UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS

GABRIELA MARINHO RIGHETTO

Otimização e elucidação da atividade antibacteriana de peptídeos catiônicos em patógenos multirresistentes

São Carlos 2022

GABRIELA MARINHO RIGHETTO

Otimização e elucidação da atividade antibacteriana de peptídeos catiônicos em patógenos multirresistentes

Tese apresentada ao Programa de Pós-Graduação em Física do Instituto de Física de São Carlos da Universidade de São Paulo para obtenção do título de Doutor(a) em Ciências.

Área de concentração: Física Biomolecular Orientador: Prof^a. Dr^a. Ilana L. B. C. Camargo

Versão Corrigida (versão original disponível na Unidade que aloja o Programa) São Carlos

2022

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

> Righetto, Gabriela Marinho Otimização e elucidação da atividade antibacteriana de peptídeos catiônicos em patógenos multirresistentes / Gabriela Marinho Righetto; orientadora Ilana Lopes Baratella da Cunha Camargo - versão corrigida -- São Carlos, 2022. 176 p.

Tese (Doutorado - Programa de Pós-Graduação em Física Biomolecular) -- Instituto de Física de São Carlos, Universidade de São Paulo, 2022.

1. Peptídeos antimicrobianos. 2. Plantaricina. 3. Bothropstoxina-I. 4. ESKAPE. 5. Despolarização. I. Camargo, Ilana Lopes Baratella da Cunha, orient. II. Título.

Ao meu eu do passado, que persistiu até aqui. Ao meu eu do futuro, que possui um longo caminho a trilhar. Ao meu eu do presente, por não desistir.

AGRADECIMENTOS

À Profa. Dra. Ilana L. B. C. Camargo por toda orientação, ensinamentos, ajuda e discussões. Além disso, por toda presença, preocupação e companheirismo que, apesar de não inerentes à função, foram necessários para continuidade do projeto.

Aos Profs, Dr. Eduardo M. Cilli, Dr. Norival A. Santos-Filho, e à aluna Thaina C. Leal, pela colaboração essencial para realização do projeto, principalmente para a pesquisa com análogos da Bothropstoxina-I.

Aos Profs. Dra. Leila M. Beltramini, e Dr. José Luiz S. Lopes, pela disponibilidade, discussões e experimentos de caracterização relacionados à Plantaricina 149.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelo apoio financeiro concedido pelo projeto nº 2018/15887-4.

Aos membros atuais e antigos do LEMiMo, em especial às minhas amigas Camila, Letícia, Aline, Ana Flávia, Luciana, Pamela, Lívia e Giovanna, pelas reuniões, discussões, risadas e muito bolos divididos.

Ao Grupo de Biofísica Biomolecular, em especial aos técnicos Bel e Rafael, pelos ensinamentos, ajuda, conselhos, e caracterizações dos peptídeos.

Ao Prof. Dr. Paulo Bispo, pelo auxílio e experimentos relacionados a evolução dirigida e sequenciamento de genoma.

Ao Laboratório de Química Medicinal e Computacional (LQMC), em especial à Dra. Júlia M. Souza, Dr. Leonardo L. G. Ferreira e Prof. Dr. Adriano Andricopulo pela colaboração nos ensaios computacionais e de citotoxicidade.

Ao Instituto de Física de São Carlos e a Universidade de São Paulo pela oportunidade de realização deste projeto de pesquisa.

Às funcionárias do serviço de Biblioteca e Informação do IFSC-USP por todo auxílio e prestatividade.

À toda minha família, que são meu apoio, em especial ao meu pai Geraldo, minha mãe Dayse, minha madrasta Lédia e minha tia Lourdes.

Aos meus irmãos, Letícia e Lucas, que estiveram e estarão ao meu lado em todas as situações, sendo meu porto seguro.

À minha namorada Giovana, que representa mais do que posso deixar registrado em palavras.

Aos meus colegas amados Camila, Tatiana e Jorge, que sempre serão a minha família são-carlense.

Aos meus queridos amigos que permaneceram desde a graduação, em especial ao Marcus, C. Beli, Luan e Rafael.

Aos meus colegas do time São Carlos Bulldogs, por representarem meus momentos de descontração. Em especial aos amigos Konrad, Francisco, Julia, Marina, Vanessa, Fernanda, Camila, Débora, Ingrid, Drielli, Karin, Mariane, Carmen, Geovana, Edvaldo, Isabela, Carol, Leislane, Douglas, Caio, Pedro, Felipe, Érica, Luis Felipe, João Victor P., J. V. Diagonel e Verônica.

Enfim, a todos que contribuíram direta ou indiretamente para a realização desse trabalho.

Muito obrigada!

"Transitar por sucessos e fracassos com coerência."

Paola Carosella

RESUMO

RIGHETTO, G. M. **Otimização e elucidação da atividade antibacteriana de peptídeos antimicrobianos em patógenos multirresistentes.** 2022. 176 p. Tese (Doutorado em Ciências) – Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Apesar dos avanços no tratamento de doenças infecciosas, microrganismos patogênicos continuam ameaçando a saúde pública. A escassez de opções terapêuticas leva ao interesse em novos compostos, assim peptídeos antimicrobianos (AMPs), como Bothropstoxina-I e Plantaricina 149 estão sendo revisitados com o objetivo de aprimorar e caracterizar sua atividade antimicrobiana. A concentração inibitória mínima (CIM) para bactérias patogênicas e a hemólise de eritrócitos humanos foram indicadores usados na avaliação da otimização das análogos sintetizados. Os peptídeos escolhidos foram NA1897, atividades dos (KKWRWHLKPW)₂K e Pep20 (Fmoc-KAVKKLFKKWG) para Bothropstoxina-I e Plantaricina 149, respectivamente. As CIMs de Pep20 e NA1897 foram determinadas para 60 bactérias de espécies, linhagens e perfis de resistência diferentes, indicando amplo espectro de ação de ambos. As cinéticas de morte de Staphylococcus aureus e Acinetobacter baumannii foram determinadas para cada um dos peptídeos, resultando em ação rápida com redução total de sobreviventes em no máximo duas horas. Este resultado aliado ao obtido para o efeito pósantibiótico sugere ação do tipo concentração-dependente. Para estudar os modos de ação dessas moléculas, uma evolução dirigida foi realizada in vitro, através de tratamentos em concentrações subinibitórias. As linhagens selecionadas tiveram o metabolismo avaliado por microarranjos fenotípicos e mutações genéticas avaliadas através de sequenciamento do genoma. Resultados indicam que estes AMPs agem na membrana citoplasmática e que mecanismos de resistência envolvem diminuição da carga aniônica da membrana. Ensaios de despolarização de membrana e microscopia eletrônica de transmissão reforçam essas hipóteses, embora seja possível um mecanismo secundário de ação, principalmente para NA1897. As moléculas aqui estudadas representam antimicrobianos de interesse, mas ainda em etapas iniciais de desenvolvimento devido a citotoxicidade apresentada, com perspectivas futuras de otimização a partir dos alvos biológicos encontrados.

Palavras-chave: Peptídeos antimicrobianos. Plantaricina. Bothropstoxina-I. ESKAPE. Despolarização

ABSTRACT

RIGHETTO, G. M. **Optimization and elucidation of cationic peptides antibacterial activity in multidrug-resistant pathogens.** 2022. 176 p. Thesis (Doctor in Science) – Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Despite advances in the treatment of infectious diseases, pathogenic microorganisms are still a threat to public health. The scarcity of therapeutic options leads to interest in new compounds, so antimicrobial peptides (AMPs) such as Bothropstoxin-I and Plantaricin 149 have been revisited in order to improve and characterize their antimicrobial activity. The minimum inhibitory concentration (MIC) for pathogenic bacteria and the hemolysis of human erythrocytes were indicators used to evaluate the optimization of the activities of the synthesized analogs. The peptides chosen were NA1897, (KKWRWHLKPW)₂K and Pep20 (Fmoc-KAVKKLFKKWG), for Bothropstoxin-I and Plantaricin 149, respectively. The MICs of Pep20 and NA1897 were determined for 60 bacteria of different species, strains, and resistance profiles, indicating a broad spectrum of action for both. The killing kinetics of Staphylococcus aureus and Acinetobacter baumannii were determined for both peptides, resulting in quick bacterial death, with a total reduction of survivors in a maximum of two hours. This result and the post-antibiotic effect suggest a concentration-dependent action. We studied the modes of action of these molecules by performing directed evolution in vitro through treatments at subinhibitory concentrations. We evaluated the metabolism of selected strains by phenotypic microarrays and genetic mutations by genome sequencing. Results indicate that these AMPs act on the cytoplasmic membrane and that resistance mechanisms involve a decrease in the anionic charge of the membrane. Membrane depolarization and transmission electron microscopy assays support these hypotheses, although a secondary mechanism of action is possible, mainly for NA1897. The molecules studied here represent antimicrobials of interest, but they are still in early stages of development due to the cytotoxicity presented, with future perspectives of optimization from the biological targets found.

Keywords: Antimicrobial peptides. Plantaricin. Bothropstoxin-I. ESKAPE. Depolarization

LISTA DE FIGURAS

Figura 1 -	Mecanismos de resistência comumente encontrados em bactéria ESKAPE29
Figura 2 -	Exemplo de configuração típica de ensaio de sinergismo pela metodologia quadriculada. As colunas 1 a 11 contêm diluições em série do composto A e as linhas A à G contêm diluições em série do composto B. A coluna 12 contém diluição do composto B sozinho, enquanto a linha H contém diluição do composto A sozinho. Esses controles são usados para determinar o valor da CIM para cada composto, que por sua vez é usado para calcular o valor de CIF
Figura 3 -	Peptídeos desenhados usando a técnica <i>Alanine Scanning</i> a partir do peptídeo (NA1307)K53
Figura 4 -	Peptídeo NA1897 ((KKWRWHLKPW) ₂ K)
Figura 5 -	Cinética de morte para <i>S. aureus</i> ATCC 25923. A. Peptídeo NA1897, com CIM de 16 mg/L. B. Antibiótico comercial daptomicina, com CIM de 1 mg/L. Limite de detecção do experimento: 10 ² CFU/mL
Figura 6 -	Cinética de morte para <i>S. aureus</i> SA43. A. Peptídeo NA1897, com CIM de 16 mg/L. B. Antibiótico comercial daptomicina, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10 ² CFU/mL63
Figura 7 -	Cinética de morte para <i>A. baumannii</i> ATCC 19606. A. Peptídeo NA1897, com CIM de 32 mg/L. B. Antibiótico comercial polimixina B, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10 ² CFU/mL
Figura 8 -	Cinética de morte para <i>A. baumannii</i> ACI50. A. Peptídeo NA1897, com CIM de 32 mg/L. B. Antibiótico comercial Polimixina B, com CIM de 128 mg/L. Limite de detecção do experimento: 10 ² CFU/mL65
Figura 9 -	Despolarização de membrana citoplasmática de NA1897 para A. <i>S. aureus</i> ATCC 25923 (CIM=16 mg/L). B. <i>A. baumannii</i> ATCC 19606 (CIM=32 mg/L)
Figura 10 -	Controle positivo da bactéria <i>S. aureus</i> ATCC 25923. A. Visão geral das células. Barra de escala = $1\mu m$ B. Bactérias em fim de divisão celular, com parede e membrana visíveis e bem definidas. Barra de escala = 200 nm
Figura 11 -	<i>S. aureus</i> ATCC 25923 tratada com NA1897 a 1xCIM (16 mg/L). As setas vermelhas apontam para descolamentos ente membrana e parede, as setas azuis apontam para septos de divisão defeituosos, as setas amarelas apontam para invaginações membranosas A . Visão geral das células. Barra de escala = 1 μ m. B. Bactérias com danos na divisão na membrana. Barra de escala = 500 nm. C,D. Bactérias em divisão celular danificadas. Barra de escala = 200 nm

Figura 12 -	<i>S. aureus</i> ATCC 25923 tratada com NA1897 a 4xCIM (64 mg/L). As setas vermelhas apontam para descolamentos ente membrana e parede, as setas azuis apontam para septos de divisão defeituosos, as setas amarelas apontam para invaginações membranosa. A . Visão geral das células. Barra de escala = 1 μ m. B. Bactérias com invaginações membranosas. Barra de escala = 500 nm. C,D. Bactérias em divisão celular defeituosa e invaginações membranosas. Barra de escala = 200 nm
Figura 13 -	Controle positivo da bactéria <i>A. baumannii</i> ATCC 19606. A. Visão geral das células. Barra de escala = $1\mu m$ B. Bactérias em detalhe, com membrana externa, parede e membrana citoplasmática visíveis e bem definidas. Barra de escala = 200 nm
Figura 14 -	A. baumannii ATCC 19606 tratada com NA1897 a 1xCIM (32 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas azuis apontam para superfície rugosa e com bolhas, e as setas amarelas apontam para vesículas intracelulares. A. Visão geral das células. Barra de escala = 1 μ m. B. Bactérias conteúdo celular condensado. Barra de escala = 500 nm. C. Bactéria com dano à membrana e extravasamento do conteúdo celular. Barra de escala = 200 nm. D. Bactéria em detalhe com membrana rugosa e com bolhas. Barra de escala = 200 nm
Figura 15 -	A. baumannii ATCC 19606 tratada com NA1897 a 4xCIM (128 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas azuis apontam para superfície rugosa e com bolhas, e as setas amarelas apontam para vesículas intracelulares. A. Visão geral das células. Barra de escala = 1 μ m. B. Bactérias conteúdo celular condensado e vesículas intracelulares. Barra de escala = 500 nm. C. Bactéria em detalhe. Barra de escala = 200 nm. D. Bactéria em detalhe com membrana rugosa e com bolhas e vesículas intracelulares. 79
Figura 16 -	Diferentes elementos que podem induzir a formação de vesículas81
Figura 17 -	Número de vezes em que a CIM aumentou para cada exposição de 30 dias, incluindo exposição com NA1897 todas as replicatas representadas. A. <i>S. aureus</i> ATCC 25923 B. <i>A. baumannii</i> ATCC 19606
Figura 18 -	Curvas de crescimento (eixo y, intensidade em unidades de omnilog) de cada poço ao longo de 48 h para a linhagem <i>S. aureus</i> ATCC 25923 antes da seleção (verde) com NA1897 e após (vermelho) em painéis de testes fenotípicos. Amarelo indica a sobreposição de ambas as condições. A, B. Painéis de fontes de carbono. C, E, F, G. Painéis de fonte de nitrogênio. D. Painel de fontes de enxofre e fósforo. H. Painel de sensibilidade osmótica e efeitos iônicos.
Figura 19 -	Mapa metabólico com destaque para as mudanças ocorridas no módulo de obtenção de energia
Figura 20 -	Condições em que a linhagem S. aureus ATCC 25923 antes da seleção apresentou vantagem. Cada quadrado representa ambas as curvas de

	crescimento (eixo y, intensidade em unidades de omnilog) de cada poço ao longo de 48 h, com concentrações crescentes do composto descrito	36
Figura 21 -	Condições em que a linhagem <i>S. aureus</i> 25923_A_NA1897 apresentou vantagem. Cada quadrado representa ambas as curvas de crescimento (eixo y, intensidade em unidades de Omnilog) de cada poço ao longo de 48 h de cada poço, com concentrações crescentes do composto descrito	88
Figura 22 -	Proteína ClfA e suas subunidades, em destaque região de serino-aspartato com alta carga negativa.	€
Figura 23 -	A. Projeção em hélice alfa para Pep6. Hidrofobicidade: 0,129. Momento hidrofóbico: 0,449. B. Projeção em hélice alfa para Pep2. Hidrofobicidade: 0,094. Momento hidrofóbico: 0,357. C. Projeção em hélice alfa para Pep6W. Hidrofobicidade: 0,319. Momento hidrofóbico: 0,622. D. Projeção em hélice alfa para Pep2W. Hidrofobicidade: 0,388. Momento hidrofóbico: 0,647. Os aminoácidos amarelos são resíduos não polares, enquanto os azuis são carregados positivamente. Dados obtidos no HeliQuest.	97
Figura 24 -	Projeção em hélice alfa para Pep20. Os aminoácidos amarelos são resíduos não polares, enquanto os azuis são carregados positivamente. Hidrofobicidade: 0,211. Momento hidrofóbico: 0,822. Dados obtidos no HeliQuest.	98
Figura 25 -	Peptídeo Pep20 (Fmoc – KAVKKLFKKWG).	98
Figura 26 -	Cinética de morte para <i>S. aureus</i> ATCC 25923. A. Peptídeo Pep20, com CIM de 8 mg/L. B. Antibiótico comercial daptomicina, com CIM de 1 mg/L. Limite de detecção do experimento: 10 ² UFC/mL10)4
Figura 27 -	Cinética de morte para <i>S. aureus</i> SA43. A. Peptídeo Pep20, com CIM de 8 mg/L. B. Antibiótico comercial daptomicina, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10 ² UFC/mL10)5
Figura 28 -	Cinética de morte para <i>A. baumannii</i> ATCC 19606. A. Peptídeo Pep20, com CIM de 32 mg/L. B. Antibiótico comercial polimixina B, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10 ² UFC/mL)6
Figura 29 -	Cinética de morte para <i>A. baumannii</i> ACI50. A. Peptídeo Pep20, com CIM de 64 mg/L. B. Antibiótico comercial polimixina B, com CIM de 128 mg/L. Limite de detecção do experimento: 10 ² UFC/mL)7
Figura 30 -	Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg ⁺² para <i>A. baumannii</i> ATCC 19606. A cor azul representa a média de absorbância do crescimento bacteriano de 3 replicatas biológicas11	13
Figura 31 -	Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg ⁺² para <i>E. coli</i> ATCC 25922 A cor azul representa a média de absorbância do crescimento bacteriano de 3 replicatas biológicas11	14

Figura 32 - Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg⁺² para K. pneumoniae ATCC 700603. A cor azul representa a média Figura 33 - Despolarização de membrana citoplasmática de Pep20 para A. S. aureus ATCC 25923 (CIM=8 mg/L). B. A. baumannii ATCC 19606 (CIM=32 mg/L).....115 Figura 34 - Mecanismos propostos para ação de AMPs em membranas bacterianas.116 Figura 35 - Controle positivo da bactéria S. aureus ATCC 25923. A. Visão geral das células. Barra de escala = $1 \mu m B$. Bactéria isolada com parede e membrana Figura 36 - S. aureus ATCC 25923 tratada com Pep20 a 1xCIM (8 mg/L). As setas vermelhas apontam para células estouradas com danos a membrana, as setas azuis apontam para septos de divisão defeituosos, e as setas amarelas apontam para invaginações membranosa. A. Visão geral das células. Barra de escala = $1\mu m$. **B.** Bactérias estouradas e com invaginações membranosas. Barra de escala = 500 nm. C. Bactérias em divisão celular danificadas e com invaginações originárias no septo de divisão. Barra de escala = 200 nm. D. Célula com invaginações membranosas e parede com superfície rugosa. Figura 37 - S. aureus ATCC 25923 tratada com Pep20 a 4xCIM (32 mg/L). As setas vermelhas apontam para células estouradas com danos a membrana, as setas azuis apontam para septos de divisão defeituosos, e as setas amarelas apontam para invaginações membranosa. A. Visão geral das células. Barra de escala = 1μ m. **B.** Bactérias com divisão defeituosa. Barra de escala = 500 nm. C. Bactérias em divisão celular com invaginações membranosas originadas no septo de divisão. Barra de escala = 200 nm. **D.** Bactérias em divisão celular danificadas e com invaginações membranosas. Barra de escala = 200 nm.....120Figura 38 - Controle positivo da bactéria A. baumannii ATCC 19606. A. Visão geral das células. Barra de escala = $1 \mu m B$. Bactérias em detalhe, com membrana externa, parede e membrana citoplasmática visíveis. Barra de escala = 200 Figura 39 - A. baumannii ATCC 19606 tratada com Pep20 a 1xCIM (32 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para superfície rugosa e com bolhas. A, B. Visão geral das células. Barra de escala = $1\mu m$. C,D. Bactérias em detalhes, com dano à membrana e superfície rugosa mais visíveis. Barra de escala = 500 nm......122 Figura 40 - A. baumannii ATCC 19606 tratada com Pep20 a 4xCIM (128 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para superfície rugosa e com bolhas. A. Visão geral das células. Barra de escala = $1\mu m$. **B.** Células com membranas desestabilizadas. Barra de escala = 500 nm. C. Bactérias em detalhes, com membranas completamente desestabilizadas. Barra de escala = 200 nm. D.

	Bactérias em detalhes, com membrana íntegra e com claras projeções externas, tornando a superfície rugosas. Barra de escala = 200 nm
Figura 41 -	Proteínas comumente usadas para perfil citológico bacteriano e sua localização em <i>B. subtilis</i> . Em destaque, as proteínas cuja localização coincide com condensação de citoplasma causada por Pep20
Figura 42 -	A. baumannii ATCC 19606 tratada com Pep20. As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para pontos de ruptura na parede bacteriana. A, B, C. Células tratadas com Pep20 0,5xCIM (16 mg/L) Barra de escala = 1 μ m, 500 nm e 200 nm respectivamente. D, E, F. Células tratadas com Pep20 0,5xCIM (16 mg/L) e vancomicina 1 mg/L Barra de escala = 1 μ m, 500 nm e 200 nm respectivamente
Figura 43 -	Número de vezes em que a CIM aumentou para cada exposição de 30 dias, incluindo exposição com Pep20, todas as replicatas representadas. A. <i>S. aureus</i> ATCC 25923 B. <i>A. baumannii</i> ATCC 19606
Figura 44 -	Curvas de crescimento (eixo y, intensidade) de cada poço ao longo de 48 h para a linhagem <i>S. aureus</i> ATCC 25923 antes da seleção (verde) com Pep20 e após (vermelho) em painéis de testes fenotípicos. A, B. Painéis de fontes de carbono. C, E, F, G. Painéis de fonte de nitrogênio. D. Painel de fontes de enxofre e fósforo. H. Painel de sensibilidade osmótica e efeitos iônicos 130
Figura 45 -	Mapa metabólico indicando locais na via onde há mudanças ocorridas no módulo de obtenção de energia
Figura 46 -	Painéis em que a linhagem <i>S. aureus</i> ATCC 25923 antes da seleção apresentou vantagem. Cada quadrado representa ambas curvas de crescimento (eixo y, intensidade) de cada poço ao longo de 48 h de cada poço, com concentrações crescentes do composto descrito
Figura 47 -	Painéis em que a linhagem <i>S. aureus</i> 25923_A_Pep20 apresentou vantagem. Cada quadrado representa ambas curvas de crescimento de cada poço, com concentrações crescentes do composto descrito
Figura 48 -	Esquemas mostrando o transporte de superfamília de facilitadores principais. A. Tipos de transporte que podem ocorrer nesta família. B. Esquemas mostrando as mudanças conformacionais que ocorrem no transportadores no mecanismo de garra
Figura 49 -	Espectros de Dicroísmo Circular (CD) de NA1897 em solução aquosa (tampão fosfato pH 7) e na presença dos detergentes HPS: N-hexadecil-N,N-dimetil-3-amônio-1-propanosulfonato, SDS: dodecil sulfato de sódio e de vesículas fosfolipídicas de POPG: 1-Palmitoil-2-Oleoil-3-Fosfoglicerol 165
Figura 50 -	Espectros de Dicroísmo Circular (CD) de Pep20 em solução aquosa (tampão fosfato pH 7) e na presença dos detergentes HPS: N-hexadecil-N,N-dimetil- 3-amônio-1-propanosulfonato, SDS: dodecil sulfato de sódio e de vesículas fosfolipídicas de POPG: 1-Palmitoil-2-Oleoil-3-Fosfoglicerol

LISTA DE TABELAS

Tabela 1 -	Resumo dos análogos de Bothropstoxina-I sintetizados e sua atividade antimicrobiana e hemolítica
Tabela 2 -	Propriedades físico-químicas dos análogos de Bothropstoxina-I calculadas in silico
Tabela 3 -	CIM e CBM do peptídeo NA1897 para linhagens gram-positivas
Tabela 4 -	CIM e CBM do peptídeo NA1897 para linhagens gram-negativas
Tabela 5 -	PAE de NA1897 (CIM de 16mg/L) e daptomicina (CIM de 1 mg/L e 0,5 mg/L) para linhagens gram-positivas
Tabela 6 -	PAE de NA1897 (CIM de 32 mg/L) e polimixina B (CIM de 0,5 mg/L e 128 mg/L) para linhagens gram-negativas
Tabela 7 -	Resultados de CC50 para NA1897 e antibióticos controle para três tipos de células humanas
Tabela 8 -	Índice de seletividade para o peptídeo NA189768
Tabela 9 -	Sinergismo para NA1897 (CIM=16mg/L) em S. aureus ATCC 25923
Tabela 10 -	Sinergismo para NA1897 (CIM=32mg/L) em A. baumannii ATCC 19606 69
Tabela 11 -	Sinergismo de linhagens gram-negativas para NA1897 e polimixina B
Tabela 12 -	Comparação entre as linhagens iniciais e finais do experimento de evolução dirigida com NA189790
Tabela 13 -	Resumo dos análogos de Plantaricina 149 sintetizados e sua atividade antimicrobiana e hemolítica
Tabela 14 -	Propriedades físico-químicas dos análogos de Plantaricina 149 calculadas in silico
Tabela 15 -	CIM e CBM do peptídeo Pep20 para linhagens gram-positivas
Tabela 16 -	CIM e CBM do peptídeo Pep20 para linhagens gram-negativas 102
Tabela 17 -	PAE de Pep20 (CIM de 8 mg/L) e Daptomicina (CIM de 1 mg/L e 0,5 mg/L) para linhagens gram-positivas
Tabela 18 -	PAE de Pep20 (CIM de 32 mg/L e 64 mg/L) e Polimixina B (CIM de 0,5 mg/L e 128 mg/L) para linhagens gram-negativas
Tabela 19 -	Resultados de CC ₅₀ para Pep20 e antibióticos controle para três tipos de células humanas

Tabela 20 -	Índice de seletividade para o peptídeo Pep20110
Tabela 21 -	Sinergismo para Pep20 (CIM=8 mg/L) em S. aureus ATCC 25923110
Tabela 22 -	Sinergismo para Pep20 (CIM=32 mg/L) em A. baumannii ATCC 19606110
Tabela 23 -	Sinergismo de linhagens gram-negativas para Pep20 e vancomicina112
Tabela 24 -	Comparação entre as linhagens iniciais e finais do experimento de evolução dirigida com Pep20
Tabela 25 -	Descrição das bactérias gram-positivas utilizadas no projeto161
Tabela 26 -	Descrição das bactérias gram-negativas utilizadas no projeto162

LISTA DE ABREVIATURAS E SIGLAS

MDR	Multidroga resistentes (do inglês multidrug-resistant)
IRAS	Infecções relacionadas a assistência à saúde
PBP	Proteína ligadora de penicilina (do inglês penicillin protein binding)
MRSA	Staphylococcus aureus resistente à meticilina
VRE	Enterococos resistente à vancomicina
OMS	Organização Mundial da Saúde
ST	tipo de sequência (do inglês, sequence type)
CC17	Complexo clonal 17
VRSA	Staphylococcus aureus resistente à vancomicina
VISA	Staphylococcus aureus com resistência intermediária à vancomicina
CDC	do inglês, Centers for Disease Control and Prevention
AMPs	Peptídeos antimicrobianos (do inglês, antimicrobial peptides)
PLA ₂	Fosfolipases A ₂
p-BthTX-I	Peptídeo obtido da porção C-terminal da Bothropstoxina-I
Fmoc	Fluorenilmetiloxicarbonil
CIM	Concentração inibitória mínima
CBM	Concentração bactericida mínima
DMF	N,N-dimetilformamida
DCM	Diclorometano
HOBT	N-Hidroxibenzotriazol
DIC	Diisopropilcarbodiimida
CLSI	do inglês, Clinical Laboratory Standards Institute
MHCA	Mueller-Hinton Cátion Ajustado
EDTA	Ácido etilenodiaminotetracético
PBS	Tampão fosfato salino (do inglês, tampão Phosphate buffered saline)
BHI	Infusão de cérebro e coração (do inglês, Brain and Heart Infusion)
PAE	Efeito pós-antibiótico (do inglês, post antibiotic effect)
MTS	[3-(4,5-dimetiltiazol-2-il)-5-(3-carboximetoxifenil)-2-(4-sulfonil)-2H-
	tetrazolio]
CIF	Concentração inibitória fracional
DISC ₃ (5)	Iodeto de 3,3'-dipropiltiadicarbocianina

MET	Microscopia eletrônica de transmissão
Ala-Scan	Técnica de Alanine Scanning
LTA	Ácido lipoteicóico
LPS	Lipopolissacarídeo
IS	Índice de seletividade
ORF	do inglês, open reading frame
SRCD	do inglês, Synchrotron radiation circular dichroism
PULs	Locus de utilização de polissacarídeos (do inglês Polysaccharide Utilization
	Loci)

SUMÁRIO

1	INTRODUÇÃO	25
1.1	O Problema	25
1.2	Patógenos ESKAPE, seus mecanismos de resistência e terapias alternativa	s26
1.3	Peptídeos Antimicrobianos	
1.3	Bothropstoxina-I	35
1.4	Plantaricina 149	
2	OBJETIVOS	
2.1	Objetivos específicos	
3	MATERIAIS E MÉTODOS	41
3.1	Síntese dos peptídeos	41
3.2	Determinação da Concentração Inibitória Mínima e Concentração	Bactericida
	Mínima	42
3.3	Teste de atividade hemolítica	42
3.4	Análise de QuimioInformática	43
3.5	Dicroísmo circular	43
3.6	Determinação da Cinética de Morte	44
3.7	Estudo de Efeito pós-antibiótico (post antibiotic effect, PAE)	44
3.8	Avaliação de citotoxicidade por MTS	45
3.9	Estudo de sinergismo antimicrobiano	45
3.10	Despolarização de membrana	47
3.11	Microscopia Eletrônica de Transmissão	47
3.12	Seleção in vitro e extração de DNA das linhagens obtidas	48
3.13	Ensaios de arranjos fenotípicos	49
4	RESULTADOS E DISCUSSÃO	51
4.1	Bothropstoxina-I	51
4.2	Plantaricina 149	94

5.	CONCLUSÕES	143
	REFERÊNCIAS	145
	ANEXO A – Perfis de susceptibilidade das bactérias utilizadas	161
	ANEXO B – Ensaios de Dicroísmo Circular	165
	ANEXO C – Painéis de ensaios fenotípicos usados para análise metabólica no Biolog	167

1 INTRODUÇÃO

1.1 O Problema

Ao se estabelecer os postulados de Koch no início do estudo microbiano, iniciou-se de fato a busca por tratamentos contra agentes infecciosos, como as bactérias. Após Pasteur e Paul Erhlich, Alexander Fleming obteve o primeiro antibiótico ao observar a área de inibição bacteriana causado pela penicilina. Assim, a introdução dos antibióticos representou um marco na medicina, pois revolucionou o tratamento de doenças antes consideradas fatais. Os cuidados médicos como conhecemos não poderiam existir sem este grande marco na saúde.¹ Assim, de 1930 a 1970 viveu-se o que foi chamado da Era de Ouro dos antibióticos, pois um grande número de moléculas antimicrobianas foi desenvolvido.² Quase que concomitantemente ao desenvolvimento de tais moléculas, foi observado também a resistência que os microrganismos possuíam. A resistência antimicrobiana pode ocorrer naturalmente ao longo do tempo, geralmente através de alterações genéticas.³ Este processo, no entanto, tem se acelerado e espalhado mundialmente devido a diversos fatores relacionados ao uso de antibióticos, que causaram pressão seletiva: uso terapêutico indevido, aplicação muitas vezes indevida na agricultura, pecuária, aquicultura etc. Ao longo de quase quatro bilhões de anos de evolução, o mundo microbiano acumulou uma enorme diversidade de mecanismos metabólicos e de proteção que podem ser mobilizados em resposta a agressões externas, incluindo a ação dos antibióticos.⁴ Assim, mesmo com os avanços nas terapias contra infecções, a resistência aos antimicrobianos apresenta-se como um problema em termos de tratamento: com a prevalência destas bactérias resistentes, a eficácia dos antibióticos é afetada e as infecções bacterianas tornam-se motivo de sérias preocupações.³ Este pode ser considerado um dos atuais desafios da humanidade, pois pode minar o progresso em cuidados da saúde, produção de comida e expectativa de vida. Com a emergência das bactérias multidroga resistentes (MDR, do inglês *multidrug-resistant*), este problema passa a ser encarado como global e ameaça aos sistemas públicos de saúde.⁵ Por ano, morrem pelo menos 35 mil pessoas nos EUA,³ 33 mil pessoas na Europa ⁶ e mais de 700 mil pessoas no mundo⁷ como consequência direta de infecções por microrganismos resistentes. Estas infecções já são responsáveis por 15,5% das Infecções Relacionadas a Assistência à Saúde (IRAS).⁸ O aumento dos patógenos resistentes está diretamente relacionado ao aumento das IRAS. As IRAS podem ocorrer por contato entre pacientes (direto ou indireto), por profissionais da saúde, por objetos contaminados, por visitantes ou mesmo por diversas fontes ambientais.⁹

As previsões mostram que dentro de 30 anos a resistência antimicrobiana será a principal causa de morte, chegando em torno de 10 milhões de pessoas e ultrapassando câncer, diabetes, diarreia e acidentes rodoviários.⁵ Economicamente, este quadro de alerta também tem repercutido consequências: os custos já têm sobrecarregado o sistema de saúde. Na maioria dos casos, as infecções causadas por microrganismos resistentes aos antibióticos requerem tratamentos prolongados e/ou mais custosos, estendem as internações hospitalares, exigem visitas adicionais ao médico e uso de cuidados de saúde. Até 2050, estima-se que o impacto da resistência antimicrobiana envolva a perda de 100 trilhões do produto interno bruto mundial. ⁵

A crise sanitária vivida desde 2020 com a COVID-19 também influencia diretamente na crise de resistência global. A azitromicina e teicoplanina foram amplamente utilizadas de forma profilática, segundo reportou a OMS,¹⁰ principalmente no início da doença, quando não havia procedimentos padrão de tratamento.¹¹ Trabalhos recentes mostram que, no tratamento em pessoas hospitalizadas, a taxa de uso de antibiótico chegou a 70%, embora apenas 8% destes pacientes hospitalizados apresentassem necessidade do uso de antibióticos devido a coinfecção fúngica ou bacteriana.¹⁰⁻¹¹ Além disso, alguns grupos clínicos indicam a dificuldade em diferenciar COVID-19 de pneumonias bacterianas, significando que alguns pacientes farão o uso desnecessário de antibióticos^{.12}

1.2 Patógenos ESKAPE, seus mecanismos de resistência e terapias alternativas

Os mecanismos de resistência destas bactérias que constituem ameaças globais podem ocorrer em cromossomos, plasmídeos ou transposons, e se distribuem principalmente como quatro tipos: inativação ou alteração do fármaco, modificação do sítio alvo, redução da acumulação intracelular e formação de biofilme (Figura 1).⁹⁻¹⁴⁻¹⁵ A inativação de fármacos ocorre pela produção de enzimas que modificam e inativam os antibióticos. Desta classe, as mais bem caracterizadas são as beta-lactamases, que agem hidrolisando o anel beta-lactâmico presente em todos os antibiótico da classe dos beta-lactâmicos, como penicilinas, cefalosporinas, monobactans e carbapenêmicos.⁹ Estas enzimas são de alto impacto clínico e sua prevalência está usualmente associada a *K. pneumoniae* com beta-lactamases de espectro estendido.⁹⁻¹⁶⁻¹⁷ Quanto a modificação do sítio alvo, esta ocorre principalmente para alvos proteicos - a modificação do alvo impede sua identificação pelo antibiótico. Novamente, para a classe dos beta-lactâmicos, há um mecanismo de resistência muito bem estabelecido que envolve a mutação de genes que codificam as proteínas ligadoras de penicilina (PBPs, do

inglês *penicillin protein binding*), alvo destes antibióticos. Por exemplo, em *Staphylococcus aureus* resistente a meticilina (MRSA), a proteína mutada PPBP2 é prevalente comparada as nativas, permitindo a sobrevivência desta bactéria mesmo em altas concentrações de beta-lactâmicos.⁹⁻¹⁸ Outra condição clinicamente relevante envolve as VRE (Enterococos resistentes à vancomicina) que, ao adquirir genes específicos de resistência, possuem a resistência aos glicopeptídeos, como vancomicina e teicoplanina. Estes antibióticos agem se ligando ao acil-D-alanil-D-alanina (acil D-ala-D-ala), precursor dos peptídeoglicanos formadores da parede celular. A ligação de tais antibióticos a este sítio impede transglicosilação e transpeptidação, inibindo a síntese da parede e levando à eventual morte celular.¹⁹ A resistência principalmente associada a *Enterococcus faecium* e *Enterococcus faecalis* envolve ações enzimáticas que mudam a região terminal do pentapeptídeo do peptideoglicano, mais especificamente para D-Ala-D-Lac ou D-Ala-D-Ser, o que impede a ligação do antibiótico e leva a resistência.^{3,7,9,19}

A capacidade da droga de matar ou não a bactéria depende do equilíbrio entre a entrada e saída da molécula no organismo bacteriano. Assim, a bactéria pode usar de uma redução da acumulação intracelular como um mecanismo de resistência ⁹. Isto pode ser feito de duas maneiras diferentes: perda/mutação de porinas e expressão de bombas de efluxo. A perda de porinas ocorre principalmente em gram-negativas, em que se reduz a presença de moléculas no espaço periplasmático. Essas porinas permitem a passagem de compostos hidrofílicos, incluindo antibióticos. Um dos exemplos mais comuns de perda de porinas é a Oprd em Pseudomonas aeruginosa, ou o perfil de multirresistência de K. pneumoniae devido perda de porinas OmpK35 ou OmpK36. Quanto a bombas de efluxo, existem muitas que se dividem em 5 grandes famílias: a família ABC (cassete de ligação a ATP), a família RND (resistêncianodulação-divisão), a família de resistência a multidrogas pequenas, a superfamília de facilitadores principais, e a família de extrusão de multidrogas e compostos tóxicos.²⁰ Entre as bombas mais clinicamente relevantes estão a bomba de efluxo polisseletiva, AcrAB-TolC, MexAB-OprM (RNDs). As bombas de efluxo são capazes de extrusar o composto que já atingiu o meio intracelular (ou intermembranar) antes que esse atinja concentração necessária para ação.²⁰

Por fim, a formação de biofilmes merece destaque a parte. Estes podem ser considerados um organismo vivo por si só, com características próprias. Pode ser considerado uma das formas de vida mais distribuídas e bem-sucedidas da Terra.²¹⁻²² Os biofilmes são microrganismos agregados em multicamadas em contato célula-célula, embebidos em matriz extracelular polimérica que adere às células e/ou a uma superfície. Tais células se comunicam

por pequenas moléculas, processo chamado de quorum sensing. Apesar de mais comumente associados a um substrato, estes podem acontecer sem fase sólida de ligação, em forma móvel de flocos.²² Biofilmes são sistemas complexos contendo normalmente mais de uma espécie. Além disso há variabilidade de células não só em espécie, mas em estados metabólicos, uma vez que as células se diferenciam de acordo com função e/ou localização nesta comunidade organizada, que causará diferente expressão de genes ou proteínas.²² O biofilme também pode ocorrer com fungos, como Candida albicans.23 Como características deste sistema autorganizável que podemos indicar, ganha destaque a tolerância aumentada a antimicrobianos. Esta tolerância pode ser atribuída principalmente a matriz autoproduzida, composta por DNA extracelular, proteínas, lipídios e principalmente por polissacarídeos,²²⁻²⁴ que funciona como um "escudo bioquímico."9 A resistência também pode ser atribuída a outros fatores como uma taxa aumentada de trocas genéticas, ou diferentes estados metabólicos das bactérias - tudo isso explicaria a maior tolerância das camadas mais internas do biofilme.^{9,22} A formação do biofilme ocorre em três passos: adesão, maturação e dispersão. A etapa de adesão ocorre de maneira irreversível e dependente do material. A adesão ocorre em geral de melhor forma com superfícies irregulares e materiais hidrofóbicos. Após adesão, começa o crescimento das células por divisão celular e produção da matriz.²⁵ A dispersão ocorre em geral com biofilmes maduros, através da comunicação por quorum sensing e degradação enzimática da matriz. Assim largos aglomerados de células podem colonizar outro substrato.9

Figura 1 - Mecanismos de resistência comumente encontrados em bactéria ESKAPE.

Fonte: Adaptada de DE OLIVEIRA et al. 15

Estes mecanismos de resistência citados aparecem comumente em um grupo de bactérias conhecidas como "ESKAPE" – capazes de escapar da ação da maioria dos biocidas, estas bactérias representam paradigmas de patogêneses, transmissão e resistência.² O grupo está associado com IRAS e os mais altos riscos de mortalidade. Atualmente, discutir sobre o desafio da MDR é sinônimo de discutir sobre tratamento de infecções causadas por estes microrganismos. Estes vêm sendo enfatizados não apenas por serem causa da maioria das IRAS, mas pela sua capacidade de desenvolver novos mecanismos de resistência. O acrônimo ESKAPE refere-se as bactérias *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa* e *Enterobacter* spp. ^{1-2,15} A Organização Mundial da Saúde (OMS) divulgou em 2017 uma lista de prioridade global de bactérias resistentes para guiar a pesquisa, descoberta e desenvolvimento de novos antibióticos. Nesta lista, composta principalmente por microrganismos pertencentes ao grupo ESKAPE, encontram-se, dentre outros: *A. baumannii, P. aeruginosa, Enterobacterales* resistentes a carbapenêmicos como prioridade crítica, *E. faecium* VRE e *S. aureus* resistente à vancomicina e meticilina (VRSA e MRSA) como prioridade alta.²⁶

Na última década foram relatados aumentos crescentes de IRAS de enterococous resistente a ampicilina e vancomicina. Assim, as taxas de VRE se tornam preocupantes, sendo principalmente associadas a *E. faecium.*⁹ Na Europa já são relatadas prevalências deste organismo com perfil VRE em pacientes hospitalizados. Na Austrália, aproximadamente metade das *E. faecium* isoladas de culturas sanguíneas são VRE ¹⁵. Surtos na Europa, Ásia, América do Sul e Austrália estão principalmente relacionados ao tipo de sequência (ST, do inglês *sequence type*) do complexo clonal 17 (CC17).^{15,27–30} Os surtos de *E. faecium* VRE normalmente são longos (11 meses) e acontecem após exposição a antibióticos.^{15,31-32} De forma geral, as infecções por VRE merecem destaque na lista da OMS e como patógeno ESKAPE pois agem com um custo excessivo (tratamentos de segunda linha, precauções de contato e limpeza diferenciada),^{15,33-34} além de estarem associados a um excesso de mortalidade.^{15,35}

S. aureus é um dos organismos mais associados ao perfil de multirresistência. Entre 65% e 85% dos isolados são resistentes a penicilina G, enquanto os isolados MRSA representam pelo menos 25%, chegando a 50% de prevalência em algumas áreas, aparecendo em IRAS como pneumonia severa e infecções da corrente sanguínea.^{9,15,36-37} Não só associada as IRAS, mas as MRSA também se tornam uma preocupação devido a infecções adquiridas na comunidade, tipicamente associadas a infecções de pele e tecido mole.^{15,37} Assim, MRSA afetam os sistemas de saúde por sua morbidade, internações prolongadas, custos de cuidados e até mesmo qualidade de vida.^{15,38} Vancomicina e teicoplanina são tipicamente usadas para tratar casos de MRSA. Assim, *S. aureus* com resistência intermediária à vancomicina (VISA) tem se tornado mais comuns e alguns casos de VRSA foram reportados.^{9,39–41} MRSA pode conter o elemento SCC*mec* contendo o gene *mec*A ou *mecC*, conferindo o perfil de multirresistência.⁹

K. pneumoniae é um dos organismos mais comumente associados a IRAS, podendo causar infecções do trato urinário, cistite, infecções de feridas cirúrgicas, abcessos hepáticos e pneumonia.^{9,17} Representam no total mais de um terço das infecções hospitalares causadas por gram-negativos,⁴² dado que também se reflete no Brasil, principalmente nas unidades de tratamento intensivo.⁴³ *Enterobacterales*, quando associadas ao perfil de resistência aos carbapenêmicos podem alcançar taxa de mortalidade de mais de 40%, e *K. pneumoniae* é o organismo clinicamente mais relevante com tais características.³ A disseminação global de *K. pneumoniae* resistente aos carbapenêmicos é representada principalmente pela linhagem ST307, com altíssima taxas de transmissão em setores de saúde.^{15,44}

A. baumannii é um microrganismo em teoria não fastidioso, que ocorre principalmente em pacientes hospitalizados ou em contato com o sistema de saúde.^{15,45} Este possui uma sobrevivência longa em mãos humanas e superfícies inertes, explicanda altas taxas de contaminação cruzada.^{9,46} Aproximadamente metade dos isolados desta espécie são considerados MDR, chegando a 60% nos Estados Unidos, América Latina e Oriente Médio ¹⁵⁻⁴⁷ e até 90% em outras áreas.^{15,48} Este microrganismo possui fisiologia considerada propensa para o desenvolvimento de resistência. *A. baumannii* resistente aos carbapenêmicos, por exemplo, possui disseminação global associada principalmente a três complexos clonais CC1, CC2 e CC3.^{15,49-50}

Pseudomonas aeruginosa é um patógeno gram-negativo oportunista, associado a pacientes imunocomprometidos e comumente causando infecções respiratórias severas.^{9,15} O conteúdo genético de *P. aeruginosa* é considerado adaptável pelo seu repertório de genes regulatórios - assim maioria dos isolados desta espécie apresentam resistência intrínseca a muitos antimicrobianos ou maior capacidade de desenvolver resistências durante um tratamento.^{9,15,51} Além disso, *P. aeruginosa* possui uma alta capacidade de adquirir resistência por aquisição de elementos genéticos. É o caso de ST235 e ST175, linhagens altamente perigosas e dispersas pelo mundo.^{15,52}

Por fim, embora *E. coli* não seja considerado um patógeno ESKAPE, esta espécie tem ganhado destaque. Quando associado a um perfil de resistência, este organismo é a principal causa de infecções no trato urinário, tanto na comunidade quanto em IRAS.¹⁵ Na unidade de tratamento intensivo, *E. coli* comumente desenvolve sepse. Além disso, em toda a Europa já são relatadas altas taxas de *E. coli* resistente a aminopenicilinas, fluoroquinolonas, aminoglicosídeos e cefalosporinas.^{15,53}

Assim, organismos ESKAPE representam um desafio e novos paradigmas de estudo, cujos perfis de resistência avançam com o passar do tempo.⁹ O CDC (do inglês, *Centers for Disease Control and Prevention*) aponta quatro principais medidas contra este problema: prevenir infecções, rastreá-las, otimizar a prescrição de antibióticos, e desenvolver novos fármacos. Neste último tópico, existem algumas estratégias sendo utilizadas atualmente. A primeira delas é a utilização de antibióticos em combinação. Isto é feito por uma série de benefícios: maior espectro de ação, menor chance do desenvolvimento de resistência, e o efeito de sinergismo apresenta maior ação do que o uso de cada antibiótico de forma separada.⁸ Um exemplo é o uso da daptomicina em conjunto com fosfomicina para tratar *E. faecium* e *S. aureus*.^{8,54-55} Outro exemplo envolvendo patógenos ESKAPE é o uso de colistina e tigeciclina contra infecções de *A. baumannii* e *K. pneumoniae*, que tem mostrado resultados

promissores *in vitro*.⁸ O uso em combinação também se aplica ao caso de moléculas não muito efetivas sozinhas, mas que inibem o mecanismo de resistência – é o caso da combinação comercial clavulanato e amoxicilina. Outra combinação seria com o uso de vaborbactam e meropenem contra *K. pneumoniae* produtoras de carbapenemase.⁵⁶ Obviamente, estas combinações possuem suas limitações: nem sempre a combinação sinergética observada *in vitro* apresenta vantagens *in vivo*. Na verdade, algumas podem ter o efeito oposto ao desejado ou ainda piorar os efeitos colaterais.⁸ Outra maneira de usar antibióticos em combinação que tem se mostrado efetiva é a construção de moléculas híbridas sintéticas, ou seja, dois ou mais antimicrobianos sintetizados na mesma molécula para obter o efeito antibiótico desejado.^{8,57}

Ocorre também o uso de bacteriófagos. Bacteriófagos são vírus que infectam e matam bactérias, tendo por isso, especificidade e podendo ser usados como arma contra doenças infecciosas.⁵⁸ A terapia usando fagos tem sido visada desde o crescimento da resistência antimicrobiana pois, além das vantagens já citadas, o tratamento seria específico (poupando a flora humana), seria rápido e em baixas doses. Além disso, o surgimento de mutações pelo agente infeccioso poderia ser driblado por mutações no próprio fago.^{8,59} Esta estratégia também possui suas próprias limitações, como obter fagos estáveis ou a caracterização genômica destes para garantir a segurança de sua aplicação – estes próprios podem ser agentes de transferência horizontal de genes de resistência bacteriana.⁶⁰

Dentro dos tratamentos alternativos ainda podemos citar o uso de uso de terapia fotodinâmica. Para esta, usa-se um fotossensibilizador que entra em um estado excitado pela incidência de luz. Assim, ao transferir elétrons para a cadeia respiratória causa stress oxidativo que leva a morte celular. Exemplos de fotossensibilizadores comuns incluem derivados de fenotiazínio, derivados de xantina, porfirina, clorina, ou derivados de fulereno ⁶¹⁻⁶². Algumas exigências da técnica são a apropriada difusão da molécula para o meio intracelular, toxicidade reduzida – ou preferência por permeação em procariotos -, e um coeficiente de absorção dentro da luz visível, de preferência comprimentos de onda que permitam boa penetração em tecido.^{8,62} A terapia fotodinâmica já possui aplicações tópicas muito efetivas, embora ainda haja limitações – a produção de radicais livres pode afetar também as células do hospedeiro.⁸

Por fim, entre as estratégias para o combate de patógenos multirresistentes como ESKAPE, encontram-se os peptídeos antimicrobianos, objeto alvo deste estudo, que se encontram descritos a seguir.

