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“The ability to reduce everything to simple fundamental laws does not imply
the ability to start from those laws and reconstruct the universe.”

— Philip W. Anderson, More is Different (Science, 1972).
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ABSTRACT

SILVA, J.A.S. Investigating spin liquids via projected wavefunctions. 2022. 109p.
Dissertation (Master of Science) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2022.

Spin liquids are exquisite states of matter which host fractionalized excitations of spin and
show no long-range magnetic order even at zero temperature due to quantum fluctuations.
They have been extensively studied using fractionalized representations of the spin degrees
of freedom in the so-called parton construction in conjunction with the Gutzwiller projection.
Using Mean Field Theories (MFT), this constraint can be imposed on average, and
numerical techniques, such as the Variational Monte Carlo (VMC) are required to impose
the condition exactly at each site. In this framework, the VMC is a powerful tool to indicate
which MFT ansatz is favored energetically to represent the spin liquid state based on
the variational principle and the specific spin fractionalized representation. We employed
this approach to investigate a putative chiral spin liquid state in the Kagome lattice
using the Abrikosov representation which can host spinons: neutral spin-1/2 fermionic
quasiparticles. This work was performed in the J1 − Jd − Jχ Kagome Lattice model, and it
was inspired by experimental results from the material α− Cu3Zn (OH)6 Cl2 (kapellasite) -
a polymorphous structure of ZnCu3(OH)6Cl2 (herbertsmithite) - with no long-range order
down to T = 20mK. Our VMC results favor a gapless chiral spin liquid with staggered
flux ±π/2 over the triangles and 0 flux on the hexagons in the region with Jd/ |Jχ| > 0
for small |J1| < 0.1. We also investigated the stability of this spin-liquid state to ordered
phases known to occur in the model. In addition, new non-coplanar ordered phases were
encountered via the gradient descent method in the limit of S ≫ 1 which may be relevant
for ordered Kagome materials. By representing the influence of the ordered phases via a
fictitious Zeeman field in a spin density wave (SDW) ansatz for the VMC, we have found
consistent results with our classical phase diagram, establishing a more realistic region for
the spin liquid domain.

Keywords: Frustrated magnetism. Quantum spin liquids. Parton construction. Gutzwiller
projected wave functions. Variational Monte Carlo.





RESUMO

SILVA, J.A.S. Investigando líquidos de spin através de funções de onda
projetadas. 2022. 109p. Dissertação (Mestrado em Ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2022.

Líquidos de spin são fases exóticas da matéria que abrigam excitações fracionalizadas de
spin, além de não demonstrarem ordenamento magnético de longo alcance mesmo próximo
à temperatura zero devido à flutuações quânticas. Essas fases têm sido extensivamente
estudadas através de representações fracionalizadas dos graus de liberdade do spin através
do formalismo chamado Construção de Partons em conjunção com a projeção de Gutzwiller.
Através de Teorias de Campo Médio (MFT), essa condição física só pode ser imposta
na média, de forma que técnicas numéricas como o Monte Carlo Variacional (VMC) são
necessárias para a imposição do vínculo de forma exata em cada sítio. Nesse contexto,
o VMC é uma poderosa ferramenta que permite indicar qual ansatz de campo médio
é favorecido energeticamente para representar um estado de líquido de spin, através
do princípio variacional junto da representação fracionalizada de spin adotada. Nós
desenvolvemos essa tecnologia com o intuito de investigarmos um líquido de spin quiral
particular na rede de Kagome utilizando férmions de Abrikosov, que contém os chamados
spinons: quasipartículas fermiônicas neutras de spin 1/2. Esse trabalho foi realizado
considerando-se o modelo J1 − Jd − Jχ na rede de Kagome, e foi motivado por resultados
experimentais no material α− Cu3Zn (OH)6 Cl2 (kapellasita) - uma estrutura polimórfica
ao mineral ZnCu3(OH)6Cl2 (herbertsmithite) - sem ordenamento magnético de longo
alcance até T = 20mK. Nossos resultados de VMC indicam um favorecimento do líquido
de spin quiral sem gap com fluxos alternados ±π/2 sobre os triângulos e fluxo 0 nos
hexágonos, ao longo da região com Jd/ |Jχ| > 0 para |J1| < 0.1. Nós também investigamos
a estabilidade desse líquido de spin com respeito a fases magnéticas ordenadas conhecidas
na literatura, além de encontrarmos novas fases clássicas não coplanares que possam
ser relevante para materiais de Kagome ordenados no limite em que S ≫ 1. Por fim,
representando a possível influência de ordenamento magnético com um campo de Zeeman
fictício em um ansatz de onda de densidade de spin (SDW) para o VMC, demarcarmos a
região no espaço de acoplamentos para o favorecimento do líquido de spin do ponto de
vista de flutuações quânticas.

Palavras-chave: Magnetismo frustrado. Líquidos de spin quânticos. Construção de
Partons. Funções de onda projetadas de Gutzwiller. Monte Carlo variacional.
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1 INTRODUCTION

Quantum Spin Liquids (QSL) have been extensively studied since their first con-
ception in 1973 by Philip Anderson in the context of resonating valence bond (RVB)
states.9 These states cannot be described within Landau’s classical theory of phases
transitions based on symmetry breaking and conventional order parameters.10 Instead,
they are described by a topological order, which is highly related to the ground-state
degeneracy and fractional excitations.11 Quantum fluctuations destroy any long-range
magnetic ordering near T ≈ 0K in these phases of matter. Additionally, they host unusual
fractionalized excitations and present a long-range entanglement between spins. Broadly
speaking, QSLs can be divided into gapped, with topological ground state degeneracy
and anyonic excitations, and gapless, which are usually described by emergent fermions
coupled to gauge fields.12,13

These novel phases can be found in lattices prone to geometrical frustration.14

Specifically, we consider localized spins S=1/2 described by Heisenberg-like models in the
context of Mott insulators. These localized spins become frustrated due to unsatisfied
exchange interactions. Many experimental results have indicated the characteristic signa-
tures for the apparition of QSLs in certain materials.7,8 The most paradigmatic example
can be found in the Kagome lattice with the mineral Herbertsmithite (ZnCu3 (OH)6 Cl2),
which is believed to host a gapless U(1) QSL,4,15,16 described by a Heisenberg model with
nearest-neighbor antiferromagnetic (AFM) interactions only. Additionally, the Kapellasite
mineral α− Cu3Zn (OH)6 Cl2,3,17 a polymorphous structure of Herbertsmithite, is another
emblematic example. Several experimental results indicate a rich physics describing this
material. A continuum of excitations is present on the momentum structure from inelastic
neutron scattering (INS) measurements, in contrast with the conventional magnons ex-
pected in ordered AFMs [Fig. 1(a)]. This is a signature of spinons, which are elementary
spin excitations in QSLs.15 Additionally, there’s a divergence of the local susceptibility for
T → 0 as measured by Nuclear Magnetic Resonance (NMR) measurements [Fig. 2 (a)],
following a Curie law of χ ∝ 1/T . High temperature series expansion to the experimental
data of the total specific heat and susceptibility are in good agreement with a J1 − Jd (Fig.
3) Heisenberg model with J1 < 0 and Jd > 0 (Fig. 2). Finally, the static spin structure
factor (SSSF) exhibits short-range AFM correlations consistent with the cuboc-218 ordered
phase [Fig. 1(b)] with a sharp peak located at Q = 0.5 Å−1. These results motivated
theoretical descriptions based on modified Heisenberg models which favor a gapless QSL
close to the cuboc-2 ordered phase.

These experimental investigations are challenging since the presence of impurities
or defects in the samples can lead to significant effects which may hinder the study
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Figure 1 – (a) Neutron scattering intensity, S (Q,E), on a logarithmic scale (colored region)
as a function of wave vectors Q and energy E of kapellasite at a temperature
of T = 0.1K. (b) Wave vector dependence of the inelastic magnetic scattering.

Source: Adapted from FÅK et al.3

Figure 2 – (a) Spin susceptibility, local and uniform, as a function of temperature. The
inset indicates a High-temperature series fit down to 20mK. (b) Total specific
heat per spin Cv measured in zero field and compared with the J1 − Jd model.

Source: FÅK et al.3
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of the true ground state of materials.19 It was only recently that in a programmable
quantum simulator, a QSL was directly engineered in a controllable environment.20,21 The
implications of these recent studies furnish the possibility of studying more properties of
these exotic phases of matter, as well as aspects involving topological qubits, which are
expected to be resistant to noise and external interference and, consequently, relevant in
the context of fault-tolerant quantum computing.22

Figure 3 – (a) Relevant exchange couplings in the Kapellasite material between Zn (blue)
and Cu (yellow) ions considered in the J1 − Jd − Jχ Heisenberg model (1.1). (b)
Representation of how the Kagome pattern arises in the material Kapellasite.
The kagome layers are weakly coupled through Cl-OH hydrogen bonds.

Source: (a) By the author. (b) KERMARREC et al.17

In this rich context, it becomes clear the necessity of understanding QSLs funda-
mentally. One particular interest resides on QSLs with broken time-reversal symmetry,
dubbed as chiral spin liquids (CSL).23–25 One of the most prominent examples is the
Kalmeyer-Laughlin state,26 which can be described by mapping the bosonic spin exci-
tations to fermions coupled to a Chern-Simons gauge field.27,28 The result is a gapped
topological phase with anyonic excitations. The Kalmeyer-Laughlin state can be stabilized
as the ground state of spin-1/2 models containing chiral three-spin interactions that drive
a uniform scalar spin chirality.29–34 Physically, the three-spin interactions arise in Mott
insulators with a magnetic flux through triangular plaquettes, and their ratio to exchange
interactions can be enhanced in the vicinity of the Mott transition.27,35 Moreover, the
regime of strong three-spin interactions could be reached by Floquet engineering with
circularly polarized light,36–38 or artificially building lattices using Majorana-Cooper pair
boxes.39

Contrastingly, three-spin interactions that induce staggered scalar spin chirality on
the kagome lattice favor gapless spin liquids with spinon Fermi surfaces.?, 41, 42 Unlike the
Kalmeyer-Laughlin state, such gapless CSLs do not harbor anyons, but they represent
striking examples of non-Fermi liquids with fractionalized excitations.42 The standard
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analytical approach to these phases resorts to fermionic partons with a mean-field approx-
imation for the U(1) gauge field. While spinon Fermi surface states have been argued to
be stable against gauge fluctuations in two spatial dimensions,43 the subject is still under
debate.7 In the case of chiral spin liquids, the lack of time-reversal symmetry provides
additional protection against density-wave and pairing instabilities.44,45 In particular, the
stability of the gapless chiral spin liquid with staggered spin chiralities on the kagome
lattice can be rationalized in terms of the absence of backscattering in a picture of chiral
one-dimensional modes.41,42

CSLs can also arise from spontaneous breaking of time-reversal symmetry, as
observed numerically in extended Heisenberg models46–50 and also in the triangular lattice
Hubbard model.51 As previously explained, a gapless CSL was proposed for the material
Kapellasite,3,17,52 described by an extended Heisenberg model in which the dominant
antiferromagnetic exchange coupling Jd is present across the hexagons of the kagome lattice.
The established model for Kapellasite also includes nearest- and next-nearest-neighbor
ferromagnetic couplings J1 and J2.53 The phase diagram3,19,52 contains non-coplanar
ordered states known as cuboc-1 and cuboc-2,2,18 and a CSL might be expected to arise
from the quantum melting of the magnetic order while preserving a chirality pattern that
breaks reflection and time-reversal symmetries. However, density-matrix renormalization
group (DMRG) simulations suggest that the intermediate phase between cuboc-1 and
cuboc-2 phases in the J1 − J2 − Jd model is a valence bond crystal rather than a CSL.54

In this dissertation, we study the general description of QSLs based on parton
constructions in conjunction with Gutzwiller projected wave functions (GPW) within a
Variational Monte Carlo (VMC). As a particular case of study we consider the localized
spins S = 1/2 at the sites i, j of the Kagome lattice which interacts via exchange Jij in
the Heisenberg Model

H = J1
∑
⟨i,j⟩

S (ri) · S (rj) + Jd
∑
ij∈7

S (ri) · S (rj) +

+Jχ
∑
ijk∈△

S (ri) · [S (rj) × S (rk)] − Jχ
∑
ijk∈▽

S (ri) · [S (rj) × S (rk)] ,
(1.1)

with couplings Jχ > 0, J1 < 0 and Jd > 0 inspired by the rich physics surrounding the
Kapellasite mineral. In the limit of dominant staggered chirality Jχ this model describes
a CSL,29,41 whereas for Jd ≫ Jχ the model describes weakly coupled AFM chains along
the diagonals of the hexagons on the Kagome lattice. For simplicity, we neglect the next-
nearest-neighbor interaction J2, which is negligible for Kapellasite.19 The main motivation
is that the interactions are dominated between in-plane Cu ions, and, consequently, an
effective theoretical model in two dimensions can be proposed, as the Kagome layers
become weakly coupled [Fig. (1.1)] in the Kapellasite. Additionally, we also investigate
how ordered phases of matter can be understood from the perspective of the static spin
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structure factor (SSSF) and the gradient descent method (GD). Specifically, we investigate
the classical phase diagram for the model (3).

This dissertation is then organized as follows:

• In Chapter 2 we present the methodology implemented in this dissertation, by
explaining the gradient descent method and how magnetically ordered phases can
be found by using this technique in the limit of classical spins S ≫ 1. Subsequently,
we investigate how the Variational Monte Carlo (VMC), based on the conjunction of
the quantum variational principle and Markov Chain Metropolis-Hastings Monte
Carlo, can be used to probe QSLs in the regime of quantum spins S ≪ 1. To bridge
both limits we also present how a spin density wave (SDW) class of Ansätze can
be used to investigate the transition between ordered and disordered phases in the
presence of quantum fluctuations.

• In Chapter 3 we present our results concerning the classical phase diagram for the
J1 − Jd − Jχ modified Heisenberg model (1.1). We report on new phases FM-chiral,
FM-stripe, and AFM-stripe which arise due to the introduction of the staggered
chiral interaction in the modified Heisenberg model. Specifically, by constructing
the classical phase diagram of the model, we have found evidence of an extended
classically disordered region for small J1 and Jd coupling. In addition, we have also
found numerical evidence for a second-order phase transition between the cuboc-1
and cuboc-2 phases previously reported for the Kagome lattice, with an octahedral
phase occupying the line J1 = 0 where the staggered chirality is maximized. These
new classical phases may be interesting for materials similar to the Kapellasite
mineral.

• Chapter 4 is devoted to discussions regarding the quantum phase diagram for the
J1 − Jd − Jχ modified Heisenberg model (1.1). We present the recently developed
mean-field theory for chiral spin liquids (CSL) in the Kagome lattice,12 and investigate
them within the VMC. As we shall see, our results indicate a considerable region
where the CSL is favored, in agreement with the results of Chapter 3. In addition,
we investigate the transition between the ordered and disordered phases via the
SDW Ansätze, obtaining a smaller, but still a considerable region where the CSL is
energetically favorable in the quantum phase diagram.

• Finally, in Chapter 5 we summarize our results and discuss how further improvements
to our methodology could be addressed in future work.
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2 NUMERICAL AND THEORETICAL METHODOLOGY

In this chapter, we lay the foundations for our theoretical and numerical methodol-
ogy to explore ordered and disordered states. We begin by considering the importance of
the static spin structure factor (SSSF) for detecting magnetically ordered phases and how
they are considered in conjunction with a gradient descent (GD) algorithm to characterize
classical phase diagrams. From an initial benchmark, we review previous results in the
literature about possible ordered phases known to occur in modified Heisenberg models on
the Kagome Lattice and show how they can be compared within our algorithm from the
ground state energy (GSE) observable’s perspective. This development is essential for our
independent studies in Chapter 3.

Following this classical treatment, we consider how quantum spin liquids can be
studied using the formalism of parton construction, and how to go beyond the mean-field
treatment by implementing a Variational Monte Carlo with physically motivated projected
wave functions. Likewise, we present important numerical benchmarks on Section 2.3 that
elucidate essential aspects of the Variational Monte Carlo algorithm as well as physical
intuition necessary for Chapter 4.

