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ABSTRACT

KAMIZAKI, L. P. Studies of stochastic thermodynamics with optical tweezers.
2022. 94p. Dissertation (Master in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2022.

In the last thirty years, experimental and theoretical advancements allowed the investigation
of the thermodynamics of small systems far from equilibrium. In 1998, Ken Sekimoto
showed that work and heat can be associated with individual trajectories of a Brownian
particle. In this context, work becomes a stochastic quantity with a probability distribution
associated, respecting important relations as the Jarzynski equality. A paradigmatic study
case in stochastic thermodynamics is the fluid-immersed particle trapped in a harmonic
potential, a routinely achieved situation using optical tweezers. Using the light-matter
interaction, optical tweezers can trap and control colloidal particles. Thus, optical tweezers
are powerful and versatile tools when analyzing the thermodynamics of small systems.
In this dissertation, we have simulated the dynamics of a colloidal particle trapped in
an optical tweezer in different stochastic thermodynamic contexts. By simulating the
experimental system, we can verify the feasibility and the adequate parameters to study
stochastic thermodynamics in practice. The two main topics studied are optimization
of protocols and information-to-energy conversion. Because the work probability density
function depends on the protocol, different protocols have different average work values.
Among all protocols with a certain intensity and duration, the one that stands out is
the optimal protocol, i.e., the process that has the minimum average work. Generally, it
is hard to find the optimal protocol analytically, and often other methods are necessary.
The first main result is the numerical determination of the performance of the protocols
found by approximate methods (for slowly varying processes and weak processes) for
different protocol times and intensities. In addition to controlling the system through
the protocol, information about its state allows Maxwell’s demon-like experiments. The
second main result is that we propose a new feedback experiment, simplifying the ideas
presented in previous works. By doing so, we were able to calculate the dependency of
the information-to-energy conversion and the delay time analytically. The simplifications
made allow the study of feedback experiments using our actual experimental capabilities.

Keywords: Finite-time thermodynamics. Optimal protocols. Information-to-energy con-
version.





RESUMO

KAMIZAKI, L. P. Estudos de termodinâmica estocástica com pinças ópticas.
2022. 94p. Dissertação (Mestrado em Ciências) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2022.

Nos últimos trinta anos, avanços experimentais e teóricos permitiram a investigação da
termodinâmica de sistemas pequenos fora do equilíbrio. Em 1998, Ken Sekimoto mostrou
que trabalho e calor podem ser associados a trajetórias individuais de uma partícula
Browniana, e essas grandezas se tornam quantidade estocásticas com uma distribuições de
probabilidade associadas. Um estudo de caso paradigmático em termodinâmica estocática é
o de uma partícula imersa em um fluido e presa em um potencial harmônico, uma situação
rotineiramente atingida com pinças ópticas. Usando as interações da luz com a matéria,
pinças ópticas podem aprisionar e controlar partículas coloidais. Portanto, pinças ópticas
são ferramentas poderasas e versáteis na análise da termodinâmica de sistemas pequenos.
Nesta dissertação, nós simulamos a dinâmica de uma partícula coloidal aprisionada em
uma pinça óptica em diferentes contextos da termodinâmica estocástica. Desta forma, nós
pudemos verificar a viabilidade e os parâmetros adequados para realizar os experimentos na
prática. Os dois principais tópicos estudados são de otimização de protocolos e a conversão
informação-energia. Uma vez que a distribuição de probabilidade do trabalho depende do
protocolo, diferentes protocolos terão valores médios para o trabalho distintos. Entre todos
os protocolos, o nosso interesse esta no protocolo ótimo, isto é, o protocolo que possui o
valor mínimo do trabalho médio. Geralmente é díficil encontrar expressões analíticas para
o protocolo ótimo e, frequentemente, outros métodos são necessários. O primeiro resultado
principal é que nós determinamos numericamente a performance de outros métodos (para
processos lentos e para processos fracos) para diferentes tempos de protocolo e intensidades.
Além do controle do sistema através do protocolo, a informação sobre o estado permite
experimentos do tipo Demômio de Maxwell. O segundo resultado principal é a proposta
de um novo experimento de feedback, simplificando as ideias apresentadas em trabalhos
anteriores. Desta forma, nós conseguimos calcular a dependência da conversão informação-
energia com o tempo de atraso. As simplificações feitas permitem o estudo de experimento
de feedback com nossa capacidade experimental atual.

Palavras-chave: Termodinâmica em tempo finito. Protocolos ótimos. Conversão informação-
energia.
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1 INTRODUCTION

It has been 199 years since the breakthrough work by Nicolas Carnot (1), and, among
the numerous advancements made during this period, we highlight the development of
stochastic thermodynamics, which allows the treatment of small systems out of equilibrium.
Stochastic thermodynamics extends concepts of classical thermodynamics to small systems,
such as colloidal particles, single molecules, and atoms, unraveling and clarifying the
properties of these systems.

1.1 Brief history

Classical thermodynamics is a phenomenological framework that explains the
thermal properties of macroscopic systems.(2) Statistical mechanics tries to retrieve the
thermodynamic properties by considering that systems are formed by many degrees of
freedom. (3) Although Classical thermodynamics and Statical mechanics have different
approaches, both treat systems in equilibrium and under quasistatic changes between
equilibrium states.

However, processes occur at a finite time and rates become of crucial importance
in describing the system’s evolution. At the phenomenological level, irreversible thermo-
dynamics covers the change between equilibrium states in a finite time, by using the
concept of forces and fluxes. (2) Because it deals with finite time processes, the system
can be out of equilibrium. In addition, at a statistical level, linear response theory deduces
nonequilibrium quantities of a system subjected to an external field using measurements of
equilibrium correlation functions.(4) Nonetheless, irreversible thermodynamics and linear
response theory are only valid for processes close to equilibrium. Therefore, for a long time,
exact results existed only for processes close to equilibrium, with the absence of universal
analytical results for processes arbitrarily far from equilibrium. This situation drastically
changed in the 90s.

Surprisingly, in 1997, Jarzynski deduced a relation connecting an equilibrium
quantity, the free energy difference between states, with a nonequilibrium quantity, the
average work required to change states. (5) This relation, known as the Jarzynski equality,
is an analytical result for processes that drive the system arbitrarily far from equilibrium.
Short after, a refinement came with Crooks’s relation. (6) These results are the first
fluctuations theorems for the work and are considered milestones in the development
of Stochastic thermodynamics. Nowadays, there are several fluctuations theorems, and
they differ in their range of validity, assumptions, and interpretations. (5–9) Another
remarkable theoretical advancement in the development of Stochastic thermodynamics
was due to Sekimoto in 1998. (10) He showed that work and heat can be associated with
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the stochastic trajectory of a colloidal particle. These theoretical results together with
advancements in the experiments made it possible to study the thermodynamics of small
systems out of equilibrium. An example that appears over and over again is the DNA
pulling experiments with optical tweezers. (11)

Stochastic thermodynamics is an emergent and vast field with many possibilities
for study. We could examine the properties of nonequilibrium steady states (7), consider
Brownian thermal machines and their efficiency at maximum power (the Novikov-Cuzborn-
Ahlborn limit) (12–14), or the thermodynamics of biopolymers (DNA/RNA). (11) Here,
the chosen itinerary was to investigate optimal protocols and the information-to-energy
conversion. Optimal protocols are the processes that generate the minimum average work
(15), while the information-to-energy conversion is the realization of Maxwell’s demon-like
experiments. (16) In the next section, we describe the organization of chapters and give
some details of our journey.

1.2 Chapter’s overview

In this dissertation, we study stochastic thermodynamics using simulations of a
colloidal particle trapped in an optical tweezer. The first leading result is finding the
performance of optimal protocols from linear response theory and slowly varying processes
for different intensities and switching times. The second main result is the proposal of a
new feedback experiment to be realized in our laboratory.

We begin in chapter 2, presenting the experimental system available in our labora-
tory. Although this dissertation has a computational/theoretical approach, the physical
parameters chosen were experimentally motivated, based on the routinely made experi-
ments.

Then, in chapter 3 we lay the theoretical foundations of the physical description
with the Langevin equation and the Fokker-Planck equation. The former equation describes
the individual trajectories, while the latter represents the evolution of the probability
density function of the particle.

These two equations, however, do not introduce the classical thermodynamics
concepts as work, heat, and entropy. So, in chapter 4, we present the ideas of the influential
article (10) by Sekimoto. He has shown that work and heat can be associated with
individual trajectories. Work becomes a stochastic quantity with a probability density
function associated. The work distribution will depend on how we change the work
parameter (the variable that the experimentalist has control), also known as a protocol.
Different protocols will lead to different average values.

The optimal protocol is the one that has the smaller average work. For the particular
case of a colloidal particle in a harmonic potential in the overdamped regime, the optimal
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protocol was already analytically found.(15) Nonetheless, generally, encountering the
optimal protocol is not an easy task. Thus, in chapter 5, we employed two linear response
theory methods, one for slowly varying processes (17) and one phenomenological, to
encounter the optimized processes. (18) The first main result of this dissertation is that
we numerically verified the performance of these two approximate methods for different
switching times and protocol intensities.

In chapter 6, we discuss the ideas behind Maxwell’s demon experiment. (19) By
simulating a particle in a double-well potential, we have been able to verify Landauer’s
principle. (20) Also, we reproduce the results of ref. (21), where the authors experimentally
verified the information-to-energy conversion. Finally, we present our second main result:
an experiment proposal, suitable for our optical tweezers setup, to verify the information-
to-energy conversion.
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2 OPTICAL TWEEZERS

Developed during the 1970s and 1980s by Arthur Ashkin (22–24) optical tweezers
are helpful in different areas, from biological systems (25) to stochastic thermodynamics
(26), allowing trapping and measurements of forces and torques with great precision. In
the most basic configuration it contains a laser source and an objective lens with a high
numerical aperture.

In this chapter, we present the basic theory of particle trapping by optical tweezers
and the main features of the experimental system. The goal is to show the essential
parameters to simulate it.

2.1 Basic theory

The physical phenomenon responsible for the functioning of optical tweezers is the
radiation force. Historically, there are three ways to describe particle trapping, depending
on the dimensions of the trapped particle d and the laser wavelength λlaser.

• d ≪ λlaser (Dipole approximation). In this limit, the particle is treated as a dipole
in an electromagnetic field.

• d ≫ λlaser (Ray optics regime). Geometrical optics can be utilized to describe the
physical process.

• d ≈ λlaser (Mie scattering). The former regimes greatly simplify the mathematical
description. But in the intermediate case, complete wave-optical modeling of the
particle-radiation interaction is necessary.

Figure 1 – The non-uniform intensity of the laser makes the momentum transfer by the outer
ray smaller than that of the ray closer to the beam’s center. The resultant effect, if
nparticle > nmedium, is to trap the particle in the focal spot of the optical tweezers.

Source: Adapted from MARTINS (27)
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The details of each description can be found in ref. (28) However, it is simpler to
understand the phenomena through geometrical optics. Because light carries momentum
and the particle’s refractive index is different from the medium’s refractive index, the
ray suffers refraction and reflection when it impinges on the particle’s surface, changing
its direction. However, linear momentum needs to be conserved, so a change in the ray’s
direction means a transfer of momentum to the particle.

The intensity profile of the laser is spatially non-uniform, typically Gaussian,
resulting in a non-even momentum transfer as shown in Figure 1. In other words, because
the beam’s intensity is greater at its center, more centralized rays will transfer more
momentum than peripheric rays. As a consequence of Newton’s third law, a net force in
the direction of the trap’s center if nmedium < nparticle will arise.

2.1.1 Force exerted

Although the different descriptions of the colloidal particle trapping, the force
exerted on the particle, in a first approximation, can be considered equal to −κ(x− xc),
where κ is the trap’s stiffness, and xc is the trap’s center position. Besides, a potential
energy, V (x), can be associated with this force, i.e.,

V (x) = κ

2 (x− xc)2. (2.1)

2.2 Experimental system

Here, we will briefly introduce the experimental system to support the parameters
used in the simulations. For a complete discussion about the construction, calibration, and
components, we refer to ref. (27) The essential idea is that we can control the power of the
laser and its angular position through the acousto-optical modulator (AOM)(See Figure
2). Control of the laser’s power allows changes of the trap stiffness, while the angular
position determines the trap’s center position, allowing the construction of different types
of potentials (ex.: the double well). The physical observable is the position of the particle at
time t, which is collected using the Quadrant Photodetector (QPD). The rate of position’s
acquisition reaches up to 150 kHz. Generally, the trapped particle is a silica sphere of
1 µm of radius, immersed in water at room temperature. The trap stiffness is of the order
of some piconewtons per micrometer. In Table 1, the information about the physical
constants that appears throughout this dissertation repeatedly is summarized.