1.3 Peptídeos Antimicrobianos

Neste cenário em que a busca por novos compostos antimicrobianos se faz não só necessária, mas também urgente, a descoberta por novos antibióticos baseando-se em produtos naturais parece ser uma alternativa interessante e promissora para o combate à resistência antimicrobiana.⁶³ Os peptídeos antimicrobianos (AMPs, do inglês, antimicrobial peptides) têm se tornado uma categoria emergente de agentes terapêuticos neste contexto. AMPs são uma classe crescente de peptídeos naturais e sintéticos com um amplo espectro de alvos, encontrados em todas as formas de vida e agem como defensores dos organismos, fazendo parte do sistema imune inato de muitos vertebrados.⁶⁴ Embora sejam um grupo variado de moléculas em termo de sequência e estrutura, sua grande maioria possui características em comum que podem ser associados à sua atividade antimicrobiana: a carga positiva, normalmente proveniente de aminoácidos lisina ou arginina; a hidrofobicidade, sendo usualmente 50% dos aminoácidos hidrofóbicos; e a anfipacidade, dada pelo equilíbrio na conformação tridimensional entre aminoácidos hidrofóbicos e carregados. AMPs podem ser separados em duas categorias quanto ao mecanismo de ação: ação por modulação da resposta imune ou por morte direta. Peptídeos que agem por modulação da resposta imune foram por muito tempo considerados os mais importantes para o design de novas moléculas, por serem capazes de mobilizar respostas do próprio organismo que sofre a infecção ^{65–67}. Um exemplo de peptídeos antimicrobianos extremamente importantes são as catelicidinas. Catelicidinas são polipeptídeos similares as defensinas, produzidas por mamíferos, armazenadas em lisossomos de macrófagos e leucócitos.⁶⁸⁻⁶⁹ Já foi mostrado que a LL-37, catelicidina humana, é capaz de suprimir a resposta inflamatória induzida por endotoxinas bacterianas. Mesmo em baixas concentrações, LL-37 é capaz de suprimir a secreção de citocina pró-inflamatória por 1h, mantendo este efeito por até 24h⁶⁵. Outros AMPs com ação imunomodulatória são: HDM-4, um peptídeo estável contra ação proteolítica e com ação antimicrobiana de amplo espectro,⁶⁶ alfa-defensinas como HNP1-4, expressa no corpo humano em neutrófilos ou células-T,⁷⁰⁻⁷¹ e a própria adenosina monofosfato cíclica, que além de participar como mensageira em muitos processos biológicos, também age como AMP cíclico que estimula a produção de adrenalina.⁶⁷

Quanto a ação direta, ainda podemos separar em ação por permeabilização de membrana (que por muito tempo acreditou-se ser o único alvo dos AMPs) e demais alvos. Na permeabilização de membrana, mecanismo mais conhecido para este tipo de molécula, os peptídeos interagem com componentes como ácidos teicóicos, lipopolissacarídeos,

fosfatidilserina, fosfatidilinositol, ácido fosfatídico e cardiolipinas. Estes componentes conferem carga negativa à membrana bacteriana e permitem uma interação eletrostática inicial dos AMPs positivamente carregados. Isto é extremamente importante para a seletividade destas moléculas: enquanto a bactéria possui membranas com estes componentes negativos, a face externa das membranas animais é constituída por fosfolipídios zwitteriônicos (como fosfatidilcolina, esfingomielina) e outros componentes neutros como colesterol, que não permitem uma interação eletrostática.⁷² Em contato com a membrana negativamente carregada, há estímulo para a formação de estrutura secundária (usualmente alfa-hélice), em que a parte hidrofílica interage com a cabeça dos fosfolipídios e a face hidrofóbica interage com a bicamada lipídica.73-74 Há três modos principais em que AMPs perturbam a membrana: barril, poro toroidal, e modelo de carpete. Nestes modelos, a própria permeação pode causar a morte celular por meio de lise, ou pode representar apenas uma etapa do processo de permeação da molécula para posterior ação intracelular.⁷⁵⁻⁷⁶ Como exemplo, podemos citar a própria LL-37, que além de exibir efeito imunomodulatório também mata a bactéria diretamente por efeito na membrana, principalmente por modo de poro toroidal em bicamadas fosfolipídicas.^{69,77} Além disso, AMPs podem agir na membrana de forma a alterar sua fluidez. A membrana bacteriana é composta de diversos fosfolipídios. Dentre eles, temos os considerados fluidos (com lipídios curtos, ramificados, ácidos graxos insaturados ou com maior grau de flexibilidade) e outros maiores e saturados que são considerados rígidos. As proteínas de membrana e proteínas anexas precisam de certo grau de fluidez para conseguirem se manter inseridas.⁷⁸ Assim, alguns AMPs podem usar como modo de ação a interação e agrupamento de determinados grupos fosfolipídicos, causando regiões de alta fluidez e outras de alta rigidez, o que leva a deslocalização de muitas proteínas de membrana e atrapalha a maquinaria metabólica celular.^{74,79} Além disso, a incompatibilidade de alguns grupos pode causar lenta vasão de íons e causar despolarização de membrana.^{74,80-81} Como exemplo de ação na fluidez da membrana, existe a rodomirtona, que forma microdomínios de fluidez que atraem proteínas de membrana. A alta fluidez leva a formação de vesícula que aprisiona tais proteínas e causa disfunção em toda a bactéria, além de despolarização tardia.⁷⁹

Por último, existem peptídeos com alvos intracelulares, cujos mecanismos foram descobertos recentemente, como inibição da síntese de proteínas e ácidos nucleicos e interrupção da atividade enzimática. Além disso, AMPs também podem inibir a síntese de parede celular ⁷². Exemplo de AMP com ação intracelular é o teixobactan, que age impedindo a formação da parede se ligando a precursores do lipídio II, essencial para a formação de
peptideoglicano.⁸² Embora muitos AMPs tenham sido identificados e caracterizados, poucos chegaram a ser utilizados em ensaios clínicos. Sua toxicidade é obstáculo a ser superado, bem como uma devida elucidação e confirmação dos mecanismos de ação propostos.

Alguns peptídeos antimicrobianos, como análogos da Bothropstoxina-I e da Plantaricina 149, já foram investigados anteriormente pelo Laboratório de Epidemiologia e Microbiologia Moleculares (LEMiMo) como parte das colaborações desenvolvidas no Centro de Pesquisa e Inovação em Biodiversidade e Fármacos (CIBFar). Seu destaque entre os compostos testados e o destaque que os AMPs têm ganhado pelo potencial como candidatos a fármacos levou ao desenvolvimento de um projeto que permitisse uma investigação mais aprofundada de tais moléculas.

1.3 Bothropstoxina-I

A Bothropstoxina-I é uma proteína de 13.700 Da isolada do veneno de Bothrops jararacussu, uma serpente conhecida popularmente como Jararacuçu, localizada na América do Sul e responsável pelo maior número de acidentes no Brasil.⁸³ Esta proteína, apesar de não apresentar atividade catalítica, possui semelhanças estruturais e moleculares com fosfolipases A2 (PLA2).⁸⁴⁻⁸⁵ Estas PLA2 estão envolvidas no metabolismo de fosfolipídios, proliferação celular, contração muscular, entre outros.^{84,86,89} Estudos sugerem que algumas destas proteínas semelhantes a PLA₂ encontradas no veneno de cobras e serpentes podem prevenir ação patogênica na glândula excretora de veneno, além de prevenir que a presa de tais animais seja consumida pela degradação de outros microrganismos,^{84,90-91} e estudos anteriores também sugerem que a região responsável por tais atividades é a porção C-terminal destas proteínas.^{84,92} Um peptídeo derivado da porção C-terminal da Bothropstoxina-I, de sequência KKYRYHLKPFCKK, foi então previamente analisado e se mostrou um interessante candidato para aplicação como antimicrobiano. A dimerização do peptídeo foi utilizada como estratégia de design racional, na tentativa de aumentar sua atividade e seletividade (peptídeo (p-BthTX-I)₂). Inicialmente, o peptídeo mostrou atividade antimicrobiana contra S. aureus e E. coli, mas não contra fungos como C. albicans. Também foi observada ausência de atividade hemolítica e atividade em outras células humanas, como epiteliais, macrófagos e eritrócitos.^{84,93} Estes dados indicaram bom potencial para uso terapêutico desta molécula, dada sua especificidade. Quando testado em modelos de membrana, não houve lise ou mesmo a formação de poros, indicando a possibilidade de um mecanismo de ação alternativo. Devese enfatizar o resultado do dicroísmo circular para esse peptídeo que mostra sua conformação

como predominantemente desordenados, o que se distingue da maioria dos peptídeos que assumem conformação de alfa-hélice quando em interação com membranas aniônicas.⁸⁴ Posteriormente, o peptídeo foi avaliado quanto a sua estabilidade em soro, uma vez que um dos grandes problemas associados a utilização de AMPs na prática clínica é sua susceptibilidade a proteases presentes no corpo do hospedeiro.^{8,93} Apesar da dimerização anteriormente citada ajudar na proteção da molécula contra atividades proteolíticas, o peptídeo ainda sofreu degradações em soro, como a perda das duas lisinas da região C-terminal, posteriores a ponte de cisteína que causa a dimerização. Supõe-se que esta degradação tenha ocorrido pela atividade de carboxipeptidase B, uma enzima presente no sangue que degrada resíduos de lisinas e argininas.⁹³⁻⁹⁴ Esta perda, porém, não parece ter afetado a atividade antimicrobiana da molécula, que se mostrou ativa mesmo para linhagens MDR.⁹³ Isto, porém, permite questionar qual a relação estrutura atividade para esta molécula, dada que as modificações que ocorreram não pareceram alterar sua ação. Assim, (p-BthTX-I)₂ mostra grande potencial para aplicação terapêutica, porém deixa dúvidas quanto ao seu mecanismo de ação e a sua capacidade de ter a estrutura otimizada.

1.4 Plantaricina 149

A Plantaricina 149 é um tipo de bacteriocina: peptídeos sintetizados pelos ribossomos de bactérias que interferem no crescimento de outros microrganismos. As plantaricinas são originárias de Lactobacillus plantarum, uma bactéria gram-positiva largamente distribuída na natureza. A Plantaricina 149 foi obtida da linhagem L. plantarum NRIC 149, bactéria abacaxi. originalmente isolada de Este peptídeo de sequência YSLQMGATAIKQVKKLFKKKGG apresentou atividade para outros lactobacilos, e sua versão sintética com amidação do C-terminal apresentou ação bactericida para S. aureus e Listeria monocytogenes, mas também forte atividade hemolítica.95 Alguns análogos para este peptídeo foram sintetizados, e notou-se que a perda do pentapeptídeo inicial da sequência era benéfica uma vez que ainda havia atividade para bactérias patogênicas. Além disso, a mudança conformacional típica de AMPs para interagir eletrostaticamente com a membrana e formar estrutura helicoidal se manteve.⁹⁵ Outra tentativa de otimização foi manter o grupo protetor Fluorenilmetiloxicarbonil (Fmoc) na porção N-terminal da bactéria. Esta mudança trouxe importantes resultados como ação melhorada em gram-positivos e promoveu ação em gram-negativo, até então não observada.95 O grupo Fmoc é um grupo altamente hidrofóbico e

volumoso,⁹⁶ logo, apesar de não contribuir com a atração eletrostática, este parece se inserir na porção hidrofóbica entre as camadas de fosfolipídios.95 Esta inserção foi verificada pela alteração significativa da integridade das camadas lipídicas sintéticas utilizadas como modelo de membrana. Supõe-se que este uptake do grupo Fmoc seja o motivo da maior ação em gram-negativos,⁹⁵ que possuem uma membrana externa com composição diferenciada em relação a gram-positivas. Por outro lado, essa ação fortemente hidrofóbica levou ao aumento de toxicidade, uma vez que aumentou a interação com fofolipídios zwitteriônicos - que como já discutido, representa a maior parte da bicamada lipídica da membrana eucariótica.72 Posteriormente, foi elucidado os mecanismos físico-químicos que ocorrem na interação entre o peptídeo original (sem nenhuma modificação) e modelos de membrana.⁹⁷ Sua ligação de fato depende da densidade de carga eletrônica negativa da membrana e pode causar um efeito disruptivo. Por outro lado, também foi observado adsorção em membranas zwitteriônicas, o que explica ação descrita em Saccharomyces cerevisae. Outros fatores além de carga parecem modular a ação de Plantaricina 149, como curvatura, organização lipídica e grau de hidratação.⁹⁷⁻⁹⁹ Nesta avaliação em membranas, sugere-se que Plantaricina 149 aja no modo de carpete, em que as hélices alinham-se paralelas ao modelo de membrana.¹⁰⁰ Sugere-se que este mecanismo também seja observado em gram-positivas. Assim, peptídeo modificados não foram amplamente explorados quanto a sua ação antimicrobiana e ainda há a necessidade da confirmação do mecanismo de ação proposto para as bactérias, além de verificar o papel da interação com fosfolipídios zwitteriônicos na toxicidade em células eucarióticas.

2 OBJETIVOS

O objetivo deste estudo é trazer uma nova abordagem aos estudos prévios que caracterizam os AMPs Plantaricina 149 e (p-BthTX-I)₂, trazendo informações detalhadas sobre a ação em microrganismos resistentes. Mais especificamente, espera-se otimizar estes peptídeos, para obter análogos sintéticos com maior atividade antimicrobiana e taxa de hemólise reduzida, para a posterior caracterização e elucidação do mecanismo de ação dos melhores peptídeos obtidos.

2.1 Objetivos específicos

- Realizar a síntese de peptídeos sugeridos a partir dos dados já conhecidos da Plantaricina 149 e p-BthTX-I;
- Estudar os parâmetros farmacoquímicos dos peptídeos utilizando quimioinformática;
- Determinar a concentração inibitória mínima (CIM) e concentração bactericida mínima (CBM) dos peptídeos sintetizados para linhagens gram-positivas e gramnegativas;
- Avaliar inicialmente a toxicidade dos peptídeos sintetizados através de teste de atividade hemolítica;
- Selecionar, dentre todos os avaliados, os peptídeos com os melhores parâmetros; para estes:
 - Determinar a CIM e CBM para diversas linhagens de bactérias ESKAPE de origem clínica;
 - Estudar o tempo de ação dos peptídeos através de ensaios de cinética de morte e efeito pós-antibiótico em gram-positivos e gram-negativos;
 - Investigar a ação dos peptídeos na membrana através de ensaio de despolarização da membrana;
 - Investigar o mecanismo de ação dos peptídeos através da microscopia eletrônica de transmissão e ensaio de sinergismo com antibióticos comerciais;
 - Determinar a seletividade dos peptídeos através da avaliação da citotoxicidade por MTS;
 - Estudar a propensão dos peptídeos em desenvolver resistência através de evolução dirigida *in vitro*;
 - Estudar os mecanismos de ação dos peptídeos avaliando fenotípica e genotipicamente as linhagens obtidas ao final da evolução dirigida.

3 MATERIAIS E MÉTODOS

3.1 Síntese dos peptídeos

A síntese dos peptídeos foi feita em parceria com a Profa. Dra. Leila Beltramini, no grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", do Instituto de Física de São Carlos, da Universidade de São Paulo, e com o Prof. Dr. Eduardo Cilli, no Instituto de Química da Universidade Estadual Paulista Júlio de Mesquita Filho/Araraquara, sendo executada de acordo com a técnica de síntese em fase sólida introduzida por Merrifield ⁹⁵⁻¹⁰¹. A síntese foi dividida em etapas de acoplamento e desproteção, e por último ocorreu a clivagem. Inicialmente, a resina Rink Amide foi solvatada em N,N-dimetilformamida (DMF) e diclorometano (DCM) por 3 ciclos de 20 minutos e em seguida desprotegida com 4-metilpiperidina 20% em DMF por 20 minutos. O acoplamento dos aminoácidos foi feito em seguida, solubilizando os aminoácidos em DMF e DCM, na proporção 2 mols de aminoácido: 1 mol de resina. Com esta mesma proporção, são adicionados os ativadores de acoplamento N-Hidroxibenzotriazol (HOBT) e diisopropilcarbodiimida (DIC). Esta mistura foi colocada em agitação com a resina por cerca de 120 minutos, seguida da etapa de desproteção que consiste na lavagem com 4-metil-piperidina a 20% em DMF para a remoção do grupo Fmoc. Estas etapas de acoplamento e desproteção foram repetidas até que todos os aminoácidos fossem adicionados à cadeia. A cada novo aminoácido adicionado, foi feito o teste de nihidrina para verificar seu correto acoplamento. Após o acoplamento do último resíduo de aminoácido (e/ou das modificações adicionadas no N-terminal dos peptídeos), iniciou-se a etapa de clivagem, na qual a resina foi lavada com DMF e DCM e os peptídeos foram clivados com uma lavagem de 2 horas de solução de 95% de ácido trifluoroacético, 2,5% de triisopropilsilano, e 2,5 % de água.

Os peptídeos foram filtrados, precipitados em éter etílico a 4°C e centrifugados a 3000 rpm por 10 minutos. Esses procedimentos foram repetidos por 3 vezes, quando estes foram então secos e separados da resina pela adição de água e TFA 0,1%, seguida de centrifugações. Por último, os peptídeos foram liofilizados. Os peptídeos foram analisados no HPLC quanto a sua pureza e espectrometria de massas para confirmação da sua sequência de acordo com a razão carga/massa.

3.2 Determinação da Concentração Inibitória Mínima e Concentração Bactericida Mínima

Este estudo foi realizado para avaliar em qual concentração o peptídeo inibe e mata determinada linhagem bacteriana. O estudo foi realizado seguindo as recomendações do Clinical Laboratory Standards Institute (CLSI).¹⁰² Cada peptídeo a ser testado foi diluído em 512 mg/L em caldo Mueller Hinton Cátion Ajustado (MHCA). O peptídeo diluído foi então adicionado à microplaca de 96 poços, de onde partiram diluições seriadas (1:2) até a concentração de 0,06 mg/L. As bactérias foram ajustadas utilizando o Densimat (Biomérieux) a partir de colônias com menos de 24h de crescimento, e adicionadas em cada poço em uma concentração final de 5 x 10⁵ UFC/ml. A placa foi incubada a 35 °C por 20 horas, quando se fez a leitura visual dos resultados. Quando a CIM foi maior que a concentração testada, o peptídeo foi considerado sem atividade para estas condições. Os testes foram realizados em triplicata e com controle de esterilidade. Após a leitura visual da CIM, 100 µL do conteúdo do poço equivalente a CIM, uma diluição anterior e duas posteriores foi inoculado em placa de MHCA-Ágar por técnica de microgota. A placa foi incubada em estufa a 37°C por 24 horas, quando foi feita a leitura visual para observar qual concentração não houve o crescimento bacteriano. A atividade foi considerada bactericida quando a razão CBM/CIM era de 4, e bacteriostática para uma razão acima de 4.103 Os compostos cujo CBM foi maior que as concentrações testadas tiveram atividade dada como não determinada. O experimento foi realizado em triplicata experimental, com 3 réplicas biológicas para os peptídeos selecionados para estudo.

A CIM e CBM de todos os peptídeos sintetizados foram determinadas testando as linhagens de referência *S. epidermidis* ATCC 35984, *S. aureus* ATCC 25923, *E. faecalis* ATCC 29212, *E. faecium* ATCC 700221, *K. pneumoniae* ATCC 700603, *E. coli* ATCC 25922, *A. baumannii* ATCC 19606, *P. aeruginosa* ATCC 27853. Posteriormente, para os peptídeos selecionados, foram testadas linhagens listadas e descritas nas Tabelas do Anexo A.

3.3 Teste de atividade hemolítica

A avaliação de atividade hemolítica foi realizada como uma avaliação inicial de toxicidade dos peptídeos sintetizados, e foi feita apenas para os peptídeos que se mostraram ativos contra as bactérias. Esse experimento foi aprovado pelo Comitê de Ética da

Universidade Federal de São Carlos (CAAE 52231421.7.0000.5504). Sangue de voluntários humanos que não estavam em tratamento com nenhum medicamento foi colhido em tubo com ácido etilenodiaminotetracético (EDTA) e submetido à três lavagens com tampão *Phosphate buffered saline* (PBS). As hemácias precipitadas foram suspensas à 1% em PBS. O peptídeo foi testado em concentrações crescentes (0,06 a 512 mg/L) e incubado com as hemácias por 1 hora à 37°C. O conteúdo dos poços foi centrifugado por 15 minutos à 800 xg, e o sobrenadante teve sua absorbância medida a 405 nm no equipamento SpectraMax M5 (Molecular Devices). Como controle negativo foi utilizado PBS e para controle positivo (100% hemólise) foi utilizado PBS/Triton X-100 1% ¹⁰⁴. O experimento foi realizado em triplicata experimental, com 3 réplicas biológicas para os peptídeos selecionados para estudo.

3.4 Análise de QuimioInformática

Esta análise foi desenvolvida como uma forma de melhor caracterizar os peptídeos sintetizados, em colaboração com o Dr. Leonardo L. G. Ferreira e o Dr. Adriano Andricopulo, no Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, por meio de predições computacionais. A estrutura química dos peptídeos foi desenhada no programa ChemDraw[®] (Perkin Elmer). Em seguida, estas estruturas foram analisadas no programa StarDrop[®] (Optibrium), no qual foram calculados alguns parâmetros *in silico* de farmacocinética e farmacodinâmica, tais quais: logP, penetração na barreira hematoencefálica, absorção intestinal humana.

3.5 Dicroísmo circular

Os peptídeos foram diluídos em solução aquosa (pH 7,0) a uma concentração de 0,25 mg/mL e seu respectivo espectro de CD convencional foi tomado no espectropolarímetro Jasco J-815 CD Spectrometer do Biofísica e Biologia Estrutural "Sérgio Mascarenhas", do Instituto de Física de São Carlos, da Universidade de São Paulo, registrando 3 varreduras individuais de cada amostra no intervalo de 280 nm a 190 nm com passo de 1 nm, em cubetas retangulares de quartzo de 1 mm de caminho ótico, e velocidade de 50 nm/min, a 25°C. Todos os espectros de CD foram processados com o software CDToolX, obtendo a média dos espectros individuais, realizando a subtração das contribuições do espectro da solução tampão correspondente nas mesmas condições, zerando os espectros na região de 265 - 270 nm, e convertendo a unidade do sinal θ (originalmente em miligraus) para a unidade $\Delta \varepsilon$ (M-1 cm-1).

3.6 Determinação da Cinética de Morte

O experimento foi realizado conforme preconizado pelo CLSI e descrito anteriormente 93-105 para verificar com qual velocidade os peptídeos seriam capazes de matar todo o inóculo bacteriano exposto. A determinação da cinética de morte foi feita para as bactérias S. aureus ATCC 25923, S. aureus SA43, A. baumannii ATCC 19606, A. baumannii ACI50 para os peptídeos selecionados e antibióticos controle (daptomicina para S. aureus e polimixina B para A. baumannii). Um inóculo bacteriano foi ajustado para cerca de 6 x 107 CFU/ml. A suspensão bacteriana foi ajustada e 100 µl foram adicionados a 10 ml de MHCA contendo 0,5x, 1x, 2x e 4x a CIM de cada peptídeo ou antibiótico para a linhagem testada. Após a homogeneização dos tubos, um inóculo de 20 µl foi retirado e diluído seriadamente em solução salina 0,85%. Os tubos ficaram sob incubação a 37°C e novos inóculos foram retirados em 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h e 24 h. As diluições em solução salina foram semeadas por técnica de microgotas (6 gotas de 15 µl cada) em ágar infusão de cérebro e coração (BHI, do inglês Brain and Heart Infusion) e incubadas em 37 °C por 24 h. As colônias foram posteriormente contabilizadas. As bactérias cultivadas na ausência dos peptídeos foram utilizadas como controle positivo e caldo esterilizado foi usado como controle negativo. O experimento foi realizado em duplicata biológica.

3.7 Estudo de Efeito pós-antibiótico (post antibiotic effect, PAE)

O experimento foi realizado para verificar por quanto tempo os peptídeos continuavam a influenciar o crescimento das bactérias mesmo após retirados depois da exposição. O estudo foi feito conforme descrito anteriormente. ¹⁰⁶ A determinação do efeito pós antibiótico feita para as bactérias *S. aureus* ATCC 25923, *S. aureus* SA43, *A. baumannii* ATCC 19606, *A. baumannii* ACI50 para os peptídeos selecionados e para antibióticos controle (daptomicina para *S. aureus* e polimixina B para *A. baumannii*). Um inóculo bacteriano foi ajustado para cerca de 6 x 10⁷ CFU/ml e 100 µl foram adicionados a 10 ml de MHCA contendo 0,5x e 1x a CIM a CIM de cada peptídeo ou antibiótico para a linhagem testada. Após a homogeneização os tubos foram incubados a 37°C por 15 min (tempo escolhido de acordo com resultados prévios da cinética de morte). Em seguida, os tubos passaram por três centrifugações a 3000g durante 10 minutos, em temperatura ambiente. Os sobrenadantes foram descartados e as bactérias foram suspensas em 10 ml de MHCA fresco a 37°C. A cada hora, um inóculo de 20 µl foi retirado e diluído seriadamente em solução salina 0,85%. As diluições foram semeadas por técnica de microgotas (6 gotas de 15 μ l cada) em ágar BHI e incubadas em 37 °C por 24 h. As colônias foram posteriormente contabilizadas. As bactérias cultivadas na ausência dos peptídeos foram utilizadas como controle positivo e caldo esterilizado foi usado como controle negativo. O experimento foi realizado em duplicata biológica. O efeito pós antibiótico (PAE) é definido por: PAE = T – C, no qual T é o tempo para a CFU do experimento aumentar em 1 log, enquanto C é o mesmo, porém para o controle positivo de crescimento. Os ensaios foram feitos em duplicata biológica.

3.8 Avaliação de citotoxicidade por MTS

A avaliação de citotoxicidade por [3-(4,5-dimetiltiazol-2-il)-5-(3-carboximetoxifenil)-2-(4-sulfonil)-2H-tetrazolio] (MTS) foi feita no Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, em parceria com a Dra. Julia Medeiros Souza e o Prof. Dr. Adriano D. Andricopulo. Foram utilizadas as seguintes células: THP-1 (macrófagos humanos diferenciados), HFF-1 (fibroblastos humanos) e HepG2 (carcinoma hepático humano). O ensaio MTS é um ensaio colorimétrico comumente usado como medida indireta de viabilidade celular, uma vez que este sal, de coloração amarela, é metabolizado por enzimas desidrogenases mitocondriais. Assim espera-se medir o possível efeito citotóxico dos peptídeos. As células foram cultivadas em placas de 96 poços a 37°C por 24h. Após a incubação, os peptídeos foram adicionados em concentrações crescentes nos poços (a partir de 512 mg/L) e incubados por 24h, a 37°C. Após esse período, o reagente MTS foi adicionado e as células passaram mais 4 h em incubação. Em seguida, foi feita a leitura em espectrofotômetro a 490 nm. Como células controle (100% viabilidade) foi utilizado meio fresco. Doxorubicin foi utilizado como controle positivo de morte celular. Os ensaios foram feitos em triplicatas biológicas.

3.9 Estudo de sinergismo antimicrobiano

A medição de sinergismo é usada para determinar o impacto na potência da combinação de antibióticos em comparação com suas atividades individuais. Este estudo foi feito através da análise quadriculada, no qual o ensaio é feito da mesma maneira que a determinação da CIM conforme descrito em **3.2 Determinação da Concentração Inibitória Mínima e Concentração Bactericida Mínima,** mas com a diluição de um composto **A** na horizontal e de um composto **B** na vertical, conforme indica a Figura 2 abaixo.

Figura 2 - Exemplo de configuração típica de ensaio de sinergismo pela metodologia quadriculada. As colunas 1 a 11 contêm diluições em série do composto A e as linhas A à G contêm diluições em série do composto B. A coluna 12 contém diluição do composto B sozinho, enquanto a linha H contém diluição do composto A sozinho. Esses controles são usados para determinar o valor da CIM para cada composto, que por sua vez é usado para calcular o valor de CIF.

Fonte: Adaptada de EmeryPharma®

Este ensaio foi realizado utilizando os peptídeos na posição do composto A e antibióticos na posição do composto B ciprofloxacina, tobramicina, vancomicina, ampicilina e imipenem (cada um escolhido com o intuito de avaliar diferentes alvos bacterianos) foram testados com as bactérias *S. aureus* ATCC 25923 e *A. baumannii* ATCC 19606. Com a primeira, ainda foi testado daptomicina e, com a segunda, polimixina B.

A concentração inibitória fracional (CIF) foi calculado de acordo com a fórmula:

$$\frac{CIM_{A} \ em \ combinação}{CIM_{A}} + \frac{CIM_{B} \ em \ combinação}{CIM_{B}} = \ CIF_{A} + \ CIF_{B} = \text{Índice CIF}$$

Para os antibióticos em que foi observado sinergismo, foram ainda utilizadas outras linhagens patogênicas descritas nas Tabelas do Anexo A.

Para o peptídeo em que foi observado sinergismo com o antibiótico vancomicina em gram-negativo, o ensaio também foi feito com MHCA complementado com Mg⁺². Para isso foi feita uma solução de cloreto de magnésio a 1,05 M que foi adicionado ao MHCA utilizado no ensaio em uma razão 1:50 para obter uma concentração final de 21 mM.¹⁰⁷ Os ensaios foram feitos em triplicatas biológicas.

3.10 Despolarização de membrana

Este ensaio foi feito com o intuito de verificar se os peptídeos causariam danos à membrana bacteriana, de forma a levar ao efluxo de íons. Foram utilizadas as linhagens S. aureus ATCC 25923 e A. baumannii ATCC 19606. Inicialmente colônias isoladas foram cultivadas em MHCA sob agitação a 37°C até a fase mid-log (entre 4h e 6h). Em seguida este cultivo foi centrifugado a 4000 rpm em temperatura ambiente por 10 min. O sobrenadante foi descartado e as células foram suspensas no tampão de respiração (5 mM de HEPES e 20 mM de glicose pH 7,4). As células foram novamente centrifugadas e suspensas em tampão fresco, sendo em seguida ajustadas para $DO_{600} = 0.05$ no Spectramax M5 (Molecular Devices). Em seguida a solução estoque de Iodeto de 3,3'-dipropiltiadicarbocianina (DISC₃(5)) diluída em dimetilsulfóxido foi adicionada na concentração final de 0,2 µM (solução estoque à 100 µM, logo, diluição 1:500). Para A. baumannii, nesta etapa adicionou-se também 0,05 mM de EDTA. A células foram incubadas com o DISC₃(5) por 1h em temperatura ambiente. Após a incubação, 200 µL foram adicionados a cada poço de uma microplaca preta fosca de fundo chato. A cada poço foram adicionados 2 µL de peptídeo em uma concentração final de 4x, 1x ou 0,5x a CIM. Melitina a uma concentração final de 10 mg/ml também foi usado como controle positivo (100% de despolarização, sempre comparado ao pico de despolarização). Logo em seguida a placa foi lida no Spectramax M5 (Molecular Devices) no modo florescência, com excitação em 622 nm e emissão em 670 nm, durante 5 minutos. Os ensaios foram feitos em triplicata experimental e biológica. Os resultados foram expressos em gráficos de intensidade de fluorescência (unidades arbitrárias) por tempo.

3.11 Microscopia Eletrônica de Transmissão

A microscopia eletrônica de transmissão (MET) foi feita para *S. aureus* ATCC 25923 e *A. baumannii* ATCC 19606, para verificar quais mudanças morfológica ocorreram após exposição das células aos peptídeos. Inicialmente colônias isoladas foram cultivadas em MHCA sob agitação a 37°C até a fase mid-log (entre 4h e 6h). Cerca de 30 mL deste cultivo foi ajustado para $DO_{600} = 0,05$ no Spectramax M5 (Molecular Devices) em MHCA, e foram tratados com os peptídeos a 0,5x, 1x e 4x a CIM. Após a homogeneização os tubos foram incubados a 37°C por 15 min (tempo escolhido de acordo com resultados prévios). Em seguida, os tubos passaram por três centrifugações a 3000g durante 10 minutos, em temperatura ambiente, intercaladas por lavagens com tampão PBS. Os sobrenadantes foram descartados e as bactérias foram suspensas em PBS com 3% de glutaraldeído, sendo então mantidas a 4°C por 2h, quando ocorreu nova centrifugação. As células foram então enviadas ao Laboratório Multiusuário de Microscopia Eletrônica da Universidade de São Paulo. Neste laboratório, as células foram mais uma vez suspensas em PBS e então fixadas com 3% de glutaraldeído durante 2h a 0°C. As células foram lavadas com PBS e fixadas com tetróxido de ósmio durante 2h a 4°C. Em seguida, foram lavadas e desidratadas com concentrações crescentes de etanol. Após a última lavagem em etanol, as células foram suspensas em óxido de propileno e centrifugadas duas vezes. O óxido foi retirado e o material depositado em resina epóxi, seguido de agitação overnight. O material foi centrifugado, transferido para uma cápsula com resina pura, e feitos cortes ultrafinos com o ultramicrótomo. Os cortes foram então analisados com o microscópio JEOL - 100CX-II, Japão. Para comparação quantitativa entre as amostras foram capturadas 10 imagens em campos aleatórios, em aumento de 20.000 x. As amostras tratadas e não tratadas tiveram os danos celulares e número de céulas observados comparados por meio de teste ANOVA. As amostras foram feitas em duplicata biológica.

3.12 Seleção in vitro e extração de DNA das linhagens obtidas

O estudo foi realizado para verificar a propensão dos peptídeos para o desenvolvimento de resistência, conforme descrito anteriormente.⁶⁶ Mutações no genoma de isolados com incremento da CIM também podem dar indícios do modo de ação do peptídeo. Foram utilizadas as linhagens *S. aureus* ATCC 25923 e *A. baumanni* ATCC 19606 para os peptídeos selecionados e para antibióticos controle (ciprofloxacina, além de daptomicina para *S. aureus* e polimixina B para *A. baumannii*). Inicialmente os peptídeos ou antibióticos tiveram sua CIM determinada conforme descrito na seção **3.2.** No dia da leitura da CIM, a microplaca teve a absorbância quantificada a 600 nm no Spectramax M5 (Molecular Devices). Nos poços em que foi observado 50% ou mais de inibição em relação ao controle positivo (mas ainda apresentando crescimento), o conteúdo do poço foi diluído 1:20 e utilizado como novo inóculo bacteriana para uma nova microplaca de CIM (preparada novamente, de maneira igual a anterior). Esse processo foi repetido diariamente durante 30 dias. Após os 30 dias, as linhagens finais foram submetidas a 3 passagens em meio MHCA

livre de antibióticos ou peptídeos para sua estabilização. O experimento foi realizado em três réplicas biológicas feitas concomitantemente.

As linhagens obtidas do experimento de seleção in vitro tiveram sua CIM determinada tanto para os peptídeos quanto para os antibióticos controle (neste último caso, para verificar a ocorrência de resistência cruzada). As linhagens que apresentaram sensibilidade reduzida ao peptídeo em relação a CIM inicial tiveram seu DNA extraído com QIAGEN® Dneasy Blood and Tissue Extraction Kit, seguindo as recomendações do fabricante. O DNA foi quantificado e teve as razões 260/280 e 260/230 determinadas utilizando o Nanodrop (ThermoFisher). Para verificar se houve degradação do DNA após a extração, foi corrido um gel de agarose 0,8% (contendo 1% de SybrSafe) a 90 V por 45 min, que foi posteriormente revelado usando o fotodocumentador ChemiDoc XRS (Bio-Rad Laboratories Inc., Estados Unidos). Por fim, os DNAs foram embalados em criotubos e enviados para o sequenciamento de genoma em parceria com o Prof. Dr. Paulo J. M. Bispo, da Harvard University. O sequenciamento foi realizado com o kit Nextera XT DNA Library Preparation (Illumina), de acordo com as especificações do fabricante. Os genomas foram sequenciados como leituras de 2x250bp em um sequenciador Illumina MiSeq, de acordo com as especificações do fabricante com uma profundidade mínima de cobertura de 126x (variando de 126x a 242x). A análise foi feita usando o software CLC Genomics Workbench versão 10 (QIAGEN, Alemanha). O assemble dos genomas foi feito usando minimum contig lenght = 1000 e a análise de variantes foi feita usando cobertura de 50x.

3.13 Ensaios de arranjos fenotípicos

Os ensaios de comparação fenotípica/metabólica foram feitos entre as linhagens iniciais e finais de *S. aureus* do experimento de seleção *in vitro*. Para isso, foi seguido o protocolo de *B. subtilis* e outras bactérias gram-positivas disponibilizado pela Biolog (Estados Unidos). Foram escolhidos os painéis PM1 a PM20 – que avaliam fontes de carbono, nitrogênio, fósforo e enxofre, além de pH e sensibilidade química a diversos compostos - (exceção PM5) para as análises fenotípicas. Seguindo instruções do fabricante, foram feitas as seguintes soluções: solução A (MgCl₂.6H₂O 0,488 mg/mL; CaCl₂.2H₂O 0,176 mg/mL; L-arginina 0,063 mg/mL; L-glutamato 1,01 mg/mL; L-cistina pH8,5 0,036 mg/mL; 5'-UMP, 2Na 0,111 mg/mL; extrato de levedura 0,6 mg/mL; tween 80 0,6 mg/mL), solução B (ácido tricarbálico, pH7,1 42,03 mg/mL; MgCl₂.6H₂O 0,488 mg/mL; CaCl₂.2H₂O 0,176 mg/mL; L-cistina pH8,5 0,036 mg/mL; 5'-UMP, 2Na 0,111 mg/mL; extrato de levedura 0,6 mg/mL; CaCl₂.2H₂O 0,176 mg/mL; L-cistina pH8,5 0,036 mg/mL; L-cistina pH8,5 0,036 mg/mL; J-

tween 80 0,6 mg/mL; D-glicose 5,4 mg/mL; piruvato, Na 6,6 mg/mL), solução C (ácido tricarbálico, pH7,1 42,03 mg/mL; MgCl₂.6H₂O 0,488 mg/mL; CaCl₂.2H₂O 0,176 mg/mL; Larginina 0,063 mg/mL; L-glutamato 1,01 mg/mL; extrato de levedura 0,6 mg/mL; tween 80 0.6 mg/mL; D-glicose 5.4 mg/mL; piruvato, Na 6.6 mg/mL), e solução D (MgCl₂.6H₂O 0.488 mg/mL; CaCl₂.2H₂O 0,176 mg/mL; extrato de levedura 0,6 mg/mL; tween 80 0,6 mg/mL; Dglicose 5,4 mg/mL; piruvato, Na 6,6 mg/mL). As soluções foram filtradas em 0,22 µm e guardadas a 4°C. As células do ensaio foram estriadas no dia anterior ao experimento em meio Biolog Universal Growth Media (BUG) e incubadas a 33°C. No dia do experimento, as células foram ajustadas para 81% de transmitância em fluido inoculante IF-0a GN/GP usando o Turbidímetro (Biolog). As seguintes soluções foram então preparadas e 100 µl foram pipetados em cada poço das respectivas placas: para as placas 1 e 2, foram adicionados 20 mL de IF-0a GN/GP, 0,24 mL de corante H, 2 mL de solução A e 1,76 mL de células ajustadas; para as placas 3, 6, 7 e 8 foram adicionados 40 mL de IF-0a GN/GP, 0,48 mL de corante H, 4 mL de solução B e 3,52 mL de células ajustadas; para placa 4 foram adicionados 10 mL de IF-0a GN/GP, 0,12 mL de corante H, 1 mL de solução C e 0,88 mL de células ajustadas, e para as placas 9 a 20 foram adicionados 110 mL de IF-10b GN/GP, 1,32 mL de corante H, 11 mL de solução D e 9,68 mL de células ajustadas. As placas foram então incubadas no aparelho Omnilog a 36°C por 48h, com leituras de absorbância a cada 15 min. As curvas de crescimento foram comparadas usando o próprio software Parametrics (Biolog), usando os parâmetros *slope*, *max slope* e *height*. O experimento foi feito com uma replicata biológica.

4 RESULTADOS E DISCUSSÃO

4.1 Bothropstoxina-I

Os análogos do peptídeo originário da Bothropstoxina-I foram idealizados e sintetizados em colaboração com o Prof. Dr. Eduardo M. Cilli e Prof. Dr. Norival A. Santos-Filho, da Universidade Estadual Paulista Júlio de Mesquita Filho. A Tabela 1 - Resumo dos análogos de Bothropstoxina-I sintetizados e sua atividade antimicrobiana e hemolíticamostra esses análogos junto com suas atividades antimicrobianas (através da CIM) e atividades hemolítica.

Nome	Sequência	S. epidermidis ATCC 35984	S. aureus ATCC 25923	E. faecalis ATCC 29212	E. faecium ATCC 700221	K. pneumoniae ATCC 700603	E. coli ATCC 25922	A. baumannii ATCC 19606	P. aeruginosa ATCC 27583	$HC_{50}(mg/L)$
E(NA1307)	E(KKYRYHLKPFCKK) ₂	32	S.A.	128	128	128	S.A.	128	S.A.	>512
(NA1307)K	(KKYRYHLKPF)2K	8	32	64	16	S.A.	32	256	S.A.	>512
(TL1815)-KK	(YRYHLKPF) ₂ K	512	S.A.	S.A.	128	S.A.	64	512	S.A.	N.D.
LM1944	(AKYRYHLKPF)2K	64	S.A.	512	512	512	512	128	S.A.	>512
LM1941	(KAYRYHLKPF)2K	128	S.A.	512	64	S.A.	S.A.	256	S.A.	>512
TL1817	(KKARYHLKPF)2K	128	S.A.	S.A.	128	S.A.	256	S.A.	S.A.	>512
TL1818	(KKYAYHLKPF)2K	256	S.A.	S.A.	512	S.A.	S.A.	512	S.A.	>512
TL1819	(KKYRAHLKPF)2K	256	S.A.	S.A.	S.A.	512	256	S.A.	S.A.	>512
LM1950	(KKYRYALKPF) ₂ K	16	512	512	512	512	512	128	S.A.	>512
LM1954	(KKYRYHLAPF)2K	32	256	128	64	256	64	64	512	>512
TL1822	(KKYRYHLKPA)2K	512	512	S.A.	256	S.A.	256	S.A.	S.A.	>512
NA1896	(KKWRWHLKPF)2K	16	64	64	16	32	32	32	64	>512
NA1897	(KKWRWHLKPW) ₂ K	16	32	64	16	32	16	32	64	>512

Tabela 1 - Resumo dos análogos de Bothropstoxina-I sintetizados e sua atividade antimicrobiana e hemolítica

Concentração Inibitória Mínima (mg/L)

S.A., Sem atividade para as condições testadas

N.D., Não determinada

HC₅₀, Concentração de 50% de hemólise

Fonte: Elaborada pela autora

A atividade já relatada deste peptídeo serviu de inspiração e ponto de partida para as modificações que visaram potencializar sua ação. A dimerização deste peptídeo (já realizada anteriormente através de ponte dissulfeto com o aminoácido cisteína) parece ter sido importante para sua atividade.⁹³ De fato, a dimerização de peptídeos antimicrobianos é utilizada como parte do design racional de AMPs, pois a oligomerização destes contribui para sua atividade e seletividade, independente do mecanismo de ação.¹⁰⁸ Assim, as primeiras modificações desenhadas para este peptídeo tiveram como foco sua dimerização. Dois peptídeos foram desenhados: E(NA1307) no qual o glutamato foi utilizado para realizar uma dimerização na porção N-terminal, e (NA1307)K no qual a lisina foi utilizada para fazer a dimerização na região C-terminal. O processo de síntese utilizado permitiu investigar como diferentes regiões do peptídeo se relacionam com sua atividade, uma vez que diferentes porções estarão livres estereoquimicamente para interação com o dímero ou com a bactéria. O peptídeo E(NA1307), além de apresentar a dimerização na região N-terminal, também apresentou a ponte dissulfeto entre os resíduos de cisteína. Isso pode aumentar a estabilidade do peptídeo e esta oxidação ocorre espontaneamente em solução. Por outro lado, (NA1307)K foi sintetizado sem a presença das duas lisinas da região N-terminal devido a estudos anteriores que mostraram na degradação em soro do peptídeo original, essas duas lisinas eram perdidas, mas a ação do peptídeo era mantida e este permanecia estável por até 12h. Neste caso, como não era de interesse utilizar a ponte dissulfeto, o aminoácido cisteína também foi removido. O peptídeo (NA1307)K apresentou ação mais significativa e também foi mais ativo que os demais análogos previamente estudados e publicados. Como se sabe, a carga positiva é importante para a ação destes peptídeos antimicrobianos pois possibilita uma interação com os fosfolipídios bacterianos carregados negativamente (seja para desestabilizar a membrana, ou para sua permeabilização para o interior do organismo)⁷². Logo, supõe-se que a menor atividade do peptídeo E(NA1307) deve-se ao fato das lisinas localizadas na porção N-terminal do peptídeo estarem menos disponíveis para estabelecer tal interação. Assume-se também que a localização destas cargas positivas no peptídeo é relevante, uma vez que em publicações anteriores já foi mostrado que as duas lisinas da região N-terminal não são necessárias para ação antimicrobiana. Além disso, revisões anteriores mostram que peptídeos diméricos Cterminais têm maiores atividades antimicrobianas e hemolíticas do que os dímeros Nterminais.¹⁰⁸ Nenhuma atividade hemolítica significativa foi encontrada para estes peptídeos, indícios de sua baixa toxicidade que deve ser confirmada com estudos adicionais. Para confirmar a supracitada importância das lisinas na região N-terminal, sintetizamos o peptídeo (NA1307)K sem estes aminoácidos, obtendo o peptídeo (TL1815)-KK. Nota-se que houve grande perda de atividade em comparação com o (NA1307)K, o que corrobora a hipótese anterior. Não foi realizado o ensaio de atividade hemolítica, dada sua baixa atividade antimicrobiana.

Uma vez que foi verificado que aminoácidos positivos específicos podem ser essenciais para atividade, o próximo passo na investigação por análogos mais potentes foi a realização da técnica *Alanine Scanning* (Ala-Scan), uma abordagem sistemática para verificar se a cadeia lateral de um resíduo específico desempenha um papel significativo em sua atividade. No Ala-Scan, o peptídeo em questão é sintetizado trocando cada resíduo da sequência por alanina (Figura 3), um dos aminoácidos com cadeia lateral mais simples, o que elimina as interações de cadeia lateral sem alterar a conformação da cadeia principal.

Figura 3 - Peptídeos desenhados usando a técnica *Alanine Scanning* a partir do peptídeo (NA1307)K. Fonte: Elaborada pela autora

Todos os aminoácidos trocados por alanina levaram a uma diminuição na atividade antimicrobiana, mostrando a singularidade deste peptídeo e de sua sequência específica na atuação contra as bactérias. O ensaio de atividade hemolítica foi feito, mas nenhuma hemólise significativa foi observada, o que já era previsto dado que o peptídeo do qual se originaram as modificações ((NA1307)K) também apresentou esta seletividade. A substituição com maior impacto na atividade antimicrobiana foi a do aminoácido fenilalanina, no peptídeo TL1822. Este aminoácido já foi descrito como necessário para fornecer hidrofobicidade e afinidade de membrana, além de contribuir para interações hidrofóbicas que estabilizam as interações entre peptídeos. Assim, este aminoácido pode ter função crucial em uma possível relação estrutura-atividade deste AMP.

