UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS

PAMELA IBETH HUANAMBAL ESQUÉN

Estudo da glicosiltransferase LafB de *Enterococcus faecium* envolvida na supersensibilidade à daptomicina

SÃO CARLOS 2022

PAMELA IBETH HUANAMBAL ESQUÉN

Estudo da glicosiltransferase LafB de *Enterococcus faecium* envolvida na supersensibilidade à daptomicina

Dissertação apresentada ao Programa de Pós-Graduação em Física do Instituto de Física de São Carlos da Universidade de São Paulo como parte dos requisitos para obtenção do título de Mestre em Ciências.

Área de concentração: Física Biomolecular Orientador: Prof.^a Dr^a. Ilana L. B. C. Camargo Co-orientador: Prof. Dr. João Renato Carvalho Muniz

Versão Corrigida (versão original disponível na Unidade que aloja o Programa)

> São Carlos 2022

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

> Esquén, Pamela Ibeth Huanambal Estudo da glicosiltransferase LafB de Enterococcus faecium envolvida na supersensibilidade à daptomicina / Pamela Ibeth Huanambal Esquén; orientadora Ilana Lopes Baratella da Cunha Camargo; co-orientador João Renato Carvalho Muniz - versão corrigida -- São Carlos, 2022. 98 p.

Dissertação (Mestrado - Programa de Pós-Graduação em Física Biomolecular) -- Instituto de Física de São Carlos, Universidade de São Paulo, 2022.

1. Glicosiltransferase LafB. 2. Enterococcus faecium. 3. Hipersensibilidade à daptomicina. I. Camargo, Ilana Lopes Baratella da Cunha, orient. II. Muniz, João Renato Carvalho, co-orient. III. Título.

A Deus, por ser minha fortaleza em todo momento.

Aos meus pais e irmã, pelo amor incondicional ao longo da minha vida e pelo seu sacrifício que me fez chegar até aqui.

A minhas tias, Blanca, Aída, Yola, Bety e Elsa, por sempre serem como mães na minha vida e na minha formação académica.

AGRADECIMENTOS

À Profa. Dra. Ilana L. B. C. Camargo, pela confiança, ajuda, discussões e ótima orientação que foram essenciais para levar a cabo esse trabalho.

Ao Prof. Dr. Joao Renato C. Muniz, pela disposição e discussões durante o desenvolvimento deste trabalho.

Aos doutores, Jacqueline Abranches, Jessica Kajfasz e José A. Lemos, por sua contribuição neste trabalho com os experimentos de virulência *in-vivo*.

Ao PhD. Diego L. Cabrejos, pela orientação durante os experimentos para o estudo da proteína e o analise *in-silico*.

Ao técnico Dr. Humberto Pereira, pela ajuda com o software AlphaFold para a predição da proteína.

Às técnicas MSc. Andressa A. Pinto e Dra. Susana A. Sculaccio pelos ensinamentos e discussões construtivas sobre a purificação da proteína.

Aos membros do Grupo de Biofísica e Biologia Estrutural - Prof. Sérgio Mascarenhas pelo companheirismo, discussões e críticas construtivas que ajudaram ao desenvolvimento deste trabalho.

Aos membros do LEMiMo, em especial a Camila, Gabriela, Lívia, Luciana e Leticia, pela parceria, apoio nos experimentos e discussões que enriqueceram o desenvolvimento deste trabalho. Além disso, pelas risadas, choros e amizade dentro e fora do laboratório.

Ao Instituto de Física de São Carlos e a Universidade de São Paulo, pela oportunidade para a realização deste projeto de pesquisa de mestrado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de mestrado que fez possível a realização do curso.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e o Centro de Pesquisa e Inovação em Biodiversidade e Fármacos (CIBFar) pelo apoio financeiro para a realização desta pesquisa.

Aos meus amigos Stefany, Diego, Jhon, Eloy, Marco, Genoveva, Ricky, e meus pequenos Emma, Isaac e Gui, por serem minha família em São Carlos durante esses anos de mestrado e pandemia.

A minhas avós e toda minha família por serem minha motivação, e por estarem sempre presentes e pendentes de meu bem-estar.

Ao William, por todo o amor, apoio incondicional e confiança que me sustentaram nos momentos mais difíceis deste desafio longe do meu país.

A minhas amigas Carla e Carolina que a pesar da distância, estiveram sempre presentes no meu dia a dia e fizeram a vida mais leve.

Enfim, a todos que contribuíram direta ou indiretamente para a realização desse trabalho. Muito obrigada.

"O sucesso é a soma de pequenos esforços repetidos dia após dia." Robert Collier

RESUMO

ESQUÉN, P. I. H. **Estudo da glicosiltransferase LafB de** *Enterococcus faecium* envolvida na supersensibilidade à daptomicina. 2022. 98 p. Dissertação (Mestrado em Ciências) – Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Devido a crescente onda de resistência bacteriana a nível global, a Organização Mundial da Saúde classificou grupos de bactérias multidroga resistentes quanto à prioridade para a pesquisa e desenvolvimento de novos antibióticos, dentre os quais Enterococcus faecium resistentes à vancomicina (VRE) se encontra classificado como alta prioridade. Entre as opções terapêuticas de último recurso para combater infecções causadas por VRE está daptomicina (DAP), no entanto, a resistência a este antibiótico em VRE já foi relatada. Recentemente, pesquisadores do IFSC-USP detectaram que uma mutação no gene lafB de E. faecium causou hipersensibilidade a DAP. O gene lafB codifica a glicosiltransferase LafB, envolvida na via de formação da âncora do ácido lipoteicóico (LTA), que também está presente em outras bactérias gram-positivas como Listeria monocytogenes e Enterococcus faecalis. Deste modo, este trabalho procurou verificar o papel da mutação do gene lafB no fenótipo bacteriano, caracterizar biofisicamente a proteína, e estudar *in-silico* uma predição da estrutura tridimensional da LafB, pois é um alvo promissor para aumentar a atividade da DAP em bactérias gram-positivas. Para isso, foi feita uma comparação entre as linhagens de HBSJRP 18 2.1 (supersensível a DAP) e HBSJRP 18 2.7 (sensibilidade normal a DAP) acerca do crescimento bacteriano, perfil metabólico, capacidade de formação de biofilme e virulência in-vivo em modelo de Galleria mellonella. A mutação em lafB causou uma significativa queda no crescimento bacteriano e virulência da linhagem supersensível, porém, não apresentou diferença significativa na capacidade de formação de biofilme, nem nas condições metabólicas analisadas. Concomitantemente, foi feita a clonagem, expressão e purificação por cromatografia de afinidade e de exclusão molecular da proteína LafB nativa e mutada. Ao contrário da LafB nativa, a proteína mutada é insolúvel nos passos de purificação nas mesmas condições de tampão e temperatura. Com amostras purificadas da proteína LafB nativa, se realizaram ensaios de dicroísmo circular e SEC-MALS. Sob condições in-vitro, LafB é monomérica, possui uma massa molecular de 41.76 kDa, temperatura de Melting de 37 °C, e possui estruturas secundárias α-helicoidais. Para a análise in-silico, a estrutura tridimensional da proteína foi predita usando o software AlphaFold, adicionalmente, foi feito um acoplamento entre a estrutura predita da proteína e o ligante hipotético UDP-galactose. Os resultados sugerem que estruturalmente a LafB pertence às glicosiltransferases da família GT-

B, e que devido ao fato de a mutação estar próxima ao suposto sítio catalítico, é provável que as mudanças nas interações que ocorrem entre os aminoácidos da proteína e ligante, sejam a causa das mudanças observadas no fenótipo da linhagem mutada. No futuro, testes com diferentes condições de purificação serão feitos para estabilizar e cristalizar a proteína para resolver sua estrutura tridimensional, a fim de entender mais a fundo o papel da proteína LafB na sensibilidade a daptomicina.

Palavras-chave: Glicosiltransferase LafB. *Enterococcus faecium*. Hipersensibilidade à daptomicina.

ABSTRACT

ESQUÉN, P. I. H. **Study of LafB glycosyltransferase from** *Enterococcus faecium* **involved in daptomycin supersensitivity.** 2022. 98 p. Dissertation (Master in Science) – Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Given the globally rising wave of bacterial resistance, the World Health Organization has classified groups of multidrug-resistant bacteria as a priority to research and develop new antibiotics, including vancomycin-resistant Enterococcus faecium (VRE) classified as a high priority microorganism. Among the therapeutic options of last resort to combat infections caused by VRE is daptomycin (DAP). However, the DAP resistance in VRE has already been reported. Recently, researchers at IFSC-USP detected that a mutation in the E. faecium lafB gene caused hypersusceptibility to DAP. The *lafB* gene encodes the LafB glycosyltransferase, involved in the lipoteichoic acid (LTA) anchor synthesis pathway, which is also present in other Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis. Therefore, this work aimed to verify the *lafB* gene mutation role in the bacterial phenotype, characterize the LafB protein biophysically, and study in-silico a prediction of the threedimensional structure of LafB, because it is a promising target to increase the DAP activity in Gram-positive bacteria. For this purpose, a comparison between HBSJRP 18 2.1 (supersensitive to DAP) and HBSJRP 18 2.7 (normal sensitivity to DAP) strains was performed by observing bacterial growth and metabolite profile, biofilm-forming ability, and *in-vivo* virulence in a *Galleria mellonella* model. The mutation caused a significant decrease in bacterial growth and virulence of the supersensitive strain, but the strains showed no significant differences in biofilm-forming ability nor marked differences in the metabolic profile analyzed. Concurrently, the lafB gene was cloned, expressed, and LafB was purified by affinity chromatography and molecular exclusion chromatography. Unlike the native LafB, the mutated protein is insoluble under the same buffer and temperature conditions during the purification steps. Circular dichroism and SEC-MALS assays were performed with purified native LafB protein. Under in-vitro conditions, LafB is monomeric, has a molecular mass of 41.76 kDa, melting temperature of 37 °C, and α-helicoidal secondary structures. For the insilico analysis, the protein's three-dimensional structure was predicted using AlphaFold software. Additionally, a coupling between the protein predicted structure and UDP-galactose, as a hypothetical ligand, was performed. The results suggest that structurally LafB would belong to the GT-B family of glycosyltransferases. Because the mutation is close to the putative catalytic site, changes in the protein amino acids and the ligand interactions are likely

the causes of the changes observed in the phenotype of the mutated strain. In the future, tests with different purification conditions will be performed to stabilize and crystallize the protein to resolve its three-dimensional structure to understand further the LafB protein's role in daptomycin susceptibility.

Keywords: Glycosyltransferase LafB. Enterococcus faecium. Daptomycin hypersusceptibility

LISTA DE FIGURAS

Figura 1 -	Esquema da estrutura da parede celular de bactérias gram- positivas	.24
Figura 2 -	Modelo da síntese do ácido lipoteicóico em Listeria monocytogenes.	.25
Figura 3 -	Esquema proposto da via sintética dos glicolipídios da âncora do ácido lipoteicóico em <i>E. faecalis</i> . O gene <i>bgsB</i> se encontra envolvido na adição o primeiro açúcar glucose no diacilglicerol (DAG) da membrana para a formação do glicolipídio monoglucosildiacilglicerol (MGlcDAG), em quanto o gene <i>bgsA</i> está envolvido na adição do segundo açúcar glucose para a formação do diglucosildiacilglicerol (DGlcDAG).	.25
Figura 4 -	Formação de biofilme em <i>E. faecalis</i> . Se mostram as quatro etapas de formação: (1) adesão, (2) formação de microcolônias, (3) maduração, (4) dispersão	.26
Figura 5 -	Estrutura química da daptomicina	.27
Figura 6 -	Esquema da formação e aproximação das micelas de daptomicina (DAP) à membrana bacteriana de gram-positivas, mediada pelo Ca ²⁺	.29
Figura 7 -	Esquema do mecanismo de ação da DAP. (a) Septo de divisão celular (rico em PG e lipídeos com precursores da parede bacteriana) de <i>S. aureus</i> em ausência de DAP. (b) Localização dos oligômeros de DAP no septo de divisão, formando um triplo complexo com o PG e precursores da parede celular acoplados ao bactoprenol bloqueando assim a síntese da parede celular. (c) O tratamento prolongado com DAP resulta em uma dispersão progressiva do antibiótico pela membrana citoplasmática seguida da desintegração da bicamada lipídica o que leva a morte celular	.30
Figura 8 -	Representação esquemática dos resultados da evolução <i>in-vitro</i> da linhagem HBSJRP-18, obtidos por MELLO <i>et al.</i> , cada hexágono representa um dia do experimento e o número dentro é o nome da variante obtida esse dia. Remarcadas em vermelho estão as linhagens selecionadas para este estudo	.32
Figura 9 -	Esquema de determinação da concentração mínima inibitória (MIC, do inglês Minimum Inhibitory Concentration) em microplaca de 96 poços.	.35
Figura 10 -	PM utilizados na análise das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7	.38
Figura 11 -	Mapa e esquema do vetor <i>pGEM</i> ®- <i>TEasy</i>	.42
Figura 12 -	Esquema e mapa do vetor de expressão <i>pET28a</i>	.45
Figura 13 -	Esquema de purificação da cromatografia por afinidade da proteína LafB de <i>E. faecium</i>	.48
Figura 14 -	Esquema da coluna de cromatografia de exclusão por tamanho (SEC)	.49

Figura 15 -	Esquema da cromatografia de exclusão de tamanho acoplada ao espalhamento de luz multiangulares	.50
Figura 16 -	Esquema do Dicroísmo Circular	.51
Figura 17 -	Espectro de CD no UV –distante. Espectro CD de proteína de hélice α (vermelho). Espectro CD de proteína de fita β (azul), Espectro CD de proteína desestruturada (verde)	.52
Figura 18 -	Esquema da técnica de gota sentada utilizada com a proteína LafB de <i>E. faecium</i> nos ensaios de cristalização	.53
Figura 19 -	Representação esquemática de enzimas envolvidas na síntese de precursores de glicolipídios, glicolipídios e/ou cadeia principal de LTA em diferentes bactérias gram-positivas. As enzimas marcadas em um quadrado vermelho são as proteínas que cumprem a mesma função que a LafB em <i>E. faecium</i>	.55
Figura 20 -	Curva dose-resposta de <i>E. faecium</i> e daptomicina	.58
Figura 21 -	Curva de crescimento das linhagens de <i>E. faecium</i> HBSJRP 18_2.7 (azul) e HBSJRP 2.1 (verde)	.58
Figura 22 -	Formação de biofilme das linhagens de <i>E. faecium</i> HBSJRP 18_2.1 e HBSJRP 18_2.7	.59
Figura 23 -	Curvas de crescimento resultantes após 48h de incubação dos PM em <i>E. faecium</i> HBSJRP 18_2.7 (em verde, linhagem de referência) e HBSJRP 18_2.1 (em vermelho, linhagem mutada). Em amarelo mostra-se a convergência das duas curvas.	.60
Figura 24 -	Efeitos do aumento de pH no crescimento das linhagens de <i>E. faecium</i> HBSJRP 18_2.7 (em verde, linhagem de referência) e HBSJRP 18_2.1 (em vermelho, linhagem mutada). Em amarelo mostra-se a convergência das duas curvas. Não se observaram diferenças significativas entre elas	.61
Figura 25 -	Curvas metabólicas das linhagens de <i>E. faecium</i> HBSJRP 18 – 2.1 (Vermelho) e HBSJRP 18 – 2.7 (Verde). A. Umbeliferona, B. Blasticidin S. A área de interseção das curvas está representada em amarelo.	.62
Figura 26 -	Gráficos de Kaplan-Meier das larvas que receberam injeções de <i>E. faecium</i> HBSJRP 18_2.1 (mutada) e HBSJRP 18_2.7 (normal). Os experimentos foram realizados em triplicatas e os resultados são representativos de um experimento típico. Comparada com a linhagem normal HBSJRP 18_2.7, a linhagem com <i>lafB</i> mutado HBSJRP 18_2.1 demonstrou virulência atenuada com uma diminuição estatisticamente significativa (p < 0.0001)	.63
Figura 27 -	Expressão e purificação da proteína LafB. (A) SDS-PAGE 12% das frações coletadas durante a expressão e purificação da proteína LafB nativa (B) SDS-PAGE 12% das frações coletadas durante a expressão e purificação da proteína LafB mutada. M: marcador de masa molecular, P: fração insolúvel, S: fração solúvel, NL: proteínas que não interagem com o Níquel na resina, E1: eluição com Imidazol 10mM, E2: eluição com Imidazol 50mM, E3: eluição com Imidazol 500mM.	.64

Figura 28 - Cromatograma da purificação por exclusão de tamanho (SEC) da proteína LafB	65
Figura 29 - Cromatogramas do SEC-MALS da proteína LafB em tampão B (25mM HEPES, 300mM NaCl, 10% glicerol, 5 mM β-Mercaptoetanol, pH 7,5) e massa calculada da proteína.	66
Figura 30 - Espectro CD da proteína LafB nativa em Tampão C (140mM NaCl, 7mM Na2HPO4, 2,5 mM NaH2PO4H2O) medido a uma temperatura de 16°C	68
Figura 31 - Espectros CD da proteína LafB nativa em Tampão C (140mM NaCl, 7mM Na2HPO4, 2,5 mM NaH2PO4H2O) sob quatro temperaturas de 24°C, 34°C, 38°C e 54°C.	69
Figura 32 - Curva de desnaturação térmica da proteína LafB em tampão C (140 mM NaCl, 7 mM Na2HPO4, 2,5 mM NaH2PO4H2O). T _m =Temperatura de Melting.	69
Figura 33 - Proteínas representativas dos três tipos de dobramentos estruturais reportados nas glicosiltransferases. (A) Enovelamentos do tipo GT-A, GT-B e GT-C. (B) Estrutura da proteína MshA, representativa do enovelamento do tipo GT-B, onde se observam seus dois domínios e entre eles o sítio catalítico (UDP) característica própria da família GT- B	72
Figura 34 - Estrutura predita da proteína LafB de <i>E. faecium</i> . Se apresentam a regiões N-terminal e C-terminal em ciano e verde respetivamente. Em vermelho, se mostra o sítio da mutação	73
Figura 35 - Estrutura da proteína PimA (4N9W) que apresenta os domínios N-terminal (roxo) e C-terminal (laranja), e seu ligante GDP-manose (preto)	73
Figura 36 - Interações do Trp 204 (vermelho) na proteína LafB nativa (2.7)	74
Figura 37 - Interações da Arg204 (vermelho) na proteína LafB mutada (2.1)	75
Figura 38 - Predição da LafB ligada ao UDP-Gal no hipotético sitio ativo determinado mediante analise <i>in-silico</i> . Regiões da estrutura da LafB em ciano (região N- terminal) e verde (região C-terminal), o ligante (UDP-Gal) em vermelho e Triptofano204 em verde escuro (A) Vista anterior (B) Vista posterior	76
Figura 39 - Gráfico das interações ligante – proteína	77

LISTA DE TABELAS

Tabela 1-	Detalhes da reação PCR para a amplificação do gene <i>lafB</i> de <i>E. faecium</i>	41
Tabela 2 -	Condições usadas na PCR para a amplificação do gene <i>lafB</i> de <i>E. faecium</i>	41
Tabela 3-	Condições da reação de adenilação do gene <i>lafB</i> de <i>E. faecium</i>	43
Tabela 4 -	Detalhes da reação de ligação do gene <i>lafB</i> ao vetor <i>pGEM</i> [®] - <i>T Easy</i>	43
Tabela 5 -	Detalhes da reação de digestão com as enzimas NdeI e XhoI	45
Tabela 6 -	Detalhes da reação de ligação do gene <i>lafB</i> ao vetor <i>pET28a</i>	46
Tabela 7 -	Tampões usados na proteína LafB	47
Tabela 8 -	Pesos moleculares de algumas proteínas pertencentes à família GT-B das glicosiltransferases.	67

LISTA DE ABREVIATURAS E SIGLAS

DAG	Diacilglicerol
CD	do inglês, Circular Dichroism
DLS	do inglês, Dynamic Light Scattering
DSF	do inglês, Differential Scanning Fluorimetry
GDP	Guanosina difosfato
GroP	Glicerofosfato
IDSA	do inglês, Infectious Diseases Society of America
IPTG	Isopropil-β-D-1-tiogalactopiranósido
kDa	Kilodalton
LB	do inglês, Lysogeny broth
LTA	do inglês, lipoteichoic acid
MALS	Espalhamento de luz multiangulares
NAG	N-acetilglicosamina
NAM	Ácido N-acetilmurâmico
OMS	Organização Mundial da Saúde
PAE	do inglês, Predicted Aligned Error
PAGE	do inglês, polyacrylamide gel electrophoresis
pb	pares de bases
PBS	do inglês, phosphate buffered saline
PCR	do inglês, polymerase chain reaction
PG	Fosfatidilglicerol
pН	Potencial hidrogeniônico
PM	do inglês, Phenotype microarray
SDS	do inglês, sodium dodecyl sulfate
SEC	Cromatografia de exclusão de tamanho
ТА	do inglês, teichoic acids
T _m	Temperatura de Melting
lDDT	do inglês, Local Distance Difference Test

SUMÁRIO

1 INTRODUÇÃO	23
1.1 Enterococcus faecium e sua importância como patógeno	23
1.2 A parede celular das bactérias gram-positivas e biossíntese do ácido lipoteicóico	24
1.3 A formação de biofilme em enterococos	26
1.4 A daptomicina e seu mecanismo de ação	27
1.5 Enterococcus faecium hipersensível a daptomicina	31
2 OBJETIVOS	33
3 MATERIAIS E MÉTODOS	35
3.1 Caracterização fenotípica	35
3.1.1 Determinação da concentração mínima inibitória (CIM)	35
3.1.2 Curva de crescimento	36
3.1.3 Formação de biofilme	36
3.1.4 Microarranjos de fenótipo microbiano com o sistema OmniLog [®]	37
3.2 Avaliação da virulência <i>in-vivo</i> em modelo de <i>Galleria mellonella</i>	38
3.3 Purificação da glicosiltransferase LafB para testes biofísicos	39
3.3.1 Extração de DNA	39
3.3.2 Clonagem no vetor de propagação	40
3.3.3 Clonagem no vetor de expressão	44
3.3.4 Expressão heteróloga	46
3.3.5 Purificação usando cromatografia por afinidade	47
3.3.6 Purificação usando cromatografia por exclusão de tamanho (SEC)	48
3.3.7 Cromatografia de exclusão de tamanho acoplada ao espalhamento de luz multiar	ngulares
(SEC-MALS)	49
3.3.8 Dicroísmo Circular (CD)	50
3.3.9 Ensaios de cristalização	53
3.4 Análise in-silico da glicosiltransferase LafB	53
3.4.1 Predição da estrutura da proteína com <i>AlphaFold</i>	53

3.4.2 Docking molecular	54
4 RESULTADOS E DISCUSSAO	57
4.1 Caracterização fenotípica	57
4.1.1 Determinação da concentração mínima inibitória (CIM)	57
4.1.2 Curva de crescimento	
4.1.3 Formação de biofilme	59
4.1.4 Microarranjos de fenótipo microbiano com o sistema OmniLog [®]	60
4.2 Avaliação da virulência <i>in-vivo</i> em modelo de <i>Galleria mellonella</i>	63
4.3 Purificação da glicosiltransferase LafB para testes biofísicos	64
4.3.1 Purificação da glicosiltransferase LafB usando cromatografia por	afinidade e
cromatografia por exclusão de tamanho	64
4.3.2 Cromatografia de exclusão de tamanho acoplada ao espalhamento de luz m	ultiangulares
(SEC-MALS)	66
4.3.3 Dicroísmo circular (CD)	68
4.3.4 Ensaios de cristalização	70
4.4 Análise <i>in-silico</i> da glicosiltransferase LafB	
4.4.1 Predição da estrutura da proteína com <i>AlphaFold</i>	71
4.4.2 Docking molecular	76
5 CONCLUSÕES E PERSPECTIVAS	79
REFERÊNCIAS	81
ANEXO A	

1 INTRODUÇÃO

1.1 Enterococcus faecium e sua importância como patógeno

Os enterococos são bactérias gram-positivas que se encontram colonizando o solo, ¹ em águas superficiais ² e do mar, ³ produtos alimentícios fermentados, ⁴ em associações com plantas, ⁵⁻⁶ e até formando parte da microbiota intestinal de vertebrados ⁷ e invertebrados. ⁸ O termo "*entérocoque*" foi usado pela primeira vez em 1899 por Thiercelin quando se descobriu bactérias intestinais com a capacidade de tornar-se patogênicas, e foi utilizado informalmente para se referir aos cocos gram-positivos isolados do intestino ou as fezes de mamíferos.¹ No entanto, a causa de similaridade morfológica e bioquímica, os enterococos foram classificados dentro do gênero *Streptococcus* até 1984, ano em que o nome foi formalmente proposto para a criação do novo gênero *Enterococcus*.⁹

Os enterococos são considerados microrganismos comensais do trato gastrointestinal, no entanto também podem se tornar patogênicos causando infecções de trato urinário, bacteremia, endocardite, infecções intra abdominais e de cateteres, entre outros dispositivos médicos implantados.¹

Enterococcus faecium é um dos principais representantes do gênero *Enterococcus*, e uma das espécies do gênero com importância clínica para o homem particularmente por sua capacidade de adquirir resistência a vários antibióticos especialmente das linhagens isoladas de ambientes hospitalares.¹⁰⁻¹¹ Em consequência da rápida propagação intra-hospitalar e aquisição de resistência a antimicrobianos nas últimas décadas, a IDSA (do inglês, *Infectious Diseases Society of America*) considerou *E. faecium* dentro do grupo de patógenos que representam uma ameaça global para a saúde humana conhecidos pelo acrônimo ESKAPE (*E. faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa* e *Enterobacter sp.*).¹²

A fim de guiar a pesquisa e desenvolvimento relacionados com novos antibióticos, no ano 2017, a Organização Mundial da Saúde (OMS) emitiu uma lista de patógenos para os quais se precisa urgentemente o desenvolvimento de novos fármacos, nessa lista *E. faecium* resistente a vancomicina foi classificado como microrganismo de alta prioridade. ¹³

Entre as opções terapêuticas de último recurso comumente utilizadas para combater infeções causadas por enterococos multirresistentes (incluindo aos resistentes a glicopepetídeos como vancomicina) estão a linezolida, daptomicina e tigeciclina; no entanto, já se tem relatada a resistência de *E. faecium* a esses antibióticos.^{14–16}

1.2 A parede celular das bactérias gram-positivas e biossíntese do ácido lipoteicóico

Em comparação às gram-negativas, 90% da parede celular das bactérias grampositivas (Figura 1) é composta por peptideoglicano, um polissacarídeo que é o responsável pela rigidez da estrutura. O peptideoglicano se compõe de cadeias longas individuais conformadas por moléculas alternadas de N-acetilglicosamina (NAG) e ácido Nacetilmurâmico (NAM), as cadeias de NAG e NAM são interligadas por meio de ligações covalentes cruzadas de aminoácidos como L-alanina, D-alanina, ácido D-glutâmico, ou Llisina o que confere a rigidez nas camadas. Além do peptideoglicano, muitas bactérias como *E. faecium* apresentam moléculas denominadas ácidos teicóicos (TA, do inglês *teichoic acids*) embebidas na parede celular e ligados covalentemente ao ácido murâmico do peptideoglicano. Os TA, estão conformados por moléculas de glicerol-fosfato, e pelo fato de os fosfatos serem carregados negativamente, os TA são em parte responsáveis da carga elétrica negativa da superfície celular. Determinados TA são ligados covalentemente a lipídeos de membrana, e

Figura 1 - Esquema da estrutura da parede celular de bactérias gram-positivas. Fonte: MADIGAN¹⁷

E. faecium possui LTA do tipo I, que é comum entre bactérias do filo *Bacillota* como *Bacillus subtilis, S. aureus*, e *Listeria monocytogenes*.¹⁸ O LTA do tipo I se caracteriza por ter uma espinha dorsal de glicerofosfatos (GroP) não ramificada e geralmente ligada à membrana bacteriana através de uma âncora de glicolipídio.¹⁹ Em *L. monocytogenes*, a formação do LTA inicia no citoplasma com a inserção do primeiro açúcar (Glicose) no diacilglicerol (DAG) da membrana, essa reação é catalisada pela glicosiltransferase LafA. Em seguida, é inserido o segundo açúcar (Galactose) pela ação da glicosiltransferase LafB que utiliza uma molécula de

UDP-Gal como substrato. Uma vez formada a âncora do LTA (Gal-Glc-DAG), a enzima LtaP, usando moléculas de fosfatidilglicerol (PG) como substrato, coloca a primeira molécula de GroP nos glicolipídios da âncora, por fim, a enzima LtaS adiciona mais GroP para formar a "espinha dorsal" do LTA (Figura 2).²⁰

Figura 2 - Modelo da síntese do ácido lipoteicóico em *Listeria monocytogenes*. Fonte: WEBB *et al.*²⁰

Em *Enterococcus faecalis*, os glicolipídios da âncora do LTA são formados pelas enzimas codificadas pelos genes bgsB e bgsA, cujas funções catalíticas correspondem respetivamente as glicosiltransferases LafA e LafB de *L. monocytogenes* (Figura 3).²¹⁻²²

Figura 3 - Esquema proposto da via sintética dos glicolipídios da âncora do ácido lipoteicóico em *E. faecalis*.
O gene *bgsB* se encontra envolvido na adição o primeiro açúcar glucose no diacilglicerol (DAG) da membrana para a formação do glicolipídio monoglucosildiacilglicerol (MGlcDAG), em quanto o gene *bgsA* está envolvido na adição do segundo açúcar glucose para a formação do diglucosildiacilglicerol (DGlcDAG).
Fonte: THEILACKER *et al.*²²

A via de síntese do LTA em *E. faecium* ainda não foi descrita, mas já se tem estudado em *E. faecium* um composto antibacteriano, previamente testado com sucesso em *E. faecalis,* que utiliza como alvo a enzima LtaS, cujo homólogo se encontra também presente no genoma de *E. faecium,* com o propósito de inibir a formação do LTA da parede celular. Se demostrou que em *E. faecium* o composto causou deformações na parede celular e lise bacteriana em *E.* *faecium*.²³ Isso sugere que provavelmente as enzimas envolvidas na síntese do LTA seguem um esquema parecido ao descrito em *E. faecalis* e *L. monocytogenes*, além disso, confirma que as proteínas envolvidas na formação do LTA podem ser alvos promissórios para moléculas antimicrobianas.

