix2
and z2 = x3 + ix4, then the constrain becomes x2

1 + x2
2 + x2

3 + x2
4 = 1 which is precisely the

equation of the manifold S3.
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meanwhile, the inverse of U is given by

U−1 = 1
z1z4 − z2z3

 z4 −z2

−z3 z1

 .
From the fact that the representation is unitary, we obtain several constrains on the

components because U−1 = U †. In particular, one could perform a reparametrization

where we rely only on three parameters rather than four. One such reparametrization is

obtained by considering the so-called Darboux coordinates:

z1 =
√

1 − λeiθ1

z2 =
√

1 − λeiθ2

λ = sin2(θ3),

for θ1, θ2 ∈ [0, 2π] and θ3 ∈ [0, π/2]. In this reparametrization, a group element g ∈ SU(2)

has the form

g =


√

1 − λeiθ1 i
√
λeiθ2

i
√
λe−iθ2

√
1 − λe−iθ1

 , g−1 =


√

1 − λe−iθ1 −i
√
λe−iθ2

−i
√
λeiθ2

√
1 − λeiθ1


and indeed g−1 = g†, as well as det(g) = 1. To calculate the metric we must compute the

derivatives as follows

∂g

∂θ1
=

 i
√

1 − λeiθ1 0

0 −i
√

1 − λe−iθ1

 ,
including the inverse to the right, we obtain

∂g

∂θ1
g−1 =

 i(1 − λ)
√
λ(1 − λ)ei(θ1+θ2)

−
√
λ(1 − λ)e−i(θ1+θ2) −i(1 − λ)

 .
The derivatives with respect to the parameter θ2 follows closely. We now have enough to

calculate the matrix (C.2) and the line element (C.5). Performing the calculations yields

Mij =


1

2λ(1 − λ) 0 0

0 2(1 − λ) 0

0 0 2λ


and

ds2 = dλ2

2λ(1 − λ) + 2(1 − λ)dθ2
1 + 2λdθ2

2. (C.7)
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Note that det(M)= 2, therefore, the normalization condition for a given (at least) class C1

function f = f(λ, θ1, θ2) gives∫ 1
0
∫ 2π

0
∫ 2π

0
√

2f(λ, θ1, θ2) dλdθ1dθ2∫ 1
0
∫ 2π

0
∫ 2π

0
√

2 dλdθ1dθ2
= 1

4π2

∫
f(λ, θ1, θ2) dλdθ1dθ2, (C.8)

which is the parametrized Haar integration for the group SU(2).
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