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ABSTRACT

FERNANDEZ, M. F. Coherent light-matter interaction in dense atomic clouds.
2023. 124p. Ph.D. Thesis (Doctor in science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

The main objective of this research is to study a particular case of light-matter interaction:
the scattering of light in dense atomic samples. The regime of high atomic densities is
represented by samples where the distance between neighboring atoms is on the order
of the wavelength associated with the atomic transition. In this regime, short-range
atomic interactions cannot be neglected, and in these systems, we expect to observe
significant modifications in collective effects such as subradiance or superradiance. Overall,
the propagation of light through this type of system is not well-known to the scientific
community, and the existing models work to describe very specific situations.

To pave the way for achieving our overall goal, this work proposes an experimental setup to
obtain a dense cloud of 88Sr, which is the chemical species we work with in our laboratory.
For this purpose, atoms previously trapped using a Magneto-Optical Trap are transferred to
a Crossed Optical Dipole Trap. During the optimization and characterization of the optical
trap, problems were encountered in producing an image with quantitative information of
the atomic ensemble and in transferring a large number of atoms in a very small trapping
volume. These problems were resolved with the implementation of a Phase Contrast
Imaging system and the implementation of an Optical Molasses as an additional cooling
step. Under these conditions, we obtained a cloud that can be suitable for conducting
studies on collective effects, transitioning from the dilute to the dense regime.

The initial experiments, once our atomic ensemble was prepared, involve measuring the
coherent transmission of a low-intensity beam through the cloud. For this purpose, incident
light near the resonance of a dipolar transition of the type J = 0 ↔ J = 1 of 88Sr is used,
interacting with a homogeneous region of the sample. Simulations of this type of process
can be performed using the Coupled Dipole Model, which describes the overall response
of light scattering by the sample considering dipole-dipole interactions mediated by light.
With this work, we aim to advance the understanding of density effects by comparing the
coherent optical response of the dense cloud with the theory based on the Coupled Dipole
Model.

Keywords: Dense regime. Optical dipole trap. Coupled dipole model.





RESUMO

FERNANDEZ, M. F. Interação coerente luz-matéria em amostras atômicas
densas. 2023. 124p. Tese (Doutorado em Ciências) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

O principal objetivo desta pesquisa é estudar um caso particular da interação luz-matéria: o
espalhamento da luz em amostras atômicas densas. O regime de altas densidades atômicas
está representado por amostras onde a distância entre átomos vizinhos é da ordem do
comprimento de onda associado à transição atômica. Neste regime, as interações de curto
alcance não podem ser negligenciadas, e esperamos observar modificações importantes em
efeitos coletivos como a subradiância ou superradiância. No geral, a propagação da luz por
esse tipo de sistema é um processo não muito conhecido pela comunidade científica, e os
modelos existentes funcionam para descrever situações muito específicas.

Para abrir caminho ao cumprimento do nosso objetivo geral, neste trabalho é proposto um
arranjo experimental para obter uma nuvem densa de 88Sr, que é a espécie química com a
qual trabalhamos em nosso laboratório. Para isso, os átomos previamente aprisionados
usando uma Armadilha Magneto-Óptica são transferidos para uma Armadilha Óptica de
Dipolo cruzada. Durante o processo de otimização e caracterização da armadilha óptica,
foram enfrentados problemas para produzir uma imagem com informação quantitativa
do ensemble atômico e para transferir um número grande de átomos num volume de
aprisionamento muito pequeno. Esses problemas foram resolvidos com a implementação
de um sistema de Imagem de Contraste de Fase e a implementação de um Melaço Óptico
como etapa extra de esfriamento. Nessas condições, obtivemos uma nuvem que pode ser
apropriada para realizar estudos de efeitos coletivos, podendo transicionar desde o regime
diluído até o regime denso.

Os primeiros experimentos realizados, uma vez preparado nosso ensemble atômico, consis-
tem em medir a transmissão coerente de um feixe de baixa intensidade pela nuvem. Para
isso, é usada uma luz incidente próxima da ressonância de uma transição dipolar do tipo
J = 0 ↔ J = 1 do 88Sr, que interage com uma região homogênea da amostra. Simulações
desse tipo de processo podem ser realizadas usando o Modelo de Dipolos Acoplados, o qual
descreve a resposta total do espalhamento da luz pela amostra considerando as interações
dipolo-dipolo mediadas pela luz. Com este trabalho, pretendemos avançar no entendimento
dos efeitos de densidade, realizando uma comparação entre a resposta coerente óptica da
nuvem densa e a teoria baseada no Modelo de Dipolos Acoplados.

Palavras-chave: Regime denso. Armadilha óptica de dipolo. Modelo de dipolos acoplados.
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1 INTRODUCTION

Light-matter interaction is a very general phenomena that can be manifested in
several ways, being constantly present in life and nature. The vivid colors of the sky
seen during sunsets and sunrises, the emergence of rainbows, or even the biochemical
reactions that lead to the formation of visual images in the eyes of humans and animals,
are just a few examples of effects resulting from the propagation and scattering of light
through different types of material media. Due to great diversity of phenomena, there
is a difficulty in developing a theoretical description of light-matter interaction for the
general case. Instead, there are several models to describe specific situations, but they
present limitations, functioning under different regimes of density, intensity, spectral width,
geometry or structure of the sample.

In atomic physics, the interaction of light with a single atom have been studied for
more than four decades allowing the understanding of processes like emission, absorption,
scattering (1) or others related to coherence and quantum interference (2). When transi-
tioning to atomic ensembles, the exploration of light-matter interaction not only allows
the continued study of aforementioned phenomena but also leads to the emergence of
collective effects (3). Collective effects refer to phenomena that arise when a large number of
individual atoms interact collectively with light. The emergence of these phenomena comes
from the cooperative behavior of the particles, leading to effects that cannot be explained
by considering each atom in isolation (4–6). In ensembles of atoms with sufficiently high
density of scatterers, collective effects can lead to cooperative emission, which consist in
an enhanced or suppressed emission rate compared to what would be expected if each
atom were considered independently. These enhancement or suppression of the emission
rate are nothing less that the phenomena known as superradiance and subradiance (7–9),
which are one of the most studied collective effects, and can be monitored by measuring
the time evolution of the excited collective state population (10). Another phenomenon
related to the collective behavior of a group of atoms is the cooperative shift (11), which
is a shift in the frequency of the emitted or absorbed light by the atoms.

Collective effects can be studied in various kinds of atomic ensembles, such as
thermal atoms (12), Rydberg atoms (13, 14), or atoms inside an optical cavity (15). In
particular, the advances in laser cooling and trapping techniques (16–19), have opened
the possibility of studying light scattering by a more controlled atomic system that can
present low temperatures, low collision rates and the chance of achieving samples with
very high spatial densities.

According to the density regime of the atomic sample, which can be dilute or
dense, collective effects studies can be divided in two different groups. The dilute regime



18

is defined by ρ/k3 ≪ 1, being ρ the spatial density and k the wave-number associated
to the atomic transition, which is directly related to the wavelength of the transition
through the expression λ = 2π/k. In 2018, Skipetrov and Sokolov established a criterion
for the transition between the diffusive behavior of a point scatterers medium and the
emergence of Anderson localization of light (20). This criterion consists in an adaptation
of the traditional Ioffe-Regel criterion to the context of the scalar approximation of light
polarization when describing Anderson localization of light waves in 3D disordered media
(21), and represents the most used definition for the dense regime by the expression
ρ/k3 ≳ 0.08, which can also be expressed as ρλ3 ≳ 20. Defining the scattering mean free
path ℓs as the average distance over which a moving particle travels before substantially
changing its direction or energy, which in our specific context can be understood as the
typical distance between two consecutive scattering events, the Ioffe-Regel criterion also
leads to kℓs < 1 for the dense regime. The product kℓs is a quantification of the number
of oscillations of light between two scattering events (22–24). Therefore, kℓs < 1 indicates
a condition where the light scattered by a scatterer point goes to the next scattering event
before completing one oscillations, which violates the classical nature of wave transport.
The phenomena of light diffusion by an atomic ensemble and Anderson localization will
be tackled soon in this introduction.

The collective effects, in essence, need more than one atom interacting with the
same light mode. In the past the majority of the experiments focuses on achieving this
through the production of atomic samples with high optical depths. For this thesis, we
would like to study this problem from the perspective of high spatial density samples.
The investigation of the dense regime could have some practical applications and would
allow for a better understanding of some processes. In biological science, the propagation
of light in diffusive media can be applied for imaging biological tissues (25–27), being
very relevant for medical diagnostic methods. Also, mechanisms as photosynthesis, which
is responsible for the production of food and oxygen in ecosystems, can be understood
as coherent effects of the interaction between light and matter in systems that capture
light energy (28). In the context of quantum memories, it has been demonstrated that
increasing the density of the storage medium (usually a cold atomic sample (29)) produces
an improvement of the storage efficiency (30, 31), but also can brings about additional
quantum noise that degrades the storage fidelity (32).

In general, collective effects of light scattering in the regime of high densities, are
largely unknown. Different from the dilute regime, easier to achieve experimentally, the
dense regime has been little studied and the existing models show qualitative discrepancies
with the few available experimental observations (8,33,34). These discrepancies are mostly
subject to complications due to the dense regime, where the short-range interactions
between the scatterers within the atomic ensemble can lead to the observation of important
modifications in collective effects. The main goal of this PhD research is to explore the
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particular case of light-matter interaction in dense samples. Basically, we propose to
advance the construction of a fundamental understanding of the processes underlying
light scattering by dense samples through an experimental investigation that is as straight
forward as possible, aiming to unequivocally isolate the effects of density.

In order to complement the motivation of this work, and specify the contribution
of this work to the field, we will make a review of some concepts in the following sections.

1.1 Light diffusion in atomic samples

The propagation of light by a cold atomic cloud with a large number of scatterers,
gives place to a multiple scattering process (35), in which a photon undergoes successive
scattering events by multiple atoms within the ensemble. When light travels distances
much larger than the mean free path, the incoming wave that polarize an atom can be
re-emitted and polarize another atom. If this random process is repeated many times, the
transport of the light wave through the sample becomes diffusive on average (36). In this
situation, the resulting light scattered by the whole atomic system will be given by the
interference of the electric fields scattered independently, and the propagation of light can
be described by a classical equation of diffusion (37):

∂ϕ(r, t)
∂t

= DB ∆ϕ(r, t) − γ ϕ(r, t) + S(r, t) , (1.1)

where ϕ(r, t) represents the local intensity of light within the sample, S(r, t) is a term
describing the incident light, DB is the Boltzmann diffusion constant and γ is the absorption
rate of light by the medium. The absorption rate is different than zero if the medium
scatters part of the absorbed incident light in an inelastic way, producing a non conservation
of energy in the local system. For cold atomic ensembles, absorption rate is usually zero
(γ = 0).

The Boltzmann diffusion constant is particularly relevant in the study of transport
phenomena in gases, where particles undergo random motion and collisions. This constant
is related to the mean free path of light energy transport through the particles of the
atomic gas and the average velocity of this transport, by the expression:

DB = vℓt

3 . (1.2)

In general, the ℓt is not necessary equal to the scattering mean free path ℓs. Indeed, ℓt > ℓs

when the scattering process in not isotropic (38).

1.2 Anderson localization of light

As mentioned above, the Ioffe-Regel criterion represents the transition between
light diffusion and Anderson localization, while increasing the density of point scatterers.
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Anderson localization of light can be understood as a phenomenon where the propagation
of light through a disordered medium becomes highly localized, which means that the
scattered light will not spread over large distances. The name of this effect was after the
physicist Philip W. Anderson proposed the idea in the context of electron transport in
disordered systems (39). After the discovering, many works have been published reporting
the observation of Anderson localization in different kind of systems (40).

For systems where kℓs >> 1, the equation 1.1 is valid to describe the transport
of light. When the scattering mean free path is decreased until kℓs < 1, destructive
interference between the many possible diffusion paths start to be important, giving place
to a reduction of the diffusion constant, following the expression:

D ∼ DB

(
1 − 1

(kℓs)2

)
. (1.3)

This reduction can eventually produce a total suppression of the light diffusion, presenting
the Anderson localization phenomena when D = 0.

The emergence of Anderson localization of light by 1D and 2D atomic systems,
have been theoretically predicted and experimentally verified (41). However, the attempts
of experimental observations in 3D dense atomic samples, have been a failure showing non
conclusive results. Theoretical simulations in these kind of systems predicts the absence of
Anderson Localization (42). The reason seems to be related to the vectorial nature of light
polarization, which induces additional terms in the interaction between one dipole and
the near field produced by the neighbour scatterers, allowing to couple new polarization
channels that open new paths for the escaping of light. Probing the effects of this vectorial
nature of light scattering is part of this work.

1.3 Coherent transmission by dense samples

A way to detect density effects of an atomic ensemble can be done by measuring
the coherent transmission spectrum by a near resonant low-intensity light. The coherent
transmission represents the projection of the total electric field, which is the sum of the
incident plus the emitted one, in the mode of the incident light beam. In other words, the
coherent transmission will indicate how much of the spatial mode of the incident light
passes through the atomic sample, preserving the original phase and polarization state.

In the dilute regime, the coherent transmission can be fully explained by the
Coupled-Dipole Model, which describes the total response of the cloud by considering
dipole-dipole interactions induced by the light (43–48). These dipole-dipole interactions
occur when the electric dipole moment induced by the light in one atom influences the
electric dipole moments of nearby atoms, leading to cooperative effects among the dipoles
in the atomic ensemble. The Coupled-Dipole Model is a classical description since the
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atomic dipoles have a linear response to the incident laser field and to the light scattered
by all the other dipoles.

Coherent transmission of light by dense atomic samples was investigated using 87Rb,
observing that the Coupled-Dipole Model does not explain the behavior experimentally
observed in the dense regime (34, 49). However, the levels structure of 87Rb, with a
degenerate ground state, makes it not ideal to execute this kind of study. It is thus
fundamental to test this model with a simpler dipolar transition (a J = 0 ↔ J = 1 one)
as considered in the theoretical calculations. In this ideal condition, we should observe
a correspondence between experiments and theory, or identify the necessity of including
other effects on the model, such as atomic motion or other effects not previously considered
by the community.

1.4 Content of this thesis

In our lab, we cool and trap 88Sr atoms. In this atomic species we can find,
among lots of interesting properties that will be discussed over the text, the presence
of J = 0 ↔ J = 1 dipolar transitions. This makes the 88Sr perfect for studies of light
scattering and compare the results with the predictions of the Coupled-Dipole Model.

In this thesis, we propose an experimental setup for obtaining a dense atomic
cloud of 88Sr, which is the most abundant isotope of Strontium. We first trap the atoms
by using a Magneto Optical Trap and afterwards we want to transfer them to a tight
Optical Dipole Trap, obtaining the density needed for observing collective effects in the
dense regime. Once in the atomic dense regime, we are interested in studying, at first,
the coherent transmission of low intensity light by this cloud and search for signatures
of density effects in our system. Then, our plan is to continue studying the emergence of
non-classical correlations by measuring the g(2)(τ) correlation function (50) and searching
for signatures of the absence of Anderson Localization of light in 3D systems.

This PhD work is focused on the first part of this dense regime studies: obtaining
a dense atomic cloud, and then performing coherent transmission measurements. The
objectives of this project can be summarized as:

• Implementation and characterization of a dense atomic cloud trapped in an Optical
Dipole Trap.

• Perform simulations based on the Coupled-Dipole Model.

• Measure coherent transmission spectra.

This document will resume the progress for the implementation of an experimental
setup that allows the realization of collective effects studies. Chapter 2 will introduce
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some important concepts and the mathematical description of the Coupled-Dipole Model.
Chapter 3 and 4 will present our experimental setup for cooling and trapping, describing
the implemented system to obtain an ultracold cloud and achieving the regime of high
density. Chapter 5 will show some simulations of coherent transmission spectra in the
context of the Coupled-Dipole Model calculations, trying to model our real experimental
conditions. The experimental implementation of coherent transmission measurements,
will be presented at Chapter 6, where also will be shown our results about the presence
of density effects in our atomic system. Chapter 7 will show the conclusions and future
perspectives towards the achievement of the objectives of our research group.
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2 LIGHT-MATTER INTERACTION

In this first chapter we will review the most important aspects of the coherent
interaction between electromagnetic radiation and atomic systems. For this, we are going
to introduce the mathematical formalism to theoretically describe our system. In the first
part, we are considering the case of the light interacting with a single atom, but then we
generalize to the many atoms systems situation. In that second part, we deduce the basic
equations of the Coupled Dipole Model and discuss some of the approximations made to
find them.

2.1 Single Atom

Let us consider a simple situation of one atom with center of mass at the position
R = (x, y, z) interacting with a laser field. The radiation field is a monochromatic laser
with frequency ωl and the atom has its transition from the ground state to an excited
level of natural frequency ω0. If the atomic transition is closed and |ωl − ω0| << ωl, ω0, the
excitation probability for another atomic level is very low; so basically, we are considering
a two-level atom interacting with a laser field that can produce transitions from the ground
state |g⟩ to an excited level |e⟩. An important statement in this first situation that we are
considering is that light is going to be treated as a scalar wave, which means that only the
intensity and phase are considered, but the polarization state of the light is not explicitly
taken into account.

In these simplified conditions, putting the origin of energies in the energy of the
ground state, we can write the Hamiltonian for the free atom as follows:

Ĥ0 = ℏω0|e⟩⟨e| = ℏω0σ̂
+σ̂− , (2.1)

where σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e|, are respectively the raising and lowering operators for
the transition |g⟩ ↔ |e⟩.

Assuming the wavelength of the incident field much greater than the atomic
dimensions, the Hamiltonian of the interaction between the electromagnetic radiation and
the atom in the first order is given by the electric dipole approximation, mediated by the
electric dipole operator,

Ĥi = − d̂ · El(R) . (2.2)

The electric dipolar approximation allows us to neglect higher-order terms for
the coupling between the atom and the radiation, such as magnetic dipolar and electric
quadrupolar, which are at least of order a0/λ ≈ 10−4 (a0 is the Bohr radius) with respect
to the electric dipolar moment. In this case, for an electric-dipole-allowed atomic transition,
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the electric dipole operator d̂ is given by

d̂ = d |g⟩⟨e|ϵ + h.c. = d σ̂−ϵ + d∗ σ̂+ϵ∗ , (2.3)

where ϵ is an unitary vector in the direction of the induced electric dipole and d is the
scalar matrix element of the electric dipole moment between the ground and excited level.
For the scalar model, the induced dipole is in the same direction as the incoming electric
field, so ϵ = ϵl where ϵl is the unitary vector that represents the polarization of the
incoming beam.

The electric field for the incoming laser, considered in equation (2.2), that we
assume as being classical due to the high average number of photons of the laser beam,
can be written as

El(R) = Re
[
El(R)e−iωltϵl

]
, (2.4)

where El(R) is the scalar electric field amplitude.

Finally, the total Hamiltonian of the system can be expressed as follows:

Ĥ = Ĥ0 + Ĥi = ℏω0σ̂
+σ̂− − 1

2
(
d σ̂−ϵ + d∗ σ̂+ϵ∗

) (
El(R)e−iωltϵl + E∗

l (R)eiωltϵ∗
l

)
. (2.5)

In this expression for the total Hamiltonian there are some anti-resonant terms that
we can neglect with no physical consequences since they induce fast and small-amplitude
oscillations that averages out in the typical timescales of observation of the physical system.
The elimination of these terms is an approximation known as rotating wave approximation
(RWA) (51). A way to find these non-resonant terms is to redefine new operators in a
rotating reference frame:

β̂− = eiωltσ̂−

β̂+ = e−iωltσ̂+ .

These expressions replace the atomic coherences by new operators, in a reference frame
that rotates with the phase of the incoming laser light; basically, we are considering that for
quasi-resonant excitation, the coherences induced in the system oscillates with a frequency
close to the frequency of the radiation field exciting the atomic transition. Separating the
time-dependence of the atomic coherences, we can consider the new operators have a slow
variation on time.

Replacing the atomic coherences in equation (2.5) by the new ones and considering
a quasi-resonant excitation, we can perform the RWA neglecting the terms that oscillate
with frequencies 2ωl since their temporal average is ⟨ei2ωlt⟩ = 0. In this way, we obtain a
new expression for the total Hamiltonian given by

Ĥ = ℏω0β̂
+β̂− − ℏ

2
[
Ω(R) β̂− + Ω∗(R) β̂+

]
. (2.6)
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Here Ω(R) = d∗El(R)
ℏ is the Rabi frequency of the coupling between the incoming light and

the atomic transition. Note that we used ϵ · ϵl = 1, which is only true in the context of
the scalar model of light.

We are now interested in calculating the time derivative of the operators β̂− and β̂+

in the Heisenberg representation. For that we are going to apply the following equation
for any operator Â

dÂ

dt
= i

ℏ
[
Ĥ, Â

]
+ ∂Â

∂t
, (2.7)

and, using the commutation relations:[
β̂−, β̂−

]
=
[
β̂+, β̂+

]
= 0[

β̂−, β̂+
]

= |g⟩⟨g| − |e⟩⟨e| ,

we obtain:

dβ̂−

dt
= i∆β̂− + iΩ

2 (2.8)

dβ̂+

dt
=
(

dβ̂−

dt

)†
, (2.9)

where the parameter ∆ = ωl − ω0 represents the detuning of the laser with respect to the
atomic resonance. Note that here we considered a new approximation: we put ourselves
in the linear regime limit, i.e. supposing that the population of the excited state is much
smaller than one, so we have |g⟩⟨g| − |e⟩⟨e| ≈ 1. This means that we neglected saturation
effects of the atomic transition, such as saturation broadening of the transition, or a
non-linear dependence of the susceptibility of the atomic cloud on the electric field of the
incoming light.

The restriction to describing only the atom and the laser field and not the light
spontaneously emitted in arbitrary directions with arbitrary polarization results in a huge
simplification. Also the spontaneous emission cannot be properly handled within the
framework of the classical description for the electromagnetic field that was done until now.
The true nature of the spontaneous emission process emerges from the Wigner-Weisskopf
theory in which it is shown that an atom in the excited state decays exponentially as a
result of the fluctuations of the quantized vacuum field. Details about this theory will be
presented in the next section.

2.2 Many Atoms

2.2.1 Hamiltonian of the system

Let us consider now an ensemble of N identical atoms with frequency ω0 and each
atom j with center of mass at the position Rj = (xj, yj, zj). As can be seen in figure 1, we
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Figure 1 – Interaction between a light field and a simple dipolar transition J = 0 ↔ J = 1,
with detuning ∆ = ωl − ω0.