1.3 A formação de biofilme em enterococos

O biofilme é uma população de células bacterianas aderidas irreversivelmente a várias superfícies bióticas e abióticas, contidas em uma matriz hidratada de substâncias poliméricas extracelulares, proteínas, polissacarídeos e ácidos nucleicos extracelulares ²⁴ que reduzem intensamente a capacidade dos agentes antimicrobianos de penetrarem o biofilme, de modo que as bactérias contidas na matriz são pouco afetadas pelos fármacos. Uma vez maduros, os biofilmes são notoriamente difíceis de se erradicar e são fontes de infecções recalcitrantes, especialmente nos hospitais ¹⁷, geralmente associados a vários tipos de dispositivos médicos permanentes, como próteses artificiais, dispositivos intrauterinos, cateteres venosos centrais e cateteres urinários. ^{25–28}

Figura 4 - Formação de biofilme em *E. faecalis*. Se mostram as quatro etapas de formação: (1) adesão, (2) formação de microcolônias, (3) maduração, (4) dispersão. Fonte: CH'NG *et al.*²⁶

A formação de biofilme em *E. faecalis* (Figura 4) compreende quatro etapas: a primeira é a adesão inicial na superfície, mediada por adesinas, proteases e glicolipídios de

superfície como o LTA, especialmente se tem demostrado que a esterificação com D-alanina do LTA cumpre um papel importante favorecendo a adesão do biofilme.²⁹

Na segunda etapa, as células começam se multiplicar e produzir pequenas quantidades de matriz para formar agregados conhecidos como microcolônias, que uma vez formados começam a ter um crescimento ativo e produção dos componentes da matriz extracelular, essa etapa é chamada de maturação. ²⁶ Contudo, os biofilmes não são estruturas estáticas e as células bacterianas podem ser liberadas através de um processo de dispersão provocado por fatores ambientais, em *E. faecium* esse processo não tem sido bem estudado, mas em outras espécies como *Pseudomona aeruginosa*, se tem demostrado que as células dispersas possuem uma maior expressão de genes de virulência e menor propensão a serem fagocitadas por macrófagos.²⁶

Outros estudos sobre o biofilme em *E. faecalis*, relatam a importância da síntese do LTA na capacidade de formação do biofilme e mostram que o gene *bgsA* (correspondente ao gene *lafB* em *E. faecium*), responsável pela adição do segundo açúcar na âncora do LTA, está envolvido na capacidade de formação de biofilme da bactéria, pois a deleção de *bgsA* resultou em uma diminuição significativa da capacidade de formação de biofilme, enquanto uma expressão aumentada deste gene, resulta no aumento correlativo de acumulação de biofilme.²¹

1.4 A daptomicina e seu mecanismo de ação

Daptomicina (DAP) é um antibiótico derivado de um produto de fermentação de *Streptomyces roseoporus*, e pertence à classe dos lipopeptídeos cíclicos. Sua estrutura é conformada por um núcleo peptídico e uma cauda lipídica (Figura 5) e age especificamente em bactérias gram-positivas. ³⁰⁻³¹

DAP foi aprovada inicialmente pela FDA (do inglês, *Food and Drug Administration*) no ano 2003 para infeções em tecido macio (envolve pele e tecido subcutâneo subjacente) causadas por *S. aureus*, estreptococos β -hemolíticos e *E. faecalis* sensíveis a vancomicina; e três anos depois, no 2006, foi liberada para tratar também infecções de corrente sanguínea e endocardite causada por *S. aureus*. Com o tempo, DAP se converteu na prática clínica em um antibiótico comumente utilizado para o tratamento de infeções provocadas por *S. aureus* MRSA (do inglês, *methicillin-resistant S. aureus*) e *Enteroccoccus faecium* VRE (do inglês, *vancomycin-resistant*).³²⁻³³ Mas como previsto, no 2005, apenas dois anos após a aprovação inicial da DAP, foram relatadas as primeiras amostras resistentes de *E. faecium*.¹

Embora DAP tenha sido utilizada por quase duas décadas na pratica clínica, seu mecanismo de ação ainda não foi completamente elucidado. No entanto, se sabe que a ação da DAP é dependente da presença de Ca^{2+} que vai induzir a formação de micelas de 14-16 monômeros de DAP, as quais devido a carga catiônica do Ca^{2+} , se aproximam à membrana bacteriana onde uma vez em contato com a membrana, a micela de DAP se dissocia, permitindo que a DAP monomérica se insira na bicamada (Figura 6). ³⁴⁻³⁵

Figura 6 - Esquema da formação e aproximação das micelas de daptomicina (DAP) à membrana bacteriana de gram-positivas, mediada pelo Ca²⁺.
Fonte: Adaptada de ROBBEL; MARAHIEL.³⁵

Além do Ca²⁺, DAP precisa se associar com moléculas de fosfatidilglicerol (PG) que é um dos lipídeos aniônicos que compõe a membrana das bactérias gram-positivas. Inclusive, se tem demostrado que os níveis elevados e reduzidos de PG estão relacionados à sensibilidade e resistência a DAP, respetivamente. ³⁶

Recentemente, se informou que há associação DAP–Ca²⁺–PG com bactoprenol que carreia os precursores da parede celular formando assim um triplo complexo entre DAP–Ca²⁺, PG e o lipídeo II com precursores da parede celular. Com a descoberta desse modo de ação, se demostrou que DAP–Ca²⁺ age em duas fases, a primeira fase acontece nos primeiros 15 minutos e parece ser o evento principal de eliminação bacteriana, nela, a DAP se liga no septo de divisão celular, que é um local rico em PG e lipídeo II com precursores da parede celular (alvos moleculares), nesta primeira etapa, a DAP consegue reduzir 75% das bactérias viáveis. ³⁷ Na segunda fase, a exposição prolongada a DAP causa uma inibição da síntese da parede celular no septo de divisão levando a dispersão progressiva da maquinaria proteica de síntese

da parede e modificação da membrana onde se passa a observar a ligação da DAP e em consequência a morte da célula (Figura 7).³⁷

Figura 7 - Esquema do mecanismo de ação da DAP. (a) Septo de divisão celular (rico em PG e lipídeos com precursores da parede bacteriana) de *S. aureus* em ausência de DAP. (b) Localização dos oligômeros de DAP no septo de divisão, formando um triplo complexo com o PG e precursores da parede celular acoplados ao bactoprenol bloqueando assim a síntese da parede celular. (c) O tratamento prolongado com DAP resulta em uma dispersão progressiva do antibiótico pela membrana citoplasmática seguida da desintegração da bicamada lipídica o que leva a morte celular. Fonte: GREIN *et al.*³⁷

1.5 Enterococcus faecium hipersensível a daptomicina

Um estudo prévio desenvolvido no Laboratório de Epidemiologia e Microbiologia Moleculares (LEMiMo) do Instituto de Física de São Carlos (IFSC) da Universidade de São Paulo (USP) analisou 26 isolados de *E. faecium* do Hospital de Base São Jose do Río Preto, o isolado HBSJRP18 apresentou uma sensibilidade muito elevada a DAP com concentração inibitória mínima (CIM) de 0,06 mg/L, o que é raro para a espécie.³⁸

Para compreender o fenótipo deste isolado, foram realizados três experimentos de evolução dirigida na presença de DAP *in-vitro* em paralelo (Figura 8) a fim de conseguir variantes mais resistentes ao fármaco. Algumas das linhagens evoluídas foram selecionadas para o sequenciamento do genoma. A comparação entre os genomas HBSJRP 18_2.1 (CIM_{DAP}=0.06 mg/L) e HBSJRP 18_2.7 (CIM_{DAP}=2 mg/L) mostrou uma transição de C577T (Arg193Trp) no gene anotado como *lafB* que codifica uma glicosiltransferase. A mutação encontrada restaurou a sequência de codificação àquela que ocorre naturalmente em todos os outros isolados clínicos de *E. faecium* relatados, por tanto, essa mutação foi classificada como uma reversão para o genótipo *wild type*. ³⁸

Como relatado anteriormente, em enterococos, o gene *lafB*, codifica uma glicosiltransferase encarregada de inserir o segundo açúcar na base da âncora do LTA. Neste trabalho foram utilizadas as linhagens supersensível HBSJRP 18_2.1 e a sensível HBSJRP 18_2.7 (Figura 8) para estudar mais a fundo a proteína LafB de *E. faecium* e a implicação da mutação nos fenótipos bacterianos.

Figura 8 - Representação esquemática dos resultados da evolução *in-vitro* da linhagem HBSJRP-18, obtidos por MELLO *et al.*, cada hexágono representa um dia do experimento e o número dentro é o nome da variante obtida esse dia. Remarcadas em vermelho estão as linhagens selecionadas para este estudo. Fonte: MELLO *et al.*³⁸

2 OBJETIVOS

O objetivo geral desse projeto foi verificar o papel da mutação do gene lafB no fenótipo bacteriano e sua virulência e caracterizar biofisicamente a proteína LafB.

Baseados no objetivo geral, foram indicados os seguintes objetivos específicos:

- ✓ Comparar fenotipicamente as linhagens de *E. faecium* com o gene *lafB* mutado e não mutado, quanto ao metabolismo, sensibilidade a diversos compostos e capacidade de formação de biofilme.
- ✓ Avaliação da virulência *in-vivo* em modelo de *Galeria mellonella*.
- ✓ Clonar o gene lafB em vetor de expressão.
- ✓ Padronizar a expressão e purificação da LafB para sua caracterização biofísica.
- ✓ Analisar *in-silico* uma predição da estrutura tridimensional da proteína LafB.
3 MATERIAIS E MÉTODOS

3.1 Caracterização fenotípica

3.1.1 Determinação da concentração mínima inibitória (CIM)

A CIM é definida como a menor concentração de um antimicrobiano que, sob condições *in-vitro* estritamente controladas, é capaz de inibir visivelmente o crescimento de um microrganismo após incubação (Figura 9), é considerada o padrão de ouro para se determinar a suscetibilidade dos organismos aos antimicrobianos.³⁹⁻⁴⁰

Figura 9 - Esquema de determinação da concentração mínima inibitória (MIC, do inglês Minimum Inhibitory Concentration) em microplaca de 96 poços. Fonte: EMERY PHARMA.⁴⁰

Neste trabalho a determinação da CIM das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7 foi feita utilizando microdiluição em caldo baseado nas recomendações do CLSI (do inglês, *Clinical and Laboratory Standards Institute*), ⁴¹ com meio de cultura Mueller-Hinton Cátion Ajustado MHCA suplementado com cálcio (50 mg/L) previamente filtrado usando filtro de 0,22 μ m. Em triplicatas, as amostras foram incubadas a 37 °C por 24 h em placa de 96 poços em meio suplementado com diferentes concentrações de daptomicina (8 μ g/mL; 4 μ g/mL; 2 μ g/mL; 1 μ g/mL; 0,5 μ g/mL; 0,25 μ g/mL; 0,125 μ g/mL; 0,06 μ g/mL e 0 μ g/mL). A CIM foi determinada por observação direta na placa, considerando-se como CIM a menor concentraçõo onde não se observa crescimento bacteriano no poço. Com os resultados da incubação de 24 h foi feita uma curva dose-resposta, a leitura da absorbância das replicatas foi feita a 600 nm, utilizando o equipamento *Spectramax M5 (Molecular Devices*, USA).

3.1.2 Curva de crescimento

As linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7 foram incubadas em caldo Mueller -Hinton a 37 °C por 18 h, a cultura foi diluída em caldo Mueller-Hinton até a DO₆₀₀ atingir valores entre 0,05 e 0,1. Após o ajuste da cultura, se distribuíram 200 μ L de cada amostra nos poços, e foram feitas leituras com intervalos de 15 min durante 12 horas utilizando o equipamento *Spectramax M5*.

Com as medições de absorbância obtidas pelo equipamento foram feitas curvas DO x tempo de incubação de cada replicata, e selecionando os dados da fase de crescimento exponencial da bactéria foram determinados os tempos de duplicação (também conhecido como tempo de geração)⁴² de cada linhagem utilizando a seguinte fórmula:

$$\frac{Ln(2)}{B}$$

Onde:

B = Exponente da função exponencial da curva.

Um teste de Análise de Variância (ANOVA) foi feito para determinar a significância entre os tempos de duplicação das linhagens.

3.1.3 Formação de biofilme

Levando em consideração que a formação de biofilme em enterococos é predominante em superfícies de dispositivos médicos como o cateter urinário, e que a linhagem HBSJRP 18 foi isolada de uma amostra clínica de urina ³⁸, além de que o gene *bgsA* envolvido na capacidade de formação do biofilme em *E. faecalis* cumpriria uma função similar na formação do LTA que o gene *lafB* em *E. faecium*, foi feita uma avaliação da capacidade formadora de biofilme das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7.

As duas linhagens foram incubadas a 37 °C por 18 h em caldo BHI (do inglês, *Brain Heart Infusion*) contendo glicose a 0,75%. Como controle positivo do experimento foi usada a linhagem de *Straphylococcus epidermidis* ATCC 35984 e como controle negativo a *S. epidermidis* ATCC 12228. Estas linhagens foram usadas apenas para validar o teste realizado. Os tubos com as culturas foram centrifugados a 4000 rpm por 10 min a 4 °C. Posteriormente, o sobrenadante foi desprezado e o sedimento bacteriano foi suspendido em 500 μ L de caldo BHI 0,75% glicose. Para ajustar a densidade óptica das amostras, foram diluídos 50 μ L de cada amostra em 450 μ L de tampão PBS, e após serem colocadas em placas de 96 poços em duplicatas, foram levados à *Leitora de Microplacas Polaris (Celler*, Brasil) para ser lida a

absorbância a 600 nm. As amostras foram ajustadas com caldo BHI 0,75% glicose até que a leitura atingisse absorbância igual a 1,0. Imediatamente as amostras ajustadas foram diluídas 1:40 em caldo BHI 0,75% glicose, após a diluição 200 μ L das amostras foram inoculados em cada poco de uma placa de 96 poços de fundo chato; foram feitas 12 replicatas de cada. Posteriormente, a placa foi incubada a 37 °C por 24 h. No dia seguinte, se descartou o conteúdo dos poços e foram feitas 3 lavagens manuais adicionando e removendo 200 μ L de PBS em cada lavagem.

Para a revelação do biofilme, se adicionaram 200 μ L de solução de corante cristal violeta 0,2% e se deixou em repouso por 15 min, depois foram feitas 3 lavagens do corante com PBS como anteriormente descrito. Imediatamente, foram adicionados 200 μ L de solução de etanol: acetona (80:20) aos poços e se agitou a placa por 1 min. Finalmente, em uma nova microplaca foram adicionados 160 μ L de solução descorante (etanol: acetona) mais 40 μ L do conteúdo da placa anterior para no fim, realizar a leitura da absorbância dos poços a 600 nm na Leitora de Microplacas Polaris (*Celler*). Para a análise estatística dos resultados, foi feito um teste de ANOVA entre as amostras.

3.1.4 Microarranjos de fenótipo microbiano com o sistema OmniLog ®

A tecnologia de Microarranjos fenotípicos da OmniLog (*Biolog*, Estados Unidos) proporciona um ensaio de alto rendimento para caracterização e seguimento dos fenótipos durante o metabolismo das células microbianas e outros organismos. ⁴³ A tecnologia é baseada em microarranjos de fenótipos ("PM" do inglês, *Phenotype microarrays*), que consistem em 20 microplacas de 96 poços que compreendem cada um deles diferentes condições de crescimento: diferentes fontes de carbono (placa PM1-2), nitrogênio (PM3, 6-8), fósforo e enxofre (PM4), suplemento nutricional (PM5), osmólitos e pH (PM9-10), e um conjunto de compostos antimicrobianos (PM11-20).⁴⁴ Para a análise dos fenótipos durante o metabolismo, é usada um sal de tetrazolio que é reduzido mediante desidrogenases e redutases produzidas pelas células, indicando que o microrganismo metaboliza ativamente um substrato.⁴³

Para a caracterização das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7 foram utilizados os 20 PM padronizados pelo fabricante para enterococos. Os PM utilizados contêm substratos como fontes de carbono (PM 1 e 2A), fontes de nitrogênio (PM 3B), fontes de fósforo e enxofre (PM 4A), suplementos nutricionais (PM 5), fontes peptídicas de nitrogênio (PM 6, 7 e 8), osmólitos (PM 9), pH (PM 10), diversos compostos químicos (PM 11C, 12B, 13B, 14A, 15B, 16A, 17A, 18C, 19, 20B) (Figura 10) (Anexo A)

Figura 10 - PM utilizados na análise das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7. Fonte: Adaptada de OMNILOG[®] PM SYSTEMS

A análise foi feita utilizando o protocolo do fabricante para bactérias enterocócicas. Para isso, células das linhagens de interesse foram semeadas em ágar *Biolog Universal Growth* (BUG) e foram cultivadas a 37°C por 24h. No seguinte dia, foram coletadas colônias individuais da superfície das placas de ágar utilizando um *swab* estéril, para transferi-las para o fluido de inoculação estéril (IF BiologTM) até uma densidade correspondente ao 81% de transmitância no turbidímetro (Biolog). Em seguida, foram adicionados 100 μ L de inóculo bacteriano a cada poço. As placas PM inoculadas, foram colocadas no equipamento OmniLog[®] para a leitura a cada 15 minutos através da câmara CCD do equipamento durante 48h a 37°C. O crescimento bacteriano foi estimado seguindo a redução do colorante de tetrazolio e os dados foram obtidos automaticamente a cada 15 min em Unidades Omnilog (UO).

Os resultados das curvas de crescimento foram observados e comparados utilizando o próprio software *OmniLog PM*, considerando os parâmetros *height, slope* e *area under the curve*.

3.2 Avaliação da virulência in-vivo em modelo de Galleria mellonella

Para investigar se a mutação no gene que codifica a glicosiltransferase LafB de *E. faecium* afeta a virulência da bactéria, foram feitos experimentos de infecção e morte em larvas de *Galleria mellonella* em colaboração com pesquisadores da *University of Florida*: Dra. Jacqueline Abranches, Dra. Jessica Kajfasz e Dr. José A. Lemos.

O experimento foi realizado em triplicatas seguindo a metodologia descrita em *Gaca et al.*⁴⁵ As linhagens de *E. faecium* HBSJRP 18_2.1 e HBSJRP 18_2.7 foram incubadas por 18 horas a 37 °C em meio BHI. Em seguida, as células foram coletadas por centrifugação e imediatamente congeladas para seu uso posterior.

Foram selecionadas aleatoriamente grupos de vinte larvas de *G. mellonella* (*Vanderhorst Wholesale Inc.*) cujo peso oscilava entre 200 e 300 mg. As larvas foram injetadas com alíquotas de 5 μ l de inóculo bacteriano (5 x 10⁵ UFC) no hemocele, através da última *proleg* esquerda utilizando uma seringa Hamilton. Como um controle negativo dois grupos de larvas foram injetados com bactérias das duas linhagens inativadas por calor ("HK", do inglês *heat killed*) a 75°C por 20 min, seguindo o mesmo esquema. Após injeção, as larvas se mantiveram a 37°C e os registros de sobrevivência foram realizados em intervalos selecionados. Com os dados foram feitas curvas de mortalidade de Kaplan-Meier e foram comparadas as diferenças de sobrevivência mediante o teste de Log-rank de Mantel-Cox. Os dados foram analisados utilizando o software *GraphPad Prism 4.0*.

3.3 Purificação da glicosiltransferase LafB para testes biofísicos

3.3.1 Extração de DNA

A extração do DNA genômico foi feita utilizando metodologia baseada em *Palazzo et al.* ⁴⁶ Como primeiro passo, as bactérias das linhagens HBSPRP 18-2.1 e HBSJRP 2.7 foram cultivadas em tubos novos com 10 mL de caldo BHI a 37 °C durante 18 h. A cultura obtida foi centrifugada a 5000 rpm a 4 °C por 5 min; o sobrenadante foi desprezado. O sedimento foi suspenso em solução fisiológica 0,85% e centrifugado mais uma vez a 5000 rpm a 4 °C por 5 min. Após centrifugação, o sobrenadante foi desprezado, e ao sedimento adicionou-se 1 volume (= 200 µL medido em microtubo de 500 µL) de pérolas de vidro previamente tratadas com ácido nítrico 50% por duas horas sob agitação. Posteriormente foram adicionados junto as pérolas 600 µL de tampão de extração TED (0,2 M Tris-HCL pH 8,5, 250 mM NaCl, 250 mM EDTA pH 7,5, 17 mM SDS, água deionizada).

O tubo com o sedimento foi levado ao vórtex por 10 min e, posteriormente, foram transferidos 500 μ L da suspensão em um microtubo e foi adicionado um volume de 500 μ L de fenol-clorofórmio (1:1); os tubos foram homogeneizados por inversão durante 15 s e centrifugados por 20 min a 12000 rpm a 4 °C. O sobrenadante obtido foi cuidadosamente extraído e um volume de 400 μ L do sobrenadante foi transferido a outro tubo contendo 400

 μ L de isopropanol absoluto gelado. Por fim, as misturas foram armazenadas em freezer a -20 °C por aproximadamente 18 h.

No dia seguinte, os tubos foram centrifugados por 10 min a 12000 rpm a 4 °C, o sobrenadante foi desprezado e se adicionou 1 mL de etanol 70% gelado. Novamente, as amostras foram centrifugadas por 10 min a 12000 rpm a 4 °C e, após centrifugação, o líquido remanescente foi escorrido em papel absorvente. Em seguida, os tubos foram colocados abertos em câmara de fluxo laminar até secar; o DNA foi suspendido em 30 µL de água ultrapura obtida no equipamento *Milli-Q Direct Water Purification System (Merck*, Alemania) e armazenado por 2 h a 4 °C. Após esse tempo, foi adicionado 1 µL de RNAse (10 µg/mL) e os tubos foram incubados a 37 °C por 1 h. Por fim, o DNA foi quantificado usando *Nano Drop* 2000 (*Thermo Scientific*, USA), e conservado a -20 °C para uso posterior.

3.3.2 Clonagem no vetor de propagação

Como primeiro passo da clonagem, oligonucleotídeos foram desenhados utilizando o software SnapGene, para amplificação do gene LafB a partir do genoma bacteriano. Estes oligonucleotídeos sequências 5' apresentam forward: as 3' 5' CGCGCATATGATGTTATACTATATAAG e reverse: TATACTCGAGCTAGTCCTTGACCTG 3', e possuem sítios de restrição para as enzimas NdeI e XhoI (em negrito), respetivamente. A reação em cadeia da polimerase (PCR, do inglês polymerase chain reaction) foi feita com os oligonucleotídeos previamente desenhados e o DNA genômico extraído das linhagens de E. faecium HBSJRP 2.1 e 2.7, usando o Kit Platinum Taq DNA Polymerase High Fidelity (Invitrogen, EUA) (Tabela 1).

Reagentes	Volume
DNA genômico	4 µL
Primer forward (10µM)	1 µL
Primer reverse (10µM)	1 µL
dNTP (10mM)	1 µL
MgSO ₄ (50mM)	1,5 µL
Tampão (10X)	5 µL
Taq Platinum High Fidelity (5 U/µL)	0,2 μL
Água	36,5 µL

Tabela 1- Detalhes da reação PCR para a amplificação do gene lafB de E. faecium

Fonte: Elaborada pela autora.