2.1 Gradient descent and classical phases on the Kagome lattice

2.1.1 Static Spin Structure Factor

The magnetic order or disorder of a specific material can be probed through inelastic
neutron scattering experiments.55 The particles called neutrons have a small magnetic
moment, i.e., an intrinsic magnetic dipole moment µN , which corresponds to approximately
0.1% of the electron’s magnetic dipole moment. This is sufficiently low to characterize
neutron diffraction in a material as a weakly interacting probe. The neutron beam deviated
by a local field produced by the spins in a real material can then furnish experimental
results to investigate both electron spin fluctuations and ordered magnetic structures in
condensed matter physics.56–58

In order to quantify the phase transition between ordered and disordered states, we
need a specific order parameter - understood within Landau’s theory of phase transitions.59

The first step for defining this observable is calculating the Fourier Transform of a generic
spin configuration Sr via

Sk = 1√
N

∑
r

e−ir·kSr, (2.1)

where N is the number of spins (or sites) in the lattice, with L representing the linear size
of the system. Since our main interest in this dissertation is based on studying ordered and
disordered phases on the Kagome Lattice, we also define it as containing three sublattices
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labeled by the letters A, B and C that are accessible by the position vectors
rA = n1a1 + n2a2

rB =
(
n1 + 1

2

)
a1 + n2a2

rC = n1a1 +
(
n2 + 1

2

)
a2

, (2.2)

with n1, n2 = 1, . . . , L, and reciprocal bi and primitive ai lattice vectors given byb1 = 2π
a

(
1,−

√
3

3

)
b2 = 2π

a

(
0, 2

√
3

3

) , (2.3)

and a1 = a (1, 0)

a2 = a
2

(
1,

√
3
) , (2.4)

with a representing the lattice spacing. The nearest-neighbor vectors are defined in Figure
4. The momentum k values are obtained through the relation

k = m1

L
b1 + m2

L
b2 = 2π

La

[
m1x̂ +

√
3

3 (2m2 −m1) ŷ
]
, (2.5)

with m1,m2 = 0, . . . , L−1. The correspondent equation (2.1) for a particular configuration
on the Kagome Lattice is then defined as

Sk = 1√
N

∑
rA

e−irA·kSrA
+ 1√

N

∑
rB

e−irB ·kSrB
+ 1√

N

∑
rC

e−irC ·kSrC
. (2.6)

From the lattice definition (2.2) and the relation ai · bj = 2πδij between reciprocal and

Figure 4 – Representation of the Kagome lattice with 3 atoms per unit cell (blue parallel-
ogram). The nearest neighbors are defined as δi = ai

2 for i = 1, 2, 3.
Source: By the author.

primitive lattice vectors,60 equation (2.6) can be rewritten as

Sk = SA
m1,m2 + e−iθB(m1,m2)SB

m1,m2 + e−iθC(m1,m2)SC
m1,m2 (2.7)

with the phase factors

θB (m1,m2) = πm1/La, θC (m1,m2) = πm2/La (2.8)
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and
SA(B,C)
m1,m2 = 1√

N

∑
n1,n2

e−2πi(m1n1+m2n2)/LaSrA(B,C) , (2.9)

such that the static spin structure factor (SSSF) observable can finally be defined as

S (m1,m2) = Sk · S−k = |Sk|2 . (2.10)

A minimal example can be analytically calculated for the ferromagnetic (FM) phase
on the Kagome lattice. Following the condition

SrA
= SrB

= SrC
(2.11)

the Fourier transform (2.7) of the spin configuration for the FM phase becomes

Sk = S
√
L2δk,G

(
1 + e−iπm1/La + e−iπm2/La

)
(2.12)

with G representing a reciprocal lattice vector. The SSSF (2.10) can then be obtained as

S (k) = |Sk|2 = NS2δk,G

{
1 + 2

3 [cos (k0m1) + cos (k0m2) + cos (k0 (m1 −m2))]
}
, (2.13)

with k0 = π
La

. This result states that for reciprocal lattice points k = G ≠ Γ = (0, 0)
in the reciprocal lattice, the SSSF is suppressed by a ratio of approximately 1/9.18 The
momentum points upon which the SSSF acquires a considerable magnitude are known
as Bragg Peaks in the momentum space. Correspondingly, they mark the position of the
ordering wave vector Q.18,61 The numerical implementation of the SSSF can be seen in
Algorithm 1).

Algorithm 1 Static Spin Structure Factor

1. Start with an initial spin configuration Sr as input.

2. Define the correspondent geometrical lattice.

3. Calculate the phase factors (2.8) and the correspondent representation of the input
configuration in momentum space (2.7) via a discrete Fourier Transform.

4. Calculate the correspondent SSSF via expression (2.10).

From these considerations, the SSSF (2.10) can then be understood as an order
parameter when analyzing transitions between ordered and disordered phases in the
classical regime. Once a minimum energy state - characterized by a spin configuration Sr -
is found numerically, it can be used as an input to the numerical implementation of the
SSSF at Algorithm 1. The correspondent structure of the Bragg Peaks on the momentum
space can then be compared to known ordered phases in the literature. If the weight of
S (k) is spread over the Brillouin Zone (BZ) contour, we understand it as a disordered
phase. Consequently, this result can be is a powerful indicator of the presence of quantum
spin liquids,62 as we will see through this dissertation.
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2.1.2 Gradient Descent method

For a characterization of classical phase diagrams, the numerical implementation of
the SSSF can be used in conjunction with the steepest descent or gradient descent (GD)
method.63 The GD method is an interesting alternative to the Luttinger-Tisza method64–67

in the scenario where interactions of three or more spins are considered - chiral interactions
on the elementary triangles of the Kagome lattice, for example. The main idea of this
algorithm in the present context is to represent the part of the Hamiltonian that does not
depend on Si as a local field hi which influences the system to stabilize in a particular
configuration that minimizes the ground state energy. As an illustrative example, we may
consider the J1 − Jd − Jχ Kagome Lattice model (1.1),

HGD =
∑
i

Si · hi, (2.14)

with the local fields determined by

hi = J1
∑
j

Sj + Jd
∑
j∈7

Sj + Jχ
∑

j,k∈△▽

(Sj × Sk) . (2.15)

It’s clear from the functional form (2.14) and from

∇iHGD = ∂HGD

∂Sxi
x̂+ ∂HGD

∂Syi
ŷ + ∂HGD

∂Szi
ẑ = hi (2.16)

that any configuration upon which −∇iHGD (Si) ∥ hi will decrease the ground state energy
of the system. Therefore, an algorithm can be constructed by following the opposite path
of the gradient on the energy surface (following the gradient leads to a maximum). This
local minimization method is known as gradient descent, or steepest descent. Since this is
a local optimization algorithm, different random configurations are needed to confirm that
the algorithm is not trapped in a local minimum. The correspondent structure of the GD
method can be seen at Algorithm 2.

The parameter γ ∈ [0, 1] is labeled as step size ∗, and it’s a numerical correction
that improves the numerical convergence. Small γ means that the algorithm will need
more steps to converge to the configuration of minimum energy. When γ = 1, the spins
are aligned with the local fields. For all investigations in this dissertation, we use γ = 0.7.

The main idea on obtaining classical phase diagrams is then to directly minimize
the energy of the system - which in this dissertation will always be described by a modified
Heisenberg model -, and compare the final configuration with relevant ordered phases
known in the literature for the specific lattice considered. This comparison can be done
between analytical (or numerical) ground state energies and the correspondent minimum

∗ Also known as learning step in the context of machine learning.63
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Algorithm 2 Gradient Descent method

1. Start with an initial (often random) spin configuration S0
i .

2. Flip the Si spin in the direction of the local downhill of the gradient −∇iH (Si) via

Si+1 = (1 − γ) Si − γ∇iH (Si) ,

where γ ∈ [0, 1].

3. Normalize the new spins such that |Si+1| = S.

4. Sweep over the lattice flipping all spins repeating step 3 for all spins.

5. Repeat the process as many times as needed or until a tolerance limit is reached,
which occurs when the overall change in the spin configuration after the m-th
interaction is smaller than a tolerance ε = 10−10.

energy found by the GD method, alongside the characterization of the SSSF profile for the
configuration. In the following discussions, we are going to consider relevant benchmarks
within this context to evidence the reliability of our implementation.

2.1.3 Classical Benchmarks: From Néel AFM to noncoplanar phases

It is now known by distinct theoretical and numerical approaches that there is a
rich classical phase diagram for the S = 1/2 kagome antiferromagnet (KAFM) model
if further neighbor interactions are taken into account in Heisenberg-like models.2,19

Considering first-neighbor interactions J1 > 0 (AFM) is a paradigmatic example for a QSL,
for example,8 which will be explored in Subsection 2.3.0.2. In contrast, if J1 < 0 (FM)
interactions are considered, additional couplings are necessary for stabilizing a QSL (as we
will see in Chapter 4).13,41 These new interactions may also select magnetically ordered
states which are energetically competitive in a certain region of the phase space of coupling
parameters from the effective model. One way of classifying and finding these phases is
by selecting spin spatial configurations which respect all lattice and spin symmetries of a
given lattice in a group-theoretical approach.18,61 Furthermore, the energy of these states
can be compared variationally to discover at least one exact lower energy bound in the
case where the classical spin configuration is not the true ground state of the model. This
formalism is quite useful when one has information about the magnetic correlations of a
magnetic compound through experimental data from neutron scattering patterns on the
reciprocal lattice, i.e., via the previously mentioned SSSF. If this pattern is reproduced in
an experimental setup, one can have additional information about how the couplings from
the effective model hosting the ordered phase interact to generate the classical phases.
In this context, we represent the spins as classical vectors and introduce local angles
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ϕ ∈ [0, 2π] and θ ∈ [0, π] as

Si = S (cosϕi sin θi, sinϕi sin θi, cos θi) . (2.17)

Figure 5 – Spin spatial configuration of the cuboc-1 (a) and cuboc-2 (b) phases on the
Kagome lattice alongside their correspondent SSSF.

Source: GONG et al.54

To investigate these states and benchmark our numerical implementations of the
SSSF and GD method, we begin by considering the J1 − J2 Heisenberg model

H = J1
∑
⟨i,j⟩

S (ri) · S (rj) + J2
∑

⟨⟨i,j⟩⟩
S (ri) · S (rj) , (2.18)

upon which we expect a phase transition from the cuboc-2 to the ferromagnetic phase
when varying the J2 interaction, for example. The cuboc phases (Fig. 5) display long-range
magnetic order in a disposition of 12 noncoplanar sublattices pointing to the vertices of a
polyhedron called cuboctahedron. The difference between the cuboc-2 and cuboc-1 phases
is that the first has all six spins from the hexagon in the same plane while having an angle
of π/3 between nearest neighbors - contributing to a non-zero expectation value of the
chirality order parameter -, whereas in the latter there is no chirality on the elementary
triangles of the Kagome lattice. The cuboc-2 phase has also been investigated in both

Figure 6 – Spin spatial configuration of the AFM coplanar states Q = 0 × 0 (a) and
Q =

√
3 ×

√
3 (b) on the Kagome Lattice.1

Source: By the author.

classical and quantum limits; spin wave calculations have demonstrated that this phase
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Figure 7 – Classical phase diagram for the J1 − J2 − Jd - with J1 = −1 (a) and J1 − J2 (b)
Heisenberg models in the Kagome Lattice. Black dashed lines represent first
order phase transition boundaries.2,3

Source: By the author.

is stable in the AFM J1 − J2 model even in the presence of quantum fluctuations: we
understand it as being the classical cuboc-2 state renormalized by quantum fluctuations.2

In addition, there’s a possible transition from the previously mentioned phases to Neél
AFM coplanar phases Q = 0 × 0 and Q =

√
3 ×

√
3 (Figure 5), which are favored for

J2 < 0 and J2 > 0, respectively. Their nomenclature are related to the corresponding
ordering wave vector Q. For the former, the traditional unit cell containing three sites
is sufficient to describe the periodicity of the ordered phase, whereas for the latter the
unit cell must be increased. Physically the diffracted neutron beams interfere destructively
within the unit cell such that sharp peaks in the Brillouin Zone (BZ) appear only at the
edges of the 1st BZ for the phase Q = 0 × 0 (Fig. 8).2,68

With the addition of the Jd interactions (on the diagonals of the elementary
hexagons on the Kagome lattice) in the Heisenberg Model (2.18), i.e., Hd = Jd

∑
ij∈7 S (ri)·

S (rj) the phase diagram becomes even richer, with the aforementioned phases and a new
paramagnetic (disordered) region established for intermediate Jd in the quantum regime -
between the FM and cuboc-2 phases - indicating a susceptible region for the quantum spin
liquid.19 From density functional theory (DFT) results19,52,53 the Kapellasite material is
described by the couplings (J1, J2, Jd) = (−12.5,−0.55, 16.1)K, for example. The classical
phase diagram is also well described within our numerical investigations (Fig. 5).

2.2 Parton Construction and Variational Monte Carlo

From the different ways of expressing spin operators as bosonic or fermionic degrees
of freedom, the physical picture for a particular representation is motivated by the low-
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Figure 8 – The SSSF for phases cuboc-2, cuboc-1, FM, Q = 0 × 0 and Q = 3 × 3 are
presented, with the BZ (dashed gray lines) and extended BZ (solid black
lines). The positions of highly symmetric momentum points Γ, K, M, Ke, Me,
are also presented. The color intensity for each profile is only schematic and,
consequently, independent between different phases. 2,3

Source: By the author.

energy theory describing the considered material. For QSLs the Parton Construction is an
interesting representation that contains the fractionalized excitations, and the absence
of ordinary magnetic order.7 This representation surpasses the bad quantum number
definition ⟨S⟩, which is zero for these disordered states, allowing a well-defined mean-field
theory development.11 Additionally, even free electrons in this formalism do not obey the
bipartite entropy entanglement area law of S ∝ L in two dimensions, where L is the length
of the system. Instead, the entropy scales with S ∝ L logL, indicating the presence of a
massive entanglement between the spins in this representation.7,69–71

In this section, we investigate the quantum limit of Heisenberg-like models with
S=1/2. The parton construction contrasts with the usual spin-wave treatment in this
context.72,73 The low-energy spectrum is dominated by delocalized spin bosonic excitations
called magnons. This formalism describes well the Néel ordering in the AFM Heisenberg
model in square lattices, for example, with a staggered magnetization ms ≈ 0.303 close to
the exact numerical result ms ≈ 0.307,74 as well as good estimates to the ground state
energy. The agreement for ms in the square lattice to the classical result 1/2 can be traced
back to a small number of bosons in the energy spectrum. Additionally, the results in
one-dimensional AFM chains indicate a logarithmic divergence of ms, indicating that
quantum fluctuations melt the magnetic order in this system. As we shall see in Subsection
2.3.0.1, the Parton construction can effectively describe this disordered ground state when
the Gutzwiller projected wave functions are considered within the VMC. Subsequently, we
present how these ideas can be implemented numerically within the VMC and explore
more examples of QSLs in the context of the Kagome lattice.
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2.2.1 Fermionic Abrikosov Representation

We begin our studies by first decomposing the Heisenberg Hamiltonian in compo-
nents as a function of spin ladder operators,75 S+

i =
(
S+
i + S−

i

)
/2 and S−

i =
(
S+
i − S−

i

)
/2i,

as
H = 1

2
∑
i,j

Jij

[
Szi S

z
j + 1

2
(
S+
i S

−
j + S−

i S
+
j

)]
, (2.19)

with the usual spin commutation relations[
Ŝim, Ŝ

j
n

]
= iδmnϵ

ijkŜkn,
[
Ŝ+
i , Ŝ

−
j

]
= 2δijSzi and

[
Ŝzi , Ŝ

±
j

]
= ±δijŜ±

i . (2.20)

δij being the usual Kronecker delta and ϵijk the Levi-Civita symbol. The Abrikosov
fermionic representation for the spin 1/2 operators is given by7,8

S = 1
2
∑
α,β

f †
i,ασα,βfi,β with ni = f †

i↑fi↑ + f †
i↓fi↓ = 1, (2.21)

and σ = (σx, σy, σz) a vector with the Pauli matrices. After the mapping (2.23) for spins,
the constraint relation is necessary in order for the model to depict the correct physical
Hilbert space. This is a general remark when translating physical degrees of freedom into
different representations. For the Abrikosov formalism, we restrict our configuration space
to the one with only one fermion per site via ni = 1, which is usually imposed globally via
a Lagrange multiplier in the physical Hamiltonian. The necessity of this condition can be
further reinforced if one notes that by using the mapping (2.23) and the anti-commutation
relations (2.24), the quantity

S2
i = 3

4ni (2 − ni) (2.22)

only matches S2
i = S (S + 1) = 3/4 if the constraint in (2.21) is obeyed.∗

The Abrikosov representation translates the spin ladder operators as

Ŝ+
i = f †

i↑fi↓, Ŝ−
i = f †

i↓fi↑, and Ŝzi = 1
2 (ni↑ − ni↓) , (2.23)

where f †
iτ (fiτ ) represents a fermionic creation (destruction) operator of a chargeless

fermion with spin τ (spinon). Additionally, niτ = f †
iτfiτ is the usual occupation number

for a spin flavor τ on the site i. Spinons arise as a natural description of QSLs excitations
of spin in this formalism†. These spinons can also be seen as a product of the decay of

∗ A similar Parton construction (2.21) in terms of Schwinger bosons can also be explored with
fiσ

(
f †
iσ

)
→ biσ

(
b†
iσ

)
representing bosonic operators. In this case, the physical constraint (2.21)

is replaced by the condition ni =
∑
α b†

iαbiα = 2S7,76,77 with S representing the spin value as
usual.

† Quasiparticles are an essential ingredient for our description of emergent phenomena by
representing collective interactions in a solid.78 In this case, if we consider the electron as a
bound state of charge, spin and orbital degrees of freedom, the spinon description captures
the essential characteristic of spin excitations at low temperature (T ≲ J).79
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magnons, a process that is experimentally characterized by a blurry in the SSSF. The spin
liquid’s low-energy properties are then faithfully represented by these objects, and they
can be experimentally detected from thermodynamic and spectroscopic quantities. These
operators obey the usual anti-commutation relations{

fiσ, f
†
jτ

}
= δijδτσ, {fiσ, fjτ} = 0 and

{
f †
iσ, f

†
jτ

}
= 0, (2.24)

and, consequently, the spin commutation relations (2.20) as shown below.

Proof. We consider the commutation relation
[
Ŝ+
i , Ŝ

−
j

]
= 2δijSzi and make extensive use

of the relations (2.24):

−Ŝ−
j Ŝ

+
i = −f †

j↓fj↑f
†
i↑fi↓ = f †

j↓f
†
i↑fj↑fi↓ − δijf

†
j↓fi↓ = f †

i↑f
†
j↓fi↓fj↑ − δijf

†
j↓fi↓ =

= 2δij
1
2
(
f †
j↑fi↑ − f †

j↓fi↓
)

− f †
i↑fi↓f

†
j↓fj↑ = 2δijSzi − Ŝ+

i Ŝ
−
j . (2.25)

Analogously, we have

−Ŝ+
j Ŝ

z
i = −1

2f
†
j↑fj↓ni↑ + 1

2f
†
j↑fj↓ni↓ = (2.26)

= 1
2
(
δijf

†
i↑fj↓ − f †

i↑fi↑f
†
j↑fj↓↑

)
+ 1

2
(
δijf

†
i↑fj↓ − f †

i↓fi↓f
†
j↑fj↓↑

)
= (2.27)

= 1
2
(
δijf

†
i↑fj↓ + δijf

†
i↑fj↓

)
− 1

2
(
f †
i↓fi↓f

†
j↑fj↓↑ + f †

i↑fi↑f
†
j↑fj↓↑

)
= +δijŜ+

i − Ŝzi Ŝ
+
j . (2.28)

The remaining commutation relations at (2.20) then follow. ■

The Hamiltonian (2.19) can then be rewritten via the Abrikosov representation
and the constraint relation as

H = 1
2
∑
ij

Jij

[1
2
(
f †
i↑fi↓f

†
j↓fj↑ + h.c.