Source: By the author.

have a similar situation as the one on the single atom case, but now we are not considering
a two-level system. Instead, we have a laser field with frequency ωl close to the resonance
of a simple dipolar transition J = 0 ↔ J = 1, from a nondegenerate ground level |gj⟩
to the degenerate excited level, composed of three sublevels, with angular momentum in
the +z direction equal to −1, 0 and +1, given respectively by |ej,−1⟩, |ej,0⟩ and |ej,+1⟩. In
this case, the transition amplitudes for the atoms depend on the light polarization: light
with σ+ polarization (with respect to z axis) will only excite the transition |gj⟩ ↔ |ej,+1⟩,
while light with σ− polarization excites only the transition |gj⟩ ↔ |ej,−1⟩. Light with linear
polarization will excite a specific coherent superposition of the |ej,±1⟩ excited levels. The
transition |gj⟩ ↔ |ej,0⟩ could happen through emission and re-absorption of photons within
the atomic cloud or excitation by light with a different propagation direction.

Note that in this new situation, we are not only considering many atoms, but also
we are taking into account the full vector nature of the electromagnetic field. This is known
as vectorial model of light, and it is more appropriate when the polarization state of the
scattered light is important.

For convenience, we replace the basis {|ej,−1⟩, |ej,0⟩, |ej,+1⟩} by {|ej,x⟩, |ej,y⟩, |ej,z⟩}
for the excited states. In this new basis, the description of the linear polarization is simplified:
light polarized in the x direction will excite only the atomic transition |gj⟩ ↔ |ej,x⟩ while
light polarized in y excite the transition |gj⟩ ↔ |ej,y⟩. This states are written as a function
of the former ones as follows

|ej,x⟩ = −|ej,+1⟩ − |ej,−1⟩√
2

|ej,y⟩ = i
|ej,+1⟩ + |ej,−1⟩√

2
|ej,z⟩ = |ej,0⟩

In this situation, the raising and lowering operators for the atomic transition
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|gj⟩ ↔ |ej,α⟩ (with α = x, y, z), can be expressed respectively by σ̂+
j,α = |ej,α⟩⟨gj| and

σ̂−
j,α = |gj⟩⟨ej,α|. In the new basis defined above, we can write the Hamiltonian for the free

atoms, as follows:

Ĥ0 =
∑

j=1...N
α=x,y,z

ℏω0 |ej,α⟩⟨ej,α| =
∑

j=1...N
α=x,y,z

ℏω0 σ̂+
j,α σ̂−

j,α , (2.10)

Processes as spontaneous emission and re-absorption of photons by neighbours
atoms are relevant for the study of atomic ensembles. Those are mediated by the free
quantized vacuum modes of the electromagnetic field, where their free Hamiltonian is
composed by the sum of the energy of all vacuum modes, as we can see below:

ĤEM =
∑
k,ϵ

ℏωk â†
k,ϵ âk,ϵ . (2.11)

Here âk,ϵ and â†
k,ϵ are the annihilation and creation operators of a photon in the mode

determined by the wavevector k and frequency ωk = ck; ϵ is an unitary vector pointing at
the polarization direction of the mode. In this Hamiltonian we eliminated the constant
term ∑

k,ϵ
ℏωk

2 with no physical consequence for our problem since effects related with
the zero-point energy in vacuum (as the Casimir effect) are not relevant for the physical
phenomena we are studying.

Using again the electric dipole approximation to obtain the Hamiltonian of the
interaction between the electromagnetic radiation and the atoms, we have:

Ĥi = −
∑

j=1...N

d̂j ·
(
Ê(Rj) + El(Rj)

)
, (2.12)

and this time the electric dipole operator for each atom d̂j is given by:

d̂j =
∑

α=x,y,z

[
d |gj⟩⟨ej,α|ϵα + h.c.

]
=

∑
α=x,y,z

[
d σ̂−

j,αϵα + h.c.
]

, (2.13)

where ϵα is an unitary vector in the α direction. We see that the electric dipolar moment
in the x (respectively y,z) direction couples only the ground state to the |ej,x⟩ (respectively
|ej,y⟩, |ej,z⟩) excited state.

In the expression for Ĥi we have separated the electric field of light in two compo-
nents: Ê(Rj) the electric field operator of the quantized electromagnetic radiation at the
position Rj and El(Rj) the electric field for the incoming coherent monochromatic laser
light. The first one can be written as

Ê(Rj) = i
∑
k,ϵ

√
ℏωk

2ε0V

(
âk,ϵ ϵ eik·Rj + â†

k,ϵ ϵ∗e−ik·Rj
)

, (2.14)

where ε0 is the vacuum permittivity and V is a quantization volume; an artificial volume
into which the quantized electromagnetic modes are obtained, that is made equal to infinity
at the end of calculations if the system is in free space (52).
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The electric field for the incoming laser, due to its approximation to a coherent
state, it is exactly the same as the one considered in the single atom case (equation (2.4)):

El(Rj) = El(Rj)e−iωltϵl + E∗
l (Rj)eiωltϵ∗

l

2 . (2.15)

Note that here we can represent different configurations for the polarization of the incident
light: a linear polarization in the x direction by ϵl = ϵx, or a right-hand circular polarization
by ϵl = −(ϵx + iϵy)/

√
2. For instance, if we consider the excitation laser light as a plane

wave, the scalar electric field amplitude is simply given by a constant value: El(R) = E0.
In the real experimental conditions we are interested in a Gaussian profile of the laser, but
the details about it are going to be discussed in Chapters 5 and 6.

Finally, the total Hamiltonian of the system composed by N atoms interacting
with an incoming laser and the quantized vacuum field, can be expressed as follows:

Ĥ = Ĥ0 + ĤEM + Ĥi =
∑

j=1...N
α=x,y,z

[
ℏω0σ̂

+
j,ασ̂−

j,α − 1
2
(
d σ̂−

j,αϵα + d∗ σ̂+
j,αϵ∗

α

)
(
El(Rj)e−iωltϵl + E∗

l (Rj)eiωltϵ∗
l

) ]
+
∑
k,ϵ

ℏωk â†
k,ϵ âk,ϵ

− i
∑

j=1...N
α=x,y,z

∑
k,ϵ

√
ℏωk

2ε0V

[
d eik·Rj σ̂−

j,α âk,ϵ ϵα · ϵ + d∗eik·Rj σ̂+
j,α âk,ϵ ϵ∗

α · ϵ

+ d e−ik·Rj σ̂−
j,α â†

k,ϵ ϵα · ϵ∗ + d∗e−ik·Rj σ̂+
j,α â†

k,ϵ ϵ∗
α · ϵ∗

]
, (2.16)

We can apply again the RWA, this time separating the time-dependence not only
for the atomic coherences, but also for the radiation operators, so the new operators can
be redefined as follows:

β̂−
j,α = eiωltσ̂−

j,α

β̂+
j,α = e−iωltσ̂+

j,α

b̂k,ϵ = eiωktâk,ϵ

b̂†
k,ϵ = e−iωktâ†

k,ϵ .

Neglecting the terms that oscillate with frequencies ωl + ωk and 2ωl, the new Hamiltonian
of the system is

ĤN =
∑

j=1...N
α=x,y,z

[
ℏω0β̂

+
j,αβ̂−

j,α − ℏ
2
(
Ωj,α β̂−

j,α + Ω∗
j,α β̂+

j,α

)]
+
∑
k,ϵ

ℏωk b̂†
k,ϵ b̂k,ϵ

− iℏ
∑

j=1...N
α=x,y,z

∑
k,ϵ

[
g∗

k,ϵ,α eik·Rj ei(ωl−ωk)tβ̂+
j,αb̂k,ϵ + gk,ϵ,α e−ik·Rj ei(ωk−ωl)tβ̂−

j,αb̂†
k,ϵ

]
,

(2.17)
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with Ωα(Rj) = d∗El(Rj)
ℏ ϵ∗

α ·ϵl the Rabi frequency of the coupling between the incoming light
and the atomic transition for each atom, and gk,ϵ,α = d

√
ωk

2ℏε0V
ϵα · ϵ∗ is the Rabi frequency

of the scalar coupling between the atomic transition and a vacuum electromagnetic mode.

An interesting thing to highlight about the RWA is that this approximation
eliminated the terms proportional to σ̂+

j,αâ†
k,ϵ and σ̂−

j,αâk,ϵ. They describe the situations
where the atom is excited and a photon is created in the mode (k, ϵ), or the atom is
de-excited and a photon is eliminated in the mode (k, ϵ), which clearly violates the energy
conservation.

2.2.2 Vectorial Coupled Dipole Model (CDM)

In order to continue the mathematical treatment to obtain the equations that
couples all the electrical dipole moments induced in the atomic system, we will use the
equation (2.7) to calculate the time derivative of the operators β̂−

j,α, β̂+
j,α, b̂k,ϵ and b̂†

k,ϵ in
the Heisenberg representation.

The atomic operators: β̂−
j,α and β̂+

j,α, and the radiation operators: b̂k,ϵ and b̂†
k,ϵ follow

the commutation relations:[
β̂−

j,α, β̂−
j′,α′

]
=
[
β̂+

j,α, β̂+
j′,α′

]
= 0[

β̂−
j,α, β̂+

j′,α′

]
= δj,j′δα,α′

(
|gj⟩⟨gj| − |ej,α⟩⟨ej,α|

)
[
b̂k,ϵ, b̂k′,ϵ′

]
=
[
b̂†

k,ϵ, b̂†
k′,ϵ′

]
= 0[

b̂k,ϵ, b̂k′,ϵ′

]
= δk,k′δϵ,ϵ′[

β̂−
j,α, b̂k,ϵ

]
=
[
β̂−

j,α, b̂†
k,ϵ

]
=
[
β̂+

j,α, b̂k,ϵ

]
=
[
β̂+

j,α, b̂†
k,ϵ

]
= 0 .

Using these properties for the operators and considering the linear regime limit, we find
the equations for the evolution of the operators in the Heisenberg picture:

dβ̂−
j,α

dt
= i∆β̂−

j,α + iΩj,α

2 −
∑
k,ϵ

g∗
k,ϵ,α eik·Rj ei(ωl−ωk)tb̂k,ϵ , (2.18)

db̂k,ϵ

dt
=

∑
j=1...N
α=x,y,z

gk,ϵ,α e−ik·Rj ei(ωk−ωl)tβ̂−
j,α , (2.19)

dβ̂+
j,α

dt
=
(dβ̂−

j,α

dt

)†
, (2.20)

db̂†
k,ϵ

dt
=
(

db̂k,ϵ

dt

)†
. (2.21)

Note that here, the equations for the time evolution of the atomic coherences are
similar to the ones obtained for the single atom situation (equations (2.8) and (2.9)) if we
neglect, in the many atoms case, the interaction between the atoms and the vacuum field
modes.
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We can now replace the two linear differential equations (2.18) and (2.19) by one
differential-integral equation. For that we integrate equation (2.19) in order to find a
formal solution for the operator b̂k,ϵ,

b̂k,ϵ(t) = b̂k,ϵ(0) +
∑

j=1...N
α=x,y,z

gk,ϵ,αe−ik·Rj

∫ t

0
dt′ei(ωk−ωl)t′

β̂−
j,α(t′) , (2.22)

and then, replacing this solution in equation (2.18), we obtain

dβ̂−
j,α

dt
= i∆β̂−

j,α + iΩj,α

2 −
∑
k,ϵ

∑
m=1...N
γ=x,y,z

g∗
k,ϵ,α gk,ϵ,γ eik·(Rj−Rm)

∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,γ(t′) .

(2.23)

The last term of the equation above represents an effective coupling between the operator
β̂−

j,α and each one of the operators β̂−
m,γ. We can write this term as

Bj,α,m,γ(t) =
∑
k,ϵ

g∗
k,ϵ,α gk,ϵ,γ eik·(Rj−Rm)

∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,γ(t′) , (2.24)

such that equation (2.23) can be expressed as

dβ̂−
j,α

dt
= i∆β̂−

j,α + iΩj,α

2 −
∑

m=1...N
γ=x,y,z

Bj,α,m,γ(t) . (2.25)

To calculate the equation (2.24) we apply the so-called Weisskopf-Wigner treatment
of the coupling between atoms and the modes of the electromagnetic radiation (53). First,
we replace the summation over k by an integral:∑

k
→ V

(2π)3

∫ ∞

0
dkk2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ ;

then, in order to solve this integrals, we consider ωk ∼ ω0. This approximation relies on
the fact that only values of ωk close enough to ωl (such the |ωl − ωk| ≲ 1

|t−t′|) will play a
role for all t′ in the time integration; for all other values, the term ei(ωl−ωk)(t−t′) will quickly
average to zero in the time integration.

Another approximation we also performed to solve the integrals mentioned above
was the rapid transit approximation (also known as Markov approximation (54)). This
consist in neglecting the retardation effects i.e. consider that the time needed for the light
emitted by one atom to travel through the cloud and reach another atom is negligible with
respect to all other time scales of the problem. This is only true for small atomic clouds.

The details of the application of the Weisskopf-Wigner treatment and the Markov
approximation can be found on Appendix A, and with these calculations we find the
following solution for Bj,α,m,γ(t):

Bj,α,m,γ(t) = Γ
2 Vj,α,m,γ β̂−

m,γ(t) , (2.26)
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where the natural decay rate of the atomic level Γ is given by

Γ = d2ω3
0

3πε0ℏc3 , (2.27)

and the adimensional matrix elements Vj,α,m,γ

Vj,α,m,γ = 3
2

eik0Rjm

ik0R3
jm

[
R2

jmϵ∗
α · ϵγ − (Rjm · ϵ∗

α)(Rjm · ϵγ)

+
(

i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jmϵ∗
α · ϵγ − 3(Rjm · ϵ∗

α)(Rjm · ϵγ))
]

, (2.28)

Vj,α,j,γ = δα,γ (2.29)

where Rjm = Rj − Rm is the vector that goes from atom j to atom m, and Rjm is the
inter-atomic distance. Here we used the wavenumber associated to the atomic transition
defined by k0 = ω0

c
.

Note that the effective coupling between two atoms (j and m) of the cloud is
proportional to three terms: (k0Rj,m)−1, (k0Rj,m)−2 and (k0Rj,m)−3. In the case of dilute
atomic clouds (low spatial density), the last two terms, known as short-range terms, can
be neglected since they are very small in comparison with the long-range term (k0Rj,m)−1

for typical nearest-neighbour distances. However, we are considering all three terms since
we are interested in the study of dense atomic clouds.

Replacing equation (2.26) in equation (2.25), we have

dβ̂−
j,α

dt
= i∆β̂−

j,α + iΩj,α

2 − Γ
2

∑
m=1...N
γ=x,y,z

Vj,α,m,γ β̂−
m,γ , (2.30)

which represent a set of effective time evolution equations for the atomic operators only.
These equations are known as the vectorial Coupled Dipole Model (CDM), because
the evolution of each component α of the vectorial dipole moment of atom j is effectively
coupled to each component γ of the vectorial dipole moment of each other atom m through
the matrix V, of dimension 3N × 3N and elements Vj,α,m,γ.

Once again we can rewrite this set of differential equations in order to explicitly
separate its homogeneous and inhomogeneous terms

dβ̂−
j,α

dt
= iΩj,α

2 +
∑

m=1...N
γ=x,y,z

Kj,α,m,γ β̂−
m,γ , (2.31)

and define here the so-called kernel of the interaction, given by

Kj,α,m,γ = − Γ
2 Vj,α,m,γ + i ∆ δj,m δα,γ , (2.32)

which is a 3N × 3N matrix that determines the effective coupling between the atomic
dipoles, mediated by the modes of the vacuum field.
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2.2.3 The Eigenmodes of the CDM

If we consider, in the equations of the CDM, the absence of laser excitation (Ωj,α

= 0) and the absence of coupling between atoms (Kj,α,m,γ = 0 for j ̸= m), we have

dβ̂−
j,α

dt
=
(

i∆ − Γ
2

)
β̂−

j,α . (2.33)

Here we used the equation (2.29) since the only terms different than zero are the ones for
j = m in the V matrix.

This set of equations has the same solution for each atom since, in absence of
coupling between the atoms, each one of them behave as if it was alone in space. The
solutions are given by:

β̂−
j,α(t) = β̂−

j,α(0)e(i∆− Γ
2 )t . (2.34)

Having an identical behavior, we can understand that: for a single atom, the phase of
its coherence turns with the relative frequency ∆ in the light frequency rotating frame,
and the coherence amplitude decays with a rate Γ

2 . It is easy to demonstrate that the
population of the excited states decay with rate Γ:

d(β̂+
j,αβ̂−

j,α)
dt

=
dβ̂+

j,α

dt
β̂−

j,α +
dβ̂−

j,α

dt
β̂+

j,α

=
(

− i∆ − Γ
2

)
β̂+

j,αβ̂−
j,α +

(
i∆ − Γ

2

)
β̂+

j,αβ̂−
j,α = −Γβ̂+

j,αβ̂−
j,α . (2.35)

Going back to including the effective coupling between the atomic dipoles in
equation (2.33), so we have:

dβ̂−
j,α

dt
=

∑
m=1...N
γ=x,y,z

Kj,α,m,γ β̂−
m,γ , (2.36)

the behavior of the dipoles will not anymore be independent of each other. To solve this set
of 3N first-order differential equations we need to diagonalize the matrix K. This matrix
is not Hermitian but it is symmetric, so we can still find a set of 3N numbers λn and
vectors vn, for n ∈ {1, ..., 3N}, such that Kvn = λnvn. The vectors vn are called the
right-side eigenvectors of the matrix K, and the left-side eigenvectors are simply given by
the transpose of the right-side eigenvectors (vn)t.

By analogy with the independent-atom picture, we can write the eigenvalues of the
matrix K as

λn = −Γn

2 + i∆n with n ∈ {1, ..., 3N} .

This eigenvalues are related to eigenmodes that will be linear combinations of the 3N
operators σj,α, and that we can call v̂n for n ∈ {1, ..., 3N}. Each one of these eigenmodes
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evolve on time in an independent way, since they are eigenmodes of the matrix K, we have
dv̂n

dt
=
(

i∆n − Γn

2

)
v̂n , (2.37)

which has a solution given by

v̂n(t) = v̂n(0)e(i∆n− Γn
2 )t . (2.38)

These eigenmodes are the so-called collective modes.

Let’s imagine that we can excite one specific collective mode v̂n by sending a laser
beam with some spatial electric field distribution, in order to excite each atomic dipole
with a definite amplitude and phase, that correspond exactly to the linear combination
of atomic dipoles that configure this eigenmode. In this case, all the others eigenmodes
will have an initial amplitude v̂m = 0 for m ≠ n. This means that the amplitude of all
atomic dipoles in the cloud will decay on time with the same rate Γn

2 , different than
the single-atom one (Γ

2 ). This modification of the decay rate is an intrinsic collective
phenomenon. The modes that present Γn > Γ are called superradiant modes while the
ones with Γn < Γ are called subradiant modes. At the same time, the imaginary part of
the eigenvalue ∆n represents a shift of the resonance that, in general, is different from the
detuning ∆. This means that the laser will be in resonance with this specific eigenmode
not anymore when ∆ = 0, but when ∆n = 0. The average of these shifts, considering a
specific excitation, is called collective Lamb shift.

In general, a laser excitation of the atomic dipoles will produce different amplitudes
for all eigenmodes of the atomic cloud. Then, the decay rate of the atomic excitation
will not have a single rate, but several different rates Γn. In the same way, the atomic
resonances are now inhomogeneously spread because of the different collective Lamb shifts
∆n, which means that the collective atomic transition will present an inhomogeneous
broadening, and an average shift, given by this collective Lamb shift.

2.2.4 Coherent Transmission

Going back to consider laser excitation in equation (2.31), once the laser is turned
on, the atoms will begin to absorb and emit photons, and after some transient response of
the cloud, the atomic dipoles will reach a steady state. In this situation, the average value
of the operators do not change anymore and we can consider d⟨β̂−

j,α⟩
dt

= 0. Then, we end up
with a system of 3N linear equations:∑

m=1...N
γ=x,y,z

Kj,α,m,γ⟨β̂−
m,γ⟩ = −iΩj,α

2 , (2.39)

which solution is given by

⟨β̂−
m,γ⟩ = −i

∑
j=1...N
α=x,y,z

(
K−1

)
j,α,m,γ

Ωj,α

2 . (2.40)
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Here
(
K−1

)
j,α,m,γ

is the matrix element of the inverse of the matrix K.

Note that using the approximation β̂−
m,γ ≃ ⟨β̂−

m,γ⟩ is equivalent to treat the dipoles
as classical. This rely on the assumption that in the linear regime, the quantum fluctuations
of the operators can be neglected and the scattering process is classical in its essence.

We are interested in investigating the optical response of the cloud to a laser light
nearly resonant with the specific transition J = 0 ↔ J = 1 considered in the Coupled
Dipole Model. Specifically, we want to calculate the transmitted part of the total driving
field, i.e. the projection of the total (incident + emitted) electric field in the mode of the
incident light beam. For an point r in the forward direction of the laser excitation, we will
have that the total field, in the linear and stationary regime, is given by (55):

ET (r) = El(r) − i
dk3

0
6πϵ0

∑
m=1...N
γ=x,y,z

Vj,α,m,γ⟨β̂−
m,γ⟩ . (2.41)

Using this equation, we can access the field in the forward direction (which is dominated
by its coherent part at low intensity (49)), but it is necessary to perform an integration
over an area where the total field is projected into the mode of the incident laser field.

Another way to compute the coherent transmission, i.e. isolating the part of the
field that preserves the polarization state and possesses a well-defined phase relationship
with the incident field, is the following (56):

T (∆) = 1 + 3i

(w0k0)2

∑
j=1...N
α=x,y,z

El(Rj)
E0

cj,α(∆) , (2.42)

where T (∆) is the coherent transmission coefficient, and it was calculated considering
a Gaussian mode of the input laser with amplitude and waist given by E0 and w0 at
the beams focus. Here, we have defined cj,α(∆), which represents the re-scaled dipole
amplitudes and, in the steady state regime, can be expressed by

cj,α(∆) = dk3
0

3πε0E0
⟨β̂−

j,α⟩ . (2.43)

The expression in equation (2.42) represents a useful definition of the transmission
coefficient T (∆), since avoids a numerically expensive point-by-point evaluation of the
scattered field, as prescribed by the equation (2.41).