Tabela 2 - Condições usadas na PCR para a amplificação do gene lafB de E. faecium

Etapa	T (°C)	Tempo	Repetições
Denaturação inicial	94 °C	1 min	1
Denaturação	94 °C	30 s	
Hibridização	52 °C	30 s	35
Extensão	72 °C	1 min	
Extensão final	72 °C	10 min	1
Armazenamento	4 °C	Indeterminado	1

Fonte: Elaborada pela autora.

A PCR foi executada em um termociclador *T100 thermal cycler* (*Bio-Rad*, USA) nas condições descritas na Tabela 2. Para a confirmação da amplificação do gene *lafB*, que possui 1080 pb, foi feita uma eletroforese em gel de agarose 1%. O amplicon foi purificado usando o *Kit Agarose Gel Extraction* da *Cellco Biotec* seguindo as instruções do fabricante.

O vetor $pGEM^{\textcircled{B}}$ -*T Easy (Promega)* foi selecionado para primeira etapa de clonagem do *gene lafB* de *E. faecium* por ser um vetor de alta eficiência que é capaz de gerar um alto número de cópias, permitindo a propagação do gene de interesse. Na sua estrutura (Figura 11), o vetor possui um gene de resistência a ampicilina e uma região de clonagem múltipla dentro da região codificadora (gene *lacZ*) da enzima β-galactosidase. A β-galactosidase é encarregada de hidrolisar o composto X-gal que é adicionado ao meio de cultura, fazendo com que este seja metabolizado até a formação do corante azul 5,5'-dibromo-4,4'-dicloroíndigo. A inserção do gene na região de clonagem impede a expressão da β -galactosidase e consequentemente, do corante, permitindo assim, a identificação de recombinantes por triagem de colônias azuis e brancas em placas indicadoras.⁴⁷

Figura 11 - Mapa e esquema do vetor *pGEM*®-*T Easy*. Fonte: PROMEGA.⁴⁷

Além disso, o $pGEM^{\circledast}$ -*T Easy* possui uma timina na região 3' -terminal em ambos extremos do sítio de inserção, o que melhora a eficiência da ligação dos produtos da PCR. Por conta dessas timidinas terminais, antes da reação de ligação, os extremos 5' do gene purificado foram adenilados seguindo os detalhes e condições descritos na Tabela 3. Em seguida, o gene *lafB* foi ligado ao plasmídeo de propagação utilizando a enzima T4 DNA Ligase (*Promega*) (Tabela 4).⁴⁷

Reagentes	Volume	Condições
DNA	15 μL	94 °C por 1 min 72 °C por 30 min 1 ciclo
dATP (10mM)	0,6 µL	
MgCl ₂ (25mM)	3 µL	
Tampão (10X)	3 µL	
Taq Polimerase (U/µL)	0,5 µL	
Água	7,9 μL	

Tabela 3- Condições da reação de adenilação do gene lafB de E. faecium

Fonte: Elaborada pela autora.

Tabela 4 - Detalhes da reação de ligação do gene lafB ao vetor pGEM[®]-T Easy

Reagentes	Volume	Condições
DNA <i>lafB</i>	2 µL	
Vector (<i>pGEM</i> [®] - <i>T Easy</i>)	0,5 µL	20.00
Tampão (10X)	5 µL	20 °C 16h
T4 DNA Ligase (U/µL)	1 µL	
Água	1,5 µL	

Fonte: Elaborada pela autora.

Subsequente à ligação, células quimiocompetentes de *E. coli* DH5 α foram transformadas com a construção do vetor. Para isso, adicionaram-se 20 µL do produto de ligação em um tubo contendo uma alíquota de 100 µL de células quimiocompetentes. As células foram colocadas em gel por 20 min e, em seguida, foi realizado um choque térmico para permitir a entrada do plasmídeo à célula. Para isso, o tubo foi colocado em banho-maria a 42 °C por 45-50 s, e, logo após, as células foram incubadas em gelo por 1 min. O tubo foi retirado do gelo e imediatamente misturado com 500 µL de meio LB (do inglês, *Lysogeny broth*). Então, as células foram levadas a incubação por 1 hora a 37 °C a 150 rpm.

Após incubação, a cultura foi centrifugada a 10000 xg por 1 min, o sobrenadante foi desprezado e 100µL das células foram semeados em uma placa com meio ágar LB

suplementado com 50 mg/ml de ampicilina (antibiótico de seleção), 0,5 mM IPTG e 80 μ g/mL X-gal. As placas foram incubadas por 16h a 37 °C.

Após incubação, 5 colônias aleatórias de cada placa foram inoculadas em 5 mL de meio de cultura LB suplementado com ampicilina (50 mg/mL) e incubadas por 16 h a 37 °C e 150 rpm. No dia seguinte, foi feita a extração do plasmídeo das células transformadas utilizando o *Kit Fast-n-Easy Plasmid Mini-Prep* da *Cellco Biotec*. A partir das culturas das colônias, também foram feitas soluções estoques de 1 mL das células transformadas em glicerol 20% para serem armazenadas a -80 °C.

Com o propósito de confirmar a presença do gene no plasmídeo foi realizada uma digestão enzimática com *EcoRI* seguida de uma eletroforese em agarose 1%. O sítio de restrição desta enzima está presente no plasmídeo em ambas extremidades do inserto ligado.

3.3.3 Clonagem no vetor de expressão

Para expressar a proteína de interesse, o gene *lafB* foi clonado em vetor *pET28a* (*Novagen*).⁴⁸ O *pET28a* é uns dos plasmídeos de expressão mais amplamente utilizado para a expressão de proteínas recombinantes em *Escherichia coli*. Este vetor possui o promotor T7 e um operon *lac* que suprime a expressão não induzida por isopropil- β -D-1-tiogalactopiranósideo (IPTG). Entre os sítios de restrição no *pET28a* estão as sequências específicas para as enzimas de restrição NdeI e XhoI, que também foram inseridas nos primers do gene *lafB* e permitirão a ligação por complementariedade das extremidades. A sequência codificadora a ser expressa é clonada em fase leitura junto a uma sequência codificadora para uma cauda de poli-histidina (His) para facilitar a purificação da proteína recombinante.⁴⁹⁻⁵⁰

O gene propagado em $pGEM^{\circledast}$ -T Easy foi extraído do vetor de clonagem através de uma reação de digestão enzimática utilizando as enzimas NdeI (*Thermo Scientific*) e XhoI (*Thermo Scientific*), cujos sítios de restrição flanqueiam os extremos do gene. Informações acerca da reação são apresentadas na Tabela 5.

Reagentes	Volume	Condições
Buffer 2X	2 μL	37 ℃ 16h
DNA (vetor contendo o gene)	5 μL	
NdeI	1, 5 µL	
XhoI	1,5 µL	
Água	10 µL	

Tabela 5 - Detalhes da reação de digestão com as enzimas NdeI e XhoI

Fonte: Elaborada pela autora.

Figura 12 - Esquema e mapa do vetor de expressão *pET28a*. Fonte: NOVAGEN ⁴⁸

Após a reação, foi feita uma eletroforese de agarose 1%, com o objetivo de separar os produtos da digestão, mais especificamente, as bandas correspondentes ao vetor e ao gene. A

banda correspondente ao gene foi extraída do gel e o DNA foi purificado usando o *Kit Wizard SV Gel and PCR Clean Up System*.

Após a purificação do inserto, foi feita uma reação de ligação para ligar o gene (inserto) ao vetor *pET-28a* (Tabela 6)

Reagentes	Quantidade	Condições
DNA <i>lafB</i>	12 μL	
Vector (pET-28a)	4 μL	20.00
Tampão (10X)	2 µL	20 °C 16h
Ligase (U/ μ L)	2 µL	
Água	-	

Tabela 6 - Detalhes da reação de ligação do gene lafB ao vetor pET28a

Fonte: Elaborada pela autora.

Para a confirmação da ligação e armazenagem dos clones, células competentes de *E. coli* DH5α foram transformadas com a construção *pET28a- lafB*. A transformação foi feita seguindo protocolo descrito previamente, e após a inserção do gene mediante choque térmico, as células foram semeadas em placas de ágar LB suplementadas com Kanamicina (50 µg/mL) - antibiótico de seleção para *pET28a*. Foram selecionadas 10 colônias de cada placa semeada para serem sequenciadas, a fim de verificar se a construção do plasmídeo estava correta.

3.3.4 Expressão heteróloga

Para expressar heterologamente a proteína células quimiocompetentes da linhagem *E. coli Rosetta DE3* foram transformadas com a construção do plasmídeo *pET28a_lafB*. A transformação foi feita nas mesmas condições já descritas anteriormente mediante choque térmico e as células foram semeadas em placas de ágar LB suplementadas com antibióticos canamicina (50 μ g/mL) e cloranfenicol (34 μ g/mL), que são antibióticos de seleção para *pET28a* e para a linhagem *Rosetta DE3*, respetivamente.

Após a obtenção de células transformantes foi preparado um inóculo de 1 L de meio de cultura LB suplementado com canamicina (50 μ g/mL) e cloranfenicol (34 μ g/mL) e este foi incubado a 37 °C a 150 rpm até a DO₆₀₀ atingir entre 0,5 e 1. Quando a cultura atingiu os

valores de DO desejados, foram adicionados 200µL de 1M IPTG para cada litro de meio de cultura e a cultura foi incubada a 18 °C por 18h, a fim de induzir a expressão de proteínas.

Imediatamente após incubação, a cultura foi centrifugada a 3500 rpm por 45 min a 4 °C, e o *pellet* foi suspendido em 50 mL de Tampão A (Tabela 7). As células foram lisadas por ultrassonicação com uma configuração de 7 min com ciclos de 30 s e intervalos de 59 s. O produto da sonicação foi centrifugado por 45 min a 13500 rpm a fim de separar as partes solúveis e insolúveis, e então, o sobrenadante (solúvel) foi transferido a outro tubo e o *pellet* (insolúvel) foi suspendido em tampão. Com o objetivo de confirmar a expressão da proteína, foi realizada uma eletroforese em SDS-PAGE (do inglês, *sodium dodecyl sulfate polyacrylamide gel electrophoresis*). Para isso, foi adicionado Tampão de amostra 5X (100mM Tris/HCl pH 6,8, 4% SDS, 0,2% azul de bromofenol, 20% glicerol, 5mM DTT) a alíquotas do sobrenadante e do *pellet* e, em seguida, as amostras foram fervidas durante 5 min em banho-maria. Por fim, as mesmas foram carregadas nos poços de um gel de poliacrilamida 12%, e a eletroforese foi feita a 90V, 400 mA durante 1h aproximadamente.

Tampão	Componentes	
A. Tampão de lise	25mM HEPES, 400mM NaCl, 10% glicerol, 5 mM β - Mercaptoetanol, 0,05% Tween 20, pH 7,5	
B. Tampão de exclusão	25mM HEPES, 300mM NaCl, 10% glicerol, 5 mM β- Mercaptoetanol, pH 7,5	
C. Tampão fosfato	140mM NaCl, 7mM Na ₂ HPO ₄ , 2,5 mM NaH ₂ PO ₄ H ₂ O	
Fonte: Elaborada pela autora.		

Tabela 7 - Tampões usados na proteína LafB

3.3.5 Purificação usando cromatografia por afinidade

A cromatografia por afinidade é um método de purificação de moléculas que se baseia na interação específica e reversível de uma proteína a um ligante imobilizado à matriz ou resina. O ligante pode interagir diretamente à proteína ou a uma cauda ligada covalentemente a proteína. Esta interação permite imobilizar a proteína alvo na resina enquanto as proteínas contaminantes são eliminadas por lavagem. Posteriormente, é feita a eluição da proteína de interesse desfazendo a interação entre a proteína e o ligante mediante competitividade com outro ligante de maior afinidade (Figura 13). ⁵¹

Para a purificação por afinidade da LafB foi utilizada uma coluna de resina que contém níquel imobilizado. O sobrenadante foi carregado na coluna para que, a proteína que possui uma cauda de histidina se ligue ao níquel da resina. Esta primeira fração foi recuperada e armazenada. Subsequentemente, foram passadas 5 diluições de Imidazol preparado com tampão A, na seguinte ordem: 15 mL a 10 mM, 15 mL a 50mM, 10 mL a 100 mM, 10 mL a 250 mM, 10 mL a 500 mM. A passagem do imidazol pela coluna permitiu a eluição da proteína que se encontrava ligada ao níquel. Para observar os resultados da purificação foi realizada uma eletroforese SDS-PAGE de todas as fracções eluidas.

Figura 13 - Esquema de purificação da cromatografia por afinidade da proteína LafB de *E. faecium*. Fonte: Elaborada pela autora.

3.3.6 Purificação usando cromatografia por exclusão de tamanho (SEC)

Na segunda etapa de purificação, foi feita uma cromatografia de exclusão por tamanho (SEC, do inglês *size exclusion chromatography*) também conhecida como cromatografia em gel, filtração em gel e cromatografia de permeação em gel. A SEC é um método de purificação que tem como princípio a separação das moléculas por tamanhos, mediante a filtração através de um gel composto por pérolas esféricas porosas. As moléculas pequenas se difundem pelos poros e se retardam devido ao seu tamanho, enquanto as moléculas maiores não entram nos poros e se eluem previamente da coluna. Assim, as moléculas são eluidas em ordem decrescente da sua massa molecular (Figura 14). ⁵²⁻⁵³

Figura 14 - Esquema da coluna de cromatografía de exclusão por tamanho (SEC). Fonte: Adaptada de CREATIVE PROTEOMICS PRONALYSE.⁵³

A proteína LafB 2.7 foi purificada em uma coluna *HiLoad 16/600 Superdex 200 prep. grade* previamente equilibrada com tampão B (25mM HEPES, 300mM NaCl, 10% glicerol, 5 mM β -Mercaptoetanol, pH 7,5). No *AKTA purifier (GE Healthcare,* USA) foi injetado um volume de 2 mL da proteína purificada por cromatografia por afinidade, e a SEC foi realizada sob fluxo de 1 mL/min, monitorando a presença da proteína LafB com absorbância de 280_{nm} e coletando frações de 1 mL. As frações coletadas pelo equipamento foram analisadas mediante eletroforese SDS-PAGE, usando géis de poliacrilamida a 12%.

3.3.7 Cromatografia de exclusão de tamanho acoplada ao espalhamento de luz multiangulares (SEC-MALS)

A determinação da massa molecular de uma proteína e os estados oligoméricos nos quais ela é encontrada é essencial para sua caracterização. A cromatografia de exclusão por tamanho acoplada ao espalhamento da luz multiangular, conhecida como SEC-MALS é considerada um método absoluto para a determinação da massa molecular e o estado oligomérico da proteína quando combinada com um detetor de índice de refração diferencial (dRI). A SEC é usada unicamente com o intuito de separar as diversas espécies na solução do analito, para que entrem nas celas dos detetores individualmente. Já o detetor MALS é encargado de medir a proporção de luz dispersada em múltiplos ângulos por um analito em relação com o raio laser incidente determinando assim a massa molecular da molécula independentemente do tempo de eluição (Figura 15). ⁵⁴⁻⁵⁵

Figura 15 - Esquema da cromatografia de exclusão de tamanho acoplada ao espalhamento de luz multiangulares. Fonte: SOME ⁵⁵

A SEC foi realizada usando uma coluna Superdex 200 10/300 GL (*GE Healthcare*, USA) equilibrada com 20 mM Tris (pH 7.8), 300 mM NaCl. O MALS foi feito usando um equipamento de dispersão de luz *Wyatt miniDAWM-TREOS* (*Wyatt Technology*, USA) a um comprimento de onda de 659 nm e um detector de índice de refração *Wyatt OptilabT-rEX* (*Wyatt Technology*, USA) a um comprimento de onda de 657,5 nm.

3.3.8 Dicroísmo Circular (CD)

A espectroscopia de dicroísmo circular (CD, do inglês *Circular Dichroism*) é utilizada para caracterizar e quantificar o conteúdo estrutural secundário em termos de estrutura α helicoidal, fita- β e regiões desestruturadas. Um espectropolarímetro de CD consta de uma fonte de luz polarizada circularmente (CPL, do inglês *circularly polarized light*) monocromática à esquerda e à direita e um detetor para registrar a diferença de absorbância das duas polarizações da luz (Figura 16), no entanto, embora os espectropolarímetros de CD meçam a absorbância diferencial, eles produzem um espectro de CD em unidades de elipticidade (θ). ⁵⁶⁻⁵⁷

Figura 16 - Esquema do Dicroísmo Circular. Fonte: Adaptada de PIGNATARO *et al.*⁵⁸

O espectro do CD é derivado da diferença na absorção da CPL esquerda e direita que emerge da amostra opticamente ativa conhecida também como cromóforo.⁵⁸ Um cromóforo é considerado ativo se é quiral, está unido covalentemente a um centro quiral, ou se está situado em um entorno quiral devido à estrutura tridimensional da molécula. Essa última situação é correspondente ao grupo da espinha dorsal peptídica, que é o cromóforo de maior interesse na proteína. ⁵⁹ Quando o espectro da luz (que é constante) atravessa um cromóforo ativo aparece uma flutuação de intensidade, correspondente às diferentes absorções de CPL esquerda e direita. Como o espectro CD representa a soma dos sinais de todos os cromóforos peptídicos na mostra, é possível, mediante esses parâmetros, determinar a proporção de estruturas α -helicoidais e fitas- β ou de regiões desestruturadas pois elas geram um perfil característico de transições (Figura 17). ⁶⁰

Figura 17 - Espectro de CD no UV –distante. Espectro CD de proteína de hélice α (vermelho). Espectro CD de proteína de fita β (azul), Espectro CD de proteína desestruturada (verde). Fonte: Adaptada de GREENFIELD; FASMAN.⁹⁹

Com o objetivo de estudar o enovelamento da proteína LafB, uma amostra de proteína foi submetida a um processo de *desalting* usando uma coluna *HiTrap*® 5 *mL* (*Sigma-Aldrich*, USA) e o Tampão C (Tabela 7), pois tampões com alta concentração de sais atrapalham a especificidade do teste.⁵⁷ Em seguida a amostra foi diluída a uma concentração de 0,25 mg/mL e foi analisada usando o espectrômetro *J-815 CD* (*Jasco*, Brasil) do Grupo de Biofísica e Biologia Estrutural - Prof. Sérgio Mascarenhas, do Instituto de Física de São Carlos, monitorando no intervalo de comprimento de onda 200 – 280 nm com uma resolução de 0,5 nm a 15 °C.

Da mesma forma, é possível determinar, através do CD, a temperatura na qual exatamente a metade das moléculas na solução se encontraram em estado desenovelado (Temperatura de melting (T_m)).

Com o propósito de analisar o efeito da temperatura no enovelamento e a determinação da T_m da proteína LafB, uma amostra de proteína em Tampão C (Tabela 7) foi diluída a uma concentração de 0,25 mg/mL e submetida ao experimento. Assim, foi aplicado a um gradiente de temperatura de 16 °C a 54 °C com incrementos consecutivos de 2 °C e com equilíbrio de 1 min prévio a cada medição. A amostra foi monitorada a 222 nm.

3.3.9 Ensaios de cristalização

Até o momento, a estrutura da proteína LafB de *E. faecium* não foi resolvida completamente e, por isso, foi de nosso interesse realizar ensaios de cristalização, a fim de obter cristais e resolver sua estrutura através da técnica de difração de raio-X. Na tentativa de alcançar esse objetivo, foi empregada uma das técnicas mais utilizadas para cristalização de macromoléculas: a técnica de difusão de vapor por gota sentada automatizada. Por meio desta técnica, uma gota de proteína purificada e concentrada a 2, 3, 5 e 12 mg/mL em tampão B foi injetada pelo robô *Crystal Gryphon (Art Robbins Instruments*, USA) conforme mostrado na figura 18.⁶¹ O experimento foi realizado em diversas condições de cristalização oferecidas pelos kits comerciais: *Salt Rx (Hampton Research), Crystal screen (Hampton Research), The Classic Suite (Qiagen), JCSG (Molecular dimensions) e Morpheus (Molecular dimensions).* Após montagem do experimento, as placas foram incubadas a 18 °C.

Figura 18 - Esquema da técnica de gota sentada utilizada com a proteína LafB de *E. faecium* nos ensaios de cristalização. Fonte: Adaptada de MARK *et al.*⁶¹

3.4 Análise in-silico da glicosiltransferase LafB

3.4.1 Predição da estrutura da proteína com AlphaFold

Com a finalidade de entender os efeitos da mutação na estrutura da LafB, uma predição da sua estrutura foi gerada através do programa *AlphaFold* em colaboração com o Dr. Humberto D'Muniz Pereira do Grupo de Biofísica e Biologia Estrutural do Instituto de Física de São Carlos - USP. O programa *AlphaFold* utiliza inteligência artificial, combinando métodos de predição *in-silico* e de informações estruturais disponíveis no banco de dados

PDB, sendo capaz de prever, com grande precisão, as coordenadas 3D dos átomos de uma proteína específica, usando como *inputs* a sequência de aminoácidos da proteína de interesse, assim como sequências alinhadas com proteínas homólogas.⁶²

A sequência da LafB, depositada no *GenBank* com o código WP_002287604.1, ⁶³ foi utilizada na predição usando a ferramenta *ColabFold* que é uma extensão online do software *AlphaFold2*. ⁶⁴ Os parâmetros de entrada selecionados para a predição foram: *MMseqs2* (*Uniref* + Ambiental) *msa_mode*; *unpaired* + *paired pair_mode automatic model_type*; e 3 *run_recycles*, obtendo 5 modelos finais. A confiabilidade dos modelos foi avaliada pelos parâmetros IDDT (do inglês, *Local Distance Difference Test*), ⁶⁵ que mede a porcentagem de distâncias interatômicas corretamente preditas, e PAE (do inglês, *Predicted Aligned Error*) que mede a confiança nas posições relativas de pares de resíduos ao longo da estrutura, além disso se usou o *software online Verify3D* (*https://saves.mbi.ucla.edu/*) que mede a compatibilidade do modelo 3D da proteína com sua sequência pontuando cada resíduo de maneira que valida o entorno de cada um deles, a somatória de todas as pontuações dos resíduos gera uma pontuação do perfil 3D, para os modelos de proteínas que se sabe que são corretos, a pontuação do perfil 3D é alta. ⁶⁶⁻⁶⁷ As figuras da estrutura foram geradas com o sistema de visualização molecular *PyMol v2.05 (Schrödinger, LLC)*. ⁶⁸

Com o intuito de achar domínios de proteína conhecidos na estrutura da LafB, também foi feita uma busca de motivos utilizando a ferramenta online *MOTIF Search* que utiliza as bases de dados PROSITE, NCBI-CDD e Pfam.⁶⁹

3.4.2 Docking molecular

Embora não existam muitas informações acerca do substrato da proteína LafB em *E*. *faecium*, sabe-se que há proteínas em outras bactérias gram-positivas que também cumprem a função de glicosiltransferase para a síntese de LTA. Estas são encarregadas de transferir o segundo açúcar na formação da âncora do LTA. Algumas das proteínas são: LafB de *Listeria monocytogenes*, YpfP de *S. aureus* e BgsA de *E. faecalis*, entre outras mostradas na Figura 19. Todas elas apresentam como substrato uma molécula de difosfato de uridina (UDP) ligada a uma molécula de glicose ou galactose, que será adicionada ao monoglucosildiacilglicerol (Glc-DAG).^{22,70}

Considerando essas informações utilizando o *software AutoGridFR*⁷¹ fizemos uma busca da região com maior probabilidade de ser considerada o sítio ativo na glicosiltransferase LafB, fizemos um *docking* molecular utilizando o mesmo *software*, e acoplamos nela a estrutura de uma molécula de difosfato de uridina galactose (UDP-Gal). As

interações ligante-proteína foram determinadas com o software *Discovery Studio Visualizer* V21.1.0.⁷²

Figura 19 - Representação esquemática de enzimas envolvidas na síntese de precursores de glicolipídios, glicolipídios e/ou cadeia principal de LTA em diferentes bactérias gram-positivas. As enzimas marcadas em um quadrado vermelho são as proteínas que cumprem a mesma função que a LafB em *E. faecium*.

Fonte: Adaptada de REICHMANN; GRÜNDLING.⁷⁰

4 RESULTADOS E DISCUSSAO

4.1 Caracterização fenotípica

4.1.1 Determinação da concentração mínima inibitória (CIM)

As amostras incialmente armazenadas a -80 °C nas dependências do Laboratório de Epidemiologia e Microbiologia Moleculares (LEMiMo) do Instituto de Física de São Carlos da Universidade de São Paulo, tiveram as sensibilidades esperadas para daptomicina das linhagens de *E. faecium* do HBSJRP 18_ 2.1 e HBSJRP 18_ 2.7, atingindo CIMs de 0,125 mg/mL e 2 mg/mL, respetivamente.

A fim de determinar a sensibilidade ou resistência das bactérias aos antibióticos, pontos de corte da CIM de um antibiótico são estabelecidos por instituições internacionais como o *Instituto de Padrões Clínicos e Laboratoriais (CLSI)*, e o *Comitê Europeu de Testes de Susceptibilidade Antimicrobiana (EUCAST)* e nacionais como o *Comitê Brasileiro de Testes de Susceptibilidade Antimicrobiana (BrCAST)*. No entanto, embora a daptomicina seja usada cada vez mais no tratamento de infecções enterocócicas de corrente sanguínea e endocardites, o EUCAST reconhece que ainda existem incertezas entre os testes de sensibilidade de daptomicina para E. faecium e o desfecho clínico, portanto ainda nem o EUCAST e nem o BrCAST têm estabelecido pontos de corte clínicos para esse antibiótico e é considerado como "IE= evidência insuficiente" nos documentos oficiais. Sob outra perspectiva, o CLSI estabelece ≤ 4 mg/mL como ponto de corte "sensível dependente da dose" para DAP em *E. faecium.* ^{33,73-74}

Baseados na pesquisa de *Streit et al.*,⁷⁵⁻⁷⁶ que analisaram mais de 150 isolados clínicos de *E. faecium* provenientes de Europa, América do Norte e América do Sul, e acharam a CIM para daptomicina de 2 mg/mL como a mais comum e a CIM < 0,12 como significativamente menos comum, determinamos que a linhagem HBSJRP 18_2.7 encaixa na descrição de "sensibilidade normal" (CIM = 2 mg/L)e devido à diminuição de sensibilidade em aproximadamente 16 vezes, a linhagem HBSJRP 18_2.1 foi considerada como "supersensível" (CIM = 0,12 mg/L). A curva dose-resposta mostrou o comportamento esperado onde se observa a inibição do crescimento bacteriano em quanto as concentrações de daptomicina aumentam (Figura 20).

Figura 20 - Curva dose-resposta de *E. faecium* e daptomicina. Fonte: Elaborada pela autora

4.1.2 Curva de crescimento

Os tempos de duplicação achados foram 281 ± 11 e 360 ± 30 min para as linhagens HBSJRP 18_2.7 e HBSJRP 18_2.1, respectivamente. A diferença entre os tempos de duplicação da linhagem com sensibilidade normal (2.7) e supersensível (2.1) foi estatisticamente significativa (p= 0.03), é possível observar na curva como a linhagem 2.7, mesmo iniciando com uma DO levemente menor, ao possuir um tempo de duplicação menor, atinge a curva da linhagem supersensível na fase exponencial (Figura 21).