)
+ 1

4 (ni↑ − ni↓) (nj↑ − nj↓)
]

=

= 1
2
∑
ij

Jij

{1
2
(
f †
i↑fi↓f

†
j↓fj↑ + f †

i↓fi↑f
†
j↑fj↓

)
+
[1
4 − 1

2
(
f †
i↑fi↑ + f †

j↑fj↑
)

+ ni↑nj↑

]}
. (2.29)

To be able to gain an insight into the ground state energy and spin correlations analytically,
we can implement a Mean Field Theory (MFT) approximation. We replace the constraint
(2.21) with the half-filling condition on average ⟨GS |ni↑ + ni↓|GS⟩ = ⟨ni↑ + ni↓⟩ ≈ 1, and
introduce the decoupling operator

χij = f †
i↑fj↑ + f †

i↓fj↓ (2.30)

such that
H = 1

2
∑
ij

Jij

[1
4 − 1

2χ
†
ijχij

]
, (2.31)

as proven below.
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Proof. This step can be understood if we consider the following calculations
1
4 − 1

2χ
†
ijχij = 1

4 − 1
2
[
1 + (−nj↓ni↓ − nj↑ni↑) −

(
f †
i↓fi↑f

†
j↑fj↓

)
−
(
f †
i↑fi↓f

†
j↓fj↑

)]
=

= 1
4 − 1

2
[
1 + [−1 − ni↑nj↑ + (nj↑ + nj↑)] −

(
f †
i↓fi↑f

†
j↑fj↓

)
−
(
f †
i↑fi↓f

†
j↓fj↑

)]
.

■

We proceed the MFT treatment with the approximation that quadratic fluctuations
(A− ⟨A⟩) (B − ⟨B⟩) are negligible in the form AB = (A− ⟨A⟩) (B − ⟨B⟩) + A ⟨B⟩ +
⟨B⟩A− ⟨A⟩ ⟨B⟩ for any product of two 2-body operators, if deviations of the mean values
are small. Applying this for the decoupling operator at equation (2.31)

H = −1
4
∑
ij

Jijχ
†
ijχij + zNJ

8 ≈ −1
4
∑
ij

Jij
[
χij ⟨χij⟩∗ + χ†

ij

〈
χij
〉

− |⟨χij⟩|2
]

+ zNJ

8 =

= −1
4
∑
ij,σ

Jij
[
⟨χij⟩∗ f †

iσfjσ + h.c.
]

+ 1
4
∑
ij

Jij |⟨χij⟩|2 + zNJ

8 , (2.32)

where z is coordination number, or number of nearest neighbors. If we impose a real and
uniform order parameter ∗ ⟨χij⟩∗ = ⟨χij⟩ = χ, the Hamiltonian can naturally be rewritten
in a diagonal form as

H = −1
4
∑
ij,σ

Jijχ
[
f †
iσfjσ + h.c.

]
+ zNJχ2

4 + zNJ

8 . (2.33)

By taking advantage of the translational invariance of the physical system, we can further
represent diagonalize it, via the Fourier transform of the spinon operators

fiσ = 1√
N

∑
k

eik·Rifkσ,
1
N

∑
j

eiRj ·(k−k′) = δk,k′ . (2.34)

Example: AFM Heisenberg model in 1D

For one-dimensional systems and next-neighbor interactions only, as a first estimate
for the ground state energy, we may consider the S=1/2 antiferromagnetic (AFM) spin chain
described by the Heisenberg model. Experimental results from inelastic neutron scattering
(INS) and resonant inelastic x-ray scattering (RIXS)80,81 confirmed that materials in this
context like Sr2CuO3 and Yb2Pt2Pb, for example, display a continuum energy spectrum of
spinons with long-range magnetic order suppressed by quantum fluctuations near T ≈ 0.

From equation (2.33) with a = 1 and z = 2, the diagonal Hamiltonian is given by

H = −1
4
∑
k,σ

ε (k) f †
kσfkσ + zNJχ2

4 + zNJ

8 , (2.35)

∗ This particular choice is useful for a common metal, but an additional phase could be necessary
with the consideration of an applied magnetic field, for example.
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with a dispersion relation given by ε (k) = −2Jχ cos ka, where a is the lattice spacing. In
this case,

ϵ0 (χ) = E0

NJ
(χ) = − χ

2π

∫ π/2

−π/2
dk cos k + 1

2χ
2 + 1

4 = −χ

π
+ χ2

2 + 1
4 (2.36)

and the corresponding value of χ can be found by a direct minimization dϵ0
dχ

= 0 ∴ χ = 1/π,
which gives ϵ0 (1/π) = 0.19934. This is a high estimation since the real ground state energy,
is given by E0/N = 1/4 − ln 2 = −0.44315.78,82,83 The spin-wave approach to this problem
gives a much better result of E0/N = −0.4315,84,85 for example. The distinctiveness
between the results for this observable can be understood from the approximation of the
MFT at zeroth order since the physical constraint (2.21) is imposed only as an average. As
we will see in Section 2.3, when considering this condition exactly within the Variational
Monte Carlo (VMC), the energy observable can be much closer to the exact result.

The spin-spin correlations can also be estimated, since we can relate the spin
operators with the density one by the Abrikosov representation for Sz via the equation
(2.23) and the use of the half-filling condition ⟨ni↑ + ni↓⟩ = 1:

⟨Sz0Szi ⟩ = ⟨(n0↑ − n0↓) (ni↑ − ni↓)⟩ = 4
〈
f †

0↑f0↑f
†
i↑fi↑ − 1

2
(
f †

0↑f0↑ + f †
i↑fi↑

)
+ 1

4

〉
=

= 4
〈
f †

0↑f0↑f
†
i↑fi↑

〉
− 1

4 .
(2.37)

This can be further represented in momentum space, by using the same steps from (2.33)
to (2.35) as

⟨Sz0Szr ⟩ = 4
N2

∑
k1,k2,k3,k4

〈
f †
k1↑fk2↑f

†
k3↑fk4↑

〉 (
eir(k4−k3) − 1

)
. (2.38)

Here, we have two contributions that are not eliminated from the orthonormality of states:
i) Both orbitals are occupied: k1 = k2 and k3 = k4; ii) One orbital is occupied (k1 = k4) and
the other one is empty (k2 = k3). The first one cancels the factor 1, and the second, written
in terms of the occupation number of orbitals n (k1) and [1 − n (k2)] (empty orbital),
transforms the expression as

⟨Sz0Szr ⟩ = 4
N2

N2

(2π)2

∫ π

−π
dk1

∫ π

−π
dk2n (k1) [1 − n (k2)] eir(k1−k2) =

= 1
π

∫ 0

−π
eirk1δ (r − 0) dk1 + 1

π2

∫ 0

−π
dk1e

irk1
∫ π

0
dk2e

−irk2 = δ0,r +
[ 1
iπr

(1 − (−1)r)
]2

∴ ⟨Sz0Szr ⟩ = δ0,r − 2
π2r2 (1 − (−1)r) . (2.39)

From the first to the second line we used the fact that the dispersion relation is particle-hole
symmetric.86 From the exact result for the S = 1/2 AFM spin chain,82

C (r) = ⟨Si · Si+r⟩ ∼ (−1)r

r
, (2.40)
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we see that although the correlation decays algebraically (with 1/r2) at equation (2.39)
for the Abrikosov representation, it does so with the wrong exponent. By adopting the
Gutzwiller Projected wave functions this observable can also be also be improved from the
perspective of the VMC.

2.2.2 Beyond MFT and Gauge Invariance

One possibility of going beyond the mean field solutions is by including phase fluc-
tuations ai,j11 around the mean field ansatz χ̄ij as χi,j → χ̄i,je

−iai,j ∗. The new Hamiltonian
will then invariant under the gauge transformations

fi,σ → eiθifi,σ ai,j → ai,j + θi − θj. (2.41)

Therefore, from first-order mean-field theory, the fermionic spinons quasiparticles interact
via an emergent gauge boson residing on the bonds (i,j) of a lattice. The particular
structure of the gauge fields is entirely dependent on the mean-field ansatz theory (Table
1). The gauge fields are described by a U(1) lattice theory if θ ∈ R, and represent the
degrees of freedom described by ai,j.87,88 Additionally, if θ = {0, π} we have a Z2 gauge
theory with parity symmetry. Since these symmetries are unphysical and arise due to the
Parton representation (2.21) of spins, the gauge invariance is also referred to as gauge
redundancy.8

Table 1 – Some examples of quantum spin liquids with their respective mean field theories,
and possible low energy physics and excitations. For more examples see SAVARY
et al7 and ZHOU et al.8

Mean Field Theory Low energy &
excitations

Superconductor HMFT = ∑
ij

(
f †
i fj + ∆ijf

†
i f

†
j + h.c.

) Topological QSL. Z2 QSL
Anyons, RVB

Semiconductor HMFT =
∑
i εif

†
i fi+

+
∑
ij

(
tije

iaij f †
i fj + h.c.

) U(1) QSL
Gapless photons

Semi-metal HMFT = ∑
ij

(
t̃ijf

†
i fj + h.c.

) U(1) QSL. Algebraic QSLs
Dirac Fermions

Metal HMFT = ∑
ij

(
tijf

†
i fj + h.c.

)
U(1) QSL. Spinon Fermi Surface

Source: Adapted from SAVARY et al.7

How legitimate is this scenario? Is the Parton construction a reliable theoretical
approach to described quantum spin liquids? We have seen that from zeroth order mean

∗ Amplitude fluctuations of mean field parameters are discarded since a finite energy gap makes
these fluctuations negligible for the physics describing the low-energy regime.
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field theory the ground state energy is not well described within the context of the
Heisenberg model, for example. One necessary extension is imposing the constraint in
(2.21) exactly at each site and projecting the initial mean field wave functions onto the
physical spin Hilbert space. This crucial step will still have remnants of the gauge invariance
generated by the Parton construction. The new and physical trial wave functions

Ψ(χij) ({σi}) = ⟨0|
∏
i

fiσi

∣∣∣Ψ(χij)
MFT

〉
(2.42)

generated by the Ansätze χij and χ̃ij connect by a gauge transformation

χ̃ij = χ̄i,je
−iai,j = eiθiχije

−iθj (2.43)

will generate the same projected spin state11

Ψ(χ̃ij) ({σi}) = ei
∑

i
θiΨ(χij) ({σi}) (2.44)

The gauge invariance, therefore, furnishes different labels, which are characterized by gauge
fluxes, to describe the same physical state∗. Consequently, at Section 2.3 we’ll consider
mean field Ansätze distinguished by gauge fluxes, and how a variational Monte Carlo is
capable of selecting the most representative for the physical spin liquid state by comparing
their respective ground state energies.

In an alternative scenario, more unbiased variational wave functions can be proposed
via tensor and neural-network quantum states90,91 - although to some extent they can still
be related to Parton constructions.92–94 Notwithstanding, projected wave functions within
the variational Monte Carlo perspective continue to be suitable and relevant descriptions
for QSLs, resonating valence bond (RVB) states, and even magnetic ordered phases.
Additionally, their direct relation to the Parton constructions favors the interpretation
of the physical theory describing these different states. A particular example of success
within this context is the exactly solvable model of a Kitaev QSL which is represented by
Majorana fermions.95

2.2.3 Metropolis-Hastings Algorithm and Quantum Variational Principle

The Variational Monte Carlo technique is a conjunction of the Quantum Varia-
tional principle and Monte Carlo methods to study mainly many-body correlated wave
functions.96,97 It is particularly interesting for extracting physical information such as the
GSE, spin-spin correlations, and more recently, even low-energy dynamical features of
spin-1/2 models such as the dynamical structure factor from a parton’s perspective.98,99

∗ This scenario can be directly connected to the idea of including magnetic fields in lattice
models via the Peierls substitution89 and one may find the description of gauge fluxes as
magnetic fluxes on the elementary plaquettes.
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Exact solutions to quantum many-body problems are given by the resolution of
the eigenvalue problem of the time-independent Schrödinger equation H |Ψ⟩ = E |Ψ⟩.
This task is practically unfeasible due to the exponential growth of the physical Hilbert
space for the degrees of freedom of a particular system. An alternative approach is to
consider relevant physical properties and symmetries that represent a class of trial wave
functions (Ansätze) {|ΨA1⟩ , |ΨA2⟩ , ... |ΨAn⟩} and select the one with the lowest energy
value correspondent to the ground state of the system. In the study of QSLs, for example,
we will study wave functions constructed upon the Parton Construction Ansätze. This
approach is validated by the quantum variational principle (or Rayleigh-Ritz method)75

which can be formulated by expanding the trial wave functions on the basis of eigenstates
|Ψn⟩, while observing that its energy EA must always be greater (or equal if the trial wave
function is an exact eigenstate of H) than the ground state energy E0:

EA =
∑
n

En
|⟨Ψn|ΨA⟩|2

⟨ΨA|ΨA⟩
= E0 +

∑
n̸=0

(En − E0)
|⟨Ψn|ΨA⟩|2

⟨ΨA|ΨA⟩
≥ E0. (2.45)

The definition of EA can be obtained by considering a residual state |ΦR⟩ = (H − EA) |ΨA⟩,
whose norm is different than zero if the trial wave function is not an exact eigenstate of H.
By minimizing the norm with respect to EA, the distance from the trial wave function
|ΨA⟩ to an exact eigenstate of H is reduced and we find from

∂ ⟨ΦR|ΦR⟩
∂EA

= ∂

∂EA

(
⟨ΨA|H2|ΨA⟩ − 2EA ⟨ΨA|H|ΨA⟩ + E2

A ⟨ΨA|ΨA⟩
)

= 0 (2.46)

that
EA = ⟨ΨA |H| ΨA⟩

⟨ΨA|ΨA⟩
. (2.47)

Obtaining a numerical evaluation of (2.47) is often challenging since for a generic operator
O we need to evaluate it with respect to all possible configurations |α⟩ and |β⟩ spanning
the physical Hilbert space. In this context the expected value of this operators should be
understood as

⟨O⟩ = ⟨ψ |O|ψ⟩
⟨ψ|ψ⟩

=
∑
αβ

⟨α |O| β⟩ ⟨ψ|α⟩ ⟨β|ψ⟩
⟨ψ|ψ⟩

. (2.48)

For a feasible computational calculation, we first rely on physical considerations based on
the specific considered model, which drastically reduce the space the possible configurations
is. If we are treating a Hubbard model at large U with half-filling condition, for example,
we must assure that the hoppings of electrons obey the Pauli’s Exclusion Principle.100

Additionally, we can reinterpret equation (2.48) in

⟨O⟩ =
∑
α

∑
β

⟨α |O| β⟩ ⟨β|ψ⟩
⟨α|ψ⟩

 |⟨α|ψ⟩|2

⟨ψ|ψ⟩
=
∑
α

f (α) p (α) , (2.49)

as a statistical average of a local operator

f (α) =
∑

β

⟨α |O| β⟩ ⟨β|ψ⟩
⟨α|ψ⟩

 (2.50)
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over the probability distribution

p (α) = |⟨α|ψ⟩|2

⟨ψ|ψ⟩
≥ 0 which obeys

∑
α

p (α) = 1. (2.51)

These physical configurations are then generated via a MC Sampling,101 upon which
a MC weighting factor from going to a configuration α to another α′ is given by the
Metropolis-Hastings Algorithm102,103

T (α → α′) = min
[
1, p (α′)
p (α)

]
=


p(α′)
p(α)

1

, p(α′)
p(α) < 1

, p(α′)
p(α) > 1

, (2.52)

i.e., the new configuration is accepted in the second case if it is probabilistic more favorable
- the energy of the new configuration is smaller. If this is not the case, the new configuration
can still be accepted, and detailed balance is respected.101

We also note the convenience of this expression since the norm factors ⟨ψ|ψ⟩, which
are computationally demanding - of order O (N3) -, are canceled identically. The idea
is then to have a random walk over all states in the configuration space of the physical
model, where each state α has a statistical weight p (α) associated. This process generates
a Markov Chain101 of configurations which tends to an equilibrium statistical distribution
after a sufficient time (known as thermalization time). Therefore, at each MC step we
generate a new configuration of the system in order to form a sample {α1, α2, . . . , αNMC

}
of configurations for NMC steps. The expected value for an operator is then given by

⟨O⟩ = 1
NMC

NMC∑
i=1

f (αi) . (2.53)

Since the number of accessible states is not infinite in a practical situation, after the
system has reached the equilibrium we can divide the MC steps into different bins Nb and
calculate an average for each one of them. The estimator of the operator ⟨O⟩ will then by
given by

⟨O⟩ = 1
Nb

Nb∑
l=1

⟨O⟩l , (2.54)

with a statistical error determined by the standard deviation formula

δO =

√√√√ 1
Nb − 1

Nb∑
l=1

(⟨O⟩ − ⟨O⟩l)
2. (2.55)

As final remarks, we reinforce the result (2.47) to observe that the variational
calculations are made based on an energy minimization procedure. In this manner, other
observables obtained via this method may be less precise. Additionally, if one considers
an exact eigenstate as a trial wave function, the variance related to the GSE observable
at equation (2.54) will be close to zero, as we shall see on Appendix B when considering
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Gutzwiller Projected wave functions for the Haldane-Shastry model, for example. Finally,
we have not addressed the dependence of the trial wave functions on explicit variational
parameters. Intuitively, these can be evaluated and determined on a classical parameter
minimization problem - this approach is adopted in Chapter 4, for example. More im-
portantly, this can be done automatically in the VMC algorithm by using the Stochastic
Reconfiguration technique,104,105 which is an important aspect that will be investigated in
future work.