2.3 Collectiveness in an Atomic Ensemble

We saw in the previous sections that the collective modes, in the context of the
CDM, are given by states in which the imaginary part gives information about the frequency
shift of the resonance condition for each of these collective modes, while the real part
represents the decay rate of the excited collective modes. Phenomena like subradiance and
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Figure 2 – Atomic ensemble of size R interacting with an incident light of intensity I0
and having a transmitted light of intensity I, according to the absorption
cross-section σ.

Source: By the author.

superradiance, or the collective Lamb shift, were experimentally verified for the dilute
regime (where ρ/k3

0 ≪ 1).

In order to make an analysis of the collective effects in a system composed by N

atoms (as the one shown in figure 2), it is convenient to introduce the parameter called
optical depth. The optical depth b of an atomic cloud is defined by:

b = σ(∆)
∫

ρ(r)dz , (2.44)

where σ(∆) is the absorption cross-section

σ(∆) = σ0

1 + 4∆2

Γ2

, (2.45)

that depends on the absorption cross-section at resonance σ0 = 3λ2/2π. At the end, the
optical depth of the cloud at resonance will be proportional to the number of atoms, the
size of the cloud and the wavenumber associated to the atomic transition as:

b0 ∝ N

(k0R)2 . (2.46)

In the dilute regime, each atom of the cloud absorbs independently the incident
light, and the total behavior is given by the Beer-Lambert law, which gives the transmitted
intensity as a function of the b:

I = I0e
−b . (2.47)

In the case of the dense regime (where ρ/k3
0 ≳ 0.1 − 1), the effective interaction between

neighbouring atoms can reach values of the order of ℏΓ or higher. This mean that one
photon scattered by an atom saturates a close neighbourhood and the near-range terms
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dominate the interaction. In this regime, the Beer-Lambert law does not apply anymore:
absorption is intrinsically collective. Also, as a consequence of this strong interaction
between the atoms, it is possible to observe the appearance of a big inhomogeneous
broadening of the atomic resonance.

Studies about the decay dynamics of a dilute cloud shows that the initial decay
rate of the excitation is proportional to b0 (9), such that

Γn ∝ b0Γ ∝ ΓN

(k0R)2 . (2.48)

Note that these initial decay rates Γn are related to superradiant modes which dominate
the initial fast decay of the cloud excitation. Beside the superradiant decay rate, numerical
simulations suggest that the whole distribution of decay rates (including also the subradiant
ones) depends only on b0 for a dilute cloud (7).

We can try to understand why the scaling parameter for subradiant and superradi-
ant decay is b0. In the calculations performed so far, we see that the decay of the atomic
excitation is given by the coupling of the atoms and the vacuum modes of the electromag-
netic field. If we consider an atomic cloud of finite size R radiating in space, we could
ask how many independent modes are efficiently coupled to the sample considering the
limitations produced by the boundary conditions. The electric field of the light emerging
from the sphere points in all directions of the sphere and is determined by the shape of
this electric field at the surface. Also, the variation of the electric field on the surface of
the sphere have a minimum spatial size of the order of λ = 2π/k0, which is the typical
length scale of the variation of the electric field of light of frequency ω = ck0. In this way,
the total number of collective modes Nm efficiently coupled to the sample is related to the
sample surface divided by λ2, i.e.

Nm ∝ 4π2R2

λ2 ∝ (k0R)2 . (2.49)

Another parallel discussion here can be the relation between the number of atoms
N of the atomic sample and the number of collective modes Nm. If N > Nm, the emission
will be cooperative since N/Nm atoms emit in the same modes; the atoms are coupled
to each other via their common coupling to the electromagnetic mode. If Nm > N , each
atom emits on average light through an independent mode, and their emissions will not
be coupled. The ratio N/Nm is known as cooperativity parameter since determines the
collectiveness of the atomic emission (3). Finally, using the equation (2.49), we can see
that

N

Nm

∝ N

(k0R)2 ∝ b0 , (2.50)

so the collective aspects of the atomic emission depend indeed on b0, and these collectiveness
begin to happen for b0 ≳ 1.



37

The discussion made above, about the dependence of the collectiveness with b0,
is consistent with the ones made on the papers (10) and (57), in which it is studied the
Dicke superradiance i.e. the superradiance when the atoms are enclosed in a volume much
smaller than λ3, so R ≪ λ.

Studies of the collective Lamb shift of an atomic cloud with a dipolar transition,
shows a dependence of this shift with the atomic cloud parameters (58); for the dilute
regime:

⟨∆n⟩ = −ξΓρ

k3
0

, (2.51)

where ξ is a numerical factor that depends on the geometry of the cloud: shape, size and
atomic distribution. As the density ρ of the cloud is proportional to N/R3, with R the
size of the cloud, we will have that ⟨∆n⟩ ∝ ΓN/(k0R)3. This shift can be understood as
an average value of the dipole-dipole interaction between the dipoles of the dilute cloud.

The spatial density of a cloud in the dilute regime is limited, but the optical
depth can have any positive value, since the cloud just need to be large to access high
values of b0. As a consequence of this, even when collective Lamb shift is such that
|⟨∆n⟩| = |ξΓρ/k3

0| ≪ Γ, the superradiant decay rate Γn can be several times Γ for a low
density cloud. For high density clouds, the collective Lamb shift can be bigger than Γ
and none of the dependencies deduced here are valid; in particular, the superradiance and
subradiance decay rates will not anymore respect the universal simple scaling with b0.
Also, for the coherent transmission spectra, a simple picture of broadening plus shift of
the line is not enough to understand the behaviour of the experimental curves.

As the dense regime situation is so mysterious and unknown, we will tackle this
specific case along this work. Specifically, we want to understand the behavior of the
coherent transmission spectra.
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3 ULTRA-COLD CLOUD OF STRONTIUM

In this chapter, we are going to be made a description of the experimental setup in
order to explain how we obtain an ultracold atomic cloud from a hot gas of strontium,
suited for probing light-matter interaction phenomena.

3.1 88Sr Structure

Strontium (Sr) is the chemical element that we use in our lab in order to obtain an
ensemble of atoms and produce light-matter interaction studies. Its atomic number is 38
and, as an alkaline-earth element, it has two valence electrons. The electron configuration
is given by

1s22s22p63s23p63d104s24p65s2 .

This last characteristic allows the existence of two different kinds of energy levels: singlet,
with the total electron spin S = 0, and triplet, with the total electron spin S = 1.

Strontium possess four stable isotopes: 84Sr, 86Sr, 88Sr (that are bosonic species)
and 87Sr (that is a fermionic specie). In our experiment, we use specifically the isotope
88Sr which is the most abundant with 82.58% of all natural strontium (59). A simplified

Figure 3 – Simplified Strontium Level Scheme. The blue, red and green lines represent the
three atomic transitions that are relevant for our experiment.

Source: By the author.
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diagram of energy is shown in figure 3, and here we can only see the atomic levels that are
relevant for the description of our experiment.

The nuclear spin of all bosonic alkaline-earth elements is zero. This characteristic
prevents the appearance of a hyperfine structure and is also responsible for a non-degenerate
ground state, i.e. a ground state with a total angular momentum J = 0. As mentioned
in the introduction of this document, the property of having a non-degenerate ground
state makes the 88Sr privileged for the study of light scattering in the dense regime. Also
the 88Sr has two dipolar transitions J = 0 ↔ J = 1 (that are accessible by the available
commercial laser sources), which was the kind of transition considered in the calculations
of the Coupled Dipole Model developed in the previous chapter.

Another important characteristic is the existence of metastable states, and atomic
transitions with large and narrow linewidths. Large transitions allow to trap a large number
of atoms in an atomic ensemble; narrow transitions allow to obtain a low temperature
atomic cloud. In our experiment, we use both large and narrow transitions to trap and
cool the 88Sr atoms.

The colored lines in figure 3 represent the atomic transitions that we use to cool
the atom system. There is a blue transition (461 nm) 1S0 ⇔ 1P1 with a wide linewidth of
Γ = 30.5 MHz, a red transition (689 nm) 1S0 ⇔ 3P1 with a narrow linewidth of Γ = 7.6
kHz, and a green one (497 nm) 3P2 ⇔ 3D2 used to optically repump atoms. The whole
process of cooling and trapping atoms is going to be explained later in this chapter.

Note that the red transition is a spin-forbidden transition, since does not obey the
∆S = 0 dipole selection rule. However, the spin-orbit interactions induce mixing of states
with the same total angular momentum J and different spin S. Then, the mix of some 1P1

state contribution into the 3P1 state, allows the transition 1S0 ⇔ 3P1 (with ∆S = 1) to
support dipole transitions (60).

3.2 Lasers and Frequency Stabilization

There are three lasers in our optical table that participate in the cooling process:
blue (460 nm), green (497 nm) and red (689 nm). They are used to obtain two Magneto
Optical Traps (Section 3.4). In the following sections we are going to give some details
about the laser systems and the techniques that we use to stabilize the frequencies of these
lasers. Frequency stabilization allows to correct any shift of the laser frequency, which is
very important for atomic physics experiments.

3.2.1 Blue and Green Lasers

Both blue and green lasers used in our lab are frequency-doubled diode lasers
bought from Toptica Photonics. The internal configuration for these kind of laser is shown
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Figure 4 – Scheme of the internal configurations for a frequency-doubled diode laser.The
only difference in the configurations of the Blue and the Green lasers is the
absence of a Tapered Amplifier for the Green laser.

Source: Adapted from TOPTICA (61).

in figure 4. We can see that there is an infrared initial radiation, produced by a diode laser,
entering in a bow-tie cavity with a crystal inside which doubles the frequency through a
non-linear effect with a high χ2 (second order of atomic susceptibility). In other words,
these lasers contain a Second Harmonic Generator (SHG) to produce the light with the
proper linewidth that we need in our experiment. The blue laser has also a Tapered
Amplifier (TA) after the infrared radiation and, at the end, it has a total power of 700
mW at λb = 460 nm. The green laser does not have a TA and the total power is 55 mW at
λg = 497 nm. Figure 5 shows a simplified scheme of the blue and green systems, after the
output of the respective lasers.

BLUE LASER STABILIZATION

To stabilize the frequency of the blue laser, we use the saturated absorption spec-
troscopy technique (also known as Doppler-free spectroscopy (62)). For this purpose, two
blue beams are used: a pump beam with high intensity and a probe beam with low intensity.
Both beams, having the same frequency, are aligned to a cell containing strontium ("Sr
cell" in fig. 5) at a temperature of around 350◦C. The cell is wrapped in turn with glass
wool and aluminum foil, in order to thermally isolate it from the environment. When both
beams are simultaneously resonant near the blue transition for the same velocity class of
atoms, the pump beam saturates the transition producing a dip in the absorption spectrum
of the probe beam. This signal is used as a frequency reference and it is introduced in a
commercial Lock-in circuit from Toptica, which generates a feedback that stabilize the
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Figure 5 – Simplified scheme of the optical table for the blue and green lasers. We see
how the light is distributed on the optical table, passing through lot of optical
devices. The frequencies of the Acousto-Optic Modulators and the focal length
of the lenses are shown in the figure.

Source: By the author.

laser on this frequency. At the end, we have an stability of the order of 1 MHz, which is
good enough when compare with the linewidth of the blue transition (30.5 MHz).

GREEN LASER STABILIZATION

As the green transition does not start from the ground state (see fig. 3), it is not
possible to apply the conventional Doppler-free spectroscopy to stabilize the green laser.
This could be possible populating the metastable state 3P2, but for that, we would need
to use a Hollow-cathode lamp (63). Another way to stabilize the frequency of the green
laser can be using a stable cavity. We do not have in our experiment a stable cavity that
operates for the green wavelength, but following this idea, we implemented a regular
Fabry-Perot cavity which length is previously locked using the blue laser as a frequency
reference and then, we lock the green laser on the cavity.

The Fabry-Perot cavity used for the green laser stabilization has a free spectral
range of ∆F SR = c

2L
= 3 GHz, where L is the length of the cavity. This estimation of the

free spectral range is only valid for the blue light, since we know that the mirrors of the
cavity have the maximum reflectivity for the blue wavelength. For the green light, this
value will be a little different. By some characterizations of the cavity, we measured a
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Figure 6 – Blue and green lights transmission peaks while scanning the length of the
Fabry-Perot cavity.

Source: By the author.

finesse of Fb = 110 for the blue wavelength and Fg = 50 for the green one. Then, the
width of the transmission peak for the green light is going to be ∆υ = ∆F SR

Fg
≃ 60 MHz

and we could lock the laser in a fraction of this value.

In order to transfer the stability from the blue laser to the green laser, we need both
lasers simultaneously in resonance with the cavity. As the frequencies of these resonances
are for fn = n∆F SR = nc

2L
with n ∈ N and the derivative of this expression is dfn = − nc

2L2 dL,
we have that the minimal difference between a blue and a green resonance, when the cavity
length is scanned by one blue free spectral range, is given by:

∆f = ∆F SR
|λg − λb|

λb

≈ 234 MHz .

Then, considering the fraction of this value when compare with the free spectral range,
scanning the length of the cavity by approximately 13 × ∆F SR would be enough to find
coincident resonances. A fine tuning of the blue resonance can be done by touching the
Acousto-Optic Modulator (AOM) that is located before the blue light entering the cavity.

Note that here we used the relation 2L = nλ for the resonance condition, which
is equivalent to saying that the length of the cavity must be equal to a multiple of the
wavelength for the light to be in constructive interference with itself after a round trip
inside the cavity.

In figure 6, there is an experimental observation of the transmission peaks for the
blue and green beams that enter to the cavity while scanning the length of this cavity.
We can see that we have a condition where both beams are simultaneously resonant
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with the cavity and we select this specific peak for the system stabilization. To lock
the length of the Fabry-Perot cavity, we used a homemade lock-in circuit and a Propor-
tional–Integral–Derivative (PID) controller, that were built with this specific purpose.

ABSORPTION IMAGING TECHNIQUE

Continuing with the description of the system shown in fig. 5, we see that one
of the beams of the blue laser is coupled into a fiber called "Imaging Fiber". This beam
is used to characterize our atomic cloud by the Absorption Imaging technique. For the
imaging, we send a resonant probe beam to the cloud (whose diameter is much larger
than the size of the cloud) in order to record, by a CCD camera, the shadow produced
by the atoms absorption. These images are taken after turning off the trap, letting the
atoms fall by the effect of gravity. This time is known as time-of-flight and is usually of
the order of a few milliseconds. Unfortunately, this imaging technique has limitations to
probe dense atomic clouds (we will be back to this discussion later in this document), but
is good enough to characterize the dilute clouds that we are describing in this chapter.

Summarizing all the information above, we have that the blue laser is divided into
five principal beams: the doppler-free spectroscopy beam, the Zeeman slower beam (see
section 3.3), the Magneto-Optical Trap beam, the Absorption Imaging beam and finally, a
beam used to stabilize another blue laser that we have in our experiment (details of this
are given in chapter 6). The green laser is divided in one beam used for the frequency
stabilization, the repump beam sent to the science chamber, and a final beam with the
purpose to produce an optical accordion trap (explanation in chapter 6).

Note, in the green laser system, that before the light entering in the accordion
fiber, it passes through a prism pair (composed by two right angle prisms) that are used
to reshape the beam correcting its ellipticity. Circularizing this elliptical beam allow us to
obtain a better coupling of the light in the optical fiber.

3.2.2 Red Laser

Our red laser of λr = 689 nm (also from Toptica Photonics), is directly produced
by a laser diode in a tunable extended cavity. We then must stabilize the laser frequency
to a linewidth smaller than the natural linewidth of the red transition.

RED LASER STABILIZATION

To stabilize the frequency of this laser, we use an ultra-stable Fabry-Perot cavity
made of Zerodur, bought from Stable Laser Systems. This super-cavity is kept at a vacuum
of 10−7 Torr produced by an ion pump, that isolates it thermally from the external
environment and has a system of temperature stabilization through a homemade PID



45

Figure 7 – Simplified scheme of the optical table for the red laser, where we can see the
stabilization system and the injection locking configuration.

Source: By the author.

circuit. The cavity is used as a very stable reference since the frequency variation of its
resonance is less than 5 MHz per year (corresponding to a length variation, for the 10
cm cavity, of less than 2 nm). In addition, this cavity has a high finesse of F = 6000,
which for a Free Spectral Range of ∆F SR = 1.5 GHz results in a transmission width of
75 kHz. The stabilization system for this laser is based on the Pound-Drever-Hall (PDH)
technique that allows actively tuning the laser to match the resonance condition of the
stable reference cavity. This technique can also decrease the linewidth of the laser if the
optical cavity is more stable than the laser source.

In order to estimate the linewidth of the laser after the stabilization, it was made
a beating between a laser beam of our red system and another red beam from a second
experiment of Strontium, which is in a room next to ours. The red laser of this second
experiment is also stabilized using a ultra-stable cavity with finesse of F = 20000. The
beating signal was recorded by a spectrum analizer with 10 Hz of resolution bandwidth.
In these conditions, since the two lasers are uncorrelated, the width of the resulting beat
signal is a convolution of the linewidths of the two light sources and the bandwidth of the
spectrum analizer (64). The details of this measurement can be found in a master thesis
of our research group (65) and the measured width for the beating signal was 0.9 kHz,
indicating an upper bound for our laser linewidth. This linewidth of our red laser is good
enough to operate with a narrow transition of natural linewidth equal to 7.6 kHz.



46

INJECTION LOCKING

The red laser has 12 mW of output power, and this is not enough power for the
demands of the experiment. In order to increase the power of the red laser, we use a beam
as a seed for another diode laser in a Master-Slave configuration. This technique is called
Injection Locking (66), in which the slave laser synchronizes in phase with the master
resulting in the same spectral characteristics (central frequency and also width) for both
lasers. This synchronization allows to amplify the available power at the desired frequency,
without affecting the spectral characteristics obtained with the frequency stabilization
system.

Figure 7 shows the optical table configuration for the red laser, that includes the
stabilization part and the injection locking system. We can also see here the use of a
wavemeter to monitor the wavelength of the master laser and a Fabry-Perot cavity used
to monitor the injection.

3.3 Vacuum System

In traditional cold atoms experiments, it is essential the control of vacuum since
the lifetime of an atomic ensemble is often limited by the presence of residual background
gases in the chamber. This is because the lifetime is inversely proportional to the pressure
(67).

The vacuum system in our experiment is separated in two sections by a gate valve:
the oven and the science chamber, as shown in figure 8. Both parts are constantly pumped
by ionic pumps that are responsible to maintain pressures of 2.1 × 10−8 Torr in the oven
section and 6.0 × 10−10 Torr in the science chamber section. Differential pumping stages
are required to provide a high pressure difference between the two sections. The gate valve
used to separate the two sections allows filling or exchanging the oven without affecting
the ultra-high vacuum of the science chamber.

OVEN SECTION

In the first section, an oven contains metallic strontium and is heated until 550◦C
producing an atomic vapor. This oven is thermally insulated from the environment to
minimize heat losses and maintaining the high temperature. The measurement of the
temperature is made with thermocouples installed outside the oven. At the output of
the oven, the atoms pass through a two-dimensional array of microtubes, that allows the
production of a collimated atomic beam. The microtubes are arranged in a 4 mm diameter
circle, and each microtube has an internal diameter of 130 µm, an external diameter of
300 µm, and a length of 8 mm. Another important information is that the microtubes are
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Figure 8 – Vacuum System. In the first section (right side) we have an oven that creates a
collimated atomic beam which passes through a Zeeman Slower (left side) and
arrives to the science chamber.

Source: By the author.

under a temperature of 600◦C (even higher than the oven temperature), in order to avoid
clogging by the strontium atoms.

The article (68), shows a characterization of the collimation of our atomic beam,
and the measured value for the beam divergence was approximately 10 degrees. In that
work, they directly measure (by a CCD camera) the fluorescence of a laser beam interacting
with the atomic beam and then, they apply a model that relates this quantity with the
collimation of the atomic beam, the temperature of the oven and the laser frequency.

After passing through the microtubes, the atomic beam travels down the main axis
of the vacuum chamber with a flux of 1014 atoms per second and an average velocity of
approximately 400 m/s (69). The entire oven section is mounted on a system with four
degrees of freedom (transverse position and angles) so the atomic beam can be directed
precisely to the center of the science chamber.

SCIENCE CHAMBER SECTION

In the second section, there is the Zeeman slower and the ultra-high vacuum chamber
where the experiments take place. The Zeeman slower is responsible for decelerating the
atomic beam with radiation pressure force. This force is exerted by a blue laser beam,
detuned 370 MHz bellow the resonance of the 1S0 ⇔ 1P1 atomic transition, in the opposite
direction to its propagation. In addition to the laser beam, it is used a magnetic field
which varies over space in order to keep the laser resonant with the atoms, compensating
the Doppler shift with the shift created by the Zeeman effect. The Zeeman slower is about
280 mm long with an inner diameter that changes gradually from 12 mm to 4 mm, acting
as another differential pumping stage. Typically, the atoms reach velocities that are an
order of magnitude smaller than the inicial velocity after passing through the Zeeman
slower. The final part of the Zeeman slower is connected to the science chamber with good
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optical access allowing the atoms to be trapped in its geometric center. This chamber has
a two vertical entrance and 12 lateral viewports with anti-reflection coating.

3.4 Magneto Optical Trap (MOT)

When light interacts with an atom, besides changing the internal energy levels of
the atom, it can also displace its center of mass because of the radiation pressure force.
Depending on the way that the interaction is mediated, this force can have a decelerating
character, so it can be used to cool atoms.

COOLING PROCESS

In 1975 Hänsch and Schawlow proposed the optical molasses technique (70) which
consists in a configuration of two counter-propagating lasers red-detuned with respect to
an atomic transition (i.e. ∆ < 0). At first, it may seem that this symmetrical arrangement
has no effect on an atom, but this in only true for stationary atoms. The asymmetry in
the absorption of photons by the atom from each of the lasers comes from the Doppler
effect, which occurs when the atom is in motion.

In figure 9a we consider the case of one-dimensional optical molasses, where a
pair of counter-propagating beams, that have the same frequency ω, are interacting with
an atom of two levels: |0⟩ ground state and |1⟩ excited state. Considering what happens
in the reference frame of the atom moving to the right, we see that the Doppler effect
leads to a variation of the frequency of the beams so the two beams have different effects
on the atom with velocity ν. Thus, the beam propagating in the same direction as the
atom interacts with it with a frequency equal to ω − kν and the beam propagating in the
opposite direction interacts with the atom with a frequency equal to ω + kν, where k is
the magnitude of the wave vector of light. As ω + kν is closer to the transition frequency
|0⟩ ↔ |1⟩, while ω − kν moves away from resonance, the photons of the beam propagating
to the left are more likely to be absorbed by the atom than the photons of the beam
propagating to the right. In this way, the force exerted on the atom by the laser that
propagates in the opposite direction to its movement is greater than the force exerted by
the beam that propagates in the same direction. This force exerted by the light results in
the reduction of the atoms speed and, after a while, the atoms cool down until the two
counter-propagating beams are at the same frequency in the frame of the atoms. In this
situation, when the role of the Doppler effect decreases, the resulting force acting on the
atomic system tends to zero.