Figura 21 - Curva de crescimento das linhagens de *E. faecium* HBSJRP 18_2.7 (azul) e HBSJRP 2.1 (verde). Fonte: Elaborada pela autora

A linhagem mutada e supersensível (2.1) obteve também um menor crescimento em comparação à linhagem que possui uma sensibilidade normal (2.7) à daptomicina. Em vista de que a glicoproteína LafB cumpre um papel iniciador na formação do LTA da parede bacteriana 70 é provável que a mutação no *lafB* seja responsável por afetar o crescimento bacteriano diminuindo-o significativamente.

4.1.3 Formação de biofilme

Apesar de haver uma tendência da linhagem HBSJRP 18_2.7 formar mais biofilme que HBSJRP 18_2.1, a Análise de Variância demostrou que não há diferença significativa entre os biofilmes formados por estas duas linhagens (p=0.08) (Figura 22). Nesse sentido, em vista de que a diferença entre as linhagens 2.1 e 2.7 é uma mutação no gene *lafB* e que não houve diferença significativa entre as médias dos experimentos, podemos afirmar que a mutação não alterou a capacidade de formação de biofilme em relação a linhagem normal 2.7.

Em comparação à redução significativa observada na capacidade de formação de

Figura 22 - Formação de biofilme das linhagens de *E. faecium* HBSJRP 18_2.1 e HBSJRP 18_2.7. Fonte: Elaborada pela autora.

biofilme em bactérias de *E. faecalis* que não expressavam a proteína BgsA (funcionalmente homóloga a LafB em *E. faecalis*) a linhagem HBSJRP 18_2.1 apresentou uma redução não significativa na capacidade de formação de biofilme, talvez, devido a presença de apenas uma mutação na sequência de aminoácidos e não de uma deleção total do gene *lafB*. Consideramos

interessante no futuro avaliar a capacidade de formação de biofilme em ausência da expressão da proteína LafB de *E. faecium*.

4.1.4 Microarranjos de fenótipo microbiano com o sistema OmniLog®

Com o intuito de pesquisar mais sobre as diferenças no perfil fenotípico e metabólico das linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7, foi realizado um *screening* que testa diversas condições de crescimento bacteriano (Figura 23).

Figura 23 - Curvas de crescimento resultantes após 48h de incubação dos PM em *E. faecium* HBSJRP 18_2.7 (em verde, linhagem de referência) e HBSJRP 18_2.1 (em vermelho, linhagem mutada). Em amarelo mostra-se a convergência das duas curvas. Fonte: Elaborada pela autora

Na placa PM 10 (Figura 24), que avalia o crescimento das linhagens frente a variações de pH se observou na linha A da placa que as duas linhagens crescem melhor conforme o pH do meio aumenta sem diferença significativa entre elas. Além disso, nos poços subsequentes com meio suplementado com os aminoácidos nos pH 4.5 e 9.5, observa-se que as duas linhagens apresentaram ótimo crescimento a pH 9.5 e, pelo contrário, nos poços de pH 4.5 as linhagens, em geral, não cresceram.

Figura 24 - Curvas metabólicas das linhagens de *E. faecium* HBSJRP 18 – 2.1 (Vermelho) e HBSJRP 18 – 2.7 (Verde). A. Umbeliferona, B. Blasticidin S. A área de interseção das curvas está representada em amarelo.
Fonte: Elaborada pela autora.

Esses resultados são concordantes com a já relatada resistência de *Enterococcus spp*. a ambientes altamente alcalinos que normalmente inibiria o crescimento de outras bactérias.^{25,77-78} E além disso, os resultados reforçam a confiabilidade do experimento.

Nas placas de PM11 e PM12 que possuem antibióticos principalmente das famílias dos aminoglicosideos, tetraciclinas, penicilina, polimixinas, quinolonas e cefalosporinas (Anexo A) se observou o notório crescimento das duas linhagens, e não foi achada diferença significativa entre elas. O fato das linhagens crescerem apesar da presença desses antibióticos não é raro, pois esta espécie possui muita resistência intríseca e este isolado é de origem clínica, com vários genes de resistência adquiridos.³⁸ Adicionalmente, os resultados mostram que a mutação em *lafB* não causou mudanças significativas na resistência da bactéria a esses compostos.

Por outro lado, o Software *OmniLog*[®] *PM* mostrou diferença metabólica significativa entre as linhagens, em presença de umbeliferona e blasticidin S, sendo que a linhagem HBSJRP 18_2.1 mutada cresceu melhor na presença do primeiros substrato. Já HBSJRP 18_2.1 cresceu significativamente menos na presença de blasticidin S. A umbeliferona ou também conhecida como 7-hydroxycoumarina é um composto aromático encontrado em várias espécies vegetais que possui atividade antimicrobiana e antifúngica.⁷⁹⁻⁸⁰ O mecanismo

de ação de este antimicrobiano ainda não foi dilucidado, mas, estudos com microscopia de transmissão mostraram que o composto age destruindo a membrana celular.⁸¹ Nossos resultados mostram que a linhagem mutada é significativamente mais resistente a este composto antimicrobiano e como a mutação acontece em uma proteína envolvida na formação do LTA da parede celular, consideramos razoável que as mudanças que acontecem na envoltura celular da bactéria tenham provocado esse ganho significativo de resistência em comparação à linhagem de referência HBSJRP 18_2.7.

Figura 25 - Curvas metabólicas das linhagens de *E. faecium* HBSJRP 18 – 2.1 (Vermelho) e HBSJRP 18 – 2.7 (Verde). A. Umbeliferona, B. Blasticidin S. A área de interseção das curvas está representada em amarelo. Fonte: Elaborada pela autora.

Em comparação à linhagem HBSJRP 18_2.7, a linhagem mutada apresentou um ganho significativo de sensibilidade a blasticidin S, que é um antibiótico produzido por *Streptomyces griseochromogenes* capaz de inibir o crescimento de bactérias e fungos utilizando o mecanismo de inibição da síntese proteica dobrando o extremo 3' do tRNA do sítio P ao sítio A da unidade ribossômica grande.⁸² Blasticidin S possui uma carga positiva geral a pH neutro, o que poderia ser utilizado (como na DAP), como mecanismo para se aproximar a membrana bacteriana. No entanto, para exercer sua ação, o antibiótico deve atravessar a membrana para agir no tRNA, usando transportadores de membrana específicos como NorA em *S. aureus*. Embora a bomba de efluxo NorA tenha sido considerada parte dos mecanismos de resistência a fármacos como levofloxacina, ciprofloxacina e norfloxacina, um estudo demostrou que a blasticidin S aproveita essa bomba para atravessar a membrana e atingir seu alvo.⁸³ Em *E. faecalis* há uma bomba de efluxo chamada EmeA, homóloga a NorA, ⁸⁴ e é provável que alterações no envoltório celular possa alterar sua atividade. No entanto, mais pesquisas são necessárias para entender como a mutação na LafB poderia estar envolvida no aumento de sensibilidade a blasticidin S em *E. faecium* HBSJRP 18_2.1. A

análise com o OmniLog[®] é uma triagem geral dos fenótipos e todas as implicações das diferenças metabólicas significativas achadas entre as linhagens HBSJRP 18_2.1 e HBSJRP 18_2.7 precisam ainda ser estudadas para entender melhor as mudanças metabólicas observadas.

4.2 Avaliação da virulência in-vivo em modelo de Galleria mellonella

Visto que o modelo de morte de larvas de *G. mellonella* é usualmente usado para avaliar a virulência de *E. faecalis*⁸⁵⁻⁸⁷ e *E. faecium.*⁸⁸⁻⁸⁹ Experimentos foram feitos seguindo o mesmo modelo com as linhagens de *E. faecium* HBSJRP 18_2.1 e HBSJRP 18_2.7 para investigar se a mutação em *lafB* causou alguma mudança na virulência de *E. faecium*.

Os resultados mostraram que a linhagem mutada HBSJRP 18_2.1 sofreu uma perda significativa de virulência em comparação à linhagem HBSJRP 18_2.7 (Figura 26).

Figura 26 - Gráficos de Kaplan-Meier das larvas que receberam injeções de *E. faecium* HBSJRP 18_2.1 (mutada) e HBSJRP 18_2.7 (normal). Os experimentos foram realizados em triplicatas e os resultados são representativos de um experimento típico. Comparada com a linhagem normal HBSJRP 18_2.7, a linhagem com *lafB* mutado HBSJRP 18_2.1 demonstrou virulência atenuada com uma diminuição estatisticamente significativa (p < 0.0001). Fonte: Elaborada pela autora.</p>

Nossos resultados coincidem com o reportado por *Theilacker et al.*²¹ em um modelo de infecção de *E. faecalis* em camundongos, onde se observou uma diminuição significativa da virulência de uma linhagem de *E. faecalis* que não produzia a proteína (BgsA) homóloga à LafB de *E. faecium*, os resultados desse estudo²¹ sugerem que essa perda parece ser consequência do esgotamento do

DGlcDAG (molécula formada pelas proteínas BgsA e LafB) ou a alteração no comprimento do LTA, que ocorre na parede celular em ausência da glicosiltransferase BgsA.

4.3 Purificação da glicosiltransferase LafB para testes biofísicos

4.3.1 Purificação da glicosiltransferase LafB usando cromatografia por afinidade e cromatografia por exclusão de tamanho

As proteínas LafB nativa e mutada foram expressadas em níveis esperados, apesar de que, ao contrário da proteína nativa, a proteína mutada se apresentou em maior quantidade na fração insolúvel. Ainda assim, tentativas de purificação foram realizadas com a fração solúvel de ambas proteínas.

A proteína nativa foi purificada com sucesso nas eluições de 100 e 500 mM de imidazol (Figura 27A). Por outro lado, notou-se que a escassa fração solúvel da proteína mutada não interage suficientemente com o níquel imobilizado na resina e em consequência não foi eluida em nenhuma das concentrações de imidazol (Figura 27B). Foram realizadas tentativas de purificação utilizando cobalto imobilizado devido ao fato deste apresentar uma interação mais específica com as proteínas que possuem cauda de poli-histidinas e uma ligação menor a proteínas não específicas em comparação à resina de Ni²⁺, o que resulta em maior pureza do produto de elução. ⁹⁰⁻⁹¹ Porém, ainda assim, a interação da proteína mutada com a coluna não mudou.

Α

В

Figura 27 - Expressão e purificação da proteína LafB. (A) SDS-PAGE 12% das frações coletadas durante a expressão e purificação da proteína LafB nativa (B) SDS-PAGE 12% das frações coletadas durante a expressão e purificação da proteína LafB mutada. M: marcador de masa molecular, P: fração insolúvel, S: fração solúvel, NL: proteínas que não interagem com o Níquel na resina, E1: eluição com Imidazol 10mM, E2: eluição com Imidazol 50mM, E3: eluição com Imidazol 100mM, E4: eluição com Imidazol 250mM, E5: eluição com Imidazol 500mM. Fonte: Elaborada pela autora.

A fim de separar as proteínas inespecíficas, decorrentes da purificação por afinidade, da proteína LafB de interesse, o purificado da etapa anterior foi posteriormente purificado mediante SEC. O cromatograma mostrou dois picos, sendo o maior deles correspondente à proteína LafB. As alíquotas coletadas correspondentes ao pico da LafB foram combinadas e concentradas para os testes biofísicos (Figura 28).

Figura 28 - Cromatograma da purificação por exclusão de tamanho (SEC) da proteína LafB. Fonte: Elaborada pela autora

4.3.2 Cromatografia de exclusão de tamanho acoplada ao espalhamento de luz multiangulares (SEC-MALS)

A proteína LafB em tampão B foi submetida ao SEC-MALS, e se apresentou totalmente monomérica com uma massa molecular calculada de 42,6 kDa (Figura 29), considerando a cauda de seis poli-histidinas. Desconsiderando a massa teórica da poli-histidinas, a massa calculada da LafB é de 41,76 kDa.

Figura 29 - Cromatogramas do SEC-MALS da proteína LafB em tampão B (25mM HEPES, 300mM NaCl, 10% glicerol, 5 mM β-Mercaptoetanol, pH 7,5) e massa calculada da proteína. Fonte: Elaborada pela autora

Embora os estudos de caracterização de proteínas funcionalmente semelhantes a LafB em outras bactérias sejam escassos, existem estudos de glicosiltransferases da família GT-B de estrutura resolvida. Esta família está relacionada estruturalmente com a predição da LafB de *E. faecium* (como será apresentado na seção 4.4.1). Da lista de 8 proteínas relatadas por *Albesa-Jové, et al* (2014), ⁹² todas, exceto a polimerase TagF de ácido teicóico de *Staphylococcus epidermidis* (responsável por transferir fosfatidilglicerol), possuem massas moleculares entre 36 – 44 kDa, que são valores próximo ao peso calculado por SEC-MALS da LafB (41,76 kDa). ⁹²

Glicosiltransferase GT-B	PM (kDa)	Código PDB
WaaA	40,7	2XCI
WaaC	36,2	2GT1
WaaF	39,0	1PSW
WaaG	42,3	2IW1
MurG	37,8	1F0K
GumK	44,4	2Q6V
PimA	41,2	2GEK

Tabela 8 - Pesos moleculares de algumas proteínas pertencentes à família GT-B das glicosiltransferases.

Fonte: ALBESA-JOVÉ et al.92

Das proteínas listadas da Tabela 8, a proteína LafB aqui estudada, compartilha 21.24% de identidade e 80% de cobertura com a proteína PimA de *Mycobacterium tuberculosis* envolvida na biossíntese de precursores dos lipomananos e lipoarabinomananos na parede celular.⁹³ Também possui homologia com a proteína WaaG de *Escherichia coli* (28.08% de identidade e 37% de cobertura), envolvida na síntese de lipopolisacarídeos em bactérias gramnegativas.⁹⁴ Tanto a Pim A quanto a WaaG são monoméricas,⁹²⁻⁹⁴ semelhante à proteína LafB de *E. faecium*.

Embora, evolutivamente, os monômeros e homo oligômeros de ordem superior das glicosiltransferases sejam igualmente antigos, em glicosiltransferases se tem relatado algumas vantagens da homo oligomerização. Alguma dessas vantagens envolvem proporcionar sítios de regulação alostérica, gerar novos sítios de ligação nas interfaces dos dímeros para aumentar especificidade, aumentar a afinidade da união multivalente e proporcionar a regulação através da transição entre formar estruturas ativas e não ativas da proteína que, por sua vez, dependem do estado oligomérico da mesma.⁹⁵ Esta última característica, em conjunto com antecedentes de que em algumas famílias de glicosiltransferases a oligomerização poderia ser necessária para a estabilidade e termoestabilidade da proteína, ⁹⁶⁻⁹⁷ sugere que, embora nossos resultados mostrem que a LafB de *E. faecium* se apresenta em estado monomérico *in-vitro*, são necessários mais estudos para confirmar se ela é ativa e estável nesse estado oligomérico.

4.3.3 Dicroísmo circular (CD)

A proteína LafB exibiu um espectro CD que mostra mínimos negativos em 210 e 222 nm, apresentando o mínimo mais profundo no espectro de 222 nm (Figura 30). Essas características da curva são próprias de proteínas bem enoveladas que possuem hélices- α como elementos da sua estrutura secundária.⁹⁸⁻⁹⁹

Após a avaliação do espectro CD, a proteína foi, em seguida, testada frente a um gradiente de temperatura de desnaturação. A Figura 31 mostra quatro temperaturas representativas (24, 34, 38 e 54 °C) que permitem analisar como o espectro CD da proteína altera conforme esta se desnatura, em função do aumento de temperatura.

Figura 30 - Espectro CD da proteína LafB nativa em Tampão C (140mM NaCl, 7mM Na2HPO4, 2,5 mM NaH2PO4H2O) medido a uma temperatura de 16°C. Fonte: Elaborada pela autora.

Figura 31 - Espectros CD da proteína LafB nativa em Tampão C (140mM NaCl, 7mM Na2HPO4, 2,5 mM NaH2PO4H2O) sob quatro temperaturas de 24°C, 34°C, 38°C e 54°C. Fonte: Elaborada pela autora

Para estudar melhor a termoestabilidade da proteína, esta foi exposta a um gradiente de temperatura desnaturante e monitorada a 222 nm. A temperatura de Melting (Tm) determinada foi de 37,17 °C (Figura 32) demostrando uma baixa estabilidade da proteína sob essas condições de tampão. A seleção do tampão A de purificação da LafB foi baseada no tampão utilizado para purificar uma proteína da família 4 das glicosiltransferases, a mesma família relatada na anotação no GenBank (WP_002287604.1) do gene *lafB* de *E.facium*.¹⁰⁰

Figura 32 - Curva de desnaturação térmica da proteína LafB em tampão C (140 mM NaCl, 7 mM Na2HPO4, 2,5 mM NaH2PO4H2O). T_m=Temperatura de Melting. Fonte: Elaborada pela autora No entanto, embora a purificação da proteína LafB tenha sido bem sucedida em termos de solubilidade da proteína em tampão A, acreditamos que a T_m baixa pode ter sido influenciada pela dessalinização da amostra, deixando-a mais instável. Experimentos como DLS (*Dynamic Light Scattering*) e DSF (*Differential Scanning Fluorimetry*), que permitem determinar a T_m da proteína em diferentes condições, serão feitos em breve para uma melhor avaliação deste parâmetro.

4.3.4 Ensaios de cristalização

Em vista o fato de que a proteína LafB ainda não possui estrutura resolvida, ensaios de cristalização foram feitos a fim de permitir a elucidação da estrutura da LafB. No entanto, até o momento, não foi possível obter cristais de proteína.

Os ensaios que foram realizados com a proteína em concentrações de 1 mg/mL e 3 mg/mL não apresentaram crescimento de cristais em nenhuma das condições durante 15 dias, e os ensaios feitos com concentrações de 5, 7 e 12 mg/mL apresentaram uma rápida precipitação da proteína. Novas condições de expressão e purificação serão testadas no futuro buscando melhorar a estabilidade a proteína e assim permitir novos ensaios para a obtenção de cristais sob diversas condições de cristalização.
4.4 Análise in-silico da glicosiltransferase LafB

4.4.1 Predição da estrutura da proteína com AlphaFold

Em vista do recente lançamento do *software AlphaFold2*, que utiliza inteligência artificial para predizer a estrutura de uma proteína totalmente *in-silico*, foi feita uma predição da LafB de *E. faecium*.

A predição das estruturas LafB nativa (2.7) e mutada (2.1) foi realizada utilizando uma base de dados de 1600 sequências. A cobertura de identidade das sequências foi alta, assim como a pontuação do parâmetro de qualidade IDDT obtida por cada molécula apresentando valor >90 em uma escala de 1 a 100, considerado razoável para investigar cadeias laterais e detalhes do sítio ativo. Foram gerados também 5 modelos de predição de cada proteína e todos os modelos possuem valores baixos (<10) do parâmetro de qualidade PAE, indicando uma alta confiança nas posições relativas dos resíduos nos modelos gerados.

Uma busca de motivos na proteína utilizando MOTIF Search⁶⁹ mostrou que a enzima glicosiltransferase LafB de *E. faecium* possui três motivos conservados. O primeiro abriga o N-terminal até aproximadamente o resíduo 150 e pertence à família 4 das glicosiltransferases, o segundo motivo abriga os resíduos 162- 282 e pertence à família 1 das glicosiltransferases e o terceiro motivo abriga desde o resíduo 316 e contém o C-terminal.

Na estrutura da LafB é possível observar que a proteína está conformada por um total de 12 α -hélices e 11 fitas- β . Além disso, a cadeia polipeptídica inicia formando uma topologia do tipo $\beta\alpha\beta$ com dobramento similar ao do tipo Rossmann e continua para a região que contém o segundo motivo encontrado, formando também uma topologia do tipo $\beta\alpha\beta$ com dobramento similar ao do tipo Rossmann. Por fim, a cadeia polipeptídica cruza externamente a estrutura da proteína em orientação ao N-terminal formando uma única α -hélice que contém o C-terminal.

As últimas revisões, reportam que das dezenas de famílias de glicosiltransferases que possuem estruturas tridimensionais relatadas, se descrevem apenas três tipos de dobramentos estruturais: GT-A, GT-B, GT-C (Figura 33)¹⁰¹⁻¹⁰² A superfamília GT-B é considerada notavelmente diversa e inclui a maioria das enzimas procarióticas com função de glicosilação de metabólitos secundários e envolvida nas vias metabólicas procarióticas primárias como a biossíntese da parede celular. ¹⁰³ A estrutura predita da glicosiltransferase LafB de *E. faecium* compartilha características estruturais como a topologia e similaridade de dobramento das regiões com as glicosiltransferases do tipo GT-B, que se caracterizam por possuir dois domínios similares ao do tipo Rossmann separados por uma cavidade profunda onde se

Figura 33 - Proteínas representativas dos três tipos de dobramentos estruturais reportados nas glicosiltransferases. (A) Enovelamentos do tipo GT-A, GT-B e GT-C. (B) Estrutura da proteína MshA, representativa do enovelamento do tipo GT-B, onde se observam seus dois domínios e entre eles o sítio catalítico (UDP) característica própria da família GT-B. Fonte: Adaptada de ALBESA-JOVÉ; GUÉRIN.¹⁰¹

encontra o centro catalítico. ^{92,101-104} Em geral, as proteínas da família GT-B apresentam uma alta conservação estrutural, particularmente no domínio C-terminal, que se liga aos doadores de açúcar nucleotídeos enquanto o domínio N-terminal está envolvido no reconhecimento do substrato aceptor e neste as variações estruturais são mais pronunciadas entre os membros da família. ¹⁰⁵

Além das características estruturais, algumas pesquisas tem relatado também estudos sobre as mudanças conformacionais que as proteínas GT-B podem sofrer.⁹² Uma das melhores documentadas é uma pesquisa da glicosiltransferase PimA (Figura 34), uma proteína associada à membrana periférica das micobactérias, que possui um enovelamento semelhante ao predito da LafB de *E. faecium* (Figura 35).¹⁰⁶ Os estudos relatam um mecanismo de abertura e fechamento que estabiliza a enzima e que ocorre quando a molécula de nucleotídeo-açúcar (GDP-Man), transferida pela PimA, é ligada no seu sítio ativo. Essa estabilização é refletida em um aumento de ~3,5 °C da T_m (Temperatura de Melting), segundo o observado por calorimetria diferencial de varredura e CD.^{92,107} A hipótese de que LafB de *E. faecium* pertença a família GT-B poderia explicar a baixa T_m determinada mediante dicroísmo

circular. Em futuros experimentos, além de uma otimização dos tampões para aumentar a estabilidade da proteína *in-vitro*, seria interessante determinar a T_m da proteína ligada ao substrato.

Considerando as informações anteriormente relatadas, acreditamos que a estrutura predita da glicosiltransferase LafB de *E. faecium* poderia pertencer à família GT-B, e que possui também dois domínios representados na Figura 35. O primeiro, em cor ciano, que contém o N-terminal e o segundo domínio, na cor verde, contendo o C-terminal e a mutação de interesse Trp204Arg.

Figura 34 - Estrutura da proteína PimA (4N9W) que apresenta os domínios N-terminal (roxo) e C-terminal (laranja), e seu ligante GDP-manose (preto). Fonte: GIGANTI et al.¹⁰⁶

Figura 35 - Estrutura predita da proteína LafB de *E. faecium*. Se apresentam a regiões N-terminal e C-terminal em ciano e verde respetivamente. Em vermelho, se mostra o sítio da mutação. Fonte: Elaborada pela autora.

A única mutação que diferencia as estruturas 2.7 (nativa) e 2.1 (mutada) é a troca de um aminoácido na posição 204 da sequência, sendo que nesta posição a proteína nativa possui um Trp enquanto a mutada apresenta uma Arg. O Trp está em um ambiente hidrofóbico formado por sete aminoácidos (Figura 36), mais especificamente, em contato com Cys177, Phe181, Phe190, e Phe231, e três aminoácidos que complementam a formação do bolsão hidrofóbico: Phe251, Phe252 e Pro253. Além disso, existe uma ligação de hidrogênio entre a cadeia principal da Gly179, e o nitrogênio do anel indol do Trp que incrementa a estabilidade do Trp nessa posição.

Figura 36 - Interações do Trp 204 (vermelho) na proteína LafB nativa (2.7). Fonte: Elaborada pela autora.

Por outro lado, segundo a predição da proteína mutada, a Arg204 não provoca mudanças conformacionais importantes na estrutura proteica, mas mostra que a Arg204 é estabilizada por ligações de hidrogênio entre a Leu180 (cadeia principal) e Lys185 (Figura 37). No entanto, é importante levar em consideração que o AlphaFold ainda possui limitações para mostrar detalhadamente as mudanças causadas por mutações, especialmente quando o número de resíduos envolvidos é baixo. Como neste caso a mutação acontece em um único resíduo, e experimentalmente temos observado que a mutação gera uma queda importante na solubilidade da proteína, acreditamos que, embora não seja mostrada na predição, provavelmente existe uma importante mudança conformacional causada pela mutação,

especialmente pela substituição por um dos resíduos de aminoácidos mais hidrofílicos (Arg) em um ambiente altamente hidrofóbico.

Figura 37 - Interações da Arg204 (vermelho) na proteína LafB mutada (2.1). Fonte: Elaborada pela autora.

4.4.2 Docking molecular

A área de ligação ("*binding pockets*") melhor pontuada (62.34 AS Score) na análise do software da estrutura da proteína LafB de *E. faecium* estava localizada entre as regiões que contém o N- terminal e o C-terminal e próxima ao sítio da mutação de interesse (Trp204). Esses resultados concordam com o relatado anteriormente com respeito à família GT-B das glicosiltransferases, cujos membros geralmente possuem o sítio catalítico localizado entre seus dois domínios⁹², reforçando assim a hipótese de que a proteína LafB de *E. faecium* pertence à família das GT-B. Em seguida, utilizando o mesmo software, foi feito o acoplamento de uma molécula de UDP-galactose, molécula que é candidata a ser ligante da glicosiltransferase LafB, no "*binding pocket*" melhor pontuado da proteína.

Figura 38 - Predição da LafB ligada ao UDP-Gal no hipotético sitio ativo determinado mediante analise *in-silico*. Regiões da estrutura da LafB em ciano (região N-terminal) e verde (região C-terminal), o ligante (UDP-Gal) em vermelho e Triptofano204 em verde escuro (A) Vista anterior (B) Vista posterior. Fonte: Elaborada pela autora.