2.2.1 Other potentials

In chapter 6, we will discuss the use of more complex potentials. Optical tweezers
can accomplish such tasks by measuring the particle’s position and changing the trap
center very quickly. The harmonic potential is changed in a manner that, at each point
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Figure 2 – Representation of the experimental system. The laser responsible for the trap has
a wavelength 980 nm (in red), the acousto-optical modulator controls the position
of the beam, and the QPD detects the particle’s position. Generally, spherical silica
particles with 1 µm of radius are trapped. The surrounding medium of the particle is
water at room temperature.

Source: Adapted from MARTINS (27)

in space, it simulates the force of a more complex potential in the particle. Hence, this
method creates a virtual potential that can be designed to achieve the experimentalist’s
goals. (29) The first experimental verification of Landauer’s principle used this method.
(30) If feedback control is not available, changing quickly the center’s trap position can
create certain potentials. (31)
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3 BROWNIAN MOTION

3.1 Introduction

When observed through a microscope, our silica particle seems to move in a rapid
random manner. This phenomenon is known as Brownian motion, and its explanation
relies on the random forces that act due to the density fluctuations of the surrounding
medium. The Brownian particle is a paradigmatic example in studying equilibrium and
nonequilibrium processes. Mainly, there are two options to describe it: the Langevin
equation and the Fokker-Planck equation. The first description is through Newton’s second
law with a stochastic term, and the second consists of a partial differential equation for
the time evolution of the probability density.

In the previous chapter, we presented the experimental values of the physical
constants adopted in our simulations. Here, we show the theoretical foundation of the
physical description. The goals are to present the Langevin and Fokker-Planck equations
and the article that is the basis for the simulations.

3.2 The Langevin Equation

If x(t) is the position at time t of a small particle of mass m subjected to a potential
V (x) and immersed in a liquid with friction coefficient γ at temperature T , the equation
of motion is given by

m
d2x(t)
dt2

= − d

dx
V (x) − γ

dx(t)
dt

+
√

2kBTγξ(t), (3.1)

which is known as the Langevin equation. The last term on the right hand side, ξ(t), is
the stochastic term and represents the medium’s density fluctuation. The stochastic force
is a random gaussian white noise with zero mean. Mathematically, this can be put as

ξ(t) = 0, (3.2)

and
ξ(t)ξ(t′) = δ(t− t′). (3.3)

The over bars, · , represent averages under different realizations of the white noise.

3.2.1 Example 1: Free particle

For a free particle we have V (x) = 0, and the Langevin equation is written as

m
d2

dt2
x(t) = −γ d

dt
x(t) +

√
2kBTγξ(t). (3.4)
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It can be solved for x(t) and v(t) using the Laplace transform and the convolution integral.
(32) Hence, the solutions are given by

x(t) = x0 + m

γ
(1 − e− γt

m )v0 +
√

2kBT

γ

∫ t

0

[
1 − e

γ
m

(t−s)ξ(s)
]
ds, (3.5)

and
v(t) = v0e

− γt
m +

√
2kBTγ

m

∫ t

0
e− γ

m
(t−s)ξ(s)ds, (3.6)

where x0 = x(0) and v0 = v(0) are the initial position and velocity, respectively. It is
noteworthy that we are using the Stratonovich integral throughout this dissertation.

An important approximation is found in the literature when the medium has high
friction, or the particle’s mass is low. This approximation is called the strong friction limit.
It is interesting to calculate first the velocity autocorrelation function ⟨v(t)v(t′)⟩eq, where
the brackets, ⟨ · ⟩eq, represent the average over the thermal equilibrium distribution. This
can be done using the expression above for the velocity, the properties of the stochastic
term (eqs. (3.2) and (3.3)), and considering the equipartition theorem

m⟨v2
0⟩eq

2 = 1
2kBT. (3.7)

Accordingly, the velocity autocorrelation function is equal to (3)

⟨v(t)v(t′)⟩eq = kBT

m
e− γ

m
|t−t′|. (3.8)

It is noteworthy that the correlation function above decays exponentially as time increases,
meaning that information about the initial velocity decays exponentially. The time scale
in which the exponential decays is called the momentum relaxation time τM = m/γ. If τM

is small, the velocity of the Brownian particle relaxes to its equilibrium state very rapidly.
As a consequence, the velocity of the particle reaches its stationary state quickly and
dv/dt ≈ 0. Thus, it is a good approximation to drop the inertial term in eq. (3.4), i.e.,

0 = −γ dx(t)
dt

+
√

2kBTγξ(t). (3.9)

This in the Langevin equation in the strong friction limit and describes well our experimental
setup. Because the acquisition time (10 − 25 µs) is much larger than the momentum
relaxation time τM ≈ 0.58 µs, we do not measure the velocity of the particle relaxing to
the equilibrium state. Therefore, justifying the use of the approximation.

3.2.2 Example 2: Harmonic potential

For a harmonic potential (eq. (2.1)) the procedure is the same of the previous
example. However, in this case we will only calculate the position. The Langevin equation
is written as

m
d2x(t)
dt2

= −κx(t) − γ
dx(t)
dt

+
√

2kBTγξ(t). (3.10)
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The solution can be found again using the Laplace transform. Hence, the solution for the
overdamped regime (γ2 > 4mκ) is given by

x(t) = 1
2
√

∆
(v0 − s2x0)es1t − 1

2
√

∆
(v0 − s1x0)es2t +

√
kBTγ√
2∆m

∫ t

0
W (t′)G(t− t′)dt′ (3.11)

with the following definitions
∆ =

(
γ

2m

)2
− κ

m
, (3.12)

s1 = − γ

2m +
√

∆, (3.13)

s2 = − γ

2m −
√

∆, (3.14)

and
G(t− t′) = es1(t−t′) − es2(t−t′). (3.15)

Observe that the position of the particle decay exponentially in a time scale given by 1/s1

and 1/s2.

The solution (3.11) is essential to obtain the relaxation function of the problem
that will allow us to find the optimal protocol in the linear response regime (see chapter
5.2.1).

3.2.3 A Finite Differential Algorithm for the Langevin equation

In undergraduate courses, it is common to learn how to simulate ordinary differential
equations (ODEs). Nonetheless, stochastic differential equations have characteristics that
demand more sophisticated simulation methods because of the discontinuities of the
stochastic term and its infinite variation. (33) The simulations in this dissertation have
as reference (34), which presents a way to simulate the Langevin dynamics using a finite
differential algorithm.

This simulation of the dynamics can be done by approximating the solution x(t)
for a discrete-time sequence xi which represents the solution at regular time steps ti = i∆t.
If the steps are small enough then it is a good approximation xi ≈ x(ti). In addition, the
first and second time derivatives of the position are substitute by

dx(t)
dt

≈ xi − xi−1

∆t , (3.16)

and
d2x(t)
dt2

≈ xi − 2xi−1 + xi−2

∆t2 , (3.17)

respectively. Further, if there is a harmonic potential, the restoring force is substituted by,

dV (x)
dx

= −κx(ti) ≈ −λxi. (3.18)
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The idea is to build a recursion method, where given the position xi−2 and xi−1, the
value of xi is determined. Given xi−1 and xi, it is obtained xi+1 and so on. This first
order integration represents a generalization of the Euler method to stochastic differential
equations. Until now, nothing has changed compared to the treatment of ODEs. The
fundamental idea to treat the stochastic term is to construct a discrete sequence of random
numbers ξi that imitates the behavior of the stochastic term. Following the equations (3.2)
and (3.3) this discrete sequence must satisfy

ξi = 0 (3.19)

and
ξiξj = δij

∆t . (3.20)

Note that the variance of the distribution is 1/∆t. It is useful to rescale ξi as

wi = ξi

√
∆t. (3.21)

The new sequence wi has the same average, but its variance is equal to the unity. In our
simulations, we utilized the Box-Muller algorithm to generate random numbers with a
Gaussian distribution (with variance equal to 1) from a random number generator with
outputs from 0 to 1. Here, we replace eqs. (3.16), (3.17), (3.18), and (3.21) , into (3.10),
and obtain

xi = (2m+ γ∆t)xi−1 −mxi−2 +
√

2kBTγ∆t3wi

m+ γ∆t+ κ∆t2 (3.22)

To correctly reproduce the dynamics of the colloidal particle, the time step must be much
smaller than the relaxation time (τR = γ/k = 18.85 ms)(section 3.3.2 ). Besides, to use
the strong friction approximation (neglect the inertia term), the time step should be larger
than the momentum decay time τM . Therefore, to fulfill the above requirements, we made
∆t = 25 µs. In Figure 3, the dependence of the position with time, for our simulation. The
random number generator plays a crucial role, so we did the chi-squared test to verify the
reliability of the random number generator of wi (Figures 4 and 5).
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Figure 3 – Simulation of the motion of a free colloidal particle in water at temperature T = 300 K.

Source: By the author

Figure 4 – Histogram constructed using 10000 realizations of wi. The χ2 of the distribution is
χ2 = 19.267 with 13 degrees of freedom. Also, the average value is equal to 0.003 and
standard deviation 1.010, as expected the properties of the white noise.

Source: By the author
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Figure 5 – χ2 distribution. With the intent to verify if the random number generator is credible,
we obtained the χ2 value for 10000 trials (repeat the procedure in the Figure 4). Then,
constructed its probability distribution (dashed/magenta). Note that it is in good
agreement with the theoretical expectation (solid/black). Therefore, we can affirm
that our random number generator have passed in the χ2 test.

Source: By the author

3.3 The Fokker-Planck equation

Another manner of describing the system is by writing the time evolution of the
probability distribution. In several situations, this description is more adequate than the
one using the Langevin equation. Consider that P (x, t) is the probability density function
of the particle in the position x at time t. Then its time evolution is given by (see ref. (3)
for a complete deduction)

∂P (x, t)
∂t

= 1
γ

∂

∂x

[
dV (x)
dx

P (x, t) + kBT
∂P (x, t)
∂x

]
(3.23)

which is the Fokker-Planck equation in the strong friction limit. The probability satisfies
the normalization condition ∫ ∞

−∞
P (x, t)dx = 1. (3.24)

Now, let’s explore the Fokker-Planck equation for two cases, the free particle and the
harmonic potential.

3.3.1 Example 1: Free particle

For the free particle, the Fokker-Planck is written as

∂P (x, t)
∂t

= kBT

γ

∂2P (x, t)
∂x2 (3.25)



33

Figure 6 – Time evolution of the eq. (3.26), considering the initial probability density function
P (x, 0) = δ(x). As the time pass the probability distribution gets broader.

Source: By the author.

and is also known as the free diffusion equation. This equation can be solved using the
Fourier transform. (35) If P (x, 0) = δ(x), then the solution is

P (x, t) =
√

γ

4πkBTt
e

−γx2
4kBT t . (3.26)

Observe that the probability distribution is Gaussian. When time increases, the distribution
becomes broader (Figure 6). Also, as the temperature increases the particle diffuses more
quickly through the medium.

3.3.2 Example 2: Harmonic potential (Spectral Decomposition of the Fokker-Planck
Equation)

The Fokker-Planck equation follows immediately and is given by

∂P (x, t)
∂tγ

= ∂

∂x

[
κxP (x, t) + kBT

∂P (x, t)
∂x

]
, (3.27)

where the adimensional factor tγ = t/γ is introduced. To solve the above partial differential
equation, first, note that the operator

L̂F P = κ+ κx
∂

∂x
+ kBT

∂2

∂x2 (3.28)

is not an self-adjoint operator. Nonetheless, there is a clever substitution that leads to
one,

P (x, tγ) = e−γκx2/2gψ(x, tγ). (3.29)

With this substitution, the equation (3.27) becomes

1
κ

∂ψ(x, tγ)
∂tγ

=
(

1
2 − κx2

4kBT

)
ψ(x, tγ) + kBT

κ

∂2ψ(x, tγ)
∂x2 , (3.30)
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where the new operator
ĤF P = 1

2 − κx2

4kBT
+ kBT

κ

∂2

∂x2 (3.31)

is self-adjoint. Therefore, the problem becomes a Sturm-Liouville problem and has well-
known good properties.(35) In particular, it has eigenfunctions that form an orthonormal
basis with real eigenvalues. The solution then may be written as a superposition of
eigenfunctions of the problem. Accordingly, the solution for the initial probability density
function P (x, 0) = δ(x− x

′) is equal to

P (x, t) =
√

κ

2πkBT (1 − e−2κt/γ) exp
[

−κ(x− x
′
e−κt/γ)2

2kBT (1 − e−2κt/γ)

]
, (3.32)

where x′ is a constant. A validation test can be done by comparing the analytical solution
of the probability distribution above with the probability distribution obtained for the
simulations of the Langevin equation (Figure 7). The eq. (3.32) will be useful in calculating
the dependence between the information-to-energy conversion and the delay time in section
6.4.5.