Atoms in a gas move in all directions so, for the laser cooling process, is required
to apply the one-dimensional scheme shown in figure 9a in the three spatial directions.

The beam configuration used in optical molasses reduces only the atoms speed but
does not trap them. So, for the trapping process is needed a potential with a restoring
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Figure 9 – Cooling and trapping processes. (a) The atom interact with two counter-
propagating beams and the variation of the frequencies, produced by the
Doppler effect, creates a force that reduces its velocity. (b) The combined effect
of beams polarizations and a magnetic field gradient creates a force oriented to
the center of the trap.

Source: By the author.

force that keeps all the atoms in the same position.

TRAPPING PROCESS

With circular and opposite polarizations for the pair of beams used for the optical
molasses, this configuration can be turned into a trap by adding a magnetic field gradient
that displaces atomic levels proportionally to the distance from a certain point in space,
the center of the trap. This field can be produced by two coils with currents in opposite
directions (anti-Helmholtz coils) that produce a quadrupolar magnetic field in the region
between them.

The principle of operation of the trap, considering a simple transition from F = 0
to F = 1, is shown in figure 9b. In the center of the coils, the magnetic fields produced by
them is zero. Around the null field there is a uniform gradient that disturbs the energy
levels of the atom. The Zeeman effect produces a degeneracy of the level F = 1 into three
sub-levels mF = 0, ±1 and the energy shift vary linearly with the position of the atom on
the z axis. As the lasers are red-detuned from the atomic resonance, for an atom in the
position z > 0, the transition ∆mF = −1 approaches resonance with the laser frequency,
while the transition ∆mF = +1 departs from resonance. This leads to a greater absorption
of photons from beam with polarization σ− in relation to the beam with polarization σ+,
which produces a force that pushes the atom back into the center of the trap. One similar
process occurs for an atom in the position z < 0; in this case, the Zeeman displacement
and the selection rules favor greater absorption of the beam with polarization σ+ (which
excites the transition ∆mF = +1), giving place to a force that takes the atom back to
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Figure 10 – Configuration of a Magneto Optical Trap with the three pairs of counter-
propagating beams and the magnetic field created by the two anti-Helmholtz
coils.

Source: Adapted from COURTEILLE (71).

z = 0.

A trap that operates in three dimensions requires three pairs of counter-propagating
beams and a magnetic field gradient obtained by a pair of coils in the anti-Helmholtz
configuration. This system of cooling and trapping atoms, illustrated in figure 10, is called
Magneto-Optical Trap (MOT). In the next two sections will be explained how we obtain
a MOT using the blue transition (blue MOT) of 88Sr first and then another MOT using
the red transition (red MOT). The red MOT is created from a narrow transition, so it is
possible to produce a cold atom cloud with very low temperatures. On the other hand,
because of the small velocity capture range of this MOT (since the maximum force is
proportional to Γ), we need first to trap the atoms using the wide blue transition.

3.4.1 Blue MOT

In the first stage of cooling, after the atoms enter the science chamber, it is used
the transition 1S0 ⇔ 1P1 to create a MOT formed by three pairs of retro-reflected blue
beams with a waist of 5.6 mm and a power of Power(x,y,z)=(5.1mW, 4.8mW, 8.3mW).
Then, the total intensity of the six beams at the center is equal to 1.8Isat,blue, where
Isat,blue = 40.6 mW/cm2 is the saturation intensity of the atomic transition. The beams
are around −1.25Γ detuned from the resonance, being Γb = 30.5 MHz the linewidth of the
atomic transition. The laser detuning was chosen as the one that maximizes the optical
density of the atomic cloud. The anti-Helmholtz coils used for this MOT creates a magnetic
field gradient of 55 G/cm. All these parameters for the blue MOT are summarized in (72).

In the first part (blue part) of figure 12, we can find the experimental ramps for
the blue MOT sequence. We can see that there is an initial capture of the atoms loading
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Figure 11 – Absorption Imaging for the blue MOT with a time-of-flight of 1 ms. The
parameters of the cloud were obtained from a Gaussian fit of the atomic
distribution.

Source: By the author.

the blue MOT for 1.5 s. Then, in order to reduce even more the temperature of the cloud,
it is applied a power ramp in the trapping beams for 4 ms decreasing the power until less
than 10% of its initial value. In that way, we should obtain a cloud of cold atoms with
temperatures close to the Doppler limit of the blue transition, which is TD = ℏΓ

2kB
= 720 µK

(73). In our experiment, we obtain a blue MOT of approximately 65 × 106 atoms with a
temperature of 4 mK, as can be seen in the absorption imaging shown in figure 11. The
difference of temperature with respect to the theoretical value, is probably related to a
bad alignment of the MOT beams or imperfection on the profile intensity of this beams
(65). The same problem was also reported in another experiments (74).

The transition used for the blue MOT is dipolar and it is not completely closed.
From 1P1 level there is a decay to the 1D2 level with a probability of 1 : 50000. Atoms from
this last level can also decay to the states 3P1,2. Despite the low probability of transition,
this mechanism is relevant due to the high rate of natural decay of the blue transition.
From the 3P1 state, with a lifetime of 21 µs, atoms will return to the ground state 1S0.

The 3P2 level is metastable (with a lifetime of about 500 s (59)), so the atoms in
this level represent a loss for the MOT cycle since the blue laser can not interact with
them. To solve this problem we use a green laser resonant with the transition 3P2 ⇔ 3D2.
As this transition is also open, the atoms can decay to the states 3P1,2 and from the level
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Figure 12 – Experimental ramps for both blue an red MOTs. This figure is divided in an
upper and a lower part, separated by a horizontal black solid line; the upper
part represents the power ramps, while the lower part represents the frequency
ramps for the red light. The green dash line represents the detuning zero of
the light with respect to the red transition.

Source: By the author.

3P1 they can go to the ground state 1S0 where they can interact again with the blue laser.
This kind of beams are usually called repump beam since they bring the atoms back to
the MOT cycle.

3.4.2 Red MOT

The presence of narrow lines in 88Sr offers the opportunity to add a second cooling
stage in order to reduce the temperature and increase the density of the cloud. This second
cooling stage consists in a red MOT, which is created using the transition 1S0 ⇔ 3P1 with
a linewidth equal to Γr = 7.6 kHz.

After turning off the blue MOT beams, the red MOT beams are immediately
turned on. The magnetic field is also switched from 55 G/cm to 6.5 G/cm with a small
delay of 30 µs. Following the idea described by Simon Stellmer in his PhD thesis (59), we
perform four frequency and power ramps of the red MOT beams during the cooling process.
The details can be seen in the second part (red part) of figure 12 and the corresponding
explanation is the following:

• The first ramp has a duration time of 100 ms and the total intensity of the six beams
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at the center is kept in 13 × 103Isat,red. The detuning is scanned from a minimum
value of -7 MHz to a maximum of 0 MHz detuning, with a frequency of 35 kHz. This
technique, called Multichromatic laser cooling (75), allows to artificially broaden the
narrow transition. A broadening of the transition improves the cooling efficiency,
since the MOT beams can interact with a larger span of atomic velocities.

• The second ramp of 80 ms continues the multichromatic spectrum but now the
minimum value of the detuning is varied from -7 MHz to -5 MHz, while the maximum
has a small variation of -0.02 MHz. During this time is also performed a power ramp
from 13 × 103Isat,red to 8 × 103Isat,red.

• In the third ramp, with duration time of 80 ms, the light spectrum is reduced to a
single frequency one, and the detuning is shifted closer to resonance from -1 MHz to
-0.6 MHz, while the power is dramatically reduced to 45.4Isat,red. The decreasing of
the detuning provides compression of the atomic cloud, while the decreasing of the
beams intensity provides cooling.

• In the fourth ramp, of 80 ms, the frequency keeps constant at the final value of the
third ramp while the power is slightly changed from 45.4Isat,red to 34.6Isat,red. The
selection of these values is based on improving the transfer of atoms from the Red
MOT to an Optical Dipole Trap.

All the frequencies mentioned before represent the detuning with respect to the
atomic resonance (green dash line in fig. 12). The intensities are shown in terms of
Isat,red = 3.04 µW/cm2, which is the saturation intensity of the red atomic transition. For
the red transition the Doppler temperature is TD = 182 nK, bellow the recoil temperature
TR = ℏ2k2

2mkB
= 460 nK (73), which represents the minimal possible temperature. Clouds

with temperatures bellow 1 µK are called ultracold.

Since the red transition is so narrow, the radiation pressure force exerted by the light
is not very strong, so the atoms can be affected by gravity, making the cloud compressed
in the z direction. As a consequence, the atoms of the Red MOT live in a very thin shell
interacting predominantly with the upward propagating beam, i.e. the beam propagating
on +z direction. Then, for a low intensity of the MOT beams, some atoms are at risk of
not absorbing a photon and escaping from the cloud. This situation limits the lifetime of
the cloud to a few milliseconds.

After the ramps implemented to transfer the atoms from the blue MOT to the red
one, we obtain a cloud of approximately 15 × 106 atoms with temperature of 2 µK. An
absorption imaging of this cloud can be found in figure 13, where we had to apply a long
time-of-flight in order to have a non-saturated probing of the atomic ensemble.
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Figure 13 – Absorption Imaging for the red MOT with a time-of-flight of 24 ms. The
colored scale represents the optical depth of the cloud.

Source: By the author.
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4 DENSE CLOUD OF STRONTIUM

In this chapter we will continue with the description of our atomic ensemble.
Specifically, it is going to be explained how we reach the atomic dense regime from the
Red MOT described in the previous chapter. We will also discuss the strategies to improve
our cloud and the challenges to characterize a cloud with very high optical depth.

4.1 Infrared Laser

In order to obtain a dense atomic cloud, we implemented an Optical Dipole Trap
produced by an infrared laser whose frequency is very far from any atomic resonance. The
infrared laser that we use in our lab is a Mephisto MOPA bought from Coherent. This laser
incorporates a Mephisto laser with power up to 2W to seed cascaded amplification stages,
resulting in a Master Oscillator Power Amplifier (MOPA) configuration. The seed and
amplification stages are fully integrated in a single box and does not require mechanical
adjustments. The output power of our laser should be 25 W with 1064 nm of wavelength,
but unfortunately we have observed a decreasing of this power over the time and currently
we are using less than 11 W for the whole infrared system. Some properties of these lasers

Figure 14 – Simplified scheme of the optical table for the infrared laser. The use of several
beam dumpers is fundamental due to the large power of this laser.

Source: By the author.
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are ultra-narrow linewidth of 1 MHz and extremely low-intensity noise. Since we use this
laser in a far from resonance configuration, no stabilization technique is necessary.

The infrared laser is divided in two beams in order to create a crossed optical
dipole trap, which is the combination of two optical dipole traps in the horizontal and
vertical directions. This can be seen in figure 14, which shows the part of the optical table
for the infrared laser. An important detail in this scheme is that the beams pass through
Acousto-Optic Modulators and we chose contrary diffraction orders in the alignment just
to create a frequency difference between the two beams, which is important to avoid
interference effects between them.

The horizontal and vertical beams are coupled in fibers (H-Fiber and V-Fiber in
fig. 14), and before entering to the science chamber, several circular and elliptical lenses
are used to focus the beams at the Red MOT position with the desired geometry for each
of them. More details of this system are going to be given in the next section.

4.2 Optical Dipole Trap (ODT)

Contrary to the Magneto-Optical Trap, which depends on the radiation pressure
force, the Optical Dipole Trap (ODT) depends purely on the dipole force. If the laser field
interacting with a two level atom system is spatially inhomogeneous, the associated energy
level shift of the atoms (consequence of the Stark effect or light shift) varies in space and
therefore produces a potential (73). The force from this potential is the dipole force. When
the laser frequency is tuned below atomic resonance (∆ < 0), the sign of the interaction is
such that atoms are attracted to the maximum of laser field intensity. However if ∆ > 0,
the attraction is to the minimum of field intensity.

The dipole force is conservative, so it is possible to assign a potential to it, called
dipolar potential, given by (76)

Vdip(R) = 3πc2

2ω3
0

Γ0

∆ I(R) . (4.1)

Here, I(R) is the intensity distribution of the incident beam and, for a Gaussian elliptic
beam propagating in the z direction, can be expressed by:

I(R, z) = I0
w0,xw0,y

wx(z)wy(z)exp
(

− 2x2

w2
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1
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)
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w2
0,y

1
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)
, (4.2)

where wi is the waist of the beam at the i axis and zR,i its Rayleigh range. The parameter
I0 = 2P

πw0,xw0,y
is the maximum intensity of the beam and P its power.

On the other hand, around the ODT minimum, the potential can be expanded as
a three-dimensional harmonic oscillator,

Vdip = 1
2mΩ2

xx2 + 1
2mΩ2

yy2 + 1
2mΩ2

zz2 + V0 , (4.3)
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Figure 15 – a) All MOTs beams (blue and red) and both ODT beams (orange) entering
to the science chamber. b) Transverse images of the horizontal and vertical
beams of the ODT at the focus position.

Source: By the author.

where Ωx, Ωy and Ωz represent the oscillation frequencies of the trap. For a thermalized
cloud, its spatial density depends on the trap frequencies as follows:

ρ(x, y, z) = ρ0e
− mΩ2

xx2
2kBT e

−
mΩ2

yy2

2kBT e
− mΩ2

zz2
2kBT , (4.4)

where the density at the middle of the cloud is

ρ0 = ρ(0, 0, 0) = ΩxΩyΩz

(
m

2πkBT

)3/2
N . (4.5)

Equalizing the two equations above for the dipole potential (i.e. equations (4.1)
and (4.3)), we can find expressions for the oscillation frequencies as a function of the
intensity, waist, Rayleigh range and detuning of the beam. However, due to the Gaussian
distribution of the beam, we must make a quadratic expansion around the center of
the beam, demanding the need of performing numerical calculation in order to find the
frequencies.

Defining the size of the atomic Gaussian cloud as the radius at 1/
√

e, the oscillation
frequencies are also related to the size through the following expression:

si = 1
Ωi

(
kBT

m

)1/2

for i ∈ (x, y, z) . (4.6)

It is then possible to express the spatial density of equation (4.4) as a function of the size:

ρ(x, y, z) = N

(2π)3/2sxsysz

e
− x2

2s2
x e

− y2

2s2
y e

− z2
2s2

z . (4.7)
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Figure 16 – Dipolar potential in the x and y directions. The graphic of the right is the
same as the left one but in a different scale closer to the minimum of the
potential.

Source: By the author.

The most common way of producing an ODT is with a red-detuned Gaussian beam.
In our experiment, we use an infrared laser with 1064 nm, so ∆ < 0. Specifically, we
create a crossed optical dipole trap (crossed ODT) (77) and, for this purpose, we use two
beams: a Gaussian elliptic beam propagating in the horizontal direction and a Gaussian
circular beam that propagates in the vertical direction. As can be seen in figure 15a,
the ODT vertical beam combines with the MOTs vertical beams by using a shortpass
dichroic mirror with a cut-off wavelength of 805 nm. Transverse images of the two infrared
beams at the focus position can be found in figure 15b and the waists for the elliptic
horizontal beam are wH,x = 240 µm and wH,y = 17 µm, while for the circular vertical
beam is wV,x = wV,y = 48 µm.

SIMULATING THE DIPOLAR POTENTIAL CREATED BY OUR ODT

We use powers of PH = 1.78 W and PV = 0.75 W for the horizontal and vertical
arms of ODT, respectively. Under these conditions and, considering the other parameters
for the beams mentioned before, we can simulate the characteristics of the dense cloud
that we should obtain in the experiment. Our crossed ODT creates a dipolar potential
as the one shown in figures 16 and 17, for each spatial direction. For the potential in x
and y directions, is clear the observation of a combined effect between both ODT beams.
The graphic of fig. 16(right) allow us to observe the harmonic behavior of our trap at the
minimum of the potential. In the graphic that represents the potential in the z direction,
we can observe an asymmetry that is related to the effect of gravity. Here, we also signalized
the points use to calculate the differential trap depth, which is 12 µK. This means that
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Figure 17 – Dipolar potential in the z direction. The red dots are the points used to
calculate the trap depth on z.

Source: By the author.

only the atoms with a thermal energy (divided by the Boltzmann constant kB) less than
12 µK will be trapped by the ODT.

The simulations mentioned above are well explained in the master thesis of one
of the students of our lab (78). For the characteristics of the ODT beams given above,
we calculated oscillation frequencies: F (x, y, z) = Ω/2π = (218, 213, 694) Hz. If we
also consider in these simulations a number of atoms of N = 0.5 × 106 with 1.0 µK of
temperature, we should have a cloud with the following characteristics:

• Spatial density at the center of the cloud: 2.77 × 1014 atoms/cm3.

• Spatial density at the center, in unities of 1/λ3: ρλ3 = 27.1.

• Sizes of the cloud at 1/
√

e, in (x, y, z): (7.07, 7.25, 2.23) µm.

An spatial density of ρλ3 = 27.1 represents the atomic dense regime, since ρλ3 ≳ 20;
we should then observe density effects using a cloud with these characteristics. In the
experimental point of view, we need to measure the parameters above for our crossed
ODT in order to be sure that we reached the dense regime.

4.2.1 Experimental Cloud

In the description of the red MOT experimental ramps (section 3.4.2), we mentioned
that the parameters used in the last ramp were chosen in order to increase the atomic
transference from the red MOT to the ODT. This is because the ODT beams are turned
on 300 ms before the end of the Red MOT sequence.
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Figure 18 – Transference process from Red MOT to the horizontal ODT. On the images,
gravity is oriented from left to right. This images represent: (a) only Red
MOT with ToF = 25 ms, (b) both clouds for the best atomic transference
condition with ToF = 10 ms, (c) only ODT-h with ToF = 25 ms.

Source: By the author.

The ODT alignment process starts by a superposition of an image of the ODT
horizontal beam and the red MOT in the camera. After observing a first signal, we improve
the alignment of the beam until reaching the maximum number of atoms. Figure 18a
shows an absorption image of the initial red MOT with 13.4 × 106 atoms and 2.5 µK of
temperature, measured after a time-of-flight (ToF) of 25 ms. In figure 18b we can see
the cloud of atoms captured by the ODT horizontal beam, that we call horizontal ODT
(ODT-h in the figure), and the rest of the uncaptured atoms from the red MOT. This
image was taken after a ToF of 10 ms. Finally, figure 18c shows the horizontal ODT
for a ToF = 25 ms, so we can measure the properties of this cloud. For the red MOT
described before, we obtained a ODT-h cloud of 6.5 × 106 atoms (representing a 48 % of
transference) and 2.2 µK. We have small fluctuations around these values day by day, but
the transference from the Red MOT to the ODT-h use to be of approximately 50 %.

The images shown on figure 18 are taken from the camera with the line of sight in
the horizontal x direction, this is what we call horizontal imaging. For the alignment of
the ODT vertical beam, it is convenient to put the camera at the vertical axis. Figure
19a shows a vertical image of the ODT-h in situ, i.e. with ToF = 0 ms. Once we observe
the influence of the ODT vertical beam on the ODT-h, we continue the alignment until
observing a denser region at the center of this cloud. In figure 19b we can see this effect,
which becomes more clear observing the Gaussian profile at the left. In these first two
vertical images, we kept the ODT beams "on" for 40 ms after turning off the red MOT
beams. This time (that we call holding time) of 40 ms is the minimum necessary to observe
the ODT without the remaining atoms from the red MOT. If we increase the holding time,
the atoms out the potential created by the superposition of horizontal and vertical beam,
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Figure 19 – Transference process from ODT-h to the crossed ODT. This images represent:
(a) only the ODT-h, (b) superposition of ODT-h with the ODT vertical beam,
(b) crossed ODT after a holding time of 1 s.

Source: By the author.

are going to escape from the cloud. Figure 19c shows our pancake shape crossed ODT
cloud after 1 s of holding time. We implemented a double Gaussian fit in order to identify
the behavior of the denser crossed dipole trap.

In the absorption images of figure 19, we can see a saturation of the camera. This
represent a limitation on the characterization of our cloud since we cannot extract the
optical depth and the sizes of the cloud by realizing a fitting of the images. To solve this
problem, we found the need of implementing another observation technique called Phase
Contrast Imaging used to observe dense atomic clouds in situ.

LIFETIME MEASUREMENT

Even with the limitations of the absorption imaging technique, if we apply a ToF
of a few milliseconds, we can decrease the optical depth of the cloud allowing to measure
the number of atoms of the crossed ODT by the use of the double Gaussian fit. Doing this,
we can perform some characterization of the ODT such as the lifetime measurement. The
result of this measurement is shown on the left graphic of figure 20, where we plotted the
number of atoms for holding times varying from 300 ms to 8.5 s. Applying an exponential
fitting we can extract a lifetimes of (4.03 ± 0.45)s for the crossed ODT. The obtained value
is considerably short and the reason could be problems with the ODT beams alignment or
with our vacuum system. Note that the fitting was done using the part of the curves after
2 s of holding time, for smaller times the quality of the double Gaussian fit is not good
enough to separate the characteristics of ODT-h and crossed ODT.

In order to understand the reason of the short ODT lifetime, we also measured the
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Figure 20 – Lifetime measurements for (left) the crossed ODT, and (right) the magnetic
trap created by the MOT coils. The black and blue dots represent the experi-
mental data, while the red line is the fitted exponential decay curve.

Source: By the author.

lifetime of atoms trapped in a deep magnetic trap created by the MOT coils. Since the
bosonic Sr atoms have no magnetic moment in the ground state, for magnetically trapping
we pump them to the 3P2 metastable state, which has a lifetime of over 500 s. We obtain
a lifetime of the magnetic trap of (5.07 ± 1.31)s (right graphic of figure 20). The magnetic
trap has a lifetime slightly longer than the ODT but still very short, proving that the
lifetime limitation is probably related to the quality of the vacuum rather than to the
traps themselves. Despite that, the lifetime is certainly long enough to allow for sequential
loading and performing the measurements of our interest.