A Figura 38 apresenta a orientação melhor pontuada em termos energéticos do ligante no "*binding pocket*" da proteína obtida através do software *AutoGridFR*. O ligante apresenta uma rede de interações entre as quais se encontram forças de van der Waals, pontes salinas, interações eletrostáticas, ligações de hidrogênio, ligações carbono e hidrogênio, pi-pi *T-shaped* e pi-alkyl (Figura 39). Entre os resíduos de aminoácidos que estabilizam o ligante,

estão a Phe205 e a Gly206 que embora interajam apenas por ligações van der Waals com o ligante, são aminoácidos que se encontram muito perto ao sítio da mutação (Trp204). Assim como a Leu180, que interage com o grupo guanidina da Arg204 na proteína mutada (Figura 37) e também com o ligante UDP-Gal na proteína nativa através de uma ligação de hidrogênio (Figura 39). Cabe a hipótese de que a troca de aminoácido faça com que a Leu180 perca interação com o ligante para tentar estabilizar a Arg180.

Figura 39 - Gráfico das interações ligante – proteína. Fonte: Elaborada pela autora.^{*}

77

^{*} Software BIOVIA Discovery Studio

5 CONCLUSÕES E PERSPECTIVAS

Da análise fenotípica das linhagens HBSJRP 18_2.1 (supersensível a DAP) e HBSJRP 18_2.7 (com sensibilidade normal a DAP) se conclui que:

- Embora a mutação causou uma diminuição significativa no crescimento da linhagem supersensível a DAP, a capacidade de formação de biofilme não foi afetada pela mutação, e da mesma forma, em geral, o perfil metabólico das linhagens também não teve mudanças marcantes. No entanto, os substratos que apresentaram diferenças no metabolismo (os antimicrobianos umbeliferona e blasticidin S), serão testados de maneira individual a fim de se confirmar e entender como a mutação em *lafB* pode alterar o metabolismo da célula e a resposta a esses compostos.

- Os experimentos de virulência *in-vivo* sugerem que a mutação em *lafB* provocou mudanças na parede celular que resultam em virulência atenuada com uma diminuição estatisticamente significativa. Ainda são necessários estudos que avaliem a composição do LTA na bactéria mutada para entender o que acontece na estrutura da membrana ou parede celular que pudesse explicar a perda de virulência.

Dos estudos da proteína LafB 2.1 (mutada) e LafB 2.7 (nativa) se conclui que:

– O fato da proteína mutada não apresentar a mesma solubilidade sob as condições de purificação testadas para a proteína nativa, sugere que mudanças importantes acontecem a nível estrutural devido à mutação. Futuros experimentos testando diversas condições serão feitos para purificar a proteína mutada.

– A glicosiltransferase LafB sob condições *in-vitro* se apresenta monomérica com uma massa molecular de 41.76 kDa, possui estrutura secundária α-helicoidal e uma temperatura de *melting* igual a 37 °C, o que a torna altamente instável. Experimentos que testam diferentes condições de purificação serão feitos no futuro para conseguir estabilizá-la e cristalizá-la.

– A predição com *AlphaFold* mostrou que a proteína apresenta uma estrutura similar às glicosiltransferases da família GT-B, e que devido ao fato de a mutação estar próxima ao hipotético sítio catalítico, é provável que as mudanças nas interações que ocorrem entre os aminoácidos da proteína e ligante, sejam a causa das mudanças observadas no fenótipo da linhagem mutada.

REFERÊNCIAS

- 1 GARCÍA-SOLACHE; M.; RICE, L. B. The Enterococcus: a model of adaptability to its environment. **Clinical Microbiology Reviews**, v. 32, n. 2, p. e00058-18, 2019.
- 2 SVEC, P. *et al. Enterococcus haemoperoxidus sp. nov.* and *Enterococcus moraviensis sp. nov.*, isolated from water. **International Journal of Systematic and Evolutionary Microbiology**, v. 51, pt 4, p. 1567–1574, 2001.

3 ŠVEC, P. *et al.* Enterococcus aquimarinus sp. nov., isolated from sea water. **International Journal of Systematic and Evolutionary Microbiology**, v. 55, pt 5, p. 2183–2187, 2005.

4 BARBOSA, J.; BORGES, S.; TEIXEIRA, P. Selection of potential probiotic *Enterococcus faecium* isolated from portuguese fermented food. International Journal of Food Microbiology, v. 191, p. 144–148, 2014. DOI: <u>10.1016/j.ijfoodmicro.2014.09.009</u>.

5 MÜLLER, T. *et al.* Identification of plant-associated enterococci. Journal of Applied Microbiology, v. 91, n. 2, p. 268–278, 2001.

6 MUNDT, J. O. Occurrence of enterococci on plants in a wild environment. **Journal of Applied Microbiology**, v. 11, n. 2, p. 141–144, 1963.

7 NASER, S. M. *et al. Enterococcus canintestini sp. nov.*, from faecal samples of healthy dogs. **International Journal of Systematic and Evolutionary Microbiology**, v. 55, n. 5, p. 2177–2182, 2005.

8 MARTIN, J. D.; MUNDT, J. O. Enterococci in insects. Journal of Applied Microbiology, v. 24, n. 4, p. 575–580, 1972.

9 SHERMAN, J. M. The enterococci and related streptococci. **Journal of Bacteriology**, v. 35, n. 2, p. 81–93, 1938.

10 IWEN, P. C. *et al.* Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrobial Agents and Chemotherapy v. 41, n. 2, p. 494–495, 1997.

11 LAM, M. M. *et al.* Comparative analysis of the first complete *Enterococcus faecium* genome. **Journal of Bacteriology**, v. 194, n. 9, p. 2334–2341, 2012.

12 DE OLIVEIRA, D. M. P. *et al.* Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, v. 33, n. 3, p. e00181-19, 2020.

13 SHRIVASTAVA S. R.; SHRIVASTAVA, P. S.; RAMASAMY, J. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. **World Health Organization Releases**, v. 32, n. 1, p. 76–77, 2017.

14 FIEDLER, S. *et al.* Tigecycline resistance in clinical isolates of *Enterococcus faecium* is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). **Journal of Antimicrobial Chemotherapy**, v. 71, n. 4, p. 871–881, 2016.

15 MONTERO, C. I.; STOCK, F.; MURRAY, P. R. Mechanisms of resistance to daptomycin in *Enterococcus faecium*. Antimicrobial Agents and Chemotherapy, v. 52, n. 3, p. 1167–1170, 2008.

16 EGAN, S. A. *et al.* Linezolid resistance in *Enterococcus faecium* and *Enterococcus faecalis* from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. **Journal of Antimicrobial Chemotherapy**, v. 75, n. 7, p. 1704–1711, 2020.

17 MADIGAN , M. T. *et al.* **Brock biology of microorganisms**. New York: Pearson Education, 2016.

18 OREN, A.; GARRITY, G. M. Valid publication of the names of forty-two phyla of prokaryotes. **International Journal of Systematic and Evolutionary Microbiology**, v. 71, n. 10, 2021. DOI: 10.1099/ijsem.0.005056.

19 PERCY, M. G.; GRÜNDLING, A. Lipoteichoic acid synthesis and function in grampositive bacteria. **Annual Review of Microbiology**, v. 68, n. 1, p. 81–100, 2014.

20 WEBB, A. J.; KARATSA-DODGSON, M.; GRÜNDLING, A. Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in *Listeria monocytogenes*. **Molecular Microbiology**, v. 74, n. 2, p. 299–314, 2009.

21 THEILACKER, C. *et al.* Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in *Enterococcus faecalis*. **Molecular Microbiology**, v. 71, n. 4, p. 1055–1069, 2009.

22 THEILACKER, C. *et al.* Deletion of the glycosyltransferase bgsB of *Enterococcus faecalis* leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. **BMC Microbiology**, v. 11, n. 1, p. 67, 2011.

23 PAGANELLI, F. L. *et al.* Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant *Enterococcus faecium*. **International Journal of Antimicrobial Agents**, v. 49, n. 3, p. 355–363, 2017.

24 MOHAMED, J. A.; HUANG, D. B. Biofilm formation by enterococci. Journal of Medical Microbiology, v. 56, n. 12, p. 1581–1588, 2007.

25 SHUJUN, R. *et al.* Transcriptome analysis of *Enterococcus faecalis* in response to alkaline stress. **Frontiers in Microbiology**, v. 6, 2015. DOI: 10.3389/fmicb.2015.00795.

26 CH'NG, J.-H. *et al.* Biofilm-associated infection by enterococci. Nature Reviews Microbiology, v. 17, n. 2, p. 82–94, 2019.

27 GULATI, M. *et al.* In Vitro culturing and screening of *Candida albicans* biofilms. **Current Protocols in Microbiology**, v. 50, n. 1, p. e60–e60, 2018.

28 DONLAN, R. M. Biofilms: microbial life on surfaces. **Emerging Infectious Diseases**, v. 8, n. 9, p. 881–890, 2002.

29 FRANCESCA, F. *et al.* Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. **Infection and Immunity**, v. 74, n. 7, p. 4164–4171, 2006.

30 MILLER, W. R.; BAYER, A. S.; ARIAS, C. A. Mechanism of action and resistance to daptomycin in *Staphylococcus aureus* and enterococci. **Cold Spring Harbor Perspectives in Medicine**, v. 6, n. 11, p. a026997, 2016.

31 BEIRAS-FERNANDEZ, A. *et al.* Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens. **Infection and Drug Resistance**, v. 3, p. 95–101, 2010. DOI: 10.2147/IDR.S6961.

32 CANTÓN, R. *et al.* A potential role for daptomycin in enterococcal infections: what is the evidence? Journal of Antimicrobial Chemotherapy, v. 65, n. 6, p. 1126–1136, 2010.

33 SATLIN, M. J. *et al.* Development of daptomycin susceptibility breakpoints for enterococcus faecium and revision of the breakpoints for other enterococcal species by the clinical and laboratory standards institute. **Clinical Infectious Diseases**, v. 70, n. 6, p. 1240–1246, 2020.

34 TAYLOR, S. D.; PALMER, M. The action mechanism of daptomycin. **Bioorganic &** Medicinal Chemistry, v. 24, n. 24, p. 6253–6268, 2016.

35 ROBBEL, L.; MARAHIEL, M. A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. **Journal of Biological Chemistry**, v. 285, n. 36, p. 27501–27508, 2010.

36 ANNA-BARBARA, H. *et al.* Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in bacillus subtilis . **Antimicrobial Agents and Chemotherapy**, v. 55, n. 9, p. 4326–4337, 2011.

37 GREIN, F. *et al.* Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. **Nature Communications**, v. 11, n. 1, p. 1455, 2020.

38 MELLO, S. *et al.* A mutation in the glycosyltransferase gene lafB causes daptomycin hypersusceptibility in *Enterococcus faecium*. Journal of Antimicrobial Chemotherapy, 2019. DOI:10.1093/jac/dkz403

39 ANDREWS, J. M. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, v. 48, Suppl 1, p. 5–16, 2001.

40 EMERY PHARMA. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. 2022. Disponível em: https://emerypharma.com/biology/minimum-inhibitory-concentration/. Acesso em: 22 jan. 2022.

41 CLINICAL AND LABORATORY STANDARDS INSTITUTE. **Performance standards for antimicrobial susceptibility testing**. 2018. Disponível em: https://clsi.org/media/wi0pmpke/m100ed32_sample.pdf. Acesso em: 23 jan. 2021.

42 BIO-RESOURCE. **Bacterial growth calculation.** 2020. Disponível em: http://technologyinscience.blogspot.com/2013/02/bacterial-growth-calculation.html#.YjOV2OrMLBU. Acesso em: 20 jul. 2021.

43 BORGLIN, S. *et al.* Application of phenotypic microarrays to environmental microbiology. **Current Opinion in Biotechnology**, v. 23, n. 1, p. 41–48, 2012.

44 BLUMENSTEIN, K. *et al.* Phenotype microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes. **Frontiers in Microbiology**, v. 6, p.1033, Sept. 2015. DOI: 10.3389/fmicb.2015.01033.

45 GACA, A. O. *et al.* Global transcriptional analysis of the stringent response in *Enterococcus faecalis*. **Microbiology**, v. 158, pt 8, p. 1994–2004, 2012.

46 PALAZZO, I. C. V;REHDER, A. ; DARINI, A. L. C. Quantitative disk diffusion as a convenient method for determining minimum inhibitory concentrations of oxacillin for staphylococci strains. **Journal of Microbiological Methods**, v. 71, n. 3, p. 186–190, 2007.

47 PROMEGA CORPORATION. **pGEM(R)-T** and **pGEM(R)-T** easy vector systems **protocol** - technical manual TM042. 2010. Disponível em: https://www.promega.com/-/media/files/resources/protocols/technical-manuals/0/pgem-t-and-pgem-t-easy-vector-systems-protocol.pdf . Acesso em: 10 jan. 2021.

48 NOVAGEN. **pET system manual.** 2014. Disponível em: https://www.helmholtzmuenchen.de/fileadmin/PEPF/pET_vectors/pET-28a-c_map.pdf Acesso em: 10 jan. 2021.

49 SHILLING, P. J. *et al.* Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. **Communications Biology**, v. 3, n. 1, p. 214, 2020.

50 DUBENDORF, J. W.; STUDIER, F. W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. **Journal of Molecular Biology**, v. 219, n. 1, p. 45–59, 1991.

51 URH, M.; M.; SIMPSON, D.; ZHAO, K. **Affinity chromatography:** general methods in guide to protein purification. 2nd ed. New York: Academic Press, 2009. p. 417–438.

52 SUN, T. *et al.* A study of the separation principle in size exclusion chromatography. **Macromolecules**, v. 37, n. 11, p. 4304–4312, 2004.

53 CREATIVE PROTEOMICS. **Size exclusion chromatography (SEC) service.** 2022. Disponível em: https://www.creative-proteomics.com/pronalyse/size-exclusion-chromatography-sec-service.html. Acesso em: 30 jan. 2022.

54 SOME, D. *et al.* Characterization of proteins by size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS). **JoVE**, n. 148, p. e59615, 2019. DOI: 10.3791/59615.

55 SOME, D. **Wyatt technology** latest advancements in absolute characterization of proteins, polymers and nanoparticles. 2019. Disponível em: https://www.wyatt.com/library/webinars/latest-advancements-in-absolute-characterization-of-proteins-polymers-and-nanoparticles.html. Acesso em: 31 jan. 2022.

56 RODGER, A. ; NORDEN, B. Circular dichroism & linear dichroism. Oxford: Oxford University Press, 1997.

57 MILES, A. J.; WALLACE, B. A. Circular dichroism spectroscopy for protein characterization: biopharmaceutical applications. **Biophysical Characterization of Proteins in Developing Biopharmaceuticals**, p. 109–137, 2015. DOI: 10.1016/B978-0-444-59573-7.00006-3.

58 PIGNATARO, M. F.; HERRERA, M. G.; DODERO, V. I. Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods. **Molecules**, v. 25, n. 20, p.4854 2020.

59 MILES, A. J.; JANES, R. W.; WALLACE, B. A. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. **Chemical Society Reviews**, v. 50, n. 15, p. 8400–8413, 2021.

60 RANJBAR, B.; GILL, P. Circular dichroism techniques: biomolecular and nanostructural analyses- a review. **Chemical Biology & Drug Design**, v. 74, n. 2, p. 101–120, 2009.

61 MARK, B. L.; MCKENNA, S. A.; KHAJEHPOUR, M. Protein structural analysis. *In*: MOO-YOUNG, M. (ed.). **Comprehensive biotechnology.** Amsterdam: Elsevier, 2011. v.1, p. 139–153.

62 JUMPER, J. *et al.* Highly accurate protein structure prediction with AlphaFold. **Nature**, v. 596, n. 7873, p. 583–589, 2021.

63 NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION (NCBI). Glycosyltransferase family 4 protein [Enterococcus faecium]. 2021. Disponível em: https://www.ncbi.nlm.nih.gov/protein/WP_002287604.1/ Acesso em: 30 jul. 2021.

64 MIRDITA, M.; OVCHINNIKOV, S.; STEINEGGER, M. ColabFold - making protein folding accessible to all. **bioRxiv**, 2021. DOI:10.1101/2021.08.15.456425.

65 MARIANI, V. *et al.* IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. **Bioinformatics**, v. 29, n. 21, p. 2722–2728, 2013.

66 EISENBERG, D.; LÜTHY, R.; BOWIE, J. U. VERIFY3D: assessment of protein models with three-dimensional profiles. **Methods in Enzymology**, v. 277, p. 396–404, 1997.

67 LÜTHY, R.; BOWIE, J. U.; EISENBERG, D. Assessment of protein models with threedimensional profiles. **Nature**, v. 356, n. 6364, p. 83–85, 1992.

68 SCHRÖDINGER, L. **The PyMOL molecular graphics system**. Disponível em: https://www.schrodinger.com/products/pymol. Acesso em: 14 oct. 2021

69 KYOTO UNIVERSITY BIOINFORMATICS CENTER. **MOTIF search**. 1991. Disponível em: https://www.genome.jp/tools/motif/ . Acceso em: 15 feb. 2022.

70 REICHMANN, N. T.; GRÜNDLING, A. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. **FEMS Microbiology Letters**, v. 319, n. 2, p. 97–105, 2011.

71 ZHANG, Y. *et al.* AutoGridFR: improvements on autodock affinity maps and associated software tools. **Journal of Computational Chemistry**, v. 40, n. 32, p. 2882–2886, 2019.

72 BIOVIA, D. S. **Discovery studio visualizer V21.1.0.** Disponível em: https://discover.3ds.com/discovery-studio-visualizer-download. Acesso em: 14 jan. 2022

73 TURNIDGE, J. *et al.* Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: a EUCAST position paper. **European Journal of Clinical Microbiology** & Infectious Diseases, v. 26, n. 8, p. 1039–1043, 2020.

74 ROYAL LIVERPOOL UNIVERSITY HOSPITAL. Guideline for daptomycin usage within Liverpool Clinical Laboratories. **Daptomycin guidelines**, p. 8, 2021. Disponível em: https://secure.rlbuht.nhs.uk. Acesso em: 21 jan. 2022

75 STREIT, J. M.; JONES, R. N.; SADER, H. S. Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram-positive organisms. Journal of Antimicrobial Chemotherapy, v. 53, n. 4, p. 669–674, 2004.

76 HUMPHRIES, R. M.; POLLETT, S.; SAKOULAS, G. A current perspective on daptomycin for the clinical microbiologist. **Clinical Microbiology Reviews**, v. 26, n. 4, p. 759–780, 2013.

77 WECKWERTH, P. H. *et al.* In Vitro alkaline pH resistance of *Enterococcus faecalis*. **Brazilian Dental Journal**, v. 24, n. 5, p. 474–476, 2013.

78 ITOYAMA, S. *et al. Enterococcus spp*. have higher fitness for survival, in a pH-dependent manner, in pancreatic juice among duodenal bacterial flora. **JGH Open**, v. 6, n. 1, p. 85–90,

2022.

79 MAZIMBA, O. Umbelliferone: sources, chemistry and bioactivities review. **Bulletin of Faculty of Pharmacy,** v. 55, n. 2, p. 223–232, 2017.

80 RANJAN SAHOO, C. *et al.* Coumarin derivatives as promising antibacterial agent(s). **Arabian Journal of Chemistry**, v. 14, n. 2, p. 102922, 2021.

81 LIN, P.-Y. *et al.* Synthesis and antibacterial activities of novel 4-hydroxy-7-hydroxy- and 3-carboxycoumarin derivatives. **Molecules**, v. 17, n. 9, p. 10846, 2012.

82 SVIDRITSKIY, E. *et al.* Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. **Proceedings of the National Academy of Sciences of the United States of America**, v. 110, n. 30, p. 12283–12288, 2013.

83 DAVISON, J. R. *et al.* A new natural product analog of blasticidin s reveals cellular uptake facilitated by the nora multidrug transporter. **Antimicrobial Agents and Chemotherapy**, v. 61, n. 6, p. e02635-16, 2017.

84 JONAS, B. M.; MURRAY, B. E.; WEINSTOCK, G. M. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in *Enterococcus faecalis*. **Antimicrobial Agents and Chemotherapy**, v. 45, n. 12, p. 3574–3579, 2001.

85 LEBRETON, F. *et al.* ace, Which encodes an adhesin in *Enterococcus faecalis*, is regulated by Ers and is involved in virulence. **Infection and Immunity**, v. 77, n. 7, p. 2832–2839, 2009.

86 DE OLIVEIRA, N. E. M. *et al.* clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of *Enterococcus faecalis*. **Microbiology**, v. 157, pt 3, p. 656–665, 2011.

87 ZHAO, C. *et al.* Role of methionine sulfoxide reductases A and B of *Enterococcus faecalis* in oxidative stress and virulence. **Infection and Immunity**, v. 78, n. 9, p. 3889–3897, 2010.

88 LEBRETON, F. *et al.* Galleria mellonella as a model for studying *Enterococcus faecium* host persistence. **Microbial Physiology**, v. 21, n. 3–4, p. 191–196, 2011.

89 CHIBEBE JUNIOR, J. *et al.* Photodynamic and antibiotic therapy impair the pathogenesis of *Enterococcus faecium* in a whole animal insect model. **PLoS One**, v. 8, n. 2, p. e55926, 2013.

90 RIGUERO, V. *et al.* Immobilized metal affinity chromatography optimization for polyhistidine tagged proteins. **Journal of Chromatography A**, v. 1629, p. 461505, 2020. DOI: 10.1016/j.chroma.2020.461505.

91 BORNHORST, J. A.; FALKE, J. J. Purification of proteins using polyhistidine affinity tags. **Methods in Enzymology**, v. 326, p. 245–254, 2000.

92 ALBESA-JOVÉ, D. *et al.* Structure–function relationships of membrane-associated GT-B glycosyltransferases. **Glycobiology**, v. 24, n. 2, p. 108–124, 2014.

93 DEVINDER, K. *et al.* Biosynthesis of mycobacterial lipoarabinomannan: Role of a branching mannosyltransferase. **Proceedings of the National Academy of Sciences of the United States of America**, v. 103, n. 37, p. 13664–13669, 2006.

94 LIEBAU, J. *et al.* New insights into the membrane association mechanism of the glycosyltransferase WaaG from *Escherichia coli*. **Biochimica et Biophysica Acta**, v. 1860, n.

3, p. 683–690, 2018.

95 HASHIMOTO, K. *et al.* Functional states of homooligomers: insights from the evolution of glycosyltransferases. **Journal of Molecular Biology**, v. 399, n. 1, p. 196–206, 2010.

96 FULTON, Z. *et al.* Crystal Structure of a UDP-glucose-specific Glycosyltransferase from a Mycobacterium Species.* Journal of Biological Chemistry, v. 283, n. 41, p. 27881–27890, 2008.

97 FLINT, J. *et al.* Structural dissection and high-throughput screening of mannosylglycerate synthase.**Nature Structural & Molecular Biology**, v. 12, n. 7, p. 608–614, 2005.

98 GREENFIELD, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. **Nature Protocols**, v. 1, n. 6, p. 2527–2535, 2006.

99 GREENFIELD, N. J. ; FASMAN, G. D. Computed circular dichroism spectra for the evaluation of protein conformation. **Biochemistry**, v. 8, n. 10, p. 4108–4116, 1969.

100 MARTINEZ-FLEITES, C. *et al.* Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. **Chemical Biology**, v. 13, n. 11, p. 1143–1152, 2006.

101 ALBESA-JOVÉ, D.; GUERIN, M. E. The conformational plasticity of glycosyltransferases. **Current Opinion in Structural Biology**, v. 40, p. 23–32, 2016. DOI: 10.1016/j.sbi.2016.07.007.

102 GLOSTER, T. M. Advances in understanding glycosyltransferases from a structural perspective. **Current Opinion in Structural Biology**, v. 28, p. 131–141, 2014. DOI: 10.1016/j.sbi.2014.08.012.

103 HU, Y.; WALKER, S. Remarkable structural similarities between diverse glycosyltransferases. **Chemistry & Biology**, v. 9, n. 12, p. 1287–1296, 2002.

104 BRETON, C.; FOURNEL-GIGLEUX, S.; PALCIC, M. M. Recent structures, evolution and mechanisms of glycosyltransferases. **Current Opinion in Structural Biology**, v. 22, n. 5, p. 540–549, 2012.

105 BRETON, C. *et al.* Structures and mechanisms of glycosyltransferases. **Glycobiology**, v. 16, n. 2, p. 29R-37R, 2006.

106 GIGANTI, D. *et al.* Secondary structure reshuffling modulates glycosyltransferase function at the membrane. **Nature Chemical Biology**, v. 11, n. 1, p. 16–18, 2015.

107 GUERIN, M. E. *et al.* New insights into the early steps of phosphatidylinositol mannoside biosynthesis in mycobacteria: PimB. **Journal of Biological Chemistry**, v. 284, n. 38, p. 25687–25696, 2009.