Note that, when t → ∞ the probability density function turns into

P (x, t → ∞) =
√

κ

2πkBT
exp

(
−κx2

2kBT

)
, (3.33)

that is the thermal distribution as expected from equilibrium Statistical Mechanics (see
ref. (3)). The time scale for the system reach the thermal equilibrium state is determined
by the relaxation time, defined as τR = γ/2κ.
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Figure 7 – Solution of the Fokker-Planck equation at 10 ms (solid/black), and the probability
density function reconstructed from the Langevin equation using our simulation
(dashed/magenta). They are in good agreement, showing again that the simulations
are trustworthy. The tendency of both distributions is the state of thermal equilibrium
(dashed/green), when t → ∞.

Source: By the author.
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4 STOCHASTIC ENERGETICS AND FLUCTUATION THEOREMS

In the previous chapter, we showed the theoretical foundation of this dissertation:
the Langevin equation and the Fokker-Planck equation. However, thermodynamic work,
heat, or entropy did not yet enter the stage.

In this chapter, we will show how to extend the concepts of classical thermodynamics
to single trajectories of the Brownian particle. Also, we show that work becomes a stochastic
quantity with its probability distribution respecting important relations as the Jarzysnki
equality (JE) and the Crooks relation (CR). Because the Jarzysnki equality is an average
over exponentials, it can be sensitive to rare events. We discuss the rare event’s existence
for a specific protocol and how the switching time affects the number of trials required for
the convergence of the Jarzynski equality. For a quick review of the area, we refer to ref.
(26)

4.1 Stochastic Energetics

Although classical thermodynamics typically deals with systems with myriads
of degrees of freedom, Sekimoto showed in the late 90s that to each trajectory of a
particle, quantities like work and heat can be associated, inaugurating what is known
today as Stochastic energetics. (10) To see this, consider the Langevin equation (3.1) in
the overdamped limit

−dV (x)
dx

− γ
dx(t)
dt

+
√

2kBTγξ(t) = 0. (4.1)

Multiplying by −dx (the multiplication in this context is the Stratonovich product, which
is defined in such a manner that the chain rule of the ordinary calculus is still valid (33))
and rearranging, we obtain

−
(

−γ dx(t)
dt

+
√

2kBTγξ(t)
)
dx+ dV (x)

dx
dx = 0. (4.2)

The first term describes the coupling between the particle and the bath and it is identified
as heat dQ because it represents the energy dissipated in the medium. The second term is
the internal energy change. Therefore, the equation can be rewritten as

dQ+ dV = 0. (4.3)

It is interesting to consider that, beyond the position, the potential energy can also depend
on another parameter λ, called the work parameter (or control parameter). This is the
variable that the experimentalist has control. Repeating the procedure above, we find

−
(

−γ dx(t)
dt

+
√

2kBTγξ(t)
)
dx+ ∂V (x, λ)

∂x
dx = 0. (4.4)
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However, this time the last term does not represent the total energy change. For this, it is
necessary to complete the differential form by adding to both sides the term ∂V (x,λ)

∂λ
dλ

dQ+ dV = ∂V (x, λ)
∂λ

dλ. (4.5)

The term of the right-hand side is identified as work dW , that is

dW = ∂V (x, λ)
∂λ

dλ (4.6)

and we have an expression for the First Law of Thermodynamics for a single stochastic
trajectory

dQ+ dV = dW. (4.7)

This new framework is called Stochastic Energetics. Note that W > 0 represents work
delivered to the system. To obtain the work along a path, we integrated eq. (4.5) to get

W =
∫ λf

λi

∂V (x, λ)
∂λ

dλ =
∫ τ

0

dλ(t)
dt

∂V (x, λ)
∂λ

dt, (4.8)

where λi and λf are the initial and final work parameter values, respectively. It is noteworthy
that the work is positive (W > 0) when is delivered to the system and negative (W < 0)
when the system does work. Alternatively, when we realize work on the system, W > 0,
and when we receive work from the system, W < 0.

4.1.1 Control parameter and the breathing parabola

The acousto-optical modulator (chapter 2) allows controlling of the trap stiffness,
κ, or of the trap center position, xc, of the harmonic potential (eq. 2.1). The control of xc

is experimentally more difficult because it requires more calibrations. Therefore, we have
focused on the control of the trap stiffness. Then, λ = κ, and the potential becomes,

V (x, λ) = λx2

2 (4.9)

where we chose xc = 0. This is a paradigmatic case in stochastic thermodynamics known
as the harmonic potential with time-dependent trap stiffness or the breathing parabola.

4.1.2 Protocols

The different manners to vary the work parameter, λ(t), are called protocols (Figure
(8)). The protocol duration, τ , is called protocol time or switching time. A convenient way
to write λ(t) is

λ(t) = λi + (λf − λi)g(s), (4.10)

where s = t/τ . The function g(s) is also known as a protocol and satisfies the conditions
g(0) = 0 and g(1) = 1.
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Figure 8 – Example of protocols. The work parameter can increase linearly (solid/blue) or have
a non-linear behaviour (dashed/green).

Source: By the author.

4.1.3 Average work

Because the stochastic work fluctuates, a more interesting quantity is the average
work ⟨W ⟩. It is defined as the work averaged over all stochastic realizations (over the
thermal distribution and over the noise), and using eq. (4.8) can be written as

⟨W ⟩ =
∫ τ

0

dλ(t)
dt

〈
∂V (x, λ)

∂λ

〉
dt, (4.11)

where the bracket, ⟨ · ⟩, represents the average over all realizations. Another way to
represent the average work is through

⟨W ⟩ =
∫
P (W )WdW, (4.12)

with P (W ) representing the work probability density function (Figure 9). Different proto-
cols generate different probabilities distributions and average values for the work.

4.1.4 Helmholtz free energy

The Helmholtz free energy, F , is a helpful quantity in classical thermodynamics
in treating systems in contact with a thermal reservoir. In this context, the Helmholtz
free energy difference, ∆F , is equal to the work given to the system to reversibly change
between equilibrium states while in contact with a thermal reservoir. (2) However, if the
process is irreversible, then

∆F ≤ Wclassical (4.13)

which is equivalent to the Second Law of Thermodynamics. Even though the stochastic
work fluctuates, its average value is still larger than the free energy difference, i.e.

∆F ≤ ⟨W ⟩. (4.14)
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Figure 9 – Work probability density function, P (W ), for the protocols given in Figure 8. Although
the probability density functions are different with distinct average values, both respect
the Jarzynski equality (eq. (4.41)).

Source: By the author.

In the limit of an infinitely long process (τ → ∞), the protocol is so slow that the system
remains in thermal equilibrium at all times. Thus, the process is reversible, and we retrieve

⟨W ⟩ = ∆F. (4.15)

Statistical mechanics provides an expression for the Helmholtz free energy. So,

F (λ) = −kBT lnZ = −kBT ln
∫

exp(−V (Γ, λ)/kBT )dΓ, (4.16)

where
Z =

∫
exp(−V (Γ, λ)/kBT )dΓ (4.17)

is the partition function, and Γ is a point in the phase space. For the harmonic potential
with time-dependent stiffness, the free energy difference is given by

∆F (λ) = kBT ln
(
λf

λi

)
, (4.18)

where we use eqs. (4.9) and (4.16).

4.1.5 Example: Instantaneous protocol

Consider the harmonic potential with time dependent stiffness. An important
protocol is the immediate jump (or instantaneous protocol). The trap stiffness changes,
instantaneously, from λi to λf . Therefore, τ = 0. Using eqs. (4.6) and (4.9), the stochastic
work is written as

dW = x2

2 dλ (4.19)
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Integrating the equation above, we obtain

W = x2

2 ∆λ, (4.20)

where ∆λ = λf − λi. Note that the work for an instantaneous protocol is equal to the
difference of the final and initial potentials, i.e., W = V (x, λf) − V (x, λi).The average
work then becomes

⟨W ⟩ = ∆λ
2 ⟨x2⟩. (4.21)

Since the protocol is instantaneous, the average ⟨x2⟩ is over the probability distribution of
x at the beginning of the protocol, i.e.,

⟨x2⟩ =
∫ ∞

−∞
x2P (x, 0)dx, (4.22)

where P (x, 0) is the initial probability density function. If, initially, the particle is in
thermal equilibrium, then

P (x, 0) =
√

λi

2πkBT
exp

(
−λix

2

2kBT

)
. (4.23)

Substituting eq.(4.23) into eq. (4.22), we obtain

⟨x2⟩ = kBT

λi

. (4.24)

Therefore, using eqs. (4.21) and (4.24),the average work is equal to

⟨W ⟩
kBT

= 1
2

(
λf

λi

− 1
)
. (4.25)

4.1.6 Example: Linear protocol

Another important example is the linear protocol. The work parameter is changed
from λi to λf is a time τ , at a constant rate. The protocol can be written either as,

λ(t) = λi + ∆λ
τ
t (4.26)

or as
g(s) = s = t

τ
. (4.27)

The average work can be calculated using eqs. (4.11), (4.9), and (4.26). Thus,

⟨W ⟩ = ∆λ
2τ

∫ τ

0
⟨x2⟩dt. (4.28)

In the previous example, we needed to know the quantity ⟨x2⟩ at the beginning of the
protocol to evaluate the average work. However, in this example, because ⟨x2⟩ is integrated
in time, we need its time evolution during the protocol. Two paths can be taken to obtain
the time dependence of ⟨x2⟩ .
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Figure 10 – As expected, in the overdamped regime the mean value of work for a linear protocol
(blue/dots) decays to its free energy difference (solid/red) monotonically, as the
switching time increases.

Source: By the author.

Figure 11 – The standard deviation for a linear protocol decreases monotonically to zero as the
switching time increases.

Source: By the author.

First, the time evolution of ⟨x2⟩ can be obtained by simulating the Langevin
dynamics. In Figures (10) and (11) are our results for the simulations of the Langevin
equation for the linear protocol. It is noteworthy that the work decays to the free energy
difference while the standard deviation goes to zero. However, we do not have to simulate
the Brownian motion of the microparticle to obtain ⟨W ⟩.

Alternatively, ⟨x2⟩ can be obtained by multiplying the Fokker-Planck equation
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Figure 12 – Evolution of ⟨x2⟩ during the linear protocol, obtained numerically using eq. (4.29).
Initially, the particle is at thermal equilibrium and the protocol time is equal
to τ = 10 ms. By integrating such curve, we obtain an average work equal to
⟨W ⟩ = 0.785 kBT.

Source: By the author

(3.23) by x2 and integrating it. Defining w(t) = ⟨x2⟩, the time evolution is written as

dw

dt
= −2λ

γ
w + 2kBT

γ
. (4.29)

This equation can be numerically solved given an initial condition w(0) (Figure 12). With
the solution and eq. (4.28), the average work is obtained.

4.1.7 Observation: alternative identification of the work

One could think that the work expression is rather odd or even wrong since
apparently, it does not agree with the more traditional view of work being equal to
force times displacement. Villar and Rubi (36) used this apparent inconsistency between
definitions to criticize the work identification using eq. (4.11). Soon after, rebuttals to
this criticism were published. (37–39) Nonetheless, an alternative identification (which
agrees with the conventional view) of the work is possible in the framework developed.
However, in the quasistatic limit, the alternative identification does not tend to the free
energy difference, as expected from classical thermodynamics. Therefore, the more used
definition for the work in the literature is of eq. (4.11), and it is the definition that we use
in this dissertation.

4.2 Entropy and the Second Law of Thermodynamics

The last thermodynamic quantity that we introduce is the entropy. As the work,
the entropy production allows more than one identification. The different definitions have
different features, like the existence of negative entropy production rates. (40) The two
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distinct entropy production identifications that we will discuss in this section are the
informational entropy (6) and the irreversible work entropy. (40) For a more detailed
discussion we refer to ref. (41).