2.2.4 Gutzwiller Projected Wave Functions and Slater Determinant Ansätze

Figure 9 – Pictorial representation of the Gutzwiller projector (2.56) excluding states that
do not obey the constraint in (2.21).

Source: By the author.

How do we effectively describe the trial wave functions? We are interested in
answering this question in the context of strongly-correlated systems, and more specifically,
for QSLs. We can get a first insight by using MFTs based on the Parton construction
and later on imposing a physical condition over the states with the Gutzwiller projection
operator100,106P̂G,

|ψT ⟩ = P̂G |ψMFT ⟩ =
∏
i

(ni↑ − ni↓)2 |ψMFT ⟩ , (2.56)

which in this case eliminates states from the enlarged Hilbert space that do not obey the
no-double occupancy physical constraint (2.21)∗. This projection is imposed exactly in the
VMC by constructing the initial configuration with equal number of spins up and down.
Our VMC dynamics exchanges opposite spins at arbitrary sites thus preserving the state

∗ Additionally, the enlargement of the Hilbert space brings gauge freedom for describing the
variational states that represent spin liquids, as explained in Section 2.2.2 - see Fig. 9. A
complete classification of all possible Ansätze describing QSLs which respects lattice symmetries
(and additional symmetries present in the considered model - such as SU(2), for example) can
be found within the Projective Symmetry Group (PSG)11,25,107 approach.
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with ni = 1. In this context, the Variational Monte Carlo in conjunction with projected
wave functions can describe physically motivated Ansätze for spin liquid states, valence
bond solids, and even magnetic ordered phases (Subsection 2.2.5).

A first numerical implementation of fermionic wave functions can be built from a
filled Fermi sea with N spinons distributed equally in both spin flavors as

|ψ⟩ =
∏
σ=↑↓

N/2∏
k=1

f †
kσ |0⟩ . (2.57)

Since the spin number is conserved, this can be rewritten in real space as a product of
Slater determinants of size N/2 ×N/2 as

ψk1,...,kL
(x1, . . . ,xL) = detψ (k, r) = detAα,↑ detAα,↓ =

=

∣∣∣∣∣∣∣∣∣
exp(ik1r1,↑) . . . exp

(
ik1r N

2 ,↑

)
... . . . ...

exp
(
ik N

2
r1,↑

)
. . . exp

(
ik N

2
r N

2 ,↑

)
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
exp(ik1r1,↓) . . . exp

(
ik1r N

2 ,↓

)
... . . . ...

exp
(
ik N

2
r1,↓

)
. . . exp

(
ik N

2
r N

2 ,↓

)
∣∣∣∣∣∣∣∣∣ ,

(2.58)

with each element of the matrix being analytically represented in a free-fermion form
ψσ (ki, rj) = exp ikirjσ for a spinon with spin σ, j-th position and i-th wavevector. We
consider periodic, antiperiodic, or mixed boundary conditions for the mean-field theory.
The latter, for example, have been shown to improve numerical convergence in previous
studies.5,108,109

Different configurations α and β differ essentially by the interchange of two spinons
with different σ, such that Aα ̸= Aβ by one column in our convention. This is essentially
how the MC updates are performed in the numerical implementation. We then randomly
place each spinon’s spin flavor on N/2 sites of our lattice. The Monte Carlo moves consist
of exchanging a random pair of sites containing distinct spin flavors. Exchanges with
sites far away are also permitted - even though they would not be accessed directly via
the Hamiltonian - to improve the sampling over the space of configurations. Therefore,
the MC updates are implemented in the matrix of configurations via a transformation
A → A + uvT , where:

• If u = ei ⇒ A → A + eiv
T (we add the components of v to the ith row);

• If v = ej ⇒ A → A + uej (we add the components of v to the jth column);

• If u = ei and v = ej ⇒ A → A + eiej (we only add a term to the aij element of A),

with u =


u1
...
un

 and vT =
(
v1 . . . vn

)
.
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If we know the square matrix of configurations A and its inverse A−1, after the
transformation described above, we can implement the Sherman-Morrison formula and
the Matrix determinant Lemma to calculate

(
A + uvT

)−1
= B−1 = A−1 − A−1uvTA−1

1 + vTA−1v
(2.59)

and the determinant

det
(
A + uvT

)
= detB =

(
1 + vTA−1u

)
detA (2.60)

more efficiently. The Sherman-Morrison formula demands operations of O (N2) instead
of calculating the determinant directly wich is of order O (N3),110 for example. The
correspondent proofs for the Formula and Lemma can be found in the Appendix A.

Algorithm 3 Variational Monte Carlo

1. Start with a random configuration in Aα, with n↑ = n↓ in random positions. Store
both inverse matrices and save a backup of each initial configuration.

2. Select a new configuration by randomly exchanging the position of two opposite
spins. If the new spin is in the k-th column

detAβ =
(
1 + eTkA−1

α uk
)

detAα (2.61)

and
A−1
β = A−1

α − A−1
α uke

T
kA−1

α

1 + eTkA−1
α uk

, (2.62)

with ui = [Aβ]ik − [Aα]ik.

3. Accept or reject the new configuration by the Metropolis rule

T (α → β) = min
[
1, p (β)
p (α)

]
=


p(β)
p(α)

1
, p(β)
p(α) < 1

, p(β)
p(α) ≥ 1

. (2.63)

where p(β)
p(α) = |⟨β|ψ⟩|2

|⟨α|ψ⟩|2 =
∣∣∣detAβ

detAα

∣∣∣2 =
(
1 + ukA−1

α eTk
) (

1 + ukA−1
α eTk

)∗
. This equation only

states a minimization of energy. To properly introduce a Metropolis Algorithm one
should sort a random number r ∈ [0, 1]: if r < p (β) /p (α) the new configuration can
still be accepted. Otherwise, if r ≥ p (β) /p (α), the old configuration is maintained.

4. Go back to step 2 and repeat the algorithm for the desired MC sweeps (one MC
sweep is equivalent to N spin exchange attempts).

The pseudo-code for the first implementation of the VMC at Algorithm 3 describes
the procedure to reach the equilibration time once the MC steps are completed. After
equilibration, measurements of physical observables can be taken. Our interest will be
mainly on the GSE of the system and the spin-spin correlations. We must be cautious with
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the order of operators since the configuration matrices are divided in a product of two sub-
matrices for each spin. At equation (2.29), we consider then f †

i↑fi↓f
†
j↓fj↑ = −f †

i↑fj↑f
†
j↓fi↓,

for example. From equation (2.57) this means that we first fill N/2 states with spin up
and then complete the remaining with down spins. The non-local contribution to the GSE
comes from x-y components of S,

⟨HNL⟩ =
∑
β

⟨α |HNL| β⟩ ⟨β|ψ⟩
⟨α|ψ⟩

= −1
2
∑
i

∑
β

detA(i)
β

detA(i)
α

, (2.64)

where
HNL = −1

4
∑
<i,j>

Ji,j
(
f †
i↑fj↑f

†
j↓fi↓ + h.c.

)
(2.65)

and |β⟩ and |α⟩ = c†
r1↑c

†
r2↑ . . . c

†
rN/2↑c

†
r1↓c

†
r2↓ . . . c

†
rN/2↓ |0⟩ differ by the exchange |↑, ri⟩ →

|↓, rj⟩ with j a next neighbor with opposite spin. Additionally, the local contributions for
the GSE and spin-spin correlations comes both from the z-component of the Hamiltonian
as

EL = 1
4
∑
<i,j>

(ni↑ − ni↓) (nj↑ − nj↓) , (2.66)

and
⟨Sz0Szi ⟩ = ⟨(n0↑ − n0↓) (ni↑ − ni↓)⟩ = 1

4 (2n0↑ − 1) (2ni↑ − 1) . (2.67)

Another important benchmark for SU(2) symmetric models is to calculate the GSE from
local contributions by observing that each statistical mean for x, y and z components
contributes as

E = 3
4
∑
i,j

(2ni↑ − 1) (2nj↑ − 1) . (2.68)

This is not true if SU(2) is a broken symmetry at the ground state, as in the Ansätze
based on SDW wave functions (Subsection 2.2.5), for example. It is also clear that this
result is only exact at N → ∞, therefore, numerical error increases as the system sizes are
decreased.

2.2.5 SDW wave functions and ordered phases

It is possible to extend our projected wave functions to include a class of Ansätze
responsible for allowing the investigation of the stability of QSLs towards ordered phases.
This is achieved by constructing the Ansätze with the Hamiltonian

HMFT =
∑

(i,j),α
χijf

†
iαfjα + h

∑
i

mi · Si, (2.69)

which includes the previously explored hoppings between Abrikosov fermions and an
additional Zeeman field responsible for the investigation of the stability of the QSLs
towards ordered phases.111 The class of variational Ansätze generated in this formalism
will enable us to consider the influence of the ordered phases on the CSL with the inclusion
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of quantum fluctuations in Chapter 4. The spatial periodicity of the magnetic field is fixed
by mi, which may consist as a numerical output from classical minimization or direct
parameterization of classical ordered phases. Additionally, the amplitude of the magnetic
field is controlled by the parameter h.

The variational states are then obtained from a numerical diagonalization of the
2N × 2N matrix for systems of size N . This procedure is done by first representing the
diagonalized Hamiltonian (2.69) with the introduction of a unitary vector |mi| = 1, given
by

hi = hmi = h

(
mi

+ +m−
i

2 ,
mi

+ −m−
i

2i ,mz
i

)
(2.70)

and the ladder operators m
+
i ≡ mx

i + imy
i

m−
i ≡ mx

i − imy
i

(2.71)

as
HMFT = −h

2
∑
i

mz
i

(
f †
i↑fi↑ − f †

i↓fi↓
)

−
∑
ij,σ

χijf
†
iσfjσ+

− h

2
∑
i

m+
i f

†
i↓fi↑ + h

2
∑
i

m+
i f

†
i↓fi↑.

(2.72)

This can be further represented in a block diagonal form as

HMFT =
∑

k

ψ†
kHψk (2.73)

with

H =
A↑↑ C↑↓

D↓↑ B↓↓

 ,

A↑↑ =



−hmz
i

2 −χ12 . . . χ1N

−χ∗
12 −hmz

2
2 . . .

...
... ... . . . ...

−χ∗
1N . . . . . . −hmz

N

2

 , B↓↓ =



hmz
i

2 −χ12 . . . χ1N

−χ∗
12

hmz
2

2 . . .
...

... ... . . . ...
−χ∗

1N . . . . . .
hmz

N

2

 ,

C↑↓ =



−hm−
i

2 0 . . . 0

0 −hm−
2

2 . . .
...

...
... . . . ...

0 . . . . . . −hm−
N

2


, and D↓↑ =



−hm+
i

2 0 . . . 0

0 −hm+
2

2 . . .
...

...
... . . . ...

0 . . . . . . −hm+
N

2


. (2.74)

Because spin is no longer a good quantum number, after numerically diagonalizing H2N×2N ,
the eigenvectors chosen for the physical Ansätze will be given by the N eigenvectors with
smallest eigenvalues from the spinor

ψ† =
(
f †

1↑ f †
2↑ . . . f †

N↑ f †
1↓ f †

2↓ . . . f †
N↓

)
. (2.75)
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The numerical diagonalization can also be interpreted as the application of a unitary
transformation U on the self-adjoint Hamiltonian HMFT ,

HSDW = Ψ†WΨ (2.76)

where
W = U†HU; UU† = U†U = 1; Ψ† = ψ†U. (2.77)

This unitary matrix is now doubled in size in comparison with our previous Ansätze used
in the Subsection 2.2.4, and from its initial form

U2N×2N =


⟨r1|ϕ1⟩ . . . ⟨r1|ϕ2N⟩

... . . . ...
⟨r2N |ϕ1⟩ . . . ⟨r2N |ϕ2N⟩

 (2.78)

the first N eigenfunctions can be chosen and subsequently divided in equal amounts of
spin up and down in our final eigenfunction matrix. Subsequently, the Slater determinant
ansatz for both fermionic spin flavors is given by

Φ [{rjα}] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨r1↑|ϕ1⟩ . . . ⟨r1↑|ϕN⟩
... . . . ...

⟨r N
2 ↑|ϕN⟩ . . . ⟨r N

2 ↑|ϕN⟩
⟨r1↓|ϕ1⟩ . . . ⟨r1↓|ϕN⟩

... . . . ...
⟨r N

2 ↓|ϕ1⟩ . . . ⟨r N
2 ↓|ϕN⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.79)

Here, ϕj are the eigenstates of HMF and they are projected at the spinon positions. Conse-
quently, the usual hopping term of f †

iσfjσ needs two row exchanges from the eigenfunction
main matrix W to the original complete eigenfunction matrix U, in order to preserve the
conditions of equal number of spinons with spin up and down, and one spinon per site.
The probability of each exchange in MC steps is then proportional to the weight

p{rjα} ∝ |Φ [{rjα}]|2 (2.80)

of the wavefunction described by equation (2.79). Finally, the ground state wave function
Ansätze are then given by the physical states

|Ψphys⟩ = P̂G

N∑
i=1

ψ†
i |0⟩ = P̂G |ΨMFT ⟩ , (2.81)

with P̂g = ∏
i (ni↑ − ni↓)2 being the usual Gutzwiller projection.

2.3 Numerical Benchmarks for AFM S=1/2 Heisenberg models

2.3.0.1 Spin Chain

We begin our numerical studies by considering the one-dimensional AFM S=1/2
spin chain described by the Heisenberg Hamiltonian. We employ the Variational Monte



2.3 Numerical Benchmarks for AFM S=1/2 Heisenberg models 53

Carlo in conjunction with the Parton Construction described in the previous Sections
with a Gutzwiller Projected trial wave function (GPW). The exact result for the ground
state energy Eexact/ (JN) = −0.443147 is remarkably close to the one found for the GPW,
EGPW/ (JN) = −0.442118, in the literature.100 From Table 2, the energies found by the
VMC code clearly converge to E/ (JN) ≈ −0.4421 as the number of spins N is increased,
indicating that the main structure of the algorithm is reliable. The exact z component of

Figure 10 – Dependence of the zth component of spin-spin correlations with the distance
between spins. The dashed black curves indicate the expected asymptotic
value from equation (2.82). The red dots represent the data obtained for
N = 512 in the VMC with a GPW ansatz. Errors bars are smaller than the
markers.

Source: By the author.

the spin-spin correlations for the GPW decays algebraically as the asymptotic expression
(2.40) for the Heisenberg model, is given by,112

〈
Sz0S

z
j

〉
=

〈
ψGPW

∣∣∣Sz0Szj ∣∣∣ψGPW〉
⟨ψGPW |ψGPW ⟩

= Si (πj)
4π

(−1)j

j
, j > 0, (2.82)

where Si (x) =
∫ x

0 dy
sin y
y

; the asymptotic expression of this expression for n ≫ 1 is given

by
〈
Sz0S

z
j

〉
≃
[

(−1)j

8j

]
. It is important to remark that the exponent is now corrected in

contrast with (2.39). A comparison with this exact result was done for different numbers
of spins and the results for N = 512 are shown at Figure 10. Since the Variational Monte
Carlo is based on a minimization of the GSE, the spin-spin correlations may take more
time to converge accurately.
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Table 2 – Ground state energy for the S=1/2 AFM spin chain using the GPW. The
ground state energy was calculated for both non local + local energy terms (NL)
and only local terms (L) by exploiting the SU(2) invariance of the model. The
data was obtained with 2, 0 × 104 MC sweeps discarded for thermalization, and
1, 0 × 105 MC sweeps for average, divided into 100 bins. Numbers in parenthesis
indicate the standard deviation with respect to the last digit.

N E/JN (NL) E/JN (L)

32 −0.44303 (5) −0.4435 (4)
64 −0.44232 (5) −0.4418 (4)
96 −0.44219 (5) −0.4423 (3)
128 −0.44213 (5) −0.4419 (3)
256 −0.44212 (5) −0.4405 (3)
512 −0.44211 (4) −0.4410 (3)

Source: By the author.

It is important to remark that more precise results for the observables can be
achieved by increasing the number of spins, as well as the quantity of measurements
averaged after complete thermalization in the Monte Carlo algorithm. This can be un-
derstood from Figure 11 since the data fluctuations diminish with an increasing chain
length, whereas a single spin flip can be a considerable modification for the GSE for smaller
lengths. In this context, the thermalization time also increases with the system size.

Figure 11 – Monte Carlo evolution of the GSE observable for the GPW as a function of
MC steps for different system sizes. The data was obtained by an average
of 50 different experiments (random seeds) for each system size. The MC
Steps necessary for the convergence of the observable is understood as a
thermalization time.

Source: By the author.
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2.3.0.2 Kagome Lattice

The Kagome lattice presents itself as a paradigmatic case where frustrated mag-
netism can arise due to the corner-sharing triangles.8,113 Novel phases appear due to this
geometrical frustration, and we shall explore how some of them in this Subsection. Specifi-
cally, we study the S = 1/2 AFM Heisenberg model with next-neighbor couplings. There
is good evidence that the ground state is described by a U(1) QSL.4,8, 16 The following
results and discussions will be essential to the study of the CSL in Chapter 4.