OSCILLATION FREQUENCIES MEASUREMENT

To measure the oscillation frequencies we need to compress, decompress, or shift
the sample for a short period of time (76). Then, when the cloud is released to the original
trap it starts to oscillate. Some techniques to measure the trap frequencies are: Parametric
Heating (79), Release and Recapture (80), and Breathing Mode (81). In our experiment,
we applied the last two methods at the same time. For this, we made a power modulation
produced by switching off (or releasing) the trap for a short time of 0.6 ms so the cloud
is decompressed and its center of mass is shifted. The release and recapture method
allow us to extract the frequency of oscillation by observing the variation in the position
of the cloud for different waiting time between the release of the atomic cloud and the
recapture moment. This technique works only for measuring the oscillation frequency in
the z direction, since the atoms are pulled from its center of mass by the effect of gravity.
In the other hand, the breathing mode method consist in exciting a radial oscillation mode
by a compression and decompression of the trap. Experimentally, we extract the size of the
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Figure 21 – Oscillation frequency measurements in the z direction by using: (top) Breathing
Mode and (bottom) Release and Recapture technique. The black dots represent
the experimental measurements and the red line is the damped sine function
fitting. The obtained values for the frequencies can be seen in the right side
of each graphic. Here, we already used the relation FB = 2Fz, mentioned in
the main text.

Source: By the author.

cloud for various holding times after producing the power modulation. This last technique
can be used to measure the oscillation frequencies in the three spatial directions, however
we just performed it for the z direction since the characteristics of the cloud in the two
other axis will be extracted by using the Phase Contrast Imaging system.

When exciting a radial oscillation mode, the observed breathing mode frequency
FB is in general related to the oscillation frequency of the trap, but in a very complicated
way. This relation, depends on the geometry and dimensionality of the system, if whether
the potential is in the harmonic regime or not, or even on the scattering length of the
atomic system (82,83). For classical ensembles in a 3D harmonic potential, the breathing
mode frequency is twice the oscillation frequency (FB = 2Fz) (81).

Examples of the frequency measurement can be seen in figure 21, where we have
the measurement by the breathing mode technique (top graph) and the measurement by
the release and recapture technique (bottom graph). The respected measured values were
extracted by fitting a damped sine function and can be seen in the figure. By doing an
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average between these two results, we obtained an oscillation frequency of F (z) ≈ 567 Hz.

The measured value of the trap frequency, turned to be different to the one expected
from the theoretical calculations F (z) = 694 Hz. We believe that the difference is related
to the fact that the power of the ODT beams considered in the simulations is higher than
the actual power of the light trapping the atoms; this is because we have some power loss
while the light passes through the optics or even through the science chamber windows.

4.3 Phase-Contrast Imaging

The remaining characterizations of the crossed ODT were done by the implemen-
tation of a Phase-Contrast Imaging (PCI) system. Contrary to the Absorption Imaging
(AI), the PCI is a non-destructive technique that, by applying an off-resonance laser
beam, allows the calculation of the accumulated phase of the light after interacting with
the atomic sample (84), which is used to obtain the density profile of the atomic cloud,
integrated in the propagation direction of light.

4.3.1 PCI Theory

ABSORPTION IMAGING THEORY REVIEW

For both AI and PCI techniques, we need to measure the 2D density profile
ρ2D(x, y) =

∫∞
−∞ ρ(x, y, z) of the atomic cloud. In the case of the AI, this is obtained

through the optical depth of the sample at transverse position b(x, y), since the intensity
of the transmitted light, recorded by the camera, is given by

It(x, y, ∆AI) = e−b(x,y) I0 . (4.8)

Then, for an imaging beam resonant with any atomic transition that goes from the ground
state to an excited state, we have the 2D density profile:

ρ2D(x, y) = b0(x, y)
σ0

= − 1
σ0

ln
(

It(x, y, ∆AI = 0)
I0(x, y)

)
. (4.9)

This last equation can be generalized for the case of a non-resonant imaging beam,
using

b(x, y, ∆AI) = σ0
1

1 + 4∆2
AI

Γ2

ρ2D(x, y) , (4.10)

allowing to perform the AI for probing clouds with high optical depth.

For a dense atomic sample, where not only we have a too high optical depth but
also a high spatial density, the equations above are not valid since we cannot consider a
linear behavior of ρ2D(x, y) with the refractive index of the sample. This represents an
important limitation of the AI to quantitatively obtain the density profile of a dense cloud.
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PHASE CONTRAST IMAGING THEORY

In the PCI case, the 2D density profile is obtained through the measurement of
the phase shift induced by the atoms on the incident light, which is related to the optical
depth at resonance:

ϕ(x, y, ∆PCI) = −
∆PCI

Γ

1 + 4∆2
PCI
Γ2

b0(x, y) . (4.11)

In order to apply this technique, we need to choose a large detuning for the imaging
beam, such that the light absorption is negligible and we will have only dispersive effects
on the light. We can estimate the value of the detuning by noticing that for having a good
signal-to-noise ratio on the phase shift measurement, its maximum value ϕmax should be
close to one. Then, for a cloud of b0 ≫ 1, we obtain the order of magnitude of the light
detuning as follows

|∆PCI| ∼ b0
Γ
4 . (4.12)

The phase induced by the cloud in the PCI is not simply obtained by the intensity
distribution of the transmitted imaging beam. This makes the PCI protocol more com-
plicated than the AI, being necessary to perform a kind of interferometric measurement
between the incoming electric field and the electric field scattered by the atoms (85).

Let us first, separate the transmitted light as a combination of the incoming
Eprobe(r) and the diffracted Ed(r, ∆PCI) electric fields:

Et,PCI(r, ∆PCI) = Eprobe(r) + Eprobe(r)
(
eiϕ(x,y,∆PCI) − 1

)
= Eprobe(r) + Ed(r, ∆PCI) . (4.13)

Including a controlled phase shift ϕP on the non-diffracted part of the transmitted
light, the detected electric field at the camera position becomes:

Ec = eiϕP Eprobe(r) + Ed(r, ∆PCI)
=
(
eiϕP + eiϕ − 1

)
Eprobe(r) . (4.14)

In this situation, the intensity recorded by the camera is given by

Ic(x, y) = I0(x, y) [3 − 2 cos ϕ(x, y) − 2 cos ϕP + 2 cos (ϕ(x, y) − ϕP )] , (4.15)

and the phase induced by the atoms can be calculated as a function of ϕP and the intensity
of the transmitted light

ϕ(x, y) = ϕatoms(x, y) = arcsin
 Ic(x,y)

I0(x,y) + 2 cos ϕP − 3
4 sin ϕP

2

+ ϕP

2 . (4.16)

In figure 22, we have shown the behavior of the equation (4.15) for different values of
ϕP . Here, we can see a periodical dependence of Ic on ϕatoms, meaning that there is an infinite
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Figure 22 – Intensity detected at the camera v.s. the phase induced by the atoms, for
different controlled phase shifts ϕP .

Source: By the author.

ensemble of values of the accumulated phase that gives the same transmission intensity.
Note that the equation (4.16) is only valid for the interval (ϕP −π)/2 ≤ ϕatoms ≤ (ϕP +π)/2.
For other values of ϕatoms we would observe phase jumps in the recorded image and it
would be necessary to implement an algorithm to unwrap the phase.

Another thing to discuss about the graph of fig. 22 is the choice of the value for
the phase shift ϕP . We can use any value on the experimental implementation of the
PCI system but there are some advantage and disadvantages. For example, the phase
ϕP = π/3 keeps the minimum value of Ic strictly zero, yielding a better contrast on the
image since (Imax − Imin)/(Imax + Imin) = 1. The phase ϕP = π guarantees a maximum
absolute amplitude of (Imax − Imin) = 8I0 but its behavior is quadratic for small values of
ϕatoms, which adds noise to the measurement of lower density regions within the sample,
like the wings of a Gaussian cloud, for example. The phase shifts π/2, π/3 and π/4 have an
approximately linear response for small accumulated phases, making them more suitable
for the PCI system.

4.3.2 PCI Setup

Experimentally, we can produce the controlled phase shift mentioned above by
using a phase spot placed in the focal plane of the non-diffracted probe beam, which is the
plane wave part of the beam. In figure 23 we can see a simplified scheme for a common PCI
system where the phase shift is created by a glass plate with a spot at the center. Here,
the blue color represents the non-resonant probe beam and also the non-diffracted part
of the light after the atoms position; the red color represents the light diffracted by the
atoms. The atoms are imaged with the first lens of focal length f1, placed at the distance
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Figure 23 – Schematic representation of the PCI setup. The blue non-resonant beam inter-
act with the atoms and, with the use of two lenses, an image of magnification
M = f2/f1 is created at the camera position. The phase spot in placed in
Fourier plane of the first lens.

Source: By the author.

f1 from the atomic ensemble. An image is created by placing a second lens of focal length
f2, at the distance f1 + f2 from the first lens and the distance f2 from the camera.

The light used for this imaging system is taken from an extra blue laser available
in our lab that we call "Baby Blue". The details of this laser system will be given in the
next chapter. The important thing to remark here is that we are able to lock this laser
for several frequencies until approximately 1400 MHz from the resonance condition of the
blue transition.

In our lab, we do not have a glass plate to create the phase shift, so we used an
Spatial Light Modulator (SLM) instead. Our real experimental setup is shown in figure
24. We first expand the incoming beam with a telescope until a waist of 680 µm, which is
good enough to image our dense cloud since the ODT should have a transverse size of
approximately 7 µm. After passing through the atoms, the non-diffracted light is focused
by a lens of 150 mm and the SLM is placed at the Fourier plane of this lens. The phase
pattern introduced to the SLM was made in Matlab and it is shown in figure 25, where we
see the phase disk at the center allowing to shift only the phase of the probe light but not
the light diffracted by the atoms. After being reflected by the SLM, the image is built by
the use of a second lens of 500 mm and the magnification is M = 500mm/150mm = 3.33.
The image of the atomic cloud is captured by a CMOS camera with 5 µm of pixel size.

Using a SLM to filter the light have some advantages and disadvantages, or specific
considerations to take into account in order to have a proper application of this device. An
important step to start using the SLM is to use a lookup-table that will provide a linear
phase response to the gray levels introduced to the device. This lookup-table, shown in
figure 26, was generated following the recommendations of the SLM manual and we got a
linear behavior of the phase from 0 to 2π in relation with the gray levels from 0 to 256.

Another consideration to use the SLM is that its pixelated nature produce diffraction
effects which give place to noise in the light reflected by the SLM itself. This problem



68

Figure 24 – Real experimental setup of our PCI system. Similar as the previews figure,
the blue and red colors represent the non-diffracted and the diffracted parts
of the imaging beam. The angle of reflection on the SLM is θ/2 = 16.4◦.

Source: By the author.

Figure 25 – Pattern introduced to the SML, which is a superposition of a phase disk with
a diffraction grating. The elliptical shape of the phase disk is related to the
projection of the light due to the angle of incidence on the SLM plane.

Source: By the author.
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Figure 26 – Lookup-table generated in order to calibrate the SLM device.

Source: By the author.

can be addressed by adding a separate diffraction grating to "clean" the light (see fig.
25). In this way, the zero-order of diffraction will contain the noisy light that does not
experience any phase shift due to the SLM pattern, and the first-order of diffraction that
contains the phase shift imprinted by the SLM. In our scheme for the experimental setup
of fig. 24, we just considered the first-order of diffraction since is the one relevant for the
PCI system. The grating separation was chosen to be 10 px (being the pixel size equal to
8 µm); higher separations lead to a better efficiency in the intensity of the first-order of
diffraction, nevertheless, in these conditions, all diffraction orders are not well separated,
which is a problem for the experimental implementation of the imaging system.

Note that the system described in figure 24 works not only for producing Phase
Contrast Imaging but also for Absorption Imaging. In order to make the AI, we just need
to put the imaging beam on resonance and to eliminate the phase disk of the SLM pattern.

The elliptical shape of the disk is because of the angle of incidence of the light
on the SLM screen, which is 16.4◦. As the waist of the imaging beam is w0 = 680 µm,
we can calculate its waist at the focus after passing by the lens of focal length f = 150
mm: wf = λf

πw0
= 31.8 µm. Our SLM accepts a maximum intensity of approximately

2 W/cm2; for the waist calculated before, we have that the power limit for the beam is
Pmax = πImaxw2

f

2 = 31.75 µW. We usually use values between 20 µW and 25 µW for the
power of the PCI beam.
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For these conditions of the imaging beam, we can estimate the radius of the phase
disk RP . As all the non diffracted light must be phase shifted by the disk, the radius of
this disk should ideally be RP ≳ 3wf = 95.4 µm. At the same time, in order to implement
the interferometric measurement described before, no diffracted light should suffer a phase
shift, and this will represent an upper limit for the parameter RP .

The main advantage of using a SLM is to be able of controlling every parameter of
the phase mask. We ended up using phases of ϕP = π/4 or ϕP = π/3 for the disk since
these values suited well to observe the crossed ODT in every condition of the atomic cloud.
The phase π/4 give place to an image with a small contrast (when compare with the
other phases considered in fig. 22), allowing the probing of a dense cloud without being
necessary the use of a very large detuning for the imaging beam.

Using the flexibility of the SLM, we experimentally investigated the effect of the
phase disk radius RP on the image of the atomic cloud. As we can see in figure 27,
measuring the number of atoms for an specific condition of our crossed ODT, we identify
a plateau at the range 100 µm ≲ RP ≲ 250 µm, which is compatible with the predictions
made before. For values of RP ≲ 100 µm, the non-diffracted part of the light is not fully
contained within the phase disk, and the number of atoms drops quickly to zero when RP

drops to zero. This is expected since the absence of a phase disk leads to no signature of
the phase shift caused by the atoms at the camera position. For RP ≳ 250 µm, the phase
disk will also shift in phase part of the diffracted light, affecting the information of the
atomic profile and producing a reduction of the measured number of atoms.

In order to validate the implemented imaging system, we wanted to find a condition
where it is possible to compare the characteristics of the atomic cloud by using simulta-
neously the Phase Contrast Imaging and the Absorption Imaging techniques. With this
goal, we created an experimental sequence that makes a PCI of the cloud in the vertical
direction and, after a time-of-flight of 4 ms, produces an AI of the cloud in the horizontal
direction. This is only possible due to the nondestructive behavior of the PCI technique.

For the set of measurements used to make a comparison between the AI and PCI,
we kept the phase disk constant in ϕP = π/3 and used four different detunings for the
PCI beam. We explored different conditions for the cloud, increasing the number of atoms
and the optical depth, by changing the power of the Blue MOT experimental ramps. The
left graph of figure 28 shows the obtained values for the number of atoms when using
both imaging systems. We can find here two realizations of the measurements for each
detuning, which help us to visualize that the dispersion of the results is not related with
the detuning but with a shot-to-shot fluctuation. Even when we have these fluctuations, it
is clear the linear correspondence between the measured values for all conditions.

Another test that we made using the same set of measurements was to check the
linear correspondence between the optical depth multiplied by the square of the cloud size
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Figure 27 – Number of atoms measured by imaging the atomic cloud using the PCI
technique as a function of the radius of the phase disk produced with the
SLM.

Source: By the author.

Figure 28 – Set of measurements performed to compare the Absorption Imaging and Phase
Contrast Imaging techniques. (Left) Measurement of the number of atoms
by using both imaging systems. (Right) Measurement of the optical depth
multiplied by the square of the cloud size at PCI as a function of the Number
of atoms at AI. The results of the linear fit, represented by the red line, can
be seen at the graphic.

Source: By the author.
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(b0 · R2), measured using the PCI technique versus the Number of atoms N using AI. For
a Gaussian cloud, these parameters are related through the expression N = (b0R

2k2
0)/3,

whose deduction will be shown at the next chapter. In the right graph of figure 28, we can
see the expected linear behavior for detunings greater or equal to 642 MHz. Note that
here, we made an average of the parameters N , b0 and R2 by dividing the data in 15 small
squares that represents subsets with similar number of atoms. The error bars in the graph
are the standard deviation on each subset. The red line represents a fitting of the data and
the results of the slope and intercept were (0.020 ± 0.002) µm2 and 246.1 ± 27, respectively.
According to the value of wavenumber k0 associated to the atomic blue transition, we
should have an slope of ∼ 0.016 µm2, which is close to the measured value.

The data for the 298 MHz detuning does not follow a linear behavior due to
saturation of the phase contrast imaging for high optical depths. This saturation effect
gave place to the observation of an smaller optical depth but an slightly higher size of the
cloud, coincidentally remaining the number of atoms at PCI linear with the number of
atoms at AI. That is the reason why the saturation is clear at the right graph but not the
left one. The detuning of 298 MHz was not included in any fitting procedure.

4.4 Optical Molasses

Due to the small volume of our crossed ODT, we have a small efficiency of the
atomic transference from the Red MOT to this new trap. In order to circumvent this, we
implemented an additional stage of cooling by performing an optical molasses with the
689 nm red light. The application of this technique demands a cancellation of the external
magnetic field, since an uncompensated magnetic field can give place to regions where
the equilibrium velocity is not zero, producing a lost of atoms during the cooling process.
A magnetic field of B = 5 mG is already enough to shift the energy levels in a unity of
Γ = 7.6 kHz, which is the natural linewidth of the red transition. Therefore, we need a
cancellation of the magnetic field with a very high precision.

4.4.1 Magnetic Field Cancellation

Around the science chamber, we have implemented three pairs of Helmholtz coils
that allow us to introduce a magnetic field in the three spatial directions. The cancellation of
the magnetic field consist in finding the right values for the coils’ current that compensates
the external magnetic field, creating an environment of B = 0 at the position of the atomic
trap.

As we needed a very good accuracy in the cancellation of the magnetic field, we
developed the following procedure. First, we implemented a molasses stage at the end of
the Red MOT sequence with a duration time of 24 ms. Scanning the frequency of this
red light used for the molasses stage, we are able to identify the three magnetic sublevels



73

Figure 29 – Magnetic field cancellation process: a) Measuring the size of the cloud varying
the detuning of the molasses light, it can detected the position of the magnetic
levels. The points A and B represent the positions for the levels mj = −1
and mj = 1, respectively. b) Repeating the measurement for different values
of the magnetic field, it will be observed a shifting of the levels mj = −1 and
mj = 1, and the magnetic field is zero when the positions A and B get closer.

Source: By the author.

Figure 30 – Comparison of the cooling efficiency between the dispersive curve of just the
central level mj = 0 for a non-zero magnetic field of B = 188 mG and the
collapse of the three dispersive curves in just one curve once the magnetic
field is cancelled.

Source: By the author.
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mj = {−1, 0, 1} of the 3P1 state. When the magnetic field is different than zero, the
Zeeman effect leads to an splitting of the excited state, separating the levels mj = −1,
mj = 0 and mj = 1. The figure 29a shows a graphic of the size of the cloud as a function
of the detuning between the molasses light and the 1S0 ⇔ 3P1 transition. Here, we can
observe three dispersive curves around the resonance condition of the three excited levels.
This behavior is expected for the optical molasses since the beam below the resonance will
cool the cloud while above the resonance will heat the cloud. As a consequence of these
variations in the temperature, the cloud will be compressed or expanded and the effect is
visible while measuring the cloud size.

Changing the magnetic field, we observe a frequency shifting of the excited levels
mj = −1 and mj = 1, while the level mj = 0 remains at the same position. Plotting the
position of the levels mj = −1 and mj = 1 (represented by the points A and B in fig.
29), we stop when the three dispersive curves collapse in just one curse at the position
of the mj = 0 resonance. This condition is the one when A and B get closer, as we can
see in figure 29b. Note that the position of the levels is determined by the center of the
dispersive curves, not by the extremes. But following the extremes is a better way to follow
the positions of each level. This procedure need to be done for every spatial direction in
order to fully cancel the magnetic field.

In order to compare the effect of the optical molasses for a zero and non-zero
magnetic field, we made the graphic shown in figure 30. Here, we plotted the only
dispersive curve observed when the magnetic field is completely cancelled and just the
central level mj = 0 for a magnetic field of B = 188 mG. Comparing these two curves, we
see an improvement of the cooling for a cancelled external magnetic field, since for a small
red detuning of the molasses light, we obtain a significant compression of the atomic cloud.

4.4.2 Experimental Ramps and Calibrations

Once the magnetic field was completely cancelled, we included the molasses stage
in the experimental sequence used for creating the crossed ODT. At figure 31, we can
see the whole experimental sequence very well detailed, with the corresponding values of
the light intensity and frequency for each temporal stage. The part of the experimental
sequence used to create the blue and red Magneto Optical Traps, were already explained
in the previous chapter. The main difference here is the presence of the infrared light to
produce the crossed ODT and the optical molasses stage during the superposition of the
red light with the ODT beams.

As mentioned before, both horizontal and vertical ODT beams are simultaneously
turned on 300 ms before turning off the red light and kept on more 40 ms of holding time.
After the fourth ramp of the red MOT, we turn off the magnetic field of the MOT coils
but keep the red light for 70 ms in order to produce the optical molasses. During this
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Figure 31 – Experimental sequence for obtaining the crossed ODT. The blue, red and
orange colors represent the power ramps used for the light with wavelengths 461
nm, 689 nm and 1064 nm respectively. For the molasses stage, the quadrupolar
magnetic field of the red MOT is off and also the external magnetic field is
cancelled.

Source: By the author.

stage, the intensity and detuning of the red light are kept constant at the values 3.4Isat,red

and -0.02 MHz respectively. At figure 32 can be found optimization curves for the duration
time of the molasses stage (fig. 32a) and the power of the molasses red light (fig. 32b). In
both cases, we plotted the behavior of the optical depth and the size of the crossed ODT.
We chose the values that present a higher optical depth with the lower size, since is the
condition with the best density at the lower temperature. We found in both measurements
regions where the optical depth remained approximately constant in a maximum value
while the size continued decreasing. Therefore, the optimal values for the molasses time
and the power are 70 ms and 2.6 µW (equivalent to 3.4Isat,red) respectively.

Another important optimization is the detuning of the molasses light. At this point
we need to worry about the differential AC Stark shift that the ODT beams produce
in each transition of the 3P1 state. We performed some calculations that simulate the
Stark shift considering the powers and the real configuration of polarization for both ODT
beams: polarization π for the horizontal beam and polarization σ+ for the vertical beam,
taking z as the quantization direction. As we can see in figure 33a, with these polarizations
we minimize the Stark shift of the mj = −1 level. In this graph, the calculations are
made along the center profile of the x direction (same propagation direction of the ODT
horizontal beam) for the crossed ODT. These simulations were mainly carried out by
Pablo Gabriel Santos Dias, one of my laboratory colleagues.
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Figure 32 – Optimization curves for the crossed ODT. (a) optical depth and size of the
cloud for different duration time of the molasses light pulse, and (b) optical
depth and size of the cloud for different powers of the molasses light.