4.2.1 Informational entropy

Following refs. (6, 8), it seems natural to associate a contribution to the entropy
production, ∆Σm, from the heat dissipated in the medium

∆Σm = Q

T
. (4.30)

Besides, a trajectory dependent entropy, σ(t), can be identified. Using the Shannon entropy
(ref. (42)),

Σ(t) = ⟨σ(t)⟩ = −
∫
P (x(t), t) lnP (x(t), t)dx, (4.31)

one defines the stochastic entropy as

σ(t) = − lnP (x(t), t), (4.32)

where P (x(t), t) is the solution of the Fokker-Planck equation (3.23) evaluated along the
trajectory x(t). Note that the probability of a trajectory depends on the initial ensemble.
Therefore, even if we have two equal trajectories, its probability to happen can be different,
if the initial probabilities distributions are different. If the particle is initially at thermal
equilibrium, then the probability density function is given by the Gibbs distribution

P (x(0), 0) =
exp

[
−V (x(0),0)

kBT

]
Z

, (4.33)

where
Z =

∫
exp

[
−V (x(0), 0)

kBT

]
dx (4.34)

is the partition function. Substituting eqs. (4.33) and (4.34) in (4.32), we obtain the
relation

Tσ(x(t)) = V (x(t), t) − F. (4.35)

4.2.2 Irreversible work

Another possible identification for the entropy production is given in ref. (40). If
∆ΣS is the entropy production of an isolated system, ∆ΣB the entropy production of the
heat bath, then the total entropy production, ∆Σtot, is equal to

∆Σtot = ∆ΣS + ∆ΣB. (4.36)

Using the Clausius theorem and the the First Law of Thermodynamics, the above expression
can be written as

T∆Σtot = T∆ΣS + ⟨W ⟩ − ∆V. (4.37)
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Substituting the expression ∆F = −T∆ΣS + ∆V , we obtain

T∆Σtot = ⟨W ⟩ − ∆F. (4.38)

However, the irreversible work, ⟨Wirr⟩, is defined as

⟨Wirr⟩ = ⟨W ⟩ − ∆F. (4.39)

Therefore,
T∆Σtot = ⟨Wirr⟩ (4.40)

and the irreversible work can be used as a measure of the entropy production.

4.3 Fluctuation Theorems

4.3.1 Jarzysnki equality

We have seen that work fluctuates in each realization, with its values being dis-
tributed according to a probability density function P (W ). Christopher Jarzysnki showed
in 1997 (43), that

⟨exp(−W/kBT )⟩ = exp(−∆F/kBT ) (4.41)

if, initially, the particle is in thermal equilibrium. This relation gives a connection between
two equilibrium states with a non-equilibrium quantity. Due to the concavity of the
exponential function, it is easy to recover

∆F ≤ ⟨W ⟩, (4.42)

as expected.

The Jarzysnki equality has various applications, mainly in estimating free energy
differences. However, in our case, we already have an analytical expression for the free
energy difference (eq. (4.18)), and therefore, we use JE as a test for our simulations.

A practical question that often arises is how many realizations are necessary for
the convergence of the Jarzynski equality, as discussed in refs. (44) and (45). Because of
the fluctuating work, some values are dominant in the average process, i.e., some values of
W will contribute more than others in the average ⟨exp(−W/kBT )⟩. Note that dominant
work values arise from two factors: the weight exp(−W/kBT ) and the probability of the
event to occur. For example, a work value can be a frequent event, yet its weight can
be tiny, leading to a small contribution to the average ⟨exp(−W/kBT )⟩. Furthermore, a
work value can be rare with a large weight, resulting in an important contribution to the
convergence of JE. In the experiment, the number of realizations must be enough to see a
few of the dominant values to guarantee the convergence of JE. If the dominant values are
rare, then more realizations of the experiment are necessary. Typically, in our simulations,
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Figure 13 – Probability density functions for the forward linear protocol, P (W ), and for the
reverse, P †(W ). This two distributions allows one to verify the Crooks relation (eq.
(4.43)).

Source: By the author.

10000 realizations are made for a given set of parameters (protocol time, initial and final
work parameters, temperature, etc.). We are going to justify such a number in section 4.4.

Although JE was first derived using Hamiltonian dynamics, soon after, the result
was extended for stochastic dynamics, see ref. (5)

4.3.2 Crooks relation

A refinement of the Jarzynski equality is the Crooks relation. (6) This relation
connects the work distribution for a protocol in the forward direction with its reverse. The
relation reads

P (W )/P †(−W ) = exp[(W − ∆F )/kBT ], (4.43)

where P †(W ) is the probability density function for the reverse protocol (as shown in
Figure 13). The reverse protocol λ†(t) is defined as

λ†(t) = λ(τ − t). (4.44)

A comparison of the Crooks relation for the simulation is in Figure (14).



47

Figure 14 – Comparison of the Crooks relation between theoretical and numerical data for a
linear protocol. In magenta/dashed is eq. (4.43) and in black/solid the result of the
simulation. Due to the finite number of realizations, the simulated result diverges
from the theoretical result for more rare work values. But, they are in good agreement
in the central region.

Source: By the author.

4.4 Role of the rare events and the number of realizations

The Jarzynski equality, as we mentioned, is a useful relation in checking the
validity of our simulations. However, it is an average value. Thus, the experiment must
be performed several times to see this average convergence. The so-called dominant work
values are the events that have a crucial role in the JE convergence. They can be rare
events, and, in consequence, the number of realizations to converge can be large. Here, we
use the knowledge of the work distribution to investigate the dominant work values, their
probability, and the dependence on the protocol time.

4.4.1 Linear forward protocol

To study the number of realizations needed for convergence, note that the quantity
⟨exp(−W/kBT )⟩ can be written as

⟨exp(−W/kBT )⟩ =
∫

exp(−W/kBT )P (W )dW. (4.45)

Thus, the area under curve exp(−W/kBT )P (W ) gives the left-hand side of JE. The idea is
to obtain the probability density function, P (W ), and consequently exp(−W/kBT )P (W ).
Then, see the values of W in which exp(−W/kBT )P (W ) has the larger values because
these are the work values that contribute the most, i.e., the dominant work values. Next,
we look at the probability of such events to occur. If the probability is low, the event is
rare, and it is necessary to perform the experiment several times.
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(a) (b)

Figure 15 – (a) P (W ) exp(−W/kBT ). The total area (highlighted and not highlighted) gives
⟨exp(−W/kBT )⟩. The black area represents the work values that contribute the most
to JE convergence. In other words, the highlighted area represents the dominant
work values. The interval goes from 0 to the average of the distribution plus three
standard deviations of the same curve. (b) Probability density function, P (W ), for
a linear protocol of 5 ms. The red highlighted area represents the probability of
occurrence of the dominant work values determined previously.

Source: By the author.

Figure 15 shows an example of the previous reasoning for a linear protocol. Since
the protocol increases monotonically, there are only positive values for the work. Thus,
small values of work have large values of exp(−W/kBT )P (W ). Nonetheless, they also have
a high probability to happen. Therefore, for the forward linear protocol, there are no rare
events, and a small number of realizations guarantee convergence (as shown in Figure 16).

We highlight that the values of W that are important to the convergence come from
a balance between probability and work value. Negative W values have a great weight,
but they will contribute only if their probability of occurrence is considerable.

4.4.2 Number of realizations and the protocol time

In estimating the probability of dominant work values to occur, we rely on the
probability density function, P (W ). This distribution changes if the protocol time is
different. Thus, we repeat the procedure described in the previous section for the linear
protocol for distinct switching times (as shown in Figure 17). When the protocol is slow,
the distribution tends to a Gaussian and becomes narrower. (46) Then, the number of
necessary realizations decreases as the protocol time increases due to the narrower work
distribution. For rapid protocols, the work distribution is broader, leading to a large
number of realizations for convergence.
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Figure 16 – Convergence of ⟨exp(−W/kBT )⟩ (black/dots). The larger the number of realizations,
the closer the average becomes to exp(−∆F/kBT )(blue/solid). It is noteworthy that
the lack of rare events causes the quick convergence of the JE (approximately 500
realizations). Therefore, justifying the 10000 realizations performed in simulations.

Source: By the author.

Figure 17 – Protocol time and probability to obtain a dominant work value. As we increase the
former, the latter also increases.

Source: By the author.
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(a) (b)

Figure 18 – (a) The highlighted area has a significant contribution to the integral (eq. (4.45)). (b)
Probability density function, P †(W ), for a linear reverse protocol. The highlighted
area represents work values that contribute to the JE convergence. Nonetheless, it
has a small probability of occurrence.

Source: By the author.

4.4.3 Reverse linear protocol

In the previous example, we saw that the linear protocol generated only positive
values for the stochastic work. However, in section 6.3.1, when studying feedback control,
the presence of negative values of work will increase the number of realizations necessary to
the convergence of the Generalized Jarzynski equality. Therefore, we will treat an example
that has negative values of work.

The reverse linear protocol only has negative values of the stochastic work. The
analysis utilized for the forwad linear protocol is not appropriate in this case. Because the
probability density function P (W ) is narrower than P (W ) exp(−W/kBT ), the procedure
presented in the previous section fails. If we apply the method here, the result would
be that the probability of a dominant event happening is close to 1, i.e., all events are
dominant. Nonetheless, the number of realizations is not small since there are dominant
W values with a small probability of occurrence. The analysis made is in Figure 18.

Figure 18-a shows that highlighted area has a considerable contribution to ⟨exp(−W/kBT )⟩.
However, it has a tiny probability of occurrence, as shown in 18-b. Therefore, these events
are rare dominant W values, and a large number of realizations are necessary.

In contrast, in the previous example the highlighted area in Figure 15-a also has a
considerable contribution to ⟨exp(−W/kBT )⟩ but with a high probability of happening.
So, the dominant events are frequent and a small number of realizations are necessary.
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5 OPTIMAL PROTOCOLS

In the last chapter, we saw that finite-time processes requires work, where its
average is always larger than the Helmholtz free energy difference between the final and
initial states of the system. In this context, optimal protocols minimize the irreversible
work and, generally, they are hard to find analytically. However, paradigmatic examples, as
the harmonic potentials with time-dependent center position and time-dependent stiffness,
have analytic solutions in the overdamped regime, which we will explore here. These
solutions present counter-intuitive features, like jumps and delta-peaks, at the beginning
and end of the protocols. (15,47)

In this chapter, we begin by reviewing the exact optimal protocol in the overdamped
regime for the breathing parabola. (15) The exact optimal protocol gives a reference average
work value that can be compared with the value delivered by other methods to verify the
closeness of the protocols produced.

The first alternative method to find the optimal protocol studied was for slowly
varying processes. (17, 48) Slowly varying processes are processes that are slow but
not necessarily weak. Alternatively, we also studied a phenomenological linear response
theory method described in ref. (18) This method does not require knowledge about the
microscopic properties of the system, simplifying the treatment of other cases. It is a
phenomenological method because it uses the relaxation function, which can be measured
in the laboratory.

The performance of the protocols generated with the previous approximate meth-
ods has not been explored numerically in the literature. Here, our main result is the
determination of the performance of the methods for different protocol times and changes
of the control parameter. We show that the performance of the phenomenological method
is good even outside its theoretical validity regime.

5.1 Exact optimal protocols

In ref. (15) Schmiedl and Seifert have deduced the optimal protocols for the
harmonic potential with time-dependent trap’s center position and stiffness. As already
said, we are mostly interested in this dissertation in the breathing parabola. Thus, using
eqs. (4.8) and (4.9) , we write the work as

⟨W ⟩ = 1
2

∫ τ

0

dλ

dt
⟨x2⟩dt = 1

2

∫ τ

0

dλ

dt
w(t)dt, (5.1)
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where w(t) = ⟨x2⟩. The time evolution of w(t) can be obtained from the Fokker-Planck
(as done in section 4.1.6),

dw

dt
= −2λ

γ
w + 2kBT

γ
, (5.2)

where the differential equation can be solved given an initial condition w(0). Integrating
by parts equation (5.1), we obtain

⟨W ⟩ = 1
2

λ(t)w(t)
∣∣∣∣∣∣
τ

0

−
∫ τ

0
λ
dw(t)
dt

dt

 . (5.3)

Isolating λ from equation (5.2) and substituting in the above equation, we rewrite eq. (5.3)
as

⟨W ⟩ = 1
2(w(t)λ(t) − kBT lnw(t))

∣∣∣∣∣∣
τ

0

+ γ

4

∫ τ

0

1
w

(
dw

dt

)2

dt. (5.4)

First, we minimize the integral on the right-hand side. The minimization of the work
functional corresponds to solving the Euler-Lagrange equation (35)

(
dw

dt

)2

− 2wd
2w

dt2
= 0. (5.5)

The solution is equal to
w(t) = c1(1 + c2t)2. (5.6)

where c1 and c2 are constants. If, initially, the particle is in thermal equilibirum, then
w(0) = kBT

λi
, fixing the constant c1. The second constant, c2, we find by minimizing the

total work
⟨W ⟩ = λf

2λi

(1 + τc2)2 + (τc2)2γ

λiτ
− 1

2 − ln(1 + c2τ). (5.7)

The value of c2 that minimizes the above expression is equal to

c2τ =
−γ − τλf +

√
γ2 + 2γτλi + τ 2λfλi

2γ + λfτ
. (5.8)

Using equations (5.2), (5.6), and (5.8), we get the optimal protocol for the time-dependent
stiffness of a harmonic potential

λ(t) = λi − γc2(1 + c2t)
(1 + c2t)2 . (5.9)

If, we substitute t = 0 in the above equation, we obtain

λ(0) = λi − γc2 ̸= λi. (5.10)

Therefore, the protocol has a discontinuity/jump at the beginning of the protocol. The
same happens for t = τ , i.e., λ(τ) ̸= λf . The analysis of eqs. (5.7) and (5.9) is on Figure
(19).
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A larger variation of the work parameter leads to a more accentuated concavity
of the protocol (Figure 19-a). The explanation relies upon considering that the larger
the work parameter, the more rapidly the system tends to equilibrium (section 3.3.2).
Therefore, when the work parameter is large, it can quickly change without getting far
from equilibrium.