• Tight-Binding Solution

A good starting point is solving the tight binding problem on the Kagome lattice, since the
technical procedure is analogous for the MFT of the 0-Flux state spin liquid candidate. The
position of each atom in the lattice is determined from equations (2.2), and the momentum
vectors in the reciprocal lattice can be defined from equation (2.6). For this configuration,
we employ a tight binding model with electron hoppings between first-neighbors such that
there is only one orbital on each site via the Hamiltonian

H = t
∑
⟨i,j⟩

{
A†
iBj + A†

iCj +B†
iCj + h.c.

}
, (2.83)

where A†
i (Ai) represents a fermionic creation (destruction) operator of an electron in site

i of the sublattice A (see Figure 4). The same reasoning applies to the operators B†
i (Bi)

and C†
i (Ci) for electrons in the sublattices B and C. This can be further rewritten with

the first-neighbor lattice vectors as

H = t
∑
ri

{(
A†

ri
Bri+δ1 + A†

ri
Bri−δ1

)
+
(
A†

ri
Cri+δ2+

+A†
ri
Cri−δ2

)
+
(
B†

ri
Cri+δ3 +B†

ri
Cri−δ3

)
+ h.c.

}
.

(2.84)

Due to Bloch’s theorem, we can represent this Hamiltonian in the reciprocal space with
the Fourier transforms of the physical operators such that

H = t
∑
k,k′

 1
Ns

∑
j

exp i (k′ − k) · rj

{(A†
kBk′ +B†

kAk′

)
2 cos (k · δ1) +

+
(
C†

kAk′ + A†
kCk′

)
2 cos (k · δ2) +

(
B†

kCk′ + C†
kBk′

)
2 cos (k · δ3)

}
.

(2.85)

The Hamiltonian can then be cast into a matrix form as

H = t
∑

k

(
A†

k B†
k C†

k

)
0 2 cos (κ1) 2 cos (κ2)

2 cos (κ1) 0 2 cos (κ3)
2 cos (κ2) 2 cos (κ3) 0



Ak

Bk

Ck

 =
∑

k
ψ†

kHψk, (2.86)

where κj = k · δj for j = 1, 2, 3, and the characteristic polynomial det (λI − H) =
λ3 − 2t1t2t3 − (t21 + t22 + t23)λ is determined with tj = 2t cosκj. Using Λ (k) = cos k · a1 +
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Figure 12 – Electronic band structure for the Kagome Lattice with and negative hopping
parameters t (a). The Fermi energy level Ef = 0 is indicated with the green
dashed lines. The corresponding path along high-symmetry lines of the BZ is
also presented (b).

Source: By the author.

cos k · a2 + cos k · a3 and the relations
∏3
i=1 ti = 2t3 (1 + Λ (k))∑3
i=1 t

2
i = 2t2 (3 + Λ (k))

, (2.87)

the characteristic polynomial can be cast into a more convenient form of P (λ) =
(λ+ 2t)

[
(λ− t)2 − t2 (3 + 2Λ (k))

]
. Consequently, the energy spectrum can be finally

obtained as being composed by two dispersive bands and one special flat band E± (k) = t
(
1 ±

√
3 + 2Λ (k)

)
Eflat = −2t

. (2.88)

The dependence of the energy spectrum on special points of the reciprocal lattice can be
seen at Figure 12, where the Dirac nodes are evident at points K and K ′. The flat band
at E = −2t - responsible for a massive degeneracy on the energy spectrum - is unstable
with respect to longer range hoppings.113 Nevertheless, this massive degeneracy is still
representative to the difficult task of finding the true ground state in effective models
for this geometrical configuration,8 and some reminiscences may be present on MFTs for
QSLs as we shall see in the following discussion.

• 0−Flux ansatz

As in the Square Lattice MFT solution for QSLs, the 0 − Flux state is related to
the Tight-binding Solution as well on the Kagome Lattice. Following the equation (2.32)
and the correspondence of t → −Jχ, the energy spectrum can be determined naturally
from (2.88) as  E0

± (k) = −Jχ
(
1 ±

√
3 + 2Λ (k)

)
E0

flat = +2Jχ
. (2.89)
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Figure 13 – Six-site unit-cell configuration for the π−Flux ansatz for the Heisenberg model
on the Kagome lattice. The π flux is imposed on the elementary hexagons
and the 0 Flux on triangles. The solid black lines represent χij = −1 and the
gray lines χij = 1. From the doubled unit cell (blue parallelogram) a1 → 2a1.

Source: By the author.

• π − Flux ansatz

In the case of the π − Flux ansatz we have a more intricate situation. This flux is
understood as being contained on the hexagons of a new doubled unit cell while being
absent on the triangles (Figure 13). Therefore, all χij at equation (2.32) have the same
magnitude and the expression can be adapted as

HMF = −Jχ

2
∑
r,σ

[
f †

r,σfr±a2,σ
+ f †

r±a2,σfr,σ + f †
r,σfr±a1,σ

+

+f †
r±a1,σfr,σ + f †

r,σfr±a3,σ
+ f †

r±a3,σfr,σ

]
.

(2.90)

This Hamiltonian, which is divided into contributions for each sub-lattice A,B and C, can
be diagonalized by doubling the unit cell to accommodate the gauge flux patterns. For
this, we consider the position of each atom in the six-site unit-cell (Figure 13) as being
given by R = 2n1a1 + n2a2 for n1 and n2 integers. The Hamiltonian can then be rewritten
with this new notation as

HMF = −Jχ

2
∑ ′

R,σ

[
f †

R,σ,1

(
fR,σ,2 + fR,σ,3

)
+ f †

R,σ,2

(
fR,σ,3 − fR,σ,4

)
+

+f †
R,σ,3

(
−fR+a2,σ,1 − fR+a3,σ,5

)
+ f †

R,σ,4

(
fR,σ,5 + fR+a1,σ,6

)
+

+f †
R,σ,5

(
fR,σ,6 + fR+a1,σ,1

)
+ f †

R,σ,6

(
fR+a2,σ,4 − fR+a2,σ,2

)
+ h.c.

]
,

(2.91)

noticing that the Hermitian conjugated terms also change the sign of r ± ai → r ∓ ai, with
the prime symbol indicating that the unit cell is now doubled in the horizontal direction.
In the momentum space this Hamiltonian can be understood as

HMF = −Jχ

2
∑

F†MF, (2.92)
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with

−M =



0 1 (1 − K∗
2 ) 0 K∗

1 0
1 0 1 −1 0 −K∗

2
(1 − K2) 1 0 0 −K∗

1K2 0
0 −1 0 0 1 (1 + K∗

2 )
K1 0 −K1K∗

2 1 0 1
0 −K2 0 (1 + K2) 1 0


, F =



fk,σ,1

fk,σ,2

fk,σ,3

fk,σ,4

fk,σ,5

fk,σ,6


, (2.93)

K1 = exp (2ik · a1) and K2 = exp (ik · a2). Importantly, enlarging the mean-field unit-cell
does not break the translation symmetry of the lattice after the Gutzwiller projection.
This is because the fluxes are gauged out thus preserving all symmetries of the problem as
it is necessary in a true spin liquid state [(2.41)-(2.44)].

The diagonalized numerical spectrum obtained has two degenerate flat bands +2t
reminiscent of the tight-binding solution (Figure 12), and the other branches meet at the
Dirac points ±KD =

(
0, π√

3a

)
. The Fermi energy in this case is given by EF = t

(√
3 − 1

)
- see Figure 14. Additionally, the presence of particle-hole symmetry and Dirac cones in
the spectrum are distinctive characteristics of this ansatz. The diagonalization problem
was solved with the “hopping parameter” Jχ > 0, although it can be shown that there
is no physical distinction for the Jχ < 0 case even in the effective theory for low-energy
excitations near the Dirac points.5

• VMC results for U(1) Dirac spin liquids

The possibility of the Kagome Lattice geometry to host a spin liquid state is
better exemplified in the context of the mineral herbertsmithite, ZnCu3 (OH)6 Cl2. Both
experimental16 and theoretical work8,114 have found evidence that supports the proposal
of a gapless U(1) Dirac spin liquid state description for the ground state of this material.
Specifically, a previous Variational Monte Carlo study4 found the ground state energies
of E0 ≈ −0.4121 and Eπ ≈ −0.42863 for the 0 and π flux states, respectively,8 in
a N = 12 × 12 × 3 lattice using the GPW. They have also found that the specific
π − Flux ansatz has the best variational energy and that it is also locally stable against
small perturbations, such that a transition to valence bond solid ordering or other chiral
spin-liquid states proposed before115 are not energetically favorable. These results were
remarkably close to previous estimates from other methods such as exact diagonalization,
with E/J = −0.43, and further numerical results suggested that indeed the U(1)-Dirac
spin liquid state is a good candidate for describing the low-energy physics of the mineral
herbertsmithite.8,62,116

In this context, we have implemented a VMC study of the AFM Heisenberg model
with first-neighbors on the Kagome Lattice, with a GPW representing the 0 and π flux
states presented in the previous MFT discussion. From Table 3 it can be seen that the



2.3 Numerical Benchmarks for AFM S=1/2 Heisenberg models 59

0 1 2 3 4 5 6

ky

−3

−2

−1

0

1

2
E

(k
y
)
/J
χ

EF

Figure 14 – Electronic band structure for the U(1)-Dirac state for Jχ > 0, kx = 0 and
ky ∈ [0, 6] in a N = 50 × 50 × 3 Kagome lattice. The intersection points
with the Fermi energy EF/Jχ =

√
3 − 1 are given by k1 =

(
0, π√

3

)
and

k2 =
(
0, π

√
3
)
. The flat band is doubly degenerate while the remaining four

are nondegenerate.
Source: By the author.

GSEs converge to the values of Eπ = −0.428 and E0 ≈ −0.412, which are in agreement
with the previously mentioned works up to the numerical precision of our implementation
of the VMC. The studies were performed with a lattice of size L2 = L×L×3 with 3 atoms
per unit cell. For the 0 − Flux ansatz the algorithm can get stuck in local energy minima
that do not correspond to the GSE expected values. This may occur due to the massive
degeneracy that arises from filling the nodal states (the ones located at the Fermi Energy -
see Figure 14) in the mean-field Hamiltonian if they are present in the initial trial wave
function.5 Different numerical experiments should be performed in this situation. There are
four possibilities for the lattice boundary conditions: open (OBC), antiperiodic (APBC),
periodic (PBC), and mixed (MBC), with the latter being an implementation of periodic
boundary conditions on the x direction and anti-periodic on the y direction (or vice-versa).
These are the only boundary conditions that do not introduce spurious fluxes. The MBC
has been reported to lift the degeneracy of the mean-field ground state for different VMC
studies5 and, consequently, they offer a better convergence for the algorithm.108,109 From a
technical point of view, it should be noted that APBC introduce undesired global π fluxes
which slow the convergence of the algorithm.5 Therefore, we considered only MBC for the
VMC studies of these Ansätze.
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Table 3 – Ground state energy for the Heisenberg AFM model in a Kagome lattice using
the GPW for the 0 (a) and π (b) flux Ansätze using PBC. The results for
MBC were also consistent with the expected result. The data was obtained with
2, 0 × 105 MC sweeps discarded for thermalization, and 1, 0 × 105 MC sweeps
for average, divided into 100 bins.

N = 3 × L2 E/JL2
(NL) E/JL2

(L)

48 −0.4108 (1) −0.4109 (2)
108 −0.4128 (2) −0.4125 (4)
192 −0.4120 (2) −0.4118 (3)

(a) 0 − Flux ansatz.

N = 3 × L2 E/JL2
(NL) E/JL2

(L)

48 −0.4215 (3) −0.4214 (6)
192 −0.4274 (2) −0.4276 (4)
432 −0.4283 (1) −0.4285 (4)

(b) π − Flux ansatz.

Source: By the author.

• VMC Results for chiral Ansätze

Two additional MFT chiral Ansätze were studied within our VMC implementation
for the Heisenberg model on the Kagome Lattice. These consisted on a flux of θ = π/2 on
up triangles as well as its staggered version of +(−)π/2 on up (down) triangles (Figure 15).
The results presented in Table 4 agree with the published values E[±π/2,0] ≈ −0.3910 (1)
and E[π/2,0] ≈ −0.4010 (1).4,5

Table 4 – GSE for a GPW representing the chiral spin liquid candidates SL−
[
±π

2 , 0
]

(a)
SL−

[
π
2 , 0

]
(b) using MBC. The data was obtained with 2, 0 × 105 MC sweeps

discarded for thermalization, and 2, 0 × 105 MC sweeps for average, divided into
100 bins.

N = 3 × L2 E/JL2
(NL) E/JL2

(L)

48 −0.3921 (2) −0.3923 (2)
192 −0.3910 (4) −0.3911 (2)
432 −0.3912 (3) −0.3912 (1)

(a) QSL − [±π/2, 0] ansatz.

N = 3 × L2 E/JL2
(NL) E/JL2

(L)

48 −0.4010 (3) −0.4007 (3)
192 −0.4010 (4) −0.4009 (2)
432 −0.4011 (3) −0.4012 (2)

(b) QSL − [π/2, 0] ansatz.

Source: By the author.

• Chirality implementation

Inspired from the work of Kalmeyer and Laughlin in 1987,26 a mechanism to
introduce uniform chiral spin liquids in the absence of external magnetic fields was
explored on the kagome lattice recently.29,42 This state breaks both mirror and time-
reversal symmetry explicitly while preserving the SU (2) symmetry. It can be introduced
by adding to the physical Hamiltonian the expectation value of the scalar spin chirality
Jχχ̂ijk = JχSi · (Sj × Sk), with Jχ being responsible for establishing a uniform or staggered
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Figure 15 – Pictorial representation of gauge fluxes passing through the triangles to
reproduce the Ansätze SL-

[
π
2 , 0

]
and SL-

[
±π

2 , 0
]
, respectively.4,5 (a) For the

uniform chiral ansatz SL-
[
π
2 , 0

]
, it is necessary to consider a doubled unit cell.

This is done by imposing χij = (+) − i for bonds on (anti)clockwise direction.
The signals inside the hexagons illustrate that the overall flux is zero. One
can interpret the dashed bonds as defect antiflux tubes passing through the
triangles, maintaining the chiral phase invariant while canceling the background
flux on the hexagons.6 (b) The staggered chiral ansatz SL-

[
±π

2 , 0
]

can be
implemented by imposing the same convention for χij. The arrow directions
provide the hopping orientation.

Source: By the author.

CSL. Therefore, a necessary condition for the appearance of a CSL is the absence of long-
range magnetic order and an explicit nonzero expectation value of the chirality interaction
⟨χijk⟩.117 As discussed in the Introduction, the numerical implementation of the chirality
is a fundamental block for our comprehension of the CSL proposed recently.12 Therefore,
in this subsection, we discuss important aspects of how to implement chirality within our
VMC.

The chiral interaction term is based on

E123 = S1 (ri) · [S2 (rj) × S3 (rk)] = i

4
[
f †

3 (rk) f1 (ri) f †
1 (ri) f2 (rj) f †

2 (rj) f3 (rk) − h.c.
]

(2.94)

and can be rewritten in a convenient form for the VMC using number operators as

ENL
χ = i

4
[
f †

2↑f3↑f
†
3↓f2↓ (n1↓ − n1↑) + f †

3↑f2↑f
†
2↓f3↓ (n1↑ − n1↓)

]
+

+
[
f †

3↑f1↑f
†
1↓f3↓ (n2↓ − n2↑) + f †

1↑f3↑f
†
3↓f1↓ (n2↑ − n2↓)

]
+

+
[
f †

1↑f2↑f
†
2↓f1↓ (n3↓ − n3↑) + f †

2↑f1↑f
†
1↓f2↓ (n3↑ − n3↓)

]
.

(2.95)

Additionally, this can also be cast in a more concise shape using the Levi-Civita symbol
εijk:

ENL
χ = i

4

3∑
i ̸=j ̸=k

εijkf
†
i↑fj↑f

†
j↓fi↓ (nk↓ − nk↑) . (2.96)
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Due to the permutation nature of the chirality relation (2.94), we can have a direct
diagrammatic representation of each energy exchange for all possible non-trivial spin
configurations (these are shown in Table 5 and further details can be found in the
Appendix D).

The numerical subroutine to calculate the chiral energy (after the thermalization
time) is based on selecting the current spin configuration in an elementary triangle, and
then choosing the correspondent virtual exchanges.118 This can be implemented with
conditional cases labeled by the index of spins in the considered triangle (first column in
Table 5). The process is then repeated for all triangles on the lattice.

Table 5 – Correspondence between the spin configuration and possible virtual exchanges
for the chiral interaction (diagrams and analytical form). Labels are related with
the spin in our VMC: 0 for ↓ and 1 for ↑.

Label Initial Configuration Final Configuration Fermionic Representation

010
i
4

{
f †

1↑f2↑f †
2↓f1↓n3↓+

−f †
3↑f2↑f †

2↓f3↓n1↓
}

001
i
4

{
f †

2↑f3↑f †
3↓f2↓n1↓+

−f †
1↑f3↑f †

3↓f1↓n2↓
}

100
i
4

{
f †

3↑f1↑f †
1↓f3↓n2↓+

−f †
2↑f1↑f †

1↓f2↓n3↓
}

101
i
4

{
f †

2↑f1↑f †
1↓f2↓n3↑+

−f †
2↑f3↑f †

3↓f2↓n1↑
}

110
i
4

{
f †

3↑f2↑f †
2↓f3↓n1↑+

−f †
3↑f1↑f †

1↓f3↓n2↑
}

011
i
4

{
f †

1↑f3↑f †
3↓f1↓n2↑+

−f †
1↑f2↑f †

2↓f1↓n3↑
}

Source: By the author.