Source: By the author.

Figure 33 – (a) Calculated Stark shift produced by the ODT beam on the 3P1 levels. (b)
Optical depth v.s. the detuning of the molasses light.

Source: By the author.
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Figure 34 – Absorption images for two different conditions of the molasses detuning curve
of figure 33b, which gives a qualitative information of the effect produced by
the optical molasses.

Source: By the author.

Figure 33b shows the behavior of the optical depth while scanning the detuning
of the molasses light. Even when we were expecting a shift of the 3P1 levels due to the
presence of the infrared beams, the implementation of the molasses showed that the
maximum optical depth is for the same detuning as the molasses without the ODT beams
(see fig. 30), which is -20 kHz. With this result, we can conclude that the biggest effect of
the molasses produced during the superposition with the ODT is for cooling the atoms that
are not in the deeper crossed potential, but the ones that remained in the more shallow
potential created by the horizontal ODT beam only. Complementing this interpretation,
we produced two absorption images with qualitative information of the crossed ODT at
the molasses detunings -60 kHz and -20 kHz. The images can be seen at figure 34, and
here it is clear how the implemented extra stage of cooling, recycles atoms that remained
outside the crossed ODT after the transference from the Red MOT.

4.5 Final Characterization of the ODT

The final characteristics of our crossed ODT can be obtained by producing a
PCI to probe the atomic system in situ. Most part of the parameters can be directly
extracted by this image: as the number of atoms, the size in the transverse direction and
the optical depth. The size in the longitudinal direction can be calculated considering the
characteristics of the ODT beams and the measured oscillation frequency in the z axis.
Then, the temperature can be estimated by using the values for the size of the cloud.

Summarizing the characteristics of our ODT, for the specific cloud shown in figure
35, we have:
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Figure 35 – Phase Contrast Imaging for the crossed ODT in situ. The colored scale
represents the optical depth of the cloud.

Source: By the author.

• Number of atoms: 370000

• Optical depth: 50.33

• Sizes of the cloud at 1/
√

e, in (x, y, z): (10.4, 11.4, 4.1) µm.

• Temperature: 1.43 µK

• Spatial density at the center, in unities of 1/λ3: ρλ3 = 4.4.

The value for the spatial density seems to be kind of low when compare to the
Ioffe-Regel criterion presented in the introduction of this document. However, we decided
to move on and try investigate the presence of density effects using this cloud.

Both processes implemented for cooling and imaging of our dense cloud, represent
important experimental results of this PhD project, and we are writing an article that
should be submitted in the next weeks.
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5 SIMULATIONS BASED ON COUPLED DIPOLE MODEL

In this chapter will show and discuss the results of some simulations applying the
coupled-dipole model. These simulations are about the first set of measurements that we
want to perform in the dense regime: coherent transmission measurements of a light beam
focused on the atomic cloud.

5.1 Geometry of the Cloud

The first step of the simulations consists in creating an atomic cloud. For this
purpose, there is a random selection for the position of N atoms according to some
geometry and probability density ρ(x, y, z). In these simulations, we are able to produce
clouds with different geometries: Gaussian cloud, uniform sphere, uniform cube or uniform
slab.

As we saw in Chapter 2, the optical depth at the center of the atomic cloud, i.e.
position (x = 0, y = 0), is given by

b0 = σ0

∫ ∞

−∞
ρ(0, 0, z) dz , (5.1)

where σ0 = 3λ2

2π
= 6π

k2
0

is the cross-section at resonance, λ is the wavelength of the incoming
light at resonance and k0 is the modulus of the wavevector of light.

In our simulations we usually introduce the parameters of the cloud: b0, transverse
length R and spatial density in units of ρλ3. Thus, depending on the geometry, we can
estimate the number of atoms N and the longitudinal length L.

The real atomic cloud that we obtain in the lab has a Gaussian distribution,
however we are also interested in the uniform slab geometry since it was used for some
tests in order to validate the simulations.

5.1.1 Gaussian Cloud

The density profile of a Gaussian cloud of N atoms, with transverse and longitudinal
radius at 1/

√
e equal to R and L respectively, is given by

ρ(x, y, z) = N

(2π)3/2R2L
e− x2+y2

2R2 − z2
2L2 , (5.2)

The optical depth at the center of the cloud, using (5.1), is equal to

b0 = 6π

k2
0

∫ ∞

−∞
dz

N

(2π)3/2R2L
e− z2

2L2 = 3N

(k0R)2 . (5.3)
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Figure 36 – Random distribution of the atoms position following (a) a Gaussian geometry
and (b) an uniform slab. All three axis are in micrometer scales.

Source: By the author.

In this case, for introduced values of b0, R and ρλ3, we have:

N = b0(k0R)2

3 (5.4)

and

L = N(2π)3/2

(ρλ3)R2k3 . (5.5)

An example of a Gaussian cloud produced by the simulations can be seen in figure
36a. Here we considered a large number of atoms and sizes of R = L = 1 µm.

5.1.2 Uniform Slab

The density profile of a slab of N atoms with uniform density, which transverse
and longitudinal radius are R and L respectively, is given by

ρ(x, y, z) =


N

πR2L
if

√
x2 + y2 ≤ R and |z| ≤ L

2 ,

0 otherwise
(5.6)

The optical depth at the center of the cloud, using (5.1), is equal to

b0 = 6π

k2
0

∫ L/2

−L/2
dz

N

πR2L
= 6N

(k0R)2 . (5.7)

In this case, for introduced values of b0, R and ρλ3, we have:

N = b0(k0R)2

6 (5.8)

and

L = 8Nπ2

(ρλ3)R2k3 . (5.9)



81

An example if this kind of atomic distribution can be seen in figure 36b, where it
was considered R = 2 µm and L = 1 µm.

5.2 Incident Beam

In our simulations, the atomic sample is excited by an incoming light beam that
propagates along the z direction. The simulated beam can have a Gaussian distribution for
the electric field amplitude or either being a plane wave. Here, we do not use a plane wave
approximation since we are interested in the case where the transverse size of this beam is
smaller than the transverse size of cloud. Therefore, the simulated beam is Gaussian as
the one we are going to use for the coherent transmission experiments. For simulating the
atomic excitation, the focus of the Gaussian beam coincides with the center of the atomic
cloud, i.e. position (x, y, z) = (0, 0, 0).

A Gaussian beam with electric field of amplitude E0 at center and waist w0 at
the focus position, has a complex amplitude El of the electric field that depends on the
position R = (x, y, z) as

El(R) = E0
w0

w(z)e
− (x2+y2)

w(z)2 +ikz+i
k(x2+y2)

2Rc(z) −iϕG(z)
, (5.10)

where w(z) is the waist of the beam, given by

w(z) = w0

√
1 +

(
z

zR

)2
. (5.11)

Here, zR is the Rayleigh range, related to the wavelength of the light and the waist
through the expression zR = πw2

0/λ. Others physical quantities introduced in equation
(5.10) are the radius of curvature of the wavefront Rc(z) and the Gouy phase ϕG(z), given
respectively by

Rc(z) = z

(
1 +

(
zR

z

)2
)

(5.12)

and

ϕG(z) = arctan
(

z

zR

)
. (5.13)

We can see in these expressions that the shape of a Gaussian beam of a given
wavelength λ is governed solely by one parameter: the beam waist at the focus w0. Hence,
w0 is the parameter of the beam that we introduce in the simulations, and from it we can
estimate the Rayleigh range zR, which is another relevant parameter for the simulations.

Note that the scalar function El, represents just the spatial dependence of the
modulus of the electric field. Therefore, properties as the temporal dependence of the
electric field or its polarization are not included in this function.
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5.3 Applying the Coupled Dipole Model

To apply the Coupled Dipole Model, we simulate the atomic cloud and the incoming
beam with very specific conditions, and study the optical response of the cloud using
equation (2.42) considering the complex amplitude of the incoming beam as shown in
equation (5.10). The atomic coherences in the steady state regime are computed by a
diagonalization of the matrix kernel of the dipoles interaction (K). As the matrix K has
dimension 3N × 3N , the greater the number of atoms, the longer it will take to perform
the simulation and more memory will have to be allocated to the program. This represents
a limitation of our simulations and we actually observed an upper limit of around 7000
atoms in the computer we used (with 16 GHz of RAM).

There are some important considerations that we must take into account while
performing the simulations. First, we are interested in studying the case in which the
transverse size of the cloud is greater than waist of the incoming beam (R > w0), so the
light interacts with an approximately homogeneous region of the cloud in the transverse
directions. In the other hand, we need to guarantee that the waist of the beam is larger than
the wavelength of the light (w0 ≳ λ) so the paraxial approximation is valid. Considering
w0 ≳ 2.5λ should be enough for the application of the coherent transmission equation
(2.42) (56). A second consideration is that the longitudinal size of the cloud needs to be
smaller than the Rayleigh range of the incident beam (L < zR) in order to guarantee that
the whole beam is interacting with the atomic cloud.

Since the positions of the atoms inside the cloud are random, even when the system
follows a specific distribution, the optical response of the cloud is going to be different
in each realization of the simulation. For this reason we need to make more than one
simulation for each condition and compute the average over the number of realizations. In
the simulations that are going to be shown below, we took the average over more than 30
realizations.

In order to validate our simulations, we made some tests on the dilute regime since
the optical response of low density atomic clouds is well known both experimentally and
theoretically.

5.3.1 Beer-Lambert Law

In the section 2.3, it was discussed about a law that represents a relationship
between the attenuation of light through a sample and the properties of that sample.
According to this law, which is called Beer-Lambert law, the transmitted light through
the sample follows an exponential decreasing behavior in relation to the optical depth
at resonance, i.e. T = e−b0 . This relation is only true for low density samples, where the
absorption of the incoming light happens independently for each atom withing the atomic
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Figure 37 – Comparison of the simulations with the expected behavior according to the
Beer-Lambert law. Both geometries considered are shown at the top of the
graphics.

Source: By the author.

cloud.

The first test that we made using the simulations based on the vectorial CDM
consisted on checking the compliance of the Beer-Lambert law in the dilute regime. For
this, we considered both geometries mentioned before: a Gaussian cloud and a uniform
slab. In both cases, the transverse size of the cloud was fixed on R = 7 µm and the spatial
density ρλ3 = 0.5 (or ρ/k3

0 = 0.002 ≪ 1). The optical depth was varied from 0.2 to 2 and,
at the same time, the number of atoms N and the longitudinal size of the cloud L changed.
The waist of the beam was fixed at w0 = R/2 and the Rayleigh range was greater than
any value of L for each condition of the cloud.

In figure 37 we can see a perfect correspondence of the simulations and the Beer-
Lambert law for the case of the uniform slab and a slight divergence of the curves for
the case of the Gaussian cloud. This can be explained by the fact that the Beer-Lambert
law used to compare considers an homogeneous density of the sample in the transverse
direction, which can be fully guarantied only for the uniform slab geometry. However, we
also observe a good agreement for the Gaussian cloud case.

5.3.2 Coherent Transmission Spectra

Simulating the real conditions of our atomic cloud, obtained by the Optical Dipole
Trap, is impossible for us because of the number of atoms limitation (N ≲ 7000). We
could only simulate the real size of our cloud in the dilute regime, but the dense regime
requires a larger number of atoms. In order to create similar conditions with respect to the
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Figure 38 – Atomic cloud considered in the simulations, in which we have two different
distributions for the transverse and longitudinal directions. The two blue lines
represent the Gaussian beam focused at the center of the cloud, with waist
equal to the transverse size of the atomic distribution.

Source: By the author.

experiment, we created a model that consider a cloud with a Gaussian distribution in the
longitudinal direction and a uniform transverse distribution, as can be seen in figure 38.
The longitudinal size is L = 2.23 µm, similar to our experimental cloud. The transverse
size of the sample, as well as the waist of the incident beam, is R = w0 = 1 µm. The
uniform transverse distribution allow us to simulate the interaction of the beam with an
homogeneous part or the cloud, that would be the experimental case of a beam smaller
than the Gaussian atomic cloud. Also, the condition R = w0 is equivalent to consider only
the atoms of the cloud that actually interact with the beam. The longitudinal Gaussian
distribution, apart from being the actual geometry of our real cloud, is also important for
the simulations since allow us to avoid cavity effects inside the cloud.

In the conditions described above, we performed a first group of simulations building
coherent transmission spectra for different values of N . As both sizes of the cloud were
fixed, increasing N is equivalent to simultaneously increase the spatial density and the
optical depth. The spectra are shown in figure 39 with their respective densities. For
a spatial density of ρλ3 = 0.1, we observe a symmetric spectrum with a linewidth of
approximately Γ, as we should expect in the dilute regime. The other curves show the
behavior of the coherent transmission at high density where we can see a broadening of the
spectra and the appearance of an splitting. The broadening of the transmission curves are a
consequence of collective effects between the atomic dipoles, as it was explained in chapter
2. The splitting of the transmission curves, which is more clear in the logarithmic scale
(right graphic of fig. 39), is a behavior that we never observed before in the bibliography.
The distortion of the spectral profile indicates that we entered into a different physical
regime, which is plausible due to the complex propagation effects of light in a dense atomic
sample.
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Figure 39 – Coherent transmission spectra for different atomic densities. The black line
represents the dilute regime and the colored lines are for the dense regime
spectra.

Source: By the author.

In order to understand the splitting of the transmission spectra, we made some
new simulations: We fixed the optical density at a value for which the splitting is clear
(b0 = 24.5) by fixing the number of atoms at N = 760. The transverse size of the cloud
was kept at the same value considered before (R = 1 µm), while the longitudinal size
was varied in order to decrease the spatial density. These new spectra are shown in figure
40 and we can see a disappearance of the splitting for lower spatial densities. Then, we
can conclude that the splitting in the transmission curves is an effect of the high spatial
density rather than an effect of the high optical density. The increasing of the transmission
shown in these graphics, for values of L ≥ 4 µm, is unexpected since the optical density
remained constant. This is provably related to the fact that the Rayleigh range of the
incoming beam is no longer greater enough than the longitudinal size of the cloud.

Another interesting thing we can observe in this last set of graphics is the presence
of a red-shift for the lower spatial densities. This is the collective Lamb shift, and its
behavior is similar to the observed in some previous works (33,49).

Even when we do not have an interpretation for the observed splitting, it would be
very interesting to observe this effect on the coherent transmission experiments and check
that is related to the complexity of the dense regime.

More recent simulations in the dense regime suggested that the splitting could be
related to incoherent scattering of the incident light transmitted in the forward direction.
This incoherent transmission would be given by multiple scattering of photons that end up
projected in the incident light mode. In these simulations, it was filtered the polarization
of the transmitted light selecting the same linear polarization of the incident beam and
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Figure 40 – Coherent transmission spectra for a fixed optical depth but different spatial
densities.

Source: By the author.

the perpendicular one. The light with perpendicular polarization could only be given
by incoherent transmission, and we realized that it has amplitude closer to the light
transmitted with parallel polarization around the resonance condition of the transmission
spectrum. So far, these are just assumptions and we would need to make a detailed study
to have a conclusive interpretation of the splitting observed in the simulations showed in
this chapter.
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6 COHERENT TRANSMISSION

In this chapter, we will describe the experimental system implemented for the
coherent transmission measurements. Specifically, we are going to give details about the
laser used to perform these measurements, its frequency stabilization and the characteristics
of the coherent transmission beam. Then, we will show some characterizations using the
first coherent transmission spectrum in the dilute regime, and finally we will show the
obtained results in the dense atomic regime.

6.1 Baby Blue Laser

We installed a new blue laser in our lab which is a tunable diode laser (DL pro)
from Toptica Photonics, that operates at 461 nm. This laser is considerably smaller and
simpler than our principal blue laser (TA-SHG), for this reason we use to call it "Baby
Blue". In this kind of laser, a diffraction grating is used to foster single-frequency emission
of the laser light. As different wavelengths of light are bent at different angles by the
grating, the variation of the frequency could be done by modulating the grating angle of
the laser diode.

Figure 41 shows the optical table for the Baby Blue laser, separated by three
different sections. Following the order of the figure, we have the first section containing the
laser itself and the light distributed to be coupled in three optical fibers. One of the fibers
is used to monitor the frequency of the laser using a wavelength meter (or just wavemeter).
A second fiber (Beating Fiber) is used to the frequency stabilization of the DL pro by
performing a beating with a beam of the principal blue laser. A third fiber, which is a

Figure 41 – Simplified scheme of the optical table for the Baby Blue laser. We see how
the system is separated in three sections that are described in the main text.

Source: By the author.
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combiner/splitter fiber, is used to split the light that will enter to the other two sections
of the baby blue system.

The second section is where we prepare the laser beam before the Phase Contrast
Imaging system, described in Chapter 4. Here, we basically just shift the frequency of the
beam 140 MHz below the reference of the laser and couple the light on a fiber (Imaging
Fiber) that brings the beam closer to the science chamber.

In the third section, we prepare the beam for the Coherent Transmission system.
We first, shape the beam with lenses to enter in a Fabry-Perot cavity used to spectrally
filter the light coming out from the diode laser. After the cavity, the light passes through
an AOM that shift the frequency but also allow to make light pulses with small duration
time. Finally, we control the power of the beam and couple it in a fiber. The light pulses
are used to perform the coherent transmission measurements.

6.1.1 Frequency Stabilization

For the stabilization of the frequency, we implemented a frequency offset locking.
First, we capture the beating signal between a beam of the principal blue laser (stabilized
by the saturated absorption spectroscopy technique) and a beam of the laser we want
to stabilize. This beating is done by introducing small portions of both laser beams in a
combiner fiber, and the superposition of the beams at the fiber output is connected in a
photo-detector. The offset locking technique is based on the frequency-dependent phase
shift experienced by the beat note of the two laser frequencies when it propagates through
a coaxial cable (86).

Both coherent transmission and phase contrast imaging systems demand being
able of locking the laser at detunings which are several unities of the natural width away
of the condition of resonance. According to the frequency shifts produced by the AOMs in
the two beams of the beating, the frequency of resonance between the Baby Blue laser and
the blue transition corresponds to a beat note of approximately 505 MHz. In general, for
any value of the baby blue frequency υbb, the beating signal will have a frequency given by
∆υ = υbb − υb, where υb is the frequency of the beam of reference that we use from the
main blue laser.

Figure 42 shows the electronic scheme implemented to create the frequency offset
locking. The photo-detector used to capture the beat note has 2 GHz of bandwidth, setting
a limitation for our locking system of about 1.5 GHz from the resonance condition. Here
we use two amplifiers to amplify the beating signal until approximately 16 dBm after being
captured by the photo-detector. After that, the signal passes through a Directional Coupler
which takes a sample of the input to be used as a monitor when connected to a Spectrum
Analyzer. Subsequently, the signal is mixed with the output of a Signal Generator at υSG

and then, the signal with frequency |∆υ − υSG| is filtered by a Low pass filter with cut-off
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Figure 42 – Scheme of the tunable frequency offset lock. Most of the electronic components
are from Mini-Circuits company and the specific information can be found
with their respective codes shown in the figure.

Source: By the author.

Figure 43 – Output voltage of the frequency offset locking circuit as a function of the beat
frequency ∆υ between the two lasers. The error signal produced by the circuit
is represented by the oscillations of the extremes of the graph, inside the red
circles. The behavior of the center (close to the zero frequency of the beat
note) is a spurious effect that can affect the laser’s locking in that specific
range of frequency.

Source: By the author.
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Figure 44 – Beating signal between the principal blue laser and the baby blue laser after
the frequency stabilization. The black line represents the experimental curve
captured by the Spectrum Analyser and the red line is the Gaussian fit to
extract the width of the peak function.

Source: By the author.

frequency of 100 MHz. This last signal is split into two equal parts which are recombined
on a mixer, after one part has been delayed by a 3 meters coaxial cable. The mentioned
mixer works as a phase detector since the output at twice the frequency is blocked by a low
pass filter with a cut-off frequency of 1.9 MHz. The resulting output voltage of the phase
detector varies as cos Φ where the phase shift Φ introduced by the cable is proportional to
the frequency ∆υ − υSG.

The output signal of the offset locking circuit is shown in figure 43 as a function
of the beat frequency. In this graphic, the beat frequency is scanned over more than 1
GHz by varying the frequency of one of the lasers. The oscillatory behavior at the center,
near the frequency zero for the beating, is a spurious effect caused by the DC behavior of
the mixer that combines the beating signal with the output of the Signal Generator. The
oscillations inside the red circles are the actual cosine curve of the offset locking circuit
and can be used as error signals for locking the frequency of the baby blue laser. The size
of the envelope in the error signal is related with the Low Pass Filter of 100 MHz used
after the first mixer.

Finally, the error signal is introduced to a DigiLock in order to create a correction
in the current of the laser and lock the frequency with approximately 2.5 MHz of accuracy.
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The locking point can be tuned by simply varying the reference frequency of the Signal
Generator. At the end, we verified that the implemented locking system allow us to lock
the frequency of the Baby Blue laser approximately 900 MHz above the resonance with
the atomic transition, and -1400 MHz below the resonance. Also, because of the noise
around the zero frequency of the beating signal, we are not able of locking the laser for
frequencies between -600 MHz and -400 MHz.

The accuracy of the locking system was estimated by fitting the beating signal once
the laser frequency is stabilized. Figure 44 shows the Gaussian fit of the beat note extracted
from the Spectrum Analyzer used to monitor the lock frequency. Here, we measured a
width of (2.52 ± 0.02) MHz, which indicates an upper bound for the Baby Blue linewidth.

6.1.2 Spectral Filtering

As we saw in the previous chapter, the theoretical coherent transmission spectra
showed a very low transmission signal (or the order of 10−3) for high density samples.
For this reason, the experimental implementation of these measurements requires a good
spectral resolution of the transmission beam and a large signal-to-noise ratio, allowing the
detection of low intensity signals by minimizing the background noise.

We used a Fabry-Perot cavity to produce a spectral filtering of the probe beam
used for the coherent transmission measurements. The cavity has the function of reducing
the high-frequency noise, thus improving the relative amount of light close to the central
frequency. This system is shown in the third section of figure 41. The Fabry-Perot, through
a constructive interference process, will selectively transmit or reflect certain wavelengths
of light while blocking others, resulting in spectral filtering effects.

The mirrors of our Fabry-Perot cavity seems to have a coating with a considerably
absorption index that make them unsuitable for a good cavity. This problem give place
to a loss of power in every reflection of light within the cavity and, at the Fabry-Perot
output, we have a transmission of less than 5% from the power of the incident light.