5.1.1 Limiting cases

As a verification of expression (5.7), we can make the protocol time arbitrarily
short or long. For rapid protocols, we have

lim
τ→0

c2τ → 0, (5.11)

and
⟨W ⟩ → 1

2

(
λf

λi

− 1
)
, (5.12)

which is equal to the average work of the instantaneous protocol (section 4.1.5), as expected.
For arbitrarily long protocols,

lim
τ→∞

c2τ →

√λf

λi

− 1
 , (5.13)

and
⟨W ⟩ → ∆F. (5.14)

So, the average work in the quasistatic limit is equal to the free energy difference of the
system (section 4.1.4).

5.1.2 Performance

Eqs. (5.7) and (5.8) give the minimum average work required to change the work
parameter from λi to λf in a finite-time for the breathing parabola. In more general cases,
the work functional may not be so simple, justifying the necessity of other methods. To
compare the different methods with the developed in this section, we define the performance
of a protocol as the relative difference between the average work given by a certain method,
⟨Waprox.⟩ , and the exact value given by eq. (5.7), i.e.,

Performance = ⟨Waprox.⟩ − ⟨Wexact⟩
⟨Wexact⟩

. (5.15)

We say that a method has a good performance when the value of the relative difference
above is small.
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(a) (b)

(c) (d)

(e) (f)

Figure 19 – (a) Relation between the exact optimal protocol (eq. (5.9)) and the final work
parameter, λf . The switching time is equal to τ = 20 ms. Note the discontinuities
at the beginning and end of the protocols. Remember that g(0) = 0 and g(1) = 1
(eq. (4.10)). So, the optimal protocols have jumps in the extremities. (b) For λf =
2.5 pN/µm, how the optimal protocol (eq. (5.9)) varies with the switching time. The
faster the protocols, the greater is the discontinuity. (c)(d) The optimized work (eq.
(5.7)) increases as we increase λf and decreases when we increase the switching time,
τ . The work returned by the simulation (dots/magenta) of the optimal protocol
(5.7) and the theoretical expectation (solid/black). We see that they are in good
agreement. (e) A work distribution for the optimal protocol. (f) A map of the relative
difference between the minimum work (eq. (5.7)) and the free energy difference (eq.
(4.18)). It gives a raw estimative of what are nonequilibrium processes.

Source: By the author.
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5.2 Optimal protocols for slowly varying process

Linear response theory is valid in a regime in which the control parameter has
only small variations, i.e., it is the regime of weak protocols (∆λ/λi ≪ 1). It infers
non-equilibrium quantities from equilibrium measurements. Slowly varying processes are
protocols that are slowly driven but, they are not necessarily weak. For both regimes,
linear response theory or slowly varying processes, the systems stay close to equilibrium.
Note that for the former regime, because the work parameter variation is small, the system
stays close to equilibrium even if it is driven quickly. On the other side, slowly varying
processes remain close to equilibrium because the system changes very slowly. Therefore,
it has enough time to relax back to equilibrium. Thus, the switching time must be much
larger than the relaxation time of the system.

In the linear response regime (∆λ/λi ≪ 1), we can write the Hamiltonian of the
system as

H[λ(t)] = H(λi) + ∆λg(t)∂H
∂λ

+ O(∆λ2), (5.16)

where we are treating the hamiltonian perturbatively. The expression for the work (eq.
(4.11)), is given in term of the Hamiltonian as

⟨W ⟩ =
∫ τ

0

dλ(t)
dt

〈
∂H

∂λ

〉
dt. (5.17)

Then, by using some linear response theory methods (4), we get the expression for the
non-equilibrium average〈

∂H

∂λ

〉
=
〈
∂H

∂λ

〉
eq;λi

+ χ∞
0 ∆λg(t) − ∆λ

∫ t

0
dsϕ0(t− s)g(s), (5.18)

where ⟨ · ⟩eq;λi
is the average over the equilibrium state with work parameter λi. The

second term on the right-hand side describes the instantaneous response

χ∞
0 =

〈
∂2H

∂λ2

〉
eq;λi

, (5.19)

while the last term is the delayed response. The function ϕ0(t) is the response function,
equal to

ϕ0(t) = ⟨{X(0), X(t)}⟩eq;λi
(5.20)

where { · } is the Poisson bracket and

X = ∂H

∂λ
(5.21)

is known as generalized force. Employing Kubo’s formula obtain

Ψ(t) = β(⟨X(0)X(t)⟩eq;λi
− ⟨X(0)⟩2

eq;λi
), (5.22)
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where Ψ0(t) is the relaxation function. Therefore, eq. (5.18) can be re-written after an
integration by parts as

〈
∂H

∂λ

〉
=
〈
∂H

∂λ

〉
eq;λi

− Ψ̃∆λg(t) + ∆λ
∫ t

0
dsΨ(u)dg

dt′

∣∣∣∣∣∣
t′=t−u

(5.23)

where Ψ̃ = Ψ(0) − χ∞
0 . For applying this to slowly varying processes, the idea is to break

the protocol in several steps, small enough that in each one we can apply linear response
theory. The result for the irreversible work (eq. (4.39)) is equal to

⟨Wirr⟩ = β(∆λ)2

τ

∫ 1

0
ds

(
dg

ds

)2

τR[g(s)]χ[g(s)] (5.24)

where
τR[λ(t)] =

∫ ∞

0
du

Ψ0(u)
Ψ0(0) (5.25)

is the relaxation (or correlation) time in linear response theory and determines the time
scale over which the response vanishes, i.e., the system relaxes back to equilibrium. χ[λ(t)]
is defined by

χ[λ(t)] =
〈(

∂H

∂λ

)2 〉
eq;λ

−
〈
∂H

∂λ

〉2

eq;λ
. (5.26)

Thus, the method consists in using eqs. (5.22), (5.21), (5.25) to obtain the relaxation time
and eq. (5.26) to obtain χ. This quantities can be encountered analytically and substituted
in eq. (5.24). Then, it is necessary to minimize the work functional. Before showing an
example, we are going to find the relaxation function for the breathing parabola.

5.2.1 Relaxation function for the breathing parabola

Using eqs. (4.9) and (5.21), the generalized force can be written as

X = x2

2 (5.27)

Then, it follows from eq. (5.22) the relaxation function in this case is given by

Ψ(t) = β

4 (⟨x(0)2x(t)2⟩eq;λ − ⟨x(0)2⟩2
eq;λ). (5.28)

Therefore, the relaxation function can be found by calculating the correlation between
the mean squared position in the equilibrium. In other words, given the initial work
parameter, to obtain the relaxation function we must measure/calculate the position,
x(t), and obtain the correlation ⟨x(0)2x(t)2⟩eq;λ and the average ⟨x(0)2⟩eq;λ. To obtain an
analytical expression, note that the trajectory of a particle in a harmonic potential is
given by eq. (3.11). The average in the equilibrium can be found by using the (3.3), (3.2)
properties of the thermal noise. Besides, for the initial conditions, x0 and v0, it is necessary
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Figure 20 – Comparison between analytic and simulated Ψ̃(t) = Ψ(t)/Ψ(0) for the breathing
parabola. In black/solid the curve is given by eq. (5.29). Dots in magenta are found
by simulating the Langevin dynamics and calculating the correlations given by eq.
(5.28).

Source: By the author.

to use the information that the system is initially in thermal equilibrium. Therefore, the
relaxation function for the breathing parabola in the overdamped regime is equal to

Ψ(t) = Ψ(0)
(
s2e

s1|t| − s1e
s2|t|

s2 − s1

)2

, (5.29)

where
Ψ(0) = 2

βλ2 , (5.30)

s1 =
−γ/m−

√
(γ/m)2 − 4(λ/m)

2 , (5.31)

and

s2 =
−γ/m+

√
(γ/m)2 − 4(λ/m)

2 . (5.32)

In Figure 20, we compare the relaxation function (eq. (5.29)) found analytically with the
relaxation function obtained from the phenomenological approach, i.e., simulating the
Langevin equation, measuring positions and then calculating the correlations.

5.2.2 Example: time-dependent stiffness

For the breathing parabola, χ given by eq. (5.26) can be written as

χ(λ) = 1
4(⟨x(0)4⟩eq;λ − ⟨x(0)2⟩2

eq;λ) = 1
2(βλ)2 . (5.33)

The relaxation time, τR, can be re-writen using eqs. (5.25) and (5.29) as

τR(λ) = γ

2λ, (5.34)
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where m → 0, i.e., we considered the overdamped limit. Substituting the above results in
the expression of the irreversible work (eq. 5.24), we obtain

⟨Wirr⟩ = γ(∆λ)2

4βτλ3
i

∫ 1

0
ds

(
dg

ds

)2 1(
1 + ∆λ

λi
g(s)

)3 (5.35)

The minimum of the functional (again solved using the Euler-Lagrange equation) is found
for the protocol

g(s) = −λi

∆λ + 1
A(s+B)2 , (5.36)

where A and B are given by the boundary conditions g(0) = 0 and g(1) = 1. The analysis
of such result is in Figure 21. The numerical determination of the performance of this
method is part of our first main result. The range of validity of the slowly varying process
is not rigorously known. Therefore, the numerical result in Figure 21-d helps to clarify the
regime of validity of such a method.
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(a) (b)

(c)

Figure 21 – (a) Comparison between the optimal exact protocol (5.9)(blue/solid) and the protocol
for slowly varying processes (5.36)(red/dashed). The protocols agree if the process
varies slowly. (b) If the protocol is not a slowly varying process, the protocols have
cleary differ. (c) The work decreases with 1/τ . In blue/dashed the exact expression
for the optimal work (eq. (5.7)), in black/solid the work for slowly varying processes
(eq. (5.35)), and dots/magenta the result of the simulation of the Langevin dynamics
of the protocol for slowly varying processes (eq. (5.36)). All three curves overlaps at
long times, as expected.

Source: By the author.
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Figure 22 – Relative difference between the optimal protocol for slowly varying processes (eq.
(5.24)) and the exact (eq. (5.7)). In other words, the performance (eq. (5.15)) of the
protocols for slowly varying processes, for different intensities and switching times.
τR = 9.42 ms is the relaxation time for when the trap stiffness is equal to λi.

Source: By the author.
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5.3 Optimal protocols from linear response theory

In the previous section, linear response theory was useful in encountering the
optimal protocol for slow processes. Nonetheless, the mean irreversible work also has an
expression for weak processes, given by (a deduction is provided in ref. (49))

⟨Wirr⟩ = (∆λ)2

2

∫ 1

0
ds
∫ 1

0
ds′Ψ[τ(s− s′)]dg(s)

ds

dg(s′)
ds′ . (5.37)

The expression is valid only for the linear response regime. The idea is to expand dg(s)/ds
in some basis. Due to its good mathematical properties, a good basis choice is of Chebyshev
polynomials, i.e.,

dg(s)
ds

=
N∑

n=1
angN,nTn(2s− 1), (5.38)

where an are the coefficients of the expansion, that will be determined to minimize the
work, Tn(2s− 1) are the Chebyshev polynomials, and gN,n are factors that regularizes the
series expansion (50), due to the Gibbs phenomenon at the extremities of the expansion
interval. The factor chosen corresponds to the Jackson kernel and is given by

gN,n = 1
N + 1

[
(N − n+ 1) cos

(
πn

N + 1

)
+ sin

(
πn

N + 1

)
cot

(
π

N + 1

)
.
]

(5.39)

Substituting the expansion (5.38), into eq. (5.37), we obtain

⟨Wirr⟩[(∆λ)2Ψ(0)/2]−1 =
N∑
n,l

Anlanal. (5.40)

The coefficients an are found by minimizing the above expression, with the constraints
g(0) = 0 and g(1) = 1. This is done using the Lagrange multipliers method. The physical
input in the minimization process is contained in the coefficients Anl:

Anl =
∫ 1

0

∫ 1

0
Ψ̃[τ(s− s′)] × gN,ngN,lTn(2s− 1)Tl(2s′ − 1)ds′ds. (5.41)

Given the relaxation function, these coefficients can be determined. The main advantage
is that the relaxation function can be obtained through experiments, i.e., the details of
the microscopic dynamics do not need to be now a priori. Because it is a linear response
theory method, theoretically, it is valid only for weak processes (Figure 23). The second
main result of this dissertation is the determination of the performance of this method
for the breathing parabola, as shown in Figure 25, for different intensities and switching
times of the procedure. In addition, we verified the good performance of this method even
outside its theoretical regime of validity.