To test our chirality implementation, we reconsider both the uniform and staggered
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chiral spin liquid Ansätze∗. The expected value of the chirality per triangle is presented
in Table 6. For both cases we considered MBC to have a proper degeneracy lifting. As
the system size is increased, the imaginary part of the chirality tends to zero (up to the
precision of our implementation of the algorithm) and its real part agrees with the previous
result from Wietek et al, 201548 of ⟨Si · (Sj × Sk)⟩i,j,k∈△▽ = ±0.0687 (2) per spin.48

Table 6 – Chirality energy contribution for different lattice sizes, within the GPW rep-
resentation for the spin liquid candidate SL −

[
π
2 , 0

]
with uniform π/2 flux

through the triangles and zero background flux on the hexagons. The energy was
obtained with 2, 0 × 105 MC sweeps discarded for thermalization, and 2, 0 × 105

MC sweeps for average, divided into 100 bins.

4 × 4 × 3 8 × 8 × 3 12 × 12 × 3
Re (⟨Si · (Sj × Sk)⟩) 0.0688 (2) 0.0687 (1) 0.0687 (1)
Im (⟨Si · (Sj × Sk)⟩) −0.0034 (1) −0.0008 (1) −0.0000 (1)

Source: By the author.

∗ It must be noted that the staggered chiral ansatz can be implement by using different hopping
distributions. For example, one could alternatively consider the gauge where only the horizontal
links are imaginary (all pointing to the left or right).6 The important aspect is to maintain the
appropriate chiral fluxes on the triangles while assuring that there are no background fluxes
on the hexagons. This second task can be accomplished by directly imposing the background
fluxes with next-nearest neighbor interactions on the Heisenberg model,47 or by considering a
pure chiral interaction29 as the one in equation (2.94). Both these approaches were observed
to reproduce the same chiral spin liquid phase.48
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3 NONCOPLANAR MAGNETIC ORDERS IN THE KAGOME LATTICE

In this chapter, we investigate the classical phase diagram of the modified Heisenberg
model J1 − Jd − Jχ via the Gradient Descent method to find a possible region of classical
disorder, as well as relevant ordered phases to the model. Furthermore, we present numerical
evidence from the SSSF and GSE that uncatalogued noncoplanar phases - dubbed as
FM-stripe, FMd, and AFMd - can be stabilized due to the interplay between the novel
chiral Jχ interaction, the FM first-neighbors J1 and AFM diagonal Jd interactions.

3.1 Classical Phase Diagram for the J1 − Jd − Jχ Heisenberg model

Figure 16 – Classical phase diagram for the J1 −Jd −Jχ Heisenberg model on the Kagome
lattice with Jχ = 1.0 setting the energy scale. We have five classical ordered
states: cuboc-2, AFMd, FM , FM-stripe, and FMd. Black dashed lines indicate
first-order phase transitions. The solid line between the cuboc-2 and the AFMd
phases indicates a continuous transition. A classically disordered region, in
red, is present around the point J1 = Jd = 0. Vertical gray lines are related to
the minimization examples in Fig. 18.

Source: By the author.

Following the previously explained methodology in Section 2.1, we obtained the
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classical phase diagram for the extended chiral Heisenberg model (1.1). This was done
by considering N ∈ [100, 200] distinct random initial configurations which converged
to a configuration correspondent to the minimum of the classical energy in a fixed set
(J1, Jd, Jχ). The energies of each random configuration are then compared variationally,
a procedure that enables the algorithm to access more configurations from the classical
phase space. This methodology was applied for lattices with L ∈ [3, 20] to probe phases
with different magnetic unit cell sizes. This process is illustrated in Figure 18, where we
compare the GSE of each ordered phase with GD results. As an initial benchmark, we
observe that the algorithms are able to describe the regime of weakly coupled AFM(FM)
chains for Jd ≫ Jχ > (<) 0 with J1 = 012,41,52 (Fig. 17). Notice that these are not ordered
phases. The SSSF shows blurred peaks and weight distribution over the BZ.

Figure 17 – Classical spin representation for the regime Jd ≫ Jχ in the J1 − Jd − Jχ
Kagome Lattice model of weakly coupled chains, with the correspondent spin
structure factors. In this scenario, AFM (FM) spin chains which are weakly
coupled for Jd > 0 (Jd < 0), can be seen along the diagonal dashed red lines
on the hexagons of the Kagome lattice (a) [(b)].

Source: By the author.

After defining the corresponding configuration to the GSE minimum, we calculate
the SSSF for the configuration to confirm if there is an ordered or disordered structure
on the BZ. New magnetic ordered phases are then determined if they correspond to the
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minimum GSE on a certain region of the phase diagram, with a well-defined SSSF that is
not compatible with previously known ordered phases.

Figure 18 – Energy comparison between FMd, AFMd, FM-stripe, FM, cuboc-2 phases
and the result of numerical minimization via the GD method along the values
(a) J1 = −0.16, (b) J1 = −0.04 and J1 = −0.26 (c). In the second case, the
minimum energy near Jd/Jχ ≈ 0 is not equivalent to any ordered phase, and
the correspondent SSSF is characterized by a blurred profile. Same color code
as used in Fig. 16.

Source: By the author.

Setting the energy scale with Jχ = 1 with no loss of generality, in addition to the
cuboc-2 [Fig. 20(a)] and FM [Fig. 20(c)] phases, three new ordered phases occupying a
considerable region of the phase diagram were encountered: FMd [Fig. 20(e)], AFMd [Fig.
20(b)] and FM-stripe [Fig. 20(d)]. The FM(AFM)d phases are named after the FM (AFM)
chains along the diagonals on the hexagons coupled via the J1 interaction, whereas the
FM-stripe is an intermediate phase between the FM and FMd, with some twisting near
the triangles responsible for a non-zero chirality∗. The classically disordered region, a good
indicator for the search of quantum spin liquids, was characterized by a blurred SSSF (Fig.
19). This region is marked on the classical phase diagram in Figure 16, and it is consistent
with the usually expected presence of classical disorder in the boundary between ordered
phases, due to competing interactions.

The FM-stripe phase can be stabilized in three possible configurations distinguished

∗ The stripe nomenclature is usually chosen for phases that break some rotational symmetries
from the lattice, besides the usual spin rotational symmetry.119
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Figure 19 – Classically disordered region spin configuration in real space and correspondent
SSSF. The state is only one of the many possible states inside the disordered
region.

Source: By the author.

by a rotation of 2π/3 in the reciprocal and real space. The FMd phase can be understood
more intuitively by observing the FM chains along the diagonals of hexagons, with the
fact that the chiral interaction induces a relative angle between the diagonal chains which
minimizes the staggered chirality. Finally, the AFMd phase is an interesting phase that
interpolates both the characteristic Bragg peaks for the cuboc-1 and cuboc-2 phases, with
varying relative intensity depending on the value of the J1 coupling. Therefore, the effect
of first-neighbor interactions is based on adjusting the angle of the AFM chains while
minimizing the chiral interaction. This introduces a non-trivial dependence of the angle
between the spins in the magnetic unit cell by the J1 coupling. This is similar to the
transition between a canted AFM and the polarized phase with J1 ↔ h. Instead of directly
representing this dependence in an analytical form, we represented these new states with
the numerical outputs from the GD minimization.

The continuous phase transition between the cuboc-2 state to the AFMd arises
with the weakening of the cuboc-1 momentum points in the BZ and the strengthening
of the cuboc-2 points as |J1| is increased negatively. For J1 > 0, an opposite situation
occurs, benefiting the cuboc-1 state (see Figure 21 and 22). Although the ordered phases
icosahedron2, tetrahedral1, tetrahedral2, and traditional octahedral18,61 have similar Bragg
peaks in the BZ, they are not representative for the model with staggered chirality (Jχ < 0
for up triangles and Jχ > 0 for down triangles). In a uniform chiral model, this octahedral
phase would contribute with maximum chirality to the ground state energy, for example.

The phase transition between the phases FM, FM-d, and FM-stripe is characterized
by discontinuities near the phase boundaries from the classical phase diagram [Fig. 23].
Additionally, this is accompanied by a change in the magnetic unit cell size describing these
phases (Fig. 20). Although some variation of the Bragg peaks is present inside the FM-
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Figure 20 – Classical spin configurations (left column) and corresponding SSSF (right
column) for the phases in Fig. 16 with Jχ = 1.0. The magnetic unit cell is
shown in blue. (a) cuboc-2; (b) AFMd (J1 = −0.05, Jd = 0.3); (c) FM; (d)
FM-stripe (J1 = −0.13, Jd = −0.16); (e) FMd (J1 = 0, Jd = −0.3). The color
scale on the right is arbitrary. The FM-stripe phase is stabilized in one of
three equivalent configurations distinguished by a 2π/3 rotation.

Source: By the author.
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Figure 21 – Order parameter squared (normalized with respect to its value in the cuboc-2
state) as a function of J1, indicating the continuous transition between the
cuboc-2 and AFMd phases for Jχ = 1. The red (light-blue) curve shows the
normalized Bragg peak intensity at the cuboc-2(1) ordering wave vectors.
At the point J1 = 0 an octahedral phase maximizing the staggered chirality
emerges. The phase transition to the cuboc-1 is slower and takes place in the
vicinity of J1 = 1.0 (not shown).

Source: By the author.

Figure 22 – The spin directions on the magnetic unit cell (a) for the cuboc-2 (b) (J1 =
−0.4), octahedral (J1 = 0) (c) and cuboc-1 (J1 = 1.0) (d). An animated gif
of the continuous phase transition between cuboc-2 and cuboc-1 phases seen
from the perspective of the spins in the magnetic unit cell can be seen in this
link.

Source: By the author.

https://github.com/joaosds/joaosds.github.io/blob/master/images/cuboc_pt.gif
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Figure 23 – Order parameter squared (normalized with respect to its value in the FM
state) as a function of J1, indicating the phase transition between the FM,
FM-stripe and FMd phases for Jχ = 1 and Jd = −0.20 (a), and Jd = −0.15 (b).
The red (light-blue) [dark] curve shows the normalized Bragg peak intensity
at the FMd(FM, Γ momentum point) [FM-stripe] ordering wave vectors. The
dashed lines indicate the boundary of phases from Fig. 16. In the second case
(b), the FMd phase is close to the disordered region and does not develop
pronounced Bragg peaks.

Source: By the author.

stripe phase, the previous indications suggest a first-order phase transition. Specifically, the
variation inside the FM-stripe phase may be influenced by the difficulty of the minimization
algorithm on stabilizing to one of the possible phase variations related by a 2π/3 rotation.

3.2 Discussions

The scenario of novel chiral classical ordered phases and a regime of disorder may
be relevant for the description of the phase transition between cuboc-type phases to
a QSL on Kapellasite-like materials. In Fåk et al, 2012,,3 the authors argued that the
only ordered phase close to the momentum vector M = (1/2, 0) known at the time was
the cuboc-2, indicating therefore that the short-range correlations of Kapellasite would
be of the cuboc-2 type for non-zero temperature. A study of high-temperature series
expansion on the experimental data from Nuclear Magnetic Resonance (NMR) of magnetic
susceptibilities and total specific heat also corroborated with this proposal.3 Nevertheless,
it would be interesting to see more experimental results in the context of these new findings
for the J1 − Jd − Jχ Heisenberg model.

As we have seen, the staggered chirality furnished the ideal conditions for an
octahedral phase to appear in the symmetrical point J1 = 0 with Jd > 0 in the phase
diagram of the modified Heisenberg model. The main difference of this phase to the
usual octahedral phase18,61 is the exchange of some spins in the magnetic unit cell that
minimizes the overall chirality. By the same token, although we have not investigated this



72 Chapter 3 Noncoplanar magnetic orders in the Kagome Lattice

with detail - since our main objective was to characterize a region of classical disorder in
the classical phase diagram -, similar phases to the icosahedron61 with exchanged spins
that favor the staggered chirality might be feasible and relevant for materials described by
a chiral modified Heisenberg model. From the methodological perspective, it would also
be interesting in the future to implement improvements to the GD method by exploring
the Stochastic gradient descent method, for example, which introduces stochastic noise in
the minimization procedure.63,120,121

Some theoretical studies indicated that Mott insulators with noncoplanar magnetic
ordered states can be seen as parent states to CSLs. Consequently, the CSL can be
accessed by quantum melting the regular magnetic ordered phases.32 This procedure is
effectively done by introducing frustration and/or quantum fluctuations in classical regular
magnetic ordered phases18 theoretically, whereas experimentally this is achieved by tuning
effective couplings via pressure, or chemical modifications that melt the ordered phases.
In this context, exploring the robustness of these new phases against quantum or thermal
fluctuations via numerical spin waves calculations, for example, could be relevant for a
more detailed quantum phase diagram of the J1 − Jd − Jχ Heisenberg model.122

Finally, we address the classically disordered region. In all its extent, the SSSF
shows neither Bragg peaks nor sharp features, and its weight is distributed over the
entire BZ, (Fig. 19). A classically disordered region is tied to the presence of massively
degenerated states and usually occurs at isolated points in the phase diagram, for instance
at the boundaries between two ordered phases. Its extended nature in the present problem
may be traced back to the frustrating nature of the Kagome lattice. Consider a spin
Sj. To maximize the chiral interaction, we place the nearest neighbors of Sj in a plane
perpendicular to it. This causes an accidental degeneracy under relative rotations of these
nearest-neighbor spin planes about the axis defined by Sj . Although quantum fluctuations
may lift this degeneracy via the order-by-disorder mechanism123–126 the presence of an
extended classically disordered region is a promising sign that a CSL might be stable for
S = 1/2, as we will see in the following Chapter.
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4 GAPLESS CHIRAL SPIN LIQUID IN THE KAGOME LATTICE

After obtaining an indication of a disordered region in the classical phase diagram,
now we focus on the trial wavefunctions proposed recently12 to describe a possible CSL in
the J1 − Jd − Jχ Heisenberg model. After briefly considering the MFT for the Ansätze,
we present numerical evidence that the CSL may be stable near the origin of the phase
diagram. Furthermore, by implementing an SDW trial wavefunction for the AFMd, FMd,
and FM-stripe phases, we investigate the instability from the CSL towards these ordered
phases.

4.1 Parton Mean Field Theory

We begin by considering the MFT of the J1 − Jd − Jχ Heisenberg model (1.1),
which was developed recently.12,13 By following the standard mean field decoupling using
the Abrikosov representation (2.21), the contributions in the diagonal and first-neighbors
can be written as

Hd = −Jd
2

∑
α,ij∈7

[
f †
iαfiαχij + h.c. − |χij|2

]
, (4.1)

and

H1 = −J1

2
∑
α,⟨ij⟩

[
f †
iαfiαχij + h.c. − |χij|2

]
. (4.2)

Similarly, the chiral interaction contribution for the up triangles (△), for example, can be
written as

H△
χ = 3iJχ

16
∑

ijk∈△,α

[
−χikχkjχji + χkjχjif

†
iαfkα + χikχkjf

†
jαfiα + χjiχikf

†
kαfjα − h.c.

]
,

(4.3)
with a similar expression for down triangles. The mean-field parameter is given by χij =
⟨f †
i↑fj↑+f †

i↓fj↓⟩. The possible Ansätze describing CSLs were recently studied in an extension
of the Projective Symmetry Group by Bieri et al, 2016.25 Consequently, the considered
Ansätze in this work are correspondent to the No. 11 (imaginary diagonal hopping)
and No. 9 (real diagonal hopping) in Table IX of this reference (see Figure 24). More
specifically, we consider the former (Cases I and II) in the MFT analysis since they are
more representative to the CSL, but the results for the latter (Case III) are also presented
in the VMC study. From the Fourier transform of the spinon operators, the diagonal form
of the MFT Hamiltonian is then determined as

H =
∑
k,α

Ψ†MΨ +NJ1χ
2
1 + NJdχ

2
d

2 + NJχχ
3
1

2 , (4.4)
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Figure 24 – Physical Ansätze describing the CSL with 0 gauge flux over the hexagons
and staggered ±π/2 flux on the elementary triangles. Cases I, II and III are
indicated at subfigures (a) with oriented χd (b), and non-oriented χd ∈ R (c).
Interactions between different sublattices are always oriented with χ1 ∈ C.

Source: By the author.

with the spinor Ψk,α =
(
fA,k,α fB,k,α fC,k,α

)T
and the matrix

M = −


κd sin (kA) κ1 sin (kC/2) κ1 sin (kB/2)
κ1 sin (kC/2) κd sin (kB) κ1 sin (kA/2)
κ1 sin (kB/2) κ1 sin (kA/2) κd sin (kC)

 . (4.5)

Here, ks = k · ai with s = A,B,C, i = 1, 2, 3, and the lattice vectors ai represented in
Figure 4. The new effective hopping parameters κ are given by

κ1 = 3
8Jχχ

2
1 − J1χ1 and κd = χdJd, (4.6)

and the energy spectrum is obtained by the numerical diagonalization of matrix (4.5).

Figure 25 – Energy spectrum representation for κd/κ1 = 1.2 (left). This form is representa-
tive for 0 < κd < 2κ1 . The density plot of the dispersion for the lower (center)
and upper bands (right) is also presented. In the latter, dashed lines indicate
the spinon Fermi surface for the middle band (along the Γ − M points in the
BZ).

Source: OLIVIERO et al.13
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Figure 26 – Energy dispersion for the lower and upper bands, along the Γ-K direction, for
different values of the ratio κd/κ1.

Source: OLIVIERO et al.13

From Figure 25 the Dirac Cones at the Γ momentum point in the BZ can be seen.
If the ratio κd/κ1 is increased, the energy gap for the upper and lower bands at the points
K and K ′ in the BZ is decreased, as they cross the Fermi level εf = 0 benefiting the
formation of Fermi pockets with κd/κ1 > 2. These elements indicate a nesting instability
of the U(1) CSL towards ordered phases.127 For κd < 0 the instability is indicated by the
flattening of the middle band near κd/κ1 ≈ −1. Consequently, the VMC analysis of the
CSL must be restricted by the interval −1 < κd/κ1 < 2. Independently of the sign of κd,
the instability of the CSL is consistent with the expected behavior of a transition towards
ordered phases in the regime of dominant Jd41 in the considered model (1.1).