In order to use the filtered light that comes from the cavity transmission, it is
necessary to implement a locking system for this cavity. As the baby blue laser is stabilized,
we can use it as a reference of frequency and lock the cavity length in one of the transmission
peaks. We first tried to use a Digilock to produce an error signal of the cavity transmission
and being able to lock the cavity at the top of a transmission peak, but the signal was too
noisy probably due to a bad spectral quality of our laser and the fact that we have a very
low transmitted light power. At the end, we used the same transmission signal as an error
signal and produced a sideband locking. The transmission signal can be seen on figure
45a, where the width is approximately 27 MHz, since the free spectral range is ∆F SR = 3
GHz and the finesse is F = 110 for the 461 nm blue light. In the Digilock, it is possible
to change the offset of the signal and lock the cavity in one of the peak sides around the
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Figure 45 – (a) Signal of Fabry-Perot transmission, taken from the Digilock, used as a
signal error to lock the cavity. The red dot represents the position where the
cavity is locked. (b) Estimation of the light filtering when using the Fabry-
Perot cavity, considering the asymmetry produced by the locking position.

Source: By the author.

offset zero. We usually select the left side of one transmission peak to stabilize the cavity;
this position is represented by a red dot in the figure. This sideband locking reduce even
more the power at the cavity output, since the lock is not happening at the top of the
transmission, but have the advantage of being robust against power fluctuations.

In order to estimate how much the cavity is filtering the incident light, we first
made a simulated representation of the spectral density of the Baby Blue laser, considering
a linewidth of 1 MHz, as measured in the previous section. This spectral density can
be found in the blue line of figure 45b, where the plot was made in a logarithmic scale.
Considering that the transmission peak behaves like a lorentzian curve with equation
1/(1 + 4∆2/∆2

c) (where ∆c = 27 MHz is the width of this curve), by doing a convolution of
this curve with the spectral density of the laser, we can observe the spectral density of the
filtered light (see red dash curve of figure 45b). By a visual comparison of the blue and
red curves, we already see an improvement of the spectral resolution of the beam, with
a clear decreasing of the power density for values with non-zero detunings. For example,
considering a detuning equal to the linewidth of the transition Γ = 30 MHz, the filtered
light presents a power 6 times smaller when compare with the non-filtered light.

As the locking position for cavity presents a shift of frequency with respect to the
center of the transmission curve, we need to consider this to estimate the real filter that
we are producing in our system. Considering a shift of ∆c/3 in the spectral filtering, we
obtained the curve represented with the green dash line of figure 45b. It is clear here the
appearance of an small asymmetry in the spectral density of the filtered light, however the
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Figure 46 – Real spectral density of the Baby Blue laser.

Source: Adapted from the TOPTICA (87).

filtering is approximately of the same order of the filter produced that we would produce
locking the cavity at the peak of the transmission curve.

In figure 46, we can see the spectral density of the Baby Blue, taken from the
Toptica data sheet, in our real conditions where the maximum power density is centered
in a wavelength of 461 nm. We believe that the main effect of the filter produced by the
cavity is to reduce the pedestal below the peak of the maximum gain of the laser. In other
words, we can say that main reduction of the power density will be for frequencies far
from the resonance condition showed in figure 45b, since the pedestal span a frequency
range of several THz, which is much bigger than the free spectral range of the cavity. A
way to estimate how much of this pedestal is reduced by the spectral filter, can be done
by considering the area under the transmission peak after the Fabry-Perot cavity and
dividing it by the frequency range over which the cavity exhibits multiple transmission
peaks due to interference. As the area under the transmitted lorenztian curve is given by:∫ d∆

1 + 4∆2/∆2
c

= π∆c

2 , (6.1)

and the area between two transmission peaks is given by the free spectral range of the
cavity, we obtain a filtering index of

filter ≈ π∆c/2
∆F SR

= π

2F
≈ 0.014 . (6.2)

Finally, we can say that the reduction of the power density, which is calculated by the
inverse of the filtering index, is approximately 70 times less than the non-filtered light.

6.2 Preparation of Coherent Transmission Beam

To measure the transmission spectrum of near-resonant light, we need a J = 0 ↔
J = 1 transition such as 1S0 ⇔ 1P1 (461 nm) or 1S0 ⇔ 3P1 (689 nm). We are going to use
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the first one, which is practically closed for short excitation times, so we can consider that
no atom will decay to other levels. The choice of the blue transition is motivated by its
significantly higher saturation intensity compared to that of the red transition. This allows
us to utilize an excitation beam with higher power, resulting in a greater signal when
generating coherent transmission spectra using a low-intensity beam. Even if we were to
increase the saturation parameter of the incoming beam, to being able of using the red
transition, we would place the system in a condition where the scattering rate is larger than
the linewidth of the atomic transition. In this situation, a single photon scattering event
could be sufficient to shift the atom out of resonance with the incoming beam, causing
Doppler broadening of the transition. Summarizing, using the blue transition 1S0 ⇔ 1P1

will provide more signal and would not be subjected to Doppler broadening.

The Baby Blue laser beam is coupled on a Polarization Maintaining Singlemode
Fiber (see figure 47) and, at the output of this fiber, we have a fiber collimator from
Schäfter + Kirchhoff (60FC-L-4-M20L-01) with focal length 20 mm that allow us to obtain
a large beam diameter. We performed the knife-edge technique to measure the size of the
collimated beam and we obtained a waist of w0 = 2.4 mm. With an achromatic lens of
50 mm, we decrease the waist of the beam to be smaller than the atomic cloud size at
the focus position. The relation between the focal length f and the beam waist at the
focus of the lens wf is given by wf = λf/πw0, so we should obtain a waist of 3.06 µm. We
experimentally confirmed that it is possible to obtain a very small waist of less than 4 µm,
but the precise measurement of the beam size is described in the next section. Since the
radius of the atomic cloud is slightly smaller than 10 µm, in the mentioned conditions we
guarantee the interaction of the beam with an approximately homogeneous region of the
cloud in the transverse directions. On the other hand, the waist of the beam needs to be
significantly larger than the wavelength λ so the paraxial approximation is valid.

The incident beam has an angle of approximately 25 degrees with respect to the
vertical direction. This angle was unavoidable in our experimental conditions but the
transverse size of 0.5 inches for the 50 mm lens allowed us to reduce this angle and align
the coherent transmission beam without blocking any other light beam of the experiment,
such as the MOTs beams.

After the interaction of the beam with the atoms we use another lens of 75 mm to
collect the transmitted beam that, with the help of a telescope, is coupled into another
singlemode fiber connected to a photodetector. With this configuration, we guarantee the
measurement of the coherent transmission (49, 56). The photodetector that we use is a
avalanche photodiode (APD) from ID Quantique, visible single-photon detector with great
timing resolution of only 40 ps and low dead time of 45 ns. This APD, which is a module
from the ID100 series, is able to detect weak optical signals down to the single photon level
and has excellent timing stability up to count rates of 20 MHz. The ADP is connected to a
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Figure 47 – Setup for coherent transmission measurements: The light beam is focused at
the center of the atomic cloud and the transmission is coupled in a singlemode
fiber. This collection fiber is connected to as avalanche photodiode (APD)
and then to a time-to-digital converter (TDC) which sends the information to
a computer.

Source: By the author.

time-to-digital converter (TDC), also from ID Quantique, which is a device for recognizing
events and providing a digital representation of the time they occurred. Specifically, our
TDC (ID900 Time Controller) output the time of arrival for each incoming light pulse or
each incoming photon. Finally, the TDC is connected to a computer in order to process
the recorded data.

We measured the power efficiency of our system to find the relation between the
light power that hits the atomic cloud and the light that arrives at the photodetector. We
have some lost of power while the light passes through the optics, but the main lost is in
the coupling of the collection fiber. This problem is because the entrance of light in the
APD has a PC (Physical Contact) connection, so we used a PC fiber to collect the light
transmitted by the atoms. However, we did not have a PC collimator available in our lab
and ended up using an APC (Angled Physical Contact) one. Then, the coupling of the
light when using the APC collimator and the PC fiber was not so good, and the collected
light has a power of 19% of the light reaching the atoms.

For the coherent transmission measurements, we send an incoming light pulse to
the dense atomic cloud and record the transmitted light during the time of the pulse. We
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Figure 48 – Setup for the measurement of the coherent transmission beam waist: (a) There
is a resolution target at the focus of the beam and it is produced an image of
the plane of the target with magnification 4. (b) Details of the transparent
target with the pattern imprinted at the center.

Source: By the author.

use two channels of the TDC: a first one to detect the time for the beginning of the light
pulse and a second one to detect the time for the arrival of each transmitted photon. With
a MatLab program, we count the number of detected photons after the starting of each
pulse. The duration time of the light pulse needs to be characterize and its characterization
will be shown later in this same chapter.

6.2.1 Characterization of the Beam

Measuring the size of the light beam it is not usually a difficult experimental
procedure if we can use a camera with a spatial resolution considerably smaller than
the beam size. Unfortunately, this was not our case since we know that the coherent
transmission beam has approximately 3 µm and the available camera had a resolution of
3.79 µm per pixel. We had to implement a new system to obtain the waist of the beam by
using a resolution target.

For this measurement, we mounted in another place of the optical table, the
configuration shown in figure 48. Here, we use the same collimator and the 50 mm lens of
the coherent transmission setup. At the focal plane of the lens, we put a resolution target
(1951 USAF Resolution Test Target from ThorLabs) which is in a translation stage that
allow us to scan its transverse position. With the help of the next two lenses, we image the
plane of the target at the CCD camera with magnification 4. The procedure consisted in
keeping the beam focused on the target and scan the transverse position of the target in
order to capture the transmission of the beam between the black lines. The experimental
section of figure 49 shows with a red line the direction that we follow to scan the target.
We produce six images corresponding to the different separations between the lines of the
target. The red dot represents a position where the beam does not interact with the black
lines, so we can make an image in this condition and use it to normalize the transmission.

The separation between the black lines of the target can be extracted from its
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Figure 49 – Experiment and simulation performed to measure the size of the coherent
transmission beam.

Source: By the author.

ThorLabs manual: 7.8 µm, 6.9 µm, 6.2 µm, 5.5 µm, 4.9 µm and 4.3 µm (from the first
black lines closer to the red dot until the end of the red line). With this information, we
can simulate a mask representing two black lines blocking part of the Gaussian beam
that passes between them (see the simulation section of figure 49). This simulation relates
the waist of the beam with the normalized transmitted light while passing through the
blocking lines considering the six different separations. In order to estimate the waist of
the beam, the simulation considers beams with different sizes and make a comparison with
the experimental results, detecting the value with the minimum mean square error. At the
end, we obtained a value of (3.28 ± 0.42) µm for the waist of the coherent transmission
beam.

6.2.2 Alignment of the Beam

The alignment of the coherent transmission beam on the crossed ODT was a
difficult process due to the small size of the cloud and the beam itself. In order to observe
the effect of the beam on the cloud, we implemented an experimental sequence that creates
a pulse of the transmission beam during the imaging of the cloud by the Absorption
Imaging technique. With a high enough power of the transmission beam, it will saturate
the image in regions where the atoms are present. After observing the first effects of
the beam, we corrected the position of the focusing lens until having the smallest hole
produced by the beam in the middle of the ODT. Figure 50 shows the AI of the crossed
ODT without and with the presence of the coherent transmission beam aligned at the
center of the atomic ensemble.
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Figure 50 – Absorption imaging of the crossed ODT without and with the superposition
of the coherent transmission beam.

Source: By the author.

6.3 Coherent Transmission Measurements

Before starting the coherent transmission measurements in the dense regime, we
made some characterizations of our experimental system using a dilute cloud. These
characterization consisted in determining the duration time of the exciting light pulse,
in centering the position of the beam withing the cloud, and observe the first coherent
transmission spectra for a low density cloud.

6.3.1 First Characterizations

In order to characterize the duration time for the coherent transmission light
pulse, we considered a cloud with b0 = 3. We performed two different measurements of
transmission: considering the atomic cloud and without the presence of the atoms. The
measurements without atoms were used only for normalization of the counting rate of
photons.

This measurement, and most part of the coherent transmission measurements, were
done using a power of 133 pW of the light beam at the atomic cloud position, which
corresponds to a saturation parameter of s = 4 × 10−3. Considering the loss of light power
from the atoms position until the APD, the mentioned power of 133 pW produces a
counting rate of 5 MHz.

For processing this set of measurements, we selected different times for the inte-
gration of the light pulse, counting the number of photons for each time interval and
normalizing with the corresponding time interval in the experiment without atoms. The
normalized counting rate as a function of the light pulse time, can be found in figure 51.
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Figure 51 – Measurements for the characterization of the duration time for the transmission
light pulse.

Source: By the author.

Here, we see as the counting rate remains constant at the beginning of the curve and
then start to increase in an exponential way. The increasing is related to the heating of
the cloud produced by the incident beam, which also decreases the density of the cloud
allowing for higher transmission of the beam. The results show that the time of the light
pulse should be around 50 µs.

The next characterization consisted in scanning the frequency of the incident beam,
in order to produce an spectrum of the dilute cloud. We considered similar conditions for
the cloud and the beam described above, e.i. a cloud with optical depth b0 = 3.2 and a
power of the beam corresponding to a saturation parameter of s = 4 × 10−3. The results
for this measurement can be seen in figure 52, where we plotted the normalized counting
rate using also a logarithmic scale that allow us to see the behavior of the spectrum with
more details. The detuning in this curve is normalized by the linewidth of the atomic
transition Γ = 30 MHz.

The expected result in the dilute regime is an spectral curve centered at the
resonance condition and presenting a symmetrical behavior. This spectrum can be use
to detect the exact resonance condition and correct the frequency shift in this spectrum
and the next measurements that we will produce in the dense regime. With a lorentzian
fit, we can extract the full width half maximum (FWHM) and the depth of the curve,
which give information about Γ and b0, respectively. The obtained values were: FWHM =
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Figure 52 – Coherent transmission spectrum for a dilute cloud of b0 = 3.2. Both graphs
represent the same set of measurements but the right one is in a logarithmic
scale. The red line of the left graph represents a lorentzian fit.

Source: By the author.

Figure 53 – Transmission of the atomic cloud with a resonant incident beam, while scanning
the horizontal position of the beam across the vertical center of the cloud.
The considered positions for the beam can be seen at the top of the image.

Source: By the author.
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(0.89 ± 0.09) × Γ and b0 = 4.1 ± 0.6. The value for Γ was slightly lower than expected,
but this could be related to the resolution with which the detuning was scanned, and the
fact that we did not complete the curve at the extremes of the spectrum. The value for b0

was slightly higher than 3.2, which can be related to two different things: a bad resolution
of the curve around the resonance (which is very clear in the spectrum with logarithmic
scale), and the angle between the coherent transmission beam and the vertical direction,
which makes the beam interact with a larger region of the atomic ensemble. We estimated
the correction of the optical depth, according to the angle, and the real value should be
approximately 10% higher than the measured one.

A final characterization, using a dilute cloud, was motivated by the existing angle
between the coherent transmission beam and the vertical direction in the experimental
setup of figure 47. Because of this angle, the observed hole produced by the beam at the
cloud (presented in figure 50), it is a projection of the real effect of the beam in the imaging
plane. Then, we were not sure in which condition the incident beam is actually centered
at the cloud. In order to find the right alignment condition, we scanned the horizontal
position of the beam, following the vertical center of the ODT. For this graphs, we set the
position zero at the center of the crossed ODT (taken from the Gaussian fit of the cloud),
then the other positions where calculated considering the pixel size and magnification of
our imaging system. At the end, the experimental results of this measurement (shown in
figure 53), indicates that the minimum of transmission is not where the hole produced
by the beam is at the center of the cloud when observed by AI. So, the best alignment
condition is indeed a few µm to the left of this centered hole, where the optical depth
is also higher. The graph of the optical depth as a function of the horizontal position
can be found at the right graph of figure 53. Here, we also see that even observing a
slightly different b0 around the center of the atomic cloud, this region is approximately
homogeneous as we considered in the simulations described in the previous section.

6.3.2 Measurements in the Dense Regime

For the first set of measurements in the dense regime, we used a cloud with the
highest optical density that we could obtain. Unfortunately, at that time we had not
finished the characterizations of the phase contrast imaging system and we were not sure
about the quantitative information of our atomic cloud. However, we believe that this
cloud used for the coherent transmission measurements in the dense regime, had a higher
density that the final ODT described at the end of the Chapter 4. This is because at some
point, during the dense regime measurements, we had to refill the oven and recover the
vacuum of our experimental system. After that, we were not able of reobtaining the same
number of atoms that we had before. In addition, we know that the power of the infrared
laser (used to create our crossed ODT) is lower now, due to the gradual loss of power that
we have been observing during the last months.
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Figure 54 – Coherent transmission spectrum for a dense cloud. Both graphs represent the
same set of measurements but the right one is in a logarithmic scale. The
red line of the left graph represents a lorentzian fit, using Γ = 1 as a fixed
parameter. The green line represents the dark count of our APD.

Source: By the author.

In order to produce the first transmission spectra using a dense cloud, we had to
take lots of measurements, averaging over approximately 500 realizations for detunings
close to the resonance condition, and approximately 150 realizations for larger detunings.
Each realization consisted in a light pulse of 100 µs, where we counted the number of
photons detected during the first 50 µs. This spectrum can be seen in figure 54, in two
different scales: linear and logarithmic. The obtained spectrum shows an asymmetry with
respect to the resonance, which is expected in the dense regime. Nevertheless, we did not
observe the behavior predicted by the simulations.

With a Loretzian curve, we fitted the wings of the spectrum fixing the linewidth,
which was characterized using the dilute regime spectrum, i.e we considered Γ = 1. The
fitting gave an optical depth of b0 = 120.4 ± 4.9, suggesting a very high density of the
cloud, and a red shift of −(0.23 ± 0.08) × Γ. The saturation of the curve, and also the red
shift, are signatures of density effects in the atomic cloud.

In order to show that the saturation is not a technical limitation of our detection
system, we included the dark count of the APD in the graph (green line in figure 54).
The dark count was measured by counting the number of photons arriving to the APD
while running many times the experimental sequence in the same condition that the
measurements were taken, but with the coherent transmission beam off. Then, collecting
all arrival events and dividing it by the time, we measured a dark count of 9 Hz. This
value represents a transmission of 1.8 × 10−6 when normalized by the counting rate of the
incident light used to produce the spectra, which is 5 MHz.

After these results in the dense regime, we still had some questions about what
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Figure 55 – Light transmission as a function of the expansion time of the cloud in two
different conditions: (left) global time-of-flight, and (right) longitudinal time-
of-flight

Source: By the author.

determines the saturation of the spectrum around the resonance condition. One of the
hypothesis was the possibility of a stray light going to the photodetector. We though
that maybe the wings of the beam was being transmitted without interacting with the
cloud, because the transverse size of the ODT is not higher enough than the waist of
the incident beam. In order to test this specific questioning, we developed some new
measurements consisting in applying different time-of-flights to let the atomic cloud
expand. Then, we measured the transmission of the light as a function of the expansion
time. The experimental results can be seen at the left graph of figure 55. We did not know
exactly the temperature of the cloud that we used for these measurements, but we believe
that was or the order of 2 µK, so we were expecting a fast expansion of the ODT. We
observed that the transmission remained almost constant during this set of measurements.

In the case were the wings of the beam would be passing through the borders of
our atomic cloud, a transverse expansion of the cloud would change this situation and, as
a consequence, we should have a decreasing of the transmission. Even when the error bars
of these measurements are too big, the fact that we did not observed a dramatic change in
the transmitted signal, made us eliminate this possibility.

Another test that we made, consisted in letting the cloud expanding while applying
a special time-of-flight (ToF). We liberated the cloud turning off only the horizontal beam
of the ODT, so the expansion was happening only in the vertical direction (longitudinal
direction according to the direction of propagation of the excitation beam). In these
conditions, we would preserve the optical depth of the sample but we would have a
decreasing of the spatial density. Producing this longitudinal ToF, the atomic system
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would transition from the dense to the dilute regime, and a decrease in the transmission
is expected. The results of this experiment can be seen at the right graph of figure 55.
Here, we observed a slight decrease in the transmission signal, but not as fast as we were
expecting, and also the error bars are too big to detect any clear behavior of this curve.
To be more precise, we would need to make simulations of this specific situation in order
to confirm quantitatively the expected behavior for the measurements.

Unfortunately, all results that we have so far in the dense regime, even where they
probe the possibility of the presence of density effects, are very preliminary. Maybe we just
need to make more measurements to reduce the error and completely solve the structure
of the coherent transmission spectra, but we still have some hypothesis that we need to
verify. First, we should increase the intensity of the beam in order to have more output
signal and improve the detection rate. For this, we could use a saturation parameter of
s = 1, that even when we might think that violates the linear regime, as the optical depth
of the cloud is very large, most part of the light would be absorbed by the first layers of
atoms and the rest of the atoms would interact with a low intensity beam.

The final hypothesis relies in the recent simulations that was mentioned at the end
of Chapter 5. We believe that our detection can be affected by incoherent transmission
going to the forward direction. In order to understand the influence of this incoherent
transmission, we can filter the polarization of the transmission light, separating parallel
and perpendicular polarization states, and measure both signals. All signal measured with
a polarization perpendicular to the one of the incident light, will be purely incoherent.
Then, assuming that the incoherent light is completely unpolarized, we would have a
measurement of the incoherent part and we could subtract from the transmission in the
parallel polarization, to try to find the coherent part.
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7 CONCLUSIONS

A system for obtaining a dense atomic cloud trapped in a crossed Optical Dipole
Trap, suited for studying collective effects in the high density regime, was implemented.
In the characterizations of our atomic cloud, we faced some problems to obtain the
quantitative information of our ensemble, due to the saturation of the Absorption Imaging
when the optical depth of the sample is larger than 4. In order to circumvent this situation,
and being able to measure our cloud in situ, we implemented a Phase Contrast Imaging
system that allows the characterization of samples with optical depths of the order of 100.
This new imaging technique was crucial for the final optimizations of our dense cloud.

As part of the optimizations of our atomic cloud, we implemented an extra stage of
cooling after the atoms being transferred to the Optical Dipole Trap. This stage of cooling
consisted in an Optical Molasses using the red transitions of 88Sr. The improvement in our
cloud, when applying the Optical Molasses, was mainly due to the cooling of the atoms
that remained in the more shallow part of our trap, allowing them to move to the deep
potential at the bottom of our crossed ODT. At the end of the optimizations, we obtained
a pancake shape cloud with approximately 370 000 atoms, an optical depth of 50 and
spatial density (in unities of 1/λ3) of ρλ3 = 4.4.