5.3.1 Negative entropy production rate

As we see in section 4.2, the entropy has multiple possible definitions. However,
they are not equivalent and presents distinct features. Prigogine showed that the entropy
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(a) (b)

Figure 23 – Comparison between the protocol (5.9) and the result found by integrating eq. (5.38).
The number of terms in the expansion (5.38) is N = 10, and the relaxation function
is of the breathing parabola (5.29). (a) λf = 3 pN/µm. Because the process is not
weak, the protocols have clear differences. (b) λf = 1.1 pN/µm. The protocol is
weak, so the protocols are in good agreement.

Source: By the author

(a)

Figure 24 – Dependence of the average work with λf for τ = 9 ms. In blue/dashed, black/solid,
and magenta/dots are eqs. (5.40), (5.7), and the average work obtained by simulating
the Langevin dynamics with the protocol obtained through the phenomenological
method, respectively. It is noteworthy that the protocols generate by the phenomeno-
logical method have an average work very close to the optimum. Also, all three
curves overlap for λf small, as expected.

Source: By the author
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Figure 25 – Performance of the protocols generate by the phenomenological method. Although
the protocols were obtained using a linear response theory method, they have good
performance even outiside its theoretical regime of validity. The number of terms in
expansion (5.38) is equal to 10.

production rate must be positive for retrieving the Second Law of Thermodynamics.(51)
From the stochastic entropy defined in section 4.2.1, this is true.(8) Nonetheless, for the
measurement of entropy production through the irreversible work, there are negative
entropy production rates. The existence of such negative values does not violate the Second
Law, as Nazé has shown.(40) Here, we have observed that phenomenological method
generates protocols that have negative entropy production rates (Figures 26).

5.3.2 Convergence of the series expansion

In Figure 23, we show a comparison between the approximate phenomenological
protocol and the exact optimal protocol. Although the protocols are visually in good
agreement, the crucial quantity is the irreversible work value. Moreover, it is interesting to
investigate how this value varies with the number of terms in the expansion (5.38). The
results are in Figures 27 and 28. We can see that the value of ∑n,l Anlanal decays when
the number of terms increases. Note that the sum seems to converge.
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(a) (b)

(c) (d)

Figure 26 – Comparison of the entropy production rate, ⟨Ẇirr⟩, for protocols generated using
the phenomenological method method. Note that the protocols present negative
entropy production rates, and as we increase the number of terms in the expansion,
the negative values tend to vanish.

Source: By the author.
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(a) (b)

(c) (d)

(e) (f)

Figure 27 – Comparison of the protocols generated by the phenomenological method as a function
of the number of terms, N , in the expansion (5.38).

Source: By the author.
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Figure 28 – We see that using more terms in the expansion leads to a diminished value of∑
n,l Anlanal, and consequently, of the irreversible work.

Source: By the author.
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5.4 Conclusions

In this chapter, we have studied the optimal processes for a paradigmatic case.
Using such a system helps to understand the key features of optimal protocols before
attacking more complex problems.

The exact solution provides us a reference value for the optimal work. The difficulties
imposed by this analytical procedure lead to the investigation of other methods. For
the slowly varying processes, the optimal protocol does not present the characteristic
discontinuities of the exact optimal protocol. Also, it does not depend on the switching
time.

Then, we studied a phenomenological method for weak processes that allows us to
find the optimal protocol if we have the relaxation function of the system. The relaxation
function can be measured or deduced, simplifying the optimization problem. We saw that
this method may generate protocols that have negative entropy production rates. Also,
because this method relies on a finite expansion of the protocol, we studied the dependence
of the quantity ∑n,l Anlanal with the number of terms in the expansion.
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6 FEEDBACK CONTROL

In the previous chapter, control of the trap stiffness has allowed us to perform
different protocols. The protocols were done independently of the particle’s state. If, in
addition, the protocol depended on the state of the particle, a problem that dates back from
the beginning of classical thermodynamics and that instigated generations of physicists can
be studied. The control dependent on the state of the system is called feedback control.

In Theory of Heat (19), James C. Maxwell presented a thought experiment, later
called Maxwell’s demon, to illustrate the statistical character of the Second Law of
Thermodynamics. Several discussions about the roles of the information, measurement,
and erasure process in this gedankenexperiment took place throughout the XX century.
The erasure process gained an essential role with Rolf Landauer and Charles Bennett
(20, 52), resulting in the Landauer principle: the erasure of 1 bit of information implies
at least kBT ln 2 of heat dissipated. However, the arguments were theoretical. Nowadays,
because of the advances in the experiments, such questions can be explored experimentally.
First, Berut et al. (30), using optical tweezers, verified the Landauer’s principle under
partial-erasure. Jun, Gavrilov, and Bechhoefer (53) also studied the Landauer’s principle.
However, they achieved the complete erasure. Toyabe et al. (21) verified the information-
to-energy conversion, confirmed the generalized Jarzynski equality, and checked both
quantities’ dependence on the delay time. To accomplish such results, they trapped a
colloidal particle in a controlled periodic potential. Paneru et al. (54) also verified the
information-to-energy conversion. Although, they utilized a brownian particle trapped in
a harmonic potential with a time-dependent center-position. Koski et al. (55) constructed
an autonomous quantum Maxwell demon using coupled single-electron devices. By doing
so, they were able to observe an increase in the temperature of the demon. Finally, Saha
et al. (56) have experimentally accomplished an information engine operating at maximum
power and velocity.

In this chapter, we begin by summarizing the discussion of Maxwell’s demon. Next,
we analyze our simulation of Landauer’s principle based on ref. (53) Then, besides verifying
some results of the reference (21), we propose a new experiment, which is a simplification
of the previous experiments found in the literature. In ref. (21) they experimentally verified
the information-to-energy conversion and the generalized Jarzynski equality. The goal of
the new experiment is a first step to study such questions in our laboratory. Also, the
potential proposed allowed the calculation of the dependence of the information-to-energy
conversion with the delay time. In contrast, in ref. (21), they also studied the dependence
of the conversion with the delay time but only experimentally.
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6.1 Maxwell’s demon

Maxwell’s demon completed 150 years in 2021. During his lifetime, it was declared
exorcized at least three times and caused a lot of discussions about the Second Law of
Thermodynamics, entropy, the role of information, and reversible computation. In this
quick review, we will follow the classical reference about this subject (57) and divide the
timeline into three periods: Maxwell’s demon original formulation; the Szilárd’s engine
and Brillouin argument about the measurement process with light; and the computational
approach of Landauer and Bennett, highlighting the role of the erasure process. For a
more updated and short review, we refer to (16,58).

6.1.1 Maxwell’s Demon original formulation (1871-1929)

The famous gedankenexperiment of Maxwell’s demon, which demonstrates the
statistical nature of the second law of Thermodynamics, was first presented in Theory
of Heat by Maxwell. (19) The idea is to consider a box filled with an ideal gas initially
at thermal equilibrium. A wall containing a small door is inserted in the middle of the
box. The gatekeeper is a mystical being with the capability of seeing every molecule,
allowing the faster ones to go to one side of the vessel and the slower ones into the other,
creating a difference of mean velocities of the particles contained in each side of the
recipient. Therefore, only by perceiving and handling the particles, the intelligent being is
capable of creating a temperature difference, in an apparent violation of the Second Law
of Thermodynamics.

6.1.2 Szilard’s Engine and Brillouin measurement with light (1929 -1961)

In an article made by Szilárd in 1929 (59), a considerable simplification of the
experiment was made. He clarified the importance of the information about the state of
the particle, even before the famous article by Claude Shannon introducing the Shannon
entropy and information content. (42)

The thought experiment consists of a one-particle ideal gas in a diathermic box in
contact with a thermal reservoir. Then, we add a movable partition dividing the recipient
into two equal parts. Initially, the wall is kept steady, and the demon measures the side
of the particle in the vessel. Next, he allows the expansion of the gas by unfixing the
partition. In the expansion process, work is done by the particle. The final state of the
particle is equal to its initial state, completing the cycle. Thus, the system in contact with
a single heat bath realized work in a cycle, again in an apparent violation of the Second
Law of Thermodynamics. Szilard noticed that the value of the work is proportional to
ln 2, which is the information (about the side in which the particle is) measured/stored by
the demon in a two state system. Thus, he pointed the link between information acquired
and the work extracted.
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A significant step in this analysis was made in 1951 by Leon Brillouin. (60) He
considered that the measurement process used by the demon was via a luminous signal.
Besides, he took into account the energetic cost for distinguishing the measurement photon
from the thermal radiation of the cavity. The conclusion was that the cost involved in the
measurement process compensates for the work obtained in a cycle, temporarily exorcising
the demon.

6.1.3 Landauer and Bennett: the computional approach (since 1961)

In 1961, Rolf Landauer argued that for the erasure process in a computer was
necessary at least kB ln 2 of increase of entropy. (20) The previous statement is so important
that nowadays is known as Landauer’s principle. Years later, Charles Bennett associated
the Landauer’s principle with Maxwell’s demon thought experiment. (52) He argued that
the demon was not different from a computer, and erasure of the demon’s memory was
a crucial step to save the Second Law of Thermodynamics. Besides, relevant arguments
were arising about the energetic cost of Brillouin luminous measurement.

6.2 The erasure process and Landauer’s principle

As discussed in the previous section, an essential concept in the Maxwell’s demon
thought experiment is the erasure process, which consists in resetting the system to a
predefined state. For example, if there are two states, denoted by "0" and "1", the erasure
process of one bit may be defined as the process that takes with certainty any state to the
state "0". Landauer’s argument leads to that, at least, kBT ln 2 of work is necessary for
erasure one bit of information, i.e.,

Werasure ≥ kBT ln 2.

We have simulated the erasure process from ref. (53), where they built an experiment
to test the memory model of a particle in a symmetric double-well potential (see Figure
29-a). If the particle is on the left-hand side, the particle is in the state "1". Instead, if
it is on the right-hand side, the particle is in the state "0". Therefore, after the complete
erasure process, the particle ends up on the right side of the well with a probability equal
to 1.

Mathematically, the double-well potential implemented in our model is given by

V (x) = 4Eb

[
−1

2(1 − λ1)x2 + 1
4x

4 − αλ2x
]
, (6.1)

where Eb = 241.546 kBT, and α = 0.5 µm−1. These values were chosen to make it difficult
for the particle to jump through the central barrier and are different from the ones choosen
in ref. (53). λ1 and λ2 are the control parameters, and the erasure process is made by the
following procedure (Figure 29):
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1. Step 1. Lowering of the central barrier with a protocol time τ1 (λ1 : 0 → 1).

2. Step 2. Tilting the potential with a protocol time τ2 (λ2 : 0 → 1).

3. Step 3. Untilt the potential and rise the barrier simultaneously with a protocol time
τ3 (λ1 : 1 → 0 and λ2 : 1 → 0).

We remark that the processes here are not weak. Also, the three steps above constitute a
cycle, with a duration τcycle. The cycle time is equal to the sum of the duration of each
step that is τcycle = τ1 + τ2 + τ3 = 3τ1, where we assumed τ1 = τ2 = τ3.

In our simulation, to achieve Landauer’s limit, all steps are done slowly to minimize
dissipation. Besides, for simplicity, these steps operate with the linear protocol. Since we
want to avoid dissipation, we could consider using the optimal protocol instead. But, as
already discussed, the exact analytical optimal protocol is generally hard to find. Although
the phenomenological linear response theory method validity is for weak processes, one
can expect that this method could give a good approximation of the optimal protocol
also in this case. However, the optimal protocol in the linear response regime for long
switching times is equal to the linear protocol. (61) Therefore, the linear protocol is the
best approximation for the optimal protocol with the tools presented in the previous
chapter.

The procedure to verify Landauer’s principle is to fix a cycle time τcycle and repeat
the erasure process 10000 times, measuring the work required (eqs. (4.8) and (6.1)). Then,
change the cycle time and, again, do the erasure process 10000 times. The results are in
Figure 30.

We have seen in the previous chapter that for slowly varying processes, irreversible
work decays to zero with 1/τ (see eq. (5.24)). So, following the ref. (53), we fit the data in
the Figure 30-b with the function,

Wfit(τcycle) = A+ B

τcycle

(6.2)

where A and B are constants to be adjusted. The former constant, A, represents the
asymptotic value of work and B how fast the convergence is. We have done both the fit
for the whole process and each protocol individually and displayed the results in Table 2.
Note that choosing the fit function (6.2) based on the argument of slowly varying processes
given above is inaccurate. The irreversible work must decay to zero for long times. In
other words, the mean work goes to the free energy difference, which due to the erasure
process being a cycle, is equal to zero. Hence, the average work tends to zero for very long
times. However, in this case, the average work tends to kBT ln 2. Therefore, we can not
justify the fitting function using the theoretical argument for slowly varying processes.
Although, we still can use the fit function chosen to find an estimative of Landauer’s limit.
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(a) (b)

(c) (d)

Figure 29 – (a) The particle may be initialized in the left well (state 1) or the right well (state 0).
The erasure protocol is defined as the transference of the particle to a predetermined
state, in our case, the state 0. (b) In the second step, we lower the middle barrier.
(c) Then we tilt the potential to guarantee that the particle ends in the right-hand
pit. The final procedure is to undo the changes in the potential. (d) The trajectory
of the particle. If initially, it is in state 0, it remains there. Otherwise, it goes to
state 0 after the cycle.