4.2 VMC results

To observe the contribution of each coupling sector on the estimated GSE via
the VMC, we varied the hopping ratio κd/κ1 up to the regime when the diagonal Jd
interaction is dominant, where the Hamiltonian describes a set of weakly coupled AFM
S = 1/2 chains41,54 rotated by 2π/3 to each other. In this regime, the diagonal Jd energy
contribution is well described by the exact solution via the Bethe’s ansatz82 expression,

EAFM−chain = Jd

(1
4 − ln 2

)
, (4.7)

which is indicated in Fig. 27 with a solid orange color. Additionally, the individual contri-
butions for each coupling sector are presented, and for a set (J1, Jd, Jχ) the corresponding
GSE can be calculated with the expression

F (κd/κ1) = Jd⟨EJd
⟩ + Jχ⟨EJχ⟩ + J1⟨EJ1⟩, (4.8)

which must be minimized as a function of the variational parameter κd/κ1. For Cases
I and II this minimization was performed in the region of κd/κ1 ∈ [−1, 2] as discussed
previously.12

A particular case of interest at J1 = 0 is illustrative for the ground state energy
difference between the different Ansätze and important remarks about our VMC. From
Figure 28, the CSL is competitive in the region of Jd/Jχ ∈ [−0.3, 0.2]. Cases I-III are



76 Chapter 4 Gapless chiral spin liquid in the Kagome Lattice

Figure 27 – VMC energy expectation value for the chiral (green), Heisenberg J1 (black)
and Jd (purple) contributions for (a) Case I (κd/κ1 < 0) , II (κd/κ1 > 0) and
(b) III (κd/κ1 ∈ R). The orange line is the result for the AFM S=1/2 chain
via Bethe’s ansatz. These energies were obtained for L = 12; Error bars are
smaller than the markers. Gray vertical dashed lines indicate the region of
stability for Cases I and II established from the MFT analysis.

Source: By the author.

approximately degenerate for Jd/Jχ < 0 from the perspective of our VMC and a more
detailed analysis is needed to confirm which Case is favored∗. The degeneracy is lifted
for Jd/Jχ > 0, and Case I is favored energetically. Therefore, Cases II and III are not
representative to describe the CSL in this region. Similar behavior was found for J1 ̸= 0,
and consequently, Case I was chosen to represent energetically the CSL in the following
discussions. Finally, if the variational minimization of the parameter κd/κ1 is performed
unconstrained, our VMC captures the Bethe’s ansatz solution for all cases in the limit
where the CSL is no longer competitive. In this regime, the numerical results for the

∗ Recently an analytical dependence of the entanglement entropy spectrum on gauge fluxes for
quantum spin liquids was proposed;128 by calculating this observable with tensor network-based
methods,90 one could in principle observe which flux state best describes the entropy profile.
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Figure 28 – Ground state energy obtained via VMC for Cases I-III as a function of Jd/Jχ
with J1 = 0. Classical energies for phases Cuboc-2, AFMd, FMd and FM are
displayed for comparison.

Source: By the author.

Gutzwiller projected wave function ansatz in the AFM spin chain from Subsection 2.3.0.1
are recovered. This result is also in agreement with the expected instability to weakly
coupled AFM(FM) chains along the the diagonal of hexagons in the Kagome lattice for
Jd/Jχ ≫ 012,41 (Figure 17).

4.3 Quantum Phase Diagram for the J1 − Jd − Jχ Heisenberg model

Our previous classical results established a considerable region on the phase diagram
for the possible appearance of a gapless spin liquid arising from the classically disordered
region. For J1 = 0 we confirmed this expectation. Now we consider J1 ̸= 0. The consistent
inclusion of quantum fluctuations is essential to determine the possible stability of the CSL
towards ordered phases. In this context, we proceed with our investigations by adopting
the SDW class of Ansätze described in Subsection 2.2.5.

Our VMC simulations consist of Nwarm ∼ 104 MC steps for thermalization and
we calculate the ground state energy E0 in the end of every sweep for Nmeas ∼ 104. The
variational minimization is then calculated with respect to the variational parameters
κd/κ1 and h. The phase transition out of the CSL is determined by the development of a
non-zero expectation value in the thermodynamic limit for the sublattice magnetization
m defined as111

m2 = lim
|i−j|→∞

⟨Si · Sj⟩, (4.9)
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Figure 29 – Finite-size scaling for the magnetization with J1 = −0.01 and Jχ = 1.0 as
a function of 1/L. The inset graphic displays the phase transition between
the AFMd and the CSL from the perspective of the magnetization in the
thermodynamic limit as a function of Jd. The colored region indicates the
numerical uncertainty in the phase transition.

Source: By the author.

alongside a direct comparison between the ground-state energies. This observable m is
essentially the spin-spin correlation at a maximum distance for two spins correspondent
positions inside the magnetic sublattice. From the ground state energy perspective, the
phase transition occurs with a swap in the global minimum from the CSL near-zero h to
the ordered phases with a finite value of h. Physically this is consistent because if h ̸= 0
the mean-field dispersion becomes gapped. In 2D, this implies that the CSL is unstable
and the spinons become confined.7 The resulting phase is then adiabatically connected to
the ordered state.

This new variational minimization concerning h is performed with fixed κd/κ1

value obtained for the energy minimum on the pure CSL regime. At h = 0 we checked
that this leads to consistent results. Figure 29 exemplifies these concepts by displaying
the phase transition between the CSL and the AFMd phase along the vertical line
J1 = −0.01 on the quantum phase diagram. The results for the transition were obtained
with L = 2n(n = 2, 3, 4, 6) and the extrapolated value is represented in the markers
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without the black border at 1/L → 0.

Figure 30 – Energy as a function of the Zeeman coupling h for different values of Jd. Both
the transition from the CSL to the FMd (a), at J1 = −0.02, and to the AFMd
(b), at J1 = −0.01, are presented. The magnetization plateaus in the second
case are illustrative to the difficulty of selecting the phase transition boundary
precisely. Error bars are smaller than the markers, and the shaded region in
the inset indicates the numerical uncertainty in the phase transition.

Source: By the author.

Since the classical phases FM(AFM)d have a non trivial angle dependence with J1,
the classical states of reference m in equation (2.69) are chosen with a fixed value of J1 and
each VMC minimization is performed varying Jd. Some of these analyses can be seen in
Figure 30. The ground state energy is represented for different values of the parameter h for
two fixed values of J1. As Jd is varied, both cases depict the transition between a minimum
ground state energy near h ≈ 0 to an ordered phase with h ̸= 0. This transition can also
be understood from the perspective of the magnetization observable (4.9) as can be seen
in the inset Figures. These results indicate a first-order phase transition since a clear
discontinuity separates the ordered phases AFM(FM)d and the CSL.111 Magnetization
plateaus in Heisenberg-like models usually reflect finite-size effects,129 and in our case, they
hinder the possibility of selecting the phase boundary precisely. Consequently, a region
(brown) of uncertainty is estimated to accommodate this difficulty in our VMC.

The results of the quantum phase diagram obtained in the vicinity of the CSL
are displayed in Figure 31. The phase transitions are consistent with the classical phase
diagram in Figure 16, and the CSL domain expands from the classically disordered region
up to small values of Jd and J1. Specifically, phase transitions with the FM-stripe phase
were obtained for systems with L = 12. With the inclusion of quantum fluctuations,
the regime for the FM-stripe phase near the CSL is reduced as the FMd increases in
comparison to the classical results. This can be understood intuitively since the FMd phase
has three coupled FM chains along the diagonal of the hexagons (while the FM-stripe has
only one), and FM chains are usually robust against fluctuations. Moreover, one may think
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Figure 31 – Quantum phase diagram for the J1 − Jd − Jχ Kagome Lattice model with
S=1/2. The phase transitions were obtained from the VMC comparison with
an SDW ansatz. The error bars indicate the numerical limitation of our VMC,
which consists on a estimate of the plateaus of magnetization. Same color
code used in Figure 16. The FM-stripe phase is indicated in orange.

Source: By the author.

that the superposition of the different domains favors the CSL close to stripe boundary
analogously to an RVB state.

Finally, we remark that the inclusion of Jastrow spin-spin correlations111 may
lead to an improvement of the variational energy for the classical states and this may
diminish the region of stability of the CSL in the thermodynamic limit. Additionally, due
to numerical limitations of our VMC we have not obtained the finite-size scaling analysis
for the FMd/CSL phase transition since it demands the scaling of systems with sizes
multiples of L = 8. This situation could be improved by implementing the Stochastic
Reconfiguration105 for the optimization of the variational parameters, for example. In this
context, the error bars on the marks of Figure 31 indicate the numerical limitation of our
VMC which consists of an estimate of the plateaus of magnetization in the vicinity of the
phase transition.
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5 CONCLUSIONS AND OUTLOOK

In this dissertation, we have mainly investigated QSLs in the context of parton
constructions and Gutzwiller projected wave functions, which were implemented via the
VMC. In Chapter 2, by constructing a VMC capable of obtaining the ground state energy
of different effective theoretical models that describe QSLs, we have investigated how
these exotic phases of matter can be described via Abrikosov or Majorana fermionic
representations. More specifically, we studied the AFM Heisenberg Hamiltonian in the
context of spin chains, U(1) Dirac, and Chiral spin liquids on the Kagome Lattice. Our
results were consistent with previous results in the literature regarding these investigations
and were fundamental for constructing a reliable VMC for the investigation of the CSL
in Chapter 4. Additionally, we also presented how magnetically ordered phases can be
described with the conjunction of the Gradient Descent algorithm and the analysis of the
static spin structure factor. In this context, we were able to implement an algorithm capable
of characterizing features of both ordered and disordered states in strongly correlated
systems.

Following this developed methodology, in Chapter 3 we investigated relevant ordered
phases for the Kagome lattice in the context of the J1 −Jd−Jχ model and related modified
Heisenberg models. From this, we found numerical evidence for an extended region of
disorder in the classical phase diagram from the static spin structure factor observable for
small J1 and Jd and significant Jχ. This was our first indication for the presence of the
proposed CSL.12,13 Additionally, we found non-trivial magnetic ordered phases dubbed as
FM-stripe, AFMd, and FMd on the classical phase diagram which are stabilized primarily
due to meaningful Jχ interactions, with the spins having a complex angle dependence
on J1. More surprisingly, we found a continuous phase transition between the cuboc-1
and cuboc-2 phases, which is interpolated by the AFMd on the regime of J1 < 0. At
the symmetrical point J1 = 0, a variant of the octahedral phase that favors a staggered
chirality was found. Our results may be relevant, for example, to the understanding of
the physics of the Kapellasite material, upon which cuboc-type short-range spin-spin
correlations persist up to T = 20 mK in experimental setups3 and compete with a gapless
quantum spin liquid∗.

In Chapter 4 we have found numerical evidence that a parton MFT is indeed
representative to the disordered region in the J1 − Jd − Jχ model. Specifically, our results
indicate that the Case I ansatz is slightly favored for the representation of the CSL, which

∗ The upper bound from a hypothetical gap was determined by experimental data as 10−3J1 in
a J1 − Jd Heisenberg model.
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extended beyond the original classically disordered region on the phase diagram. This
case is defined by staggered ±π/2 gauge fluxes on the elementary triangles and 0 flux on
the hexagons of the Kagome lattice. In addition, by considering the influence of quantum
fluctuations to the ordered states found in Chapter 3, a frontier for the phase transition
between the CSL and AFM(FM)d phases was established up to the numerical precision of
our VMC. The implementation of the Stochastic Reconfiguration105 in our scheme will
increase the accuracy of our variational procedure and it is certainly one investigation that
should be addressed in the future. This may furnish a feasible computational time to scale
the results with larger system sizes in finite-size scaling analysis, such as the one briefly
commented in Chapter 4 for the phase transition between the AFMd and the CSL, for
example.

Finally, several other investigations can be tackled in future work. The implemen-
tation of the Jastrow spin-spin correlation factor, for example, has been shown to improve
the energy of the ordered states on the SDW ansatz.111 Additionally, an implementation of
the VMC by using Pfaffian structures instead of the Slater determinant would be ideal to
describe a greater variety of physical Ansätze, such as the p-wave superconductor ansatz on
the Majorana representation of the Heisenberg model in Appendix C, and also to address
cases that are not correctly described by Slater determinants.94 This would allow the
possibility of comparing Z2 QSLs with U(1) CSLs energetically, for example. Finally, our
alternatives to describe physical Ansätze could be further augmented by adopting recent
tensor network-based methods such as the Matrix Product States/Projected Entangled
Pair States (MPS/PEPS) as they can be understood in the context of the Gutzwiller
projected wave functions.92,93,130
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APPENDIX A – VMC APPENDIX

A.1 Matrix Determinant Lemma

Lemma 1. Consider an invertible square matrix A ∈ Rn×n, and the column vectors
u,v ∈ Rn. The matrix determinant lemma110 states that

det
(
A + uvT

)
=
(
1 + vTA−1u

)
. (A.1)

Proof.

det
(
A + uvT

)
= det

(
A
(
I +

(
A−1u

)
vT
))

= det(A) det
(
I +

(
A−1u

)
vT
)

= det(A)
(
1 + vT

(
A−1u

))
.

(A.2)

For the second equality we used Sylvester’s determinant theorem with det(I + AB) =
det(I + BA). ■

A.2 Shermann-Morrison Formula

Formula 1. Consider an invertible square matrix A ∈ Rn×n, and the column vectors
u,v ∈ Rn. Then A+uvT is invertible if

(
1 + vTA−1u

)
̸= 0. The Sherman-Morrison110, 131

formula states that (
A + uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (A.3)

Proof. (
A + uvT

)−1
= A−1

(
I + A−1uvT

)
= A−1

(
1 − A−1uvT + A−1uvTA−1uvT − . . .

)
= A−1 − A−1uvTA−1

(
1 − λ+ λ2 − λ3 + . . .

)
= A−1 − A−1uvTA−1

1 + λ
.

(A.4)

with
λ = vTA−1u. (A.5)

The second and fourth lines are obtained by considering the geometric series. In the third
line, the associativity of the products is used to factor out the scalar λ.110 ■
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APPENDIX B – HALDANE-SHASTRY MODEL

Is there any physical model for which the GPW is an exact eigenstate? This would be
another good benchmark test and interesting physical example for the developed Variational
Monte Carlo. In this Subsection our interest will reside on a numerical exploration of the
GSE of the Haldane-Shastry Model,132,133 which has the GPW as an exact eigenstate. The
interactions have a particular long-range interaction in the Hamiltonian92

HHS =
∑
p<q

Jπ2Sp · Sq

N2 sin2 π
N

(p− q) = 1
2

N∑
p=1

N−1∑
q=1

Jπ2Sp · Sq

N2 sin2 π
N

(p− q) , (B.1)

with the ground-state energy and spin-spin correlation function given by92

E0
HS = −J π

2

24

(
N + 5

N

)
(B.2)

and

⟨Sp · Sq⟩ =
∑N/2
a=1

3(−1)q

2a−1 sin
(
π
N

(2a− 1) q
)

2N sin π
N
q

. (B.3)

In the limit of N ≫ 1 the expressions can be implemented numerically identically as in
the Heisenberg model, with the correction of a factor |p− q|−2 at the denominator of the
energy expression

HHS = 1
2

N∑
p=1

N−1∑
q=1

JSp · Sq

|p− q|2
, (B.4)

and ⟨Sp · Sq⟩ = 3
4 (−1)q, which is numerically the same as (2.67) apart from a factor of 3

from the contribution for the 3 components of the expected value SxpSxq , SypSyq and SzpS
z
q .

Consequently, Figure 10 is also representative for the Haldane-Shastry model in this limit.

Table 7 – Ground state energy for the Haldane-Shastry model using the GPW for different
numbers of spins N . The second column represents the exact values from equation
(B.2), whereas the third column contains the results obtained within the VMC.

N E0
HS/JN E0/JN

32 −0.413 241 492 −0.413 241 492 (3)
64 −0.411 735 510 −0.411 735 510 (2)
96 −0.411 456 625 −0.411 456 625 (2)
128 −0.411 359 015 −0.411 359 015 (2)
256 −0.411 264 891 −0.411 264 891 (2)
512 −0.411 241 360 −0.411 241 358 (2)

Source: By the author.