ANEXO A – PM usados para análise metabólica das linhagens *E. faecium* HBSJRP 18_2.1 e HBSJRP 18_2.7 no Biolog

BIOLOG

Phenotype MicroArrays™

PM1 MicroPlate™ Carbon Sources

A1 Negative Control	A2 L-Arabinose	A3 N-Acetyl-D- Glucosamine	A4 D-Saccharic Acid	A5 Succinic Acid	A6 D-Galactose	A7 L-Aspartic Acid	A8 L-Proline	A9 D-Alanine	A10 D-Trehalose	A11 D-Mannose	A12 Duicitol
B1 D-Serine	B2 D-Sorbitol	B3 Glycerol	B4 L-Fucose	B5 D-Glucuronic Acid	B6 D-Gluconic Acid	B7 D,L-α-Glycerol- Phosphate	B8 D-Xylose	B9 L-Lactic Acid	B10 Formic Acid	B11 D-Mannitol	B12 L-Glutamic Acid
C1 D-Glucose-6- Phosphate	C2 D-Galactonic Acid-γ-Lactone	C3 D,L-Malic Acid	C4 D-Ribose	C5 Tween 20	C6 L-Rhamnose	C7 D-Fructose	C8 Acetic Acid	C9 α-D-Glucose	C10 Maltose	C11 D-Melibiose	C12 Thymidine
D-1 L-Asparagine	D2 D-Aspartic Acid	D3 D-Glucosaminic Acid	D4 1,2-Propanediol	D5 Tween 40	D6 α-Keto-Glutaric Acid	D7 α-Keto-Butyric Acid	D8 α-Methyl-D- Galactoside	D9 α-D-Lactose	D10 Lactulose	D11 Sucrose	D12 Uridine
E1 L-Glutamine	E2 m-Tartaric Acid	E3 D-Glucose-1- Phosphate	E4 D-Fructose-6- Phosphate	E5 Tween 80	E6 α-Hydroxy Glutaric Acid-γ- Lactone	E7 α-Hydroxy Butyric Acid	E8 β-Methyl-D- Glucoside	E9 Adonitol	E10 Maltotriose	E11 2-Deoxy Adenosine	E12 Adenosine
F1 Glycyl-L-Aspartic Acid	F2 Citric Acid	F3 myo-Inositol	F4 D-Threonine	F5 Fumaric Acid	F6 Bromo Succinic Acid	F7 Propionic Acid	F8 Mucic Acid	F9 Glycolic Acid	F10 Glyoxylic Acid	F11 D-Cellobiose	F12 Inosine
G1 Glycyl-L- Glutamic Acid	G2 Tricarballylic Acid	G3 L-Serine	G4 L-Threonine	G5 L-Alanine	G6 L-Alanyl-Glycine	G7 Acetoacetic Acid	G8 N-Acetyl-8-D- Mannosamine	G9 Mono Methyl Succinate	G10 Methyl Pyruvate	G11 D-Malic Acid	G12 L-Malic Acid
H1 Glycyl-L-Proline	H2 p-Hydroxy Phenyl Acetic Acid	H3 m-Hydroxy Phenyl Acetic Acid	H4 Tyramine	H5 D-Psicose	H6 L-Lyxose	H7 Glucuronamide	H8 Pyruvic Acid	H9 L-Galactonic Acid-γ-Lactone	H10 D-Galacturonic Acid	H11 Phenylethyl- amine	H12 2-Aminoethanol
PM2A	MicroF	late™	Carbor	n Sourd	ces				1		
A1	1										
Negative Control	A2 Chondroitin Sulfate C	A3 α-Cyclodextrin	A4 8-Cyclodextrin	A5 γ-Cyclodextrin	A6 Dextrin	A7 Gelatin	A8 Glycogen	A9 Inulin	A10 Laminarin	A11 Mannan	A12 Pectin
Negative Control B1 N-Acetyl-D- Galactosamine	A2 Chondroitin Sulfate C B2 N-Acetyl- Neuraminic Acid	A3 α-Cyclodextrin B3 β-D-Allose	A4 8-Cyclodextrin B4 Amygdalin	A5 γ-Cyclodextrin B5 D-Arabinose	A6 Dextrin B6 D-Arabitol	A7 Gelatin B7 L-Arabitol	A8 Glycogen B8 Arbutin	A9 Inulin B9 2-Deoxy-D- Ribose	A10 Laminarin B10 i-Erythritol	A11 Mannan B11 D-Fucose	A12 Pectin B12 3-0-6-D- Galactopyranosyl D-Arabinose
Negative Control B1 N-Acetyl-D- Galactosamine C1 Gentiobiose	A2 Chondroitin Sulfate C B2 N-Acetyl- Neuraminic Acid C2 L-Glucose	A3 α-Cyclodextrin B3 β-D-Allose C3 Lactitol	A4 8-Cyclodextrin B4 Amygdalin C4 D-Melezitose	A5 γ-Cyclodextrin B5 D-Arabinose C5 Maltitol	A6 Dextrin B6 D-Arabitol C6 a-Methyl-D- Glucoside	A7 Gelatin B7 L-Arabitol C7 6-Methyl-D- Galactoside	A8 Glycogen B8 Arbutin C8 3-Methyl Glucose	A9 Inulin B9 2-Deoxy-D- Ribose C9 8-Methyl-D- Glucuronic Acid	A10 Laminarin B10 i-Erythritol C10 α-Methyl-D- Mannoside	A11 Mannan B11 D-Fucose C11 6-Methyl-D- Xyloside	A12 Pectin 3-0-8-D- Galactopyranosyl D-Arabinose C12 Palatinose
Negative Control B1 N-Acetyl-D- Galactosamine C1 Gentiobiose D1 D-Raffinose	A2 Chondroitin Sulfate C B2 N-Acetyl- Neuraminic Acid C2 L-Glucose D2 Selicin	A3 α-Cyclodextrin B3 β-D-Allose C3 Lactitol D3 Sedoheptulosan	A4 8-Cyclodextrin B4 Amygdalin C4 D-Melezitose D4 L-Sorbose	A5 y-Cyclodextrin B5 D-Arabinose C5 Maltitol D5 Stachyose	A6 Dextrin B6 D-Arabitol C6 a-Methyl-D- Glucoside D-Tagatose	A7 Gelatin B7 L-Arabitol C7 8-Methyl-D- Galactoside D7 Turanose	A8 Glycogen B8 Arbutin C8 3-Methyl Glucose D8 Xylitol	A9 Inulin B9 2-Decxy-D- Ribose C9 8-Methyl-D- Glucosaminitol D9 N-Acetyl-D- Glucosaminitol	A10 Laminarin B10 i-Erythritol C10 c-Methyl-D- Mannoside D10 y-Amino Butyric Acid	A11 Mannan B11 D-Fucose C11 8-Methyl-D- Xyloside D11 S-Amino Valeric Acid	A12 Pectin B12 3-0-8-D- Galactopyranosyl D-Arabinose C12 Palatinose D12 Butyric Acid
Negative Control B1 N-Acetyl-D- Galactosamine C1 Gentiobiose D1 D-Raffinose E1 Capric Acid	A2 Chondroitin Sulfate C B2 N-Acetyl- Neuraminic Acid C2 L-Glucose D2 Salicin E2 Caproic Acid	A3 c-Cyclodextrin B3 B-D-Allose C3 Lactitol D3 Sedoheptulosan E3 Citraconic Acid	A4 8-Cyclodextrin B4 Amygdalin C4 D-Melezitose D4 L-Sorbose Ctramalic Acid	A5 y-Cyclodextrin B5 D-Arabinose C5 Maltitol D5 Stachyose E5 D-Glucosamine	A6 Dextrin B6 D-Arabitol C6 a-Methyl-D- Giucoside D6 D-Tagatose E6 2-Hydroxy Benzoic Acid	A7 Gelatin B7 L-Arabitol C7 Galactoside D7 Turanose E7 4-Hydroxy Benzoic Acid	A8 Glycogen B8 Arbutin C8 3-Methyl Glucose D8 Xylitol B8 Xylitol B4Hydroxy Buryric Acid	A9 Inulin B9 2-Deoxy-D- Ribose C9 S-Methyl-D- Glucuronic Acid D9 N-Acetyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- Glucosyl-D- C	A10 Laminarin B10 i-Erythritol C10 a-Methyl-D Mannoside D10 y-Amino Butyric Acid E10 E-10 a-Keto-Valeric Acid	A11 Mannan B14 D-Fucose C11 6-Methyl-D- Xyloside D11 δ-Amino Valeric Acid E11 Itaconic Acid	A12 Pectin 3-0-8-D- Galactopyranosyl D-Arabinose C12 Palatinose D12 Butyric Acid E12 5-Reto-D- Gluconic Acid
Negative Control B1 C1 Galactosamine C1 Gentiobiose D1 D-Raffinose E1 Capric Acid F1 D-Lactic Acid Methyl Ester	A2 Conductoritin Sulfate C H-Acetyl- Neuraminic Acid C2 L-Glucose D2 Salicin E2 Caproic Acid F2 Malonic Acid	A3 c-Cyclodextrin B3 (b-D-Allose C3 Lactitol D3 Sedoheptulosan E3 Citraconic Acid F3 Melibionic Acid	A4 8-Cyclodextrin B4 Amygdalin C4 D-Melezitose D4 L-Sorbose E4 Citramalic Acid F4 Oxalic Acid	A5 y-Cyclodextrin B5 D-Arabinose C5 Maltitol D5 Stachyose E5 D-Glucosamine F5 Oxalomalio Acid	A6 Dextrin B6 D-Arabitol C6 o-Methyl-D- Giucoside D-Tagatose D6 D-Tagatose E6 2-Hydroxy Benzoic Acid F6 Quinic Acid	A7 Gelatin B7 L-Arabitol C7 Galactoside D7 Turanose E7 4-Hydroxy Benzoic Acid F7 D-Ribono-1,4- Lactone	A8 Glycogen B8 Arbutin C8 3-Methyl Glucose D8 Xylitol E8 E-Hydroxy Butyric Acid F8 Sebacic Acid	A9 Inulin B9 2-Dexy-D- Ribose C9 8-Methyl-D- Glucuronic Acid D9 N-Acetyl-D- Glucuronic Acid E9 Glycolic Acid F9 Sorbic Acid	A10 Laminarin B10 i-Erythritol C10 c-Methylo-D- Mannoside D10 y-Amino Butyric Acid D10 g-Amino Butyric Acid F10 Succinamic Acid	A11 Mannan B11 D-Fucose C11 δ-Methyl-D- Xyloside D11 δ-Amino Valeric Acid E11 Itaconic Acid F11 D-Tartaric Acid	A12 Pectin 912 3-0-8-D- Calactopyranosyl D-Arabinose C12 Palatinose 012 Butyric Acid E12 5-Keto-D- Giuconic Acid F12 L-Tartaric Acid
Negative Control B1 N-Acetyl-D- Galactosamine C1 Gentiobiose D1 D-Raffinose E1 Capric Acid F1 Lactic Acid Methyl Estor G1 Acetamide	A2 Chondroitin Sulfate C B2 N-Acetyl- Neuraminic Acid C2 L-Glucose D2 Salicin E2 Caproic Acid F2 Malonic Acid	A3 c-Cyclodextrin B3 (J-D-Allose C3 Laciitol C3 Sedoheptulosan E3 Citraconic Acid F3 Melibionic Acid G3 N-Acetyl-L- Glutamic Acid	A4 8-Cyclodextrin B4 Amygdalin C4 D-Melezitose D4 L-Sorbose E4 Citramalic Acid F4 Oxalic Acid 04 L-Arginine	A5 y-Cyclodextrin B5 D-Arabinose C5 Maltitol D5 Stachyose E5 D-Glucosamine F5 Oxalomalic Acid G5 Glycine	A6 Dextrin B6 D-Arabitol Cc.Heethyl-D- Glucoside D6 D-Tegatose D-Tegatose E6 2-Hydroxy Benzoic Acid F6 Quinic Acid 06 L-Histidine	A7 Gelatin B7 L-Arabitol C7 S-Methyl-D- Galactoside D7 Turanose E7 A-Hydroxy Benzoic Acid F7 D-Ribono-1,4- Lactone G7 L-Homoserine	A8 Glycogen B8 Arbutin C3 Methyl Glucose C9 Xylitol C8 Xylitol E8 6-Hydroxy Butyric Acid F8 Sebacic Acid C8 Hydroxy-LProline	A9 Inulin B9 2-Deoxy-D- Ribose C9 S-Methyl-D- Glucuronic Acid D9 N-Acetyl-D- Glucosaminitol E9 Glycolic Acid F9 Sorbic Acid 69 L-Isoleucine	A10 Laminarin B10 i-Erythritol C10 c.4Methyl-D- Mannoside D10 y-Amino Butyric Acid E10 a-Keto-Valeric Acid F10 Succinamic Acid C10 L-Leucine	A11 Mannan B11 D-Fucose C11 E-Methyl-D- Xyloside D11 8-Amino Valeric Acid E11 Itaconic Acid F11 D-Tartaric Acid G11 L-Lysine	A12 Pectin B12 3-0-6-D- Galactopyranosyl D-Arabinose C12 Palatinose D12 Butyric Acid E12 S-Keto-D- Giuconic Acid F12 L-Tartario Acid C12 L-Tartario Acid

Phenotype MicroArrays™

PM3B MicroPlate™ Nitrogen Sources

A1 Negative Control	A2 Ammonia	A3 Nitrite	A4 Nitrate	A5 Urea	A6 Biuret	A7 L-Alanine	A8 L-Arginine	A9 L-Asparagine	A10 L-Aspartic Acid	A11 L-Cysteine	A12 L-Glutamic Acid
B1 L-Glutamine	B2 Glycine	B3 L-Histidine	B4 L-Isoleucine	B5 L-Leucine	B6 L-Lysine	B7 L-Methionine	B8 L-Phenylalanine	B9 L-Proline	B10 L-Serine	B11 L-Threonine	B12 L-Tryptophan
C1 L-Tyrosine	C2 L-Valine	C3 D-Alanine	C4 D-Asparagine	C5 D-Aspartic Acid	C6 D-Glutamic Acid	C7 D-Lysine	C8 D-Serine	C9 D-Valine	C10 L-Citrulline	C11 L-Homoserine	C12 L-Omithine
D1 N-Acetyl-L- Glutamic Acid	D2 N-Phthaloyl-L- Glutamic Acid	D3 L-Pyroglutamic Acid	D4 Hydroxylamine	D5 Methylamine	D6 N-Amylamine	D7 N-Butylamine	D8 Ethylamine	D9 Ethanolamine	D10 Ethylenediamine	D11 Putrescine	D12 Agmatine
E1 Histamine	E2 β-Phenylethyl- amine	E3 Tyramine	E4 Acetamide	E5 Formamide	E6 Glucuronamide	E7 D.L-Lactamide	E8 D-Glucosamine	E9 D-Galactosamine	E10 D-Mannosamine	E11 N-Acetyl-D- Glucosamine	E12 N-Acetyl-D- Galactosamine
F1 N-Acetyl-D- Mannosamine	F2 Adenine	F3 Adenosine	F4 Cytidine	F5 Cytosine	F6 Guanine	F7 Guanosine	F8 Thymine	F9 Thymidine	F10 Uracil	F11 Uridine	F12 Inosine
G1 Xanthine	G2 Xanthosine	G3 Uric Acid	G4 Alloxan	G5 Allantoin	G6 Parabanic Acid	G7 D,L-α-Amino-N- Butyric Acid	G8 γ-Amino-N- Butyric Acid	G9 ε-Amino-N- Caproic Acid	G10 D,L-α-Amino- Caprylic Acid	G11 δ-Amino-N- Valeric Acid	G12 α-Amino-N- Valeric Acid
H1 Ala-Asp	H2 Ala-Gin	H3 Ala-Glu	H4 Ala-Gly	H5 Ala-His	H6 Ala-Leu	H7 Ala-Thr	H8 Gly-Asn	H9 Gly-Gln	H10 Gly-Glu	H11 Gly-Met	H12 Met-Ala

PM4A MicroPlate[™] Phosphorus and Sulfur Sources

A1 Negative Control	A2 Phosphate	A3 Pyrophosphate	A4 Trimeta Phosphate	A5 Tripoly Phosphate	A6 Triethyl Phosphate	A7 Hypophosphite	A8 Adenosine-2'- monophosphate	A9 Adenosine-3'- monophosphate	A10 Adenosine-5'- monophosphate	A11 Adenosine-2',3'- cyclic monophosphate	A12 Adenosine-3',5'- cyclic monophosphate
B1 Thiophosphate	B2 Dithiophosphate	B3 D,L-α-Glycerol Phosphate	B4 β-Glycerol Phosphate	B5 Carbamyl Phosphate	B6 D-2-Phospho- Glyceric Acid	B7 D-3-Phospho- Glyceric Acid	B8 Guanosine-2'- monophosphate	B9 Guanosine-3'- monophosphate	B10 Guanosine- 5' - monophosphate	B11 Guanosine- 2',3'- cyclic monophosphate	B12 Guanosine- 3',5'- cyclic monophosphate
C1 Phosphoenol Pyruvate	C2 Phospho- Glycolic Acid	C3 D-Glucose-1- Phosphate	C4 D-Glucose-6- Phosphate	C5 2-Deoxy-D- Glucose-6- Phosphate	C6 D-Glucosamine- 6-Phosphate	C7 6-Phospho- Gluconic Acid	C8 Cytidine-2- monophosphate	C9 Cytidine-3- monophosphate	C10 Cytidine-5'- monophosphate	C11 Cytidine-2',3'- cyclic monophosphate	C12 Cytidine-3',5'- cyclic monophosphate
D1 D-Mannose-1- Phosphate	D2 D-Mannose-6- Phosphate	D3 Cysteamine-S- Phosphate	D4 Phospho-L- Arginine	D5 O-Phospho-D- Serine	D6 O-Phospho-L- Serine	D7 O-Phospho-L- Threonine	D8 Uridine-2'- monophosphate	D9 Uridine-3'- monophosphate	D10 Uridine-5'- monophosphate	D11 Uridine-2',3'- cyclic monophosphate	D12 Uridine-3',5'- cyclic monophosphate
E1 O-Phospho-D- Tyrosine	E2 O-Phospho-L- Tyrosine	E3 Phosphocreatine	E4 Phosphoryl Choline	E5 O-Phosphoryl- Ethanolamine	E6 Phosphono Acetic Acid	E7 2-Aminoethyl Phosphonic Acid	E8 Methylene Diphosphonic Acid	E9 Thymidine-3'- monophosphate	E10 Thymidine-5'- monophosphate	E11 Inositol Hexaphosphate	E12 Thymidine 3',5'- cyclic monophosphate
F1 Negative Control	F2 Sulfate	F3 Thiosulfate	F4 Tetrathionate	F5 Thiophosphate	F6 Dithiophosphate	F7 L-Cysteine	F8 D-Cysteine	F9 L-Cysteinyl- Glycine	F10 L-Cysteic Acid	F11 Cysteamine	F12 L-Cysteine Sulfinic Acid
G1 N-Acetyl-L- Cysteine	G2 S-Methyl-L- Cysteine	G3 Cystathionine	G4 Lanthionine	G5 Glutathione	G6 D,L-Ethionine	G7 L-Methionine	G8 D-Methionine	G9 Glycyl-L- Methionine	G10 N-Acetyl-D,L- Methionine	G11 L-Methionine Sulfoxide	G12 L-Methionine Sulfone
H1 L-Djenkolic Acid	H2 Thiourea	H3 1-Thio-8-D- Glucose	H4 D,L-Lipoamide	H5 Taurocholic Acid	H6 Taurine	H7 Hypotaurine	H8 P-Amino Benzene Sulfonic Acid	H9 Butane Sulfonic Acid	H10 2-Hydroxyethane Sulfonic Acid	H11 Methane Sulfonic Acid	H12 Tetramethylene Sulfone

Phenotype MicroArrays™

PM5 MicroPlate™ Nutrient Supplements

			L-Asparagnic	L-Asparue Aciu	L-Cysteine	L-Giutamic Acid	cyclic monophosphate	Adenine	Adenosine	2'-Deoxy Adenosine
B2 Glycine	B3 L-Histidine	B4 L-Isoleucine	B5 L-Leucine	B6 L-Lysine	B7 L-Methionine	B8 L-Phenylalanine	B9 Guanosine-3',5'- cyclic monophosphate	B10 Guanine	B11 Guanosine	B12 2'-Deoxy Guanosine
C2 L-Serine	C3 L-Threonine	C4 L-Tryptophan	C5 L-Tyrosine	C6 L-Valine	C7 L-Isoleucine + L-Valine	C8 trans-4-Hydroxy L-Proline	C9 (5) 4-Amino Imidazole-4(5)- Carboxamide	C10 Hypoxanthine	C11 Inosine	C12 2'-Deoxy Inosine
D2 L-Citrulline	D3 Chorismic Acid	D4 (-)Shikimic Acid	D5 L-Homoserine Lactone	D6 D-Alanine	D7 D-Aspartic Acid	D8 D-Glutamic Acid	D9 D,L-α,ε- Diaminopimelic Acid	D10 Cytosine	D11 Cytidine	D12 2'-Deoxy Cytidine
E2 Spermidine	E3 Spermine	E4 Pyridoxine	E5 Pyridoxal	E6 Pyridoxamine	E7 B-Alanine	E8 D-Pantothenic Acid	E9 Orotic Acid	E10 Uracil	E11 Uridine	E12 2'-Deoxy Uridine
F2 Nicotinic Acid	F3 Nicotinamide	F4 β-Nicotinamide Adenine Dinucleotide	F5 δ-Amino- Levulinic Acid	F6 Hematin	F7 Deferoxamine Mesylate	F8 D-(+)-Glucose	F9 N-Acetyl D-Glucosamine	F10 Thymine	F11 Glutathione (reduced form)	F12 Thymidine
G2 D-Biotin	G3 Cyano- Cobalamine	G4 p-Amino-Benzoic Acid	G5 Folic Acid	G6 Inosine + Thiamine	G7 Thiamine	G8 Thiamine Pyrophosphate	G9 Riboflavin	G10 Pyrrolo-Quinoline Quinone	G11 Menadione	G12 myo-Inositol
H2 D,L-α-Hydroxy- Butyric Acid	H3 α-Keto- Butyric Acid	H4 Caprylic Acid	H5 D,L-α-Lipoic Acid (oxidized form)	H6 D,L-Mevalonic Acid	H7 D,L-Carnitine	H8 Choline	H9 Tween 20	H10 Tween 40	H11 Tween 60	H12 Tween 80
	B2 Glycine C2 L-Serine D2 L-Citrulline E2 Spermidine F2 Nicotinic Acid G2 D-Biotin H2 D,L-c-Hydroxy- Butyric Acid	B2 Glycine B3 L-Histidine C2 L-Serine C3 L-Threonine D2 L-Citrulline D3 Chorismic Acid E2 Spermidine E3 Spermine F2 Nicotinic Acid F3 Nicotinamide G2 D-Biotin G3 Cyano- Cobelamine H2 D_L-sHydraxy- Buryric Acid H3 acKato- Butyric Acid	B2 Glycine B3 L-Histidine B4 L-Isoleucine C2 L-Serine C3 L-Threenine C4 L-Tryptophan D2 L-Citrulline D3 Chorismic Acid D4 (-)Shikimic Acid E2 Spermidine B3 Spermine E4 Pyridoxine F2 Nicotinic Acid F3 Nicotine F4 Genvine- Dinucleotide G2 D-Biotin G3 G2 Cyano- Cobelamine G4 P-Amino-Benzoic Acid H2 DL-Shydrony- Burync Acid H3 Capylic Acid	B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Leucine C2 L-Serine C3 L-Threonine C4 L-Tryptophan C5 L-Tryptophan D2 L-Cirulline D3 Chorismic Acid D4 (-)Shikimic Acid D5 L-Homoserine Lactone E2 Spermidine E3 Spermidene E4 Pyridoxine D5 L-Homoserine Lactone F2 Nicotinic Acid F3 Nicotinamide F4 B-Meoinamide Adenine Dinucetide E5 B-Monino- Revulinic Acid G2 D-Biotin G3 Cyano- Cobalamine G4 P-Amino-Benzoic G5 Folic Acid H2 DL-S-Hydroxy- Butyric Acid H3 Acid DL-S-Lippic Acid (oxidized form)	B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Laucine B6 L-Lysine C2 L-Serine C3 L-Threonine C4 L-Tryptophan C5 L-Tyrosine C6 L-Valine D2 L-Cirulline D3 Chorismic Acid D4 (-)Shikimic Acid D5 L-Homoserine Latone D6 D-Alanine E2 Spermidine E3 Spermidine E4 Pyridoxine D5 Pyridoxal D6 Pyridoxal D-Alanine F2 D-Blotin C3 Gyano- Cobalamine E4 Pyridoxine E5 Pyridoxal F6 Hematin Acid F6 Hematin G2 D-Blotin G3 Gyano- Cobalamine G4 Pyridoxacid G5 Folic Acid G6 Inosine + Thiamine H2 DL-c+Mydroxy- Butyric Acid H3 Acid DL-c-Lippic Acid (xidized form) M6 DL-d-Lippic Acid M1 DL-d-Lippic Acid	B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Leucine B6 L-Lysine D7 L-Methionine C2 L-Serine C3 L-Threonine C4 L-Tryptophan C5 L-Tyrosine C6 L-Valine C7 L-Isoleucine + L-Valine D2 L-Cirulline D3 Chorismic Acid D4 (19hikimic Acid D5 L-Homoserine D6 D-Alanine D7 D-Aspartic Acid E2 Spermidine E3 Spermidine E4 Pyridoxine E5 S-Anino- Lavulinic Acid E6 Pyridoxamine E7 B-Alanine F2 D-Bilotin G3 Copalamine E4 S-Amino-Benzoic E5 Folic Acid G6 Inosine + Thiamine C7 Thiamine H2 D_L-Hydrory- Butyric Acid H3 Acid M4 Gaprylic Acid H5 D_L-L-Lipsic Acid H6 D_L-Mevalonic Acid H7 D_L-Carnitine	B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Leucine B6 L-Lysine B7 L-Methionine B8 L-Phenylalanine C2 L-Serine C3 L-Threonine C4 L-Typtophan C5 L-Tyrosine C6 L-Valine C7 L-Isoleucine + L-Valine C8 L-Isoleucine + L-Valine D8 D-Glutamic Acid D2 L-Citrulline D3 Chorismic Acid D4 (-Shikimic Acid D5 L-Isoneserine L-Isoleucine + L-Valine D6 D-Aspartic Acid D8 D-Glutamic Acid D9 D-Glutamic Acid D8 D-Glutamic Acid D8 D-Glutamic Acid D-Glutamic Acid D8 D-Glutamic Acid D9 D-Glutamic Acid D8 D-Glutamic Acid D-Glutamic Acid D9 D-Glutamic Acid D9 D-Glutamic Acid D8 D-Glutamic Acid D-Glutamic Acid <td>B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Leucine B6 L-Lysine B7 L-Mathionine B8 L-Phenylalanine B9 Guanosine-3', 5- cyclic monophosphate C2 L-Serine C3 L-Threonine C4 L-Tryptophan C5 L-Tryptophan C5 L-Tryptophan C6 L-Valine C7 L-Valine C8 Trans-4-Hydroxy L-Yoline C9 Gl) 4.4mino- monophosphate D2 L-Citrulline C3 Chorismic Acid D4 (-Shkimic Acid D5 L-Homoserine Lactone D6 D-Alanine D7 D-Aspartic Acid D6 D-Glutamic Acid D9 D-Lactone Acid E2 Spermidine E3 Spermidine E4 Pyridoxine D5 Pyridoxal D6 Pyridoxal D7 D-Aspartic Acid D6 D-Glutamic Acid D9 D-Lactone Acid E2 Spermidine E3 Spermidine E4 Pyridoxine E5 S-Amino- Acid E6 Pyridoxal E7 B-Alanine E7 B-Alanine E8 D-Pantothenic E9 D-Rotothenic D0 Crotic Acid F2 D-Bitotin F3 Ricotinamide F4 Pyridoxine E5 Solicin C-Acid F6 F6 Inosine + Thamine F7 Trainine F9 Pyridoxal P9 PActorse P9 Ricotamine P0 Ricotamine P0 Ricotamine</td> <td>B2 Glycine B3 L-Histidine B4 L-lacleucine B5 L-Laccine B6 L-Lysine B7 L-Methionine B6 L-Phenylalanine B9 Guanosine-3',5- rycic monophosphate B10 Guanosine-3',5- rycic monophosphate C2 L-Serine C3 L-Threonine C4 L-Tryplophan C5 L-Tyrosine C6 L-Tyrosine C7 L-Valine C7 L-Isoleucine + L-Valine C8 trans-4-Hydroxy C9 (3) 4.Amine inductor-4(5)- Catboxanthine C10 Hydroxanthine D2 L-Citrulline D4 Chorismic Acid D4 (1)Shikimic Acid D5 L-Homoserine D6 D-Alanine D7 D-Aspartic Acid D9 Glutamic Acid D4 D-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x-</td> <td>B2 Glycine B3 L-Histidine B4 L-laoleucine B5 L-Laucine B5 L-Lysine B7 L-Lysine B4 L-Methionine B8 L-Phenylalanine B9 Guanosine -3',5- cyclic monophosphate B10 Guanosine -3',5- cyclic monophosphate B10 Guanosine -3',5- cyclic monophosphate B11 Guanosine - Sine -1',5- cyclic monophosphate B11 Guanosine - Sine -1',5- cyclic monophosphate C2 L-Serine C3 L-Tryptophan C5 L-Tryptophan C5 L-Tyrosine C6 L-Tyrosine C7 L-Loelaucine + L-Valine C6 trans-4-Hydroxy L-Froline C10 Hydroxanthine C11 Inosine D2 L-Citrulline C4 Chorismic Acid D4 (-)Shikimic Acid D5 L-Homoserine D6 D-Alanine D7 D-Aspartic Acid D9 D-Glutamic Acid D4 D-Cate: Diaminopinelic Acid D10 D-Cytosine D11 Cytosine Cytosine D11 Cytidine E2 Spermidine E4 Spermidine E5 Pyridoxan E6 Pyridoxanine E7 B-Alanine E7 B-Alanine E8 D-Pantothenic Acid E9 D-Pantothenic Acid E10 Uracil E11 Uracil E11 Uracil E2 Spermidine F4 Pyridoxine E5 Filt F6 Hematin E7 Hematin E7 Feroxamine F9 D-(+)-Glucose F9 Pyridoxica F1 D-Glucosamine F1 Typine F11 Glutatione (reduced form) C3 D-L-S-Hydroxy- Buyric Acid G4 Copyrlic Acid H5 D-L-L-Lipcic Acid H6 Thoenine H7 D-L-Carnitine H8 Choline H9 Tween 20 <t< td=""></t<></td>	B2 Glycine B3 L-Histidine B4 L-Isoleucine B5 L-Leucine B6 L-Lysine B7 L-Mathionine B8 L-Phenylalanine B9 Guanosine-3', 5- cyclic monophosphate C2 L-Serine C3 L-Threonine C4 L-Tryptophan C5 L-Tryptophan C5 L-Tryptophan C6 L-Valine C7 L-Valine C8 Trans-4-Hydroxy L-Yoline C9 Gl) 4.4mino- monophosphate D2 L-Citrulline C3 Chorismic Acid D4 (-Shkimic Acid D5 L-Homoserine Lactone D6 D-Alanine D7 D-Aspartic Acid D6 D-Glutamic Acid D9 D-Lactone Acid E2 Spermidine E3 Spermidine E4 Pyridoxine D5 Pyridoxal D6 Pyridoxal D7 D-Aspartic Acid D6 D-Glutamic Acid D9 D-Lactone Acid E2 Spermidine E3 Spermidine E4 Pyridoxine E5 S-Amino- Acid E6 Pyridoxal E7 B-Alanine E7 B-Alanine E8 D-Pantothenic E9 D-Rotothenic D0 Crotic Acid F2 D-Bitotin F3 Ricotinamide F4 Pyridoxine E5 Solicin C-Acid F6 F6 Inosine + Thamine F7 Trainine F9 Pyridoxal P9 PActorse P9 Ricotamine P0 Ricotamine P0 Ricotamine	B2 Glycine B3 L-Histidine B4 L-lacleucine B5 L-Laccine B6 L-Lysine B7 L-Methionine B6 L-Phenylalanine B9 Guanosine-3',5- rycic monophosphate B10 Guanosine-3',5- rycic monophosphate C2 L-Serine C3 L-Threonine C4 L-Tryplophan C5 L-Tyrosine C6 L-Tyrosine C7 L-Valine C7 L-Isoleucine + L-Valine C8 trans-4-Hydroxy C9 (3) 4.Amine inductor-4(5)- Catboxanthine C10 Hydroxanthine D2 L-Citrulline D4 Chorismic Acid D4 (1)Shikimic Acid D5 L-Homoserine D6 D-Alanine D7 D-Aspartic Acid D9 Glutamic Acid D4 D-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic B-Cato-x- Diaminopinetic Acid D4 D-Cato-x- Diaminopinetic B-Cato-x-	B2 Glycine B3 L-Histidine B4 L-laoleucine B5 L-Laucine B5 L-Lysine B7 L-Lysine B4 L-Methionine B8 L-Phenylalanine B9 Guanosine -3',5- cyclic monophosphate B10 Guanosine -3',5- cyclic monophosphate B10 Guanosine -3',5- cyclic monophosphate B11 Guanosine - Sine -1',5- cyclic monophosphate B11 Guanosine - Sine -1',5- cyclic monophosphate C2 L-Serine C3 L-Tryptophan C5 L-Tryptophan C5 L-Tyrosine C6 L-Tyrosine C7 L-Loelaucine + L-Valine C6 trans-4-Hydroxy L-Froline C10 Hydroxanthine C11 Inosine D2 L-Citrulline C4 Chorismic Acid D4 (-)Shikimic Acid D5 L-Homoserine D6 D-Alanine D7 D-Aspartic Acid D9 D-Glutamic Acid D4 D-Cate: Diaminopinelic Acid D10 D-Cytosine D11 Cytosine Cytosine D11 Cytidine E2 Spermidine E4 Spermidine E5 Pyridoxan E6 Pyridoxanine E7 B-Alanine E7 B-Alanine E8 D-Pantothenic Acid E9 D-Pantothenic Acid E10 Uracil E11 Uracil E11 Uracil E2 Spermidine F4 Pyridoxine E5 Filt F6 Hematin E7 Hematin E7 Feroxamine F9 D-(+)-Glucose F9 Pyridoxica F1 D-Glucosamine F1 Typine F11 Glutatione (reduced form) C3 D-L-S-Hydroxy- Buyric Acid G4 Copyrlic Acid H5 D-L-L-Lipcic Acid H6 Thoenine H7 D-L-Carnitine H8 Choline H9 Tween 20 <t< td=""></t<>