As últimas modificações testadas para este peptídeo foram baseadas na relação entre o triptofano e atividade antimicrobiana. Este aminoácido é conhecido por ter papel crucial em proteínas e peptídeos na interação com membranas. Além disso, diversos estudos mostram uma relação entre este aminoácido e o aumento da atividade antimicrobiana, sem aumentar a atividade hemolítica.¹⁰⁹⁻¹¹⁰ Apesar destes estudos serem, em sua maioria, relacionados a peptídeos que formam hélices anfipáticas (o que não é observado para estes análogos da Bothropstoxina-I), acreditamos que a presença deste aminoácido poderia ter efeitos positivos em sua atividade, promovendo melhores interações do peptídeo com seus alvos. Assim, sintetizamos os peptídeos NA1896, no qual os aminoácidos tirosina foram substituídos por triptofano e NA1897, no qual tirosina e a fenilalanina foram trocados por triptofano. Embora a ação destes peptídeos em bactérias gram-positivas tenha se mantido muito similar ao peptídeo (NA1307)K, é possível observar um aumento significativo na atividade contra bactérias gram-negativas: ocorre uma diminuição de até 16 vezes na concentração de ação para algumas espécies gram-negativas. As propriedades do triptofano de interação com a membrana podem ter ajudado na permeabilização do peptídeo nas bactérias gram-negativas, conhecidas por sua complexa membrana externa que funciona como uma barreira de proteção contra moléculas tóxicas (como antibióticos).¹¹¹

Todos os peptídeos sintetizados foram avaliados no StarDrop para obter suas propriedades físico-químicas e verificar se havia alguma relação entre essas propriedades e suas atividades biológicas (Tabela 2).

	des físico-quilliea	is dos analogos de Doth	iopstoxina-i calculad	
Peptídeo	logP	Categoria BHE	Categoria AIH	Ligação com proteínas
				do plasma
E(NA1307)	-1,078	-	+	Baixa
(NA1307)K	-1,165	-	+	Baixa
(TL1815)-KK	-0,678	-	+	Baixa
LM1944	-0,946	-	+	Baixa
LM1941	-0,946	-	+	Baixa
TL1817	-1,578	-	+	Baixa
TL1818	-1,037	-	+	Baixa
TL1819	-1,578	-	+	Baixa
LM1950	-1,233	-	+	Baixa
LM1954	-0,946	-	+	Baixa
TL1822	-1,661	-	+	Baixa
NA1896	-0,473	-	+	Baixa
NA1897	-0,154	-	+	Baixa

Tabela 2 - Propriedades físico-químicas dos análogos de Bothropstoxina-I calculadas in silico

BHE. Barreia Hematoencefálica

AIH. Absorção Intestinal Humana

Fonte: Elaborada pela autora

Inicialmente, é possível observar que a aplicação terapêutica deste peptídeo é favorecida pelas suas propriedades, uma vez que estes testes in silico indicam poucos sinais de toxicidade (pouca ligação com proteínas do plasma e não ultrapassa a barreira hematoencefálica), além de indicar absorção intestinal humana, o que possibilitaria aplicação oral. Apesar disso, a não ultrapassagem da barreira hematoencefálica pode indicar uma limitação da molécula como alternativa de tratamento, não podendo, por exemplo, ser utilizada no tratamento de infecções meningocócicas. Apesar de não ter sido possível estabelecer nenhuma relação quantitativa entre estes peptídeos e suas propriedades, é importante discutirmos os valores obtidos para o logP. Este parâmetro mede o coeficiente de partição em octanol/água, que pode ser interpretado como a somatória de dois termos: um relacionado com volume (estéricos) e o outro com interações intermoleculares (interações dipolo-dipolo e ligações por hidrogênio), tornando-se uma medida indireta de lipofilicidade. A investigação da natureza e grandeza destes termos pode contribuir para uma compreensão do comportamento farmacocinético de moléculas candidatas a fármacos. ¹¹² O valor negativo destes peptídeos mostra que não há forte hidrofobicidade, o que provavelmente indica baixa interação com a membrana, corroborando a teoria de que este peptídeo possui outros alvos de ação, provavelmente, intracelulares. Por outro lado, é possível observar ainda que a adição do triptofano aos peptídeos NA1896 e NA1897 causou um aumento no valor do logP destas moléculas. Isto indica que as propriedades já citadas anteriormente associadas deste aminoácido contribuíram para aumentar a lipofilicidade dos peptídeos desenhados. Supondo que isto também implica em melhor interação com membranas, esta modificação pode ter permitido uma melhor permeação desta molécula para o meio intracelular, ou mesmo priorizado uma ação em membrana, mecanismo mais comum em AMPs.

Dado que o potencial antimicrobiano da molécula de partida pôde ser otimizado, fato observado pela obtenção de CIM mais baixa, e a taxa hemolítica que se manteve a mesma, o peptídeo NA1897, representado na Figura 4 foi o escolhido para prosseguimento do projeto. O dicroísmo circular para essa molécula (Anexo B) mostrou que esta possui estrutura desordenada, assim como seus análogos anteriormente publicados.^{93,113}

Figura 4 - Peptídeo NA1897 ((KKWRWHLKPW)₂K).

Fonte: Elaborada pela autora

Com a escolha do análogo de trabalho, o próximo passo foi a avaliação do seu potencial antimicrobiano em outras bactérias, com diversos perfis de resistência (Tabelas disponíveis no Anexo A). Informações obtidas de diversas linhagens bacterianas podem indicar alguns possíveis mecanismos de ação, além de confirmar a susceptibilidade da espécie ao peptídeo. A CIM e a CBM foram determinadas para 30 linhagens gram-positivas, e o resultado se apresenta na Tabela 3.

Espécie	Linhagens	Principal Perfil	CIM	CBM	CBM	Atividade
		Resistência*	(mg/L)	(mg/L)	/CIM	
S anidamaidia	ATCC 35984		8	16	2	Bactericida
S. epidermiais	ATCC 12228		4	16	4	Bactericida
	ATCC 25923		16	32	2	Bactericida
	SA16	MRSA	16	32	2	Bactericida
	SA88	MRSA	16	32	2	Bactericida
	SA43	MRSA, TIG S	16	32	2	Bactericida
C aurous	SA43 B2		16	16	1	Bactericida
S. aureus		MRSA, MepA				
	SA43 B7	superexpressa	32	32	1	Bactericida
		(mutação no mepR)				
	Mu50	VISA	8	32	4	Bactericida
	ATCC 8095		16	32	2	Bactericida
	VRE 109	VAN R, TIG S	64	>256	>4	Bacteriostático
	VRE 109 42C	VAN R, TIG R	64	256	4	Bactericida
F faccalis	VRE 80	VAN R, TIG R	64	256	4	Bactericida
E. faecalis	V583	VAN R	128	256	2	Bactericida
	RPEfs1	CIP R	128	256	2	Bactericida
	RPEfs2	ERY I	128	256	2	Bactericida

Tabela 3 - CIM e CBM do peptídeo NA1897 para linhagens gram-positivas

(continua)

(continuação)

- Tabela 5 - Chyl e Chwl do beblideo NA1697 bala inniagens grani-bu	i-positivas
---	-------------

Espécie	Linhagens	Principal Perfil	CIM	CBM	CBM	Atividade
		Resistência*	(mg/L)	(mg/L)	/CIM	
	RPEfs3	VAN R	64	256	4	Bactericida
	RPEfs4	CIP R	64	256	4	Bactericida
	RPEfs5	TET R	8	>32	>4	Bacteriostático
	ATCC 29212		32	128	4	Bactericida
	VRE 16	VAN R	32	64	2	Bactericida
	HBSJRP18	DAP supersensível (<i>laf</i> B**)	32	64	2	Bactericida
	HBSJRP18 2.7	DAP S	32	64	2	Bactericida
	HBSJRP18 3.6	DAP R (dak^{**})	32	64	2	Bactericida
E. faecium	HBSJRP7	DAP R, VAN R	8	>32	>4	Bacteriostático
	HBSJRP13	VAN R	16	64	4	Bactericida
	HBSJRP14	VAN R	8	32	4	Bactericida
	HBSJRP23		8	>32	>4	Bacteriostático
	HBSJRP11		8	>32	>4	Bacteriostático
	ATCC 700221	VAN R	8	>32	>4	Bacteriostático

American Type Culture Collection (ATCC). *Staphylococcus aureus* resistente à meticilina (MRSA); *S. aureus* com resistência intermediária à vancomicina (VISA);

R, resistente; S, sensível, I, intermediário;

Ciprofloxacina (CIP), Daptomicina (DAP), Eritromicina (ERY), Tigeciclina (TIG), Vancomicina (VAN)

*Perfil completo de resistência encontra-se no anexo A

** mutação em lafB e em dak

Fonte: Elaborada pela autora

Neste quadro geral de ação do peptídeo em gram-positivas, é possível notar que a CIM não varia muito entre as linhagens de uma mesma espécie, mesmo com os diferentes perfis de susceptibilidade e diversos mecanismos de resistência. As maiores CIMs foram observadas em *E. faecalis*.

Como citado anteriormente, algumas destas bactérias podem auxiliar na determinação do modo de ação da molécula em estudo através da influência ou não dos mecanismos de resistência de antibióticos comerciais para os quais se sabe o modo de ação. Inicialmente, enfatiza-se o resultado obtido para o par *S. aureus* SA43 e SA43B7, que são bactérias isogênicas sendo que SA43B7 foi selecionada in vitro a partir da bactéria SA43 e possui uma mutação no *mepR* levando à superexpressão da bomba de efluxo MepA.¹⁷⁷ A MepA é uma bomba de efluxo da família "Extrusão de Compostos Tóxicos e Múltiplas Drogas" (MATE, do inglês multidrug and toxic compound extrusion), codificada pelo gene cromossômico *mepA*. MepA comumente está associada ao fenótipo de multirresistência e também causa baixos níveis de resistência a compostos de amônia quaternária e antibióticos como a tigeciclina. Extrusão de fármacos por bombas de efluxo é um mecanismo importante de resistência e de grande destaque clínico. Estudos recentes mostram que esta pode ser usada

como primeira forma de defesa da célula, exportando moléculas antes que elas atinjam uma concentração tóxica no organismo.¹⁹ Apesar de ser observado uma diferença de duas vezes na CIM de NA1897 para a linhagem *S. aureus* SA43 e *S. aureus* SA43B7, considera-se que a bomba de efluxo está agindo com mecanismo de resistência (ou diminuição da susceptibilidade) quando esta diferença é maior do que 4 vezes a CIM. Assim, não é possível afirmar que a diferença observada entre as CIMs se refere à ação da bomba de efluxo MepA sobre o peptídeo NA1897. Vancomicina se liga na D-alanina-D-alanina da região C- terminal do pentapeptídeo que compõe o peptídeoglicano da parede celular. O mecanismo de resistência à vancomicina apresentado na maioria das amostras deste estudo, tanto em *E. faecalis* quanto em *E. faecalis* V583 é VRE devido à aquisição do elemento VanB que altera este pentapeptídeo para D-alanina-D-serina.¹⁹ Estas modificações não alteraram a atividade do peptídeo em estudo já que tanto VRE quanto VSE de origens clínicas obtiveram CIMs nos mesmos níveis.

E. faecalis VRE109C42, resistente à tigeciclina, foi obtida por seleção *in vitro* da parental VRE109, apresenta mutação G1826T no gene *tetM* que levou a alteração G609V na proteína de proteção ribossomal TetM e ainda apresenta uma superexpressão deste gene.¹¹⁴ TetM está relacionada a resistência também à tetraciclina, pois esta se liga não covalentemente à subunidade 30S e modifica os ribossomos, sendo conhecida como proteína de proteção ribossômica contra tetraciclinas. Assim, é possível inferir que o mecanismo de resistência à tigeciclina observado não interfere no modo de ação do peptídeo, uma vez que mesmo com TetM mutado e superexpresso na VRE109C42, NA1897 agiu na mesma concentração que em VRE109.

Daptomicina é um antibiótico de último recurso que age na membrana citoplasmática e na parede de bactérias gram-positivas. *E. faecium* HBSJRP18, HBSJRP18-2.7 e HBSJRP18-3.6 são linhagens isogênicas obtidas através de seleção *in vitro* com daptomicina e que são supersensível, sensível e resistente à daptomicina, respectivamente.¹¹⁵ A linhagem HBSJRP18 tem origem clínica e é supersensível à daptomicina devido à uma mutação no gene *lafB*, responsável por uma glicosiltransferase envolvida na síntese da âncora do ácido lipoteicóico (LTA). HBSJRP18-2.7 foi selecionada a partir do isolado HBSJRP18, e apresenta uma reversão desta mutação no gene *lafB*, alterando o fenótipo de supersensível para sensível à daptomicina. HBSJRP18-2.7 representa então uma bactéria normal desta espécie no que se refere à síntese do LTA. A linhagem *E. faecium* HBSJRP18-3.6 foi obtida a partir da linhagem HBSJRP18-2.7 e apresenta uma mutação no gene dak resultando no fenótipo de resistência à daptomicina.¹¹⁵ Embora não se saiba quais as exatas consequências estruturais e metabólicas dessas mutações que levaram aos diferentes perfis de susceptibilidade a daptomicina, é notável que estas não alteraram a CIM para o peptídeo NA1897. A daptomicina é um lipopeptídeo que age contra bactérias gram-positivas e apresenta muitas similaridades aos peptídeos antimicrobianos catiônicos. Esta molécula, em oligomerização com íons de cálcio, interage com fosfatidilglicerol (sendo dependente deste para ação) e ao se aproximar da membrana, começa um processo de inserção que leva a uma desestabilização da membrana e uma série de eventos que resulta na morte celular.¹¹⁶ Apesar de não serem linhagens isogênicas, os isolados HBSJRP7 e HBSJRP13 também trazem resultados que agregam à esta discussão. Estas linhagens são, respectivamente, resistente e sensível à daptomicina. A comparação dos genomas destas bactérias indica que a única mutação encontrada foi em uma D-ala-D-ala ligase na amostra sensível à daptomicina, que age ligando a D-alanina na região terminal do pentapeptídeo da parede celular, estando diretamente ligado a montagem e integridade da parede celular.¹¹⁵ Apesar de esta mutação ter levado à sensibilidade à daptomicina, não há diferença da CIM para o peptídeo em questão quando testado nestas amostras bacterianas. Sendo assim, estes resultados em conjunto indicam que o peptídeo NA1897 apresenta um modo de ação distinto ao da daptomicina e pode representar uma alternativa para tratamento em linhagens resistentes a este antibiótico.

Quanto as bactérias gram-negativas, diversas linhagens de cada espécie foram testadas (Tabela 4).

Espécie	Linhagens	Principal Perfil	CIM	CBM	CBM/CIM	Atividade
-	-	Resistência*	(mg/L)	(mg/L)		
	ATCC 700603	Produtora SHV-				
	AICC 700005	18	32	128	4	Bactericida
	ATCC BAA1705	Produtora KPC	32	128	4	Bactericida
		AK R, AMP R,				
	BHKPC50	IMI R, CIP R,				
		TIG R, CL S	128	512	4	Bactericida
	DDKn01	IMI R, CIP R, CL				
	Kr Kp01	R	64	128	2	Bactericida
K nnaumoniaa	RPKn02	IMI R, CIP R, CL				
к. рпеитопиие	Ki Kp02	R	128	>512	>4	Bacteriostático
	PPKn00	AMP R, IMI R,				
	Ki Kp07	CL S	32	128	4	Bactericida
	RPKn18	AMP R, IMI R,				
	KI KP10	CL R	64	256	4	Bactericida
	NDM-1	NDM+	32	>128	>4	Bacteriostático
	ΔΜΚΡΛ	Produtora KPC,				
		CL R	512	>512	>1	N.D.
	AMKP7	Produtora KPC,	128	256	2	Bactericida

Tabela 4 - CIM e CBM do peptídeo NA1897 para linhagens gram-negativas

59

(continua)

Espécie	Linhagens	Principal Perfil	CIM	CBM	CBM/CIM	Atividade
		Resistência*	(mg/L)	(mg/L)		
		CL S				
	AMED10	Produtora KPC,				N.D.
	AWKP10	CL R	256	>512	>2	
	ATCC 25922		32	64	2	Bactericida
	ATCC 35218		32	64	2	Bactericida
	PPE _c 01	AK R, AMP R,				
E coli	Kr LC01	IMI R	32	>128	>4	Bacteriostático
<i>E. con</i>	BHKPC10	MEM R	32	64	2	Bactericida
	AMEc8	AMP R, CIP R	16	16	1	Bactericida
	AMEc49	AMP R, CXM R	16	>64	>4	Bacteriostático
	AMEc60	AMP R, CXM R	32	64	2	Bactericida
	ATCC 19606		32	64	2	Bactericida
	ACI50	CL R	32	32	1	Bactericida
	ACI44	CL S	32	32	1	Bactericida
1 haumannii	ACI51	CL R	32	32	1	Bactericida
A. Daumannii	ACI40	CL S	32	32	1	Bactericida
	ACI42	CL	32	64	2	Bactericida
	AM83	AK R, CL S	32	32	1	Bactericida
	AM87	AK S, CL S	32	32	1	Bactericida
	ATCC 27853	AmpC induzível	64	64	1	Bactericida
	RPPse09	IMI R, MEM R	128	256	2	Bactericida
P. aeruginosa	RPPse07	A KR, MEM R, IMI R, CL S	64	256	4	Bactericida
	PSE6	Produtora de KPC	64	64	1	Bactericida
	PAO1		64	64	1	Bactericida

Tabala 4 CIM - CDM da namtida a NA 1907 name linha sama anaman

American Type Culture Collection (ATCC). R, resistente; S, sensível, I, intermediário; KPC – Klebsiela Pneumoniae Carbapenemase; SHV-18 – Beta-lactamase de amplo espectro

Amicacina (AK), Ampicilina (AMP), Cefuroxima (CXM), Ciprofloxacina (CIP), Colistina (CL), Imipenem (IMI), Meropenem (MEM) *Perfil completo de resistência encontra-se no anexo A

Fonte: Elaborada pela autora

Apenas para *K. pneumoniae* houve uma variação muito grande da CIM entre as linhagens analisadas. Para se ter certeza da distribuição normal da CIM nesta espécie, mais amostras bacterianas deveriam ser testadas.

Novamente é possível pressupor algumas informações sobre o peptídeo NA1897 a partir dos resultados aqui obtidos. Inicialmente destacando os resultados para *A. baumannii*, podemos observar os isolados ACI40, ACI42, ACI44, ACI50 e ACI51. As duas últimas linhagens são resistentes às polimixinas enquanto ACI40, ACI42 e ACI44 são sensíveis ao antibiótico. Este resultado é relevante pois polimixinas são originárias de peptídeos antimicrobianos catiônicos, mesma classe da molécula aqui estudada. Como modo de ação, este antibiótico estabelece uma atração eletrostática inicial com a membrana externa negativa do microrganismo, então interage com o lipídio A do lipopolissacarídeo (LPS) e resulta na desestabilização e ruptura das membranas internas e externas, levando à morte celular.¹¹⁷ Os isolados *A. baumannii* ACI50 e ACI51 adquiriram resistência à polimixinas devido a mutações no sistema *pmrCAB* que resulta na adição de fosfoetanolamina no LPS, atribuindo

(continuação)

uma característica mais positiva a membrana externa e dificultando a interação eletrostática do antibiótico.¹¹⁸ Porém, tanto os isolados sensíveis quanto resistentes às polimixinas apresentaram a mesma susceptibilidade para o peptídeo NA1897, com CIM de 32 mg/L. Mesmo não sendo linhagens isogênicas, esse resultado mostra que uma membrana com característica mais positiva devido ao sistema pmrCAB não interfere na ação de NA1897 em A. baumannii. Por outro lado, é interessante observar o obtido para K. pneumoniae AMKP4, AMKP10 e AMKP7. AMKP7 é sensível às polimixinas, ao contrário das outras duas linhagens, e apresentou uma CIM mais baixa para NA1897 em relação a AMKP4 e AMKP10. Similarmente ao observado para A. baumannii, a resistência à polimixinas em AMKP4 e AMKP10 foi ocasionado devido à adição de moléculas com características positivas à membrana, mas neste caso foi devido a uma inserção de um elemento IS no gene mgrB¹¹⁹. MgrB é um repressor do sistema PhoP/PhoQ, que quando ativado pode levar à uma cascata de eventos que diminuem a carga negativa do LPS de um modo mais expressivo do que apenas com mutação em pmrCAB¹²⁰ em K. pneumoniae. Diferentes mecanismos de resistência à polimixinas podem alterar a carga negativa da membrana em níveis variados em uma mesma espécie bacteriana. Assim, é possível que haja uma diferença na alteração da carga, sendo uma adição de carga positiva maior em K. pneumoniae - isto pode explicar porque em A. baumannii não foi observada diferença na CIM para NA1897 entre linhagens sensíveis e resistentes à polimixina B, e em K. pneumoniae a diferença na CIM foi evidenciada dentre as bactérias resistentes à polimixina.

Outros estudos foram realizados para este peptídeo para caracterizar sua atividade antimicrobiana de forma mais completa e obter mais dados que indiquem seu provável mecanismo de ação. Para tal, foram selecionadas linhagens representativas dentro do foco atual de desenvolvimento de moléculas ativas. Foram escolhidas as linhagens *S. aureus* ATCC 25923 e *S. aureus* SA43 para representar as bactérias gram-positivas, sendo a primeira utilizada como uma linhagem referência e a segunda para representar *S. aureus* MRSA ¹²¹ que ganha destaque para pesquisa e desenvolvimento de medicamentos.²⁶ Da mesma maneira, *A. baumannii* ATCC 19606 e *A. baumannii* ACI50 foram utilizadas para representar as bactérias gram-negativas, sendo esta última linhagem resistente também aos carbapenêmicos, encontrando-se também como prioridade crítica para o desenvolvimento de antimicrobianos.²⁶ O estudo da cinética de morte (*Time-kill*) foi realizado para estas linhagens e sua análise permitiu monitorar o efeito de diversas concentrações do antimicrobiano ao longo do tempo. A cinética de morte de NA1897 para *S. aureus* ATCC 25923 e SA43 encontram-se nas Figura

5 e Figura 6, em conjunto com o antibiótico controle daptomicina feito para as mesmas linhagens.

Figura 5 - Cinética de morte para S. aureus ATCC 25923. A. Peptídeo NA1897, com CIM de 16 mg/L. B. Antibiótico comercial daptomicina, com CIM de 1 mg/L. Limite de detecção do experimento: 10² CFU/mL.

Fonte: Elaborada pela autora.

Figura 6 - Cinética de morte para *S. aureus* SA43. A. Peptídeo NA1897, com CIM de 16 mg/L. B. Antibiótico comercial daptomicina, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10² CFU/mL.

Fonte: Elaborada pela autora

Em ambas as linhagens de *S. aureus* é notável a rápida ação do peptídeo NA1897 que dentro de duas horas conseguiu reduzir completamente a população bacteriana, mesmo nas concentrações mais baixas, sendo comparativamente muito mais rápido que o antibiótico comercial daptomicina. Confirma-se com isso o efeito bactericida nesta linhagem (que para a cinética de morte define-se como a redução de 3 log, ou 99,9% do inóculo). Além disso, é interessante notar que mesmo em concentrações subinibitórias, há uma grande redução da população microbiana. Esse dado pode ser importante na futura definição de regimes posológicos para este agente antimicrobiano e a otimização da farmacocinética do mesmo.¹⁰⁶ A cinética de morte para as linhagens gram-negativas encontra-se na Figura 7 e Figura 8, junto com a curva para polimixina B.

Figura 7 - Cinética de morte para A. baumannii ATCC 19606. A. Peptídeo NA1897, com CIM de 32 mg/L. B. Antibiótico comercial polimixina B, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10² CFU/mL.

Fonte: Elaborada pela autora

Figura 8 - Cinética de morte para A. baumannii ACI50. A. Peptídeo NA1897, com CIM de 32 mg/L. B. Antibiótico comercial Polimixina B, com CIM de 128 mg/L. Limite de detecção do experimento: 10² CFU/mL.

Fonte: Elaborada pela autora

Assim como o observado para as linhagens gram-positivas, há a rápida morte celular mesmo nas concentrações mais baixas, e isso também é observado para a polimixina B. A concentração subinibitória também foi capaz de manter a população bacteriana reduzida mesmo após 24 horas, assim como o antibiótico comercial. A ação rápida observada é característica conhecida dos peptídeos antimicrobianos.⁷²

Após a determinação da cinética de morte do peptídeo NA1897, a determinação do efeito pós antibiótico foi realizada como uma maneira de verificar por quanto tempo a influência do peptídeo se mantinha sobre o inóculo bacteriano. Dado a rápida morte celular causada pelo peptídeo em questão, as bactérias foram expostas por um curto período de 15 minutos, em uma concentração inibitória e uma subinibitória (1x CIM e 0,5x CIM, respectivamente), nas mesmas linhagens testadas para a determinação da cinética de morte. O efeito pós antibiótico (PAE) - definido pela diferença de tempo para o crescimento de 1log entre o controle e a amostra tratada - pode ser observado nas tabelas abaixo.

Exposição	PAE (h ±	= d.p.)
	S. aureus ATCC 25923	S. aureus SA43
NA1897 0,5x CIM	2,0±1,0	5,0±1,0
NA1897 1x CIM	9,0±0,5	8,5±2,0
Daptomicina 0,5x CIM	0,5±0,5	N.O.*
Daptomicina 1x CIM	$1,5\pm0,5$	3,0±1,0

Tabela 5 - PAE de NA1897 (CIM de 16mg/L) e daptomicina (CIM de 1 mg/L e 0,5 mg/L) para linhagens gram-positivas

*N.O. Não observado

d.p. desvio padrão

Fonte: Elaborada pela autora

Tabela 6 - PAE de NA1897 (CIM de 32 mg/L) e polimixina B (CIM de 0,5 mg/L e 128 mg/L) para linhagens gram-negativas

Exposição	PAE ($\mathbf{h} \pm \mathbf{d}$)	.p.)
	A. baumannii ATCC 19606	A. baumannii ACI50
NA1897 0,5xCIM	5,5±0,5	2,5±2,0
NA1897 1xCIM	$7,0\pm0,5$	4,0±1,0
Polimixina B 0,5xCIM	4,0±0,5	3,0±0,5
Polimixina B 1xCIM	5,0±0,5	3,0±0,5
1 1 1 1 2		

d.p. desvio padrão

Fonte: Elaborada pela autora

Dos resultados obtidos, é possível concluir que o peptídeo NA1897 é eficiente em evitar o novo crescimento bacteriano após exposição. Em gram-positivos, apesar de apresentar uma concentração de ação mais alta que a daptomicina, é notável a diferença do PAE entre as duas exposições. Para NA1897, o PAE em *S. aureus* ocorre por pelo menos 8 h para concentrações inibitórias e 2 h para subinibitórias. Uma vez que os intervalos do antibiótico em um tratamento podem ser essenciais para o sucesso deste, a inibição prolongada associada a rápida morte celular pode garantir menor frequência medicamentosa. Isto pode ser uma vantagem, ainda mais considerando que há muito é reconhecido na clínica que os pacientes podem tomar suas prescrições em intervalos menos frequentes do que prescrito ou descontinuá-los antes de sua conclusão.¹⁰⁶ Em gram-negativos, o PAE observado para NA1897 assemelha-se muito ao obtido para polimixina B. Esta semelhança tanto no PAE quanto na cinética de morte, sugere que o peptídeo NA1897 possui a mesma farmacodinâmica relatada para polimixina B, sendo classificado como concentração dependente: são mais eficazes se atingem uma alta concentração em relação a CIM, mas o tempo pelo qual essa concentração se mantém é menos importante.¹²²

Dada a caracterização da ação antimicrobiana deste peptídeo, foi feita a investigação se haveria ação também em células eucarióticas. Assim, o ensaio de citotoxicidade por MTS

foi feito como medida de toxicidade, complementando o estudo de hemólise já realizado no início do projeto. O estudo de citotoxicidade foi realizado pela Dra. Júlia M. Souza, no Laboratório de Química Medicinal e Computacional (LQMC), coordenado pelo Prof. Dr Adriano Andricopulo. Foram utilizadas as células THP-1 (macrófagos humanos diferenciados), HFF-1 (fibroblastos humanos) HepG2 (carcinoma hepático humano). Os resultados obtidos encontram-se na Tabela 7, em que CC₅₀ representa a concentração citotóxica, definida pela concentração necessária para redução da viabilidade celular em 50%.

abela 7 - Resultados de CC50 para NA1897 e antibióticos controle para três tipos de células humanas					
Compostos		CC50 (mg/L)			
Compositos	THP-1	HFF-1	HepG2		
NA1897	$60{,}62\pm0{,}68$	$258,20 \pm 4,38$	$321,65 \pm 1,74$		
Polimixina B	$125,45 \pm 2,01$	>512	>512		
Daptomicina	>512	>512	>512		

Fonte: Elaborada pela autora

Em algumas células cancerosas ocorre o fenômeno de flip-flop, no qual há a troca entre fosfolipídios do folheto interno e externo da membrana citoplasmática eucariótica. Assim há uma mudança na constituição fosfolipídica, fluidez da membrana e carga superficial. Para este último item, a mudança pode representar a presença de carga negativa que atrairia os AMPs de forma similar ao que ocorre na membrana bacteriana.¹²³ Por isso, alguns AMPs apresentam também atividade anticâncer. Neste caso, isto não é observado para NA1897, pois não há seletividade entre as células humanas saudáveis e cancerosas, uma vez que há ação em todas as células, sendo a célula cancerosa a mais persistente à ação do peptídeo. Além disso é possível notar outra semelhança de NA1897 com a polimixina B: ambos parecem ser mais tóxicos aos macrófagos diferenciados. De fato, a polimixina B possui limitações de uso clínico devido à sua toxicidade, embora essa seja normalmente relacionada à insuficiência renal aguda.¹²⁴

Apesar das concentrações de CC₅₀ das células eucarióticas serem maiores do que as concentrações obtidas para CIM, isto não basta para dizer que NA1897 é seletivo; em geral, é possível determinar um índice de seletividade (IS) como a razão entre CC₅₀ e a CIM.¹²⁵ Idealmente, para considerar-se um antibiótico eficaz biologicamente, espera-se um $IS \ge 10^{126}$ Para isso, podemos considerar os grupos gram-positivos e gram-negativos, e a CIM₅₀ para todas as bactérias testadas entre estes dois grupos - CIM₅₀ representa a concentração mínima para matar pelo menos 50% de todas as linhagens bacterianas testadas dentro de determinado grupo. Assim, o índice de seletividade para este peptídeo pode ser definido como na tabela abaixo. As células HepG2 não foram utilizadas por serem células de câncer.

Tabala 0 Índias de salatistidade nome a nemtídas NIA 100	
Tabela 8 - Indice de seletividade para o peptideo INAT85	97

	CIM ₅₀ (mg/L)	IS (THP-1)	IS (HFF-1)
Gram-positivos	16	3	16
Gram-negativos	32	2	8

Fonte: Elaborada pela autora

Embora o NA1897 tenha apresentado um índice bom considerando as células epiteliais, o índice para macrófagos é muito baixo, de forma que esta molécula poderia representar um risco para o organismo. Assim, mesmo com as modificações feitas e o baixo índice de taxa hemolítica, é possível que o peptídeo precise passar por mais etapas de otimização para ser considerado um candidato a fármaco. Esta, porém, não é a única opção; o peptídeo pode ser testado como um medicamento de uso tópico (dado o alto índice de seletividade aos fibroblastos) ou mesmo para ser utilizado em combinação com outros antibióticos comerciais, para resgatar o uso de medicamentos que são hoje menos utilizados devido ao problema da resistência. Nesta última alternativa, o uso em combinação seria feito em concentrações menores que a CIM para o peptídeo sozinho, podendo assim aumentar o IS.

Assim, decidimos fazer um *screening* com antibióticos comerciais aprovados para verificar com quais ocorre um efeito sinergético. Além de tentar uma alternativa para uso de NA1897 em menores concentrações, o estudo de sinergismo também pode indicar modos de ação do peptídeo, dependendo de quais antibióticos ou quais linhagens mostrarem sinergismo. Antibióticos com diversos alvos de ação (tanto internos quanto na membrana ou parede) foram selecionados para avaliação. Inicialmente, foram avaliadas as linhagens *S. aureus* ATCC 25923 e *A. baumannii* ATCC 19606. Os resultados encontram-se nas tabelas abaixo.

Antibióticos	CIM (mg/L)	Em combina	Índiae CIE	
		CIM ANTIBIÓTICO	CIM _{NA1897}	maice CIF
Ciprofloxacina	0,5	0,5	16	2
Tobramicina	0,5	0,5	16	2
Daptomicina	1	1	16	2
Vancomicina	2	2	32	3
Ampicilina	0,06	0,06	16	2
Imipenem	0,015	0,015	16	2

Tabela 9 - Sinergismo para NA1897 (CIM=16mg/L) em S. aureus ATCC 25923

Fonte: Elaborada pela autora

0 1	θ							
Antibióticos	CIM (mg/L)	Em combina	Índias CIF					
		CIM ANTIBIÓTICO	CIM _{NA1897}	malce CIF				
Ciprofloxacina	1	0,5	4	0,625				
Tobramicina	4	1	8	0,5				
Polimixina B	1	0,12	2	0,1825				
Vancomicina	256*	256*	32	2				
Ampicilina	256*	32	32	1,125				
Imipenem	0,5	0,12	16	0,74				

Tabela 10 - Sinergismo para NA1897 (CIM=32mg/L) em A. baumannii ATCC 19606

*Quando a CIM foi maior do que a maior concentração testada, utilizou-se o valor de 4x a maior concentração testada para os cálculos

Fonte: Elaborada pela autora

O fato de o mesmo antibiótico em conjunto com NA1897 apresentar CIFs tão diferentes entre *S. aureus* e *A. baumannii* pode ser mais um indicativo de modos de ação diferentes entre gram-positivos e gram-negativos. CIFs mais baixas para o organismo gram-negativo representa uma vantagem, uma vez que estes organismos são mais tenazes e suas infecções são consideravelmente mais difíceis de serem tratadas, além de estarem no topo da lista da OMS para o desenvolvimento de novos fármacos.²⁶

Os valores de CIF devem ser <0,5 para caracterizar sinergismo e >4 para caracterizar antagonismo, sendo valores intermediários considerados indiferentes ou aditivos.¹⁰⁷ Assim, NA1897 não apresentou nenhum antagonismo dentre os antibióticos testados, o que significa que esta molécula não age de forma competitiva pelos mesmo alvos dos antibióticos que foram testados. Apenas a polimixina B apresentou sinergismo; como citado anteriormente, a polimixina B atua da mesma forma que descrito para muitos AMPs: sua atração eletrostática pelas cargas negativas do LPS causam a interação inicial, deslocando íons Ca⁺² e Mg⁺² que estabilizam a membrana externa. No caso da polimixina B, ocorre ainda um fenômeno considerado "uptake autopromovido". A parte de ácido graxo desta molécula também promove interações hidrofóbicas com o LPS, o que permite que a polimixina se insira na membrana externa. Isso causa um efeito de mudanças na permeabilidade, pois leva à formação de rachaduras transientes que permitem a entrada de uma variedade de moléculas, incluindo pequenas proteínas.¹²⁷ Assim, NA1897 pode ter tido sua permeação para gramnegativos facilitada devido à ação da polimixina B, para agir em outros alvos; ou, que pelo menos não compete com a polimixina B pelas interações eletrostáticas com LPS. Para avaliar melhor o sinergismo entre essas moléculas, mais linhagens tiveram o CIF determinado (Tabela 11).

Linhagens	Principal fenótipo	CIM NA1897 (mg/L)	CIM Polimixina B (mg/L)	Em combinação (mg/L)		Índice
				CIM _{NA1897}	CIMPOLIMIXINA B	CIF
K. pneumoniae ATCC 700603	Produtora SHV-18	16	1	16	1	2
K. pneumoniae AMKP7	Produtora KPC, CL S	128	0,25	8	0,06	0,30
K. pneumoniae AMKP4	Produtora KPC, CL R	512	>128	512	>128	2
K. pneumoniae AMKP10	Produtora KPC, CL R	512	>128	512	>128	2
<i>A. baumannii</i> ATCC 19606		32	1	0,12	2	0,18
A. baumannii ACI40	CL S	32	0,5	<0,06	<0,06	0,122
A. baumannii ACI44	CL S	16	1	2	0,25	0,37
A. baumannii ACI50	CL R	16	128	4	2	0,26
<i>E. coli</i> ATCC 25922		8	0,5	2	0,06	0,37
P. aeruginosa ATCC 27853	AmpC induzível	64	1	4	0,25	0,31

Tabela 11 - Sinergismo de linhagens gram-negativas para NA1897 e polimixina B

Fonte: Elaborada pela autora

Nos casos em que o sinergismo foi avaliado para *K. pneumoniae* resistentes à polimixinas, o CIF obtido foi >0,5. Isso indica que o sinergismo entre NA1897 e polimixina B ocorre, pois esta última facilita a ação de NA1897. Caso contrário, seria possível observar uma diminuição da CIM de polimixina B para as linhagens resistentes devido a presença de NA1897. Novamente, isto sugere que a ação de NA1897 não ocorre exclusivamente na membrana.

Afim de elucidar como se dá esta ação de NA1897 com a membrana citoplasmática foi realizado o estudo de despolarização de membrana. O ensaio foi feito para *S. aureus* ATCC 25923 e *A. baumannii* ATCC 19606 como representantes de gram-positivos e gram-negativos, respectivamente. Os resultados deste experimento estão representados na Figura 9.

Figura 9 - Despolarização de membrana citoplasmática de NA1897 para **A.** *S. aureus* ATCC 25923 (CIM=16 mg/L). **B.** *A. baumannii* ATCC 19606 (CIM=32 mg/L).

Fonte: Elaborada pela autora.

O ensaio é baseado no fluoróforo DISC3(5), que não permite a leitura do sinal de emissão quando este entra nas células bacterianas. Ao ocorrer uma perturbação na membrana citoplasmática (desrupção, formação de poros, etc.) que desencadeie uma despolarização, o fluoróforo sai da célula, passando para o meio de cultura e gerando sinal. Este sinal consegue então quantificar com qual velocidade e intensidade um determinado composto causa a despolarização da membrana. Como controle do ensaio, é utilizado a melitina – um peptídeo de 26 aminoácidos isolado do veneno de abelha. Este peptídeo é hemolítico e também causa despolarização em um curto período – o pico ocorre em menos de 5 minutos. Assim, melitina representa 100% de despolarização e é possível calcular a porcentagem de outros compostos utilizando este dado como referência. Inicialmente, é possível observar que tanto em *S. aureus* quanto em *A. baumannii* o pico de despolarização para NA1897 também ocorre dentro de 5 minutos, o que é compatível com a rápida morte celular observada na cinética de morte. Em *S. aureus*, como a melitina causou (100 \pm 5)% de despolarização e NA1897 em 4xCIM causou cerca de (85 \pm 11)%, é possível considerar ambos os sinais equivalentes, significando que

NA1897 despolarizou todas células nesta concentração. Desta maneira, podemos concluir que um dos principais modos de ação deste peptídeo em células gram-positivas causa a rápida despolarização da membrana. Em 1xCIM, NA1897 causou (74±9)% de despolarização, ainda representando boa parte da população bacteriana, e em 0,5xCIM ocorreu (62 ± 15)%. Em *A. baumannii*, porém, não é observado o mesmo efeito. Na verdade, todas as concentrações testadas de NA1897 tiveram despolarizações em escalas parecidas (4xCIM causou (66 ± 6)%, 1xCIM causou (65 ± 6)%, e 0,5xCIM causou (50 ± 8)% de despolarização), sugerindo que há uma saturação da capacidade de NA1897 de causar despolarização citoplasmática. Assim, é possível que em gram-negativos este peptídeo apresente um mecanismo de ação alternativo, uma vez que o ensaio de cinética de morte confirmou a completa morte da população bacteriana nestas concentrações.

A completa elucidação do mecanismo de ação de antibióticos não é prerrequisito para aprovação de registos de antibióticos para uso clínico, sendo possível que um antibiótico tenha mecanismos de ação que se complementam. Ao que tudo sugere, este é o caso de NA1897, pois pelo menos em gram-negativos, uma concentração considerada bactericida resultou em apenas 50% de despolarização, indicando que este não é o único mecanismo de ação.

Ainda na tentativa de verificar o mecanismo de ação de NA1897, foi feita a microscopia eletrônica de transmissão das células tratadas por este peptídeo. Esta microscopia foi escolhida pois os cortes ultrafinos permitiriam visualizar de forma mais clara danos na membrana ou parede celular. Usando tanto *S. aureus* quanto *A. baumannii*, seria possível também tentar verificar diferença na morte celular entre gram-positivos e gram-negativos, dado o que foi discutido acima.

Inicialmente, podemos observar o controle positivo na Figura 10, contendo células saudáveis de *S. aureus*, em forma de cocos. Algumas células em divisão celular, com o septo dividindo a célula mãe em duas células filha de igual tamanho. Com o maior aumento, é possível observar parede e membrana da célula bem definidos.

Figura 10 - Controle positivo da bactéria S. aureus ATCC 25923. A. Visão geral das células. Barra de escala = 1µm B. Bactérias em fim de divisão celular, com parede e membrana visíveis e bem definidas. Barra de escala = 200 nm.

Fonte: Elaborada pelo autor

Em seguida, temos as células tratadas com o peptídeo NA1897 em concentração de 1xCIM (16 mg/L) e 4xCIM (64 mg/L) nas Figura 11 e Figura 12.

Figura 11 - S. aureus ATCC 25923 tratada com NA1897 a 1xCIM (16 mg/L). As setas vermelhas apontam para descolamentos ente membrana e parede, as setas azuis apontam para septos de divisão defeituosos, as setas amarelas apontam para invaginações membranosas A. Visão geral das células. Barra de escala = 1μm. B. Bactérias com danos na divisão na membrana. Barra de escala = 500 nm. C,D. Bactérias em divisão celular danificadas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Figura 12 - S. aureus ATCC 25923 tratada com NA1897 a 4xCIM (64 mg/L). As setas vermelhas apontam para descolamentos ente membrana e parede, as setas azuis apontam para septos de divisão defeituosos, as setas amarelas apontam para invaginações membranosa. A. Visão geral das células. Barra de escala = 1μm. B. Bactérias com invaginações membranosas. Barra de escala = 500 nm. C,D. Bactérias em divisão celular defeituosa e invaginações membranosas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Em todas as imagens de exposição de 1xCIM e 4xCIM foi possível observar *debris* celulares. Estudos sugerem que a destruição total da bactéria geraria apenas imagens de restos celulares ¹²⁸. Assim, sabendo do rápido efeito biocida de NA1897, é possível que estes *debris* venham de células que sofreram danos nos primeiros minutos de exposição. De fato, enquanto imagens do controle com aumento de 20.000x apresentaram, em média 42±6 células por imagem, as imagens de bactérias tratadas com NA1897 1xCIM apresentaram 14±2 células (diferença significativa com p<10⁻¹⁰) e 4xCIM apresentaram 18±2 (p<10⁻⁸). Alinhando este dado com a rápida despolarização de membrana observada para *S. aureus*, é possível que NA1897 tenha causado um rápido dano à membrana citoplasmática da maioria das células, resultando nos *debris* (manchas) observados. As células que permaneceram integras provavelmente retratam a ação de um mecanismo secundário de ação de NA1897, cuja existência já havia sido sugerida pelos dados anteriores. Destas células, foi possível observar

com boa frequência defeitos no septo de divisão (Figura 11 e Figura 12, setas azuis), dentre eles: divisões assimétricas, septos irregulares e até mesmo mais de um septo sendo formado simultaneamente. Dentre as células que estavam em divisão, cerca de 71 ± 15 % e 67 ± 14 % apresentaram algum tipo de anomalia em 1xCIM e 4xCIM, respectivamente. Por último, foi observado um fenômeno que pode ser descrito como 'descolamento', em que a membrana parece se desprender da parede bacteriana, formando os espaços vazios em forma de bolhas, como indicado nas setas vermelhas da Figura 11. Este dano não foi observado em nenhuma das células controle de *S. aureus* ATCC 25923, enquanto para as células tratadas com 1xCIM esta taxa chegou à 32 ± 7 %. Embora o descolamento de membrana não tenha aparecido com frequência em 4xCIM, as invaginações membranosas foram mais notáveis e maiores, podendo ser vistas desde o aumento de 20.000x com frequência de 42 ± 11 %.

Estas invaginações membranosas já foram descritas anteriormente para outros AMPs, mais especificamente como membranas lamelares intracelulares, ou mesossomos ¹²⁹. Normalmente estes mesossomos são associados à um padrão de reorganização da membrana citoplasmática, principalmente em gram-positivos,¹³⁰ indicando alteração ou dano desta. Os outros danos observados (defeito no septo e descolamento da membrana) podem indicar ação de NA1897 na parede celular.

A biossíntese da parede celular bacteriana é um alvo muito comum no desenvolvimento de novos antimicrobianos. Esta é uma estrutura crucial para proteção, integridade e viabilidade da bactéria. Desta maneira, mesmo interferir em apenas um único alvo da maquinaria pode levar à perturbação de todo aparato biossintético, e até mesmo maquinarias enzimáticas adjacentes (como divisossoma e replissoma) comprometendo assim a sobrevivência celular. Além da maquinaria enzimática, outra forma que a parede celular pode ser afetada é interferindo nos substratos que formam a ligação da parede com a membrana celular.¹⁹ Tal ação poderia explicar o descolamento visto entre membrana e parede na ação de NA1897. Dentre os alvos comumente associados à inibição da biossíntese da parede celular , o lipídio II é um dos alvos mais proeminentes por diversas razões: é altamente conservado entre bactérias, é facilmente acessado na parte externa bacteriana, oferece múltiplos sítios de interação e se trata de um alvo não proteico (o que torna mais difícil modificações que levam à resistência).¹³¹

O lipídio II é um alvo provável para NA1897. O papel deste alvo vai muito além de apenas a montagem dos peptídeoglicanos formadores da parede. Ele também age na modulação da organização de fosfolipídios de membrana (podendo explicar os mesossomos

observados), autólise e divisão celular.¹⁹ Em gram-positivos, a síntese de precursores da parede celular ocorre em sítios específicos, principalmente no septo de divisão. A área do septo é enriquecida em precursores acoplados a bactoprenil, como lipídio II e fosfolipídios aniônicos, o que serve de atrativo para os AMPs anfifílicos e positivamente carregados,¹⁹ como é o caso de NA1897. Assim, a ligação com o lipídio II pode levar à septos anormais e erros de divisão celular, compatível com o observado nas Figura 11 e Figura 12. Algo semelhante ocorre com o mecanismo de ação da daptomicina. Por muito tempo, acreditava-se que o mecanismo de ação desta era principalmente a despolarização de membrana. Mais recentemente foi provado que este antibiótico mais cálcio interage com undecaprenil (precursor do lipídeo II) na presença de fosfatidilglicerol, formando um complexo tripartite que ocorre principalmente no septo e então interrompe a biossíntese da parede. Assim, para daptomicina a despolarização de membrana é uma consequência de seu mecanismo de ação na parede, e por isso ocorre tipicamente somente após 30 minutos.¹³¹

Não podemos ainda desconsiderar outros mecanismos que podem levar à divisão bacteriana defeituosa, dentre eles danos ao DNA ou danos a proteínas e maquinarias envolvidas na replicação deste. Os organismos vivos coordenam a divisão celular com a replicação de conteúdo genético. As bactérias em específico coordenam a divisão com a segregação dos cromossomos para os polos da célula, como forma de garantir que a formação do septo no meio das células não iria causar dano ao DNA. Assim, bactérias possuem diversos mecanismos para verificar a separação do DNA ou mesmo dano a este. Caso haja dano ao material genético ou segregação incorreta nas células-filha, a célula suspende a divisão (usando proteínas citoplasmáticas como inibidores) até que haja o devido reparo.¹³² Assim, danos ao DNA ou proteínas associadas a replicação podem interromper o processo de divisão e formação do septo, podendo também ser uma hipótese válida para as imagens observadas. Já foram relatados outros AMPs que causam danos ao DNA e impedem o processo de replicação e divisão, como bleomicina e fleomicinas, que causam quebras no suporte principal de fosfodiéster.¹³²⁻¹³³ Esses danos ao DNA desencadeiam uma cascata de reações ao estresse conhecidas como resposta SOS. Esta resposta SOS afeta a transcrição de genes de reparo de DNA, tolerância a danos no material genético e regulação da divisão celular. A resposta SOS também pode levar à formação de vesículas, o que poderia fornecer mais uma explicação para as invaginações membranosas observadas.¹³²⁻¹³⁴

No caso de NA1897, o rápido pico de despolarização (menos de 5 minutos) associado à rápida redução celular demonstrados pela cinética de morte e MET nos fazem supor que a ação na membrana é, de fato, o principal mecanismo de ação de NA1897, ocorrendo nos primeiros minutos. Porém, também devem ocorrer interações que levam aos outros defeitos celulares observados.

Para A. *baumannii* ATCC 19606, as células saudáveis do controle positivo encontramse na Figura 13.

Figura 13 - Controle positivo da bactéria A. baumannii ATCC 19606. A. Visão geral das células. Barra de escala
 = 1µm B. Bactérias em detalhe, com membrana externa, parede e membrana citoplasmática visíveis
 e bem definidas. Barra de escala = 200 nm.

Fonte: Elaborada pelo autora

A. baumannii são cocobacilos, por isso apresentam um formato levemente alongado. O conteúdo celular aparece igualmente distribuído na célula e é possível observar membrana externa, parede celular e membrana citoplasmática de forma uniforme na célula. Células de *A. baumannii* também foram tratadas com NA1897 1xCIM (32 mg/L) e 4xCIM (128 mg/L), como consta nas imagens abaixo.

Figura 14 - A. baumannii ATCC 19606 tratada com NA1897 a 1xCIM (32 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas azuis apontam para superfície rugosa e com bolhas, e as setas amarelas apontam para vesículas intracelulares. A. Visão geral das células. Barra de escala = 1μm. B. Bactérias conteúdo celular condensado. Barra de escala = 500 nm. C. Bactéria com dano à membrana e extravasamento do conteúdo celular. Barra de escala = 200 nm. D. Bactéria em detalhe com membrana rugosa e com bolhas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Figura 15 - A. baumannii ATCC 19606 tratada com NA1897 a 4xCIM (128 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas azuis apontam para superfície rugosa e com bolhas, e as setas amarelas apontam para vesículas intracelulares. A. Visão geral das células. Barra de escala = 1μm. B. Bactérias conteúdo celular condensado e vesículas intracelulares. Barra de escala = 500 nm.
C. Bactéria em detalhe. Barra de escala = 200 nm. D. Bactéria em detalhe com membrana rugosa e com bolhas e vesículas intracelulares. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

A primeira grande diferença notada é a uniformidade das células. Enquanto as células do controle apresentam cor igual e uniforme, indicando conteúdo celular igualmente distribuído, as células tratadas com 1xCIM ou 4xCIM apresentam manchas mais escuras e outras de clareamento, indicando condensação do conteúdo celular. Isso já foi relatado anteriormente para outros antimicrobianos (incluindo outros AMPs). Por exemplo, a PMAP-36, uma catelicidina suína anfipática mostrou efeito parecido em *E. coli*. Neste as áreas pretas aglomeradas mostravam ribossomos, enquanto as áreas claras indicavam material genético. Foi mostrado que este peptídeo age na membrana, mas eventualmente permeia para o espaço periplasmático.¹³⁵ O peptídeo híbrido CA-FO (peptídeo desenhado a partir de cecoprina e folicidina-2) mostrou o mesmo padrão de alterações morfológicas, que foram descritos como largos vacúolos citoplasmáticos. Este peptídeo age na membrana citoplasmática (comparável

com a ação sugerida para NA1897) e leva ao extravasamento do conteúdo celular. Apesar disso, não foi apontada uma razão para este aglomeramento do conteúdo citoplasmático ¹³⁶. Um peptídeo antimicrobiano aniônico também foi estudado por essa técnica, mostrando padrões de dano similares para *M. haemolytica,* aparentando condensação do conteúdo citoplasmático por conter áreas com alta densidade celular e áreas claras dentro da célula. Para este peptídeo, o mecanismo de ação é intracelular, sem causar dano à membrana. Este se liga aos ribossomos e inibe ribonucleases; também leva a inativação e precipitação de proteínas.¹³⁷ Assim, não parece haver um consenso em relação ao motivo desta alteração morfológica – tudo indica que diversos mecanismos podem levar à condensação de material intracelular.