The results for the VMC can be seen in Table 7, and compared with the respective
expected value as assigned by equation (B.2). Each program execution takes 5.0 × 103 MC
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sweeps to thermalize and 100 energy values are stored. This was repeated for 10 different
random seeds and an average was performed in the end. The third column indicates the
results obtained with the GPW within the VMC, evidencing that indeed the GSE for the
Haldane-Shastry model can be well described up to the numerical precision of our VMC
implementation.
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APPENDIX C – FERMIONIC MAJORANA REPRESENTATION

Another possibility of representing the fractionalized degrees of freedom of a QSL
is to adopt the so-called Majorana fermion formalism.42,134,135 The Majorana fermions
are the same particles proposed as real solutions to the Dirac equation and have gained
recent attention after the proposal of their manipulation for potential topological quantum
computing.22 Although they have different representations explored in the literature
obeying the SU(2) spin algebra (2.20), recently Seifert, Meng and Vojta135,136 introduced
an interesting representation of the Majoranas, which relates earlier different representations
by an adjustable parameter η such that the spin operator is given by

Sαη = (1 + η) i2χ
0χα − (1 − η) i4ϵ

αβγχβχγ, (C.1)

with the four Majorana fermions χαi (i being a site index) obeying the anticommutation
relations {

χµi , χ
ν
j

}
= δµνδij, χµi = χµ†

i with (µ, ν = 0, 1, 2, 3) . (C.2)

For this Subsection we shall focus on the representation with η = 1,135 which is equivalent
to the Majorana formalism implemented for Kitaev’s spin liquid.95 In this representation
we have a direct relation with the Dirac fermions given by the Abrikosov representation
via the equations

fi↑ = (χ0
i + iχ3

i )√
2

, fi↓ = (iχ1
i − χ2

i )√
2

(C.3)

and
f †
i↑ = (χ0

i − iχ3
i )√

2
, f †

i↓ = (−iχ1
i − χ2

i )√
2

. (C.4)

These can be inverted, giving the Majorana fermions a representation in terms of the
Abrikosov ones 

χ0
i = fi↑+f†

i↑√
2

χ1
i = fi↓−f†

i↓√
2i

χ2
i = −fi↓−f†

i↓√
2

χ3
i = fi↑−f†

i↑√
2i

. (C.5)

From these relations it is clear to understand that Majorana fermions are Hermitian
operators (C.2). This representation needs a physical constraint in order to recover the
physical Hilbert space of localized spins which is given by

D = 4χ0
iχ

1
iχ

2
iχ

3
i = 1. (C.6)

Additionally, it can be shown that this constraint is generated by the single-occupancy
constraint (2.21) used in the Abrikosov representation135

0 = ni↑ + ni↓ − 1 = iχ0
iχ

3
i + iχ1

iχ
2
i . (C.7)
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Therefore, if the constraint is obeyed on each site, the four-flavor Majorana representation
for the spin operator is valid and given by

Sαi = iχ0
iχ

α
i (C.8)

for α = 1, 2, 3.

We can proceed our treatment to the mean-field theory of the Heisenberg Hamilto-
nian by using the Majorana spin representation (C.8) by casting it into the form

H = −J
∑
⟨i,j⟩

[(
iχ0

iχ
0
j

) (
iχ1

iχ
1
j

)
+
(
iχ0

iχ
0
j

) (
iχ2

iχ
2
j

)
+
(
iχ0

iχ
0
j

) (
iχ3

iχ
3
j

)]
. (C.9)

The mean-field decomposition is obtained by neglecting quadratic fluctuations in the link
variables u0 =

〈
iχ0

iχ
0
j

〉
and uα =

〈
iχαi χ

α
j

〉
for α = 1, 2, 3, in

iχ0
iχ

0
j iχ

α
i χ

α
j =

〈
iχ0

iχ
0
j

〉
iχαi χ

α
j + iχ0

iχ
0
j

〈
iχαi χ

α
j

〉
−
〈
iχ0

iχ
0
j

〉 〈
iχαi χ

α
j

〉
=

= u0iχαi χ
α
j + iχ0

iχ
0
ju

α − u0uα.

We note that for any two Majorana operators, the expectation value
〈
iχβχν

〉∗
=
〈
−iχνχβ

〉
=〈

iχβχν
〉

is always real136 since the Majoranas are Hermitian. The mean-field Heisenberg
Hamiltonian becomes then

H = −J
∑
α⟨i,j⟩

[
u0iχαi χ

α
j + iχ0

iχ
0
ju

α − u0uα
]
. (C.10)

Example: AFM Heisenberg model in 1D

We consider once again the S=1/2 AFM Heisenberg model in one dimension. The
translational invariance can be cautiously explored by noting that we must sum half the
Brillouin zone momentum values in order to count the degrees of freedom correctly.137

Therefore, the Fourier decomposition from

χαk = 1√
N

∑
j

χαj e
−ikxj (C.11)

and the condition (which can be understood from the previous equation) χαk,i = χ†α
−k,i

generate
χαj = 1√

N

∑
k>0

{
χαke

ikxj + χ†α
k e

−ikxj

}
. (C.12)

Naturally, these expressions are essential to build the anticommutation rules in the
momentum space for Majorana operators given by

{
χαk , χ

†α
k′

}
= 1
N

∑
i,j

e−ikxi+ik′xj

{
χαi , χ

†α
j

}
= 1
N

∑
i

eixi(k′−k) = δk,k′ . (C.13)
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From these considerations, the Hamiltonian can finally be cast into a quadratic form

H = −J∑α,k>0
{
u0i

[
χαkχ

α
−ke

−ik + χαkχ
†α
k e

−ik + χ†α
k χ

α
ke

ik + χ†α
k χ

†α
−ke

ik
]

+

+i
[
χ0
kχ

0
−ke

−ik + χ0
kχ

†0
k e

−ik + χ†0
k χ

0
ke
ik + χ†0

k χ
†0
−ke

ik
]
uα − u0uα

}
.

The Fourier transform generates complex fermions. This can be further rearranged as

H = J
∑
α,k>0

{
4 sin k

(
u0χ†α

k χ
α
k + χ†0

k χ
0
ku

α
)

− 2ie−ik
(
u0 + uα

)}
+ JzNu0uα. (C.14)

The ground state energy is then given by integrating the dispersion relation in half the BZ
∗

E0

JN
= 4
N

N

2π
∑
α

(
u0 + uα

) ∫ π

0

[
sin k − ie−ik

2

]
dk +

∑
α

2u0uα =

=
∑
α

2
[

(u0 + uα)
π

+ u0uα
]
.

(C.15)

By minimizing this equation with respect to uα and u0 and assuming that uα is the
same for α = 1, 2, 3 in the isotropic coupling case, the minimum mean field parameters
u0 = −2/π and uα = −2/3π are found and furnish the ground state energy of

E0

JN
= 2

[
(u0 + 3uα)

π
+ 3u0uα

]
= − 4

3π2 ≈ −0.13509. (C.16)

This is a smaller result in comparison with the one obtained via the Abrikosov representa-
tion, (E0/JN)A ≈ 0.19934, although it is still far from the exact value given by Bethe’s
ansatz (E0/JN)B ≈ −0.44315. These results exemplify that independent of the specific
spin representation used in decoupling the degrees of freedom of the QSL, imposing a
single-occupancy constraint exactly by the Gutzwiller projection remains an important
aspect for representing a QSL.

The difference from the ground state energy for each case can be understood
intuitively as a consequence of the band structure and the fermionic statistics for both
representations. The Majorana representation usually shows linear dispersion near the
zero energy point. Therefore, we consider a linear density of states in a first approximation.
We also remember that the MFT obtained directly after decoupling the Heisenberg
Hamiltonian with the Abrikosov fermions was a free fermion’s theory, and we consider a
constant density of states. Consequently, considering the normalization condition for the

∗ Different from the direct Abrikosov decoupling approach for the Heisenberg Hamiltonian that
we explored in Subsection 2.2.1, here we integrate for k : 0 → π instead of k : −π

2 → π
2 .

It is a convention to work only with positive majoranas, taking correctly only half of the
BZ.134,136,137
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density of states for the Metal and Dirac-Cone dispersion type material cases, respectively,

1 =
∫ W

−W
ρ (E) dE ⇒

 ρABR (E) = 1
2W

ρMAJ (E) = 1
W 2 |E|

. (C.17)

For the mean ground state energy, we integrate it from −W (where W is the bandwidth)
to 0 due to the half-filling condition,

⟨E⟩ =
∫ 0

−W
Eρ (E) dE ⇒

 ⟨E⟩ABR = −W 2

4W = −W
4

⟨E⟩MAJ = − W 3

3W 2 = −W
3
, (C.18)

and we confirm that Majoranas usually have a better estimate for the ground state energy
in the mean field treatment.

After the decoupling procedure is there any difference in the mean-field Hamiltonian
if we express the Majorana fermions in terms of complex fermions? To answer this question,
we consider the decoupled Majorana Hamiltonian (C.10) with the Abrikosov correspondence
given by equations (C.5). This gives the expression

H = −J
∑
⟨i,j⟩

[
u0i

(
fi↓f

†
j↓ + f †

i↓fj↓
)

+ i
(3u

2 − u0

2

) [
fi↑f

†
j↑ + f †

i↑fj↑
]]

+

+
∑
⟨i,j⟩

[
i
(3u

2 − u0

2

) [
fi↑fj↑ − h.c.

]
− 3u0u

]
.

(C.19)

Using the momentum space representation of the fermionic operators (2.34) and the
anticommutation relations (2.24) the Hamiltonian can be further simplified as

H = J
∑
k

[
ϵ↓ (k) f †

k↓fk↓ + ϵ↑ (k) f †
k↑fk↑

]
+ J

2
∑[

∆∗
kfk↑f−k↑ + ∆kf

†
−k↑f

†
k↑

]
+ H0 (C.20)

with

∆k = i (3u− u0) eik, ϵ↓ (k) = 2u0 sin k, ϵ↑ (k) = (3u− u0) sin k (C.21)

and
H0 = J

∑
k

[
3u0u− ie−ik 3

2 (u0 + u)
]
. (C.22)

This functional form resembles a p-wave superconductor with ∆k = −∆∗
−k, i.e., a super-

conductor with triplet excitations and a explicit dependence of the k-vector on the gap
function. We cast the Hamiltonian into a matrix form

H = 1
2J

∑
k

Ψ†
kHpΨk + 1

2J
∑
k

ε↑ (k) + H↓ + H0 (C.23)

with the spinor
Ψ† =

(
f †
k↑ f−k↑

)
(C.24)

and the matrix

Hp =
ϵ↑ (k) −∆k

−∆∗
k ϵ↑ (−k)

 . (C.25)
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The eigenvalues are then given by138,139

E (k) =

 ϵ↑ (k) = − (3u− u0) + (3u+ u0) sin k
ϵ↓ (k) = (3u− u0) + (3u+ u0) sin k

. (C.26)

Finally, the diagonal Hamiltonian can represented in the quasiparticle basis and separated
in terms of each spin flavor as

H↑ = 1
2J

∑
k

E (k) Ψ†
kΨk + 1

2J
∑
k

ε↑ (−k) + J
∑
k

[
3u0u− ie−ik 3

2 (u0 + u)
]
,

H↓ = J
∑
k

ϵ↓ (k) f †
k↓fk↓.

(C.27)

The ground state energy is then given by(
E0

JN

)
= 2
N

N

2π2 (3u+ u0)
∫ π

0
(sin k) dk + 1

N

N

2π

[1
2 (3u− u0) +

+2u0]
∫ π

0
sin kdk + 3zu0uα − 1

N

N

2π

∫ π

0
ie−ik 3

2 (u0 + u)
(C.28)

or (
E0

JN

)
=
(
E0

JN

)
= 6u0u+ 2

π

(
u+ u0

)
(C.29)

which is exactly the same result as in equation (C.15). Therefore, after the mean-field
decoupling, the Majorana and its correspondent Abrikosov representations are equivalent
when considering the ground state energy observable. A similar comparison between both
representations was done for the Kitaev Model, and after the physical decoupling, a
mean-field analysis was shown to be equivalent for both cases.136 In this reference, it is
also discussed that different MFTs may introduce distinct phase diagrams. Therefore, the
particular spin representation in the Parton construction for a physical problem needs
to be chosen cautiously after comparison with distinct methodologies, such as exactly
solvable models or numerical results, based on a universal physics which must be captured
in the fractionalized representation.

In the context of a Majorana decoupling of the Heisenberg Hamiltonian we have
seen that a p-wave superconductor MFT appears. From a numerical perspective, this
implicates major modifications on the main part of the VMC developed in this dissertation
since the wave function that describes p-wave superconductor phases is based on a Pfaffian
construction instead of Slater determinants.140 Indeed, Pfaffian wave functions can be
shown to be more general in the sense that they can still encompass the Slater determinant
Ansätze as well as special cases that represent superconducting phases Ansätze, for example.
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APPENDIX D – CHIRAL INTERACTION

In this Appendix, we derive equation (2.95) with more detail and present one
example on how to obtain the diagrams in Table 5. We reconsider the spin ladder operatorsS

+
i = f †

i↑fi↓ = Sxi + iSyi

S+
i = f †

i↓fi↑ = Sxi − iSyi
(D.1)

and 
Sxi = S+

i +S−
i

2 = f†
i↑fi↓+f†

i↓fi↑
2

Syi = S+
i −S−

i

2i = f†
i↑fi↓−f†

i↓fi↑
2i

Szi = (ni↑−ni↓)
2

. (D.2)

Using these operators, the chiral interaction in one up triangle (△),23,27

E123 = S1 · (S2 × S3) = Sx1S
y
2S

z
3 −Sx1S

z
2S

y
3 −Sy1S

x
2S

z
3 +Sy1S

z
2S

x
3 +Sz1S

x
2S

y
3 −Sz1S

y
2S

x
3 (D.3)

can be rewritten as

E123 = 1
8i
{[(

S+
1 − S−

1

) (
S+

3 + S−
3

)
−
(
S+

1 + S−
1

) (
S+

3 − S−
3

)]
(n2↑ − n2↓) +

+
[(
S+

1 + S−
1

) (
S+

2 − S−
2

)
−
(
S+

1 − S−
1

) (
S+

2 + S−
2

)]
(n3↑ − n3↓) +

+
[(
S+

2 + S−
2

) (
S+

3 − S−
3

)
−
(
S+

2 − S−
2

) (
S+

3 + S−
3

)]
(n1↑ − n1↓)

}
.

(D.4)

Before proceeding further, we quickly observe that using the anti-commutation relations
relations (2.24), the following properties can be derived{

niτ , S
+
j

}
= 0 and

{
niτ , S

−
j

}
= 0. (D.5)

Proof. {
niτ , S

+
j

}
=
{
f †
iτfiτ , f

†
j↑fj↓

}
=
{
f †
iτ , f

†
j↑fj↓

}
fiτ + f †

iτ

{
fiτ , f

†
j↑fj↓

}
=

=
[{
f †
iτ , f

†
j↑

}
fj↓fiτ + f †

j↑

{
f †
iτ , fj↓

}
fiτ
]

+
[
f †
iτ

{
fiτ , f

†
j↑

}
fj↓ + f †

iτf
†
j↑

{
fiτ , fj↓

}]
=

= −f †
j↑fiτδijδτ↓ + f †

iτfj↓δijδτ↑ = 0

⇒
{
niτ , S

−
j

}
=
({
niτ , S

+
j

})†
= 0.

■

When reordering each square bracket contribution in equation (D.4), one can note
that terms such as(

S+
1 S

+
2 − S−

1 S
−
2

)
(n3↑ − n3↓) =

(
f †

1↑f1↓f
†
2↑f2↓ − f †

1↓f1↑f
†
2↓f2↑

)
,
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corresponding to exchanges between sites with equal spin, are identically canceled for all
possible permutations. Therefore, the operator E123 can finally be understood as

E123 = i

4
{[
S−

1 S
+
3 − S+

1 S
−
3

]
(n2↑ − n2↓) +

[
S+

1 S
−
2 − S−

1 S
+
2

]
(n3↑ − n3↓) +

+
[
S+

2 S
−
3 − S−

2 S
+
3

]
(n1↑ − n1↓)

}
.

(D.6)

Finally, considering the Abrikosov representation and the order f †
i↑fi↓f

†
j↓fj↑ = −f †

i↑fj↑f
†
j↓fi↓

where all spin up operators are on the left side of the spin down operators, we can identify
the chiral contribution of one triangle plaquette in the fermionic spinon language as

ENL
χ = i

4

[
f †

2↑f3↑f
†
3↓f2↓ (n1↓ − n1↑) + f †

3↑f2↑f
†
2↓f3↓ (n1↑ − n1↓)

]
+

+
[
f †

3↑f1↑f
†
1↓f3↓ (n2↓ − n2↑) + f †

1↑f3↑f
†
3↓f1↓ (n2↑ − n2↓)

]
+

+
[
f †

1↑f2↑f
†
2↓f1↓ (n3↓ − n3↑) + f †

2↑f1↑f
†
1↓f2↓ (n3↑ − n3↓)

]
.

(D.7)

This equation states that the cyclical permutation in the chiral interaction is equivalent to
taking two effective exchanges from the six possibilities in an elementary triangle. There
are different and equivalent ways in the literature to express this interaction:

• From Motrunich et al, 2006,141 the chiral interaction is understood as

E123 = − sin
(
Φext

123

) i
4 (P123 − h.c.) , (D.8)

where Φext
123 is the gauge phase related to the cyclic permutation P123 = t12t23t31 in

each elementary up-pointing triangle. An analogous expression appears in Wen et al,
1989,23 as ∗

E123 = 2i (P123 − P132) . (D.9)

Using the property,141

P123 = P12 + P23 + P31 − 1 − h.c., (D.10)

and the Abrikosov representation, we arrive at

E123 = i

4 (P123 − P132) = i

4 [(P23 − P32) + (P31 − P13) + (P12 − P21) − h.c.] (D.11)

which is equivalent to equation (D.7).

• Finally, one additional representation was recently introduced as12,27

E123 = i

4 [ξ (1, 2) ξ (2, 3) ξ (3, 1) − ξ (1, 3) ξ (3, 2) ξ (2, 1)] , (D.12)

with the notation difference of the link operators given by ξ (l,m) = ∑
τ f

†
τ (l) fτ (m)

with l,m = 1, 2, 3 site indices.

∗ Here we must be careful with the extra factor of 2 since they define the Abrikosov representation
as Si = f †

iασαβfiβ instead of Si = 1
2f †
iασαβfiβ.



109

In Figure 32 we consider the contributions for both clockwise (a) and counter-
clockwise permutations (b) - first and second terms in equation D.12, respectively for the
configuration 001 from Table 5. After taking all possible virtual interactions, we arrive
at two effective exchanges for any possible spin configuration in the triangle. These are
represented in Table 5, alongside their connection with these cyclic permutations and our
analytical derivation for the chiral energy in the spinon language from equation D.7.

Figure 32 – Virtual exchanges for the clockwise (a) and counterclockwise permutations
(b) in the specific spin configuration 001. The final contribution, given by the
sum of each term in equation (D.12), can be seen in Table 5. The colors of
the spins are arbitrary and serve only to guide the eye.

Source: By the author.
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