Source: By the author.

The irreversible work does not decay to zero because the cycle’s time must be slow enough
to get closer to the Landauer’s limit but sufficiently quick to guarantee that the particle
will be in state "0". If the process is very long, the particle will have a chance to end up in
state "1", and the work done in the cycle would be smaller than Landauer’s limit.

We can see from Table 2 that the essential step is the last one, which must guarantee
that the particle ends up in state "0". Note that the work values of the two first steps tend
to the free energy difference of the system. Although the last step does not converge to
the free energy difference, it tends to the free energy difference plus kBT ln 2. Thus, the
Landauer principle arises from a single step, which is essential for the irreversibility of the
cycle.
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(a) (b)

Figure 30 – (a) Probability density functions for the work for different cycle times. As time
increases, the average work diminishes, and the distribution becomes narrower. (b)
Average work obtained for different cycle times. Again, as the time increases, the
value of work decays to kBT ln 2, accordingly to the Landauer limit, for complete
erasure. Simulation results (dots/black), the fit function (solid/magenta), and the
Landauer limit (solid/blue). The constants A and B of the fit are displayed in Table
2.

Source: By the author.

Table 2 – As already said, fitting eq. (6.2) to the simulation data, we obtain A and B. We did this
procedure for the cycle as for each step. Note that for steps 1 and 2, the work tends to
the free energy, i.e., the asymptotic value of the work, represented by A, is close to the
free energy difference. However, in step 3 this does not happen. The work in this step
tends to its free energy plus kBT ln 2 indicating that this step is responsible for the
irreversibility. It is easy to imagine that if we did this step more slowly, the particle
would have a chance to escape and therefore not erase the information (although the
information would be lost). The free energy difference was calculated using equations
(4.16) and (6.1). For the entire cycle, the asymptotic value of the work is equal to
A = 1.01 ln 2 kBT, confirming Landauer’s limit. Note that the particle is not in a state
of thermal equilibrium, and the average work tends to the free energy only because
the potential is symmetric.

Step A (kBT) B (kBT s) ∆F (kBT)
1 240.094 ± 0.003 4.7 ± 0.1 240.153
2 −285.452 ± 0.005 10.6 ± 0.2 −285.514
3 46.0574 ± 0.0006 0.24 ± 0.02 45.361
Cycle 0.700 ± 0.006 46.7 ± 0.5 0

Source: By the author
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6.3 Information-to-Energy conversion and the generalized Jarzynski equality

In the last section, we have shown the crucial role of the erasure process in Maxwell’s
demon experiments. Using a double-well potential as our memory model, erasure of one
bit required a minimum of kBT ln 2 of work delivered to the system. Nonetheless, we
did not use information about the system’s state to extract energy. In this section, we
will focus in transforming information into energy by building a Maxwell’s Demon. To
test the reliability of our simulations, we also verify the generalized Jarzynski equality.
Two different potentials were studied: a periodic potential and the "breathing parabola".
The former potential was done experimentally by Toyabe et al. (21), while the latter is a
proposition of a new experiment, to be done in our optical tweezers setup.

6.3.1 Information-to-Energy conversion

Following the ref. (21), consider the potential

V (x, λ) = ASx+BS cos (ωx+ λ), (6.3)

where AS = 1 kBT · µm−1, BS = 3 kBT, and ω = 10 µm−1 are constants. The coefficient
value of AS used in this dissertation is different from the one used in ref. (21) because
the experimental systems are different. The control parameter λ in this case is a phase
which varies from 0 to π. The values of the constants were choosen to inhibit the particle
changing from potential’s wells.

Information about the fluctuations in the medium allows its utilization to extract
work and gain free energy. Initially, the particle is in thermal equilibrium in one well of
potential V (x, 0) (see Figure 31). At the instant tmeas., the particle position is measured.
If the particle is not in region S, nothing happens, and work and the free energy difference
are zero. However, if measured in region S (switching region), the potential is changed
to V (x, π) (Figure 32). The potential switching happens after the measurement, between
instants tiswitch and tfswitch. The time difference between the measurement and switching
is called delay time. The time between the beginning and end of the switching is the
protocol time (Figure 33). Here, as a first approximation, we consider that the delay and
protocol times are equal to zero. In the reference (21), they studied, experimentally, the
relation between information-to-energy conversion and delay time. The conclusion was
that control of the conversion was lost for long delay times, as the information about the
particle’s position becomes outdated.

In the protocol, work is done by the particle while it gains free energy. If the particle
was measured in x1, inside region S, the work is given by (see section 4.1.5)

W = V (x1, π) − V (x1, 0). (6.4)

With this equation and Figure 31, it is easy to see that the region S was chosen to make
W < 0 (remember the convention in section 4.1). Each well has a free energy value
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Figure 31 – V (x, 0) (solid/blue) and V (x, π) (dashed/red). Initially, the particle is in thermal
equilibrium in one of the potential wells of V (x, 0). If we measure the particle at
instant tmeas in the highlighted blue area S, the potential energy instantaneously
switches to V (x, π). In the procedure, the particle does work (W < 0) and gains
free energy ∆F > 0. The energy obtained comes from the information about the
particle’s position, representing the information-to-energy conversion.

Source: By the author.

Figure 32 – Procedure to verify the information-to-energy conversion. This kind of control that
uses the measurement outcome to decide what protocol to follow, is called feedback
control. We repeated this procedure 50000 times to make the average value for the
procedure, displayed in Table 3.

Source: By the author.
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Figure 33 – Timeline of the feedback experiment if the particle is observed in region S.

Source: By the author.

associated and is approximately equal to each pit’s energy minimum. It can be obtained
using equations (4.16), and (6.3). Because the potential is tilted, the free energy grows for
wells in the right direction.

Therefore, realizing this procedure (Figure 34), the particle gains free energy and
does work when measured in S. This is called an information-to-energy conversion. We
repeat the strategy 50000 times.

Repeating the procedure in Figure 34, the particle climbs the potential. Although
impracticable in practice, this is similar to making an object climb stairs without realizing
work on it. However, note that the quantities given in Table 3 are average values for
procedure.

6.3.2 The efficiency of the information-to-energy conversion

Sagawa, in his thesis (16), showed that when there is information manipulation,
the Second Lay of Thermodynamics becomes

⟨∆F −W ⟩ ≤ kBTI, (6.5)

where

I = −p ln p− (1 − p) ln (1 − p) (6.6)
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is the Shannon information content, and p is the probability to measure the particle in
S. Therefore, there is an energetic cost associated with the manipulation of information,
given by kBTI. The efficiency η of the information-to-energy conversion is defined as,

η = ⟨∆F −W ⟩
kBTI

. (6.7)

As we always do throughout this dissertation, the results were found by simulating the
Langevin dynamics of a colloidal particle. We summarized the results in Table 3. Since
there is a delay between measuring and switching in the experiment, in our simulations
the efficiency obtained, 0.404, is larger than the encountered in ref. (21).

6.3.3 The generalized Jarzynski equality

The generalized Jarzynski equality or Ueda-Sagawa relation is written as (62)
〈

exp
(

∆F −W

kBT

)〉
= α, (6.8)

where α is the efficacy parameter.The efficacy parameter indicates the degree of control
that we have over the experiment, and in the case simulated here, its maximum value is
two. In the absence of control, its value is equal to 1, recovering the Jarzynski equality.
Also, the efficacy parameter is interesting because it can be obtained independently of
measurement of work and free energy. It is given by the sum of the probabilities of the
particle not being in region S if there is no switching pns, and of the particle being in
region S after the switching psw (Figure 34). A complete deduction is rather extensive. So,
we refer to the Sagawa’s thesis for details (16).

Inspecting Table 3, we see that the simulation results agree with the theoretical
values. The exception is the generalized Jarzynski equality. Due to the potential shape and
definition of region S, there are rare dominant work values. They are responsible for the
slow convergence of the generalized Jarzynski equality. Hence, the number of realizations
increases compared with the time-dependent stiffness of a harmonic potential. Note that
if the particle is close to the potential’s maximum, the work will be bigger than if the
particle is nearer to a minimum. However, measuring the particle close to the potential’s
maximum is a rare event because it has to climb the potential driven by the fluctuations.

6.3.4 Theoretical method for instantaneous feedback control

If the particle is, initially, in thermal equilibrium, the Boltzmann weight can be used
to calculate all theoretical values in Table 3. If there is a delay time, the problem becomes
more complicated because we have to consider the time-evolution of the probability density
function between the measure and the switching (given by the Fokker-Planck equation).
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Table 3 – Results for the simulation of the feedback experiment realized in ref. (21). The results
are in good agreement with each other. The exception is the generalized Jarzynski
equality obtained through simulation. The explanation of the dissonant outcome relies
on poor statistics, since there are rare dominant rare events (see section 4.4.3). Thus,
the number of realizations done was insufficient to verify the generalized Jarzynski
equality convergence. For example, the probability to encounter the particle in region
S is equal to p = 0.00976. This low probability implies that the number of realizations
must very large.

Physical quantity Simulation Theoretical
⟨∆F −W ⟩ 0.0220 kBT 0.0226 kBT

I 0.0546 0.0549
η 0.403 0.412

⟨exp[(∆F −W )/kBT ]⟩ 1.439 1.501
psw 0.512 0.511
pns 0.990 0.990
α 1.503 1.501

Source: By the author

For the inverse protocol, the particle is in thermal equilibrium in potential V (x, π),
then, psw is found by considering the probability of the particle to be in region S

psw =
∫

S exp[−V (x, π)/kBT ]dx∫
all exp[−V (x, π)/kBT ]dx. (6.9)

The other quantities are found immediately by considering the particle in thermal equilib-
rium at potential V (x, 0). The probability for the inverse protocol, where the potential not
switch and the particle is not in region S pns is just equal the probability of the particle
not to be in region S:

pns =
∫

not S exp[−V (x, 0)/kBT ]dx∫
all exp[−V (x, 0)/kBT ]dx . (6.10)

The averages values are equal to

⟨∆F −W ⟩ =
∫

S(∆F −W ) exp[−V (x, 0)/kBT ]dx∫
all exp[−V (x, 0)/kBT ]dx , (6.11)

and

⟨exp [(∆F −W ) /kBT ]⟩ =∫
S exp [(∆F −W ) /kBT ] exp[−V (x, 0)/kBT ]dx+

∫
notS exp[−V (x, 0)/kBT ]dx∫

all exp[−V (x, 0)/kBT ]dx , (6.12)

where we have used that if the particle is not measured in region S, then W = ∆F = 0.

Of course, the delay time equal to zero is an idealized situation. Toyabe et al.
investigate how ⟨∆F −W ⟩ and ⟨exp

(
∆F −W

kBT

)
⟩ depended on the delay time as shown in

Figures 35 and 36.
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Figure 34 – Reverse feedback experiment. The probabilities pns and psw can be obtained inde-
pendently, allowing the verification of the generalized Jarzynski equality.

Source: By the author.

Figure 35 – Dependence of ⟨∆F −W ⟩ with the delay time encountered experimentally by Toyabe
et al. Observe the notation difference. Here, in this figure, ϵ is the delay time.

Source: Adapted from TOYABE et al. (21)
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Figure 36 – Dependence of ⟨exp
(

∆F −W
kBT

)
⟩ with the delay time found experimentally by Toyabe

et al. Observe the notation difference. Here, in this figure, γ is the efficacy parameter.

Source: Adapted from TOYABE et al. (21)

6.4 A new experiment: the breathing parabola and the information-to-energy conversion

Although the previous potential of ref. (21) can be built in the laboratory, as
explained in chapter 2, there is a more immediate potential to study the feedback control.
In this context, we thought of a new manner to investigate the information-to-energy
conversion with a much simpler setup.

Before showing the proposed experiment, we highlight some features of the previous
one. First, given the potential, the switching region is chosen to make ⟨∆F − W ⟩ > 0,
where ∆F > 0 and ⟨W ⟩ < 0. The size of the region S can not be too narrow since the
detector must be able to determine if the particle is in region S or not. Once the particle is
measured in region S, the potential is changed. The delay time between measurement and
action can not be too large, because the efficiency of the information-to-energy conversion
decays with the lag. Last but not least, to obtain the average values of the conversion, the
procedure in Figure 32 must be done several times. Although a large number of realizations
do not make the experiment impracticable, it makes the experiment cumbersome.

