Thèse de Doctorat
DOI
https://doi.org/10.11606/T.76.2023.tde-02082023-101358
Document
Auteur
Nom complet
Millena Logrado dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2023
Directeur
Jury
Eckert, Hellmut (Président)
Buntkowsky, Gerd
Freitas, Jair Carlos Checon de
Rodrigues, Ana Candida Martins
Schneider, José Fábian
Titre en anglais
Structural studies in aluminophosphosilicate glasses and in cold-pressurized borosilicate glasses by Nuclear Magnetic Resonance in the solid state
Mots-clés en anglais
Aluminophosphosilicate
Borosilicate
Double resonance
NMR
Pressurized glasses
Solid-state
Resumé en anglais
Technologically important glasses can have their properties fine-tuned by understanding the role of each element in the glass structure. However, elucidating properties, such as heat-, weathering- and crack-resistance, based on the glass structure is a challenging task due to the multiple factors influencing these macroscopic properties. In this study, we investigate the structure-property correlation for three distinct system: (i) an aluminophosphosilicate heat resistant optical fiber with composition: xNa2O (22.50-x)Al2O3 7.50P2O5 70.00 SiO2 (NAPS), 2.50 x 17.50; (ii) an aluminophosphosilicate weathering resistant optical fiber, with composition xSiO2 (59-x)P2O5 13Al2O3 28Na2O (SPAN), 0 x 13; and (iii) cold-pressurized glasses which can shed light on crack resistant properties, with the composition 20Na2O xB2O3 (70-x)SiO2, x = 10, 20, 30. The short- and medium-range order of the three distinct systems were investigated by 11B, 23Na, 27Al, 29Si, 31P single and double resonance solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. The glass structures are elucidated in terms of two terminologies: X(n), which refers to the atom X bonded to n bridging oxygen atoms connected to like or unlike network former units, and X(N), which refers to the isotope X coordinated by N atoms (N being a Roman numeral). (i) (NAPS glasses), the dual role of sodium, either as a charge balancer or as a network modifier was investigated. The structure of these glasses is dominated by a significant bonding preference between anionic four-coordinate Al(IV) species and cationic P(4) units (Al-O-P linkages). The gradual replacement of alumina by sodium oxide initially increases the number of Si-O-Al linkages, which are charge balanced by Na+ introduced by Na2O. Higher levels of x ([Na]/[P] > 1) lead to a partial depolymerization of Al-O-P linkages and to the formation of neutral P(3) and ionic P(2) and P(1) units strongly interacting with the sodium species. Furthermore, the presence of P-O-P linkages in the glasses with the highest sodium concentration was confirmed by 31P double quantum excitation experiments. The overall scenario can be described by the dual role of sodium ions in the glass structure serving as a charge balancer for anionic Al(IV) network former, and as a neutralizer to the non-bridging oxygens of newly formed P(n) units (3 n 1). In the system (ii) (SPAN glasses), the spectra of 29Si Magic Angle Spinning (MAS)-NMR indicates that no significant proportion of hexacoordinated Si, expected for glasses with high [P]/[Si] ratios, was formed. This structure is likely suppressed by the strong interaction between phosphorus and aluminum, which was measured by 27Al-31P double resonance dipolar recoupling experiments. Dipolar recoupling techniques also facilitated the analysis of the 31P MAS-NMR spectra in terms of two distinct components with different chemical shifts: one interacting more strongly with Na, the other one interacting more strongly with Al. The NMR-based structural information can provide insights about the non-linear composition dependence of the weathering resistance of the glasses. In (iii) the cold pressurized borosilicate glasses, 11B MAS- and 23Na MAS-NMR illustrated together a counterintuitive structural effect: the average B coordination number decreases upon compression. This effect exposes a behavior not previously reported in the literature: the applied pressure induces a closer approximation between Na+ ions and oxygen species bridging between tetrahedral boron and silicon, causing a breaking in B(IV)-O-X (X = B, Si) linkages. As a result, new B(III) units are formed, as well as new non-bridging oxygens predominantly attached to silicon (later compensated by Na+ ions). These results clearly document an insightful detailed structural picture provided by solid-state NMR, which was used to suggest possible and multiple structural origins for each macroscopic effect investigated.