PM6 MicroPlate™ Peptide Nitrogen sources

A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Ala-Ala	A4 Ala-Arg	A5 Ala-Asn	A6 Ala-Glu	A7 Ala-Gly	A8 Ala-His	A9 Ala-Leu	A10 Ala-Lys	A11 Ala-Phe	A12 Ala-Pro
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Ala-Ser	Ala-Thr	Ala-Trp	Ala-Tyr	Arg-Ala	Arg-Arg	Arg-Asp	Arg-Gin	Arg-Glu	Arg-lle	Arg-Leu	Arg-Lys
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Arg-Met	Arg-Phe	Arg-Ser	Arg-Trp	Arg-Tyr	Arg-Val	Asn-Glu	Asn-Val	Asp-Asp	Asp-Glu	Asp-Leu	Asp-Lys
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Asp-Phe	Asp-Trp	Asp-Val	Cys-Gly	Gin-Gin	Gin-Giy	Glu-Asp	Glu-Glu	Glu-Gly	Glu-Ser	Glu-Trp	Glu-Tyr
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Glu-Val	Gly-Ala	Gly-Arg	Gly-Cys	Gly-Gly	Gly-His	Gly-Leu	Gly-Lys	Gly-Met	Gly-Phe	Gly-Pro	Gly-Ser
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Gly-Thr	Gly-Trp	Gly-Tyr	Gly-Val	His-Asp	His-Gly	His-Leu	His-Lys	His-Met	His-Pro	His-Ser	His-Trp
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
His-Tyr	His-Val	Ile-Ala	Ile-Arg	Ile-Gin	Ile-Gly	Ile-His	Ile-Ile	lie-Met	lle-Phe	lie-Pro	lle-Ser
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
lle-Trp	Ile-Tyr	Ile-Val	Leu-Ala	Leu-Arg	Leu-Asp	Leu-Glu	Leu-Gly	Leu-lle	Leu-Leu	Leu-Met	Leu-Phe

C1 Lys-Gly

D1 Pro-Glu

E1 Thr-Phe

F1 Val-Ser

G1 γ-Glu-Gly

H1 Gly-Gly-Ala C2 Lys-Met

D2 Pro-lle

E2 Thr-Ser

F2 B-Ala-Ala

G2 γ-D-Glu-Gly

H2 Gly-Gly-D-Leu C3 Met-Thr

D3 Pro-Lys

E3 Trp-Val

F3 B-Ala-Gly

G3 Gly-D-Ala

H3 Gly-Gly-Gly

PM7 MicroPlate™ Peptide Nitrogen sources

C4 Met-Tyr

D4 Pro-Ser

E4 Tyr-lle

F4 6-Ala-His

G4 Gly-D-Asp

H4 Gly-Gly-lle C5 Phe-Asp

D5 Pro-Trp

E5 Tyr-Val

F5 Met-8-Ala

G5 Gly-D-Ser

H5 Gly-Gly-Leu C6 Phe-Glu

D6 Pro-Val

E6 Val-Ala

F6 ß-Ala-Phe

G6 Gly-D-Thr

H6 Gly-Gly-Phe

A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Leu-Ser	A4 Leu-Trp	A5 Leu-Val	A6 Lys-Ala	A7 Lys-Arg	A8 Lys-Glu	A9 Lys-lle	A10 Lys-Leu	A11 Lys-Lys	A12 Lys-Phe
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Lys-Pro	Lys-Ser	Lys-Thr	Lys-Trp	Lys-Tyr	Lys-Val	Met-Arg	Met-Asp	Met-Gin	Met-Glu	Met-Gly	Met-His
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Met-lle	Met-Leu	Met-Lys	Met-Met	Met-Phe	Met-Pro	Met-Trp	Met-Val	Phe-Ala	Phe-Gly	Phe-lie	Phe-Phe
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Phe-Pro	Phe-Ser	Phe-Trp	Pro-Ala	Pro-Asp	Pro-Gin	Pro-Gly	Pro-Hyp	Pro-Leu	Pro-Phe	Pro-Pro	Pro-Tyr
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Ser-Ala	Ser-Gly	Ser-His	Ser-Leu	Ser-Met	Ser-Phe	Ser-Pro	Ser-Ser	Ser-Tyr	Ser-Val	Thr-Ala	Thr-Arg
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Thr-Glu	Thr-Gly	Thr-Leu	Thr-Met	Thr-Pro	Trp-Ala	Trp-Arg	Trp-Asp	Trp-Glu	Trp-Gly	Trp-Leu	Trp-Lys
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
Trp-Phe	Trp-Ser	Тгр-Тгр	Trp-Tyr	Tyr-Ala	Tyr-Gin	Tyr-Glu	Tyr-Gly	Tyr-His	Tyr-Leu	Tyr-Lys	Tyr-Phe
Н1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
Туг-Тгр	Tyr-Tyr	Val-Arg	Val-Asn	Val-Asp	Val-Gly	Val-His	Val-Ile	Val-Leu	Val-Tyr	Val-Val	γ-Glu-Gly
PM8 N	licroPla	ate™	Peptide	e Nitro	aen so	urces					
A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Ala-Asp	A4 Ala-GIn	A5 Ala-lle	A6 Ala-Met	A7 Ala-Val	A8 Asp-Ala	A9 Asp-Gin	A10 Asp-Gly	A11 Glu-Ala	A12 Gly-Asn
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Gly-Asp	Gly-lle	His-Ala	His-Glu	His-His	Ile-Asn	Ile-Leu	Leu-Asn	Leu-His	Leu-Pro	Leu-Tyr	Lys-Asp

C7 Gin-Giu

D7 Ser-Asn

E7 Val-Gin

F7 D-Ala-D-Ala

G7 Gly-D-Val

H7 Val-Tyr-Val C8 Phe-Met

D8 Ser-Asp

E8 Val-Glu

F8 D-Ala-Gly

G8 Leu-B-Ala

H8 Gly-Phe-Phe C9 Phe-Tyr

D9 Ser-Gin

E9 Val-Lys

F9 D-Ala-Leu

G9 Leu-D-Leu

H9 Leu-Gly-Gly C10 Phe-Val

D10 Ser-Glu

E10 Val-Met

F10 D-Leu-D-Leu

G10 Phe-8-Ala

H10 Leu-Leu-Leu C11 Pro-Arg

D11 Thr-Asp

E11 Val-Phe

F11 D-Leu-Gly

G11 Ala-Ala-Ala

H11 Phe-Gly-Gly C12 Pro-Asn

D12 Thr-Gin

E12 Val-Pro

F12 D-Leu-Tyr

G12 D-Ala-Gly-Gly

H12 Tyr-Gly-Gly

Phenotype MicroArrays™

PM9 MicroPlate™ Osmolytes

A1 NaCl 1%	A2 NaCl 2%	A3 NaCl 3%	A4 NaCl 4%	A5 NaCl 5%	A6 NaCl 5.5%	A7 NaCl 6%	A8 NaCl 6.5%	A9 NaCl 7%	A10 NaCl 8%	A11 NaCl 9%	A12 NaCl 10%
B1 NaCl 6%	B2 NaCl 6% + Betaine	B3 NaCl 6% + N-N Dimethyl Glycine	B4 NaCl 6% + Sarcosine	B5 NaCl 6% + Dimethyl sulphonyl propionate	B6 NaCl 6% + MOPS	B7 NaCl 6% + Ectoine	B8 NaCl 6% + Choline	B9 NaCl 6% + Phosphoryl Choline	B10 NaCl 6% + Creatine	B11 NaCl 6% + Creatinine	B12 NaCl 6% + L- Carnitine
C1 NaCl 6% + KCl	C2 NaCl 6% + L-Proline	C3 NaCl 6% + N-Acetyl L-Glutamine	C4 NaCl 6% + β- Glutamic Acid	C5 NaCl 6% + γ–Amino-N- Butyric Acid	C6 NaCl 6% + Glutathione	C7 NaCl 6% + Glycerol	C8 NaCl 6% + Trehalose	C9 NaCl 6% + Trimethylamine- N-oxide	C10 NaCl 6% + Trimethylamine	C11 NaCl 6% + Octopine	C12 NaCl 6% + Trigonelline
D1 Potassium chloride 3%	D2 Potassium chloride 4%	D3 Potassium chloride 5%	D4 Potassium chloride 6%	D5 Sodium sulfate 2%	D6 Sodium sulfate 3%	D7 Sodium sulfate 4%	D8 Sodium sulfate 5%	D9 Ethylene glycol 5%	D10 Ethylene glycol 10%	D11 Ethylene glycol 15%	D12 Ethylene glycol 20%
E1 Sodium formate 1%	E2 Sodium formate 2%	E3 Sodium formate 3%	E4 Sodium formate 4%	E5 Sodium formate 5%	E6 Sodium formate 6%	E7 Urea 2%	E8 Urea 3%	E9 Urea 4%	E10 Urea 5%	E11 Urea 6%	E12 Urea 7%
F1 Sodium Lactate 1%	F2 Sodium Lactate 2%	F3 Sodium Lactate 3%	F4 Sodium Lactate 4%	F5 Sodium Lactate 5%	F6 Sodium Lactate 6%	F7 Sodium Lactate 7%	F8 Sodium Lactate 8%	F9 Sodium Lactate 9%	F10 Sodium Lactate 10%	F11 Sodium Lactate 11%	F12 Sodium Lactate 12%
G1 Sodium Phosphate pH 7 20mM	G2 Sodium Phosphate pH 7 50mM	G3 Sodium Phosphate pH 7 100mM	G4 Sodium Phosphate pH 7 200mM	G5 Sodium Benzoate pH 5.2 20mM	G6 Sodium Benzoate pH 5.2 50mM	G7 Sodium Benzoate pH 5.2 100mM	G8 Sodium Benzoate pH 5.2 200mM	G9 Ammonium sulfate pH 8 10mM	G10 Ammonium sulfate pH 8 20mM	G11 Ammonium sulfate pH 8 50mM	G12 Ammonium sulfate pH 8 100mM
H1 Sodium Nitrate 10mM	H2 Sodium Nitrate 20mM	H3 Sodium Nitrate 40mM	H4 Sodium Nitrate 60mM	H5 Sodium Nitrate 80mM	H6 Sodium Nitrate 100mM	H7 Sodium Nitrite 10mM	H8 Sodium Nitrite 20mM	H9 Sodium Nitrite 40mM	H10 Sodium Nitrite 60mM	H11 Sodium Nitrite 80mM	H12 Sodium Nitrite 100mM
PM10	MicroP	late™	рH								
А1 pH 3.5	A2 pH 4	A3 pH 4.5	А4 рН 5	А5 pH 5.5	Аб рН б	А7 pH 7	А8 рН 8	A9 pH 8.5	А10 рН 9	A11 pH 9.5	A12 pH 10
B1 pH 4.5	B2 pH 4.5 + L-Alanine	B3 pH 4.5 + L-Arginine	B4 pH 4.5 + L-Asparagine	B5 pH 4.5 + L-Aspartic Acid	B6 pH 4.5 + L-Glutamic Acid	B7 pH 4.5 + L-Glutamine	B8 pH 4.5 + Glycine	B9 pH 4.5 + L-Histidine	B10 pH 4.5 + L-Isoleucine	B11 pH 4.5 + L-Leucine	B12 pH 4.5 + L-Lysine
C1 pH 4.5 + L-Methionine	C2 pH 4.5 + L-Phenylalanine	C3 pH 4.5 + L-Proline	C4 pH 4.5 + L-Serine	C5 pH 4.5 + L-Threonine	C6 pH 4.5 + L-Tryptophan	C7 pH 4.5 + L-Citrulline	C8 pH 4.5 + L-Valine	C9 pH 4.5 + Hydroxy- L-Proline	C10 pH 4.5 + L-Ornithine	C11 pH 4.5 + L-Homoarginine	C12 pH 4.5 + L-Homoserine
D-1 pH 4.5 + Anthranilic Acid	D2 pH 4.5 + L-Norleucine	D3 pH 4.5 + L-Norvaline	D4 pH 4.5 + α-Amino-N- Butyric Acid	D5 pH 4.5 + p-Amino- Benzoic Acid	D6 pH 4.5 + L-Cysteic Acid	D7 pH 4.5 + D-Lysine	D8 pH 4.5 + 5-Hydroxy Lysine	D9 pH 4.5 + 5-Hydroxy Tryptophan	D10 pH 4.5 + D,L-Diamino- Pimelic Acid	D11 pH 4.5 + Trimethylamine- N-oxide	D12 pH 4.5 + Urea
Е1 pH 9.5	E2 pH 9.5 + L-Alanine	E3 pH 9.5 + L-Arginine	E4 pH 9.5 + L-Asparagine	E5 pH 9.5 + L-Aspartic Acid	E6 pH 9.5 + L-Glutamic Acid	E7 pH 9.5 + L-Glutamine	E8 pH 9.5 + Glycine	E9 pH 9.5 + L-Histidine	E10 pH 9.5 + L-Isoleucine	E11 pH 9.5 + L-Leucine	E12 pH 9.5 + L-Lysine
F1 pH 9.5 + L-Methionine	F2 pH 9.5 + L-Phenylalanine	F3 pH 9.5 + L-Proline	F4 pH 9.5 + L-Serine	F5 pH 9.5 + L-Threonine	F6 pH 9.5 + L-Tryptophan	F7 pH 9.5 + L-Tyrosine	F8 pH 9.5 + L-Valine	F9 pH 9.5 + Hydroxy- L-Proline	F10 pH 9.5 + L-Ornithine	F11 pH 9.5 + L-Homoarginine	F12 pH 9.5 + L-Homoserine
G1 pH 9.5 + Anthranilic Acid	G2 pH 9.5 + L-Norleucine	G3 pH 9.5 + L-Norvaline	G4 pH 9.5 + Agmatine	G5 pH 9.5 + Cadaverine	G6 pH 9.5 + Putrescine	G7 pH 9.5 + Histamine	G8 pH 9.5 + Phenylethylamine	G9 pH 9.5 + Tyramine	G10 pH 9.5 + Creatine	G11 pH 9.5 + Trimethylamine- N-oxide	G12 pH 9.5 + Urea
H1 X-Caprylate	H2 X–α-D-Glucoside	H3 X-β-D- Glucoside	H4 X-α-D- Galactoside	H5 X-β-D- Galactoside	H6 X-α-D- Glucuronide	H7 X-β-D- Glucuronide	H8 X-β-D- Glucosaminide	H9 X-β-D- Galactosaminide	H10 X-α-D- Mannoside	H11 X-PO4	H12 X-SO4

BiOLOG

Phenotype MicroArraysTM

PM11C MicroPlate™

A1 Amikacin	A2 Amikacin	A3 Amikacin	A4 Amikacin	A5 Chlortetracycline	A6 Chlortetracycline	A7 Chlortetracycline	A8 Chlortetracycline	A9 Lincomycin	A10 Lincomycin	A11 Lincomycin	A12 Lincomycin
1	2	3	4	1	2	3	4	1	2	3	4
B1 Amoxicillin	B2 Amoxicillin	B3 Amoxicillin	B4 Amoxicillin	B5 Cloxacillin	B6 Cloxacillin	B7 Cloxacillin	B8 Cloxacillin	B9 Lomefloxacin	B10 Lomefloxacin	B11 Lomefloxacin	B12 Lomefloxacin
1	2	3	4	1	2	3	4	1	2	3	4
C1 Bleomycin	C2 Bleomycin	C3 Bleomycin	C4 Bleomycin	C5 Colistin	C6 Colistin	C7 Colistin	C8 Colistin	C9 Minocycline	C10 Minocycline	C11 Minocycline	C12 Minocycline
1	2	3	4	1	2	3	4	3	2	3	4
D1 Capreomycin	D2 Capreomycin	D3 Capreomycin	D4 Capreomycin	D5 Demeclocycline	D6 Demeclocycline	D7 Demeclocycline	D8 Demeclocycline	D9 Nafcillin	D10 Nafcillin	D11 Nafcillin	D12 Nafcillin
1	2	3	4	1	2	3	4	1	2	3	4
E1 Cefazolin	E2 Cefazolin	E3 Cefazolin	E4 Cefazolin	E5 Enoxacin	E6 Enoxacin	E7 Enoxacin	E8 Enoxacin	E9 Nalidixic acid	E10 Nalidixic acid	E11 Nalidixic acid	E12 Nalidixic acid
1	2	3	4	1	2	3	4	1	2	3	4
F1 Chloramphenicol	F2 Chloramphenicol	F3 Chloramphenicol	F4 Chloramphenicol	F5 Erythromycin	F6 Erythromycin	F7 Erythromycin	F8 Erythromycin	F9 Neomycin	F10 Neomycin	F11 Neomycin	F12 Neomycin
1	2	3	4	1	2	3	4	1	2	3	4
G1 Ceftriaxone	G2 Ceftriaxone	G3 Ceftriaxone	G4 Ceftriaxone	G5 Gentamicin	G6 Gentamicin	G7 Gentamicin	G8 Gentamicin	G9 Potassium tellurite	G10 Potassium tellurite	G11 Potassium tellurite	G12 Potassium tellurite
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cephalothin	H2 Cephalothin	H3 Cephalothin	H4 Cephalothin	H5 Kanamycin	H6 Kanamycin	H7 Kanamycin	H8 Kanamycin	H9 Ofloxacin	H10 Ofloxacin	H11 Ofloxacin	H12 Ofloxacin
1	2	3	4	1	2	3	4	1	2	3	4

PM12B MicroPlate™

A1 Penicillin G	A2 Penicillin G	A3 Penicillin G	A4 Penicillin G	A5 Tetracycline	A6 Tetracycline	A7 Tetracycline	A8 Tetracycline	A9 Carbenicillin	A10 Carbenicillin	A11 Carbenicillin	A12 Carbenicillin
1	2	3	4	1	2	3	4	1	2	3	4
B1 Oxacillin	B2 Oxacillin	B3 Oxacillin	B4 Oxacillin	B5 Penimepicycline	B6 Penimepicycline	B7 Penimepicycline	B8 Penimepicycline	B9 Polymyxin B	B10 Polymyxin B	B11 Polymyxin B	B12 Polymyxin B
1	2	3	4	1	2	3	4	1	2	3	4
C1 Paromomycin	C2 Paromomycin	C3 Paromomycin	C4 Paromomycin	C5 Vancomycin	C6 Vancomycin	C7 Vancomycin	C8 Vancomycin	C9 D,L-Serine hydroxamate	C10 D,L-Serine hydroxamate	C11 D,L-Serine hydroxamate	C12 D,L-Serine hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
D1 Sisomicin	D2 Sisomicin	D3 Sisomicin	D4 Sisomicin	D5 Sulfamethazine	D6 Sulfamethazine	D7 Sulfamethazine	D8 Sulfamethazine	D9 Novobiocin	D10 Novobiocin	D11 Novobiocin	D12 Novobiocin
1	2	3	4	1	2	3	4	1	2	3	4
E1 2,4-Diamino-6,7- diisopropyl- pteridine	E2 2,4-Diamino-6,7- diisopropyl- pteridine	E3 2,4-Diamino-6,7- diisopropyl- pteridine	E4 2,4-Diamino-6,7- diisopropyl- pteridine	E5 Sulfadiazine	E6 Sulfadiazine	E7 Sulfadiazine	E8 Sulfadiazine	E9 Benzethonium chloride	E10 Benzethonium chloride	E11 Benzethonium chloride	E12 Benzethonium chloride
1	2	3	4	1	2	3	4	1	2	3	4
F1 Tobramycin	F2 Tobramycin	F3 Tobramycin	F4 Tobramycin	F5 Sulfathiazole	F6 Sulfathiazole	F7 Sulfathiazole	F8 Sulfathiazole	F9 5-Fluoroorotic acid	F10 5-Fluoroorotic acid	F11 5-Fluoroorotic acid	F12 5-Fluoroorotic acid
1	2	3	4	1	2	3	4	1	2	3	4
G1 Spectinomycin	G2 Spectinomycin	G3 Spectinomycin	G4 Spectinomycin	G5 Sulfa- methoxazole	G6 Sulfa- methoxazole	G7 Sulfa- methoxazole	GB Sulfa- methoxazole	G9 L-Aspartic-β- hydroxamate	G10 L-Aspartic-β- hydroxamate	G11 L-Aspartic-β- hydroxamate	G12 L-Aspartic-β- hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
H1 Spiramycin	H2 Spiramycin	H3 Spiramycin	H4 Spiramycin	H5 Rifampicin	H6 Rifampicin	H7 Rifampicin	H8 Rifampicin	H9 Dodecyltrimethyl ammonium bromide	H10 Dodecyltrimethyl ammonium bromide	H11 Dodecyltrimethyl ammonium bromide	H12 Dodecyltrimethyl ammonium bromide
1	2	3	4	1	2	3	4	1	2	3	4