Nowadays, the periodic potential (eq. (6.3)) is not immediately implemented in
our laboratory. Thus, a different potential is necessary to explore the information-to-
energy conversion. As already said, other factors must be taken into account to verify the
feasibility to realize the experiment in practice. Consideration of the number of realizations
to the average values converge, the size of the switching region, and the delay between
measurement and action all have a relevant role in building a new experiment.
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Figure 37 – If the particle is measured in region S at time tmeas, the control parameter changes
from λi to λf . Otherwise, nothing happens.

Source: By the author.

Therefore, in this section, we show the potential, the protocol, define a new switching
region, study the delay time, and the number of realizations.

Note that in the literature, there are already more complex experiments studying
information engines. However, our proposal is a first step to explore in our laboratory this
theme.

6.4.1 Experiment description

It is important to remark that the procedure is the same as the previous one (see
Figures 32, 33, and 34). The changes are the potential and the switching region. Thus,
consider the good and old harmonic potential with time-dependent stiffness

V (x, λ) = λx2

2 . (6.13)

As usual, λ is the control parameter. Initially, the particle is at thermal equilibrium with
λ = λi. We change the control parameter, from λi to λf , only if the particle is in the new
switching region (see Figure 37). The increase of the trap stiffness means a free energy gain
(∆F > 0), but this time, we must realize work (W > 0). Because region S is centralized,
the average work for doing such a process is smaller than the average work to do the
protocol for all values of x. Therefore, the idea is to use information that the particle is
near the center’s trap to increase the trap stiffness spending less work. Region S is defined
to make the gain in free energy larger than the work spent, i.e., ∆F > W .
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6.4.2 Defining the switching region

The stochastic work in the time-dependent stiffness of a harmonic potential grows as
further the particle is of the trap’s center position. Thus, the switching region is defined to
make the free energy difference of the process larger than the maximum value of stochastic
work spend ∆F > Wmax. Mathematically, the borderline value of the position xS, limiting
region S, is given by

∆F = Wmax. (6.14)

Using eqs. (4.20) and (4.18), we obtain

kBT ln (λf/λi) = (λf − λi)x2
S

2 . (6.15)

Isolating xS, the switching region boundary is equal to

xs = ±

√√√√kBT ln (λf/λi)
λf − λi

. (6.16)

Therefore, the switching region is defined as

S = {x ∈ R| − ϵxS < x < ϵxS}, (6.17)

where ϵ = 1 is an adimensional rescale factor. The introduction of this rescale factor will
be useful in section 6.4.6 when studying the maximization of ⟨∆F −W ⟩ with the delay
time and switching region.

A valid concern is if the QPD has enough resolution to detect the particle in region
S. For the parameters chosen in Figure (37), xS = 68 nm. As shown in ref. (27), our spatial
resolution is sufficient to determine if the particle is in region S.

In an extreme case, we could choose the region to be infinitely small, centered at
the trap’s center. In this case, work is zero while the particle gains free energy. However,
this is not viable, justifying the definition of a broader switching region.

6.4.3 Number of realizations

The number of realizations of the previous experiment (ref. (21)) was very large
compared with the breathing parabola, as studied in section 4.4 to verify the convergence
of the generalized Jarzynski equality, as one can see by comparing Figures 16 and 38. As
discussed before, in ref. (21) there are rare dominant work values. Therefore, given that the
experiment proposed used the breathing parabola, we expect the number of realizations
to verify the generalized Jarzynski equality to be much smaller.

6.4.4 Results for the instantaneous protocol

The results for the instantaneous protocol and without delay (τ = tdelay = 0) are
summarized in Table 4. Remarkably, ⟨∆F − W ⟩ is one order of magnitude larger than
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Figure 38 – Convergence of the generalized Jarzynski equality from different delay times found
experimentally by Toyabe et al. Note the number of realizations (cycles) necessary
for convergence is of the order of 10000, value much larger than for the breathing
parabola (see section 4.4). The large number is caused by the presence of rare
dominant work values. The work values that contribute the most to the convergence
are for when the particle is in region S. However, the probability of the particle being
in this region is small since it has to climb the potential driven by the fluctuations in
the medium. Consequently, the number of realizations to see convergence becomes
large.

Source: Adapted from TOYABE et al. (21)

Table 4 – Theoretical results of the time-dependent stiffness feedback control of a harmonic
potential for tdelay = 0.

Physical quantity Theoretical
⟨∆F −W ⟩ 0.283kBT

I 0.685
η 0.413

⟨exp[(∆F −W )/kBT ]⟩ 1.428
psw 0.865
pns 0.563
α 1.428

Source: By the author

of ref. (21) because of the large chance of encountering the particle in region S at the
switching moment. On the other hand, in ref. (21), in the majority of realizations, the
particle was measured outside region S, resulting in a smaller average value. Although
⟨∆F −W ⟩ is larger, I is also one order of magnitude larger, resulting in similar efficiency
for the two cases. Note that the values encountered serve as a superior limit for the
information-to-energy conversion and efficiency since there is no delay.
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6.4.5 Delay time

In practice, neither the delay time nor the protocol time are zero. With our current
experimental capabilities, the protocol time can be considered zero, while the delay time
can not be neglected. Therefore, we discuss here in more detail the role of the delay in our
results.

As a consequence of the potential shape and the definition of region S, we expect
the process to be less sensitive to the delay time when compared with the ref. (21). Due
to the potential shape, the particle is attracted to the trap’s center position (see Figure
37), making it harder to exit region S after the measurement. In the ref. (21), the contrary
happens. Since region S includes a maximum of the potential (see Figure 31), the particle
receives a force in the direction to expel it from the switching region.

Our main result in this chapter, beyond the proposition of this new simple feedback
experiment, is to calculate, theoretically, the dependence of ⟨∆F −W ⟩ with the delay time.
This result is essential because it allows a quantitative study about the viability of the
experiment. Its noteworthy that Toyabe et al. only found the dependence experimentally,
as shown in Figures 35 and 36.

Consider that, initially, the particle is at thermal equilibrium in a harmonic potential.
Suppose the particle is measured in position x0 inside region S at t = 0. Then, its probability
density function becomes P (x, x0, 0) = δ(x−x0). However, from the Fokker-Planck equation
solution (eq. (3.32)), we know how this probability density function P (x, x0, t) evolves
during the delay time. Also, after the delay time, the potential is switched instantaneously
(see Figure 33). With knowledge about the probability density function above, we can
calculate the work (see section 4.1.5). Therefore, the average work if the particle is measured
at x0 is equal to ∫ ∞

−∞
(∆F −W )P (x, x0, tdelay)dx. (6.18)

However, this is the work contribution only for the particle measured in x0. To obtain the
total average work, we must integrate x0 in the switching region

⟨(∆F −W )⟩ =
∫ xS

−xS

Pthermal(x)
[∫ ∞

−∞
(∆F −W )P (x, x0, tdelay)dx

]
dx0, (6.19)

where Pthermal(x) is the thermal equilibrium distribution (eq. (3.33)). The integration is
made only in region S, since W = ∆F = 0 if the particle is measured outside S.

Observe that the free energy is given by eq. (4.18) , and the stochastic work is
equal to

W = λf − λi

2 x2 (6.20)

in eq. (6.19).
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Figure 39 – Dependece of ⟨∆F − W ⟩ with the delay time, calculated using eq. (6.19). ⟨∆F − W ⟩
decays as we increase the delay.

Source: By the author.

Figure 40 – The generalized Jarzynski equality with the delay time. Note that the value for
⟨exp[(∆F − W )/kBT ]⟩ decays, indicating the loss of control of the experiment. It
tends to 1 in the long time limit, retrieving the Jarzynski equality. This curve can
be calculated similarly to the ⟨∆F − W ⟩ curve.

Source: By the author.

In Figure 39 is the decaying of ⟨∆F −W ⟩ with the delay time. Note that for times
below 10 ms the quantity is positive. In Figure 40, the generalized Jarzynski equality. The
decay represents a loss in the experiment control.

6.4.6 The switching region

The original definition of the switching region is convenient for an instantaneous
process but for a delay time different from zero, measuring the particle in the region S does
not guarantee that it will be there in the switching moment. In case that the particle exits
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Figure 41 – Relation between ⟨∆F − W ⟩ and ϵ (eq. (6.17)) for different delay times. The larger
the delay time, the smaller the value of ϵ that maximizes ⟨∆F − W ⟩.

Source: By the author.

the switching region during the delay time, it will have W > ∆F , decreasing the average
⟨∆F −W ⟩. Therefore, to achieve the maximum of ⟨∆F −W ⟩ is necessary to define a new
switching region. The scaling factor, ϵ, is used to study other possibilities of the switching
region.

Fixing the delay time and considering that the particle was measured in region S,
three aspects come into play in the maximization of ⟨∆F − W ⟩: 1) if ϵ > 1, there will
be negative values of ∆F −W , decreasing the average value ⟨∆F −W ⟩; 2) if ϵ < 1, the
value obtained for ∆F −W is positive because the particle does not have time to exit the
region S; 3) if the region is too small ϵ ≪ 1, positive values ⟨∆F −W ⟩ that contributes to
the average are lost, again decreasing the average. Therefore, to maximize ⟨∆F −W ⟩, a
smaller switching region must be considered. Also, the region S can not be too small for
the reasoning above.The results are in Figures 41 and 42.
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Figure 42 – ⟨∆F − W ⟩ with the delay time, for different scaling factors of the interval S. For
ϵ = 1.25 (green), ⟨∆F − W ⟩ is smaller for all delay times. For ϵ = 1.00 (blue),
⟨∆F − W ⟩ is larger for a small delay. When we increase the delay time, this curve
rapidly decays because there is a probability that the particle will exit region S. For
ϵ = 0.75 (red), ⟨∆F − W ⟩ does not have the larger value for short delay times but
decays more slowly.

Source: By the author.
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7 CONCLUSION

In the last years, an optical tweezer was developed in our laboratory.(27) Among
several possibilities that this experimental setup allows, in this dissertation, we choose to
explore some themes of the broad and rich field of stochastic thermodynamics. Although
the study made be mainly theoretical and computational, we sought to study and propose
possible experiments to be realized in practice soon. Hence, we began showing the basic
features of the experimental system, such as the type of object we trap, the force’s
intensities, and the time scales. Given that we trap a colloidal particle immersed in water,
we developed the theory that describes the particle’s motion, i.e., the Langevin equation
and the Fokker-Planck equation. In addition, we introduce ref. (34), which explains how
to simulate the Langevin dynamics. These simulations were of great help in clarifying
concepts and verifying the feasibility of experiments.

Nonetheless, the Langevin and Fokker-Planck equations do not introduce the
concepts of work, heat, and entropy. Thus, we presented the work of Ken Sekimoto that,
in 1998, associated to individual trajectories of a Brownian particle the concepts of work
and heat.(10) These thermodynamic quantities fluctuate, i.e., different realizations of
the experiment give different values for the work and heat. However, the probability
distributions obey important relations, known as fluctuation theorems, being the Jarzynski
equality the most famous.(5) In our case, the Jarzynski equality was useful as a simulation
checker and, since the JE is an average of the exponential of the work, some values
contribute more to the average process, interfering in the number of times that the
experiment must be done to see JE convergence. Therefore, we investigate if the so-called
dominant work values were also rare events or not for the breathing parabola.

Although in stochastic thermodynamics work becomes a quantity that fluctuates
between realizations of the experiment, the average work is always larger than the free
energy difference of the system. The optimal protocol has the mean work the closest
to ∆F . We have studied three different methods to obtain the optimal protocol for the
harmonic potential with time-dependent stiffness. The first method generates an exact
analytical solution (15), while one is for slowly varying processes (17), and the last is a
phenomenological method for weak protocols.(18) Our contribution was the determination
of the performance of the two last methods. In particular, the phenomenological method
presented a good performance even outside its theoretical regime of validity.

Last we have explored Landauer’s principle and the information-to-energy conver-
sion. For the former, we reproduced the results of ref. (53). As for the latter, we reproduced
the results of the ref. (21), where they verified the information-to-energy conversion as the
generalized Jaryznski equality. Our second main result is that we have proposed a new
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similar experiment but more easily implemented. This simplicity allowed the calculation of
the dependence of ⟨∆F −W ⟩ with the delay time, i.e., the time between the measurement
the potential change. Although Toyabe et al. have already studied how the delay time
affects the information-to-energy conversion, they did this experimentally. Hence, we made
a little advancement by calculating this time dependence theoretically.

Therefore, we hope that the discussions and results encountered in this dissertation,
concerning the optimization of protocols and the feedback control, serve as a useful guide
in our laboratory group in the following years.
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