Titre en portugais
Estudo estrutural em vidros aluminofosfossilicatos e vidros borossilicatos pressurizados a frio por Ressonância Magnética Nuclear em estado sólido
Mots-clés en portugais
Aluminofosfossilicato
Borossilicato
Dupla ressonância
Estado sólido
RMN
Vidros pressurizados
Resumé en portugais
Vidros tecnologicamente importantes podem ter as suas propriedades refinadas se associadas ao conhecimento do papel de cada elemento na estrutura do vidro. No entanto, elucidar propriedades, tais como a resistência ao calor, às intempéries e à formação de trincas, com base na estrutura do vidro é uma tarefa desafiadora, dado os múltiplos fatores que influenciam estas propriedades macroscópicas. Neste estudo, nós investigamos a correlação estrutura-propriedade para três sistemas distintos: (i) uma fibra ótica resistente ao calor de aluminofosfossilicato com a composição: xNa2O - (22.50-x)Al2O3 7.50P2O5 70.00 SiO2 (NAPS), 2,50 x 17.50; (ii) uma fibra ótica resistente às intempéries de aluminofosfossilicato, com composição xSiO2 - (59-x)P2O5 - 13Al2O3 - 28Na2O (SPAN), 0 x 13; e (iii) vidros pressurizados a frio que podem esclarecer propriedades de resistência à formação de trincas, com a composição 20Na2O - xB2O3 - (70-x)SiO2, x = 10, 20, 30. O ordem de curto e médio alcance dos três sistemas distintos foi investigada por espectroscopia de Ressonância Magnética Nuclear de estado sólido por meio de experimentos de ressonância simples de multinuclear de 11B, 23Na, 27Al, 29Si, 31P. As estruturas vítreas são elucidadas em termos de duas terminologias: X(n), que se refere ao átomo X ligado a n oxigênios conectados a átomos formadores de rede semelhantes ou distintos, e X(N), que se refere ao isótopo X coordenado por N átomos (sendo N um numeral romano). No sistema (i) (vidros NAPS), o duplo papel do sódio, como compensador de carga ou como modificador de rede, foi investigado. A estrutura desses vidros é dominada por uma preferência significativa de ligação entre espécies tertracoodenadas e aniônicas de Al(IV) e unidades catiônicas de P(4) (ligações Al-O-P). A substituição gradual de óxido de alumínio por sódio inicialmente aumenta o número de ligações Si-O-Al, que são balanceadas pela introdução de íons Na+ pelo Na2O. Valores maiores de x ([Na]/[P] > 1) levam à despolimerização parcial das ligações Al-O-P e à formação de unidades neutras P(3) e iônicas P(2) e P(1), que interagem fortemente com as espécies de sódio. Além disso, a presença de ligações P-O-P nos vidros com maiores concentrações de sódio foi confirmada por experimentos de excitação de duplo quanta de 31P. O cenário geral pode ser descrito pelo papel dual dos íons de sódio na estrutura vítrea, agindo como balanceador de carga para o formador de rede Al(IV) aniônico, e como um neutralizador para os oxigênios não ligantes das novas unidades P(n) formadas (3 n > 1). No sistema (ii) (vidros SPAN), os espectros de 29Si medidos pela técnica de Rotação no ngulo Mágico (Magic Angle Spinning -MAS)-RMN indicam que nenhuma proporção significativa de Si hexacoordenado, tipicamente esperado em vidros com altas razões [P]/[Si], foi formada. Essa estrutura é possivelmente suprimida pela forte interação entre fósforo e alumínio, quantificada pelos experimentos de ressonância dupla com reacoplamento dipolar 27Al-31P. Técnicas de reacoplamento dipolar também facilitaram a análise dos espectros de 31P MAS-RMN em termos de duas componentes distintas, com deslocamentos químicos diferentes: uma interagindo fortemente com Na, outra mais fortemente com o Al. As informações estruturais baseadas em RMN podem esclarecer sobre a dependência composicional não-linear da resistência à intempérie dos vidros. Por fim, efeitos de pressurização a frio também foram investigados no sistema: No sistema (iii) de borossilicatos pressurizados, 11B MAS e 23Na MAS-RMN ilustram juntos um efeito estrutural contraintuitivo: o número de coordenação médio do B diminui com a compressão. Esse efeito expõe um comportamento ainda não reportado na literatura: a pressão aplicada induz uma aproximação entre os íons de Na+ e espécies de oxigênio que ligam boro tetraédrico e silício, causando uma quebra em ligações B(IV)-O-X (X = B, Si). Como resultado, novas unidades B(III) são formadas, bem como oxigênios não-ligantes predominantemente conectados ao silício (e compensados por íons Na+).
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2023-08-02
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.