Em termos de quantidade de células, não foi observada diferença entre o controle positivo e a exposição de 1xCIM (16±4 e 17±6, respectivamente), enquanto a exposição de 4xCIM apresentou uma redução significativa (9±2, com p<10⁻³). De fato, é possível observar *debris* celulares nas imagens, mas como o ensaio anterior só mostrou 50% de despolarização de membrana citoplasmática para *A. baumannii*, é justificável que esta redução da quantidade celular não tenha ocorrido nos mesmos níveis que em *S. aureus*.

Outra característica bem notável nas células tratadas são as bolhas formadas, tanto em forma de projeção extracelular, como as que aparentam ser vesículas intracelulares (Figura 14Figura 15, setas amarelas).

Em todas as imagens foi possível observar extravasamento do conteúdo celular, indicando danos na membrana citoplasmática, como esperado. Isso não explica, porém, as formas vesiculares observadas, que parecem estar contidas dentro da célula e com membrana visível e bem definida. As vesículas bacterianas podem ser formadas por diversos motivos. A maioria das vesículas bacterianas funciona para carregar moléculas específicas, como fatores de virulência, moléculas de comunicação etc. Estas foram primeiro descobertas em gram-negativas, formadas a partir de projeções na membrana externa; posteriormente descobriu-se que gram-positivas também eram capazes de tal formação, assim, vesículas podem ser formadas a partir de membrana externa ou membrana citoplasmática.¹³⁸ Atualmente, sabe-se que outros fatores também podem influenciar a formação de vesículas, como endolisinas ou antibióticos. No caso de antibióticos, são conhecidos três mecanismos que induzem esta formação: danos ao envelope celular, inibição da biossíntese da parede celular e indução da resposta SOS.¹³⁴

As imagens anteriores de *S. aureus* levaram à hipótese de que ação na membrana e ação na biossíntese da parede celular se complementam para resultar na ação bactericida de

NA1897. Assim, inibição da biossíntese da parede celular pode ser o motivo da formação das vesículas, tanto de membrana externa quanto de membrana citoplasmática. Por exemplo, a nisina, um peptídeo antimicrobiano usado como conservante, também é conhecido pela ação na parede citoplasmática. Este peptídeo se liga ao lipídio II em bactérias gram-positivas, mais especificamente aos anéis de lantionina, e forma agregados que levam à formação de poros na membrana.¹³⁹ Porém, os grandes agregados nisina-lipídio II também parece comprometer centenas de moléculas dentro da célula. Além disso, estudos mostram que a acumulação progressiva desse agregado pode influenciar a organização fosfolipídica da membrana, induzindo curvatura. Ao atingir um tamanho crítico, vesículas se formariam como o resultado da minimização de energia.¹⁴⁰ Assim, a ação da nisina ao se ligar ao lipídio-II pode desencadear uma cascata de outros processos intracelulares. Bactérias gram-negativas também possuem lipídio-II, embora estruturalmente diferentes de gram-positivas. Componentes como precursores de undecaprenil aparecem nos dois tipos de bactérias.¹⁴¹ Assim, a hipótese que o lipídio II – alvo que ocorre comumente em antibióticos - interage com NA1897 continua válida. Podemos assumir que algo similar à nisina ocorre com NA1897, pois este mecanismo de ação explicaria tanto as imagens obtidas para S. aureus quanto para A. baumannii. Este mecanismo também explicaria a saturação do sinal de despolarização de membrana, uma vez que, atingida concentração mínima, a inibição da biossíntese da parede celular levaria à formação de vesículas que iriam conter os componentes celulares de maneira randômica. Assim, o fluoróforo permaneceria encapsulado em uma bicamada lipídica, sem emissão de sinal (vide figura abaixo).¹³⁴

Figura 16 - Diferentes elementos que podem induzir a formação de vesículas.

Fonte: Adaptada de TOYOFUKU; NOMURA; EBERL.¹³⁴

Outra hipótese é que tanto as vesículas quanto a condensação do conteúdo citoplasmáticos são resultado de uma resposta SOS por danos causados ao material genético ou maquinaria de replicação, como explicado anteriormente para *S. aureus*.

No caso de NA1897, o rápido pico de despolarização (menos de 5 minutos) associado à rápida redução celular demonstrados pela cinética de morte e MET nos fazem supor que a ação na membrana é, de fato, o principal mecanismo de ação de NA1897, ocorrendo nos primeiros minutos. Porém, os dados indicam que devem ocorrer interações que levam aos outros defeitos celulares observados, sendo as principais hipóteses dano à biossíntese da parede celular ou ao conteúdo genético.

Para avaliar a facilidade de se obter isolados com redução da sensibilidade a NA1897 e ainda estudar possíveis genes mutados que poderiam indicar o mecanismo de ação deste peptídeo, foi realizada uma evolução dirigida *in vitro* com concentrações sub-inibitórias do peptídeo em *S. aureus* ATCC 25923 e *A. baumannii* ATCC 19606. Além do peptídeo, foi feito o mesmo com antibióticos controle: ciprofloxacina, representando um antibiótico com alvo intracelular (impede a replicação de DNA inibindo topoisomerases e DNA-girase bacterianos) e polimixina B ou daptomicina, representando ação na membrana externa e parede celular, respectivamente (de maneira similar a relatado para peptídeos antimicrobianos). O aumento de CIM para gram-positivo e gram-negativo após 30 dias de evolução dirigida *in vitro* estão representados na Figura 17. As linhagens finais de cada exposição recebem o nome de 25923_X_tratamento ou 19606_X_tratamento, onde X representa o nome da replicata e tratamento refere-se ao nome do composto utilizado.

Figura 17 - Número de vezes em que a CIM aumentou para cada exposição de 30 dias, incluindo exposição com NA1897 todas as replicatas representadas. **A.** *S. aureus* ATCC 25923 **B.** *A. baumannii* ATCC 19606

Fonte: Elaborada pela autora

Apesar de NA1897 ter apresentado um aumento de 16x a CIM ao longo da seleção para *S. aureus*, este ainda apresentou o menor aumento comparativamente a média da

ciprofloxacina e daptomicina. Por outro lado, os resultados para A. baumannii mostraram-se muito positivos, uma vez que a CIM de NA1897 não se alterou durante os 30 dias de evolução dirigida. Isto é relevante especialmente comparado com o resultado obtido para polimixina B. De maneira geral, antibióticos com ação na membrana ou parede (como a daptomicina e a polimixina) possuem menor propensão no desenvolvimento de resistência, já que por serem alvos não proteicos, alterações que levem à uma mudança na afinidade possuem um custo metabólico mais elevado do que uma mutação em uma proteína específica, por exemplo.¹³¹⁻¹⁴² Outra vantagem observada é que as linhagens resultantes da seleção não apresentaram resistência cruzada, ou seja, a susceptibilidade aos antibióticos comerciais (ciprofloxacina, daptomicina ou polimixina B) continuou igual, mesmo com o aumento da CIM para NA1897. A preocupação com antibióticos e a sua propensão à seleção de resistentes têm atingido o mundo e é algo cada vez mais enfatizado na busca de novas moléculas antimicrobianas. Essa preocupação inclusive, não ocorre somente em antibióticos, mas até em biocidas utilizados para desinfecção de ambientes hospitalares ou domésticos. O regulamento europeu sobre produtos biocidas, por exemplo, têm exigido que o fabricante comunique se o produto pode levar a resistência da substância ativa ou mesmo à resistência cruzada.¹⁴³

Por outro lado, no caso em que houve seleção de isolados resistentes, a comparação entre a linhagem inicial e final pode indicar quais mutações levaram ao aumento da CIM para o peptídeo, e até mesmo a diferença entre a estabilidade da linhagem de *A. baumannii* em relação ao que ocorreu em *S. aureus*. Genes que codificam o alvo deste análogo da Bothropstoxina-I, ou proteínas das vias de entrada deste na célula, ou ainda bombas de efluxo, podem ser mais facilmente mutados em gram-positivos, aumentando a CIM, do que em gram-negativos, nos quais a atividade permaneceu estável. Assim, o sequenciamento de genoma das linhagens permite essa comparação e pode ser fundamental para verificar os mecanismos de resistência e consequentemente, mais uma maneira de verificar as hipóteses levantadas sobre o mecanismo de ação de NA1897.

Além da comparação genética foi feita uma comparação metabólica entre a linhagem inicial e final da seleção usando NA1897. Assim pode-se complementar genótipo com fenótipo das alterações causadas pelas concentrações subinibitórias do peptídeo. Para isso foi utilizada a linhagem 25923_A_NA1897. Essa análise fenotípica foi feita usando os painéis de microarranjos fenotípicos da Biolog, nos quais cada placa representa uma condição metabólica diferente. As primeiras placas estão representadas na imagem abaixo.

Figura 18 - Curvas de crescimento (eixo y, intensidade em unidades de omnilog) de cada poço ao longo de 48 h para a linhagem *S. aureus* ATCC 25923 antes da seleção (verde) com NA1897 e após (vermelho) em painéis de testes fenotípicos. Amarelo indica a sobreposição de ambas as condições. A, B. Painéis de fontes de carbono. C, E, F, G. Painéis de fonte de nitrogênio. D. Painel de fontes de enxofre e fósforo. H. Painel de sensibilidade osmótica e efeitos iônicos.

Fonte: Elaborada pela autora*

Para os painéis A e B referentes a fontes de carbono, é possível observar que o metabolismo da linhagem 25923_A_NA1897 é menor do que da linhagem inicial para algumas fontes, mas não há diferença significativa na variedade de fontes que são metabolizáveis por ambas as linhagens. Assim, houve um custo de *fitness*, mas a capacidade metabólica continua semelhante.

Para as fontes de nitrogênio (placas C, E, F e G), principalmente para as fontes peptídicas é possível ver que há uma restrição de aproveitamento para a linhagem 25923_A_NA1897 em relação a variedade de peptídeos, embora, entre as que ocorre o aproveitamento, o metabolismo é maior (mais crescimento) que a linhagem de referência. As fontes peptídicas de nitrogênio que 25923_A_NA1897 conseguiu metabolizar foram principalmente as que continham glicina e treonina. A glicina é o aminoácido mais simples por possuir apenas o hidrogênio como cadeia lateral e não possuir carbono assimétrico. O metabolismo da glicina e treonina pertencem a mesma via metabólica, o que condiz com as

fontes de nitrogênio aproveitadas pela linhagem, indicando que esta é a via metabólica mais ativa. Provavelmente o metabolismo é mais alto nestes casos para compensar a menor variedade de peptídeos aproveitados. Assim, a perda metabólica, devido às mutações ocorridas, não parece ser tão significativa em 25923_A_NA1897.

Para a placa D, referente as fontes de enxofre e fosforo, é possível observar que a linhagem obtida pela seleção com NA1897 ganhou vantagem metabólica referente a algumas fontes, com destaque para as fontes sulfônicas. As vias metabólicas de assimilação de sulfato envolvem reações de redução. Isso pode indicar que a seleção levou a um ambiente mais redutor nesta linhagem ou uma capacidade maior das enzimas que sofrem oxidação. Todas essas mudanças fenotípicas obtidas em 25923_A_NA1897 estão relacionadas ao metabolismo energético, ou seja, houve uma diferenciação nas vias preferenciais de obtenção de energia na linhagem selecionada (Figura 19).

Figura 19 - Mapa metabólico com destaque para as mudanças ocorridas no módulo de obtenção de energia. Fonte: Adaptada de KANEHISA¹⁴⁴; KANEHISA *et al.*¹⁴⁵; YI *et al.*¹⁴⁶

Por último, quanto aos painéis H e I, o que é mais notável é o metabolismo de 25923_A_NA1897 para ambientes mais acídicos, o que não ocorre para a linhagem de referência. Isto pode estar intrinsicamente relacionado a redução de sulfatos. Bactérias que reduzem sulfato sobrevivem em ambientes com pH<5.¹⁴⁷ É possível que esta mudança

metabólica, associada a utilização de fontes sulfônicas, indiquem uma tendência à realização de respiração anaeróbia por essa bactéria, uma vez que bactérias anaeróbias realizam a redução de sulfatos para utilizá-los como carreadores de elétrons na cadeia produtora de ATP.

Outras mudanças metabólicas que ocorreram foram em relação a sensibilidade química, ou seja, mudança de susceptibilidade a antimicrobianos. Primeiro, observa-se os compostos em que a linhagem inicial apresentou vantagem, ou seja, a linhagem 25923_A_NA1897 se tornou mais susceptível. As curvas de crescimento referentes à estas condições encontram-se na Figura 20.

Figura 20 - Condições em que a linhagem *S. aureus* ATCC 25923 antes da seleção apresentou vantagem. Cada quadrado representa ambas as curvas de crescimento (eixo y, intensidade em unidades de omnilog) de cada poço ao longo de 48 h, com concentrações crescentes do composto descrito.

Fonte: Elaborada pela autora*

Algumas moléculas apresentaram maior ação na linhagem selecionada por terem características opostas à molécula de seleção, que é um peptídeo catiônico. É o caso dos antimicrobianos aniônicos, como dicromato de sódio, Niaproof, tungstato de sódio, cromato de potássio, metaborato de sódio, arsenato de sódio, trifluoperazina, 18-Crown-6 éter, pentaclorofenol, 2,4-dinitrofenol e cianato de sódio.⁷²⁻¹⁴⁸⁻¹⁴⁹ Estas moléculas agem como ânion tóxico. Independente do mecanismo de ação do peptídeo NA1897, este parece precisar estabelecer interação com a membrana. Para isso, a atração entre suas cargas positivas e cargas negativas da membrana bacteriana parecem ser essenciais. Logo, se ocorreram mutações que levaram à alteração da carga na membrana (por exemplo, diminuição da expressão de componentes negativos como ácidos teicóicos e cardiolipinas), isso facilita a

interação de antimicrobianos aniônicos, que antes eram repelidos eletrostaticamente devido tanto a molécula quanto a membrana apresentarem o mesmo tipo de carga - negativa.

O mesmo pode ser dito obre os inibidores da síntese de DNA azatioprina e 5-fluoro-5'-deoxiuridina. Apesar de serem análogos de ácidos nucleicos, impedindo a síntese correta de DNA, ambos são moléculas muito hidrofóbicas e com carga negativa ¹⁵⁰ cuja permeação para o meio citoplasmático pode ter tido vantagem com uma alteração de carga.

De maneira indireta, a alteração de carga também pode ter facilitado a ação de agentes quelantes que agem em íons divalentes como Mg^{+2} e Ca^{+2} . Estes íons agem como estabilizadores das cargas negativas da membrana, interagindo covalentemente com estas na faceta externa da bicamada lipídica. Os agentes quelantes que agem nestes íons, ao removêlos, causam desestabilização da membrana e morte celular. Como a carga negativa da membrana pode ter sido alterada, é possível que estes íons estejam com uma interação mais fraca e, portanto, são removidos mais facilmente pelos agentes, explicando a maior sensibilidade da linhagem 25923_A_NA1897 ao EDTA, por exemplo. Outros agentes quelantes como monohidrato de 1,10-fenantrolina e 5,7 – dicloro-8-hidroxiquinaldina agem em íons como ferro. Bactéria precisa de íons de ferro (Fe⁺³) e os capta através de sideróforos que são reconhecidos por receptores de superfície. Alterações na membrana citoplasmática, pode influenciar nas estruturas destes receptores e diminuir a captação de íons de ferro. Assim, alterações na membrana podem ter ocorrido e diminuído a capacidade da linhagem selecionada de captar este íon.¹⁵¹

Uma série de antibióticos que tem como alvo a parede bacteriana também apresentou vantagem sobre a linhagem 25923_A_NA1897, como amoxicilina, carbenicilina, piperacilina, cefuroxima e azlocilina. Todos estes antibióticos que agem na parede bacteriana são beta-lactâmicos, logo, se ligam às PBP's (proteínas ligadoras de penicilina). Assim, pode-se dizer que NA1897 não age na parede celular como havia-se hipotetizado anteriormente, ou, se age nesta, não age nas PBP's como ocorre com beta-lactâmicos.

Alguns ionóforos ou agentes da respiração celular como azida de sódio, alexidina, patulina, além de alguns aniônicos já citados (pentaclorofenol, 18-crown-6 éter, 2,4 – dinitrofenol¹⁴⁸) também mostraram ação maior na linhagem 25923_A_NA1897, mostrando que esta pode ter alguma alteração relacionada ao processo metabólico de obtenção de energia. Novamente o sequenciamento do genoma se torna essencial para entender melhor como ocorre esta alteração.

O contrário também pode ser analisado, compostos para os quais a concentração de ação aumentou para a linhagem selecionada, assim como ocorreu com o próprio NA1897. Estes compostos e suas curvas de crescimento encontram-se indicados na Figura 21.

Figura 21 - Condições em que a linhagem *S. aureus* 25923_A_NA1897 apresentou vantagem. Cada quadrado representa ambas as curvas de crescimento (eixo y, intensidade em unidades de Omnilog) de cada poço ao longo de 48 h de cada poço, com concentrações crescentes do composto descrito.

Fonte: Elaborada pela autora*

Inicialmente, podemos analisar que outros compostos catiônicos (ou seja com carga similar a NA1897) também apresentaram menor ação contra a linhagem 25923_A_NA1897, como é o caso de cloreto de antimônio, cloreto de benzetônio, cloreto de cetilpiridínio, e brometo de domifeno. De maneira similar, o sulfato de protamina também possui ação na membrana, e embora se ligue de maneira não-específica, também apresentou menor ação para a linhagem selecionada. Assim também, piritiona é um agente quelante porém já foi mostrado que age em membrana de bactérias,¹⁵² e a ação deste foi diminuída na linhagem selecionada. Isto mostra que a membrana pode ter sofrido outras alterações além de somente a alteração de carga.

Aqui podemos alegar que moléculas com ação intracelular podem apresentar um fenótipo de resistência não por seu modo de ação em si, mas por outros mecanismos, como inativação ou exportação da molécula para fora da célula (como ocorreria, por exemplo, caso fosse encontrada uma mutação que causasse um aumento de expressão de bomba de efluxo). Apesar disso é válido levantar hipóteses sobre os grupos de antibióticos para tentar a abordagem mais compreensiva o possível acerca do mecanismo de ação de NA1897.

^{*} Software Parametrics da OmniLog® (Biolog)

É possível notar que houve menor susceptibilidade a vários antimicrobianos de ação na síntese proteica, como por exemplo penimepiciclina, puromicina, tetraciclina e oleandomicina. Estes antibióticos se ligam na porção 30S ou 50S do rRNA, inibindo a síntese proteica. Assim, é possível que NA1897 interfira na síntese proteica diretamente, ou indiretamente, pela leve diminuição no metabolismo observada anteriormente. Pode-se falar o mesmo da acriflavina, que inibe a síntese de rRNA. A 8-hidroxiquinolina, apesar de ser descrita como agente quelante, também possui ação na inibição da transcrição,¹⁵³ podendo ser mais um indicativo da ação de NA1897 nesta maquinaria celular. De forma indireta, pela diminuição metabólica, é possível explicar a maior persistência contra 3-amino-1,2,4-tiazol, que age inibindo a biossíntese do aminoácido histidina.

A diminuição da ação do ácido iodoacético pode ser explicada pelo suposto metabolismo mais ácido da linhagem selecionada. Este ácido age oxidando grupos sulfidris e causando *crosslink* de proteínas com outras moléculas. Esta ação, porém, ocorre principalmente em pH próximo de pH8-8,5. Logo, com um microambiente exterior da bactéria apresentando um pH ligeiramente mais ácido a sua ação é menos seletiva para os grupos proteicos e linhagem poderia persistir em uma concentração mais alta. De forma similar, a ação da atropina é obtida por sua ação antioxidante¹⁵⁴ e apresenta atividade reduzida na linhagem final obtida.

Os resultados dos painéis de ácido bórico foram inesperados. Este é considerado ânion tóxico que causa danos à membrana e extrusão do conteúdo celular por efeito surfactante. Estudos também indicam ação na parede e impedimento da divisão celular.¹⁵⁵⁻¹⁵⁶ Por ser ânion, o resultado de susceptibilidade reduzida não condiz com os dados que até então indicam que houve redução da carga negativa da membrana celular bacteriana. Ainda não é totalmente elucidado como estes ânions agem nas bactérias. Assim, é possível que estas moléculas necessitem associação com cátions para constituir a ação antimicrobiana, resultando em uma carga geral positiva, de forma similar ao que ocorre para daptomicina ^{116,131} – dessa maneira a redução de carga ainda resultaria em resistência para estas moléculas. Também é inesperado o resultado para cloxacilina, não só porque NA1897 não age nas PBPs, mas também porque outros antibióticos desta classe apresentaram maior atividade para a linhagem após a seleção (Figura 20).

Assim, o sequenciamento das linhagens finais da seleção se tornou essencial para melhor explicar estes resultados.

Foram sequenciados os genomas das 3 linhagens obtidas das replicatas biológicas do experimento de evolução dirigida. A próxima tabela mostra quais mutações ocorreram entre a

linhagem do dia zero e a linhagem final. Estas mutações devem indicar mecanismo de ação de NA1897, bem como o motivo das alterações fenotípicas observadas.

Linhagem	Cobertura sequenciamento*	N50	Mutação	Consequência	Proteína alterada
25923_A_NA1897	90x	6925	G>A	Ala111Thr	Parte de uma proteína – possivelmente região de repetição da Clfa
25923_B_NA1897	111x	11159	394_395Ins**	Troca da fase de leitura	Precursor de ligação a fibronectina
25923_C_NA1897			T>C	Leu893Ser	Fator de aglomeração A (ClfA)
	105x	4930	T>C	Phe86Ser	Subunidade beta da alfa- cetoácido desidrogenase

Tabela 12 - Comparação entre as linhagens iniciais e finais do experimento de evolução dirigida com NA1897

* Cobertura da linhagem dia zero A, B e C igual a 148x, 97x e 112x respectivamente

** Inserção de ACGCTGATGTTGTTGAATATGAA entre os nucleotídeos 394 e 395 do gene que codifica a proteína

Fonte: Elaborada pela autora

Inicialmente podemos falar sobre as mutações ocorridas para a linhagem 25923_A_NA1897. A proteína hipotética encontrada constitui-se basicamente de uma série de aminoácidos serina e aspartato repetidos em série, ocasionalmente intercalados por glutamato ou alanina. Esta proteína parece estar conectada ao fator de aglomeração A, que também sofreu mutações no experimento C. Na proteína ClfA é possível observar esta sequência de repetição. Assim, as alterações envolvendo ambas as mutações encontradas parecem estar relacionadas. O gene *clfA* codifica uma proteína de alta massa molecular que fica ancorada à parede celular. Esta proteína é conhecida por promover adesão, se ligando ao fibrinogênio e causando os conglomerados de plasma que são observados em infecções por S. aureus. Assim, esta proteína é intrinsicamente relacionada à virulência do organismo.¹⁵⁷ A proteína ClfA completa pode ser dividida em: uma região S de peptídeo sinalizador, uma região A de ligação ao fibrinogênio, uma região R de repetição serino-aspartato (aproximadamente 300 aminoácidos), os motivos de ligação na parede e membrana, e por último uma cauda intracelular positivamente carregada.¹⁵⁸ Em condições fisiológicas as cadeias laterais do aspartato possuirão cada uma uma carga negativa, devido a deprotonação do ácido, e os resíduos intercalantes de serina são hidrofílicos e estarão altamente dispersos. Assim, a repulsão entre aspartatos somada a interdispersão da serina gera uma força motriz eletrostática que estende a proteína para fora da superfície da célula.¹⁵⁹ As cargas contidas nesta região de repetição serino-aspartato são suficientes para atração eletrostática do peptídeo antimicrobiano positivamente carregado, podendo ser esta a causa de isolados com mutações nessa proteína terem sido selecionados. Curiosamente, a mutação não ocorreu na região codificadora da âncora ou nos aminoácidos negativos, mas sim em uma alanina que intercala as repetições de serina-aspartato. Como a estrutura desta porção da proteína de repetição serino-aspartato é principalmente random coil (vide figura abaixo), não se sabe exatamente qual alteração esta mutação trouxe para proteína. Na linhagem 25923 C NA1897, a mutação ocorreu na mesma região. A proteína detectada pela análise de variantes alinha-se a proteína ClfA de S. aureus apenas até o aminoácido 544, por ser mais longa e possuir mais aminoácidos na porção B2 antes da região de repetição de SD. Assim, o aminoácido 893 encontra-se na região de repetição, de forma que a mutação observada se assemelha àquela observada em 25923_A_NA1897 para a proteína hipotética. No genoma, esta proteína não foi sequenciada completamente, sendo que a região final (C-terminal, suposta região de ancoramento) não se encontra na ORF (do inglês, open reading frame). Assim, para confirmar essas mutações e o papel de ClfA na diminuição da susceptibilidade, seria ideal o sequenciamento de tal gene por método de Sanger, verificação da mutação e expressão do gene mutado na linhagem inicial, ou vice-versa, observando se de fato esta é a responsável pela diminuição a sensibilidade para NA1897.

Figura 22 - Proteína ClfA e suas subunidades, em destaque região de serino-aspartato com alta carga negativa. Fonte: Adaptada de MILLES *et al.*¹⁶⁰

A proteína FnbA, que também parece ter sofrido mutação na seleção in vitro, é uma proteína ancorada na membrana e parede celular, contém o motivo LPXTG, possui função de adesão e internalização pelas células do hospedeiro,¹⁶¹⁻¹⁶² é capaz de se ligar a fibronectina solúvel e imobilizada, invadindo células mesmo sem fatores adicionais.¹⁶³ FnbA também é capaz de se ligar a elastina e fibrinogênio. Assim, age não só na infecção ao hospedeiro, mas também na persistência de tal infecção. Esta proteína não é estabilizada por íons divalentes como Ca⁺² ou Mg^{+2.163-164} A mutação de inserção ocorreu na porção A da proteína, que similarmente ao fator de algomeração, também representa o sítio ativo de FnbA. Estudos indicam que mutações nesta região levam a perda da função: não há mais a capacidade de se ligar ao fibrinogênio e elastina.¹⁶⁵ Assim, há similaridade entre a mutação ocorrida em FnbPA e CflA, uma vez que ambas parecem perder a capacidade de ligação ao fibrinogênio. Não há na literatura nenhuma relação entre tais proteínas e a ação de peptídeos antimicrobianos ou mecanismo de ação de outros antibióticos. É pouco provável que NA1897 interaja no sítio de ligação ao fibrinogênio, uma vez que esta proteína possui, em pH fisiológico, cargas aniônicas - o oposto da nossa molécula. Assim, estas mutações podem ter sido selecionadas ao acaso. De fato, estudos indicam que em algumas bactérias resistentes há diminuição de fatores de virulência (como ClfA e FnbA), para causar preferencialmente uma infecção menos virulenta mas persistente a longo prazo do que uma infecção aguda.¹⁶⁶⁻¹⁶⁷ Para melhor esclarecer o papel destas mutações na diminuição de susceptibilidade em NA1897, seriam necessários estudos adicionais, como superexpressar a proteína mutada em uma linhagem sensível e observara se os incrementos da CIM são atingidos.

A proteína do complexo alfa-cetoácido desidrogenase é homóloga a alfa-cetoácido desidrogenase de cadeia ramificada, com 50% de identidade em 100% de cobertura. Esta faz parte do ciclo de reações que catabolisa aminoácidos de cadeia ramificada, como valina, leucina e isoleucina. Além disso, seu estudo já foi relacionado à fluidez de membrana.¹⁶⁸ Ácidos graxos originários de cadeias ramificadas e insaturadas são considerados mais fluidos enquanto cadeias simples ou saturadas atribuem características mais rígidas à membrana.¹⁶⁹ O nocaute do gene que codifica a alfa-cetoácido desidrogenase de cadeia ramificada mostrou em *Bacillus subtilis* que a falta de atividade desta proteína leva a uma rigidez maior na membrana, devido ao maior uso de aminoácidos de cadeia simples para compor os ácidos graxos dos fosfolipídios.¹⁷⁰ É sabido que AMPs podem ter preferência por microdomínios da membrana para inserção e ação. Se NA1897 possui uma preferência por microdomínios fluidos para fazer um *uptake* autopromovido,^{72,171} uma mutação que resulte em maior rigidez

na membrana pode dificultar a ação deste AMP, representando uma vantagem evolutiva que foi selecionada pelas passagens em concentrações subinibitórias do NA1897.

A própria enzima alfa-cetoácido desidrogenase subunidade beta possui um único domínio AcoB, um domínio conservado na família, componente relacionado produção e conversão de energia.¹⁷²⁻¹⁷³ De fato, a produção de energia comumente ocorre pela oxidação de compostos orgânicos, como a respiração que oxida glicose, obtendo 38 moléculas de ATP. Se esta proteína em questão for essencial para a obtenção de energia pela respiração celular, a troca de um aminoácido altamente hidrofóbico (fenilalanina, que comumente se encontra em alfa-hélices ou folhas-beta) por um aminoácido hidrofílico (serina), pode ter causado perdas de funções importantes. Isso explicaria o caminho alternativo de metabolização de enxofre observado fenotipicamente para a linhagem selecionada com NA1897.¹⁷⁴ Assim, é possível que NA1897 aja na respiração celular e/ou catabolismo. Por último, é possível que estas duas hipóteses sobre a mutação causada estejam relacionadas: um estudo mostra que a taxa de metabolismo respiratório e crescimento celular são dependentes da fluidez da membrana. Os lipídios mais fluidos controlam rigidamente o mecanismo respiratório, provavelmente devido a cadeia transportadora de elétrons que depende da difusão de proteínas e enzimas transportadoras de elétrons. Assim, sugere-se que a cadeia transportadora de elétrons depende da difusão na membrana, o que pode causar restrição na evolução da composição destas membranas.175

Comumente se associa o aumento da CIM a mutações em comum que ocorrem nas linhagens com mesmo nível de resistência. Neste caso, a mutação em comum ocorre em proteínas de ligação de fibrinogênio, que não parecem estar diretamente relacionadas à ação de NA1897. Assim, esta mutação pode ter sido apenas uma resposta de *S. aureus*, diminuindo a virulência a longo prazo, como ocorre a regulação em bactérias resistentes. As mutações observadas na última replicata biológica se relacionam melhor com os resultados fenotípicos observados, principalmente a respeito de metabolismo de aminoácidos de cadeia ramificada, diretamente relacionada a composição dos ácidos graxos da membrana.

Logo, pode-se afirmar que NA1897 é um peptídeo de amplo espectro e rápida ação, que causa despolarização, danos à parede celular e provavelmente estresses oxidativos. Este peptídeo possui baixo índice de seletividade para macrófagos, mas seu uso tópico parece ser promissor, dada a baixa propensão ao desenvolvimento de resistência.

4.2 Plantaricina 149

Os análogos sugeridos para a Plantaricina 149 foram planejados em colaboração com a Profa. Dra. Leila M. Beltramini do IFSC-USP e Prof. Dr. José Luiz de S. Lopes, do IFUSP da Universidade de São Paulo. Estes peptídeos foram sintetizados utilizando a infraestrutura do grupo de Biofísica. Estes análogos, bem como sua atividade antimicrobiana e hemolítica encontram-se na tabela abaixo.

	Concentração Inibitória Mínima (mg/L)									
Nome	Sequência	S. epidermidis ATCC 35984	S. aureus ATCC 25923	E. faecalis ATCC 29212	E. faecium ATCC 700221	K. pneumoniae ATCC 700603	E. coli ATCC 25922	A. baunannii ATCC 19606	P. aeruginosa ATCC 27583	HC ₅₀ (mg/L)
Pep7	Fmoc - YSLQMGATAIKQVKKLFKKKGG	32	256	128	64	256	128	32	256	4
Pep1	Fmoc - GATAIKQVKKLFKKKGG	128	512	512	128	512	512	64	512	>128
Pep1S	GATAIKQVKKLFKKKGG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Рерб	Fmoc - YATAIKQVKKLFKKKGG	8	64	64	32	128	128	16	128	64
Pep6S	YATAIKQVKKLFKKKGG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep2	Fmoc – YAVKKLFKKKG	64	128	256	128	S.A.	256	512	256	>128
Pep2S	YAVKKLFKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep9	YVGGGKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep10	YGGGKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep11	YAVIGGGKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep12	Fmoc-YAVGGGKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep12S	YAVGGGKKKG	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	N.D.
Pep6W	Fmoc – YATAIKQVKKLFKKWGG	8	8	16	8	64	64	8	64	32
Pep6WS	YATAIKQVKKLFKKWGG	128	512	S.A.	256	256	256	256	512	512
Pep2W	Fmoc – YAVKKLFKKWG	8	16	32	16	64	64	64	64	64
Pep2WS	YAVKKLFKKWG	128	256	512	256	256	512	512	512	512
Pep20	Fmoc – KAVKKLFKKWG	4	16	32	16	32	64	32	64	>512

Tabela 13 - Resumo dos análogos de Plantaricina 149 sintetizados e sua atividade antimicrobiana e hemolítica

S.A. Sem atividade para as condições testadas

N.D. Não determinada

HC50 Concentração de 50% de hemólise

Fonte: Elaborada pela autora

Alguns análogos da Plantaricina 149 já explorados previamente⁹⁵ apresentaram atividade antimicrobiana, mas esta foi pouco explorada e caracterizada, e, quando observadas, ocorriam em altas concentrações. Dentre os análogos, a presença do grupo protetor Fmoc no N-terminal do peptídeo merece destaque e foi ponto de partida neste projeto, uma vez que parece ter aumentado a ação desta bacteriocina. Este grupo protetor é utilizado nas sínteses orgânicas para proteção de aminas e possui características hidrofóbicas e volumosas.

Assim, o primeiro peptídeo a ser testado foi o Pep-7, a sequência original desta bacteriocina com o grupo protetor Fmoc. Este peptídeo foi ativo contra todas as linhagens testadas. Estudos anteriores feitos com modelos sugerem que a interação deste peptídeo se estabelece com a membrana bacteriana da seguinte maneira: em presença de fosfolipídios negativamente carregados, este peptídeo se enovela em uma alfa-hélice, a qual inicialmente estabelece uma interação eletrostática entre seus aminoácidos com cadeia lateral positiva e a membrana, deslocando cátions positivos ali presentes, como Ca⁺² e Mg⁺². Em seguida a porção N-terminal, em função de seu caráter hidrofóbico, estabelece interações com a porção lipídica dos fosfolipídios, se inserindo na membrana.⁹⁵ A adição do grupo Fmoc e o consequente o aumento da atividade se encaixam neste modelo proposto, uma vez que este incrementa o caráter hidrofóbico da região N-terminal onde está inserido, além de ter liberdade estérica para se inserir na membrana, por não fazer parte da alfa-hélice. Apesar de ser ativo para todas as linhagens testadas, o grande desafio para este peptídeo encontra-se na alta taxa de hemólise observada. Peptídeos catiônicos normalmente não interagem com a membrana eucariótica, uma vez que esta é composta principalmente de fosfolipídios zwitteriônicos, não estabelecendo uma interação eletrostática. A hipótese é, então, que o alto caráter hidrofóbico do peptídeo seja responsável por tal atividade hemolítica. As próximas modificações feitas envolveram a retirada da porção N-terminal do peptídeo, baseado em estudos que mostraram que esta região não contribuía para a atividade antimicrobiana em bacteriocinas similares.¹⁷⁶ A redução do peptídeo também é vantajosa em termos de custo e tempo de síntese. Assim, sintetizou-se os peptídeos Pep1 e Pep1S, com a mesma sequência de aminoácidos, diferenciados apenas na presença ou não grupo protetor Fmoc, de maneira a continuar explorando sua influência na atividade antimicrobiana. O peptídeo Pep1S não apresentou potencial antimicrobiano, ressaltando a importância do grupo Fmoc na molécula para sua atividade. Por outro lado, o peptídeo Pep1 apresentou atividade contra todas as linhagens testadas. Apesar de agir em concentrações mais altas que Pep7, sua atividade hemolítica foi atenuada. Isso mostra que o grupo Fmoc não é o único responsável pela atividade hemolítica, esta sofre também a influência da sequência de aminoácidos.

As próximas modificações sugeridas para esta bacteriocina mantiveram a redução da porção N-terminal, uma vez que houve a redução da hemólise nestas condições. Assim, foram sintetizados os peptídeos Pep6 e Pep6S, similares ao Pep1 mas trocando o primeiro aminoácido da sequência por tirosina, para assemelhar-se ao início da bacteriocina original (Plantaricina 149). Novamente, o peptídeo sintetizado sem a presença do grupo Fmoc não foi ativo, em oposição aos peptídeos com a presença do grupo. Pep6 apresentou um potencial antimicrobiano muito maior que o Pep1, do qual a modificação se originou. Pep6 foi escolhido para seguir as tentativas de otimização dada a sua atividade biocida acentuada. O segundo par de peptídeos sintetizados (Pep2 e Pep2S) buscou reduzir ainda mais o peptídeo, também mantendo a tirosina inicial que se mostrou importante pelo obtido anteriormente com Pep6. Pep2S, como esperado, não apresentou atividade, mas Pep2, apesar de não tão ativo como Pep6, apresentou uma taxa hemolítica mais baixa. Ainda tentando obter o a otimização entre estes dois aspectos (atividade antimicrobiana e toxicidade), sintetizou-se mais 5 peptídeos (Pep9, Pep10, Pep11, Pep12, Pep12S), partindo da sequência de Pep2. Dado o modo de ação proposto em estudos anteriores,⁹⁵ a intenção para estas sínteses foi reduzir ainda mais o peptídeo, mantendo as principais características deste, mas sem considerar sua estrutura secundária. Esta tentativa foi realizada pois não se espera uma resposta chavefechadura entre bactéria e peptídeo, mas sim interações eletrostáticas e hidrofóbicas que poderiam ser estabelecidas sem uma estrutura secundária bem definida. Esperava-se, assim, dar mais liberdade conformacional para as cargas positivas localizadas na porção C-terminal do peptídeo, conseguindo manter sua função. Estas hipóteses formuladas, porém, não foram validadas, pois nenhum destes peptídeos tiveram atividade antibacteriana.

Em contrapartida a esta estratégia de uma molécula com maior liberdade conformacional, os próximos peptídeos foram planejados a partir da estrutura secundária que a molécula assumiria ao interagir com a bactéria e/ou seu alvo específico. Assim, utilizou-se a projeção em hélice de sua sequência de aminoácidos, uma vez que estes peptídeos possuem a tendência de assumir essa conformação na presença de lipídeos negativamente carregados ⁹⁷. Na Figura 23 (A e B) é possível observar a projeção em alfa-hélice para os peptídeos Pep6 e Pep2, últimos dois peptídeos sintetizados que apresentaram atividade antimicrobiana. Nestas projeções é possível observar que há um resíduo de lisina entre o que poderia definir uma face hidrofóbica em ambos os peptídeos. Já foi relatada a importância da característica anfipática e principalmente de uma face hidrofóbica bem definida em peptídeos antimicrobianos que

assumem conformação em alfa-hélice.⁷² Assim, planejou-se trocar esta lisina no Pep2 e Pep6 por triptofano (Y_{10} no Pep2 e Y_{15} no Pep6). O triptofano foi escolhido devido a sua característica hidrofóbica e sua capacidade de recuperar atividade de AMPs já citada no item **4.1 Bothropstoxina-I.** Nos itens C e D da Figura 23 apresentamos as novas projeções em hélice para estas modificações. Nota-se que em ambos os peptídeos há um aumento da hidrofobicidade e do momento hidrofóbico, sendo mais acentuado para o modificado a partir do Pep2.

Figura 23 - A. Projeção em hélice alfa para Pep6. Hidrofobicidade: 0,129. Momento hidrofóbico: 0,449. B. Projeção em hélice alfa para Pep2. Hidrofobicidade: 0,094. Momento hidrofóbico: 0,357. C. Projeção em hélice alfa para Pep6W. Hidrofobicidade: 0,319. Momento hidrofóbico: 0,622. D. Projeção em hélice alfa para Pep2W. Hidrofobicidade: 0,388. Momento hidrofóbico: 0,647. Os aminoácidos amarelos são resíduos não polares, enquanto os azuis são carregados positivamente. Dados obtidos no HeliQuest.

Fonte: Elaborada pela autora

Estas projeções desenhadas foram sintetizadas aos pares (com e sem Fmoc): Pep6W e Pep6WS, Pep2W e Pep2WS. Nota-se que os peptídeos sem o Fmoc, Pep2S e Pep6S, não tinham atividade, mas com a substituição da lisina por triptofano, Pep6WS e Pep2WS, passaram a ser ativos (Tabela 13), mais uma vez evidenciando a importância deste aminoácido em AMPs. Ainda assim, inegavelmente Pep6W e Pep2W ganham destaque devido a sua alta atividade. Dada a alta atividade antimicrobiana de Pep2W, mas menor atividade hemolítica, além de outras vantagens - como menor tamanho - este foi escolhido para seguir com as tentativas de otimização. Observando novamente a estrutura secundária deste peptídeo, nota-se que a troca de Y_1 por lisina beneficiaria na definição de uma hélice anfipática no peptídeo, favorecendo que se forme uma face positivamente carregada (Figura 24).

Figura 24 - Projeção em hélice alfa para Pep20. Os aminoácidos amarelos são resíduos não polares, enquanto os azuis são carregados positivamente. Hidrofobicidade: 0,211. Momento hidrofóbico: 0,822. Dados obtidos no HeliQuest.

Fonte: Elaborada pela autora

De fato, ao avaliar a atividade antimicrobiana, observa-se que Pep20 foi o peptídeo mais potente sintetizado até então. Este peptídeo apresentou melhora muito significativa em termos de atividade em relação aos anteriormente publicados, por ser bactericida em concentrações mais baixas, além de reduzir significativamente a taxa hemolítica – maior problema associado encontrado para esse grupo de moléculas (vide Tabela 13). Assim, escolheu-se este análogo da Plantaricina 149 (representado pela Figura 25) como o mais promissor para dar continuidade aos demais ensaios deste projeto. Este peptídeo apresenta-se desordenado em solução fosfato, mas apresenta maiores graus de ordenação na presença de detergentes aniônicos (Anexo B), como esperado para AMPs. Para melhor investigar os efeitos de ordenação de Pep20, serão tomadas medidas de SRCD (do inglês, *Synchrotron radiation circular dichroism*).

Figura 25 - Peptídeo Pep20 (Fmoc - KAVKKLFKKWG).

Fonte: Elaborada pela autora

Todos os peptídeos sintetizados foram avaliados no StarDrop para obter *in vitro* suas propriedades e permitir uma análise das propriedades físico-químicas, e como forma de avaliar o potencial farmacológico da molécula.

Peptídeo	logP	Categoria BHE	Categoria AIH	Ligação com proteínas
			_	do plasma
Pep7	3,9	-	+	Baixa
Pep1	-1,742	-	-	Baixa
Pep1S	-2,709	-	-	Alta
Рерб	4,382	-	+	Baixa
Pep6S	0,1956	-	+	Baixa
Pep2	8,238	-	+	Baixa
Pep2S	0,2137	-	+	Baixa
Pep9	-3,996	-	+	Alta
Pep10	-4,393	-	+	Alta
Pep11	-3,337	-	+	Alta
Pep12	-2,015	-	+	Baixa
Pep12S	-3,86	-	+	Alta
Pep6W	0,6966	-	+	Baixa
Pep6WS	-0,0223	-	+	Baixa
Pep2W	1,267	-	+	Baixa
Pep2WS	0,2094	-	+	Baixa
Pep20	-1,097	-	-	Baixa

Tabela 14 - Propriedades físico-químicas dos análogos de Plantaricina 149 calculadas in silico

Fonte: Elaborada pela autora

A princípio, tentamos estabelecer uma relação entre o logP dos peptídeos e sua atividade, uma vez que para os primeiros peptídeos testados foi possível observar que aqueles com logP alto apresentaram atividade, enquanto aqueles com logP baixos ou menor que zero se mostraram inativos (com exceção de Pep1). A priori esta relação mostrava-se lógica dado que este parâmetro mede o coeficiente de partição em octanol/água e está ligado a interações intermoleculares do composto.¹¹² Contudo, não foi possível obter uma relação quantitativa para atividade antimicrobiana e o logP, e o resultado obtido com as próximas sínteses descartaram essa hipótese. O último peptídeo sintetizado (Pep20) apresentou uma drástica mudança de logP, mostrando como a definição das faces carregadas e hidrofóbicas na molécula interfere nas suas interações intermoleculares. Apesar de não ter sido possível a análise quantitativa, estes dados foram importantes para guiar as modificações, além de darem bom suporte para a intenção de aplicação terapêutica: a modelagem computacional dos

últimos peptídeos sugeridos indica baixa ligação com proteínas do plasma e não penetração da barreira hematoencefálica, apontando baixa toxicidade para o organismo.

Uma vez que Pep20 foi escolhido para dar continuidade ao projeto, este foi avaliado contra uma série de linhagens que pertencem ao grupo ESKAPE com diferentes perfis de susceptibilidade através da determinação da CIM e CBM. Foram testadas 60 linhagens de diferentes espécies de bactérias gram-positivas (Tabela 15). Houve uma grande variação da CIM para as bactérias gram-positivas.

Espécie	Linhagens	Principal Perfil	CIM	CBM	CBM/CIM	Atividade
	8	Resistência [#]	(mg/L)	(mg/L)		
C	ATCC 35984		2	8	4	Bactericida
S. epiaermiais	ATCC 12228		1	2	2	Bactericida
	ATCC 25923		8	16	2	Bactericida
	SA16	MRSA	8	16	2	Bactericida
	SA88	MRSA	8	16	2	Bactericida
C aurous	SA43	MRSA, TIG S	8	8	1	Bactericida
S. aureus	SA43 B2		8	8	1	Bactericida
	SA43 B7	MRSA (mepR*)	8	8	1	Bactericida
	Mu50	VISA	2	>8	>4	Bacteriostático
	ATCC 8095		8	16	2	Bactericida
	VRE 109	VAN R, TIG S	32	128	4	Bactericida
	VRE 109 42C	VAN R, TIG R	32	128	4	Bactericida
	VRE 80	VAN R, TIG R	32	128	4	Bactericida
	V583	VAN R	128	256	2	Bactericida
F faccalis	RPEfs1	CIP R	128	128	1	Bactericida
E. Jaecans	RPEfs2	ERY I	128	128	1	Bactericida
	RPEfs3	VAN R	128	128	1	Bactericida
	RPEfs4	CIP R	8	32	4	Bactericida
	RPEfs5	TET R	8	>32	>4	Bacteriostático
	ATCC 29212		32	64	2	Bactericida
	VRE 16	VAN R	32	32	1	Bactericida
		DAP				
	HBSJRP18	supersensível	32	64	2	Bactericida
		$(laf B^*)$				
	HBSJRP18 2.7	DAP S	32	64	2	Bactericida
	HBSJRP18 3.6	DAP R (dak*)	32	32	1	Bactericida
E. faecium	HBSJRP7	DAP R, VAN R	16	32	2	Bactericida
	HBSJRP13	VAN R	16	32	2	Bactericida
	HBSJRP14	VAN R	16	64	4	Bactericida
	HBSJRP23		8	8	1	Bactericida
	HBSJRP11		8	16	2	Bactericida
	ATCC 700221	VAN R	8	32	4	Bactericida

Tabela 15 - CIM e CBM do peptídeo Pep20 para linhagens gram-positivas

American Type Culture Collection (ATCC). *Staphylococcus aureus* resistente à meticilina (MRSA); *S. aureus* com resistência intermediária à vancomicina (VISA);

R, resistente; S, sensível, I, intermediário;

Ciprofloxacina (CIP), Daptomicina (DAP), Eritromicina (ERY), Tigeciclina (TIG), Vancomicina (VAN)

*Perfil completo de resistência encontra-se no anexo A

Fonte: Elaborada pela autora

Assim como feito anteriormente para o peptídeo NA1897, estes resultados constroem um quadro geral de ação antimicrobiana do Pep20 e ajudam na identificação do modo de ação desta molécula ao observar sua ação sob influência de mecanismos de resistência conhecidos. Novamente, é importante dar destaque para as linhagens isogênicas S. aureus SA43 e SA43 B7, sendo que esta última, obtida de seleção *in vitro*, tem uma mutação no *mepR*, que causou superexpressão da bomba de efluxo MepA.¹⁷⁷ Observa-se que a CIM do Pep20 para estas duas linhagens é igual, ou seja, a superexpressão de MepA – responsável por extrusar antibióticos e associada à fenótipos de resistência - não afeta a atividade do peptídeo, indício de que este não é substrato da bomba MepA e/ou não entra no citoplasma. Da mesma maneira, não se observou mudança na atividade entre as linhagens E. faecalis VRE109 e VRE109C42, sendo a primeira uma linhagem clínica parental sensível à tigeciclina e a segunda, resistente. Ambas são isogênicas obtidas por evolução dirigida com tigeciclina, mas VRE109C42 é resistente à tigeciclina por uma associação de mecanismos que inclui a superexpressão de TetM e a influência de uma bomba de efluxo não identificada, mas que sofre influência de verapamil.¹¹⁴ Assim, é possível inferir que o modo de ação do peptídeo Pep20 não é diretamente nos ribossomos, ou, pelo menos, não é afetado pela proteção ribossomal presente nesta linhagem e nem sofre influência desta possível bomba de efluxo. As linhagens de E. faecium HBSJRP18, HBSJRP18-2.7 e HBSJRP18-3.6 que são, respectivamente, supersensível, sensível e resistente a daptomicina, também merecem destaque, uma vez que este antibiótico tem um mecanismo de ação junto da membrana e parede celular, guiada pela interação eletrostática com os fosfolipídeos negativamente carregados.¹³¹ Apesar disso, estas três linhagens com diferentes perfis de susceptibilidade à daptomicina não apresentaram diferença de susceptibilidade ao peptídeo Pep20. Ainda não se tem conhecimento de quais mudanças fenotípicas levaram a mudanças na susceptibilidade à daptomicina nestas linhagens, embora as mutações tenham sido encontradas no gene *lafB* para HBSJRP18 e no gene daK para HBSRJP18 3.6, como citado anteriormente.¹¹⁵ Por último, ainda é possível citar os isolados de VRE E. faecium HBSJRP7 e HBSJRP13, ambos ST896, que apesar de não serem isogênicas, a análise do genoma destas indicou uma única mutação em uma D-ala-D-ala ligase em HBSJRP13, que provavelmente levou à susceptibilidade a daptomicina, já que outros isolados da mesma linhagem do hospital eram resistentes à daptomicina. Como discutido em 4.1 Bothropstoxina-I, esta mutação está ligada a montagem e integridade da parede celular. Como não foi observada alteração na CIM entre estas duas linhagens, podemos também supor que este mecanismo de resistência não afeta a ação antimicrobiana de Pep20.