Phenotype MicroArraysTM

PM13B MicroPlate™

A1 Ampicillin	A2 Ampicillin	A3 Ampicillin	A4 Ampicillin	A5 Dequalinium chloride	A6 Dequalinium chloride	A7 Dequalinium chloride	A8 Dequalinium chloride	A9 Nickel chloride	A10 Nickel chloride	A11 Nickel chloride	A12 Nickel chloride
1	2	3	4	1	2	3	4	1	2	3	4
B1 Azlocillin	B2 Azlocillin	B3 Azlocillin	B4 Azlocillin	B5 2, 2'-Dipyridyl	B6 2, 2'-Dipyridyl	B7 2, 2'-Dipyridyl	B8 2, 2'-Dipyridyl	B9 Oxolinic acid	B10 Oxolinic acid	B11 Oxolinic acid	B12 Oxolinic acid
1	2	3	4	1	2	3	4	1	2	3	4
C1 6-Mercapto- purine	C2 6-Mercapto- purine	C3 6-Mercapto- purine	C4 6-Mercapto- purine	C5 Doxycycline	C6 Doxycycline	C7 Doxycycline	C8 Doxycycline	C9 Potassium chromate	C10 Potassium chromate	C11 Potassium chromate	C12 Potassium chromate
1	2	3	4	1	2	3	4	1	2	3	4
D1 Cefuroxime	D2 Cefuroxime	D3 Cefuroxime	D4 Cefuroxime	D5 5-Fluorouracil	D6 5-Fluorouracil	D7 5-Fluorouracil	D8 5-Fluorouracil	D9 Rolitetracycline	D10 Rolitetracycline	D11 Rolitetracycline	D12 Rolitetracycline
1	2	3	4	1	2	3	4	1	2	3	4
E1 Cytosine-1-beta- D-arabino- furanoside	E2 Cytosine-1-beta- D-arabino- furanoside	E3 Cytosine-1-beta- D-arabino- furanoside	E4 Cytosine-1-beta- D-arabino- furanoside	E5 Geneticin (G418)	E6 Geneticin (G418)	E7 Geneticin (G418)	E8 Geneticin (G418)	E9 Ruthenium red	E10 Ruthenium red	E11 Ruthenium red	E12 Ruthenium red
1	2	3	4	1	2	3	4	1	2	3	4
F1 Cesium chloride	F2 Cesium chloride	F3 Cesium chloride	F4 Cesium chloride	F5 Glycine	F6 Glycine	F7 Glycine	F8 Glycine	F9 Thallium (I) acetate	F10 Thallium (l) acetate	F11 Thallium (I) acetate	F12 Thallium (I) acetate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Cobalt chloride	G2 Cobalt chloride	G3 Cobalt chloride	G4 Cobalt chloride	G5 Manganese chloride	G6 Manganese chloride	G7 Manganese chloride	G8 Manganese chloride	G9 Trifluoperazine	G10 Trifluoperazine	G11 Trifluoperazine	G12 Trifluoperazine
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cupric chloride	H2 Cupric chloride	H3 Cupric chloride	H4 Cupric chloride	H5 Moxalactam	H6 Moxalactam	H7 Moxalactam	H8 Moxalactam	H9 Tylosin	H10 Tylosin	H11 Tylosin	H12 Tylosin
1	2	3	4	1	2	3	4	1	2	3	4

PM14A MicroPlate™

A1	42	43	A4	45	46	47	48	140	410	A11	A12
Acriflavine	Acriflavine	Acriflavine	Acriflavine	Furaltadone	Furaltadone	Furaltadone	Furaltadone	Sanguinarine	Sanguinarine	Sanguinarine	Sanguinarine
5.555.00050.000.000		0.000.000.000.000	101000000000000000000000000000000000000		551 deserves a second	0.000.000.000.0000	5 (55 (61 (61 (51 (51 (51 (51 (51 (51 (51 (51 (51 (5				
1	2	3	4	1 1	2	3	4	1	2	3	4
P1	- P2	-	P4	P6	P6	P7			P10	P11	P12
9-Aminoacridine	9-Aminoacridine	9-Aminoacridine	9-Aminoacridine	Fusaric acid	Fusaric acid	Fusaric acid	Fusaric acid	Sodium arsenate	Sodium arsenate	Sodium arsenate	Sodium arsenate
1	2	3	4		2	3	4	4	2	3	4
	C2	C3	-	C5	-	67	108		C10	C11	C12
Boric Acid	Boric Acid	Boric Acid	Boric Acid	1-Hydroxy-	1-Hydroxy-	1-Hydroxy-	1-Hydroxy-	Sodium cvanate	Sodium cvanate	Sodium cvanate	Sodium cvanate
				pyridine -2-	pyridine -2-	pyridine -2-	pyridine -2-				
				thione	thione	thione	thione				
1	2	3			2	3			2	3	
D1		02	D4	06	-	07	D.		- D10	D11	D12
Cadmium	Cadmium	Cadmium	Cadmium	lodoacetate	Iodoacetate	lodoacetate	lodoacetate	Sodium	Sodium	Sodium	Sodium
chloride	chloride	chloride	chloride					dichromate	dichromate	dichromate	dichromate
125 - 200 August (2003)		10000000 2000- 1	2010-00-00-00-00-00-00-00-00-00-00-00-00-					1 C C			
	2	2			2		1.00		2		
1		5	-		2	5	4	1	2	5	-
Cefoxitin	Cefoxitin	E3 Cefoxitin	E4 Cefoxitin	Nitrofurantoin	Nitrofurantoin	E/ Nitrofurantoin	Nitrofurantoin	Sodium	Sodium	Sodium	Sodium
		Colonali						metaborate	metaborate	metaborate	metaborate
	2	2			2	2		3	2		
1	2	3	4	1	2	3	4	1	2	3	4
Chloramphenicol	Chloramphenicol	Chloramphenicol	Chloremphenicol	Piperacillin	Piperacillin	Piperacillin	Piperacillin	Sodium	F10 Sodium	Sodium	Sodium
Cinoramphemicor	Chioramphenicor	Chioramphenicor	Chioramphenicor	riporacium	riperacium	riperacinin	riperacium	metavanadate	metavanadate	metavanadate	metavanadate
L											
1	2	3	4	1	2	3	4	1	2	3	4
G1 Cholonthring	G2 Cholondhring	G3 Cholonthrine	G4 Cholorathring	G5 Corbonicillin	G6 Corbonicillin	G/	G8	G9	G10	G11	G12
Cheleryunnie	Cheleryunnie	Cheleryunne	Cheleryunnie	Carbenicium	Garbenichim	Carbenicillin	Carbenicinin	Sodium nunte	Sodium nunte	Sodium nunte	Sodium nunte
222.20	221.01				200 C					1000	
1	2	3	4	1	2	3	4	1	2	3	4
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
EGIA	EGIA	EGIA	EGIA	Promethazine	Promernazine	Promethazine	Promethazine	orthovanadato	orthovenedete	orthovenedete	orthovenedate
							1	ortiovanadate	orthovariadate	ortiovariadate	ormovariadate
17.29	9377	11	1.50	0.05	55 m		0.00				127
1	2	3	4	1	2	3	4	1	2	3	4

BiOLOG

Phenotype MicroArraysTM

PM15B MicroPlate™

A1 Procaine	A2 Procaine	A3 Procaine	A4 Procaine	A5 Guanidine hydrochloride	A6 Guanidine hydrochloride	A7 Guanidine hydrochloride	A8 Guanidine hydrochloride	A9 Cefmetazole	A10 Cefmetazole	A11 Cefmetazole	A12 Cefmetazole
1	2	3	4	1	2	3	4	1	2	3	4
B1 D-Cycloserine	B2 D-Cycloserine	B3 D-Cycloserine	B4 D-Cycloserine	B5 EDTA	B6 EDTA	B7 EDTA	B8 EDTA	B9 5,7-Dichloro- 8- hydroxy- quinaldine	B10 5,7-Dichloro- 8- hydroxy- quinaldine	B11 5,7-Dichloro- 8- hydroxy- quinaldine	B12 5,7-Dichloro- 8- hydroxy- quinaldine
1	2	3	4	1	2	3	4	1	2	3	4
C1 5,7-Dichloro-8- hydroxyquinoline	C2 5,7-Dichloro-8- hydroxyquinoline	C3 5,7-Dichloro-8- hydroxyquinoline	C4 5,7-Dichloro-8- hydroxyquinoline	C5 Fusidic acid	C6 Fusidic acid	C7 Fusidic acid	C8 Fusidic acid	C9 1,10- Phenanthroline	C10 1,10- Phenanthroline	C11 1,10- Phenanthroline	C12 1,10- Phenanthroline
1	2	3	4	1	2	3	4	1	2	3	4
D1 Phleomycin	D2 Phleomycin	D3 Phleomycin	D4 Phleomycin	D5 Domiphen bromide	D6 Domiphen bromide	D7 Domiphen bromide	D8 Domiphen bromide	D9 Nordihydroguaia retic acid	D10 Nordihydroguaia retic acid	D11 Nordihydroguaia retic acid	D12 Nordihydroguaia retic acid
1	2	3	4	1	2	3	4	1	2	3	4
E1 Alexidine	E2 Alexidine	E3 Alexidine	E4 Alexidine	E5 5-Nitro-2- furaldehyde semicarbazone	E6 5-Nitro-2- furaldehyde semicarbazone	E7 5-Nitro-2- furaldehyde semicarbazone	E8 5-Nitro-2- furaldehyde semicarbazone	E9 Methyl viologen	E10 Methyl viologen	E11 Methyl viologen	E12 Methyl viologen
1	2	3	4	1	2	3	4	1	2	3	4
F1 3, 4-Dimethoxy- benzyl alcohol	F2 3, 4-Dimethoxy- benzyl alcohol	F3 3, 4-Dimethoxy- benzyl alcohol	F4 3, 4-Dimethoxy- benzyl alcohol	F5 Oleandomycin	F6 Oleandomycin	F7 Oleandomycin	F8 Oleandomycin	F9 Puromycin	F10 Puromycin	F11 Puromycin	F12 Puromycin
1	2	3	4	1	2	3	4	1	2	3	4
G1 CCCP	G2 CCCP	G3 CCCP	G4 CCCP	G5 Sodium azide	G6 Sodium azide	G7 Sodium azide	G8 Sodium azide	G9 Menadione	G10 Menadione	G11 Menadione	G12 Menadione
1	2	3	4	1	2	3	4	1	2	3	4
H1 2-Nitroimidazole	H2 2-Nitroimidazole	H3 2-Nitroimidazole	H4 2-Nitroimidazole	H5 Hydroxyurea	H6 Hydroxyurea	H7 Hydroxyurea	H8 Hydroxyurea	H9 Zinc chloride	H10 Zinc chloride	H11 Zinc chloride	H12 Zinc chloride
1	2	3	4	1	2	3	4	3	2	3	4

PM16A MicroPlate™

A1 Cefotaxime	A2 Cefotaxime	A3 Cefotaxime	A4 Cefotaxime	A5 Phosphomycin	A6 Phosphomycin	A7 Phosphomycin	A8 Phosphomycin	A9 5-Chloro-7-iodo- 8-hydroxy- quinoline	A10 5-Chloro-7-iodo- 8-hydroxy- quinoline	A11 5-Chloro-7-iodo- 8-hydroxy- quinoline	A12 5-Chloro-7-iodo- 8-hydroxy- quinoline
1	2	3	4	1	2	3	4	1	2	3	4
B1 Norfloxacin	B2 Norfloxacin	B3 Norfloxacin	B4 Norfloxacin	B5 Sulfanilamide	B6 Sulfanilamide	B7 Sulfanilamide	B8 Sulfanilamide	B9 Trimethoprim	B10 Trimethoprim	B11 Trimethoprim	B12 Trimethoprim
1	2	3	4	1	2	3	4	1	2	3	4
C1 Dichlofluanid	C2 Dichlofluanid	C3 Dichlofluanid	C4 Dichlofluanid	C5 Protamine sulfate	C6 Protamine sulfate	C7 Protamine sulfate	C8 Protamine sulfate	C9 Cetylpyridinium chloride	C10 Cetylpyridinium chloride	C11 Cetylpyridinium chloride	C12 Cetylpyridinium chloride
1	2	3	4	1	2	3	4	1	2	3	4
D1 1-Chloro -2,4- dinitrobenzene	D2 1-Chloro -2,4- dinitrobenzene	D3 1-Chloro -2,4- dinitrobenzene	D4 1-Chloro -2,4- dinitrobenzene	D5 Diamide	D6 Diamide	D7 Diamide	D8 Diamide	D9 Cinoxacin	D10 Cinoxacin	D11 Cinoxacin	D12 Cinoxacin
1	2	3	4	1	2	3	4	1	2	3	4
E1 Streptomycin	E2 Streptomycin	E3 Streptomycin	E4 Streptomycin	E5 5-Azacytidine	E6 5-Azacytidine	E7 5-Azacytidine	E8 5-Azacytidine	E9 Rifamycin SV	E10 Rifamycin SV	E11 Rifamycin SV	E12 Rifamycin SV
1	2	3	4	1	2	3	4	1	2	3	4
F1 Potassium tellurite	F2 Potassium tellurite	F3 Potassium tellurite	F4 Potassium tellurite	F5 Sodium selenite	F6 Sodium selenite	F7 Sodium selenite	F8 Sodium selenite	F9 Aluminum sulfate	F10 Aluminum sulfate	F11 Aluminum sulfate	F12 Aluminum sulfate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Chromium chloride	G2 Chromium chloride	G3 Chromium chloride	G4 Chromium chloride	G5 Ferric chloride	G6 Ferric chloride	G7 Ferric chloride	G8 Ferric chloride	G9 L-Glutamic-g- hydroxamate	G10 L-Glutamic-g- hydroxamate	G11 L-Glutamic-g- hydroxamate	G12 L-Glutamic-g- hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
H1 Glycine hydroxamate	H2 Glycine hydroxamate	H3 Glycine hydroxamate	H4 Glycine hydroxamate	H5 Chloroxylenol	H6 Chloroxylenol	H7 Chloroxylenol	H8 Chloroxylenol	H9 Sorbic acid	H10 Sorbic acid	H11 Sorbic acid	H12 Sorbic acid
1	2	3	4	1	2	3	4	1	2	3	4

Phenotype MicroArraysTM

PM17A MicroPlate™

A1 D-Serine	A2 D-Serine	A3 D-Serine	A4 D-Serine	A5 β-Chloro- L-alanine hydrochloride	A6 β-Chloro- L-alanine hydrochloride	A7 β-Chloro- L-alanine hydrochloride	A8 β-Chloro- L-alanine hydrochloride	A9 Thiosalicylic acid	A10 Thiosalicylic acid	A11 Thiosalicylic acid	A12 Thiosalicylic acid
1	2	3	4	1	2	3	4	1	2	3	4
B1 Sodium salicylate	B2 Sodium salicylate	B3 Sodium salicylate	B4 Sodium salicylate	B5 Hygromycin B	B6 Hygromycin B	B7 Hygromycin B	B8 Hygromycin B	B9 Ethionamide	B10 Ethionamide	B11 Ethionamide	B12 Ethionamide
1	2	3	4	1	2	3	4	1	2	3	4
C1 4-Aminopyridine	C2 4-Aminopyridine	C3 4-Aminopyridine	C4 4-Aminopyridine	C5 Sulfachloro- pyridazine	C6 Sulfachloro- pyridazine	C7 Sulfachloro- pyridazine	C8 Sulfachloro- pyridazine	C9 Sulfamono- methoxine	C10 Sulfamono- methoxine	C11 Sulfamono- methoxine	C12 Sulfamono- methoxine
1	2	3	4	1	2	3	4	1	2	3	4
D1 Oxycarboxin	D2 Oxycarboxin	D3 Oxycarboxin	D4 Oxycarboxin	D5 3-Amino-1,2,4- triazole	D6 3-Amino-1,2,4- triazole	D7 3-Amino-1,2,4- triazole	D8 3-Amino-1,2,4- triazole	D9 Chlorpromazine	D10 Chlorpromazine	D11 Chlorpromazine	D12 Chlorpromazine
1	2	3	4	1	2	3	4	1	2	3	4
E1 Niaproof	E2 Niaproof	E3 Niaproof	E4 Niaproof	E5 Compound 48/80	E6 Compound 48/80	E7 Compound 48/80	E8 Compound 48/80	E9 Sodium tungstate	E10 Sodium tungstate	E11 Sodium tungstate	E12 Sodium tungstate
1	2	3	4	1	2	3	4	1	2	3	4
F1 Lithium chloride	F2 Lithium chloride	F3 Lithium chloride	F4 Lithium chloride	F5 DL-Methionine hydroxamate	F6 DL-Methionine hydroxamate	F7 DL-Methionine hydroxamate	F8 DL-Methionine hydroxamate	F9 Tannic acid	F10 Tannic acid	F11 Tannic acid	F12 Tannic acid
1	2	3	4	1	2	3	4	1	2	3	4
G1 Chlorambucil	G2 Chlorambucil	G3 Chlorambucil	G4 Chlorambucil	G5 Cefamandole nafate	G6 Cefamandole nafate	G7 Cefamandole nafate	G8 Cefamandole nafate	G9 Cefoperazone	G10 Cefoperazone	G11 Cefoperazone	G12 Cefoperazone
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cefsulodin	H2 Cefsulodin	H3 Cefsulodin	H4 Cefsulodin	H5 Caffeine	H6 Caffeine	H7 Caffeine	H8 Caffeine	H9 Phenylarsine oxide	H10 Phenylarsine oxide	H11 Phenylarsine oxide	H12 Phenylarsine oxide
1	2	3	4	1	2	3	4	1	2	3	4

PM18C MicroPlate™

144	140	140	144	46	140	147	140	40	1440	1444	1440
Ketoprofen	Ketoprofen	Ketoprofen	Ketoprofen	Sodium	Sodium	Sodium	Sodium	Thiamphenicol	Thiamphenicol	Thiamphenicol	Thiamphenicol
Retoproteit	Recopionen	Recopioien	Retoproteit	pyrophosphate	pyrophosphate	pyrophosphate	pyrophosphate	rmanphemeor	manphemeor	rmamphemeor	manphoneor
				decahydrate	decahydrate	decahydrate	decahydrate				
				82	1.22	19					
1	2	3	4	1	2	3	4	1	2	3	4
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Trifluorothymidin	Trifluorothymidin	Trifluorothymidin	Trifluorothymidin	Pipemidic Acid	Pipemidic Acid	Pipemidic Acid	Pipemidic Acid	Azathioprine	Azathioprine	Azathioprine	Azathioprine
6	0	0	0								
	2										
1	-	3	4	1	2	3	4	1	2	3	4
	C2	C2	C4	CE	-		100	<u></u>	C10	011	C12
Polyd Jysine	Poly-L Jysine	Polv-L-lysine	Poly-L Jysine	Sulfisovazola	Sulfisorazole	Sulfisorazole	Sulfisorazole	Pentachloro	Pentachloro	Pentachloro	Pentachloro
i ory city since	i ory-Lity and	r ory-E-ty since	i ory-e-ty since	Cumsonazore	Guinsoxazoic	oumboxatore	Cumboxazoic	phenol	phenol	phenol	phenol
1.25	1222		1.85	1225	10.5	19.85	2010		1.02	2003	121.
1	2	3	4	1	2	3	4	1	2	3	4
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Sodium	Sodium	Sodium	Sodium	Sodium bromate	Sodium bromate	Sodium bromate	Sodium bromate	Lidocaine	Lidocaine	Lidocaine	Lidocaine
m-arsenite	m-arsenite	m-arsenite	m-arsenite								
1	2	3	4	1	2	3	4	1	2	3	4
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Antimony (III)	Antimony (III)	Antimony (III)	Antimony (III)
metasilicate	metasilicate	metasilicate	metasilicate	m-periodate	m-periodate	m-periodate	m-periodate	chloride	chloride	chloride	chloride
1	2	3	4	1	2	3	4	3	2	3	4
E1	E2	53	54		- F6	57	50		E10	E44	E42
Semicarbazide	Semicarbazide	Semicarbazide	Semicarbazide	Tinidazole	Tinidazole	Tinidazole	Tinidazole	Aztreonam	Aztreonam	Aztreonam	Aztreonam
1	2	3	4	1	2	3	4	1	2	3	4
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
Triclosan	Triclosan	Triclosan	Triclosan	3,5-Diamino-	3,5-Diamino-	3,5-Diamino-	3,5-Diamino-	Myricetin	Myricetin	Myricetin	Myricetin
				1,2,4-triazole	1,2,4-triazole	1,2,4-triazole	1,2,4-triazole				
				(Guanazole)	(Guanazoie)	(Guariazole)	(Guanazole)				
1	2	3	4	1	2	3	4	1	2	3	4
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
5-fluoro-5'-	5-fluoro-5'-	5-fluoro-5'-	5-fluoro-5'-	2-Phenylphenol	2-Phenylphenol	2-Phenylphenol	2-Phenylphenol	Plumbagin	Plumbagin	Plumbagin	Plumbagin
deoxyuridine	deoxyuridine	deoxyuridine	deoxyuridine						1		
2012				1	2	3	4	1	2	3	4
1	2	3	4	1977	S	S	8	2		~~~	- 18

Biolog

Phenotype MicroArraysTM

PM19 MicroPlate™

A1	A2	A3	A4	A5	A6 Callia asid	A7	A8	A9	A10	A11	A12
Josamycin	Josanyem	Josaniyem	Josanycin	Game aciu	Game acid	Game acid	Ganic acid	Coumann	Coumarin	Countarin	Coumann
1	2	3	4	1	2	3	4	1	2	3	4
B1 Methyltrioctyl- ammonium chloride	B2 Methyltrioctyl- ammonium chloride	B3 Methyltrioctyl- ammonium chloride	B4 Methyltrioctyl- ammonium chloride	B5 Harmane	B6 Harmane	B7 Harman e	B8 Harmane	B9 2,4-Dintrophenol	B10 2,4-Dintrophenol	B11 2,4-Dintrophenol	B12 2,4-Dintrophenol
1	2	3	4	1	2	3	4	1	2	3	4
C1 Chlorhexidine	C2 Chlorhexidine	C3 Chlorhexidine	C4 Chlorhexidine	C5 Umbelliferone	C6 Umbelliferone	C7 Umbelliferone	C8 Umbelliferone	C9 Cinnamic acid	C10 Cinnamic acid	C11 Cinnamic acid	C12 Cinnamic acid
1	2	3	4	1	2	3	4	1	2	3	4
D1 Disulphiram	D2 Disulphiram	D3 Disulphiram	D4 Disulphiram	D5 Iodonitro Tetrazolium Violet	D6 Iodonitro Tetrazolium Violet	D7 Iodonitro Tetrazolium Violet	D8 Iodonitro Tetrazolium Violet	D9 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D10 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D11 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D12 Phenyl- methyl- sulfonyl- fluoride (PMSF)
1	2	3	4	1	2	3	4	1	2	3	4
E1 FCCP	E2 FCCP	E3 FCCP	E4 FCCP	E5 D,L-Thioctic Acid	E6 D,L-Thioctic Acid	E7 D,L-Thioctic Acid	E8 D,L-Thioctic Acid	E9 Lawsone	E10 Lawsone	E11 Lawsone	E12 Lawsone
1	2	3	4	1	2	3	4	1	2	3	4
F1 Phenethicillin	F2 Phenethicillin	F3 Phenethicillin	F4 Phenethicillin	F5 Blasticidin S	F6 Blasticidin S	F7 Blasticidin S	F8 Blasticidin S	F9 Sodium caprylate	F10 Sodium caprylate	F11 Sodium caprylate	F12 Sodium caprylate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Lauryl sulfobetaine	G2 Lauryl sulfobetaine	G3 Lauryl sulfobetaine	G4 Lauryl sulfobetaine	G5 Dihydro- streptomycin	G6 Dihydro- streptomycin	G7 Dihydro- streptomycin	G8 Dihydro- streptomycin	G9 Hydroxylamine	G10 Hydroxylamine	G11 Hydroxylamine	G12 Hydroxylamine
1	2	3	4	1	2	3	4	1	2	3	4
H1 Hexammine cobalt (III) chloride	H2 Hexammine cobalt (III) chloride	H3 Hexammine cobalt (III) chloride	H4 Hexammine cobalt (III) chloride	H5 Thioglycerol	H6 Thioglycerol	H7 Thioglycerol	H8 Thioglycerol	H9 Polymyxin B	H10 Polymyxin B	H11 Polymyxin B	H12 Polymyxin B
1	2	3	4	1	2	3	4	1	2	3	4

PM20B MicroPlate™

A1 A Amitriptyline Ai	A2 Amitriptyline	A3 Amitriptyline	A4 Amitrintudina	A5	A6	A7	A8	A9	A10	A11	A12
			Annulptynne	Apramycin	Apramycin	Apramycin	Apramycin	Benserazide	Benserazide	Benserazide	Benserazide
1	2	3	4	1	2	3	4	1	2	3	4
B1 B3 Orphenadrine O	32 Drphenadrine	B3 Orphenadrine	B4 Orphenadrine	B5 D,L-Propranolol	B6 D,L-Propranolol	B7 D,L-Propranolol	B8 D,L-Propranolol	B9 Tetrazolium violet	B10 Tetrazolium violet	B11 Tetrazolium violet	B12 Tetrazolium violet
1	2	3	4	1	2	3	4	1	2	3	4
C1 C: Thioridazine Th	C2 Thioridazine	C3 Thioridazine	C4 Thioridazine	C5 Atropine	C6 Atropine	C7 Atropine	C8 Atropine	C9 Ornidazole	C10 Ornidazole	C11 Ornidazole	C12 Ornidazole
1	2	3	4	1	2	3	4	1	2	3	4
D1 Di Proflavine Pi	02 Proflavine	D3 Proflavine	D4 Proflavine	D5 Ciprofloxacin	D6 Ciprofloxacin	D7 Ciprofloxacin	D8 Ciprofloxacin	D9 18-Crown-6 ether	D10 18-Crown-6 ether	D11 18-Crown-6 ether	D12 18-Crown-6 ether
1	2	3	4	1	2	3	4	1	2	3	4
E1 E2 Crystal violet C1	E2 Crystal violet	E3 Crystal violet	E4 Crystal violet	E5 Dodine	E6 Dodine	E7 Dodine	E8 Dodine	E9 Hexa- chlorophene	E10 Hexa- chlorophene	E11 Hexa- chlorophene	E12 Hexa- chlorophene
1	2	3	4	1	2	3	4	1	2	3	4
F1 F2 4-Hydroxy- 4- coumarin co	72 I-Hydroxy- coumarin	F3 4-Hydroxy- coumarin	F4 4-Hydroxy- coumarin	F5 Oxytetracycline	F6 Oxytetracycline	F7 Oxytetracycline	F8 Oxytetracycline	F9 Pridinol	F10 Pridinol	F11 Pridinol	F12 Pridinol
1	2	3	4	1	2	3	4	1	2	3	4
G1 G Captan C	32 Captan	G3 Captan	G4 Captan	G5 3,5-Dinitro- benzene	G6 3,5-Dinitro- benzene	G7 3,5-Dinitro- benzene	G8 3,5-Dinitro- benzene	G9 8-Hydroxy- quinoline	G10 8-Hydroxy- quinoline	G11 8-Hydroxy- quinoline	G12 8-Hydroxy- quinoline
1	2	3	4	1	2	3	4	1	2	3	4
H1 H3 Patulin Pa	12 Patulin	H3 Patulin	H4 Patulin	H5 Tolylfluanid	H6 Tolylfluanid	H7 Tolylfluanid	H8 Tolylfluanid	H9 Troleandomycin	H10 Troleandomycin	H11 Troleandomycin	H12 Troleandomycin
1	2	3	4	1	2	3	4	1	2	3	4