Simulations of coherent transmission spectra, using the equations of the Coupled
Dipole Model, were performed. The theoretical results showed the presence of density
effects through a saturation and splitting of the spectral curves. As these simulations were
done in conditions that model characteristics similar to those we have in the experiment,
we should then observe similar experimental spectra. The simulations were also relevant
to pointing out the difficulties of producing these kind of measurements. As we observed
theoretical spectra with large width and low transmission values (of less than 10−3), in
order to perform the coherent transmission measurements, we found the need of producing
an spectral filtering of the incoming beam, and also of implementing a tunable locking
system that allow us to scan the frequency for a range of more than 10 × Γ around the
condition of resonance. The spectral filter was done by using a Fabry-Perot cavity with a
finesse of F = 110, and we estimated a reduction of the noise of 70 times less than the
non-filtered light.

A setup for coherent transmission measurements was implemented, introducing
the necessary equipment to perform these experiments. Several characterizations were
made to describe our beam and its interaction with the sample. The beam has a waist of
(3.28 ± 0.42) µm, which is approximately 3 times smaller that the transverse size of the
ODT (∼ 10 µm), so it fulfills the premise of interacting with a "homogeneous" region of
the cloud. The measured spectrum for a low density cloud, showed the expected behavior
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for its density regime: width equal to the natural linewidth of the atomic transition, and a
depth corresponding to the optical depth at low spatial density. The measured spectrum
for a high density cloud, also showed a behavior that might be related to the presence of
density effects in our atomic ensemble: saturation plus asymmetry of the curve. However,
we were not able to completely solve the structure of the measured spectrum and the
shape was different to that expected according to the simulations. Some hypothesis of the
divergences observed in the experimental results, are discussed in the main text of this
thesis, but we are still investigating the possibilities. So far, we just have some preliminary
results.

7.1 Next Steps

7.1.1 Continuation of Coherent Transmission Measurements

At this moment, we are performing more measurements of the coherent transmission
by the dense cloud, but we made some small modifications of our experimental system,
that can be very relevant for our future results: we increased the intensity of the excitation
beam until the saturation parameter s = 1, and we also installed a half-wave plate
and a polarizing beam splitter before the collection fiber in order to separately measure
the transmitted light with both parallel and perpendicular polarization states. This last
modification should help us to understand the influence of possible incoherent light that
could be transmitted in the forward direction.

7.1.2 Implementation of an Optical Accordion

In parallel with these measurements, we are also implementing an extra confinement
of the cloud in the longitudinal direction. This is because our crossed ODT is hotter then
we thought and this leads to a greater expansion in the z axis. An atomic cloud too
expanded in the longitudinal direction can have a large optical depth, but not necessary a
high spatial density. Then, to continue the studies of collective effects in the dense atomic
regime, would be convenient to compress more the cloud.

The extra compression of the atomic ensemble is going to be done by producing
another optical dipole trap created by the interference pattern of two green laser beams.
The inspiration was taken from the article (88), where it is reported the realization of
an optical accordion creating a lattice potential with a spacing that can be dynamically
tuned. In this way, the atoms can be load into a single node of the lattice when the spacing
between the lattice sites is large and then to reach a strong confinement while the spacing
is decreased. In our system, we will not implement an dynamic accordion, but we want to
transfer the atoms from the current implemented trap to a new trap created at the central
maximum of the interference pattern between two beams that will access to the science
chamber through a horizontal window. This implementation is part of the master project
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Figure 56 – Experimental setup for the implementation of an optical accordion.

Source: Adapted from MARTINS (89).

of one of the students of the lab (89), and the set up of the system can be seen at figure
56.

When we showed the scheme of the optical table for the green laser, back in Chapter
3, we mentioned that one of the beams of the green laser was going to be used with the
purpose of producing an optical accordion trap. This beam, with 497 nm of wavelength,
will be divided by the use of two polarizing beam splitters, producing two beams that
propagates parallel to the same direction. Finally, these beams will cross at the focal plane
of a lens, producing the interference pattern at the position of the atomic cloud. Some
calculations, considering the parameters of the experimental system, indicates that with
the accordion, we should reduce the longitudinal size of our pancake-shape cloud at least
in a factor of 2.
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APPENDIX A – CALCULATING THE EFFECTIVE COUPLING BETWEEN THE
ATOMIC DIPOLES

A.1 The vectorial Kernel

In this appendix, we are going to make the detailed deduction of the expression
for the Kernel of the interactions between the atomic dipoles that we considered in the
Coupled Dipole Model equations. Basically, we are going to start from the equation (2.24)
and to solve the integral

Bj,α,m,γ(t) =
∑
k,ϵ

g∗
k,ϵ,α gk,ϵ,γ eik·(Rj−Rm)

∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,γ(t′) , (A.1)

applying a few approximations that are going to be explained here.

The first step consist in replacing the summation over k by an integral. This
is possible because in the limit of the integration volume going to infinity, the spacing
between consecutive k goes to zero. Assuming a quantization volume V , we have:

∑
k

→ V

(2π)3

∫ ∞

0
dkk2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ ;

then,

Bj,α,m,γ(t) =
∑

ϵ

V

(2π)3

∫ ∞

0
dk k2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ g∗

k,ϵ,α gk,ϵ,γ eik·(Rj−Rm)

×
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,γ(t′) . (A.2)

Using the definition of gk,ϵ,α = d
√

ωk

2ℏε0V
ϵα · ϵ∗ and that ωk = ck, we obtain:

Bj,α,m,γ(t) = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωk ω3

k

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

(∑
ϵ

ϵ∗
α · ϵ ϵγ · ϵ∗

)
eik·(Rj−Rm)

×
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,γ(t′) . (A.3)

In order to solve this integral for m = 1, ..., N and γ = x, y, z, we will consider the
cases when m = j and m ̸= j, discussed in the following sections.

A.1.1 Bj,α,m,γ when m = j

In the particular case of m = j, we can have two possibilities: γ = α or γ ̸= α. Lets
begin considering the first situation and here we can notice that

∑
ϵ

ϵ∗
α · ϵ ϵγ · ϵ∗ =

∑
ϵ

(ϵ∗
α · ϵ)2 , (A.4)
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where each ϵ represents one of two orthogonal polarizations of mode k; so both polarizations,
that we can consider as linears, determine a plane perpendicular to k. Also, ϵα represents
the direction of the atomic dipole moment, but as the integration is made symmetrically
on all directions of k, the resulte would be the same for any direction of ϵα. Then, for
simplicity we will assume ϵα = ϵz and

∑
ϵ

(ϵ∗
α · ϵ)2 = 1 −

(
ϵα · k

k

)2

= 1 − cos2 θ = sin2 θ . (A.5)

Replacing this in equation (A.3), we get:

Bj,α,j,α = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωk ω3

k

∫ π

0
dθ sin3 θ

∫ 2π

0
dϕ
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

j,α(t′)

= 2d2

3(2π)3ϵ0ℏc3

∫ ∞

0
dωk ω3

k

∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

j,α(t′) . (A.6)

To calculate the remaining integrals we apply the Weisskopf-Wigner treatment that
consist in considering ωk ∼ ω0 and the lower limit of the integral on ωk as −∞ instead
of 0, since those terms will not contribute to the integral for being too far away from ωl.
These considerations relies on the fact that only values of ωk close enough to ωl (such the
|ωl − ωk| ≲ 1

|t−t′|) will play a role for all t′ in the time integration; for all other values, the
term ei(ωl−ωk)(t−t′) will quickly average to zero. Now, we have:

Bj,α,j,α = 2d2ω3
0

3(2π)3ϵ0ℏc3

∫ t

0
dt′
∫ ∞

−∞
dωk ei(ωl−ωk)(t−t′)β̂−

j,α(t′) . (A.7)

The integral over ωk gives∫ ∞

−∞
dωk ei(ωl−ωk)(t−t′) = 2πδ(t − t′) (A.8)

and the integration on t gives
∫ t

0
dt′δ(t − t′)β̂−

j,α(t′) =
β̂−

j,α(t)
2 . (A.9)

Finally, we arrive at:

Bj,α,j,α = Γ
2 β̂−

j,α(t) , (A.10)

where

Γ = d2ω3
0

3πϵ0ℏc3 (A.11)

is the linewidth of the atomic transition.

We will now consider the situation where γ ̸= α and, in order to calculate the term(∑
ϵ ϵ∗

α · ϵ ϵγ · ϵ∗
)

in equation (A.3), we can consider α = x and γ = y since there is no
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preferred direction for the calculation of this term. We will also define the two orthogonal
polarization directions ϵ as ϵ1 = ϵθ and ϵ2 = ϵϕ. Using the conversion between cylindrical
and cartesian coordinates, we have

ϵ1 = ϵθ = cos θ cos ϕ ϵx + cos θ sin ϕ ϵy − sin θ ϵz

ϵ2 = ϵϕ = − sin ϕ ϵx + cos ϕ ϵy

Then,∑
ϵ

ϵ∗
α · ϵ ϵγ · ϵ∗ = (ϵ∗

α · ϵ1 ϵγ · ϵ∗) + (ϵ∗
α · ϵ2 ϵγ · ϵ∗) = − sin θ2 sin ϕ cos ϕ . (A.12)

Finally, replacing this result, we see that the integration over ϕ gives 0, so

Bj,α,j,γ = 0 for γ, α ∈ {z, y, z}, γ ̸= α , (A.13)

and putting together the two results for m = j, we obtain:

Bj,α,j,γ = Γ
2 δα,γ β̂−

j,α(t) for γ, α ∈ {z, y, z} . (A.14)

This term represents a non-hermitian correction of the Hamiltonian for the single atom,
that represent the decay rate of the atomic coherence due to the interaction of the atom
with the modes of the electromagnetic field.

Note that the last equation leads to the expression (2.29) given in the second
chapter of this document.

A.1.2 Bj,α,m,γ when m ̸= j

In the general case when m ̸= j, we see in equation (A.3), the appearing of a
preferred direction of the integral, which is the vector Rj − Rm = Rjm = (xjm, yjm, zjm).
So now we have three directions in our integral given by ϵα, ϵγ and Rjm.

The term eik·Rjm is going to make the integral more difficult to solve, since Rjm

and k = k(sin θ cos ϕϵx + sin θ sin ϕϵy + cos θϵz) are in any directions. For convenience, we
will perform a rotation of coordinates in order to put Rjm in the direction of ϵz′ , such as
Rjm = Rjmϵz′ ; see the figure 57. In this case, writing k = k(sin θ′ cos ϕ′ϵx′ +sin θ′ sin ϕ′ϵy′ +
cos θ′ϵz′), the scalar product is simplified as k · Rjm = kRjm cos θ′.

In this figure we have defined two new vectors: v1 ≡ cos ϕjmϵx + sin ϕjmϵy and
v2 ≡ ϵz × v1 = − sin ϕjmϵx + cos ϕjmϵy. We see that v1, v2 and ϵz constitute a new
orthonormal basis and Rjm in contained in the plane determined by ϵz and v1. The
rotation of coordinates that puts Rjm in the direction ϵz′ is a rotation of an angle −θjm

around the vector v2. The coordinates transformation can be written as:

z′ = cos θjmz + sin θjm Rjm · v1

Rjm · v′
1 = − sin θjmz + cos θjm Rjm · v1

Rjm · v′
2 = Rjm · v2
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Figure 57 – Rotation of coordinate system, from {x,y,z} to {x′,y′,z′}.

Source: By the author.

Inverting the system of equations above and using the definition of the vectors
v1 and v2, as well as v′

1 ≡ cos ϕjmϵx′ + sin ϕjmϵy′ and v′
2 ≡ − sin ϕjmϵx′ + cos ϕjmϵy′ , we

obtain:

x = (1 − cos2 ϕjm(1 − cos θjm))x′ − sin ϕjm cos ϕjm(1 − cos θjm)y′ + sin θjm cos ϕjmz′

y = − sin ϕjm cos ϕjm(1 − cos θjm)x′ + (1 − sin2 ϕjm(1 − cos θjm))y′ + sin θjm sin ϕjmz′

z = − sin θjm cos ϕjmx′ − sin θjm sin ϕjmy′ + cos θjmz′

After this transformation of coordinates, we are now ready to perform the integra-
tion, but first lets consider α = γ = z, so the term

∑
ϵ

ϵ∗
α · ϵ ϵγ · ϵ∗ =

∑
ϵ

(ϵ∗
z · ϵ)2 = 1 − k2

z

k2 = sin2 θ , (A.15)

which is similar as we saw in equation (A.5). In this way, the equation (A.3) becomes

Bj,z,m,z = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωkω3

k

∫ π

0
dθ sin θ

∫ 2π

0
dϕ sin2 θeik·Rjm

×
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,z(t′) . (A.16)

Lets apply the rotation of coordinates described before. Note that the modulus
of any vector is the same for both coordinates, so: ω′

k = ωk, k′ = k, R′
jm = Rjm, and the

Jacobian of the transformation keeps the same expressions for the integral:∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′ =

∫ π

0
dθ sin θ

∫ 2π

0
dϕ .
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Putting the term sin2 θ = 1 − k2
z/k2 as a function of the (k′

x, k′
y, k′

z) in the new
basis:

sin2 θ = 1 −
(

− sin θjm cos ϕjm
k′

x

k
− sin θjm sin ϕjm

k′
y

k
+ cos θjm

k′
z

k

)2

and using the fact that k′
x

k
= sin θ′ cos ϕ′, k′

y

k
= sin θ′ sin ϕ′ and k′

z

k
= cos θ′, we have:

sin2 θ =1 − sin2 θjm(cos2 ϕjm cos2 ϕ′ + sin2 ϕjm sin2 ϕ′ + 2 sin ϕjm cos ϕjm sin ϕ′ cos ϕ′) sin2 θ′

− cos2 θjm cos2 θ′ + 2 sin θjm cos θjm(cos ϕjm cos ϕ′ + sin ϕjm sin ϕ′) sin θ′ cos θ′ .

(A.17)
Finally, since in the new basis Rjm = Rjm cos θ′, the term

eik·Rjm = eikRjm cos θ′
. (A.18)

Replacing the equations (A.17) and (A.18) in equation (A.16), and solving the
integral on ϕ′, which is kind of simple, we arrive at

Bj,z,m,z = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωkω3

k

∫ π

0
dθ′ sin θ′

[
sin2 θjm +

(
1 − 3 sin2 θjm

2

)
sin2 θ′

]

× eikRjm cos θ′
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,z(t′) . (A.19)

We use now the following relations:∫ π

0
dθ′ sin θ′eikRjm cos θ′ = 2 sin kRjm

kRjm

(A.20)∫ π

0
dθ′ sin3 θ′eikRjm cos θ′ = 4 sin kRjm − kRjm cos kRjm

(kRjm)3 (A.21)

and, the integral on θ′, using that sin2 θjm = 1 − z2
jm/R2

jm, becomes∫ π

0
dθ′ sin θ′

[
sin2 θjm +

(
1 − 3 sin2 θjm

2

)
sin2 θ′

]
eikRjm cos θ′

= 2
kR3

jm

[
(R2

jm − z2
jm) sin kRjm +

(
cos kRjm

kRjm

− sin kRjm

(kRjm)2

)
(R2

jm − 3z2
jm)

]

= eikRjm

ikR3
jm

[
R2

jm − z2
jm +

(
i

kRjm

− 1
(kRjm)2

)
(R2

jm − 3z2
jm)

]

− e−ikRjm

ikR3
jm

[
R2

jm − z2
jm +

(
− i

kRjm

− 1
(kRjm)2

)
(R2

jm − 3z2
jm)

]
. (A.22)

Let’s replace this last result in equation (A.19):

Bj,z,m,z = d2

2(2π)3ϵ0ℏc3

∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,z(t′)
∫ ∞

0
dωkω3

k

e−iωk(t−
Rjm

c
−t′)

ikR3
jm

[
R2

jm − z2
jm +

(
i

kRjm

− 1
(kRjm)2

)
(R2

jm − 3z2
jm)

]

−
∫ ∞

0
dωkω3

k

e−iωk(t−
Rjm

c
−t′)

ikR3
jm

[
R2

jm − z2
jm +

(
i

kRjm

− 1
(kRjm)2

)
(R2

jm − 3z2
jm)

] (A.23)
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To solve the integral over ωk, we will apply the approximations of the Weisskopf-
Wigner treatment that was described in the previews section: ωk ∼ ω0, k ∼ k0 outside
the argument of the exponential, and the integral of the exponential gives Dirac delta
functions.∫ ∞

0
dωkω3

k

e−iωk(t∓
Rjm

c
−t′)

ikR3
jm

[
R2

jm − z2
jm +

(
±i

kRjm

− 1
(kRjm)2

)
(R2

jm − 3z2
jm)

]

≃ 2πω3
0
δ(t ∓ Rjm

c
− t′)

ik0R3
jm

[
R2

jm − z2
jm +

(
±i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3z2
jm)

]
. (A.24)

Replacing this result in equation (A.23), we see that the Dirac delta with argument t+ Rjm

c

is equal to zero because this argument is outside the interval 0 ≤ t′ ≤ t, so the only Dirac
delta different than zero is the one with argument t − Rjm

c
, and we obtain

Bj,z,m,z = d2ω3
0

4πϵ0ℏc3
1

ik0R3
jm

[
R2

jm − z2
jm +

(
i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3z2
jm)

]
∫ t

0
dt′eiωl(t−t′)β̂−

m,z(t′) δ
(

t − Rjm

c
− t′

)
= −3iΓ

4
eiklRjm

k0R3
jm

[
R2

jm − z2
jm +

(
i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3z2
jm)

]
β̂−

m,z

(
t − Rjm

c

)
(A.25)

We can see in the equation above that the argument of the operator β̂−
m,z possess

a retardation time given by Rjm

c
, which is the time needed for the light emitted by one

atom to travel through the cloud and reach another atom. For small enough clouds, this
term is negligible with respect to all other time scales of the problem and we can consider
that t − Rjm

c
≃ t. This approximation is called rapid transit approximation. Since the

typical timescales of the problem are given by the inverse of the typical frequency Γ,
Ω and ∆; for applying the rapid transit approximation is necessary that Γ, Ω, ∆ ≪ c

R

for a cloud of size R. As a consequence of this approximation, we also have that the
ratio eiωlRjm

eiω0Rjm
= ei∆Rjm ≃ 1, so we can write eiklRjm ≃ eik0Rjm and put the expression as a

function of the atomic quantities. After this approximation, we arrive at:

Bj,z,m,z = −3iΓ
4

eik0Rjm

k0R3
jm

[
R2

jm − z2
jm +

(
i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3z2
jm)

]
β̂−

m,z(t) .

(A.26)

In the situation considered here, there is nothing that determines direction in the
interaction of the atoms with the isotropic electromagnetic modes of the vacuum. By
symmetry, the expression obtained must be identical for the x or y direction, we have then

Bj,x,m,x = −3iΓ
4

eik0Rjm

k0R3
jm

[
R2

jm − x2
jm +

(
i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3x2
jm)

]
β̂−

m,x(t)

(A.27)
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and

Bj,y,m,y = −3iΓ
4

eik0Rjm

k0R3
jm

[
R2

jm − y2
jm +

(
i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jm − 3y2
jm)

]
β̂−

m,y(t) (A.28)

Lets now consider the terms with α ̸= γ, beginning with α = x and γ = y, so

Bj,x,m,y = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωkω3

k

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

(∑
ϵ

ϵ∗
x · ϵ ϵy · ϵ∗

)
eik·Rjm

×
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,z(t′) . (A.29)

Similar as the strategy followed in the previews case, we will perform a transform
of coordinates and solve first the integral over ϕ′. We get then:

Bj,x,m,y = d2

2(2π)3ϵ0ℏc3

∫ ∞

0
dωkω3

k

∫ π

0
dθ′ sin2 θjm sin ϕjm cos ϕjm sin θ′

(
3 sin2 θjm

2 − 1
)

× eikRjm cos θ′
∫ t

0
dt′ei(ωl−ωk)(t−t′)β̂−

m,y(t′) . (A.30)

Using the integrals (A.20) and (A.21), and that

sin2 θjm sin ϕjm cos ϕjm = xjmyjm

R2
jm

, (A.31)

we have

Bj,z,m,z = d2

2(2π)3ϵ0ℏc3

∫ t

0
dt′eiωl(t−t′)β̂−

m,y(t′)(−xjmyjm)
∫ ∞

0
dωkω3

k

e−iωk(t−
Rjm

c
−t′)

ikR3
jm

[
1 + 3

(
i

kRjm

− 1
(kRjm)2

)]

−
∫ ∞

0
dωkω3

k

e−iωk(t−
Rjm

c
−t′)

ikR3
jm

[
1 − 3

(
i

kRjm

− 1
(kRjm)2

)] . (A.32)

Again, in order to integrate over ωk, we use the approximations of the Weisskopf-
Wigner treatment and applying also the rapid transit approximation, we obtain

Bj,x,m,y = 3iΓ
4

eik0Rjm

k0R3
jm

xjmyjm

[
1 +

(
i

k0Rjm

− 1
(k0Rjm)2

)]
β̂−

m,y(t) (A.33)

and, by symmetry, we have

Bj,y,m,x = 3iΓ
4

eik0Rjm

k0R3
jm

xjmyjm

[
1 +

(
i

k0Rjm

− 1
(k0Rjm)2

)]
β̂−

m,y(t) (A.34)

Bj,x,m,z = 3iΓ
4

eik0Rjm

k0R3
jm

xjmzjm

[
1 +

(
i

k0Rjm

− 1
(k0Rjm)2

)]
β̂−

m,z(t) (A.35)

Bj,y,m,z = 3iΓ
4

eik0Rjm

k0R3
jm

yjmzjm

[
1 +

(
i

k0Rjm

− 1
(k0Rjm)2

)]
β̂−

m,z(t) (A.36)



124

We can finally express all the results for m ̸= j, in the expression:

Bj,α,m,γ = 3Γ
4

eik0Rjm

ik0R3
jm

[
R2

jmϵ∗
α · ϵγ − (Rjm · ϵ∗

α)(Rjm · ϵγ)

+
(

i

k0Rjm

− 1
(k0Rjm)2

)
(R2

jmϵ∗
α · ϵγ − 3(Rjm · ϵ∗

α)(Rjm · ϵγ))
]
β̂m,α(t) ,

for m ̸= j and α, γ ∈ {x, y, z} . (A.37)

This last equation leads to the expression (2.28) of the chapter 2.