Para as bactérias gram-negativas, foram utilizadas 32 linhagens das diferentes espécies.

Espécie	Linhagens	Princinal Perfil		Atividade		
Lapeen	Linnagens	Resistência*	(mg/L)	$(m\sigma/L)$	CDM/CIM	munuuu
	ATCC 700603	SHV+	16	>64	>4	Bacteriostático
	ATCC	KPC+	10	201		Ductoriosturico
	BAA1705	16 >64 >4		>4	Bacteriostático	
	21111,00	AK R. AMP R.	10	,		244444
	BHKPC50	IMI R. CIP R.				
		TIG R. CL S	128	512	4	Bactericida
	DDV 01	IMI R, CIP R,				
	RPKp01	CL R	32	64	2	Bactericida
К.	DDV 02	AMP R, IMI R,				
pneumoniae	RPKp02	CIP R, CL R	128	256	2	Bactericida
*	DDV 00	AMP R, IMI R,				
	кркр09	CL S	32	64	2	Bactericida
	DDV - 19	AMP R, IMI R,				
	кркрія	CL R	128	256	2	Bactericida
	NDM-1	NDM+	32	>128	>4	Bacteriostático
	AMKP4	KPC+ CL R	512	>512	>1	N.D.
	AMKP7	KPC+, CL S	256	256	1	Bactericida
	AMKP10	KPC+, CL R	512	>512	>1	N.D.
	ATCC 25922		32	64	2	Bactericida
	ATCC 35218		32	128	4	Bactericida
	RPEc01	AK R, AMP R,				
		IMI R	32	128	4	Bactericida
F coli	BHKPC10	MEM R	32	128	4	Bactericida
L. con	AMEc8	AMP R, CIP R	16	32	2	Bactericida
	AMEc49	AMP R, CXM				
	AMLCT	R	32	64	2	Bactericida
	AMEc60	AMP R, CXM				
	7 HVILCOO	R	16	64	4	Bactericida
	ATCC 19606		32	64	2	Bactericida
	ACI50	CL R	64	128	2	Bactericida
	ACI44	CL S	128	256	2	Bactericida
A. baumannii	ACI51	CL R	256	256	1	Bactericida
111 0 000000000000000000000000000000000	ACI40	CL S	64	128	2	Bactericida
	ACI42	CL	64	256	4	Bactericida
	AM83	AK R, CL S	32	128	4	Bactericida
	AM87	AK S, CL S	16	16	1	Bactericida
P. aeruginosa	ATCC 27853	AmpC induzível	32	128	4	Bactericida
	RPPse09	IMI R, MEM R	256	512	2	Bactericida
	RPPse07	A KK, MEM R,	64	100	2	D (1
		IMI K, CL S	100	128	2	Bactericida
	PSE6	KPC+	128	128	1	Bactericida
	PAUI		128	230	2	Dactericida

Tabela 16 - CIM e CBM do peptídeo Pep20 para linhagens gram-negativas

American Type Culture Collection (ATCC). R, resistente; S, sensível, I, intermediário; KPC – Klebsiela Pneumoniae Carbapenemase Amicacina (AK), Ampicilina (AMP), Cefuroxima (CXM), Ciprofloxacina (CIP), Colistina (CL), Imipenem (IMI), Meropenem

(MEM) \mathbb{P}

*Perfil completo de resistência encontra-se no anexo A

Fonte: Elaborada pela autora

Da mesma maneira, aqui podemos observar o quadro geral de susceptibilidade destas linhagens frente ao Pep20. Os resultados referentes a linhagens com diferentes perfis de resistência a polimixinas devem ganhar destaque, uma vez que este antibiótico pertence à classe de peptídeos catiônicos antimicrobianos. Polimixinas agem estabelecendo uma interação eletrostática com a membrana negativamente carregada e posteriormente interage com o lipídeo A, levando a alterações na permeabilidade e rápida perda do conteúdo celular ¹¹⁷. Assim, é de interesse observar o comportamento destas linhagens sob ação de Pep20, para tentar obter informações referentes ao seu mecanismo de ação. Inicialmente, para linhagens de A. baumannii, damos destaque às linhagens ACI50 e ACI51, que são resistentes à polimixinas e às linhagens ACI40, ACI42 e ACI44, que por sua vez são sensíveis ao antibiótico. A resistência nas primeiras linhagens ocorre devido a adição de fosfoetanolamina no LPS da membrana externa ¹¹⁸, reduzindo sua carga negativa e, portanto, causando repulsão eletrostática no antibiótico (como citado na seção 4.1 Bothropstoxina-I). Observou-se uma variação entre as concentrações inibitórias para Pep20, mas sem uma relação clara com a resistência a polimixinas (linhagens resistentes não apresentaram, necessariamente, uma CIM maior que as linhagens sensíveis). Isso pode ocorrer pois estas linhagens não são isogênicas, e por serem de origem clínica, apresentam fenótipos diferentes entre si. Assim, não é possível presumir nenhuma relação entre Pep20 e resistência a polimixinas com estes dados. Outro resultado importante de enfatizar foi o obtido para as linhagens K. pneumoniae AMKP4, AMKP10 e AMKP7. Esta última é sensível a polimixinas enquanto AMKP4 e AMKP10 são resistentes. O mecanismo neste caso é muito similar ao descrito para A. baumannii. Nestas linhagens resistentes há a adição de 4-amino-arabinose no LPS, de novo causando repulsão a polimixina B¹¹⁹. Neste caso pode-se observar que a linhagem sensível à polimixina B apresenta uma CIM mais baixa que as linhagens resistentes, indicando que este mecanismo de resistência pode afetar o modo de ação do Pep20. Isto faz sentido com os dados antes publicados para as moléculas que antecederam Pep20. A Plantaricina 149 e seus análogos parecem depender da carga negativa dos fosfolipídios para a formação de sua estrutura secundária e para seu mecanismo de ação.⁹⁵⁻⁹⁷

Apesar de permitirem o levantamento de algumas hipóteses e, de certa forma, direcionar a investigação do potencial antimicrobiano, as hipóteses aqui levantadas só podem ser confirmadas com a devida elucidação do modo de ação do peptídeo. A partir de agora o foco se dá para essa elucidação, mas também para continuação da caracterização de atividade antimicrobiana deste peptídeo. Para isso, assim como no caso de NA1897 descrito anteriormente, foram escolhidas linhagens representativas do problema atual da resistência antimicrobiana. Logo, foram escolhidas linhagens de *S. aureus* e *A. baumannii*. Para *S. aureus*, a linhagem ATCC 25923 serve como padrão de referência internacional enquanto a

linhagem SA43 é uma linhagem MRSA,¹²¹ que pode causar infecções difíceis de tratar e constitui nível de ameaça sério.³ Similarmente, em *A. baumannii* utilizamos as linhagens ATCC 19606 e ACI50, em que esta última apresenta multirresistência, inclusive à polimixinas, levando à uma seria falta de opções terapêuticas para tratamento de sua infecção.¹¹⁸

Primeiramente, investigou-se se a ação de Pep20 era de fato bactericida e qual a relação com o tempo de ação desta molécula. Para isso foram feitos os ensaios de cinética de morte (Figura 26Figura 27,Figura 28,Figura 29) e efeito pós-antibiótico (Tabela 17 Tabela 18). Estes ensaios foram feitos utilizando daptomicina e polimixina B para comparação, dado que são antibióticos utilizados na prática clínica cuja ação se assemelha à muitos AMPs.

Figura 26 - Cinética de morte para S. aureus ATCC 25923. A. Peptídeo Pep20, com CIM de 8 mg/L. B. Antibiótico comercial daptomicina, com CIM de 1 mg/L. Limite de detecção do experimento: 10² UFC/mL.

Fonte: Elaborada pela autora

Figura 27 - Cinética de morte para *S. aureus* SA43. **A.** Peptídeo Pep20, com CIM de 8 mg/L. **B.** Antibiótico comercial daptomicina, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10² UFC/mL.

Fonte: Elaborada pela autora

Observa-se uma rápida ação bactericida do peptídeo mesmo para a linhagem MRSA (SA43), com redução total da população bacteriana dentro de duas horas ainda para as concentrações mais baixas do composto. A concentração subinibitória conseguiu reduzir o inóculo tanto quanto a daptomicina, mas conseguiu manter este controlado por um período mais longo de tempo, o que deve ser relacionado ao PAE de Pep20, resultado descrito a seguir. Este efeito é observado para as duas linhagens de *S. aureus*, mas mais acentuado para a linhagem SA43.

Os resultados obtidos para A. *baumannii* podem ser observados nas Figura 28 Figura 29.

Figura 28 - Cinética de morte para A. baumannii ATCC 19606. A. Peptídeo Pep20, com CIM de 32 mg/L. B. Antibiótico comercial polimixina B, com CIM de 0,5 mg/L. Limite de detecção do experimento: 10² UFC/mL.

Fonte: Elaborada pela autora

Figura 29 - Cinética de morte para A. baumannii ACI50. A. Peptídeo Pep20, com CIM de 64 mg/L. B. Antibiótico comercial polimixina B, com CIM de 128 mg/L. Limite de detecção do experimento: 10² UFC/mL.

Fonte: Elaborada pela autora

Para estas linhagens gram-negativas é possível observar o rápido efeito do peptídeo, sendo a morte bacteriana mais súbita do que o observado para as bactérias gram-positivas. Para a linhagem *A. baumannii* ATCC 19606 foi observado um comportamento muito similar ao da polimixina B, embora observe-se um efeito mais acentuado para a concentração subinibitória nas primeiras horas de experimento. Para a linhagem *A. baumannii* ACI50, resistente à polimixinas, é possível, novamente, observar um padrão de morte celular muito similar ao da polimixina B, mas com efeito sub inibitório ainda mais prolongado do que observado para a linhagem ATCC 19606. Com estes resultados podemos confirmar o potencial bactericida do nosso peptídeo (redução de 3 log, ou 99,9% do inóculo). Além disso vale lembrar que a ação rápida observada para todas as quatro linhagens é característica dos peptídeos antimicrobianos⁷² e, portanto, esperada neste experimento.

A determinação do efeito pós antibiótico (PAE) foi realizada após a cinética de morte para verificar o tempo que há inibição de crescimento da bactéria após retirada de Pep20 do meio. As bactérias foram expostas ao peptídeo por apenas 15 minutos em concentrações de 1x CIM e 0,5x CIM, nas mesmas linhagens testadas para a determinação da cinética de morte. O PAE é definido pela diferença de tempo para o crescimento de 1log entre o controle e a amostra tratada.

Tabela 17 - PAE de Pep20 (CIM de 8 mg/L) e Daptomicina (CIM de 1 mg/L e 0,5 mg/L) para linhagens grampositivas.

Exposição	PAE das linhagens bacteriana (h ± d.p.)		
	S. aureus ATCC 25923	S. aureus SA43	
Pep20 0,5xCIM	4,0±1,0	4,0±0,5	
Pep20 1xCIM	$5,5\pm 2,0$	5,0±1,0	
Daptomicina 0,5xCIM	0,5±0,5	N.O.*	
Daptomicina 1xCIM	$1,5\pm0,5$	3±1	
*N.O. Não observado;			

d.p., desvio padrão

Fonte: Elaborada pela autora

Tabela 18 - PAE de Pep20 (CIM de 32 mg/L e 64 mg/L) e Polimixina B (CIM de 0,5 mg/L e 128 mg/L) para linhagens gram-negativas.

Exposição	PAE das linhagens bacteriana (h ± d.p)			
	A. baumannii ATCC 19606	A. baumannii ACI50		
Pep20 0,5xCIM	3,5±0,5	N.O.*		
Pep20 1xCIM	$4,5\pm0,5$	2,5±0,5		
Polimixina B 0,5xCIM	4,0±0,5	3,0±0,5		
Polimixina B 1xCIM	5,0±0,5	3,0±0,5		
*N.O. Não observado;				

d.p., desvio padrão

Fonte: Elaborada pela autora

Assim como NA1897, Pep20 foi capaz de inibir o crescimento bacteriano após a curta incubação. Não há diferença entre a linhagem *S. aureus* ATCC 25923 e a linhagem clínica MRSA (*S. aureus* SA43), além de não haver diferença entre a concentração inibitória e subinibitória para estas linhagens. Este resultado é relevante pois pode indicar que mesmo após a concentração sérica em um tratamento cair para concentrações subinibitórias, o peptídeo é capaz de continuar impedindo o crescimento bacteriano. Para *A. baumannii*, o PAE observado para Pep20 em concentração inibitória novamente assemelha-se muito ao obtido para polimixina B, assim como citado para NA1897. Por este antibiótico comercial também tratar-se de um peptídeo antimicrobiano, que já apresentou uma cinética de morte muito similar ao Pep20, é esperado também esta semelhança observada no PAE.¹²² A única exceção fica para a concentração subinibitória em ACI50, que não apresentou nenhum efeito após ser retirada do meio, apesar de ser capaz de inibir o crescimento bacteriano por até 12h quando presente, segundo o estudo de cinética de morte.

Após esta caracterização da ação antimicrobiana Pep20 foi avaliado quanto a sua citotoxicidade através de ensaio *in vitro*. O estudo de citotoxicidade foi realizado pela Dra.

Júlia M. Souza, no Laboratório de Química Medicinal e Computacional (LQMC), coordenado pelo Prof. Dr Adriano Andricopulo. A citotoxicidade foi avaliada para células THP-1 (macrófagos humanos diferenciados), HFF-1 (fibroblastos humanos) HepG2 (carcinoma hepático humano). A tabela abaixo indica o CC₅₀ - concentração citotóxica, definida pela concentração necessária para redução da viabilidade celular em 50%. Além de Pep20, daptomicina e polimixina B também foram avaliados.

Compostor	CC ₅₀ (mg/L)				
Compostos	THP-1	HFF-1	HepG2		
Pep20	$67,73 \pm 1,20$	$58,58 \pm 1,95$	$125,15 \pm 1,60$		
Polimixina B	$125,45 \pm 2,01$	>512	>512		
Daptomicina	>512	>512	>512		

Tabela 19 - Resultados de CC_{50} para Pep20 e antibióticos controle para três tipos de células humanas.

Fonte: Elaborada pela autora

O peptídeo Pep20 mostrou-se tóxico *in vitro* para as células humanas, com o CC₅₀ comparável a CIM obtida para as linhagens clínicas bacterianas. Assim, mesmo com as otimizações que levaram a uma drástica diminuição do efeito hemolítico, este análogo da Plantaricina 149 ainda precisa ser modificado para contornar sua toxicidade. Normalmente a seletividade de AMPs é baseada na diferença de interações do peptídeo com as membranas procarióticas e eucarióticas. Como supõe-se que Plantaricina 149 e seus análogos ajam na membrana citoplasmática bacteriana,⁹⁷ essa ação deve ser baseada em interações eletrostáticas com componentes negativos que constituem tal membrana. Assim, não deveriam ocorrer interações com membranas zwitteriônicas.¹⁰⁹ A hipótese é que o aumento da hidrofobicidade da molécula, promovida nas últimas modificações também favoreceu uma maior interação hidrofóbica com os componentes lipídicos da bicamada. Isso pode ter levado a uma interação não intencional com membranas de células humanas. Outra hipótese possível é que Pep20 também haja em um alvo que exista tanto em procariotos quanto em eucariotos. Este peptídeo não apresentou também uma atividade favorável anticâncer, como ocorre para alguns AMPs.

Como citado anteriormente, é possível determinar um índice de seletividade¹²⁵, dado pela razão entre CC50 e a CIM. Para poder determinar o IS, usaremos uma medida de CIM₅₀ - concentração mínima para inibir pelo menos 50% de todas as linhagens bacterianas testadas dentro de determinado grupo. O IS de pep20 usando os dados de THP-1 e HFF-1 encontra-se abaixo.

	CIM ₅₀ (mg/L)	IS (THP-1)	IS (HFF-1)
Gram-positivos	8	8	7
Gram-negativos	32	2	2

Fonte: Elaborada pela autora

Novamente não foi possível obter o índice de seletividade ideal (maior ou igual a 10), mas os resultados para gram-positivos foram promissores. Assim, este peptídeo pode ser considerado um forte precursor para um fármaco, mas precisa passar por mais etapas de otimização. Este peptídeo apresenta um índice de seletividade maior para gram-positivos pois a CIM para gram-negativos é, de forma geral, maior. Isso pode ser explicado pela presença da membrana externa, que age como uma camada protetora da célula. Assim como citado para NA1897, ainda é possível explorar a utilização de Pep20 em combinação com outros antibióticos comerciais que outrora não seriam utilizados devido à resistência. Para verificar este possível sinergismo com Pep20, foram testados uma série de antibióticos, tanto para *S. aureus* quanto para *A. baumannii* (Tabela 21Tabela 22).

Tabela 21 - Sinergismo para Pep20 (CIM=8 mg/L) em S. aureus ATCC 25923					
Antibióticos	CIM (mg/L)	Em combinaçã	Índias CIF		
Antibioticos	CIWI (IIIg/L)	CIM ANTIBIÓTICO	CIM _{Pep20}	maice CIF	
Ciprofloxacina	1	0,12	8	2	
Tobramicina	0,25	0,25	8	2	
Daptomicina	0,5	0,5	8	2	
Vancomicina	2	2	8	2	
Ampicilina	0.12	0.03	4	0.5	

Fonte: Elaborada pela autora

	· · · · · · · · · · · · · · · · · · ·	- 0 /		
Antibióticos	CIM (mg/I)	Em combina	Índias CIF	
Anubioticos	CIWI (IIIg/L)	CIM ANTIBIÓTICO	CIM _{Pep20}	marce CIF
Ciprofloxacina	1	0,06	8	2
Tobramicina	4	4	16	1,5
Polimixina B	1	0,25	2	0,312
Vancomicina	>64	2	4	0,133
Ampioiling	>64	16	4	0.275

Tabela 22 - Sinergismo para Pep20 (CIM=32 mg/L) em A. baumannii ATCC 19606

*Quando a CIM foi maior do que a maior concentração testada, utilizou-se o valor de 4x a maior concentração testada para os cálculos

Fonte: Elaborada pela autora

Os valores de CIF devem ser <0,5 para caracterizar sinergismo e >4 para caracterizar antagonismo, sendo valores intermediários considerados indiferentes ou aditivos.¹⁰⁷ Pep20 não apresentou sinergismo para nenhum antibiótico quando testado em gram-positivos. Em

gram-negativos, porém, foi possível observar sinergismo com polimixina B, vancomicina e ampicilina. O sinergismo com a ampicilina provavelmente se deve ao fato deste β -lactâmico se ligar as proteínas ligadoras de penicilina e alterar a síntese de peptídeoglicanos, precursor da parede celular.¹⁷⁰ Se Pep20 realmente apresenta atividade na membrana citoplasmática, a parede celular desestabilizada facilita sua interação com o alvo, representando um obstáculo a menos para a molécula. De fato, mesmo em *S. aureus* a ampicilina foi o antibiótico que apresentou a menor CIF. É possível que o sinergismo não ocorra como em gram-negativo pois a parede celular de gram-positivos é mais espessa e complexa, o que exige uma concentração maior das duas moléculas para inibição celular.¹⁷⁸

O fato de ambos vancomicina e polimixina B terem apresentado sinergismo com Pep20 também são resultados interessantes. A hipótese de que a membrana externa de gramnegativos estaria influenciando a maior CIM de Pep20 para este grupo de bactérias já havia sido levantada. A polimixina B age justamente na membrana externa dessas bactérias, como já citado. Logo, a presença da polimixina B pode facilitar a ação de Pep20 por enfraquecer esta membrana externa e aumentar o alcance do nosso peptídeo a membrana citoplasmática (de forma similar ao discutido para ampicilina e a parede celular). Por outro lado, o sinergismo com vancomicina indica que o próprio Pep20 apresenta ação na membrana externa. A vancomicina é um glicopeptídeo que inibe a síntese da parede celular ao se ligar a porção D-ala-D-ala do precursor da parede celular, impedindo ação de transpeptidases e transglicosidases, inibindo então o *crosslink* dos peptídeoglicanos que constituem a parede.¹⁷⁹ Em teoria este antibiótico poderia ser de amplo espetro, uma vez que este sítio de ligação ocorre tanto em gram-positivos quanto gram-negativos,¹⁴¹ e inibiria um processo essencial para a sobrevivência celular. Porém, isso não ocorre devido a membrana externa que gramnegativas apresentam, que não permitem a permeação do antibiótico para o espaço periplasmático. Assim, a vancomicina não tem acesso ao seu sítio de ligação, não apresentando atividade para estes organismos.¹⁷⁹⁻¹⁸⁰ Logo, ao apresentar atividade para A. baumannii em conjunto com Pep20, supõe-se que Pep20 desestabilizou a membrana externa, permitindo ação da vancomicina.

O sinergismo com vancomicina para gram-negativo já foi relatado para outros AMPs, inclusive para peptídeos com ação exclusiva na membrana externa. ¹⁰⁷ Neste caso, o resultado de Pep20 parece inicialmente ambíguo, uma vez que este age na membrana externa, mas a própria membrana externa é fator limitante para Pep20: são observadas CIMs mais altas para gram-negativos e CIM mais baixa quando em combinação com antibióticos que agem na própria membrana externa. Tudo indica que Pep20 age na membrana externa, mas apresenta

ação preferencial na membrana citoplasmática, por não competir com a polimixina B pelas interações eletrostáticas com o LPS e outros componentes negativos.

Os sinergismos observados mostram que é possível reduzir a concentração de ação de Pep20 para gram-negativos, o que é necessário para melhorar o IS. Como vancomicina apresentou o menor CIF, esta foi escolhida para uma maior investigação em mais linhagens Tabela 23. Isso também permitiu explorar melhor a relação entre Pep20 e a ação na membrana externa.

	Principal CIM Pep20 - CIM		Principal	CIM	Em combi	nação (mg/L)	Índice	
Linhagens	fenótipo	(mg/L)	Vancomicina (mg/L)	CIMPEP20	CIMvancomicina	CIF		
<i>K. pneumoniae</i> ATCC 700603	Produtora SHV-18	64	>64	8	2	0,133	-	
K. pneumoniae AMKP7	Produtora KPC, CL S	512	128	128	16	0,375		
K. pneumoniae AMKP4	Produtora KPC, CL R	512	>64	256	64	0,75		
K. pneumoniae AMKP10	Produtora KPC, CL R	512	>64	512	>64	2		
A. baumannii ATCC 19606		32	>64	4	2	0,133		
A. baumannii ACI40	CL S	64	>64	8	2	0,133		
A. baumannii ACI50	CL R	64	>64	2	16	0,093		
<i>E. coli</i> ATCC 25922		32	>64	4	2	0,133		
P. aeruginosa	AmpC induzível	32	>64	32	>64	2		

Tabela 23 - Sinergismo de linhagens gram-negativas para Pep20 e vancomicina

*Quando a CIM foi maior do que a maior concentração testada, utilizou-se o valor de 4x a maior concentração testada para os cálculos

Fonte: Elaborada pela autora

Em quase todas as linhagens testadas foi possível observar sinergismo, com exceção de AMKP4 e AMKP10, que como já discutido anteriormente, possuem mecanismo de adição de 4-amino-arabinose, que diminui a carga negativa do LPS e consequentemente dificulta a interação de antimicrobianos positivamente carregados.¹¹⁹ Isso mais uma vez mostra que realmente Pep20 interage com a membrana externa neste mecanismo de sinergismo. Novamente, podemos notar que em *A. baumannii* esse sistema de adição e carga positiva por mutação no sistema *pmrCAB* é menos expressivo do que em *K. pneumoniae*,¹²⁰ uma vez que mesmo ACI50, uma linhagem CL R apresentou sinergismo. *P. aeruginosa* não apresentou sinergismo também, o que pode ser explicado pela permeabilidade diminuída de sua

membrana externa, o que pode conferir a este organismo resistência intrínseca a muitos antibióticos.¹⁸¹ É possível também que a falta de sinergismo observada em algumas linhagens de *K. pneumoniae* e em *P. aeruginosa* seja devido a expressão de cápsulas extracelulares, comumente expressas em patógenos facultativos.¹⁸²

Em geral, a membrana externa de gram-negativos possui cátions divalentes como Mg⁺² e Ca⁺² que interagem e estabilizam a membrana em sua faceta externa. AMPs catiônicos devem competir com estes íons pelas interações eletrostáticas, deslocando-os da faceta externa e estabelecendo a interação inicial com o LPS ou outros componentes negativos presentes. ¹²⁷ Desta maneira, para verificar este mecanismo em Pep20, foi feito o ensaio de sinergismo com vancomicina, mas complementando o meio de cultura com MgCl₂, com a intenção de aumentar os íons Mg⁺² disponíveis, o que causaria competição eletrostática e dificultaria ação de Pep20.¹⁰⁷ Estes resultados estão representados nas Figura 30Figura 31, eFigura 32 em forma de mapa de calor, onde quanto mais azul, maior o crescimento bacteriano.

Figura 30 - Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg⁺² para A. baumannii ATCC 19606. A cor azul representa a média de absorbância do crescimento bacteriano de 3 replicatas biológicas.

Fonte: Elaborada pela autora.

Figura 31 - Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg⁺² para *E. coli* ATCC 25922 A cor azul representa a média de absorbância do crescimento bacteriano de 3 replicatas biológicas.

Fonte: Elaborada pela autora.

Figura 32 - Mapa de calor do sinergismo entre Pep20 e vancomicina com e sem adição de Mg⁺² para K. pneumoniae ATCC 700603. A cor azul representa a média de absorbância do crescimento bacteriano de 3 replicatas biológicas.

Os resultados mostram que a presença de Mg^{+2} exógeno não só impediu o sinergismo com a vancomicina, mas também impediu a ação do próprio Pep20 sozinho. A presença deste cátion impede Pep20 de estabelecer interações fundamentais para sua atividade. Assim, os dados obtidos até o momento indicam que Pep20 age na membrana externa de gramnegativos, deslocando íons estabilizadores e causando perturbação na bicamada lipídica.

Dada a ação na membrana externa, o ensaio de despolarização de membrana foi realizado para verificar o dano na membrana citoplasmática. Esse ensaio é feito com o fluoróforo DISC₃(5), que permeia pela membrana citoplasmática. Dentro da membrana esta

molécula não emite fluorescência, apena quando o conteúdo celular é extravasado de alguma forma. Assim, a despolarização da membrana pode ser medida diretamente da proporção de emissão do fluoróforo. Os resultados do ensaio estão representados na Figura 33.

Figura 33 - Despolarização de membrana citoplasmática de Pep20 para **A.** *S. aureus* ATCC 25923 (CIM=8 mg/L). **B.** *A. baumannii* ATCC 19606 (CIM=32 mg/L).

Fonte: Elaborada pela autora.

Este ensaio consegue então quantificar não só a porcentagem de despolarização, mas também em quanto tempo ocorre. Como controle do ensaio, é utilizada melitina que como já citado é um peptídeo isolado de veneno de abelha, com alto poder lítico. Assim, melitina representa 100% de despolarização e é usado como base de cálculo para os demais compostos. Para *S. aureus*, Pep20 4xCIM causou despolarização próxima à melitina (92±9 %), enquanto 1xCIM despolarizou apenas metade das células (53±14 %), e não há uma despolarização mensurável em 0,5xCIM. Um efeito similar pode ser observado para *A. baumannii*, porém as concentrações mais baixas apresentam uma despolarização mais significativa: 92±4 % foi observado para 4xCIM; 69±8 % foi observado para 1xCIM; e 39±6 % foi observado para 0,5xCIM. Assim, podemos confirmar a ação de Pep20 na membrana

citoplasmática. A despolarização deve ser mais significativa para gram-negativo pois como parte da metodologia do ensaio há a desestabilização da membrana externa usando EDTA (agente quelante) para permitir a entrada do fluoróforo. Assim, com a membrana externa desestabilizada há mais moléculas de Pep20 disponíveis para ação na membrana citoplasmática, que aparenta ser o principal alvo deste peptídeo.

A ação de AMPs na membrana é amplamente estudada e alguns mecanismos dessa ação foram levantados (Figura 34). Dados mais recentes a respeito de moléculas sintetizadas a partir da Plantaricina 149 mostram que esta provavelmente age a partir do modo de ação em carpete ⁹⁷, em que os peptídeos interagem com a superfície da membrana (normalmente com a face hidrofóbica voltada para a membrana e a fase hidrofílica voltada para o solvente). Os peptídeos se acumulam até atingirem uma concentração limite, em que a membrana é permeada e podem se formar poros transitórios ou mesmo desintegração da membrana. ¹⁰⁰

Figura 34 - Mecanismos propostos para ação de AMPs em membranas bacterianas. Fonte: Adaptada de KUPPUSAMY *et al.*⁷²

É possível que Pep20 tenha o mesmo mecanismo de carpete. Isto explicaria os saltos da quantidade de despolarização observados tanto em *S. aureus* quanto em *A. baumannii* em relação à concentração presente, uma vez que é necessário atingir uma concentração mínima de peptídeos na superfície para que seja observada ação na membrana.

Para confirmar os mecanismos de ação em membrana de Pep20 em gram-positivos e gram-negativos, além de tentar observar outros danos que este peptídeo possa causar, realizamos o ensaio de MET. Por ser feita em fatias ultrafinas, esta microscopia permite

avaliar tanto os danos à parede e membrana quanto observar o interior celular. Imagens representativas do ensaio encontram-se a seguir. A Figura 35 representa o controle positivo com células saudáveis de *S. aureus* ATCC 25923.

Figura 35 - Controle positivo da bactéria S. aureus ATCC 25923. A. Visão geral das células. Barra de escala = 1µm B. Bactéria isolada com parede e membrana visíveis e bem definidas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Para comparação, temos S. aureus ATCC 25923 tratada com Pep20 1xCIM (8mg/L), com imagens representativas inseridas abaixo, e a exposição de 4xCIM para Pep20 (32 mg/L) na próxima figura. O primeiro detalhe observado é a presença de debris celulares, assim como ocorreu em NA1897. Esses detritos celulares representam células degradadas ¹²⁸ que provavelmente ocorreram por danos à membrana bacteriana, segundo os resultados obtidos nos ensaios anteriores. Exemplos desses danos podem ser vistos na Figura 36 e Figura 37, indicado pelas setas vermelhas. Novamente, essa degradação celular é acompanhada de uma redução do número de células, em comparação ao controle positivo: enquanto foi observada uma média de 43±6 células para as imagens-controle obtidas com aumento de 20.000x, as células tratadas com 1xCIM e 4xCIM para Pep20 apresentaram média de 25±6 e 25±4 células, respectivamente. Essa diferença foi considerada significativa, com p $<10^{-5}$ para ambos os casos, o que mostra que os debris observados se originaram do inóculo bacteriano. Curiosamente, a exposição de 4xCIM para Pep20 não apresentou diferença significativa em número de células (25±4) em comparação com a exposição de 1xCIM (25±6). Na despolarização de membrana, a concentração de 1xCIM foi capaz de despolarizar apenas cerca de metade do sinal de referência da melitina, o que condiz com a quantificação feita nas imagens obtidas pelo MET, porém a exposição de maior concentração causou aproximadamente 2x mais despolarização. O tempo de despolarização condiz com o tempo de

morte celular, uma vez que o pico de despolarização foi observado em 5 min, e a exposição das células para microscopia foi feito com incubação de 10 min. Para as células remanescentes, é possível observar septos de divisão celular defeituosos para ambas as concentrações. Apesar de isto também ocorrer para o controle positivo, isso ocorre com frequência de apenas 21 ± 10 %, enquanto que para as células tratadas a taxa de erro de divisão celular chega a 61 ± 20 % e 54 ± 12 %, o que representa uma diferença significativa ao controle com p< 10^{-4} .

Esses problemas na divisão celular também já foram observados ao discutir os resultados do análogo da Bothropstoxina-I. Estes foram associados a duas principais causas: danos ao DNA ou proteínas e maquinarias envolvidas na replicação, uma vez que isso interromperia a divisão celular, causando os erros e septos observados, além de causar uma resposta ao stress, conhecida como resposta SOS,¹³²⁻¹³⁴ ou ação na parede celular, sendo o principal alvo suspeito o lipídio II, uma vez que este precursor se acumula no septo de divisão, além de estar relacionado à reorganização de fosfolipídios da membrana e ser alvo comum de AMPs por seus componentes aniônicos.^{19,131}

Além disso, as células tratadas também apresentaram invaginações membranosas. É possível observar que estas se originam da membrana citoplasmática e ocorrem com frequência (mas não exclusivamente) nos septos de divisão. Como já citado, estas invaginações membranosas, também denominadas mesossomos, já foram descritas anteriormente para outros AMPs.¹²⁹ Estes mesossomos podem indicar dano ou alteração da membrana citoplasmática, devido a uma reorganização dos fosfolipídios.¹³⁰ Isso vai ao encontro das hipóteses levantadas para ação de Pep20 até o momento, que parece estar intrinsicamente relacionada a interações com os fosfolipídios e seus componentes negativamente carregados.⁹⁵⁻⁹⁷ Apesar disso, danos com padrões similares foram observados em estudos para vancomicina e tetraciclina, sendo descritos como danos à parede celular.⁸¹

Figura 36 - S. aureus ATCC 25923 tratada com Pep20 a 1xCIM (8 mg/L). As setas vermelhas apontam para células estouradas com danos a membrana, as setas azuis apontam para septos de divisão defeituosos, e as setas amarelas apontam para invaginações membranosa. A. Visão geral das células. Barra de escala = 1μm. B. Bactérias estouradas e com invaginações membranosas. Barra de escala = 500 nm. C. Bactérias em divisão celular danificadas e com invaginações originárias no septo de divisão. Barra de escala = 200 nm. D. Célula com invaginações membranosas e parede com superfície rugosa. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Figura 37 - S. aureus ATCC 25923 tratada com Pep20 a 4xCIM (32 mg/L). As setas vermelhas apontam para células estouradas com danos a membrana, as setas azuis apontam para septos de divisão defeituosos, e as setas amarelas apontam para invaginações membranosa. A. Visão geral das células. Barra de escala = 1µm. B. Bactérias com divisão defeituosa. Barra de escala = 500 nm. C. Bactérias em divisão celular com invaginações membranosas originadas no septo de divisão. Barra de escala = 200 nm. D. Bactérias em divisão celular danificadas e com invaginações membranosas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Em seguida, o estudo feito para *A. baumannii* encontram-se nas Figura 38, Figura 39 e Figura 40. Inicialmente temos o controle para *A. baumannii* ATCC 19606, em que podemos observar células saudáveis, com boa distribuição do conteúdo citoplasmático e membrana interna e externa visíveis.

Figura 38 - Controle positivo da bactéria A. baumannii ATCC 19606. A. Visão geral das células. Barra de escala = 1μm B. Bactérias em detalhe, com membrana externa, parede e membrana citoplasmática visíveis. Barra de escala = 200 nm

Fonte: Elaborada pela autora

As células tratadas com 1xCIM (32 mg/L) e 4xCIM (128 mg/L) para Pep20 apresentaram mudanças morfológicas significativas, como é possível observar nas Figura 39 e Figura 40.

Figura 39 - A. baumannii ATCC 19606 tratada com Pep20 a 1xCIM (32 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para superfície rugosa e com bolhas.
A, B. Visão geral das células. Barra de escala = 1µm. C,D. Bactérias em detalhes, com dano à membrana e superfície rugosa mais visíveis. Barra de escala = 500 nm.

Fonte: Elaborada pela autora

Figura 40 - A. baumannii ATCC 19606 tratada com Pep20 a 4xCIM (128 mg/L). As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para superfície rugosa e com bolhas.
A. Visão geral das células. Barra de escala = 1µm. B. Células com membranas desestabilizadas. Barra de escala = 500 nm. C. Bactérias em detalhes, com membranas completamente desestabilizadas. Barra de escala = 200 nm. D. Bactérias em detalhes, com membrana íntegra e com claras projeções externas, tornando a superfície rugosas. Barra de escala = 200 nm.

Fonte: Elaborada pela autora

Para *A. baumannii* os danos observados em 1xCIM e 4xCIM apresentam diferenças claras. O primeiro fato a ser notado em 1xCIM é a condensação do material citoplasmático. Esta condensação, porém, não parece acontecer de forma aleatória – são observados pontos de alta densidade em toda a periferia da célula. Já foi discutido que há alguns relatos na literatura sobre AMPs que causam a condensação do material celular.^{135–137} Porém, um estudo com AMP do grupo das catelicidinas, mais especificamente uma nova catelicidina aviária obtida de patos, nomeada de dCATH¹⁸³ apresentou imagens mais semelhantes às observadas na Figura 39. Este AMP é um polipeptídeo de 146 aminoácidos, com estrutura em alfa-hélice e alta atividade antimicrobiana, com ação em membranas externas e internas, mas também apresentando alta citotoxicidade em células de mamífero.¹⁸³ Assim, este AMP assemelha-se ao Pep20. As imagens semelhantes deste artigo foram obtidas também por MET realizada em

E. coli. Em sua discussão, é citada a capacidade deste peptídeo de formar grânulos de alta densidade eletrônica, o que postula a possibilidade desta molécula de interagir com macromoléculas e interferir com o metabolismo normal celular.¹⁸³ Assim, não fica claro porque estes grânulos acontecem de forma mais definida ou na periferia das células, mas dada as semelhanças entre as imagens, uma hipótese importante seria relacionar a localização destes condensados de membranas com microdomínios que revelam a posição de algumas proteínas específicas. A localização do condensado, próximo à membrana citoplasmática (Figura 41) parece coincidir com a posição das seguintes proteínas: PlsX, uma fosfolipídio sintetase, FloT, uma flotilina responsável por microdomínios de membrana, e MurG, uma sintetase de lipídio II.^{79,169-171,184} Se combinarmos esses dados com o obtido para S aureus, é possível que Pep20 aja também inibindo a síntese da parede bacteriana de ambas as espécies a parede também parece desestabilizada em A. baumannii e os danos observados em S. aureus indicam dano à parede. Assim, o mais provável é que Pep20 se ligue a MurG ou alguma proteína análoga em localização/função, impedindo a síntese de lipídio II que é alvo comum de antimicrobianos. Logo, a permeação de Pep20 não é só específica para carga, grau de hidratação ou curvatura, como sugeriam os resultados obtidos para Plantaricina 149, mas também para um domínio proteico específico na membrana.

Proteina	Função da proteína	Reportada por	Localização
HbsU	Regulação da compactação nucleoide	Compactação cromossomal	
ParB	Posicionamento cromossômico antes da septação	Replicação de DNA	•••
PolC	Subunidade alfa da DNA polimerase III	Replicação de DNA	•••
DnaN	Subunidade beta da DNA polimerase III	Replicação e reparo de DNA	••••••
RecA	Recombinação homóloga e reparo de DNA	Dano ao DNA	
RpoC	Subunidade beta de RNA polimerase	Síntese de RNA	
RpsB	Proteína ribossomal	Síntese proteica	
PgsA	Biossíntese de fosfolipídios	Síntese de fosfolipídios	
PlsX	Fosfolipídeo sintase	Síntese de fosfolipídios	$\left(\right)$
FloA	Flotilina	Domínios de membrana	(
FloT	Flotilina	Domínios de membrana	$\left(\right)$
SdhA	Succinato desidrogenase	Geração de energia ligada a membrana	()
AtpA	ATP sintase	Invaginações de membrana	\bigcirc
DivIVA	Regulação da divisão celular	Divisão celular	
MinD	Regulação da divisão celular	Divisão celular	(\Box)
FtsA	Âncora de membrana da proteína FtsZ	Divisão celular	
FtsZ	Principal proteína de divisão celular, forma o anel Z	Divisão celular	
MreB	Proteína determinante da forma celular	Citoesqueleto	
MreC	Proteína determinante da forma celular	Citoesqueleto	
MreD	Proteína determinante da forma celular	Citoesqueleto	\bigcirc
MurG	Lipídio II sintetase	Síntese da parede celular	$\langle \dots \rangle$
MraY	Lipídio I sintetase	Síntese da parede celular	\bigcirc
PBP2B	Proteína de ligação à penicilina 2B	Síntese da parede celular	
PonA	Proteína de ligação à penicilina 1A/1B	Síntese da parede celular	
FtsW	Peptidoglicano glicosiltransferase	Síntese da parede celular	

Figura 41 - Proteínas comumente usadas para perfil citológico bacteriano e sua localização em *B. subtilis*. Em destaque, as proteínas cuja localização coincide com condensação de citoplasma causada por Pep20.

Fonte: Adaptada de SCHÄFER; WENZEL.¹⁷¹

Em relação ao número de células nas imagens obtidas com aumento de 20.000x, há pouca diferença entre o controle positivo e a exposição de 1xCIM para Pep 20 – enquanto controle positivo apresentou média de 16±4, as células tratadas apresentaram 12±3. Apesar de mostrar diferença significativa (p<0,05), não parece ter relevância biológica. De maneira geral, são observados danos esperados à célula, como danos às membranas e extravasamento do conteúdo celular. São observadas projeções da membrana (Figura 39, setas amarelas), efeito comumente chamado de "*blebbing*", que sugere que Pep20 destruiu a membrana externa, causando alteração da permeabilidade da membrana citoplasmática e extravasamento

do conteúdo citoplasmático.^{134-135,183} Este efeito pode ser comparável a formação de vesículas, mas ao contrário do observado para NA1897, há projeção apenas para o espaço extracelular.

Os danos à membrana são mais óbvios nas imagens obtidas da exposição de 4xCIM de Pep20. O conteúdo citoplasmático apresenta condensação, mas de forma mais desordenada do que observado em 1xCIM. É possível que esse aglomeramento localizado na periferia celular observado na Figura 39 seja etapa inicial da condensação que este AMP causa. Além disso, o efeito de *blebbing* ocorre em todas as células observadas. Todas as membranas (tanto externa quanto citoplasmática) perdem a definição e parecem se desintegrar. Em algumas células também não é possível observar de maneira clara a parede celular bacteriana, sendo possível que Pep20 também aja nesta estrutura, uma vez que esta é alvo comum de AMPs, contendo moléculas aniônicas que podem interagir com este peptídeo catiônico como, por exemplo, o lipídio II já citado.^{19,141} Em número de células, ocorre o mesmo que discutido para a exposição de 1xCIM, com uma média de 13±1 células, sendo p<0,001 em comparação com o controle positivo. Apesar de não haver redução significativa do número de células em ambas as expoições, é possível observar muitas células em claro processo de danos à membrana e extravasamento do conteúdo celular, o que condiz com os resultados obtidos para a despolarização.

Além desta microscopia feita com o intuito de esclarecer o mecanismo de ação de Pep20, complementando dados anteriores, também foi investigado por esta técnica o sinergismo com a vancomicina. Assim, foram comparadas imagens de *A. baumannii* ATCC 19606 tratada com concentração subinibitória de Pep20 (0,5xCIM) com e sem a presença de vancomicina. Vancomicina foi utilizada em concentração de 1 mg/L, a menor concentração em que ocorre sinergismo (CIF<0,5) com Pep20. A comparação está mostrada na figura abaixo.

Figura 42 - A. baumannii ATCC 19606 tratada com Pep20. As setas vermelhas apontam para conteúdo celular condensado, as setas amarelas apontam para pontos de ruptura na parede bacteriana. A, B, C. Células tratadas com Pep20 0,5xCIM (16 mg/L) Barra de escala = 1µm, 500 nm e 200 nm respectivamente. D, E, F. Células tratadas com Pep20 0,5xCIM (16 mg/L) e vancomicina 1 mg/L Barra de escala = 1µm, 500 nm e 200 nm respectivamente.

Fonte: Elaborada pela autora.

Embora seja possível ver algumas células mortas para a exposição de 0,5xCIM (16 mg/L) para Pep20, a maioria das células estavam íntegras e apresentaram os mesmos grânulos de alta densidade eletrônica na periferia da célula, acompanhada de membranas mal definidas ou desestabilizadas. Assim, observa-se que estes grânulos são uma das primeiras respostas da bactéria ao Pep20, mesmo em baixas concentrações, novamente sugerindo o acúmulo inicial

de Pep20 em alguns domínios proteicos. Nesta concentração, esperava-se que Pep20 agisse na membrana externa da bactéria gram-negativa. Isso parece ter acontecido, uma vez que na exposição de 0,5xCIM Pep20 + vancomicina 1mg/L é possível observar célula com extravasamento do conteúdo celular, e, mais especificamente, pontos de quebra da parede bacteriana. Isso se deve a ação de vancomicina, que só conseguiu acessar a parede de *A. baumannii* devido ação prévia de Pep20, como já discutido nos resultados de sinergismo. A vancomicina se liga a porção D-Ala-D-Ala do pentapeptídeo que compõe o peptideoglicano da parede celular. Assim, é impedido o *crosslink* e a biossíntese da parede, de forma que esta não pode ser montada corretamente, levando à morte celular.¹⁹ Nas imagens contendo ambos os antimicrobianos, é possível observar pontos de quebra da parede (Figura 42 setas amarelas), ilustrando a ação da vancomicina nesta estrutura.

Dado o principal mecanismo de ação de Pep20 elucidado, foi feita a investigação da propensão deste peptídeo para o desenvolvimento de resistência. Isso foi feito por passagens consecutivas em concentrações subinibitórias, tanto do peptídeo quanto de antibióticos utilizados para comparação. Representações do aumento da CIM para cada um destes compostos após 30 dias de exposição encontra-se na Figura 43. As linhagens finais de cada exposição recebem o nome de 25923_X_tratamento ou 19606_X_tratamento, onde X representa o nome da replicata e tratamento refere-se ao nome do composto utilizado na evolução dirigida.

Figura 43 - Número de vezes em que a CIM aumentou para cada exposição de 30 dias, incluindo exposição com Pep20, todas as replicatas representadas. **A.** *S. aureus* ATCC 25923 **B.** *A. baumannii* ATCC 19606

Fonte: Elaborada pela autora.

O peptídeo Pep20 levou a um aumento de CIM após passagens seriadas nos mesmos níveis para *S. aureus* e *A. baumannii*, sugerindo igual eficácia para gram-positivos e gram-negativos. Em ambas as linhagens houve um aumentou da CIM de ciprofloxacina na evolução

dirigida por este antibiótico, que foi muito mais significativa do que as outras expoições. Ciprofloxacina representa um antibiótico que impede a replicação de DNA agindo em topoisomerases e DNA-girase bacterianos. Por representar um alvo proteico células resistentes podem ser selecionadas com mais facilidade.¹³¹ Por outro lado, devido às composições de estrutura relativamente conservada das membranas e paredes bacterianas, os antibióticos com ação nestas estruturas, como daptomicina e polimixina B são menos propensos a selecionar resistentes do que os antibióticos que têm como alvo outro sistema bacteriano.142 Assim, o aumento da CIM ao final da evolução dirigida com ciprofloxacina em relação a daptomicina ou polimixina B é esperado. Da mesma maneira, o baixo incremento na CIM durante a seleção pode ser considerado mais uma evidência para a suposição de que Pep20 também é um AMP com ação na membrana. Por fim, o aumento da CIM de Pep20 não levou ao aparecimento de resistência cruzada para nenhum dos três antibióticos testados. Este resultado é curioso dado à similaridade entre o modo de ação suposto para Pep20 e os antibióticos daptomicina e polimixina B. Desta forma, a análise das linhagens resultantes após o processo de seleção in vitro pode esclarecer de que forma essa diminuição de susceptibilidade ocorreu.

Para isso foi feita uma comparação metabólica entre a linhagem inicial e final da evolução dirigida para o peptídeo Pep20. Foi escolhida a replicata nomeada "replicata A" como representativa do experimento, logo a linhagem 25923_A_Pep20. Essa comparação entre a bactéria antes e depois da diminuição de susceptibilidade ao peptídeo foi feita usando os painéis da Biolog e o aparelho Omnilog. Espera-se que ao traçar um perfil fenotípico de ambas as linhagens seja possível reconhecer quais mudanças ocorreram e, consequentemente, confirmar o mecanismo de ação do antimicrobiano.

As primeiras placas comparadas dizem a respeito a testes metabólicos, mais especificamente, avaliar o metabolismo de fontes de carbono, de fontes de nitrogênio e de compostos fosfóricos e sulfúricos, e metabolismo sob efeito de diferentes pHs, e efeito de osmólitos e íons.

Figura 44 - Curvas de crescimento (eixo y, intensidade) de cada poço ao longo de 48 h para a linhagem S. aureus ATCC 25923 antes da seleção (verde) com Pep20 e após (vermelho) em painéis de testes fenotípicos. A, B. Painéis de fontes de carbono. C, E, F, G. Painéis de fonte de nitrogênio. D. Painel de fontes de enxofre e fósforo. H. Painel de sensibilidade osmótica e efeitos iônicos.

Fonte: Elaborada pela autora*

Cada quadrado da figura acima representa uma curva de crescimento de determinada condição. As áreas verdes representam o crescimento da bactéria de referência (no caso, *S. aureus* ATCC 25923), enquanto as áreas vermelhas representam o crescimento da bactéria teste (no caso, 25923_A_Pep20). As áreas amarelas representam a sobreposição das duas curvas. Primeiro, podemos notar que a bactéria de referência possui vantagens metabólicas em comparação com a que passou pela seleção, principalmente se considerarmos as placas C, D, E, F e G. Pode ocorrer de as mutações que levam à resistência serem associadas à uma perda de *fitness*. Assim, é reduzida a velocidade de crescimento, a capacidade de metabolizar substratos, entre outros. Evolutivamente falando, a bactéria só mantém as mutações que apresentarem um fenótipo final vantajoso, ou seja vantagem de sobrevivência mesmo com custos metabólicos.¹⁸⁵ Por isso são necessárias passagens em meio livre de antibióticos após a seleção, para garantir que as modificações que ocorreram ao longo do processo não estavam sendo mantidas apenas pela presença do composto tóxico, como uma mudança de expressão gênica apenas.

As placas C, E, F e G referem-se a fontes de nitrogênio. Nessas placas, foi possível observar que em casos em que dipeptídeos ou tripeptídeos eram substrato (Anexo C), a linhagem resistente só foi capaz de utilizar aqueles em que a glicina estava presente. O metabolismo de aminoácidos e nitrogênio são módulos relacionados ao metabolismo de energia. No mapa metabólico de referência, o metabolismo de glicina é relacionado a metabolismo de serina e treonina ¹⁸⁶. Glicina é o aminoácido mais simples, em virtude de possuir apenas o hidrogênio como cadeia lateral e não possuir carbono assimétrico. Uma vez que foi definido que a bactéria selecionada possui perda de *fitness*, é possível que o uso da glicina ocorra por ser uma das fontes mais simples de grupos CH-NH₂ para oxireductases, representando um metabolismo de menor custo.¹⁸⁶⁻¹⁸⁷ Mesmo nestes casos, o metabolismo da linhagem de referência é maior.

As placas A e B referem-se a fontes de carbonos. Nestes casos, a bactéria resistente apresentou algumas vantagens se considerarmos o parâmetro slope, que indica a inclinação da curva, ou seja, quão rápido a bactéria consegue promover o crescimento utilizando aquela fonte metabólica. Ainda assim, esta linhagem apresenta vantagem em apenas 27 condições, versus 45 condições em que a linhagem referência ganha em metabolismo. Nestas 45 condições, podemos dar destaque principalmente aos aminoácidos como fonte de carbono. A bactéria 25923_A_Pep20 parece ter perdido, em geral, a capacidade de utilizar os aminoácidos como fonte. Por outro lado, esta ganha em metabolismo de polímeros, como laminarina, mananas e dextrin. O uso destes polímeros é em geral menos comum do que outras fontes de carbono e energia, se encontrando em módulos metabólicos distantes no quadro geral (Figura 45). Em geral, bactérias necessitam realizar um processo de despolimerazação antes da assimilação destes substratos.¹⁸⁸ Isto é feito por enzimas despolimerases que são excretadas para o meio. Estas parecem depender da expressão de Polysaccharide Utilisation Loci (PULs) que são expressadas em diferentes condições. Estudos indicam que a secreção constitutiva destas enzimas pode indicar um processo de vasculhamento de nutrientes.¹⁸⁹ Assim, é possível que a perda da capacidade de metabolizar outros substratos tenha causado a busca por fontes alternativas de carbono.

Figura 45 - Mapa metabólico indicando locais na via onde há mudanças ocorridas no módulo de obtenção de energia.

Fonte: Adaptada de KANEHISA¹⁴⁴; KANEHISA et al.¹⁴⁵; YI et al.¹⁴⁶

Quanto as fontes de fósforo e enxofre (placa D), novamente vemos efeito similar ao comentado para as fontes de nitrogênio: apesar da linhagem selecionada conseguir utilizar algumas fontes, a linhagem de referência apresenta metabolismo maior e mais abrangente (utiliza diferentes fontes). Isto mais uma vez mostra que o aumento da CIM de 25923_A_Pep20 parece estar associado a um grande custo metabólico – há menos substratos aproveitáveis, de forma que o crescimento fica limitado à disponibilidade bioquímica.

Por fim, para as placas H e I - que se referem a avaliação de osmólitos e pH, respectivamente - não foi possível observar muitas diferenças significativas entre as duas linhagens, sendo que a linhagem selecionada para Pep20 apresentou pequena vantagem em pHs mais baixos.

Os demais painéis do Omnilog testados referem-se a testes de sensibilidade química, ou seja, testes das linhagens com diferentes moléculas tóxicas que podem agir como antimicrobianos. De maneira similar feita para as placas anteriores, foram selecionadas as curvas que apresentaram diferença entre a linhagem referência e a linhagem selecionada com Pep20 (25923_A_Pep20). Os compostos em que a linhagem referência apresentou uma melhor capacidade metabólica estão mostradas na Figura 46.

Figura 46 - Painéis em que a linhagem *S. aureus* ATCC 25923 antes da seleção apresentou vantagem. Cada quadrado representa ambas curvas de crescimento (eixo y, intensidade) de cada poço ao longo de 48 h de cada poço, com concentrações crescentes do composto descrito.

Fonte: Elaborada pela autora*

Inicialmente é possível notar que a linhagem antes da seleção apresentou menor susceptibilidade àqueles antibióticos relacionados a síntese de proteínas, como eritromicina e cloranfenicol (que se ligam a porção 50S do rRNA), espiramicina, e dodine (que além de inibir o RNA pode promover desnaturação de proteínas).¹⁹⁰ Como nenhum resultado de mecanismo de ação obtido até o momento sugeriu algo que pudesse causar esse aumento de susceptibilidade, é possível que estes antibióticos estejam agindo de forma mais fácil na linhagem selecionada devido à diminuição da capacidade metabólica desta. Como vimos nos resultados ilustrados na Figura 44, a linhagem 25923_A_Pep20 teve como resultado um metabolismo menor das fontes de carbono e nitrogênio, tanto em quantidade de crescimento quanto em tipos de substratos aproveitáveis. Assim, é possível que 25923_A_Pep20 tenha se tornado mais suscetível a drogas diretamente ligadas ao metabolismo. Isto também pode se aplicar a maior susceptibilidade observada para antibióticos ligados à processos de respiração celular, diretamente ligada ao módulo de obtenção de energia nos caminhos metabólicos indicados pelo KEGG.^{144–146} Seria o caso da trifluoperazina, triazol (que além de catalases, inibe também a síntese de histidina), cianeto de sódio (que para a produção de ATP), 5,7 dicloro – 8 – hidroxiquinaldino, ácido fusárico e 2,2' – Dipiridil¹⁵¹⁻¹⁹²⁻¹⁹³. Aqui, dá-se destaque aos últimos 3 compostos listados: estes são descritos inicialmente com ação quelante, mas sua principal afinidade é para íons de Fe^{+2} e sequestrante de outros necessários como cofatores de proteínas.

Outro resultado interessante obtido a partir dos painéis de sensibilidade do Omnilog são a sensibilidade aumentada da linhagem 25923_A_Pep20 para antimicrobianos com carga negativa (aniônicos). Pep20 é um peptídeo antimicrobiano com alta carga positiva, sendo que esta mostrou-se essencial para sua ação antibacteriana, assim como ocorre para outros AMPs. ^{64,72-74} Se as mudanças ocorridas para a linhagem 25923_A_Pep20 ocorreram no sentido de tentar minar esta ação catiônica, é possível que a carga superficial negativa típica de membranas bacterianas tenha sofrido uma alteração que diminua a interação eletrostática entre estes dois componentes. Por outro lado, isto pode ter favorecido a interação com componentes de carga oposta, como foi o caso para dicromato de sódio, Niaproof, pentaclorofenol e arsenito de sódio. Mesmo com diferentes mecanismos de ação, estas moléculas agora podem apresentar maior facilidade de interagir ou permear pela membrana bacteriana.¹⁹³ De forma similar, supõe-se que o detergente lauril sulfobetaína também possa apresentar vantagem com essa diminuição do caráter aniônico da membrana, uma vez que este surfactante possui carácter zwitteriônico e interagem melhor com membranas de carga neutra.⁷²

Por fim, o EDTA, já avaliado em conjunto com Pep20 anteriormente, apresentou uma ação aumentada para linhagem 25923_A_Pep20. Este apresenta um efeito quelante, isto é, interage com os íons divalentes que estabilizam a membrana (como $Ca^{+2} e Mg^{+2}$). Assim, a diminuição da carga negativa da membrana representaria uma interação mais fraca dos íons e uma ação mais fácil do quelante.¹⁹⁴

Por fim, a realização do genoma da linhagem selecionada foi necessária não apenas para confirmar as hipóteses acima levantadas, mas também explicar outras susceptibilidades que até o momento não parecem estar relacionadas ao modo de ação de Pep20, como agentes de DNA, principalmente com ação intercalante (proflavina e cumarina), agentes de interação de canais iônicos e/ou transmembrana (como sanguinarina, 4-aminopiridina e 18-crown-6-éter) e antibióticos betalactâmicos (como cefazolina e amoxicilina).¹⁹⁰

Ainda podemos analisar as condições de crescimento nas quais a bactéria 25923_A_Pep20 apresentou vantagem, ilustradas pela figura abaixo.

Figura 47 - Painéis em que a linhagem *S. aureus* 25923_A_Pep20 apresentou vantagem. Cada quadrado representa ambas curvas de crescimento de cada poço, com concentrações crescentes do composto descrito.

Fonte: Elaborada pela autora*

A linhagem 25923_A_Pep20 apresentou vantagem metabólica contra compostos de carga positiva, como cloreto de benzetônio e cloreto de cetilpiridínio (que são detergentes catiônicos com ação surfactante na membrana), cloreto cúprico (um cátion tóxico para metabolismo celular), sulfato de protamina (também um peptídeo catiônico com ação na membrana), e Poli-L-lisina (molécula com alta carga positiva que depende da adsorção na superfície da célula),^{100,195} fato que é facilmente explicado, uma vez que Pep20 é uma molécula também catiônica e qualquer mudança que ocorreu para repelir eletrostaticamente este AMP também afeta estes demais compostos catiônicos. Isso também vai ao encontro do discutido para os compostos aniônicos com sensibilidade aumentada discutidos anteriormente.

Esta linhagem também apresentou sensibilidade reduzida à dois antibióticos da classe das tetraciclinas – penimepiciclina e tetraciclina. Antibióticos dessa classe são inibidores de síntese proteica que agem através de ligação a subunidade 30S do rRNA.¹⁹⁰ Como o efeito oposto foi visto para eritromicina e cloranfenicol (que se ligam a porção 50S), é possível que

Pep20 também apresente ação na síntese proteica de forma diretamente ligada a subunidade 30S, assim como as tetraciclinas, ou que as mutações ocorridas também envolvam formas de extrusão não específica que além de agir em Pep20 também agiu nestes antibióticos. Esta última hipótese é mais provável uma vez que a superexpressão de bombas de efluxo, por exemplo, é um dos mecanismos mais importante de resistência, representando a primeira forma de defesa da célula.²⁰ De forma similar, alguns compostos de ação intracelular também tiveram menor susceptibilidade para a linhagem selecionada. É o caso do trimetoprim (análogo do ácido fólico que inibe sua formação, impedindo duplicação do DNA), Captan (fungicida da classe de ftalimida que em bactérias age reagindo com tiol, inibindo a respiração), e 2-nitroimidazol (causa biorredução dos grupos nitro do DNA).¹⁹⁶⁻¹⁹⁷ A princípio nenhum resultado indica mecanismo em comum de Pep20 com estes compostos, logo, pode ocorrer um mecanismo de ação não esperado, ou a mudança que ocorreu em 25923_A_Pep20 impede a ação destes indiretamente, por meio de extrusão (como as bombas de efluxo já citadas) ou mudança na permeabilidade da membrana que não permite o *uptake* destes compostos para o interior citoplasmático.

Por fim, os resultados dos painéis de ácido bórico e metaborato de sódio são inesperados. Ambo agem de maneira similar, sendo considerados ânions tóxicos que causam danos à membrana e extrusão do conteúdo celular por efeito surfactante. Aqui, o mesmo se aplica o discutido para NA1897 - é possível que estas moléculas necessitem associação com cátions para constituir a ação antimicrobiana, resultando em uma carga geral positiva – dessa maneira a redução de carga ainda resultaria em resistência para estas moléculas.¹⁹⁸

Os resultados fenotípicos indicaram que a carga é fator essencial em Pep20, o que provavelmente causou alteração na membrana de 25923_A_Pep20. Apesar disso, essa mudança parece estar associada a um altíssimo custo metabólico, o que pode indicar que em ambientes com diferentes pressões seletivas esta alteração poderia não ser mantida. Isso constitui uma vantagem para o uso clínico de Pep20, pois a ocorrência de resistência não é favorecida. Mais uma vez mostramos a importância de AMPs e sua baixa propensão ao desenvolvimento de resistência⁷² na atual escassez de opções terapêuticas. Mesmo obtendo dados robustos através deste ensaio, alguns resultados só poderão ser melhor explicados com os dados do genoma desta linhagem. Assim, a ligação entre genótipo e fenótipo da linhagem selecionada *in vitro* pode finalizar a investigação do mecanismo de ação de Pep20.

Para isso, foram sequenciados os genomas das linhagens obtidas do experimento de seleção *in vitro*. A tabela abaixo é uma comparação entre a linhagem do dia zero e a linhagem

final. Estas mutações devem indicar mecanismo de ação de Pep20, bem como o motivo das alterações fenotípicas observadas no ensaio anterior.

Linhagem	Cobertura sequenciamento*	N50	Mutação	Consequência	Proteína alterada			
25923_A_ Pep20	153x		G>A	Ala111Thr	Proteína hipotética			
		19562	C>T	Ser164Phe	Sintetase bifuncional (p)ppGpp/guanosin a-3'-5'- bis(difosfato)-3'- pirofosfohidrolase			
			A>T	Gln152His	Proteína de domínio DUF1672			
			T>A	Ser194Thr	Oxirredutase contendo FAD			
25923_B_ Pep20 25923_C_ Pep20	173x 14266 138 12146	14266	394_395Ins**	Troca da fase de leitura	Precursor de ligação a fibronectina			
			73x 14266	C>A	Leu171Ile	Superfamília de facilitadores principais		
				5_6In		5_6Ins***	Troca da fase de leitura	Superfamília de facilitadores principais
		12146	T>C	Leu893Ser	Fator de aglomeração A ClfA			
			A>T	Gln152His	Proteína de domínio DUF1672			

Tabela 24 - Comparação entre as linhagens iniciais e finais do experimento de evolução dirigida com Pep20

* Cobertura da linhagem dia zero A, B e C igual a 148x, 97x e 112x respectivamente

** Inserção de ACGCTGATGTTGTTGAATATGAA entre os nucleotídeos 394 e 395 do gene que codifica a proteína

*** Inserção de CT entre os nucleotídeos 5 e 6 do gene que codifica a proteína

Fonte: Elaborada pela autora

Aqui, o mesmo discutido para NA1897 se aplica a respeito das mutações na proteína hipotética, o fator de aglomeração CflA e a proteína de ligação à fibronectina FnbPA.

A proteína hipotética, que estava sozinha e incompleta em um contig parece fazer parte da subunidade de repetição serino-aspartato do fator de aglomeração A. Embora CflA possua esta região altamente negativa devido as cargas de aspartato,¹⁵⁷ nunca foi reportado sua contribuição em alteração de carga superficial celular. A mutação parece ter ocorrido também na região de repetição de serino-aspartato para a replicata C, inferindo que esta região possui importância na ação de peptídeos antimicrobianos. Por outro lado, tanto mutação CflA quanto FlbPA são proteínas importantes de virulência de *S. aureus* que se aderem a proteínas

do corpo humano no processo de infecção, como elastina, fibronectina e fibrinogênio. Este último ocorre em comum em CflA e FlbPA.¹⁶¹⁻¹⁶² A mutação em FlbPA ocorreu na

último ocorre em comum em CflA e FlbPA.¹⁶¹⁻¹⁶² A mutação em FlbPA ocorreu na subunidade A, que se liga ao fibrinogênio.¹⁶⁴ Não há evidências da interação de Pep20 ou NA1897 com sítios de ligação de fibrinogênio, até porque esta molécula é altamente aniônica em pHs fisiológicos, ao contrário dos AMPs. Logo, é mais provável que estas mutações foram selecionadas como uma forma de regulação devido a diminuição de susceptibilidade a Pep20 ocorrida. Já foi relatado em MRSA a menor expressão de fatores de virulência quando resistentes a daptomicina do que as sensíveis ao mesmo antibiótico, como forma de garantir uma infecção longa e persistente versus uma infecção aguda a curto prazo.¹⁶⁶⁻¹⁶⁷ Assim novamente reforça-se que provavelmente esta mutação - bem como o ocorrido para ClfA e FlbPA - são resultado de mecanismos de virulência menos pronunciados como consequência da resistência obtida, e não diretamente ligados ao mecanismo de ação de Pep20, uma vez que não representariam uma vantagem evolutiva. Logo, para a confirmação se de fato estas mutações têm relação com o mecanismo de ação de Pep20 seriam necessários estudos adicionais. Nestes, incluem-se estudos estruturais das proteínas mutadas ou transformação da linhagem inicial com a sequência que codifica cada uma destas proteínas mutadas, e a observação se há o aumento da CIM.

A proteína contendo domínio DUF1672 parece ter função importante e relacionada a ação de Pep20, uma vez que ocorreu em duas replicatas biológicas diferentes da evolução dirigida. Estudos recentes indicam que esta família é constituinte do lipoproteoma de *S. aureus*,¹⁹⁹ mais especificamente, este gene pode codificar lipoproteínas que são adicionadas a faceta externa da bicamada lipídica. Embora ainda haja muito a ser caracterizado sobre lipoproteínas, estas estão associadas a síntese da parede celular, transporte de elétrons, de nutrientes, e até resposta a stress na superfície.²⁰⁰ Assim estas mutações podem reforçar a hipótese de ação de Pep20 na síntese de parede celular, além de ajudar a explicar as mudanças fenotípicas observadas acerca de aproveitamento de nutrientes.

Quanto a sintetase bifuncional (p)ppGpp/guanosina-3'-5'-bis(difosfato)-3'pirofosfohidrolase, sua função está intrinsicamente relacionada a resposta rigorosa. Esta é provocada pela síntese de alarmonas pppGppp e ppGpp. Estas são sintetizadas normalmente em respostas a limitação de nutrientes, além de degradação de rRNA, ativação enzimática, replicação entre outros.²⁰¹ Não se sabe muito sobre a regulação da resposta restrita em estafilococos. Um exemplo disso é a resposta destes organismos à mupirocin. Mupirocin é um antimicrobiano que inibe a sintetase de isoleucil tRNA. O sistema de resposta restrita possui um sensor de acumulação de tRNA após a privação de aminoácidos. Assim, o tratamento com mupirocin leva a uma série de mudanças como mudanças transcricionais de regulação positiva de fatores de virulência, moléculas regulatórias e peptidases.²⁰² Porém não se sabe quais efeitos são devido ao mupiricin e quais são devido a síntese de ppGpp e pppGppp.²⁰¹ A mutação ocorrida no gene que codifica a sintetase de tais moléculas foi não conservativa: de serina, um aminoácido hidrofílico, houve a troca para um aminoácido altamente hidrofóbico, a fenilalanina. Assim, pode se assumir que a resposta restrita tenha sofrido uma desregulação. Pode-se assumir que algo similar ao mupiricin ocorra com Pep20 – se este causar a acumulação de tRNA a resposta restrita seria ativada e uma série de consequência intracelulares seriam geradas. Assim, uma mutação que diminuísse a resposta a esta acumulação de tRNA seria benéfica para a sobrevivência na presença de tal peptídeo. Por outro lado, uma série de consequências negativas poderiam acontecer, como a menor expressão de fatores de virulência e uma desregulação da resposta a situações de inanição pela falta de metabolização de determinados substratos.

Alguns estudos mais recentes relacionam a expressão destas alarmonas como função complementária a reação de inanição pela falta de aminoácidos, ou mesmo resposta a estresses na parede celular. Inclusive, sua transcrição parece estar relacionada a tolerância contra antibióticos que agem na parede celular, como vancomicina e ampicilina.²⁰³ Assim, estas moléculas antecipam resposta ao estresse oxidativo, permitindo a sobrevivência da célula.²⁰³ O estresse oxidativo e a expressão de ppGpp parecem estar intrinsicamente relacionados, uma vez que estudos feitos com linhagem sem expressão de alarmonas mostram maior sensibilidade a H₂O₂.²⁰³ Isto relacionada 25923_A_Pep20 perdeu a capacidade de metabolização de diversos substratos. Além disso, esta mutação mostra que Pep20 pode gerar estresses na parede celular, como já mostrado anteriormente. Projetos futuros poderiam confirmar se há maior tolerância a Pep20 por proteômica, medindo o nível de expressão de ppGpp e pppGppp

A linhagem 25923_A_Pep20 também sofreu mutação em uma oxirreductase contendo FAD. Existem uma série de oxirreductases contendo FAD que são expressas por *S. aureus*. Em organismos aeróbicos, o metabolismo de oxigênio é essencial, mas paradoxalmente, a produção de espécies reativas de oxigênio podem ser extremamente tóxicas e colocar a célula sob estresse. A principal fonte dessas espécies são principalmente o metabolismo mitocondrial e de enzimas P450.²⁰⁴ O excesso dessas espécies reativas pode levar a estresse oxidativo e dano a organelas importantes, como DNA e proteínas. As enzimas oxirredutases contendo FAD têm a função de proteger a célula contra danos massivos oxidativos pela habilidade de degradar espécies reativas de oxigênio.²⁰⁵ A mutação ocorrida nesta proteína pode ser chamada de conservativa, pois a troca de um aminoácido hidrofílico (serina) por um também hidrofílico (treonina), com a diferença de um grupo metil entre eles. Assim, não se sabe se a atividade de desta enzima será enfatizada ou reduzida. Dado que os dados fenotípicos indicam um maior estresse oxidativo causado por Pep20, é possível que a atividade desta enzima esteja aumentada e por isso essa linhagem foi selecionada em presença do AMP.

Por fim, ocorreram mutações em 25923_B_Pep20 que levaram a mudanças na superfamília de facilitadores principais. Os membros dessa família são essenciais para o transporte de diversas moléculas através da membrana. Este transporte depende de diversas mudanças conformacionais, devido ao mecanismo de garra²⁰⁶ que pode ser visualizado na Figura 48. Seus substratos variam de nutrientes, metabólitos e moléculas sinalizadoras, mas também uma serie de toxinas e fármacos.²⁰⁶

Figura 48 - Esquemas mostrando o transporte de superfamília de facilitadores principais. A. Tipos de transporte que podem ocorrer nesta família. B. Esquemas mostrando as mudanças conformacionais que ocorrem no transportadores no mecanismo de garra.

Fonte: Adaptada de QUISTGAARD et al. 206

A mutação ocorrida nesta proteína pode ter causado a perda de função, por ter causado a mudança na fase de leitura. Assim, supõe-se que esta linhagem com transportadores mutados ganhou vantagem evolutiva pela menor importação de Pep20 para dentro da bactéria. Isto leva a conclusões importantes, como Pep20 provavelmente apresentar um alvo intracelular, além do dano à membrana já observado. Além disso, é diminuída a importação de outras moléculas como nutrientes, o que condiz com os dados fenotípicos discutidos no ensaio anterior. A diminuição da concentração intracelular de determinada toxina pela alteração de transportadores que têm o fármaco como substrato é um mecanismo de resistência conhecido, sendo mais comum em gram-negativos. Por exemplo, temos o perfil de multiresistência em *K*. *pneumoniae* que pode ser causado pela perda da expressão de porinas OmpK35 ou OmpK36.⁹

Pep20 mostrou-se um peptídeo mais ativo que a molécula Plantaricina 149 original. A toxicidade desta molécula pode ser contornada utilizando antibióticos em combinação, como é o caso para o efeito sinergético com vancomicina em gram-negativos. Pep20 age na membrana interna e externa bacteriana, mas parece também ter alvos intracelulares, dado as mutações em transportador obtidas com a seleção *in vitro*. Por fim, Pep20 parece uma molécula promissora pois a longo prazo causa pouco incremento da CIM e, para essas linhagens selecionadas, a perda de susceptibilidade ocorre associada a grandes custos metabólicos.
5 CONCLUSÕES

Para os peptídeos sintetizados a partir da Bothropstoxina-I, a dimerização já havia se mostrado como estratégia eficiente no aumento da atividade antimicrobiana. No peptídeo escolhido (NA1897), a dimerização na porção C-terminal e a utilização do aminoácido triptofano proporcionaram uma otimização da atividade, principalmente em gram-negativos. A ação rápida e de amplo espectro deste peptídeo foi positiva, apesar de mostrar um alto nível de citotoxicidade para macrófagos diferenciados. O mecanismo de ação de NA1897 envolve a atividade na membrana citoplasmática, mas parece estar associada a atividade em precursores da parede celular. A evolução dirigida com NA1897 resultou em baixo acréscimo na CIM, indicando a baixa possibilidade de desenvolvimento de resistência em bactéria gram-positiva e nenhum incremento na CIM para gram-negativo em um intervalo de 30 dias. Além disso, a seletividade dessa molécula sugere sua aplicação em uso tópico.

Os análogos de Plantaricina 149 representaram um desafio principalmente devido à alta taxa hemolítica. Por fim, a definição de uma estrutura secundária anfipática foi essencial para obter um peptídeo otimizado. Foi possível obter Pep20, um peptídeo otimizado com rápida ação bactericida que age tanto na membrana citoplasmática bacteriana quanto na membrana externa de bactérias gram-negativas. Além disso, parece ter permeação guiada para domínios proteicos específicos na bactéria. Em termos de resistência, Pep20 selecionou mutantes com alguma alteração relacionada a carga da membrana. Estas mutações, porém, parecem estar associadas a altos custos metabólicos.

De forma geral, os AMPs pesquisados neste projeto refletem os dados da literatura: as cargas positivas e hidrofóbicas parecem ter sido essenciais para ação em ambos os casos; o mecanismo de ação correspondeu ao mais comum relatado, de ação na membrana bacteriana; as moléculas apresentaram uma menor propensão para o desenvolvimento de resistência que outros antibióticos de uso clínico. Os AMPs representam uma classe de crescente interesse na pesquisa de candidatos a antibióticos, principalmente com o crescente aumento da resistência antimicrobiana. As moléculas aqui estudadas representam antimicrobianos de interesse, mas ainda em etapas iniciais para serem considerados candidatos a fármacos. Perspectivas futuras incluem a confirmação dos alvos sugeridos através de técnicas de microscopia e da superexpressão dos alvos de mutações encontradas; a avaliação dos novos análogos sugeridos por técnicas de biofísica; por fim, melhora da seletividade através da investigação da interação dos peptídeos com células eucarióticas.

REFERÊNCIAS

1 RICE, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. Journal of Infectious Diseases, v. 197, n. 8, p. 1079–1081, 2008.

2 PENDLETON, J. N.; GORMAN, S. P.; GILMORE, B. F. Clinical relevance of the ESKAPE pathogens. **Expert Review of Anti-Infective Therapy**, v. 11, n. 3, p. 297, 2013.

3 UNITED STATES CENTERS FOR DISEASE CONTROL AND PREVENTION. Antibiotic resistance threats in the United States. 2019. Disponível em: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Acesso em: 04 abr. 2022.

4 FERRI, M. *et al.* Antimicrobial resistance: a global emerging threat to public health systems. **Critical Reviews in Food Science and Nutrition**, v. 57, n. 13, p. 2857–2876, 2017.

5 O'NEILL, J. **Antimicrobial resistance**: tackling a crisis for the health and wealth of nations. 2014. Disponível em: https://www.naturallivestockfarming.com/wp-content/uploads/2015/09/Antibiotics-UK-dec-2014-Review-paper-on-health-wealth1.pdf. Acesso em: 04 abr. 2022.

6 CASSINI, A. *et al.* Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. **Lancet Infectious Diseases**, v. 19, n. 1, p. 56–66, 2018.

7 BAEKKESKOV, E. *et al.* Antimicrobial resistance as a global health crisis. **Oxford Research Encyclopedia of Politics**, 2020. DOI: 10.1093/acrefore/9780190228637.013.1626.

8 MULANI, M. S. *et al.* Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. **Frontiers in Microbiology**, v. 10, 2019. DOI: 10.3389/fmicb.2019.00539.

9 SANTAJIT, S.; INDRAWATTANA, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. **BioMed Research International**, v. 2016, 2016. DOI: 10.1155/2016/2475067.

10 GETAHUN, H. *et al.* Tackling antimicrobial resistance in the COVID-19 pandemic. **Bulletin of the World Health Organization**, v. 98, n. 7, p. 442- 442A, 2020.

11 MONNET, D. L.; HARBARTH, S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? **Eurosurveillance**, v. 25, n. 45, p. 1–6, 2020.

12 ANTIMICROBIAL resistance in the age of COVID-19. **Nature Microbiology**, v. 5, n. 6, p. 779, 2020. DOI: 10.1038/s41564-020-0739-4.

13 HUTTNER, B. D. *et al.* COVID-19: don't neglect antimicrobial stewardship principles! Clinical Microbiology and Infection, v. 26, n. 7, p. 808–810, 2020.

14 LUYT, C.-E. *et al.* Antibiotic stewardship in the intensive care unit. **Critical Care**, v. 18, n. 5, p. 480, 2014.

15 DE OLIVEIRA, D. M. P. *et al.* Antimicrobial resistance in ESKAPE pathogens. **Clinical Microbiology Reviews**, v. 33, n. 3, p. 1–18, 2020.

16 EFFAH, C. Y. *et al.* Klebsiella pneumoniae: an increasing threat to public health. **Annals of Clinical Microbiology and Antimicrobials**, v. 19, n. 1, p. 1–9, 2020.

17 PODSCHUN, R.; ULLMANN, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. **Clinical Microbiology Reviews**, v. 11, n. 4, p. 589–603, 1998.

18 PUCCI, M. J.; DOUGHERTY, T. J. Direct quantitation of the numbers of individual penicillin-binding proteins per cell in Staphylococcus aureus. **Journal of Bacteriology**, v. 184, n. 2, p. 588–591, 2002.

19 MÜLLER, A.; KLÖCKNER, A.; SCHNEIDER, T. Targeting a cell wall biosynthesis hot spot. **Natural Product Reports**, v. 34, n. 7, p. 909–932, 2017.

20 SUN, J.; DENG, Z.; YAN, A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. **Biochemical and Biophysical Research Communications**, v. 453, n. 2, p. 254–267, 2014.

21 STOODLEY, P. *et al.* Biofilms as complex differentiated communities. **Annual Review of Microbiology**, v. 56, p. 187–209, 2002. DOI: 10.1146/annurev.micro.56.012302.160705.

22 FLEMMING, H. C. *et al.* Biofilms: an emergent form of bacterial life. **Nature Reviews Microbiology**, v. 14, n. 9, p. 563–575, 2016.

23 RUHAL, R.; KATARIA, R. Biofilm patterns in gram-positive and gram-negative bacteria. **Microbiological Research**, v. 251, p. 126829, 2021. DOI: 10.1016/j.micres.2021.126829.

24 FLEMMING, H. C.; WINGENDER, J. The biofilm matrix. **Nature Reviews Microbiology**, v. 8, n. 9, p. 623–633, 2010.

25 DONLAN, R. M. Biofilm formation: a clinically relevant microbiological process. **Clinical Infectious Diseases**, v. 33, n. 8, p. 1387–1392, 2001.

26 WHO. Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics Who. Disponível em: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Acesso em: 14 Setembro 2019.

27 STRATEVA, T. *et al.* Clonal spread of vanA Enterococcus faecium sequence type 203 in Bulgarian hospitals. **Infectious Diseases**, v. 50, n. 9, p. 718–721, 2018.

28 SUN, H. L. *et al.* Molecular characterization of vancomycin-resistant enterococci isolated from a hospital in Beijing, China. **Journal of Microbiology, Immunology and Infection**, v. 52, n. 3, p. 433–442, 2019.

29 DA SILVA, L. P. P. *et al.* Genetic features and molecular epidemiology of Enterococcus faecium isolated in two university hospitals in Brazil. **Diagnostic Microbiology and Infectious Disease**, v. 74, n. 3, p. 267–271, 2012.

30 GAO, W.; HOWDEN, B. P.; STINEAR, T. P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. **Current Opinion in Microbiology**, v. 41, p. 76–82, 2018. DOI: 10.1016/j.mib.2017.11.030.

31 UBEDA, C. *et al.* Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. **Journal of Clinical Investigation**, v. 120, n. 12, p. 4332–4341, 2010.

32 BUFFIE, C. G.; PAMER, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. **Nature Reviews Immunology**, v. 13, n. 11, p. 790–801, 2013.

33 PRASAD, P. *et al.* Excess deaths associated with tigecycline after approval based on noninferiority trials. **Clinical Infectious Diseases**, v. 54, n. 12, p. 1699–1709, 2012.

34 SILVERMAN, J. A. *et al.* Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. **Journal of Infectious Diseases**, v. 191, n. 12, p. 2149–2152, 2005.

35 PREMATUNGE, C. *et al.* VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic review and meta-analysis. **Infection Control and Hospital Epidemiology**, v. 37, n. 1, p. 26–35, 2016.

36 APPELBAUM, P. C. Microbiology of antibiotic resistance in Staphylococcus aureus. **Clinical Infectious Diseases**, v. 45, Suppl. 3, p. 165–170, 2007.

37 BARTON, M. *et al.* Guidelines for the prevention and management of communityassociated methicillin-resistant Staphylococcus aureus : a perspective for Canadian health care practitioners. **Canadian Journal of Infectious Diseases and Medical Microbiology**, v. 17, Suppl C, p. 4C-24C, 2006. DOI: 10.1155/2006/402361.

38 PADA, S. K. *et al.* Economic and clinical impact of nosocomial meticillin-resistant Staphylococcus aureus infections in Singapore: a matched case-control study. **Journal of Hospital Infection**, v. 78, n. 1, p. 36–40, 2011.

39 CHAMBERS, H. F.; DELEO, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. **Nature Reviews Microbiology**, v. 7, n. 9, p. 629–641, 2009.

40 PANESSO, D. *et al.* Methicillin-susceptible, vancomycin-resistant Staphylococcus aureus , Brazil. **Emerging Infectious Diseases**, v. 21, n. 10, p. 1844–1848, 2015.

41 ROSSI, F. *et al.* Transferable vancomycin resistance in a community-associated MRSA lineage. **New England Journal of Medicine**, v. 370, n. 16, p. 1524–1531, 2014.

42 NAVON-VENEZIA, S.; KONDRATYEVA, K.; CARATTOLI, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. **FEMS Microbiology Reviews**, v. 41, n. 3, p. 252–275, 2017.

43 MOTA, F. S.; OLIVEIRA, H. A.; SOUTO, R. C. F. Profile and prevalence of antimicrobial resistance of negative-Gram bacteria isolated from intensive care patients. **Revista Brasileira de Análises Clínicas**, v. 50, n. 3, 2018.

44 LOWE, M. et al. Klebsiella pneumoniae ST307 with bla OXA-181, South Africa, 2014-

45 MUNOZ-PRICE, L. S.; WEINSTEIN, R. A. Acinetobacter infection. New England Journal of Medicine, v. 358, n. 12, p. 1271–1281, 2008.

46 HOUANG, E. T. S. *et al.* Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. **Journal of Clinical Pathology**, v. 51, n. 10, p. 786–788, 1998.

47 GIAMMANCO, A. *et al.* Global assessment of the activity of tigecycline against multidrug-resistant gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial. **mSphere**, v. 2, n. 1, p. 1–10, 2017.

48 XIE, R. *et al.* Analysis of global prevalence of antibiotic resistance in acinetobacter baumannii infections disclosed a faster increase in OECD countries. **Emerging Microbes and Infections**, v. 7, n. 1, p. 31, 2018.

49 LEE, H. Y. *et al.* Wide spread of Tn2006 in an AbaR4-type resistance island among carbapenem-resistant Acinetobacter baumannii clinical isolates in Taiwan. **International Journal of Antimicrobial Agents**, v. 40, n. 2, p. 163–167, 2012.

50 ZARRILLI, R. *et al.* Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. **International Journal of Antimicrobial Agents**, v. 41, n. 1, p. 11–19, 2013.

51 GELLATLY, S. L.; HANCOCK, R. E. W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. **Pathogens and Disease**, v. 67, n. 3, p. 159–173, 2013.

52 TREEPONG, P. *et al.* Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. **Clinical Microbiology and Infection**, v. 24, n. 3, p. 258–266, 2018.

53 LIVERMORE, D. M.; MACGOWAN, A. P.; WALE, M. C. J. Surveillance of antimicrobial resistance. **BMJ**, v. 317, n. 7159, p. 614–615, 1998.

54 HALL SNYDER, A. D. *et al.* Fosfomycin enhances the activity of daptomycin against vancomycin-resistant enterococci in an in vitro pharmacokinetic-pharmacodynamic model. **Antimicrobial Agents and Chemotherapy**, v. 60, n. 10, p. 5716–5723, 2016.

55 CORONADO-ÁLVAREZ, N. M.; PARRA, D.; PARRA-RUIZ, J. Clinical efficacy of fosfomycin combinations against a variety of gram-positive cocci. **Enfermedades Infecciosas y Microbiología Clínica**, v. 37, n. 1, p. 4–10, 2019.

56 JORGENSEN, S. C. J.; RYBAK, M. J. Meropenem and vaborbactam: stepping up the battle against carbapenem-resistant enterobacteriaceae. **Pharmacotherapy:** the journal of human pharmacology and drug therapy, v. 38, n. 4, p. 444–461, 2018.

57 DOMALAON, R. *et al.* Antibiotic hybrids: the next generation of agents and adjuvants against gram-negative pathogens? **Clinical Microbiology Reviews**, v. 31, n. 2, 2018. DOI: 10.1128/CMR.00077-17

58 GUTIÉRREZ, D. *et al.* Bacteriophages: the Enemies of Bad bacteria are our friends! **Frontiers for Young Minds**, v. 4, 2016. DOI: 10.3389/frym.2016.00030.

59 DOMINGO-CALAP, P.; DELGADO-MARTÍNEZ, J. Bacteriophages: protagonists of a post-antibiotic era. **Antibiotics**, v. 7, n. 3, p. 66, 2018.

60 CHAN, B. K.; ABEDON, S. T.; LOC-CARRILLO, C. Phage cocktails and the future of phage therapy. **Future Microbiology**, v. 8, n. 6, p. 769–783, 2013.

61 ABRAHAMSE, H.; HAMBLIN, M. R. New photosensitizers for photodynamic therapy. **Biochemical Journal**, v. 473, n. 4, p. 347–364, 2016.

62 CIEPLIK, F. *et al.* Antimicrobial photodynamic therapy – what we know and what we don't. **Critical Reviews in Microbiology**, v. 44, n. 5, p. 571–589, 2018.

63 BÉRDY, J. Thoughts and facts about antibiotics: where we are now and where we are heading. **Journal of Antibiotics**, v. 65, n. 8, p. 385, 2012.

64 BAHAR, A. A.; REN, D. Antimicrobial peptides. Pharmaceuticals, v. 6, n. 12, p. 1543, 2013.

65 MOOKHERJEE, N. *et al.* Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. **Journal of Immunology**, v. 176, n. 4, p. 2455–2464, 2006.

66 JAHNSEN, R. D. *et al.* Characterization of a proteolytically stable multifunctional host defense peptidomimetic. **Chemistry & Biology**, v. 20, n. 10, p. 1286–1295, 2013.

67 BOURNE, H. R. *et al.* Modulation of inflammation and immunity by cyclic AMP. **Science**, v. 184, n. 4132, p. 19–28, 1974.

68 MINNS, D. *et al.* The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. **Nature Communications**, v. 12, n. 1, p. 1285, 2021.

69 DÜRR, U. H. N.; SUDHEENDRA, U. S.; RAMAMOORTHY, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. **Biochimica et Biophysica Acta** (**BBA**) - biomembranes, v. 1758, n. 9, p. 1408–1425, 2006.

70 OBATA-ONAI, A. *et al.* Comprehensive gene expression analysis of human NK cells and CD8+ T lymphocytes. **International Immunology**, v. 14, n. 10, p. 1085–1098, 2002.

71 SØRENSEN, O. E. *et al.* Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. **Journal of Immunology**, v. 170, n. 11, p. 5583–5589, 2003.

72 KUMAR, P.; KIZHAKKEDATHU, J. N.; STRAUS, S. K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. **Biomolecules**, v. 8, n. 1, p. 4, 2018.

73 EBENHAN, T. *et al.* Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. **BioMed Research International**, v. 2014, p. 867381, 2014. DOI: 10.1155/2014/867381.

74 MAHLAPUU, M.; BJÖRN, C.; EKBLOM, J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. **Critical Reviews in Biotechnology**, v. 40, n. 7, p. 978–

992, 2020.

75 MATSUZAKI, K. Membrane permeabilization mechanisms. Advances in Experimental Medicine and Biology, p. 9–16, 2019. doi:10.1007/978-981-13-3588-4_2.

76 RONČEVIĆ, T.; PUIZINA, J.; TOSSI, A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? **International Journal of Molecular Sciences**, v. 20, n. 22, p. 5713, 2019.

77 SHAHMIRI, M. *et al.* Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. **Scientific Reports**, v. 6, n. 1, p. 38184, 2016.

78 MCMAHON, H. T.; GALLOP, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. **Nature**, v. 438, n. 7068, p. 590–596, 2005.

79 SAELOH, D. *et al.* The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. **PLOS Pathogens**, v. 14, n. 2, p. e1006876, 2018.

80 CRUZEIRO-HANSSON, L.; MOURITSEN, O. G. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. **Biochimica et Biophysica Acta** (**BBA**) - biomembranes, v. 944, n. 1, p. 63–72, 1988.

81 WENZEL, M. *et al.* A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. **Communications Biology**, v. 4, n. 1, p. 306, 2021.

82 CHIOREAN, S. *et al.* Dissecting the binding interactions of teixobactin with the bacterial cell-wall precursor lipid II. **ChemBioChem**, v. 21, n. 6, p. 789–792, 2020.

83 SILVA, E. O.; PARDAL, P. P. O. Envenenamento por serpente Bothrops no município de Afuá, Ilha de Marajó, estado do Pará, Brasil. **Revista Pan-Amazônica de Saúde**, v. 9, n. 3, p. 57–62, 2018.

84 SANTOS FILHO, N. A. *et al.* Synthesis and characterization of an antibacterial and nontoxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. **Toxicon**, v. 103, p. 160–168, 2015. DOI: 10.1016/j.toxicon.2015.07.004

85 SANTOS FILHO, N. A. *et al.* Heterologous expression and biochemical and functional characterization of a recombinant alpha-type myotoxin inhibitor from Bothrops alternatus snake. **Biochimie**, v. 105, p. 119–128, 2014. DOI: 10.1016/j.toxicon.2015.07.004

86 ARNI, R.; WARD, R. Phospholipase A2—a structural review. **Toxicon**, v. 34, n. 8, p. 827–841, 1996.

87 MURAKAMI, M.; KAMBE-OHKURA, T.; KUDO, I. Functional coupling between Phospholipase a2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. **Journal of Biological Chemistry**, v. 274, n. 5, p. 3103, 1999.

88 DENNIS, E. A. Diversity of group types, regulation, and function of phospholipase A2. **Journal of Biological Chemistry**, v. 269, n. 18, p. 13057–13060, 1994.

89 SOARES, A. M.; GIGLIO, J. R. Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. **Toxicon**, v. 42, n. 8, p. 855–868, 2003.

90 TSAI, S.-H. *et al.* Binding of a venom Lys-49 phospholipase A2 to LPS and suppression of its effects on mouse macrophages. **Toxicon**, v. 50, n. 7, p. 914–922, 2007.

91 LOMONTE, B.; RANGEL, J. Snake venom Lys49 myotoxins: from phospholipases A2 to non-enzymatic membrane disruptors. **Toxicon**, v. 60, n. 4, p. 520–530, 2012.

92 LOMONTE, B. *et al.* Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. **Journal of Biological Chemistry**, v. 269, n. 47, p. 29867–29873, 1994.

93 SANTOS FILHO, N. A. *et al.* Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria. **Molecules**, v. 22, n. 11, p. 1–14, 2017.

94 PERRYMAN, M. B.; KNELL, J. D.; ROBERTS, R. Carboxypeptidase-catalyzed hydrolysis of C-terminal lysine: mechanism for in vivo production of multiple forms of creatine kinase in plasma. **Clinical Chemistry**, v. 30, n. 5, p. 662–664, 1984.

95 LOPES, J. L. S. *et al.* Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes. **Brazilian Journal of Microbiology**, v. 44, n. 4, p. 1291–1298, 2013.

96 AZZI, A. The application of fluorescent probes in membrane studies. **Quarterly Reviews of Biophysics**, v. 8, n. 2, p. 237–316, 1975.

97 KUMAGAI, P. S. *et al.* Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes. **European Biophysics Journal**, v. 48, n. 7, p. 621–633, 2019.

98 IWAMOTO, K. *et al.* Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. **Biophysical Journal**, v. 93, n. 5, p. 1608–1619, 2007.

99 FERNANDEZ, D. I. *et al.* Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. **Biochimica et Biophysica Acta (BBA)** - biomembranes, v. 1828, n. 8, p. 1863–1872, 2013.

100 SHAI, Y. Mode of action of membrane active antimicrobial peptides. **Biopolymers**, v. 66, n. 4, p. 236–248, 2002.

101 MERRIFIELD, R. B. Solid phase peptide synthesis. I. the synthesis of a tetrapeptide. **Journal of the American Chemical Society**, v. 85, n. 14, p. 2149–2154, 1963.

102 CLINICAL LABORATORY STANDARDS INSTITUTE. **Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically**. 10 th ed. 2018. Disponível em: https://clsi.org/media/1632/m07a10_sample.pdf. Acesso em: 04 abr. 2022.

103 PANKEY, G. A.; SABATH, L. D. Clinical relevance of bacteriostatic versus bactericidal

mechanisms of action in the treatment of gram-positive bacterial infections. Clinical Infectious Diseases, v. 38, n. 6, p. 864–870, 2004.

104 CASTRO, M. S. *et al.* Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus ('spotted treefrog'). **Peptides**, v. 30, n. 2, p. 291–296, 2009.

105 CLINICAL LABORATORY STANDARDS INSTITUTE. Methods for determining bactericidal activity of antimicrobial agents: M26-A, v. 19, n. 18, 1999.

106 SARAVOLATZ, L. D. *et al.* Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Letters in Applied Microbiology, v. 65, n. 5, p. 410–413, 2017.

107 LI, Q. *et al.* Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. **Communications Biology**, v. 4, n. 1, p. 1–11, 2021.

108 LORENZON, E. N. *et al.* Dimerization of antimicrobial peptides: a promising strategy to enhance antimicrobial peptide activity. **Protein & Peptide Letters**, v. 26, n. 2, p. 98–107, 2019.

109 CHAN, D. I.; PRENNER, E. J.; VOGEL, H. J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. **Biochimica et Biophysica Acta** - biomembranes, v. 1758, n. 9, p. 1184–1202, 2006.

110 MISHRA, A. K. *et al.* Tryptophan-rich and proline-rich antimicrobial peptides. **Molecules**, v. 23, n. 4, p. 1–23, 2018.

111 TOMMASI, R. *et al.* ESKAPEing the labyrinth of antibacterial discovery. **Nature Reviews Drug Discovery**, v. 14, n. 8, p. 529–542, 2015.

112 STARDROP ADME PROPERTIES. **Predict a broad range of ADME and physicochemical properties**. *Asteris StarDrop* Disponível em: http://www.asteris-app.com/technical-info/adme-properties.htm. Accesso em: 14 Setembro 2019

113 SANTOS-FILHO, N. A. *et al.* Effect of C-terminal and N-terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide p-BthTX-I. **Peptide** Science, 2021. DOI:10.1002/pep2.24243.

114 DABUL, A. N. G. *et al.* Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. **Infection, Genetics and Evolution**, v. 67, p. 23–32, 2019. DOI: 10.1016/j.meegid.2018.10.018.

115 MELLO, S. S. *et al.* A mutation in the glycosyltransferase gene lafB causes daptomycin hypersusceptibility in Enterococcus faecium. **Journal of Antimicrobial Chemotherapy**, v. 75, n. 1, p. 36–45, 2020.

116 MILLER, W. R.; BAYER, A. S.; ARIAS, C. A. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. **Cold Spring Harbor Perspectives in Medicine**, v. 6, n. 11, p. 1–16, 2016.

117 FALAGAS, M. E.; RAFAILIDIS, P. I.; MATTHAIOU, D. K. Resistance to polymyxins: Mechanisms, frequency and treatment options. **Drug Resistance Updates**, v. 13, n. 4–5, p. 132–138, 2010.

118 CARRASCO, L. D. M. *et al.* Polymyxin resistance among XDR ST1 carbapenemresistant acinetobacter baumannii clone expanding in a teaching hospital. **Frontiers in Microbiology**, v. 12, p. 622704, 2021. DOI: 10.3389/fmicb.2021.622704.

119 SOUZA, R. C. *et al.* Dissemination of blaKPC-2 in an NTEKPC by an IncX5 plasmid. **Plasmid**, v. 106, p. 1–7, 2019. DOI:10.1016/j.plasmid.2019.102446.

120 OLAITAN, A. O.; MORAND, S.; ROLAIN, J. M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. **Frontiers in Microbiology**, v. 5, p. 1–18, 2014. DOI: 10.3389/fmicb.2014.00643.

121 DABUL, A. N. G.; CAMARGO, I. L. B. C. Molecular characterization of methicillinresistant Staphylococcus aureus resistant to tigecycline and daptomycin isolated in a hospital in Brazil. **Epidemiology and Infection**, v. 142, n. 3, p. 479–483, 2014.

122 TRAN, T. B. *et al.* Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? **International Journal of Antimicrobial Agents**, v. 48, n. 6, p. 592–597, 2016.

123 ALVES, A. C. *et al.* Biophysics in cancer: the relevance of drug-membrane interaction studies. **Biochimica et Biophysica Acta -** biomembranes, v. 1858, n. 9, p. 2231–2244, 2016.

124 MENDES, C. A. C.; BURDMANN, E. A. Polimixinas: revisão com ênfase na sua nefrotoxicidade. **Revista da Associação Médica Brasileira**, v. 55, n. 6, p. 752–759, 2009.

125 INDRAYANTO, G.; PUTRA, G. S.; SUHUD, F. Validation of in-vitro bioassay methods: application in herbal drug research. **Profiles of Drug Substances, Excipients, and Related, Methodology**, v. 46, p. 273–307, 2021. DOI: 10.1016/bs.podrm.2020.07.005

126 AWOUAFACK, M. D. *et al.* Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). **BMC Complementary and Alternative Medicine**, v. 13, p. 289, 2013. DOI: 10.1186/1472-6882-13-289.

127 ZAVASCKI, A. P. *et al.* Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. **Journal of Antimicrobial Chemotherapy**, v. 60, n. 6, p. 1206–1215, 2007.

128 OLIVEIRA, A. *et al.* Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms. **Frontiers in Microbiology**, v. 8, p. 1–18, 2017. DOI: 10.3389/fmicb.2017.02407.

129 FRIEDRICH, C. L. *et al.* Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. **Journal of Biological Chemistry**, v. 276, n. 26, p. 24015–24022, 2001.

130 SILVA, M. T. *et al.* Bacterial mesosomes. real structures of artifacts? **Biochimica et Biophysica Acta -** biomembranes, v. 443, n. 1, p. 92–105, 1976.

131 GREIN, F. *et al.* Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. **Nature Communications**, v. 11, n. 1, p. 1–12, 2020.

132 BURBY, P. E.; SIMMONS, L. A. Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. **Journal of Bacteriology**, v. 202, n. 2, 2020. DOI: 10.1128/JB.00408-19.

133 SLEIGH, M. J. The mechanism of DNA breakage by phleomycin in vitro. **Nucleic Acids Research**, v. 3, n. 4, p. 891–901, 1976.

134 TOYOFUKU, M.; NOMURA, N.; EBERL, L. Types and origins of bacterial membrane vesicles. **Nature Reviews Microbiology**, v. 17, n. 1, p. 13–24, 2019.

135 SCHEENSTRA, M. R. *et al.* Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. **Scientific Reports**, v. 9, n. 1, p. 1–12, 2019.

136 YANG, Y. *et al.* Hybridization with insect cecropin a (1–8) improve the stability and selectivity of naturally occurring peptides. **International Journal of Molecular Sciences**, v. 21, n. 4, p. 1–16, 2020.

137 BROGDEN, K. A. *et al.* Antimicrobial peptides in animals and their role in host defences. **International Journal of Antimicrobial Agents**, v. 22, n. 5, p. 465–478, 2003.

138 STRAHL, H.; ERRINGTON, J. Bacterial membranes: structure, domains, and function. **Annual Review of Microbiology**, v. 71, p. 519–538, 2017. DOI: 10.1146/annurev-micro-102215-095630.

139 SCHERER, K. *et al.* Aggregates of nisin with various bactoprenol-containing cell wall precursors differ in size and membrane permeation capacity. **Biochimica et Biophysica Acta** - biomembranes, v. 1828, n. 11, p. 2628–2636, 2013.

140 SCHERER, K. M. *et al.* The lantibiotic nisin induces Lipid II aggregation, causing membrane instability and vesicle budding. **Biophysical Journal**, v. 108, n. 5, p. 1114–1124, 2015.

141 DIK, D. A.; FISHER, J. F.; MOBASHERY, S. Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. **Chemical Reviews**, v. 118, n. 12, p. 5952–5984, 2018.

142 STEINBUCH, K. B.; FRIDMAN, M. Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. **MedChemComm**, v. 7, n. 1, p. 86–102, 2016.

143 WESGATE, R. *et al.* Effect of Exposure to chlorhexidine residues at "during use" concentrations on antimicrobial susceptibility profile, efflux, conjugative plasmid transfer, and metabolism of escherichia coli. **Antimicrobial Agents and Chemotherapy**, v. 64, n. 12, p. 1–14, 2020.

144 YI, Y. *et al.* Comprehensive gene and pathway analysis of cervical cancer progression. **Oncology Letters**, v. 19, n. 4, p. 3316–3332, 2020.

145 KANEHISA, M. Toward understanding the origin and evolution of cellular organisms. **Protein Science**, v. 28, n. 11, p. 1947–1951, 2019.

146 KANEHISA, M. *et al.* KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research, v. 49, n. D1, p. D545–D551, 2021.

147 KOSCHORRECK, M. Microbial sulphate reduction at a low pH. **FEMS Microbiology Ecology**, v. 64, n. 3, p. 329–342, 2008.

148 FEBLES, M. *et al.* Synthesis and biological evaluation of crown ether acyl derivatives. **Bioorganic and Medicinal Chemistry Letters**, v. 26, n. 22, p. 5591–5593, 2016.

149 HEALTH, N. Y. S. D. O. The Facts About Cyanides. the Facts About Ammonia Technical Information. 2004.

150 HOFFMANN, M. *et al.* Mechanism of activation of an immunosuppressive drug: Azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. **Journal of the American Chemical Society**, v. 123, n. 26, p. 6404–6409, 2001.

151WILSON, B. R. *et al.* Siderophores in iron metabolism: from mechanism to therapy potential. **Trends in Molecular Medicine**, v. 22, n. 12, p. 1077–1090, 2016.

152 DINNING, A. J. *et al.* Pyrithione biocides as inhibitors of bacterial ATP synthesis. **Journal of Applied Microbiology**, v. 85, n. 1, p. 141–146, 1998.

153 PHILLIPS, J. P. The reactions Of 8-quinolinol. Chemical Reviews, v. 56, n. 2, p. 271–297, 1 abr. 1956.

154 OTHMAN, L.; SLEIMAN, A.; ABDEL-MASSIH, R. M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. **Frontiers in Microbiology**, v. 10, 2019. DOI: 10.3389/fmicb.2019.00911.

155 BRITTINGHAM, A.; WILSON, W. A. The antimicrobial effect of boric acid on trichomonas vaginalis. **Sexually Transmitted Diseases**, v. 41, n. 12, p. 718–722, 2014.

156 MARRAZZO, J. M. *et al.* Safety and efficacy of a novel vaginal anti-infective, TOL-463, in the treatment of bacterial vaginosis and vulvovaginal candidiasis: a randomized, singleblind, phase 2, controlled trial. **Clinical Infectious Diseases**, v. 68, n. 5, p. 803–809, 2019.

157 HERMAN-BAUSIER, P. *et al.* Staphylococcus aureus clumping factor A is a forcesensitive molecular switch that activates bacterial adhesion. **Proceedings of the National Academy of Sciences**, v. 115, n. 21, p. 5564–5569, 2018.

158 MCCREA, K. W. *et al.* The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis the GenBank accession numbers for the sequences determined in this work are AF245041 (sdrF), AF245042 (sdrG) and AF245043 (sdrH). **Microbiology**, v. 146, n. 7, p. 1535–1546, 2000.

159 HAMILTON-MILLER, J. M. T. Handbook of bacterial adhesion. Journal of Hospital Infection, v. 48, n. 2, p. 156-157, 2001.

160 MILLES, L. F. et al. Calcium stabilizes the strongest protein fold. Nature

Communications, v. 9, n. 1, p. 4764, 2018.

161 GARZONI, C.; KELLEY, W. L. Staphylococcus aureus: new evidence for intracellular persistence. **Trends in Microbiology**, v. 17, n. 2, p. 59–65, 2009.

162 HAUCK, C. R.; OHLSEN, K. Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. **Current Opinion in Microbiology**, v. 9, n. 1, p. 5–11, 2006.

163 JONSSON, K. *et al.* Two different genes encode fibronectin binding proteins in Staphylococcus aureus. the complete nucleotide sequence and characterization of the second gene. **European Journal of Biochemistry**, v. 202, n. 3, p. 1041–1048, 1991.

164 GRUNDMEIER, M. *et al.* Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman Leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. **Infection and Immunity**, v. 72, n. 12, p. 7155–7163, 2004.

165 KEANE, F. M. *et al.* Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus. **Molecular Microbiology**, v. 63, n. 3, p. 711, 2007.

166 RUDKIN, J. K. *et al.* Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. **Journal of Infectious Diseases**, v. 205, n. 5, p. 798–806, 2012.

167 TAGLIALEGNA, A. *et al.* VraSR and virulence trait modulation during Daptomycin resistance in methicillin-resistant Staphylococcus aureus infection. **mSphere**, v. 4, n. 1, 2019. DOI: 10.1128/mSphere.00557-18.

168 SINGH, V. K. *et al.* Insertional inactivation of branched-chain α -Keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses. **Applied and Environmental Microbiology**, v. 74, n. 19, p. 5882–5890, 2008.

169 MÜLLER, A. *et al.* Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. **Proceedings of the National Academy of Sciences**, v. 113, n. 45, 2016. DOI: 10.1073/pnas.1611173113.

170 SINGH, S. P.; QURESHI, A.; HASSAN, W. Mechanisms of action by antimicrobial agents: a review. **McGill Journal of Medicine**, v. 19, n. 1, 2021. DOI: 10.26443/mjm.v19i1.217.

171 SCHÄFER, A.-B.; WENZEL, M. A how-to guide for mode of action analysis of antimicrobial peptides. **Frontiers in Cellular and Infection Microbiology**, v. 10, 2020. DOI: 10.3389/fcimb.2020.540898.

172 LU, S. *et al.* CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research, v. 48, n. D1, p. D265–D268, 2020.

173 HEMILÄ, H. *et al.* The secretory S complex in Bacillus subtilis is identified as pyruvate dehydrogenase. **Research in Microbiology**, v. 142, n. 7–8, p. 779–785, 1991.

174 BAL, A. S.; DHAGAT, N. N. Upflow anaerobic sludge blanket reactor--a review. **Indian Journal of Environmental Health**, v. 43, n. 2, p. 1–82, 2001.

175 BUDIN, I. *et al.* Viscous control of cellular respiration by membrane lipid composition. **Science**, v. 362, n. 6419, p. 1186–1189, 2018.

176 KRISTIANSEN, P. E. *et al.* Structure and mode of action of the membranepermeabilizing antimicrobial peptide pheromone plantaricin A *. Journal of Biological Chemistry, v. 280, n. 24, p. 22945–22950, 2005.

177 DABUL, A. N. G. *et al.* Resistance in in vitro selected tigecycline-resistant methicillinresistant Staphylococcus aureus sequence type 5 is driven by mutations in mepR and mepA genes. **Microbial Drug Resistance**, v. 24, n. 5, p. 519–526, 2018.

178 MALANOVIC, N.; LOHNER, K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. **Biochimica et Biophysica Acta -** biomembranes, v. 1858, n. 5, p. 936–946, 2016.

179 SCHOLAR, E. Vancomycin. *In*: ENNA, S. J.; BYLUND, D. B. (ed.). **xPharm**: the comprehensive pharmacology reference. Amsterdam: Elsevier, 2008. p. 1–6. DOI: 10.1016/B978-008055232-3.62843-0

180 VARDANYAN, R. S.; HRUBY, V. J. Antibiotics. *In*: VARDANYAN, R. S.; HRUBY, V. J. (ed.). **Synthesis of essential drugs** Amsterdam: Elsevier, 2006. p. 425–498.

181 AZAM, M. W.; KHAN, A. U. Updates on the pathogenicity status of Pseudomonas aeruginosa. **Drug Discovery Today**, v. 24, n. 1, p. 350–359, 2019.

182 RENDUELES, O. *et al.* Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens. **PLOS Pathogens**, v. 13, n. 7, p. e1006525, 2017.

183 GAO, W. *et al.* Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. **Scientific Reports**, v. 5, p. 17260, 2015. DOI: 10.1038/srep17260.

184 WENZEL, M. *et al.* The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. **mBio**, v. 9, n. 5, p. e00802, 2018.

185 MELNYK, A. H.; WONG, A.; KASSEN, R. The fitness costs of antibiotic resistance mutations. **Evolutionary Applications**, v. 8, n. 3, p. 273–283, 2015.

186 CHENG, Z. X. *et al.* Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. **Nature Communications**, v. 10, n. 1, 2019. DOI: 10.1038/s41467-019-11129-5.

187 GRAHAM, J. E.; WILKINSON, B. J. Staphylococcus aureus osmoregulation: Roles for choline, glycine betaine, proline, and taurine. **Journal of Bacteriology**, v. 174, n. 8, p. 2711–2716, 1992.

188 BRODHAGEN, M. *et al.* Biodegradable plastic agricultural mulches and key features of microbial degradation. **Applied Microbiology and Biotechnology**, v. 99, n. 3, p. 1039–1056,

2015.

189 LARSBRINK, J. *et al.* Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. **Journal of Proteomics**, v. 156, p. 63–74, 2017. DOI: 10.1016/j.jprot.2017.01.003.

190 KUMAR, P. Pharmacology of specific drug groups: antibiotic therapy. *In:* DOWD, F. J.; JOHNSON, B. S.; MARIOTTI, A. J. (ed.). **Pharmacology and therapeutics for dentistry.** 7th ed. St. Louis: Elsevier, 2017. DOI: 10.1016/B978-0-323-39307-2.00033-3

191 VENKATESH, N.; KELLER, N. P. Mycotoxins in conversation with bacteria and fungi. **Frontiers in Microbiology**, v. 10, p. 1–10, 2019. DOI: 10.3389/fmicb.2019.00403.

192 ADVANI, M. J. *et al.* Activity of trifluoperazine against replicating, non- replicating and drug resistant M. tuberculosis. **PLoS One**, v. 7, n. 8, p. e44245, 2012.

193 KUMARIYA, R. *et al.* Increased membrane surface positive charge and altered membrane fl uidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis. **Biochimica et Biophysica Acta -** biomembranes, v. 1848, n. 6, p. 1367–1375, 2015.

194 OVIEDO, C.; RODRÍGUEZ, J. EDTA: the chelating agent under environmental scrutiny. **Química Nova**, v. 26, n. 6, p. 901–905, 2003.

195 SHIMA, S. *et al.* Antimicrobial action of E-poly-L-lysine. Journal of Antibiotics, v. 37, n. 11, p. 1449–1455, 1984.

196 SCARIOT, F. J. *et al.* Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae. **World Journal of Microbiology and Biotechnology**, v. 33, n. 8, p. 1–7, 2017.

197 LEITSCH, D. *et al.* Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia. **International Journal for Parasitology:** drugs and drug resistance, v. 2, p. 166–170, 2012. DOI: 10.1016/j.ijpddr.2012.04.002.

198 AHMED, F. A.; ARIF, M.; ALVAREZ, A. M. Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. **Frontiers in Microbiology**, v. 8, p. 1728, 2017. DOI: 10.3389/fmicb.2017.01728.

199 TOCCHETTI, A. *et al.* Understanding the mechanism of action of NAI-112, a Lanthipeptide with potent antinociceptive activity. **Molecules**, v. 26, n. 22, p. 6764, 2021.

200 GRAF, A. *et al.* The hidden lipoproteome of Staphylococcus aureus. International Journal of Medical Microbiology, v. 308, n. 6, p. 569–581, 2018.

201 GEIGER, T. *et al.* Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. **Infection and Immunity**, v. 78, n. 5, p. 1873–1883, 2010.

202 ANDERSON, K. L. *et al.* Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and sos responses and their effects on log-phase mRNA turnover. **Journal of Bacteriology**, v. 188, n. 19, p. 6739–6756, 2006.

203 HORVATEK, P. *et al.* Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. **PLOS Genetics**, v. 16, n. 12, p. e1009282, 2020.

204 HE, L. *et al.* Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. **Cellular Physiology and Biochemistry**, v. 44, n. 2, p. 532–553, 2017.

205 TRISOLINI, L. *et al.* FAD/NADH dependent oxidoreductases: from different amino acid sequences to similar protein shapes for playing an ancient function. **Journal of Clinical Medicine**, v. 8, n. 12, p. 2117, 2019.

206 QUISTGAARD, E. M. *et al.* Understanding transport by the major facilitator superfamily (MFS): structures pave the way. **Nature Reviews Molecular Cell Biology**, v. 17, n. 2, p. 123–132, 2016.

ANEXO A – Perfis de susceptibilidade das bactérias utilizadas

Espécie	Linhagem	Descrição					
nidis	ATCC 35984	Origem clínica, isolado de cateter. Boa formadora de biofilme					
S. epideri	ATCC 12228						
	ATCC 25923	Origem clínica					
	SA16	Origem clínica. MRSA, ST5-SCC <i>mec</i> II					
	SA88	Origem clínica. MRSA + h-DNSSA, ST5-SCC <i>mec</i> II					
ureus	SA43	Origem clínica. MRSA, ST105- SCC <i>mec</i> II, TIG S					
S. a	SA43 B2	Selecionada <i>in vitro</i> . MRSA, ST105- SCC <i>mec</i> II, TIG S					
	SA43 B7	Selecionada <i>in vitro</i> . ST105- MRSA, SCC <i>mec</i> II, TIG R (mutação no <i>mepR</i>)					
	Mu50	MRSA, VISA, ST5					
	ATCC 8095	Origem alimentar. Boa formadora de biofilme					
	VRE 109	Origem clínica, ST103, vanA TIG S, VAN R					
	VRE 109 C42	Selecionada <i>in vitro</i> . ST103 <i>vanA</i> TIG R, VAN R					
	VRE 80	Origem clínica. ST103 vanA TIG R, VAN R,					
	V583	ST 6, vanB. VAN R, CN R					
scalis	RPEfs1	Origem clínica. AMP S, CIP R, ERY R, LNZ S, MXF R, TEC S, TIG S, VAN S					
E. fae	RPEfs2	Origem clínica. AMP S, CIP S, ERY I, LNZ S, MXF S, TEC S, TIG S, VAN S					
	RPEfs3	Origem clínica. AMP S, CIP R, ERY R, LNZ S, MXF R, TEC R, TIG S, VAN R					
	RPEfs4	Origem clínica. AMP S, CIP R, ERY R, LNZ S, MXF S, TEC S, TIG S, VAN S					
	RPEfs5	Origem clínica. AMP S, CIP S, DAP S, LNZ S, NIT S, TEC S, TET R, VAN S					
	ATCC 29212	Origem clínica, isolado de urina.					
	VRE 16	Origem clínica. ST412, <i>vanA</i> . VAN R					
	HBSJRP18	Origem clínica. ST412, DAP supersensível (<i>lafB</i> *)					
	HBSJRP18 2.7	Selecionada in vitro. DAP S					
ium	HBSJRP18 3.6	Selecionada in vitro. DAP R (dak*)					
E. faec	HBSJRP7	Origem clínica, isolado de biópsia muscular. ST896, <i>ermB, msrC, tetL, tetM, vanA.</i> DAP R, LNZ S, TED S, TEC R, VAN R					
	HBSJRP13	Origem clínica, isolado de lavado brônquio alveolar. ST896, <i>ermB</i> , <i>msrC</i> , <i>tetL</i> , <i>tetM</i> , <i>vanA</i> . DAP S, LNZ S, TED S, TEC R, VAN R					
	HBSJRP14	Origem clínica, isolado de urina. vanA. DAP S, LNZ S, TED S, TEC R, VAN R					

Tabela 25 - Descrição das bactérias gram-positivas utilizadas no projeto

(continua)

(continuação)

	, 0	
Espécie	Linhagem	Descrição
	HBSJRP23	Origem clínica, isolado de urina.
		DAP S, LNZ S, TED S, TEC S, VAN S
	HBSJRP11	Origem clínica, isolado de urina.
		DAP S, LNZ S, TED S, TEC S, VAN S
	ATCC 700221	Isolado de fezes humanas.
		vanA, VAN R

Tabela 25 - Descrição das bactérias gram-positivas utilizadas no projeto

American Type Culture Collection (ATCC). Tipo de sequência (ST). Contém elemento VanA de resistência à vancomicina (vanA), Staphylococcus aureus resistente à meticilina (MRSA); S. aureus com resistência intermediária à vancomicina (VISA);

R, resistente; S, sensível, I, intermediário;

Amicacina (AK), Amoxicilina – clavulanato (AMC), Ampicilina (AMP), Ampicilina-sulbactam (SAM); Aztreonam (ATM), Cefepima (FEP), Cefotaxima (CTX), Cefoxitina (FOX), Cefpodoxima (CPD), Ceftazidima (CAZ), Ceftriaxona (CRO), Cefuroxima (CXM), Ciprofloxacina (CIP), Cloranfenicol (CHL), Colistina (CL), Daptomicina (DAP), Eritromicina (ERY), Ertapenem (ETP), Gentamicina (CN), Imipenem (IMI), Linezolida (LNZ), Meropenem (MEM), Moxifloxacina (MXF), Nitrofurantoína (NIT), Piperacilina (PIP), Piperacilina-tazobactam (PTZ), Polimixina B (PB), Tedizolida (TED), Teicoplanina (TEC), Tetraciclina (TET), Tigeciclina (TIG), Trimetoprim-sulfametoxazol (SXT), Vancomicina (VAN)

Fonte: Elaborada pela autora

Tabela 26 - Descrição das bactérias gram-negativas utilizadas no projeto

Espécie	Linhagem	Descrição
	ATCC 700603	Origem clínica, isolado de urina. <i>bla</i> _{KPC} -, <i>bla</i> _{SHV-18} + AMP R, ATM R, FOX R, CPD R, CAZ R, CHL R, PIP R, TET R
	ATCC BAA1705	Origem clínica, isolado de urina. $bla_{KPC}+$
	BHKPC50	Origem clínica, isolado de urina. AK R, AMP R, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP R, CL R, ETP R, CN R, IMI R, MEM R, PTZ R, TIG R
	RPKp01	Origem clínica, isolado de urina. AK S, AMP S, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP R, CL S, ETP R, CN S, IMI R, MEM R, PTZ R, TIG R
зе	RPKp02	Origem clínica, isolado de swab retal. AK I, AMP R, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP R, CL R, ETP R, CN S, IMI R, MEM R, PTZ R, TIG I
reumoni	RPKp09	Origem clínica, isolado de ferida cirúrgica. AK S, AMC R, AMP R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP S, CL S, ETP S, CN S, IMI R, MEM R, PTZ R, TIG R,
K. pi	RPKp18	Origem clínica, isolado de sangue. AK S, AMP R, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP S, CL R, ETP R, CN S, IMI R, MEM R, PTZ R, TIG S
	NDM-1	NDM +
	AMKP4	Origem clínica. <i>bla</i> _{KPC-2} em novo ambiente genético CL R, ETP R, IMI R, MEM R, PB R, TIG S
	AMKP7	Origem clínica. <i>bla</i> _{KPC-2} em novo ambiente genético CL S, ETP R, IMI R, MEM R, PB S, TIG S
	AMKP10	Origem clínica. ST2306, <i>bla</i> _{KPC-2} , <i>bla</i> _{CTX-M8} , <i>bla</i> _{SHV-11} , <i>tetA</i> , <i>aph</i> (3')- <i>la</i> , <i>catB</i> , <i>aac</i> (6') <i>Ib-cr</i> , <i>fosA</i> , <i>bla</i> _{CTX-M15} , <i>oqxab</i> , <i>qnrS1</i> , <i>sul1</i> , <i>bla</i> _{OXA-1} , <i>aadA2</i> , <i>dfrA12</i> , <i>mph</i> (A), <i>mgr</i> B
		CIP R, CL R, ETP R, CN S, IMI R, MEM R, PB R, TIG S
	ATCC 35218	Isolado canino. TEM-1 +
	RPEc01	Origem clínica, isolado de urina. AK R, AMP R, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP S, CL S, ETP R, CN R, IMI R, MEM R, PTZ R, TIG S
	BHKPC10	Origem clínica, isolado de urina. AK S, AMC R, FEP R, CAZ R, CIP S, CN S, MEM R, NIT S, SXT S.

(continua)

(continuação)

	, 0	
Espécie	Linhagem	Descrição
	AMEc8	Origem clínica, isolado de urina. AK S, AMP R, SAM R, FEP R, FOX R, CAZ R, CRO R, CXM R, CIP R, CL S, ETP R, CN R, IMI S, MEM S, PTZ R, TIG I
	AMEc49	Origem clínica, isolado de empiema subdural de crânio. AK S, AMP R, SAM I, FEP S, FOX S, CAZ S, CRO R, CXM R, CIP S, CL S, MEM S, PTZ S, TIG S
	AMEc60	Origem clínica, isolado de secreção traqueal. AK S, AMP R, SAM R, FEP R, FOX S, CAZ R, CRO R, CXM R, CIP R, CL S, MEM S, PTZ S, TIG S
	ATCC 19606	Origem clínica, isolado de urina.
	ACI50	Origem clínica. AK R, SAM R, FEP R, CTX R, CAZ R, CRO R, CIP R, CL R, CN R, IMI R, MEM R, PTZ R PB R, TET I, TIG R, SXT R
	ACI44	Origem clínica. AK R, SAM R, FEP R, CTX R, CAZ R, CRO R, CIP R, CL S, CN R, IMI R, MEM R, PTZ R, PB S, TET R, TIG R, SXT R
nannii	ACI51	Origem clínica. AK R, SAM R, FEP R, CTX R, CAZ R, CRO R, CIP R, CL R, CN R, IMI R, MEM R, PTZ R PB R, TET I, TIG R, SXT R
A. bau	ACI40	Origem clínica. AK R, SAM R, FEP R, CTX R, CAZ R, CRO R, CIP R, CL S, CN R, IMI R, MEM R, PTZ R, PB S, TET R, TIG R, SXT R
	ACI42	Origem clínica. AK R, SAM R, FEP R, CTX R, CAZ R, CRO R, CIP R, CL S, CN R, IMI R, MEM R, PTZ R, PB S, TET R, TIG R, SXT R
	AM83	Origem clínica, isolado de secreção traqueal. AK R, SAM R, FEP R, CAZ R, CRO R, CL S
	AM87	Origem clínica, isolado de urina. AK S, SAM R, FEP R, CAZ R, CRO R, CIP R, CL S
	ATCC 27853	Origem clínica, isolado de sangue. AmpC induzível
inosa	RPPse09	Origem clínica, isolado de swab retal. AK S, FEP S, CAZ S, CIP S, CL S, CN S, IMI R, MEM R, PTZ S
aerug	RPPse07	Origem clínica, isolado de urina. AK R, FEP R, CAZ I, CIP R, CL S, CN R, IMI R, MEM R, PTZ I
Р.	PSE6	KPC+
	PAO1	

T 1 1 0 C	D · ~	1 1 . / .			• .
I ahala 76	L DACOTICOO A	dae hactoriae	arom nogotives	11111179/196 no	nroiato
1 abcia 20 -	Descritation	uas Dacientas	gram-negativas	uunzauas no	DIDICIO
			0		

American Type Culture Collection (ATCC). Tipo de sequência (ST). R, resistente; S, sensível, I, intermediário;

Amicacina (AK), Amoxicilina – clavulanato (AMC), Ampicilina (AMP), Ampicilina-sulbactam (SAM); Aztreonam (ATM), Cefepima (FEP), Cefotaxima (CTX), Cefoxitina (FOX), Cefpodoxima (CPD), Ceftazidima (CAZ), Ceftriaxona (CRO), Cefuroxima (CXM), Ciprofloxacina (CIP), Cloranfenicol (CHL), Colistina (CL), Daptomicina (DAP), Eritromicina (ERY), Ertapenem (ETP), Gentamicina (CN), Imipenem (IMI), Linezolida (LNZ), Meropenem (MEM), Moxifloxacina (MXF), Nitrofurantoína (NIT), Piperacilina (PIP), Piperacilina-tazobactam (PTZ), Polimixina B (PB), Tedizolida (TED), Teicoplanina (TEC), Tetraciclina (TET), Tigeciclina (TIG), Trimetoprim-sulfametoxazol (SXT), Vancomicina (VAN)

Fonte: Elaborada pela autora

Figura 49 - Espectros de Dicroísmo Circular (CD) de NA1897 em solução aquosa (tampão fosfato pH 7) e na presença dos detergentes HPS: N-hexadecil-N,N-dimetil-3-amônio-1-propanosulfonato, SDS: dodecil sulfato de sódio e de vesículas fosfolipídicas de POPG: 1-Palmitoil-2-Oleoil-3-Fosfoglicerol.

Fonte: Elaborada pela autora

Figura 50 - Espectros de Dicroísmo Circular (CD) de Pep20 em solução aquosa (tampão fosfato pH 7) e na presença dos detergentes HPS: N-hexadecil-N,N-dimetil-3-amônio-1-propanosulfonato, SDS: dodecil sulfato de sódio e de vesículas fosfolipídicas de POPG: 1-Palmitoil-2-Oleoil-3-Fosfoglicerol.

Fonte: Elaborada pela autora

ANEXO C – Painéis de ensaios fenotípicos usados para análise metabólica no Biolog

Phenotype MicroArrays™

A1 Negative Control	A2 L-Arabinose	A3 N-Acetyl-D- Glucosamine	A4 D-Saccharic Acid	A5 Succinic Acid	A6 D-Galactose	A7 L-Aspartic Acid	A8 L-Proline	A9 D-Alanine	A10 D-Trehalose	A11 D-Mannose	A12 Dulcitol
B1 D-Serine	B2 D-Sorbitol	B3 Glycerol	B4 L-Fucose	B5 D-Glucuronic Acid	B6 D-Gluconic Acid	B7 D,L-α-Glycerol- Phosphate	B8 D-Xylose	B9 L-Lactic Acid	B10 Formic Acid	B11 D-Mannitol	B12 L-Glutamic Acid
C1 D-Glucose-6- Phosphate	C2 D-Galactonic Acid-γ-Lactone	C3 D,L-Malic Acid	C4 D-Ribose	C5 Tween 20	C6 L-Rhamnose	C7 D-Fructose	C8 Acetic Acid	C9 α-D-Glucose	C10 Maltose	C11 D-Melibiose	C12 Thymidine
D-1 L-Asparagine	D2 D-Aspartic Acid	D3 D-Glucosaminic Acid	D4 1,2-Propanediol	D5 Tween 40	D6 α-Keto-Glutaric Acid	D7 α-Keto-Butyric Acid	D8 α-Methyl-D- Galactoside	D9 α-D-Lactose	D10 Lactulose	D11 Sucrose	D12 Uridine
E1 L-Glutamine	E2 m-Tartaric Acid	E3 D-Glucose-1- Phosphate	E4 D-Fructose-6- Phosphate	E5 Tween 80	E6 α-Hydroxy Glutaric Acid-γ- Lactone	E7 α-Hydroxy Butyric Acid	E8 B-Methyl-D- Glucoside	E9 Adonitol	E10 Maltotriose	E11 2-Deoxy Adenosine	E12 Adenosine
F1 Glycyl-L-Aspartic Acid	F2 Citric Acid	F3 myo-Inositol	F4 D-Threonine	F5 Fumaric Acid	F6 Bromo Succinic Acid	F7 Propionic Acid	F8 Mucic Acid	F9 Glycolic Acid	F10 Glyoxylic Acid	F11 D-Cellobiose	F12 Inosine
G1 Glycyl-L- Glutamic Acid	G2 Tricarballylic Acid	G3 L-Serine	G4 L-Threonine	G5 L-Alanine	G6 L-Alanyl-Glycine	G7 Acetoacetic Acid	G8 N-Acetyl-6-D- Mannosamine	G9 Mono Methyl Succinate	G10 Methyl Pyruvate	G11 D-Malic Acid	G12 L-Malic Acid
H1 Glycyl-L-Proline	H2 p-Hydroxy Phenyl Acetic Acid	H3 m-Hydroxy Phenyl Acetic Acid	H4 Tyramine	H5 D-Psicose	H6 L-Lyxose	H7 Glucuronamide	H8 Pyruvic Acid	H9 L-Galactonic Acid-γ-Lactone	H10 D-Galacturonic Acid	H11 Phenylethyl- amine	H12 2-Aminoethanol
PM2A	MicroF	late™	Carbor	Sourc	ces			I			
A1 Negative Control	A2 Chondroitin Sulfate C	A3 α-Cyclodextrin	A4 B-Cyclodextrin	A5 γ-Cyclodextrin	A6 Dextrin	A7 Gelatin	A8 Glycogen	A9 Inulin	A10 Laminarin	A11 Mannan	A12 Pectin
B1 N-Acetyl-D- Galactosamine	B2 N-Acetyl- Neuraminic Acid	B3 β-D-Allose	B4 Amygdalin	B5 D-Arabinose	B6 D-Arabitol	B7 L-Arabitol	B8 Arbutin	B9 2-Deoxy-D- Ribose	B10 i-Erythritol	B11 D-Fucose	B12 3-0-8-D- Galactopyranosyl- D-Arabinose
C1 Gentiobiose	C2 L-Glucose	C3 Lactitol	C4 D-Melezitose	C5 Maltitol	C6 α-Methyl-D- Glucoside	C7 β-Methyl-D- Galactoside	C8 3-Methyl Glucose	C9 B-Methyl-D- Glucuronic Acid	C10 α-Methyl-D- Mannoside	C11 8-Methyl-D- Xyloside	C12 Palatinose
D1 D-Raffinose	D2 Salicin	D3 Sedoheptulosan	D4 L-Sorbose	D5 Stachyose	D6 D-Tagatose	D7 Turanose	D8 Xylitol	D9 N-Acetyl-D- Glucosaminitol	D10 γ-Amino Butyric Acid	D11 δ-Amino Valeric Acid	D12 Butyric Acid
E1 Capric Acid	E2 Caproic Acid	E3 Citraconic Acid	E4 Citramalic Acid	E5 D-Glucosamine	E6 2-Hydroxy Benzoic Acid	E7 4-Hydroxy Benzoic Acid	E8 B-Hydroxy Butyric Acid	E9 Glycolic Acid	E10 α-Keto-Valeric Acid	E11 Itaconic Acid	E12 5-Keto-D- Gluconic Acid
F1 D-Lactic Acid Methyl Ester	F2 Malonic Acid	F3 Melibionic Acid	F4 Oxalic Acid	F5 Oxalomalic Acid	F6 Quinic Acid	F7 D-Ribono-1,4- Lactone	F8 Sebacic Acid	F9 Sorbic Acid	F10 Succinamic Acid	F11 D-Tartaric Acid	F12 L-Tartaric Acid
G1 Acetamide	G2 L-Alaninamide	G3 N-Acetyl-L- Glutamic Acid	G4 L-Arginine	G5 Glycine	G6 L-Histidine	G7 L-Homoserine	G8 Hydroxy-LProline	G9 L-Isoleucine	G10 L-Leucine	G11 L-Lysine	G12 L-Methionine
H1 L-Ornithine	H2 L-Phenylalanine	H3 L-Pyroglutamic Acid	H4 L-Valine	H5 D,L-Carnitine	H6 Sec-Butylamine	H7 D,L-Octopamine	H8 Putrescine	H9 Dihydroxy Acetone	H10 2,3-Butanediol	H11 2,3-Butanedione	H12 3-Hydroxy-2- Butanone

PM1 MicroPlate™ Carbon Sources

Phenotype MicroArrays™

PM3B MicroPlate™ Nitrogen Sources

A1 Negative Control	A2 Ammonia	A3 Nitrite	A4 Nitrate	A5 Urea	A6 Biuret	A7	A8	A9	A10	A11	A12
B1 L-Glutamine	B2 Glycine	B3 L-Histidine	B4 L-Isoleucine	B5 L-Leucine	B6 L-Lysine	87 L-Methionine	B8 L-Phenylalanine	B9 L-Proline	B10 L-Serine	B11 L-Threonine	B12 L-Tryptophan
C1 L-Tyrosine	C2 L-Valine	C3 D-Alanine	C4 D-Asparagine	C5 D-Aspartic Acid	C6 D-Glutamic Acid	C7 D-Lysine	C8 D-Serine	C9 D-Valine	C10 L-Citrulline	C11 L-Homoserine	C12 L-Omithine
D1 N-Acetyl-L- Glutamic Acid	D2 N-Phthaloyl-L- Glutamic Acid	D3 L-Pyroglutamic Acid	D4 Hydroxylamine	D5 Methylamine	D6 N-Amylamine	D7 N-Butylamine	D8 Ethylamine	D9 Ethanolamine	D10 Ethylenediamine	D11 Putrescine	D12 Agmatine
E1 Histamine	E2 β-Phenylethyl- amine	E3 Tyramine	E4 Acetamide	E5 Formamide	E6 Glucuronamide	E7 D,L-Lactamide	E8 D-Glucosamine	E9 D-Galactosamine	E10 D-Mannosamine	E11 N-Acetyl-D- Glucosamine	E12 N-Acetyl-D- Galactosamine
F1 N-Acetyl-D- Mannosamine	F2 Adenine	F3 Adenosine	F4 Cytidine	F5 Cytosine	F6 Guanine	F7 Guanosine	F8 Thymine	F9 Thymidine	F10 Uracil	F11 Uridine	F12 Inosine
G1 Xanthine	G2 Xanthosine	G3 Uric Acid	G4 Alloxan	G5 Allantoin	G6 Parabanic Acid	G7 D,L-α-Amino-N- Butyric Acid	G8 γ-Amino-N- Butyric Acid	G9 ε-Amino-N- Caproic Acid	G10 D,L-α-Amino- Caprylic Acid	G11 δ-Amino-N- Valeric Acid	G12 α-Amino-N- Valeric Acid
H1 Ala-Asp	H2 Ala-Gin	H3 Ala-Glu	H4 Ala-Gly	H5 Ala-His	H6 Ala-Leu	H7 Ala-Thr	H8 Gly-Asn	H9 Gly-Gln	H10 Gly-Glu	H11 Gly-Met	H12 Met-Ala

PM4A MicroPlate[™] Phosphorus and Sulfur Sources

			-								
A1 Negative Control	A2 Phosphate	A3 Pyrophosphate	A4 Trimeta Phosphate	A5 Tripoly Phosphate	A6 Triethyl Phosphate	A7 Hypophosphite	A8 Adenosine-2'- monophosphate	A9 Adenosine-3'- monophosphate	A10 Adenosine-5'- monophosphate	A11 Adenosine-2',3'- cyclic monophosphate	A12 Adenosine-3',5'- cyclic monophosphate
B1 Thiophosphate	B2 Dithiophosphate	B3 D,L-α-Glycerol Phosphate	B4 β-Glycerol Phosphate	B5 Carbamyl Phosphate	B6 D-2-Phospho- Glyceric Acid	B7 D-3-Phospho- Glyceric Acid	B8 Guanosine-2'- monophosphate	B9 Guanosine-3'- monophosphate	B10 Guanosine- 5' - monophosphate	B11 Guanosine- 2',3'- cyclic monophosphate	B12 Guanosine- 3',5'- cyclic monophosphate
C1 Phosphoenol Pyruvate	C2 Phospho- Glycolic Acid	C3 D-Glucose-1- Phosphate	C4 D-Glucose-6- Phosphate	C5 2-Deoxy-D- Glucose-6- Phosphate	C6 D-Glucosamine- 6-Phosphate	C7 6-Phospho- Gluconic Acid	C8 Cytidine-2- monophosphate	C9 Cytidine-3- monophosphate	C10 Cytidine-5'- monophosphate	C11 Cytidine-2',3'- cyclic monophosphate	C12 Cytidine-3',5'- cyclic monophosphate
D1 D-Mannose-1- Phosphate	D2 D-Mannose-6- Phosphate	D3 Cysteamine-S- Phosphate	D4 Phospho-L- Arginine	D5 O-Phospho-D- Serine	D6 O-Phospho-L- Serine	D7 O-Phospho-L- Threonine	D8 Uridine-2'- monophosphate	D9 Uridine-3'- monophosphate	D10 Uridine-5'- monophosphate	D11 Uridine-2',3'- cyclic monophosphate	D12 Uridine-3',5'- cyclic monophosphate
E1 O-Phospho-D- Tyrosine	E2 O-Phospho-L- Tyrosine	E3 Phosphocreatine	E4 Phosphoryl Choline	E5 O-Phosphoryl- Ethanolamine	E6 Phosphono Acetic Acid	E7 2-Aminoethyl Phosphonic Acid	E8 Methylene Diphosphonic Acid	E9 Thymidine-3'- monophosphate	E10 Thymidine-5'- monophosphate	E11 Inositol Hexaphosphate	E12 Thymidine 3',5'- cyclic monophosphate
F1 Negative Control	F2 Sulfate	F3 Thiosulfate	F4 Tetrathionate	F5 Thiophosphate	F6 Dithiophosphate	F7 L-Cysteine	F8 D-Cysteine	F9 L-Cysteinyl- Glycine	F10 L-Cysteic Acid	F11 Cysteamine	F12 L-Cysteine Sulfinic Acid
G1 N-Acetyl-L- Cysteine	G2 S-Methyl-L- Cysteine	G3 Cystathionine	G4 Lanthionine	G5 Glutathione	G6 D,L-Ethionine	G7 L-Methionine	G8 D-Methionine	G9 Glycyl-L- Methionine	G10 N-Acetyl-D,L- Methionine	G11 L-Methionine Sulfoxide	G12 L-Methionine Sulfone
H1 L-Djenkolic Acid	H2 Thiourea	H3 1-Thio-8-D- Glucose	H4 D,L-Lipoamide	H5 Taurocholic Acid	H6 Taurine	H7 Hypotaurine	H8 P-Amino Benzene Sulfonic Acid	H9 Butane Sulfonic Acid	H10 2-Hydroxyethane Sulfonic Acid	H11 Methane Sulfonic Acid	H12 Tetramethylene Sulfone

Phenotype MicroArrays™

PM5 MicroPlate™ Nutrient Supplements

AZ Positive Control	A3 L-Alanine	A4 L-Arginine	A5 L-Asparagine	A6 L-Aspartic Acid	A/ L-Cysteine	Ao L-Glutamic Acid	Adenosine-3',5'- cyclic monophosphate	Adenine	Adenosine	2'-Deoxy Adenosine
B2 Glycine	B3 L-Histidine	B4 L-Isoleucine	B5 L-Leucine	B6 L-Lysine	B7 L-Methionine	B8 L-Phenylalanine	B9 Guanosine-3',5'- cyclic monophosphate	B10 Guanine	B11 Guanosine	B12 2'-Deoxy Guanosine
C2 L-Serine	C3 L-Threonine	C4 L-Tryptophan	C5 L-Tyrosine	C6 L-Valine	C7 L-Isoleucine + L-Valine	C8 trans-4-Hydroxy L-Proline	C9 (5) 4-Amino Imidazole-4(5)- Carboxamide	C10 Hypoxanthine	C11 Inosine	C12 2'-Deoxy Inosine
D2 L-Citrulline	D3 Chorismic Acid	D4 (-)Shikimic Acid	D5 L-Homoserine Lactone	D6 D-Alanine	D7 D-Aspartic Acid	D8 D-Glutamic Acid	D9 D,L-α,ε- Diaminopimelic Acid	D10 Cytosine	D11 Cytidine	D12 2'-Deoxy Cytidine
E2 Spermidine	E3 Spermine	E4 Pyridoxine	E5 Pyridoxal	E6 Pyridoxamine	E7 β-Alanine	E8 D-Pantothenic Acid	E9 Orotic Acid	E10 Uracil	E11 Uridine	E12 2'-Deoxy Uridine
F2 Nicotinic Acid	F3 Nicotinamide	F4 B-Nicotinamide Adenine Dinucleotide	F5 δ-Amino- Levulinic Acid	F6 Hematin	F7 Deferoxamine Mesylate	F8 D-(+)-Glucose	F9 N-Acetyl D-Glucosamine	F10 Thymine	F11 Glutathione (reduced form)	F12 Thymidine
G2 D-Biotin	G3 Cyano- Cobalamine	G4 p-Amino-Benzoic Acid	G5 Folic Acid	G6 Inosine + Thiamine	G7 Thiamine	G8 Thiamine Pyrophosphate	G9 Riboflavin	G10 Pyrrolo-Quinoline Quinone	G11 Menadione	G12 myo-Inositol
H2 D,L-α-Hydroxy- Butyric Acid	H3 α-Keto- Butyric Acid	H4 Caprylic Acid	H5 D,L-α-Lipoic Acid (oxidized form)	H6 D,L-Mevalonic Acid	H7 D,L-Carnitine	H8 Choline	H9 Tween 20	H10 Tween 40	H11 Tween 60	H12 Tween 80
	AZ Positive Control B2 Glycine C2 L-Serine D2 L-Citrulline E2 Spermidine F2 Nicotinic Acid G2 D-Biotin H2 D,L-α-Hydroxy- Butyric Acid	AZ Positive Control AJ Positive Control L-Alanine B2 B3 Glycine L-Histidine C2 C3 L-Serine D3 D2 D3 L-Citrulline D3 D2 Chorismic Acid E2 Spermiline F2 Spermine P-Biotin G3 Cyano- Cobalamine H2 H3 L-Ci-sHydroxy- Acid	Az A3 A3 A4 Positive Control A4anine Arginine B2 B3 B4 Glycine B3 L+locleucine C2 C3 L-decenine L-Serine C3 C4 L-Ctrutlline C3 D4 L-Ctrutlline C3 D4 Spermidine Spermine Pyridoxine F2 E3 F4 Shicotinic Acid Spermine F4 D-Biotin Cyano- Cobalamine P-Amino-Benzoic C3 Cyano- Cobalamine Acid H2 H3 Acid H2 H3 Acid	AZ Positive Control AJ Positive Control L'Alanine L'Arginine L'Asparagine B2 B3 L'Histidine L'Asparagine B2 Glycine B3 L'Histidine L'Asparagine C2 C3 L'Tryptophan C5 L-Serine Chorismic Acid D4 C5 D2 D3 D4 D5 L-Citrulline D3 D4 L'Homosarine D2 Chorismic Acid C4 Spermine F2 Spermine E4 F5 Spermine F4 B-Neotinamide S-Amino-Azterine Cyano- Cobalamine G4 C4 D-Biotin Cyano- G2 D-Acid D-Biotin Cobalamine G4 H5 H2 D-Shotin G3 Caprylic Acid H2 D-Shotin Acid Caprylic Acid	AZ Positive Control A3 Positive Control Alanine Aginine Asparagine Asparagine B2 B3 B4 L-Arginine L-Asparagine Idespartic Acid B2 B3 L-Histidine B4 L-Leucine E-Lysine C2 C3 L-Threenine C4 L-Eucine C4 L-Serine C-Threenine C4 L-Tyrosine C4 D2 Chorismic Acid D4 D5 D4 L-Citrulline D3 C4 L-Homoserine D-Alanine E2 E3 Spermine F4 Byridoxal F5 Spermidine F3 Nicotinamide Ademine Ademine D-Biotin C3 C4 D-Copylic Acid F6 D-Biotin C3 C4 B-Acid Brine + Thiamine C2 C3 C4 D_L-C-Lipcic Acid DMevalonic R2 D-Biotin C3 C4 B-Acid Biotine + Thiamine C3 Calanine Acid C5 F6 Incaine + Thiamine C4 C4 Capylic Acid DC-Lipcic Acid DMevalonic Acid	Acception CAlamine PArginine PArginine <th< td=""><td>C2 C3 C4 C4 C5 C4 <thc4< th=""> C4 C4 <thc< td=""><td>Additive Control Adamine Arginine Asparagine Asparagine Asparagine Cost Cost Accuration Accuration B2 B3 B4 L-Aspinine B5 B5 B7 L-Methionine B8 B9 C2 C3 L-Histidine L-Isoleucine L-Leucine B6 L-Leucine C7 C4 Definitionine C9 C2 C3 L-Threonine L-Tryptophan C5 C5 L-Valine C7 C6 C6 C1 C2 C3 C4 C5 C1 C1<!--</td--><td>Adamine Adamine Adamine Adamine Adamine Positive Control Adamine Adamine Adamine Adamine Adamine B2 B3 B4 B5 B4 B5 B4 B4<td>Addamine Addamine Adamine Adamine</td></td></td></thc<></thc4<></td></th<>	C2 C3 C4 C4 C5 C4 C4 <thc4< th=""> C4 C4 <thc< td=""><td>Additive Control Adamine Arginine Asparagine Asparagine Asparagine Cost Cost Accuration Accuration B2 B3 B4 L-Aspinine B5 B5 B7 L-Methionine B8 B9 C2 C3 L-Histidine L-Isoleucine L-Leucine B6 L-Leucine C7 C4 Definitionine C9 C2 C3 L-Threonine L-Tryptophan C5 C5 L-Valine C7 C6 C6 C1 C2 C3 C4 C5 C1 C1<!--</td--><td>Adamine Adamine Adamine Adamine Adamine Positive Control Adamine Adamine Adamine Adamine Adamine B2 B3 B4 B5 B4 B5 B4 B4<td>Addamine Addamine Adamine Adamine</td></td></td></thc<></thc4<>	Additive Control Adamine Arginine Asparagine Asparagine Asparagine Cost Cost Accuration Accuration B2 B3 B4 L-Aspinine B5 B5 B7 L-Methionine B8 B9 C2 C3 L-Histidine L-Isoleucine L-Leucine B6 L-Leucine C7 C4 Definitionine C9 C2 C3 L-Threonine L-Tryptophan C5 C5 L-Valine C7 C6 C6 C1 C2 C3 C4 C5 C1 </td <td>Adamine Adamine Adamine Adamine Adamine Positive Control Adamine Adamine Adamine Adamine Adamine B2 B3 B4 B5 B4 B5 B4 B4<td>Addamine Addamine Adamine Adamine</td></td>	Adamine Adamine Adamine Adamine Adamine Positive Control Adamine Adamine Adamine Adamine Adamine B2 B3 B4 B5 B4 B5 B4 B4 <td>Addamine Addamine Adamine Adamine</td>	Addamine Adamine Adamine

PM6 MicroPlate™ Peptide Nitrogen sources

A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Ala-Ala	A4 Ala-Arg	A5 Ala-Asn	A6 Ala-Glu	A7 Ala-Gly	A8 Ala-His	A9 Ala-Leu	A10 Ala-Lys	A11 Ala-Phe	A12 Ala-Pro
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Ala-Ser	Ala-Thr	Ala-Trp	Ala-Tyr	Arg-Ala	Arg-Arg	Arg-Asp	Arg-Gin	Arg-Glu	Arg-lie	Arg-Leu	Arg-Lys
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Arg-Met	Arg-Phe	Arg-Ser	Arg-Trp	Arg-Tyr	Arg-Val	Asn-Glu	Asn-Val	Asp-Asp	Asp-Glu	Asp-Leu	Asp-Lys
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Asp-Phe	Asp-Trp	Asp-Val	Cys-Gly	Gin-Gin	Gin-Giy	Glu-Asp	Glu-Glu	Glu-Gly	Glu-Ser	Glu-Trp	Glu-Tyr
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Glu-Val	Gly-Ala	Gly-Arg	Gly-Cys	Gly-Gly	Gly-His	Gly-Leu	Gly-Lys	Gly-Met	Gly-Phe	Gly-Pro	Gly-Ser
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Gly-Thr	Gly-Trp	Gly-Tyr	Gly-Val	His-Asp	His-Gly	His-Leu	His-Lys	His-Met	His-Pro	His-Ser	His-Trp
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
His-Tyr	His-Val	Ile-Ala	Ile-Arg	Ile-Gin	Ile-Gly	Ile-His	lle-lle	lle-Met	lle-Phe	Ile-Pro	lle-Ser
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
lle-Trp	Ile-Tyr	lle-Val	Leu-Ala	Leu-Arg	Leu-Asp	Leu-Glu	Leu-Gly	Leu-lle	Leu-Leu	Leu-Met	Leu-Phe

C1 Lys-Gly

D1 Pro-Glu

E1 Thr-Phe

F1 Val-Ser

G1 γ-Glu-Gly

H1 Gly-Gly-Ala C2 Lys-Met

D2 Pro-lle

E2 Thr-Ser

F2 B-Ala-Ala

G2 γ-D-Glu-Gly

H2 Gly-Gly-D-Leu C3 Met-Thr

D3 Pro-Lys

E3 Trp-Val

F3 B-Ala-Gly

G3 Gly-D-Ala

H3 Gly-Gly-Gly C4 Met-Tyr

D4 Pro-Ser

E4 Tyr-lle

F4 6-Ala-His

G4 Gly-D-Asp

H4 Gly-Gly-lle C5 Phe-Asp

D5 Pro-Trp

E5 Tyr-Val

F5 Met-8-Ala

G5 Gly-D-Ser

H5 Gly-Gly-Leu

PM7 MicroPlate™ Peptide Nitrogen sources

A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Leu-Ser	A4 Leu-Trp	A5 Leu-Val	A6 Lys-Ala	A7 Lys-Arg	A8 Lys-Glu	A9 Lys-lle	A10 Lys-Leu	A11 Lys-Lys	A12 Lys-Phe
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Lys-Pro	Lys-Ser	Lys-Thr	Lys-Trp	Lys-Tyr	Lys-Val	Met-Arg	Met-Asp	Met-Gin	Met-Glu	Met-Gly	Met-His
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Met-lle	Met-Leu	Met-Lys	Met-Met	Met-Phe	Met-Pro	Met-Trp	Met-Val	Phe-Ala	Phe-Gly	Phe-lle	Phe-Phe
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Phe-Pro	Phe-Ser	Phe-Trp	Pro-Ala	Pro-Asp	Pro-Gin	Pro-Gly	Pro-Hyp	Pro-Leu	Pro-Phe	Pro-Pro	Pro-Tyr
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Ser-Ala	Ser-Gly	Ser-His	Ser-Leu	Ser-Met	Ser-Phe	Ser-Pro	Ser-Ser	Ser-Tyr	Ser-Val	Thr-Ala	Thr-Arg
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Thr-Glu	Thr-Gly	Thr-Leu	Thr-Met	Thr-Pro	Trp-Ala	Trp-Arg	Trp-Asp	Trp-Glu	Trp-Gly	Trp-Leu	Trp-Lys
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
Trp-Phe	Trp-Ser	Trp-Trp	Trp-Tyr	Tyr-Ala	Tyr-Gin	Tyr-Glu	Tyr-Gly	Tyr-His	Tyr-Leu	Tyr-Lys	Tyr-Phe
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
Tyr-Trp	Tyr-Tyr	Val-Arg	Val-Asn	Val-Asp	Val-Gly	Val-His	Val-Ile	Val-Leu	Val-Tyr	Val-Val	y-Glu-Gly
PM8 N	 licroPla	ate™	Peptid	e Nitro	gen so	urces					
A1 Negative Control	A2 Positive Control: L-Glutamine	A3 Ala-Asp	A4 Ala-Gin	A5 Ala-lle	A6 Ala-Met	A7 Ala-Val	A8 Asp-Ala	A9 Asp-Gin	A10 Asp-Gly	A11 Glu-Ala	A12 Gly-Asn
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Gly-Asp	Gly-lle	His-Ala	His-Glu	His-His	Ile-Asn	Ile-Leu	Leu-Asn	Leu-His	Leu-Pro	Leu-Tyr	Lys-Asp

C7 Gin-Giu

D7 Ser-Asn

E7 Val-Gin

F7 D-Ala-D-Ala

G7 Gly-D-Val

H7 Val-Tyr-Val

C6 Phe-Glu

D6 Pro-Val

E6 Val-Ala

F6 β-Ala-Phe

G6 Gly-D-Thr

H6 Gly-Gly-Phe C8 Phe-Met

D8 Ser-Asp

E8 Val-Glu

F8 D-Ala-Gly

G8 Leu-B-Ala

H8 Gly-Phe-Phe C9 Phe-Tyr

D9 Ser-Gin

E9 Val-Lys

F9 D-Ala-Leu

G9 Leu-D-Leu

H9 Leu-Gly-Gly C10 Phe-Val

D10 Ser-Glu

E10 Val-Met

F10 D-Leu-D-Leu

G10 Phe-8-Ala

H10 Leu-Leu-Leu C11 Pro-Arg

D11 Thr-Asp

E11 Val-Phe

F11 D-Leu-Gly

G11 Ala-Ala-Ala

H11 Phe-Gly-Gly C12 Pro-Asn

D12 Thr-Gin

E12 Val-Pro

F12 D-Leu-Tyr

G12 D-Ala-Gly-Gly

H12 Tyr-Gly-Gly

Phenotype MicroArrays™

PM9 MicroPlate™ Osmolytes

A1 NaCl 1%	A2 NaCl 2%	A3 NaCl 3%	A4 NaCl 4%	A5 NaCl 5%	A6 NaCI 5.5%	A7 NaCl 6%	A8 NaCl 6.5%	A9 NaCl 7%	A10 NaCl 8%	A11 NaCl 9%	A12 NaCl 10%
B1 NaCl 6%	B2 NaCl 6% + Betaine	B3 NaCl 6% + N-N Dimethyl Glycine	B4 NaCl 6% + Sarcosine	B5 NaCl 6% + Dimethyl sulphonyl propionate	B6 NaCl 6% + MOPS	B7 NaCl 6% + Ectoine	B8 NaCl 6% + Choline	B9 NaCl 6% + Phosphoryl Choline	B10 NaCl 6% + Creatine	B11 NaCl 6% + Creatinine	B12 NaCl 6% + L- Carnitine
C1 NaCl 6% + KCl	C2 NaCl 6% + L-Proline	C3 NaCl 6% + N-Acetyl L-Glutamine	C4 NaCl 6% + β- Glutamic Acid	C5 NaCl 6% + γ–Amino-N- Butyric Acid	C6 NaCl 6% + Glutathione	C7 NaCl 6% + Glycerol	C8 NaCl 6% + Trehalose	C9 NaCl 6% + Trimethylamine- N-oxide	C10 NaCl 6% + Trimethylamine	C11 NaCl 6% + Octopine	C12 NaCl 6% + Trigonelline
D1 Potassium chloride 3%	D2 Potassium chloride 4%	D3 Potassium chloride 5%	D4 Potassium chloride 6%	D5 Sodium sulfate 2%	D6 Sodium sulfate 3%	D7 Sodium sulfate 4%	D8 Sodium sulfate 5%	D9 Ethylene glycol 5%	D10 Ethylene glycol 10%	D11 Ethylene glycol 15%	D12 Ethylene glycol 20%
E1 Sodium formate 1%	E2 Sodium formate 2%	E3 Sodium formate 3%	E4 Sodium formate 4%	E5 Sodium formate 5%	E6 Sodium formate 6%	E7 Urea 2%	E8 Urea 3%	E9 Urea 4%	E10 Urea 5%	E11 Urea 6%	E12 Urea 7%
F1 Sodium Lactate 1%	F2 Sodium Lactate 2%	F3 Sodium Lactate 3%	F4 Sodium Lactate 4%	F5 Sodium Lactate 5%	F6 Sodium Lactate 6%	F7 Sodium Lactate 7%	F8 Sodium Lactate 8%	F9 Sodium Lactate 9%	F10 Sodium Lactate 10%	F11 Sodium Lactate 11%	F12 Sodium Lactate 12%
G1 Sodium Phosphate pH 7 20mM	G2 Sodium Phosphate pH 7 50mM	G3 Sodium Phosphate pH 7 100mM	G4 Sodium Phosphate pH 7 200mM	G5 Sodium Benzoate pH 5.2 20mM	G6 Sodium Benzoate pH 5.2 50mM	G7 Sodium Benzoate pH 5.2 100mM	G8 Sodium Benzoate pH 5.2 200mM	G9 Ammonium sulfate pH 8 10mM	G10 Ammonium sulfate pH 8 20mM	G11 Ammonium sulfate pH 8 50mM	G12 Ammonium sulfate pH 8 100mM
H1 Sodium Nitrate 10mM	H2 Sodium Nitrate 20mM	H3 Sodium Nitrate 40mM	H4 Sodium Nitrate 60mM	H5 Sodium Nitrate 80mM	H6 Sodium Nitrate 100mM	H7 Sodium Nitrite 10mM	H8 Sodium Nitrite 20mM	H9 Sodium Nitrite 40mM	H10 Sodium Nitrite 60mM	H11 Sodium Nitrite 80mM	H12 Sodium Nitrite 100mM
PM10	MicroP	late™	рH								
А1 pH 3.5	A2 pH 4	A3 pH 4.5	A4 pH 5	А5 pH 5.5	Аб рН б	А7 pH 7	А8 рН 8	A9 pH 8.5	А10 рН 9	А11 pH 9.5	A12 pH 10
B1 pH 4.5	B2 pH 4.5 + L-Alanine	B3 pH 4.5 + L-Arginine	B4 pH 4.5 + L-Asparagine	B5 pH 4.5 + L-Aspartic Acid	B6 pH 4.5 + L-Glutamic Acid	B7 pH 4.5 + L-Glutamine	B8 pH 4.5 + Glycine	B9 pH 4.5 + L-Histidine	B10 pH 4.5 + L-Isoleucine	B11 pH 4.5 + L-Leucine	B12 pH 4.5 + L-Lysine
C1 pH 4.5 + L-Methionine	C2 pH 4.5 + L-Phenylalanine	C3 pH 4.5 + L-Proline	C4 pH 4.5 + L-Serine	C5 pH 4.5 + L-Threonine	C6 pH 4.5 + L-Tryptophan	C7 pH 4.5 + L-Citrulline	C8 pH 4.5 + L-Valine	C9 pH 4.5 + Hydroxy- L-Proline	C10 pH 4.5 + L-Ornithine	C11 pH 4.5 + L-Homoarginine	C12 pH 4.5 + L-Homoserine
D-1 pH 4.5 + Anthranilic Acid	D2 pH 4.5 + L-Norleucine	D3 pH 4.5 + L-Norvaline	D4 pH 4.5 + α-Amino-N- Butyric Acid	D5 pH 4.5 + p-Amino- Benzoic Acid	D6 pH 4.5 + L-Cysteic Acid	D7 pH 4.5 + D-Lysine	D8 pH 4.5 + 5-Hydroxy Lysine	D9 pH 4.5 + 5-Hydroxy Tryptophan	D10 pH 4.5 + D,L-Diamino- Pimelic Acid	D11 pH 4.5 + Trimethylamine- N-oxide	D12 pH 4.5 + Urea
E1 pH 9.5	E2 pH 9.5 + L-Alanine	E3 pH 9.5 + L-Arginine	E4 pH 9.5 + L-Asparagine	E5 pH 9.5 + L-Aspartic Acid	E6 pH 9.5 + L-Glutamic Acid	E7 pH 9.5 + L-Glutamine	E8 pH 9.5 + Glycine	E9 pH 9.5 + L-Histidine	E10 pH 9.5 + L-Isoleucine	E11 pH 9.5 + L-Leucine	E12 pH 9.5 + L-Lysine
F1 pH 9.5 + L-Methionine	F2 pH 9.5 + L-Phenylalanine	F3 pH 9.5 + L-Proline	F4 pH 9.5 + L-Serine	F5 pH 9.5 + L-Threonine	F6 pH 9.5 + L-Tryptophan	F7 pH 9.5 + L-Tyrosine	F8 pH 9.5 + L-Valine	F9 pH 9.5 + Hydroxy- L-Proline	F10 pH 9.5 + L-Ornithine	F11 pH 9.5 + L-Homoarginine	F12 pH 9.5 + L-Homoserine
G1 pH 9.5 + Anthranilic Acid	G2 pH 9.5 + L-Norleucine	G3 pH 9.5 + L-Norvaline	G4 pH 9.5 + Agmatine	G5 pH 9.5 + Cadaverine	G6 pH 9.5 + Putrescine	G7 pH 9.5 + Histamine	G8 pH 9.5 + Phenylethylamine	G9 pH 9.5 + Tyramine	G10 pH 9.5 + Creatine	G11 pH 9.5 + Trimethylamine- N-oxide	G12 pH 9.5 + Urea
H1 X-Caprylate	H2 X–α-D-Glucoside	H3 X-β-D- Glucoside	H4 X-α-D- Galactoside	H5 X-β-D- Galactoside	H6 X-a-D- Glucuronide	H7 X-β-D- Glucuronide	H8 X-β-D- Glucosaminide	H9 X-β-D- Galactosaminide	H10 X-a-D- Mannoside	H11 X-PO4	H12 X-SO4

BiOLOG

Phenotype MicroArraysTM

PM11C MicroPlate™

A1 Amikacin	A2 Amikacin	A3 Amikacin	A4 Amikacin	A5 Chlortetracycline	A6 Chlortetracycline	A7 Chlortetracycline	A8 Chlortetracycline	A9 Lincomycin	A10 Lincomycin	A11 Lincomycin	A12 Lincomycin
1	2	3	4	1	2	3	4	1	2	3	4
B1 Amoxicillin	B2 Amoxicillin	B3 Amoxicillin	B4 Amoxicillin	B5 Cloxacillin	B6 Cloxacillin	B7 Cloxacillin	B8 Cloxacillin	B9 Lomefloxacin	B10 Lomefloxacin	B11 Lomefloxacin	B12 Lomefloxacin
1	2	3	4	1	2	3	4	1	2	3	4
C1 Bleomycin	C2 Bleomycin	C3 Bleomycin	C4 Bleomycin	C5 Colistin	C6 Colistin	C7 Colistin	C8 Colistin	C9 Minocycline	C10 Minocycline	C11 Minocycline	C12 Minocycline
1	2	3	4	1	2	3	4	1	2	3	4
D1 Capreomycin	D2 Capreomycin	D3 Capreomycin	D4 Capreomycin	D5 Demeclocycline	D6 Demeclocycline	D7 Demeclocycline	D8 Demeclocycline	D9 Nafcillin	D10 Nafcillin	D11 Nafcillin	D12 Nafcillin
1	2	3	4	1	2	3	4	1	2	3	4
E1 Cefazolin	E2 Cefazolin	E3 Cefazolin	E4 Cefazolin	E5 Enoxacin	E6 Enoxacin	E7 Enoxacin	E8 Enoxacin	E9 Nalidixic acid	E10 Nalidixic acid	E11 Nalidixic acid	E12 Nalidixic acid
1	2	3	4	1	2	3	4	1	2	3	4
F1 Chloramphenicol	F2 Chloramphenicol	F3 Chloramphenicol	F4 Chloramphenicol	F5 Erythromycin	F6 Erythromycin	F7 Erythromycin	F8 Erythromycin	F9 Neomycin	F10 Neomycin	F11 Neomycin	F12 Neomycin
1	2	3	4	1	2	3	4	1	2	3	4
G1 Ceftriaxone	G2 Ceftriaxone	G3 Ceftriaxone	G4 Ceftriaxone	G5 Gentamicin	G6 Gentamicin	G7 Gentamicin	G8 Gentamicin	G9 Potassium tellurite	G10 Potassium tellurite	G11 Potassium tellurite	G12 Potassium tellurite
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cephalothin	H2 Cephalothin	H3 Cephalothin	H4 Cephalothin	H5 Kanamycin	H6 Kanamycin	H7 Kanamycin	H8 Kanamycin	H9 Ofloxacin	H10 Ofloxacin	H11 Ofloxacin	H12 Ofloxacin
1	2	3	4	1	2	3	4	1	2	3	4

PM12B MicroPlate™

A1 Penicillin G	A2 Penicillin G	A3 Penicillin G	A4 Penicillin G	A5 Tetracycline	A6 Tetracycline	A7 Tetracycline	A8 Tetracycline	A9 Carbenicillin	A10 Carbenicillin	A11 Carbenicillin	A12 Carbenicillin
1	2	3	4	1	2	3	4	1	2	3	4
B1 Oxacillin	B2 Oxacillin	B3 Oxacillin	B4 Oxacillin	B5 Penimepicycline	B6 Penimepicycline	B7 Penimepicycline	B8 Penimepicycline	B9 Polymyxin B	B10 Polymyxin B	B11 Polymyxin B	B12 Polymyxin B
1	2	3	4	1	2	3	4	1	2	3	4
C1 Paromomycin	C2 Paromomycin	C3 Paromomycin	C4 Paromomycin	C5 Vancomycin	C6 Vancomycin	C7 Vancomycin	C8 Vancomycin	C9 D,L-Serine hydroxamate	C10 D,L-Serine hydroxamate	C11 D,L-Serine hydroxamate	C12 D,L-Serine hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
D1 Sisomicin	D2 Sisomicin	D3 Sisomicin	D4 Sisomicin	D5 Sulfamethazine	D6 Sulfamethazine	D7 Sulfamethazine	D8 Sulfamethazine	D9 Novobiocin	D10 Novobiocin	D11 Novobiocin	D12 Novobiocin
1	2	3	4	1	2	3	4	1	2	3	4
E1 2,4-Diamino-6,7- diisopropyl- pteridine	E2 2,4-Diamino-6,7- diisopropyl- pteridine	E3 2,4-Diamino-6,7- diisopropyl- pteridine	E4 2,4-Diamino-6,7- diisopropyl- pteridine	E5 Sulfadiazine	E6 Sulfadiazine	E7 Sulfadiazine	E8 Sulfadiazine	E9 Benzethonium chloride	E10 Benzethonium chloride	E11 Benzethonium chloride	E12 Benzethonium chloride
1	2	3	4	1	2	3	4	1	2	3	4
F1 Tobramycin	F2 Tobramycin	F3 Tobramycin	F4 Tobramycin	F5 Sulfathiazole	F6 Sulfathiazole	F7 Sulfathiazole	F8 Sulfathiazole	F9 5-Fluoroorotic acid	F10 5-Fluoroorotic acid	F11 5-Fluoroorotic acid	F12 5-Fluoroorotic acid
1	2	3	4	1	2	3	4	1	2	3	4
G1 Spectinomycin	G2 Spectinomycin	G3 Spectinomycin	G4 Spectinomycin	G5 Sulfa- methoxazole	G6 Sulfa- methoxazole	G7 Sulfa- methoxazole	G8 Sulfa- methoxazole	G9 L-Aspartic-β- hydroxamate	G10 L-Aspartic-β- hydroxamate	G11 L-Aspartic-β- hydroxamate	G12 L-Aspartic-β- hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
H1 Spiramycin	H2 Spiramycin	H3 Spiramycin	H4 Spiramycin	H5 Rifampicin	H6 Rifampicin	H7 Rifampicin	H8 Rifampicin	H9 Dodecyltrimethyl ammonium bromide	H10 Dodecyltrimethyl ammonium bromide	H11 Dodecyltrimethyl ammonium bromide	H12 Dodecyltrimethyl ammonium bromide
1	2	3	4	1	2	3	4	1	2	3	4

Phenotype MicroArraysTM

PM13B MicroPlate™

A1 Ampicillin	A2 Ampicillin	A3 Ampicillin	A4 Ampicillin	A5 Dequalinium chloride	A6 Dequalinium chloride	A7 Dequalinium chloride	A8 Dequalinium chloride	A9 Nickel chloride	A10 Nickel chloride	A11 Nickel chloride	A12 Nickel chloride
1	2	3	4	1	2	3	4	1	2	3	4
B1 Azlocillin	B2 Azlocillin	B3 Azlocillin	B4 Azlocillin	B5 2, 2'-Dipyridyl	B6 2, 2'-Dipyridyl	B7 2, 2'-Dipyridyl	B8 2, 2'-Dipyridyl	B9 Oxolinic acid	B10 Oxolinic acid	B11 Oxolinic acid	B12 Oxolinic acid
1	2	3	4	1	2	3	4	1	2	3	4
C1 6-Mercapto- purine	C2 6-Mercapto- purine	C3 6-Mercapto- purine	C4 6-Mercapto- purine	C5 Doxycycline	C6 Doxycycline	C7 Doxycycline	C8 Doxycycline	C9 Potassium chromate	C10 Potassium chromate	C11 Potassium chromate	C12 Potassium chromate
1	2	3	4	1	2	3	4	1	2	3	4
D1 Cefuroxime	D2 Cefuroxime	D3 Cefuroxime	D4 Cefuroxime	D5 5-Fluorouracil	D6 5-Fluorouracil	D7 5-Fluorouracil	D8 5-Fluorouracil	D9 Rolitetracycline	D10 Rolitetracycline	D11 Rolitetracycline	D12 Rolitetracycline
1	2	3	4	1	2	3	4	1	2	3	4
E1 Cytosine-1-beta- D-arabino- furanoside	E2 Cytosine-1-beta- D-arabino- furanoside	E3 Cytosine-1-beta- D-arabino- furanoside	E4 Cytosine-1-beta- D-arabino- furanoside	E5 Geneticin (G418)	E6 Geneticin (G418)	E7 Geneticin (G418)	E8 Geneticin (G418)	E9 Ruthenium red	E10 Ruthenium red	E11 Ruthenium red	E12 Ruthenium red
1	2	3	4	1	2	3	4	1	2	3	4
F1 Cesium chloride	F2 Cesium chloride	F3 Cesium chloride	F4 Cesium chloride	F5 Glycine	F6 Glycine	F7 Glycine	F8 Glycine	F9 Thallium (I) acetate	F10 Thallium (I) acetate	F11 Thallium (I) acetate	F12 Thallium (I) acetate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Cobalt chloride	G2 Cobalt chloride	G3 Cobalt chloride	G4 Cobalt chloride	G5 Manganese chloride	G6 Manganese chloride	G7 Manganese chloride	G8 Manganese chloride	G9 Trifluoperazine	G10 Trifluoperazine	G11 Trifluoperazine	G12 Trifluoperazine
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cupric chloride	H2 Cupric chloride	H3 Cupric chloride	H4 Cupric chloride	H5 Moxalactam	H6 Moxalactam	H7 Moxalactam	H8 Moxalactam	H9 Tylosin	H10 Tylosin	H11 Tylosin	H12 Tylosin
1	2	3	4	1	2	3	4	1	2	3	4

PM14A MicroPlate™

120000		2/1-222		100000		2000			0.0000		
A1 Acriflavine	A2 Acriflavine	A3 Acriflavine	A4 Acriflavine	A5 Furaltadone	A6 Furaltadone	A7 Furaltadone	A8 Furaltadone	A9 Sanguinarine	A10 Sanguinarine	A11 Sanguinarine	A12 Sanguinarine
1	2	3	4	1	2	3	4	1	2	3	4
B1 9-Aminoacridine	B2 9-Aminoacridine	B3 9-Aminoacridine	B4 9-Aminoacridine	B5 Fusaric acid	B6 Fusaric acid	B7 Fusaric acid	B8 Fusaric acid	B9 Sodium arsenate	B10 Sodium arsenate	B11 Sodium arsenate	B12 Sodium arsenate
1	2	3	4	1	2	3	4	1	2	3	4
C1 Boric Acid	C2 Boric Acid	C3 Boric Acid	C4 Boric Acid	C5 1-Hydroxy- pyridine -2- thione	C6 1-Hydroxy- pyridine -2- thione	C7 1-Hydroxy- pyridine -2- thione	C8 1-Hydroxy- pyridine -2- thione	C9 Sodium cyanate	C10 Sodium cyanate	C11 Sodium cyanate	C12 Sodium cyanate
1	2	3	4	1	2	3	4	1	2	3	4
D1 Cadmium chloride	D2 Cadmium chloride	D3 Cadmium chloride	D4 Cadmium chloride	D5 Iodoacetate	D6 lodoacetate	D7 Iodoacetate	D8 Iodoacetate	D9 Sodium dichromate	D10 Sodium dichromate	D11 Sodium dichromate	D12 Sodium dichromate
1	2	3	4	1	2	3	4	1	2	3	4
E1 Cefoxitin	E2 Cefoxitin	E3 Cefoxitin	E4 Cefoxitin	E5 Nitrofurantoin	E6 Nitrofurantoin	E7 Nitrofurantoin	E8 Nitrofurantoin	E9 Sodium metaborate	E10 Sodium metaborate	E11 Sodium metaborate	E12 Sodium metaborate
1	2	3	4	1	2	3	4	1	2	3	4
F1 Chloramphenicol	F2 Chloramphenicol	F3 Chloramphenicol	F4 Chloramphenicol	F5 Piperacillin	F6 Piperacillin	F7 Piperacillin	F8 Piperacillin	F9 Sodium metavanadate	F10 Sodium metavanadate	F11 Sodium metavanadate	F12 Sodium metavanadate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Chelerythrine	G2 Chelerythrine	G3 Chelerythrine	G4 Chelerythrine	G5 Carbenicillin	G6 Carbenicillin	G7 Carbenicillin	G8 Carbenicillin	G9 Sodium nitrite	G10 Sodium nitrite	G11 Sodium nitrite	G12 Sodium nitrite
1	2	3	4	1	2	3	4	1	2	3	4
H1 EGTA	H2 EGTA	H3 EGTA	H4 EGTA	H5 Promethazine	H6 Promethazine	H7 Promethazine	H8 Promethazine	H9 Sodium orthovanadate	H10 Sodium orthovanadate	H11 Sodium orthovanadate	H12 Sodium orthovanadate
1	2	3	4	1	2	3	4	1	2	3	4

BiOLOG

Phenotype MicroArraysTM

PM15B MicroPlate™

A1 Procaine	A2 Procaine	A3 Procaine	A4 Procaine	A5 Guanidine hydrochloride	A6 Guanidine hydrochloride	A7 Guanidine hydrochloride	A8 Guanidine hydrochloride	A9 Cefmetazole	A10 Cefmetazole	A11 Cefmetazole	A12 Cefmetazole
1	2	3	4	1	2	3	4	1	2	3	4
B1 D-Cycloserine	B2 D-Cycloserine	B3 D-Cycloserine	B4 D-Cycloserine	B5 EDTA	B6 EDTA	B7 EDTA	B8 EDTA	B9 5,7-Dichloro- 8- hydroxy- quinaldine	B10 5,7-Dichloro- 8- hydroxy- quinaldine	B11 5,7-Dichloro- 8- hydroxy- quinaldine	B12 5,7-Dichloro- 8- hydroxy- quinaldine
1	2	3	4	1	2	3	4	1	2	3	4
C1 5,7-Dichloro-8- hydroxyquinoline	C2 5,7-Dichloro-8- hydroxyquinoline	C3 5,7-Dichloro-8- hydroxyquinoline	C4 5,7-Dichloro-8- hydroxyquinoline	C5 Fusidic acid	C6 Fusidic acid	C7 Fusidic acid	C8 Fusidic acid	C9 1,10- Phenanthroline	C10 1,10- Phenanthroline	C11 1,10- Phenanthroline	C12 1,10- Phenanthroline
1	2	3	4	1	2	3	4	1	2	3	4
D1 Phleomycin	D2 Phleomycin	D3 Phleomycin	D4 Phleomycin	D5 Domiphen bromide	D6 Domiphen bromide	D7 Domiphen bromide	D8 Domiphen bromide	D9 Nordihydroguaia retic acid	D10 Nordihydroguaia retic acid	D11 Nordihydroguaia retic acid	D12 Nordihydroguaia retic acid
1	2	3	4	1	2	3	4	1	2	3	4
E1 Alexidine	E2 Alexidine	E3 Alexidine	E4 Alexidine	E5 5-Nitro-2- furaldehyde semicarbazone	E6 5-Nitro-2- furaldehyde semicarbazone	E7 5-Nitro-2- furaldehyde semicarbazone	E8 5-Nitro-2- furaldehyde semicarbazone	E9 Methyl viologen	E10 Methyl viologen	E11 Methyl viologen	E12 Methyl viologen
1	2	3	4	1	2	3	4	1	2	3	4
F1 3, 4-Dimethoxy- benzyl alcohol	F2 3, 4-Dimethoxy- benzyl alcohol	F3 3, 4-Dimethoxy- benzyl alcohol	F4 3, 4-Dimethoxy- benzyl alcohol	F5 Oleandomycin	F6 Oleandomycin	F7 Oleandomycin	F8 Oleandomycin	F9 Puromycin	F10 Puromycin	F11 Puromycin	F12 Puromycin
1	2	3	4	1	2	3	4	1	2	3	4
G1 CCCP	G2 CCCP	G3 CCCP	G4 CCCP	G5 Sodium azide	G6 Sodium azide	G7 Sodium azide	G8 Sodium azide	G9 Menadione	G10 Menadione	G11 Menadione	G12 Menadione
1	2	3	4	1	2	3	4	1	2	3	4
H1 2-Nitroimidazole	H2 2-Nitroimidazole	H3 2-Nitroimidazole	H4 2-Nitroimidazole	H5 Hydroxyurea	H6 Hydroxyurea	H7 Hydroxyurea	H8 Hydroxyurea	H9 Zinc chloride	H10 Zinc chloride	H11 Zinc chloride	H12 Zinc chloride
1	2	3	4	1	2	3	4	1	2	3	4

PM16A MicroPlate™

A1	142	142	144	45	146	147	149	140	1440	1444	1 442
Cefotaxime	Cefotaxime	Cefotaxime	Cefotaxime	Phosphomycin	Phosphomycin	Phosphomycin	Phosphomycin	5-Chloro-7-iodo- 8-hydroxy- quinoline	5-Chloro-7-iodo- 8-hydroxy- quinoline	5-Chloro-7-iodo- 8-hydroxy- quinoline	5-Chloro-7-iodo- 8-hydroxy- quinoline
1	2	3	4	1	2	3	4	1	2	3	4
B1 Norfloxacin	B2 Norfloxacin	B3 Norfloxacin	B4 Norfloxacin	B5 Sulfanilamide	B6 Sulfanilamide	B7 Sulfanilamide	B8 Sulfanilamide	B9 Trimethoprim	B10 Trimethoprim	B11 Trimethoprim	B12 Trimethoprim
1	2	3	4	1	2	3	4	1	2	3	4
C1 Dichlofluanid	C2 Dichlofluanid	C3 Dichlofluanid	C4 Dichlofluanid	C5 Protamine sulfate	C6 Protamine sulfate	C7 Protamine sulfate	C8 Protamine sulfate	C9 Cetylpyridinium chloride	C10 Cetylpyridinium chloride	C11 Cetylpyridinium chloride	C12 Cetylpyridinium chloride
1	2	3	4	1	2	3	4	1	2	3	4
D1 1-Chloro -2,4- dinitrobenzene	D2 1-Chloro -2,4- dinitrobenzene	D3 1-Chloro -2,4- dinitrobenzene	D4 1-Chloro -2,4- dinitrobenzene	D5 Diamide	D6 Diamide	D7 Diamide	D8 Diamide	D9 Cinoxacin	D10 Cinoxacin	D11 Cinoxacin	D12 Cinoxacin
1	2	3	4	1	2	3	4	1	2	3	4
E1 Streptomycin	E2 Streptomycin	E3 Streptomycin	E4 Streptomycin	E5 5-Azacytidine	E6 5-Azacytidine	E7 5-Azacytidine	E8 5-Azacytidine	E9 Rifamycin SV	E10 Rifamycin SV	E11 Rifamycin SV	E12 Rifamycin SV
1	2	3	4	1	2	3	4	1	2	3	4
F1 Potassium tellurite	F2 Potassium tellurite	F3 Potassium tellurite	F4 Potassium tellurite	F5 Sodium selenite	F6 Sodium selenite	F7 Sodium selenite	F8 Sodium selenite	F9 Aluminum sulfate	F10 Aluminum sulfate	F11 Aluminum sulfate	F12 Aluminum sulfate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Chromium chloride	G2 Chromium chloride	G3 Chromium chloride	G4 Chromium chloride	G5 Ferric chloride	G6 Ferric chloride	G7 Ferric chloride	G8 Ferric chloride	G9 L-Glutamic-g- hydroxamate	G10 L-Glutamic-g- hydroxamate	G11 L-Glutamic-g- hydroxamate	G12 L-Glutamic-g- hydroxamate
1	2	3	4	1	2	3	4	1	2	3	4
H1 Glycine hydroxamate	H2 Glycine hydroxamate	H3 Glycine hydroxamate	H4 Glycine hydroxamate	H5 Chloroxylenol	H6 Chloroxylenol	H7 Chloroxylenol	H8 Chloroxylenol	H9 Sorbic acid	H10 Sorbic acid	H11 Sorbic acid	H12 Sorbic acid
1	2	3	4	1	2	3	4	1	2	3	4

Phenotype MicroArraysTM

PM17A MicroPlate™

A1 D-Serine	A2 D-Serine	A3 D-Serine	A4 D-Serine	A5 β-Chloro- L-alanine hydrochloride	A6 β-Chloro- L-alanine hydrochloride	A7 β-Chloro- L-alanine hydrochloride	A8 β-Chloro- L-alanine hydrochloride	A9 Thiosalicylic acid	A10 Thiosalicylic acid	A11 Thiosalicylic acid	A12 Thiosalicylic acid
1	2	3	4	1	2	3	4	1	2	3	4
B1 Sodium salicylate	B2 Sodium salicylate	B3 Sodium salicylate	B4 Sodium salicylate	B5 Hygromycin B	B6 Hygromycin B	B7 Hygromycin B	B8 Hygromycin B	B9 Ethionamide	B10 Ethionamide	B11 Ethionamide	B12 Ethionamide
1	2	3	4	1	2	3	4	1	2	3	4
C1 4-Aminopyridine	C2 4-Aminopyridine	C3 4-Aminopyridine	C4 4-Aminopyridine	C5 Sulfachloro- pyridazine	C6 Sulfachloro- pyridazine	C7 Sulfachloro- pyridazine	C8 Sulfachloro- pyridazine	C9 Sulfamono- methoxine	C10 Sulfamono- methoxine	C11 Sulfamono- methoxine	C12 Sulfamono- methoxine
1	2	3	4	1	2	3	4	1	2	3	4
D1 Oxycarboxin	D2 Oxycarboxin	D3 Oxycarboxin	D4 Oxycarboxin	D5 3-Amino-1,2,4- triazole	D6 3-Amino-1,2,4- triazole	D7 3-Amino-1,2,4- triazole	D8 3-Amino-1,2,4- triazole	D9 Chlorpromazine	D10 Chlorpromazine	D11 Chlorpromazine	D12 Chlorpromazine
1	2	3	4	1	2	3	4	1	2	3	4
E1 Niaproof	E2 Niaproof	E3 Niaproof	E4 Niaproof	E5 Compound 48/80	E6 Compound 48/80	E7 Compound 48/80	E8 Compound 48/80	E9 Sodium tungstate	E10 Sodium tungstate	E11 Sodium tungstate	E12 Sodium tungstate
1	2	3	4	1	2	3	4	1	2	3	4
F1 Lithium chloride	F2 Lithium chloride	F3 Lithium chloride	F4 Lithium chloride	F5 DL-Methionine hydroxamate	F6 DL-Methionine hydroxamate	F7 DL-Methionine hydroxamate	F8 DL-Methionine hydroxamate	F9 Tannic acid	F10 Tannic acid	F11 Tannic acid	F12 Tannic acid
1	2	3	4	1	2	3	4	1	2	3	4
G1 Chlorambucil	G2 Chlorambucil	G3 Chlorambucil	G4 Chlorambucil	G5 Cefamandole nafate	G6 Cefamandole nafate	G7 Cefamandole nafate	G8 Cefamandole nafate	G9 Cefoperazone	G10 Cefoperazone	G11 Cefoperazone	G12 Cefoperazone
1	2	3	4	1	2	3	4	1	2	3	4
H1 Cefsulodin	H2 Cefsulodin	H3 Cefsulodin	H4 Cefsulodin	H5 Caffeine	H6 Caffeine	H7 Caffeine	H8 Caffeine	H9 Phenylarsine oxide	H10 Phenylarsine oxide	H11 Phenylarsine oxide	H12 Phenylarsine oxide
1	2	3	4	1	2	3	4	1	2	3	4

PM18C MicroPlate™

120000										11010	
A1 Ketoprofen	A2 Ketoprofen	A3 Ketoprofen	A4 Ketoprofen	A5 Sodium pyrophosphate decahydrate	A6 Sodium pyrophosphate decahydrate	A7 Sodium pyrophosphate decahydrate	A8 Sodium pyrophosphate decahydrate	A9 Thiamphenicol	A10 Thiamphenicol	A11 Thiamphenicol	A12 Thiamphenicol
1	2	3	4	1	2	3	4	1	2	3	4
B1 Trifluorothymidin e	B2 Trifluorothymidin e	B3 Trifluorothymidin e	B4 Trifluorothymidin e	B5 Pipemidic Acid	B6 Pipemidic Acid	B7 Pipemidic Acid	B8 Pipemidic Acid	B9 Azathioprine	B10 Azathioprine	B11 Azathioprine	B12 Azathioprine
1	2	3	4	1	2	3	4	1	2	3	4
C1 Poly-L-lysine	C2 Poly-L-lysine	C3 Poly-L-lysine	C4 Poly-L-lysine	C5 Sulfisoxazole	C6 Sulfisoxazole	C7 Sulfisoxazole	C8 Sulfisoxazole	C9 Pentachloro- phenol	C10 Pentachloro- phenol	C11 Pentachloro- phenol	C12 Pentachloro- phenol
1	2	3	4	1	2	3	4	1	2	3	4
D1 Sodium m-arsenite	D2 Sodium m-arsenite	D3 Sodium m-arsenite	D4 Sodium m-arsenite	D5 Sodium bromate	D6 Sodium bromate	D7 Sodium bromate	D8 Sodium bromate	D9 Lidocaine	D10 Lidocaine	D11 Lidocaine	D12 Lidocaine
1	2	3	4	1	2	3	4	1	2	3	4
E1 Sodium metasilicate	E2 Sodium metasilicate	E3 Sodium metasilicate	E4 Sodium metasilicate	E5 Sodium m-periodate	E6 Sodium m-periodate	E7 Sodium m-periodate	E8 Sodium m-periodate	E9 Antimony (III) chloride	E10 Antimony (III) chloride	E11 Antimony (III) chloride	E12 Antimony (III) chloride
1	2	3	4	1	2	3	4	1	2	3	4
F1 Semicarbazide	F2 Semicarbazide	F3 Semicarbazide	F4 Semicarbazide	F5 Tinidazole	F6 Tinidazole	F7 Tinidazole	F8 Tinidazole	F9 Aztreonam	F10 Aztreonam	F11 Aztreonam	F12 Aztreonam
1	2	3	4	1	2	3	4	1	2	3	4
G1 Triclosan	G2 Triclosan	G3 Triclosan	G4 Triclosan	G5 3,5-Diamino- 1,2,4-triazole (Guanazole)	G6 3,5-Diamino- 1,2,4-triazole (Guanazole)	G7 3,5-Diamino- 1,2,4-triazole (Guanazole)	G8 3,5-Diamino- 1,2,4-triazole (Guanazole)	G9 Myricetin	G10 Myricetin	G11 Myricetin	G12 Myricetin
1	2	3	4	- 1	2	3	4	1	2	3	4
H1 5-fluoro-5'- deoxyuridine	H2 5-fluoro-5'- deoxyuridine	H3 5-fluoro-5'- deoxyuridine	H4 5-fluoro-5'- deoxyuridine	H5 2-Phenylphenol	H6 2-Phenylphenol	H7 2-Phenylphenol	H8 2-Phenylphenol	H9 Plumbagin	H10 Plumbagin	H11 Plumbagin	H12 Plumbagin
1	2	3	4	1	2	3	4	1	2	3	4

BiOLOG

Phenotype MicroArraysTM

PM19 MicroPlate™

A1	A2	A3	A4	A5 Gallia aoid	A6 Gallio aoid	A7 Gallio aoid	A8 Gallio aoid	A9 Cournaria	A10	A11 Courrania	A12 Cournaria
oosanycm	oosanyem	oosaniyem	oosanyem	Game acid	Game acid	Game acid	Game acid	countaini	countain	Countain	countain
1	2	3	4	1	2	3	4	1	2	3	4
B1 Methyltrioctyl- ammonium chloride	B2 Methyltrioctyl- ammonium chloride	B3 Methyltrioctyl- ammonium chloride	B4 Methyltrioctyl- ammonium chloride	B5 Harmane	B6 Harmane	B7 Harman e	B8 Harmane	B9 2,4-Dintrophenol	B10 2,4-Dintrophenol	B11 2,4-Dintrophenol	B12 2,4-Dintrophenol
1	2	3	4	1	2	3	4	1	2	3	4
C1 Chlorhexidine	C2 Chlorhexidine	C3 Chlorhexidine	C4 Chlorhexidine	C5 Umbelliferone	C6 Umbelliferone	C7 Umbelliferone	C8 Umbelliferone	C9 Cinnamic acid	C10 Cinnamic acid	C11 Cinnamic acid	C12 Cinnamic acid
1	2	3	4	1	2	3	4	1	2	3	4
D1 Disulphiram	D2 Disulphiram	D3 Disulphiram	D4 Disulphiram	D5 Iodonitro Tetrazolium Violet	D6 Iodonitro Tetrazolium Violet	D7 Iodonitro Tetrazolium Violet	D8 Iodonitro Tetrazolium Violet	D9 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D10 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D11 Phenyl- methyl- sulfonyl- fluoride (PMSF)	D12 Phenyl- methyl- sulfonyl- fluoride (PMSF)
1	2	3	4	1	2	3	4	1	2	3	4
E1 FCCP	E2 FCCP	E3 FCCP	E4 FCCP	E5 D,L-Thioctic Acid	E6 D,L-Thioctic Acid	E7 D,L-Thioctic Acid	E8 D,L-Thioctic Acid	E9 Lawsone	E10 Lawsone	E11 Lawsone	E12 Lawsone
1	2	3	4	1	2	3	4	1	2	3	4
F1 Phenethicillin	F2 Phenethicillin	F3 Phenethicillin	F4 Phenethicillin	F5 Blasticidin S	F6 Blasticidin S	F7 Blasticidin S	F8 Blasticidin S	F9 Sodium caprylate	F10 Sodium caprylate	F11 Sodium caprylate	F12 Sodium caprylate
1	2	3	4	1	2	3	4	1	2	3	4
G1 Lauryl sulfobetaine	G2 Lauryl sulfobetaine	G3 Lauryl sulfobetaine	G4 Lauryl sulfobetaine	G5 Dihydro- streptomycin	G6 Dihydro- streptomycin	G7 Dihydro- streptomycin	G8 Dihydro- streptomycin	G9 Hydroxylamine	G10 Hydroxylamine	G11 Hydroxylamine	G12 Hydroxylamine
1	2	3	4	1	2	3	4	1	2	3	4
H1 Hexammine cobalt (III) chloride	H2 Hexammine cobalt (III) chloride	H3 Hexammine cobalt (III) chloride	H4 Hexammine cobalt (III) chloride	H5 Thioglycerol	H6 Thioglycerol	H7 Thioglycerol	H8 Thioglycerol	H9 Polymyxin B	H10 Polymyxin B	H11 Polymyxin B	H12 Polymyxin B
1	2	3	4	1	2	3	4	1	2	3	4

PM20B MicroPlate™

			-							1000	
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
Amitriptyline	Amitriptyline	Amitriptyline	Amitriptyline	Apramycin	Apramycin	Apramycin	Apramycin	Benserazide	Benserazide	Benserazide	Benserazide
1	2	3	4	1	2	3		1	2	3	4
	-		-		-		-		-		7
B1 Ombonadring	BZ	B3 Orphonadring	B4 Ornhonadring	B) D Bronzanolol	B0 D Propranolol	B/	B8	By	Bit	B11	B12
Orphenadrine	Orphenaume	Orphenadrine	orphenaume	D,L-Propranoioi	D,L-Propranoioi	D,LiPropranoioi	D,L-Propranoioi	violet	violat	violat	violet
								VIOIO	VIOIOL	VIOLO	VIOIBL
1	2	3	4	1	2	3	4	1	2	3	4
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Thioridazine	Thioridazine	Thioridazine	Thioridazine	Atropine	Atropine	Atropine	Atropine	Ornidazole	Ornidazole	Ornidazole	Ornidazole
	0.0000000000000000000000000000000000000		10.000000000000000000000000000000000000	0.0000.00000		10000 C				0.0000000000000	000000000000
1.22	12.2	1.025	107	2025	12.0	100	2013		0.22	255	100
1	2	3	4	1	2	3	4	1	2	3	4
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Proflavine	Proflavine	Proflavine	Proflavine	Ciprofloxacin	Ciprofloxacin	Ciprofloxacin	Ciprofloxacin	18-Crown-6	18-Crown-6	18-Crown-6	18-Crown-6
								ether	ether	ether	ether
	2	2					1941		2	2	
1	2	3	4	1	2	3	4		2	3	4
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Crystal violet	Crystal violet	Crystal violet	Crystal violet	Dodine	Dodine	Dodine	Dodine	Hexa-	Hexa-	Hexa-	Hexa-
								chlorophene	chlorophene	chiorophene	chiorophene
1	2	3	4	1	2	3	4	1	2	3	4
	-	-	F1		-	-			-	-	
F1	FZ A Hudrowy	F3	F4	F5 Ovutetracycline	Orotetracycline	Ovutetracycline	F8 Ovutetracycline	Pridinal	Pridingl	Pridingl	Pridinal
coumarin	coumarin	coumarin	coumarin	Oxytetracycline	Oxytenacycline	Oxytetracycline	Oxytetracycline	Filanoi	Filano	Filano	Filanoi
countarin	countain	countarin	countarin								
1	2	3	4	1	2	3	4	1	2	3	4
G1	G2	G3	G4	G5	G6	G7	G8	69	G10	G11	G12
Captan	Captan	Captan	Captan	3.5-Dinitro-	3.5-Dinitro-	3.5-Dinitro-	3.5-Dinitro-	8-Hydroxy-	8-Hydroxy-	8-Hydroxy-	8-Hydroxy-
23	12.0	22	22	benzene	benzene	benzene	benzene	quinoline	quinoline	auinoline	quinoline
						and the second sec	POWARA PODODA				
1	2	3	4	1	2	3	4	1	2	3	4
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
Patulin	Patulin	Patulin	Patulin	Tolylfluanid	Tolylfluanid	Tolylfluanid	Tolylfluanid	Troleandomycin	Troleandomycin	Troleandomycin	Troleandomycin
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1							1
				1							
1.2				840			1.2				
1	2	3	4	1	2	3	4	1	2	3	4